Science.gov

Sample records for acoustic liner impedance

  1. Acoustic impedance of curved multilayered duct liners

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1973-01-01

    The effect of curvature of annular duct liners on the liner acoustic impedance is examined. Exact equations are derived for the impedance of point reacting liners which are made from an arbitrary number of thin cylindrical layers of porous material separated by small radially oriented cells. Equations are given for liners with convex curvature and for liners with concave curvature. For ducts with small curvature, it is shown that these equations reduce to the equations for a flat liner. It is shown, by analytical and numerical examples, that the effect of liner curvature is significant in practical noise reduction problems.

  2. Effects of Liner Geometry on Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Tracy, Maureen B.; Watson, Willie R.; Parrott, Tony L.

    2002-01-01

    Current aircraft engine nacelles typically contain acoustic liners consisting of perforated sheets bonded onto honeycomb cavities. Numerous models have been developed to predict the acoustic impedance of these liners in the presence of grazing flow, and to use that information with aeroacoustic propagation codes to assess nacelle liner noise suppression. Recent efforts have provided advances in impedance education methodologies that offer more accurate determinations of acoustic liner properties in the presence of grazing flow. The current report provides the results of a parametric study, in which a finite element method was used to assess the effects of variations of the following geometric parameters on liner impedance, with and without the presence of grazing flow: percent open area, sheet thickness, sheet thickness-to-hole diameter ratio and cavity depth. Normal incidence acoustic impedances were determined for eight acoustic liners, consisting of punched aluminum facesheets bonded to hexcell honeycomb cavities. Similar liners were tested in the NASA Langley Research Center grazing incidence tube to determine their response in the presence of grazing flow. The resultant data provide a quantitative assessment of the effects of these perforate, single-layer liner parameters on the acoustic impedance of the liner.

  3. Optimization and Control of Acoustic Liner Impedance with Bias Flow

    NASA Technical Reports Server (NTRS)

    Wood, Houston; Follet, Jesse

    2000-01-01

    Because communities are impacted by steady increases in aircraft traffic, aircraft noise continues to be a growing problem for the growth of commercial aviation. Research has focused on improving the design of specific high noise source areas of aircraft and on noise control measures to alleviate noise radiated from aircraft to the surrounding environment. Engine duct liners have long been a principal means of attenuating engine noise. The ability to control in-situ the acoustic impedance of a liner would provide a valuable tool to improve the performance of liners. The acoustic impedance of a liner is directly related to the sound absorption qualities of that liner. Increased attenuation rates, the ability to change liner acoustic impedance to match various operating conditions, or the ability to tune a liner to more precisely match design impedance represent some ways that in-situ impedance control could be useful. With this in mind, the research to be investigated will focus on improvements in the ability to control liner impedance using a mean flow through the liner which is referred to as bias flow.

  4. Effects of Flow Profile on Educed Acoustic Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie r.; Nark, Douglas M.

    2010-01-01

    This paper presents results of an investigation of the effects of shear flow profile on impedance eduction processes employed at NASA Langley. Uniform and 1-D shear-flow propagation models are used to educe the acoustic impedance of three test liners based on aeroacoustic data acquired in the Langley Grazing Flow Impedance Tube, at source levels of 130, 140 and 150 dB, and at centerline Mach numbers of 0.0, 0.3 and 0.5. A ceramic tubular, calibration liner is used to evaluate the propagation models, as this liner is expected to be insensitive to SPL, grazing flow Mach number, and flow profile effects. The propagation models are then used to investigate the effects of shear flow profile on acoustic impedances educed for two conventional perforate-over-honeycomb liners. Results achieved with the uniform-flow models follow expected trends, but those educed with the 1-D shear-flow model do not, even for the calibration liner. However, when the flow profile used with the shear-flow model is varied to increase the Mach number gradient near the wall, results computed with the shear-flow model are well matched to those achieved with the uniform-flow model. This indicates the effects of flow profile on educed acoustic liner impedance are small, but more detailed investigations of the flow field throughout the duct are needed to better understand these effects.

  5. Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.

    2001-01-01

    Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.

  6. Optimization of Microphone Locations for Acoustic Liner Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; June, J. C.

    2015-01-01

    Two impedance eduction methods are explored for use with data acquired in the NASA Langley Grazing Flow Impedance Tube. The first is an indirect method based on the convected Helmholtz equation, and the second is a direct method based on the Kumaresan and Tufts algorithm. Synthesized no-flow data, with random jitter to represent measurement error, are used to evaluate a number of possible microphone locations. Statistical approaches are used to evaluate the suitability of each set of microphone locations. Given the computational resources required, small sample statistics are employed for the indirect method. Since the direct method is much less computationally intensive, a Monte Carlo approach is employed to gather its statistics. A comparison of results achieved with full and reduced sets of microphone locations is used to determine which sets of microphone locations are acceptable. For the indirect method, each array that includes microphones in all three regions (upstream and downstream hard wall sections, and liner test section) provides acceptable results, even when as few as eight microphones are employed. The best arrays employ microphones well away from the leading and trailing edges of the liner. The direct method is constrained to use microphones opposite the liner. Although a number of arrays are acceptable, the optimum set employs 14 microphones positioned well away from the leading and trailing edges of the liner. The selected sets of microphone locations are also evaluated with data measured for ceramic tubular and perforate-over-honeycomb liners at three flow conditions (Mach 0.0, 0.3, and 0.5). They compare favorably with results attained using all 53 microphone locations. Although different optimum microphone locations are selected for the two impedance eduction methods, there is significant overlap. Thus, the union of these two microphone arrays is preferred, as it supports usage of both methods. This array contains 3 microphones in the upstream

  7. Evaluation of Parallel-Element, Variable-Impedance, Broadband Acoustic Liner Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Howerton, Brian M.; Ayle, Earl

    2012-01-01

    Recent trends in aircraft engine design have highlighted the need for acoustic liners that provide broadband sound absorption with reduced liner thickness. Three such liner concepts are evaluated using the NASA normal incidence tube. Two concepts employ additive manufacturing techniques to fabricate liners with variable chamber depths. The first relies on scrubbing losses within narrow chambers to provide acoustic resistance necessary for sound absorption. The second employs wide chambers that provide minimal resistance, and relies on a perforated sheet to provide acoustic resistance. The variable-depth chambers used in both concepts result in reactance spectra near zero. The third liner concept employs mesh-caps (resistive sheets) embedded at variable depths within adjacent honeycomb chambers to achieve a desired impedance spectrum. Each of these liner concepts is suitable for use as a broadband sound absorber design, and a transmission line model is presented that provides good comparison with their respective acoustic impedance spectra. This model can therefore be used to design acoustic liners to accurately achieve selected impedance spectra. Finally, the effects of increasing the perforated facesheet thickness are demonstrated, and the validity of prediction models based on lumped element and wave propagation approaches is investigated. The lumped element model compares favorably with measured results for liners with thin facesheets, but the wave propagation model provides good comparisons for a wide range of facesheet thicknesses.

  8. Comparison of Acoustic Impedance Eduction Techniques for Locally-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Parrott, T. L.; Watson, W. R.

    2003-01-01

    Typical acoustic liners used in current aircraft inlets and aft-fan ducts consist of some type of perforated facesheet bonded to a honeycomb core. A number of techniques for determining the acoustic impedance of these locallyreacting liners have been developed over the last five decades. In addition, a number of models have been developed to predict the acoustic impedance of locallyreacting liners in the presence of grazing flow, and to use that information together with aeroacoustic propagation codes to assess the noise absorption provided by these liners. These prediction models have incorporated the results from databases acquired with specific impedance eduction techniques. Thus, while these prediction models are acceptable for liners that are similar to those tested in these databases, their application to new liner configurations must be viewed with caution. The primary purpose of this paper is to provide a comparison of impedance eduction techniques that have been implemented at various aerospace research laboratories in the United States (NASA Langley Research Center, General Electric Aircraft Engines, B. F. Goodrich and Boeing). A secondary purpose is to provide data for liner configurations that extend the porosity range beyond that which has been previously used in common aircraft engine nacelles. Two sets of liners were designed to study the effects of three parameters: perforate hole diameter, facesheet thickness and porosity. These two sets of liners were constructed for testing in each of the laboratories listed above. The first set of liners was designed to fit into the NASA Langley and Boeing test facilities. The second set was designed to fit into the General Electric Aircraft Engines and B. F. Goodrich test facilities. By using the same parent material, both sets of liners were identical to within the limits of material and fabrication variability. Baseline data were obtained in the normal incidence impedance tubes at NASA Langley and B. F

  9. Evaluation of a Variable-Impedance Ceramic Matrix Composite Acoustic Liner

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2014-01-01

    As a result of significant progress in the reduction of fan and jet noise, there is growing concern regarding core noise. One method for achieving core noise reduction is via the use of acoustic liners. However, these liners must be constructed with materials suitable for high temperature environments and should be designed for optimum absorption of the broadband core noise spectrum. This paper presents results of tests conducted in the NASA Langley Liner Technology Facility to evaluate a variable-impedance ceramic matrix composite acoustic liner that offers the potential to achieve each of these goals. One concern is the porosity of the ceramic matrix composite material, and whether this might affect the predictability of liners constructed with this material. Comparisons between two variable-depth liners, one constructed with ceramic matrix composite material and the other constructed via stereolithography, are used to demonstrate this material porosity is not a concern. Also, some interesting observations are noted regarding the orientation of variable-depth liners. Finally, two propagation codes are validated via comparisons of predicted and measured acoustic pressure profiles for a variable-depth liner.

  10. A Comparison Study of Normal-Incidence Acoustic Impedance Measurements of a Perforate Liner

    NASA Technical Reports Server (NTRS)

    Schultz, Todd; Liu, Fei; Cattafesta, Louis; Sheplak, Mark; Jones, Michael

    2009-01-01

    The eduction of the acoustic impedance for liner configurations is fundamental to the reduction of noise from modern jet engines. Ultimately, this property must be measured accurately for use in analytical and numerical propagation models of aircraft engine noise. Thus any standardized measurement techniques must be validated by providing reliable and consistent results for different facilities and sample sizes. This paper compares normal-incidence acoustic impedance measurements using the two-microphone method of ten nominally identical individual liner samples from two facilities, namely 50.8 mm and 25.4 mm square waveguides at NASA Langley Research Center and the University of Florida, respectively. The liner chosen for this investigation is a simple single-degree-of-freedom perforate liner with resonance and anti-resonance frequencies near 1.1 kHz and 2.2 kHz, respectively. The results show that the ten measurements have the most variation around the anti-resonance frequency, where statistically significant differences exist between the averaged results from the two facilities. However, the sample-to-sample variation is comparable in magnitude to the predicted cross-sectional area-dependent cavity dissipation differences between facilities, providing evidence that the size of the present samples does not significantly influence the results away from anti-resonance.

  11. Effects of grazing flow on the steady-state flow resistance and acoustic impedance of thin porous-faced liners

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Walker, B.

    1978-01-01

    The effects of grazing flow on the steady state flow resistance and acoustic impedance of seven Feltmetal and three Rigimesh thin porous faced liners were studied. The steady-state flow resistance of the ten specimens was measured using standard fluid mechanical experimental techniques. The acoustic impedance was measured using the two microphone method. The principal findings of the study are that the effects of grazing flow were measured and found to be small; small differences were measured between steady-state and acoustic resistance, and a semi-empirical model was derived that correlated the steady-state resistance data of the seven Feltmetal liners and the face sheet reactance of both the Feltmetal and Rigimesh liners.

  12. Flow Duct Data for Validation of Acoustic Liner Codes for Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Munro, Scott; Gaeta, R. J., Jr.

    2000-01-01

    The objective of the study reported here was to acquire acoustic and flow data with hard and lined duct wall duct sections for validation of a liner prediction code being developed at NASA LaRC. Both the mean flowfield and acoustic flowfields were determined in a cross-plane of the rectangular duct. A flow duct facility with acoustic drivers connected to a rectangular (4.7 x 2.0 inch) source section and a linear acoustic liner mounted downstream of the source section was used in this study. The liner section was designed to allow liner materials to be placed on all 4 walls of the duct. The test liner was of the locally-reacting type and was made from a ceramic material. The material, consisting of a tubular structure, was provided by NASA LaRC. The liner was approximately 8.89 cm (3.5 inches) thick. For the current study, only the two "short" sides of the duct were lined with liner material. The other two sides were hard walls. Two especially built instrumentation sections were attached on either sides of the liner section to allow acoustic and flow measurements to be made upstream and downstream of the liner. The two instrumentation duct sections were built to allow measurement of acoustic and flow properties at planes perpendicular to flow upstream and downstream of the liner section. The instrumentation section was also designed to provide a streamwise gradient in acoustic (complex) pressure from which the acoustic particle velocity, needed for the model validation, can be computed. Flow measurements included pressure, temperature, and velocity profiles upstream of the liner section. The in-flow sound pressure levels and phases were obtained with a microphone probe equipped with a nose cone in two cross planes upstream of the liner and two cross plane downstream of the liner. In addition to the acoustic measurements at the cross planes. axial centerline acoustic data was acquired using an axially traversing microphone probe which was traversed from a location

  13. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  14. ACOUSTIC LINERS FOR TURBOFAN ENGINES

    NASA Technical Reports Server (NTRS)

    Minner, G. L.

    1994-01-01

    This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.

  15. ONERA-NASA Cooperative Effort on Liner Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Primus, Julien; Piot, Estelle; Simon, Frank; Jones, Michael G.; Watson, Willie R

    2013-01-01

    As part of a cooperation between ONERA and NASA, the liner impedance eduction methods developed by the two research centers are compared. The NASA technique relies on an objective function built on acoustic pressure measurements located on the wall opposite the test liner, and the propagation code solves the convected Helmholtz equation in uniform ow using a finite element method that implements a continuous Galerkin discretization. The ONERA method uses an objective function based either on wall acoustic pressure or on acoustic velocity acquired above the liner by Laser Doppler Anemometry, and the propagation code solves the linearized Euler equations by a discontinuous Galerkin discretization. Two acoustic liners are tested in both ONERA and NASA ow ducts and the measured data are treated with the corresponding impedance eduction method. The first liner is a wire mesh facesheet mounted onto a honeycomb core, designed to be linear with respect to incident sound pressure level and to grazing ow velocity. The second one is a conventional, nonlinear, perforate-over-honeycomb single layer liner. Configurations without and with ow are considered. For the nonlinear liner, the comparison of liner impedance educed by NASA and ONERA shows a sensitivity to the experimental conditions, namely to the nature of the source and to the sample width.

  16. Experimental Impedance of Single Liner Elements with Bias Flow

    NASA Technical Reports Server (NTRS)

    Follet, J. I.; Betts, J. F.; Kelly, Jeffrey J.; Thomas, Russell H.

    2000-01-01

    An experimental investigation was conducted to generate a high quality database, from which the effects of a mean bias flow on the acoustic impedance of lumped-element single-degree-of-freedom liners was determined. Acoustic impedance measurements were made using the standard two-microphone method in the NASA Langley Normal Incidence Tube. Each liner consisted of a perforated sheet with a constant-area cavity. Liner resistance was shown to increase and to become less frequency and sound pressure level dependent as the bias flow was increased. The resistance was also consistently lower for a negative bias flow (suction) than for a positive bias flow (blowing) of equal magnitude. The slope of the liner reactance decreased with increased flow.

  17. Active Control of Liner Impedance by Varying Perforate Orifice Geometry

    NASA Technical Reports Server (NTRS)

    Ahuji, K. K.; Gaeta, R. J., Jr.

    2000-01-01

    The present work explored the feasibility of controlling the acoustic impedance of a resonant type acoustic liner. This was accomplished by translating one perforate over another of the same porosity creating a totally new perforate that had an intermediate porosity. This type of adjustable perforate created a variable orifice perforate whose orifices were non-circular. The key objective of the present study was to quantify, the degree of attenuation control that can be achieved by applying such a concept to the buried septum in a two-degree-of-freedom (2DOF) acoustic liner. An additional objective was to examine the adequacy of the existing impedance models to explain the behavior of the unique orifice shapes that result from the proposed silding perforate concept. Different orifice shapes with equivalent area were also examined to determine if highly non-circular orifices had a significant impact on the impedance.

  18. Acoustic Liner for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Sutliff, Daniel L.; Jones, Michael G.; Hebsur, Mohan G.

    2010-01-01

    The purpose of this innovation is to reduce aircraft noise in the communities surrounding airports by significantly attenuating the noise generated by the turbomachinery, and enhancing safety by providing a containment barrier for a blade failure. Acoustic liners are used in today's turbofan engines to reduce noise. The amount of noise reduction from an acoustic liner is a function of the treatment area, the liner design, and the material properties, and limited by the constraints of the nacelle or casement design. It is desirable to increase the effective area of the acoustic treatment to increase noise suppression. Modern turbofan engines use wide-chord rotor blades, which means there is considerable treatment area available over the rotor tip. Turbofan engines require containment over the rotors for protection from blade failure. Traditional methods use a material wrap such as Kevlar integrated with rub strips and sometimes metal layers (sandwiches). It is possible to substitute the soft rub-strip material with an open-cell metallic foam that provides noise-reduction benefits and a sacrificial material in the first layer of the containment system. An open-cell foam was evaluated that behaves like a bulk acoustic liner, serves as a tip rub strip, and can be integrated with a rotor containment system. Foams can be integrated with the fan-containment system to provide sufficient safety margins and increased noise attenuation. The major innovation is the integration of the foam with the containment.

  19. Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2015-01-01

    A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.

  20. A Comparative Study of Four Impedance Eduction Methodologies Using Several Test Liners

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2013-01-01

    A comparative study of four commonly used impedance eduction methods is presented for a range of liner structures and test conditions. Two of the methods are restricted to uniform flow while the other two accommodate both uniform and boundary layer flows. Measurements on five liner structures (a rigid-wall insert, a ceramic tubular liner, a wire mesh liner, a low porosity conventional liner, and a high porosity conventional liner) are obtained using the NASA Langley Grazing Flow Impedance Tube. The educed impedance of each liner is presented for forty-two test conditions (three Mach numbers and fourteen frequencies). In addition, the effects of moving the acoustic source from upstream to downstream and the refractive effects of the mean boundary layer on the wire mesh liner are investigated. The primary conclusions of the study are that: (1) more accurate results are obtained for the upstream source, (2) the uniform flow methods produce nearly identical impedance spectra at and below Mach 0.3 but significant scatter in the educed impedance occurs at the higher Mach number, (3) there is better agreement in educed impedance among the methods for the conventional liners than for the rigid-wall insert, ceramic, or wire mesh liner, and (4) the refractive effects of the mean boundary layer on the educed impedance of the wire mesh liner are generally small except at Mach 0.5.

  1. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  2. Effects of Liner Length and Attenuation on NASA Langley Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.

    2016-01-01

    This study explores the effects of liner length and attenuation on the CHE (convected Helmholtz equation) impedance eduction method, in which the surface impedance of an acoustic liner is inferred through an iterative process based on repeated solutions to the convected Helmholtz equation. Wire mesh-over-honeycomb and perforate-over-honeycomb acoustic liners are tested in the NASA Langley Grazing Flow Impedance Tube, and the resultant data are processed using two impedance eduction methods. The first is the CHE method, and the second is a direct method (labeled the KT method) that uses the Kumaresan and Tufts algorithm to compute the impedance directly. The CHE method has been extensively used for acoustic liner evaluation, but experiences anomalous behavior under some test conditions. It is postulated that the anomalies are related to the liner length and/or attenuation. Since the KT method only employs data measured over the length of the liner, it is expected to be unaffected by liner length. A comparison of results achieved with the two impedance eduction methods is used to explore the interactive effects of liner length and attenuation on the CHE impedance eduction method.

  3. Acoustic Liner Drag: A Parametric Study of Conventional Configurations

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2015-01-01

    Interest in the characterization of the aerodynamic drag performance of acoustic liners has increased in the past several years. This paper details experiments in NASA Langley's Grazing Flow Impedance Tube to quantify the relative drag of several conventional perforate-over-honeycomb liner configurations. For a fixed porosity, facesheet hole diameter and cavity depth are varied to study the effect of each. These configurations are selected to span the range of conventional liner geometries used in commercial aircraft engines. Detailed static pressure and acoustic measurements are made for grazing flows up to M=0.5 at 140 dB SPL for tones between 400 and 2800 Hz. These measurements are used to calculate a resistance factor (?) for each configuration. Analysis shows a correlation between perforate hole size and the resistance factor but cavity depth seems to have little influence. Acoustic effects on liner drag are observed to be limited to the lower Mach numbers included in this investigation.

  4. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  5. Computer method for design of acoustic liners for turbofan engines

    NASA Technical Reports Server (NTRS)

    Minner, G. L.; Rice, E. J.

    1976-01-01

    A design package is presented for the specification of acoustic liners for turbofans. An estimate of the noise generation was made based on modifications of existing noise correlations, for which the inputs are basic fan aerodynamic design variables. The method does not predict multiple pure tones. A target attenuation spectrum was calculated which was the difference between the estimated generation spectrum and a flat annoyance-weighted goal attenuated spectrum. The target spectrum was combined with a knowledge of acoustic liner performance as a function of the liner design variables to specify the acoustic design. The liner design method at present is limited to annular duct configurations. The detailed structure of the liner was specified by combining the required impedance (which is a result of the previous step) with a mathematical model relating impedance to the detailed structure. The design procedure was developed for a liner constructed of perforated sheet placed over honeycomb backing cavities. A sample calculation was carried through in order to demonstrate the design procedure, and experimental results presented show good agreement with the calculated results of the method.

  6. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  7. Development and Validation of an Interactive Liner Design and Impedance Modeling Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.; Buckley, James L.

    2012-01-01

    The Interactive Liner Impedance Analysis and Design (ILIAD) tool is a LabVIEW-based software package used to design the composite surface impedance of a series of small-diameter quarter-wavelength resonators incorporating variable depth and sharp bends. Such structures are useful for packaging broadband acoustic liners into constrained spaces for turbofan engine noise control applications. ILIAD s graphical user interface allows the acoustic channel geometry to be drawn in the liner volume while the surface impedance and absorption coefficient calculations are updated in real-time. A one-dimensional transmission line model serves as the basis for the impedance calculation and can be applied to many liner configurations. Experimentally, tonal and broadband acoustic data were acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3000 Hz at 120 and 140 dB SPL. Normalized impedance spectra were measured using the Two-Microphone Method for the various combinations of channel configurations. Comparisons between the computed and measured impedances show excellent agreement for broadband liners comprised of multiple, variable-depth channels. The software can be used to design arrays of resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  8. A systematic uncertainty analysis for liner impedance eduction technology

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Bodén, Hans

    2015-11-01

    The so-called impedance eduction technology is widely used for obtaining acoustic properties of liners used in aircraft engines. The measurement uncertainties for this technology are still not well understood though it is essential for data quality assessment and model validation. A systematic framework based on multivariate analysis is presented in this paper to provide 95 percent confidence interval uncertainty estimates in the process of impedance eduction. The analysis is made using a single mode straightforward method based on transmission coefficients involving the classic Ingard-Myers boundary condition. The multivariate technique makes it possible to obtain an uncertainty analysis for the possibly correlated real and imaginary parts of the complex quantities. The results show that the errors in impedance results at low frequency mainly depend on the variability of transmission coefficients, while the mean Mach number accuracy is the most important source of error at high frequencies. The effect of Mach numbers used in the wave dispersion equation and in the Ingard-Myers boundary condition has been separated for comparison of the outcome of impedance eduction. A local Mach number based on friction velocity is suggested as a way to reduce the inconsistencies found when estimating impedance using upstream and downstream acoustic excitation.

  9. Drag Measurements of Porous Plate Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Wolter, John D.

    2005-01-01

    This paper presents the results of direct drag measurements on a variety of porous plate acoustic liners. The existing literature describes numerous studies of drag on porous walls with injection or suction, but relatively few of drag on porous plates with neither injection nor suction. Furthermore, the porosity of the porous plate in existing studies is much lower than typically used in acoustic liners. In the present work, the acoustic liners consisted of a perforated face sheet covering a bulk acoustic absorber material. Factors that were varied in the experiment were hole diameter, hole pattern, face sheet thickness, bulk material type, and size of the gap (if any) between the face sheet and the absorber material.

  10. Performance of a Checkerboard Liner With Uncertain Impedances

    NASA Technical Reports Server (NTRS)

    Robinson, J. H.; Watson, W. R.

    2005-01-01

    The current fleet of large commercial aircraft has successfully achieved FAA noise certifications because of, in part, the successful application of uniform passive duct liner treatments to control engine system noise. One goal of NASA's engine system noise reduction program is to develop technologies to improve the sound absorbing properties of duct liner treatments so that they remain effective in modern turbo fan engines. One such technology being studied is checkerboard or periodic axially and circumferentially segmented liners. A preliminary assessment of the potential of this technology was conducted by applying uncertainties associated with manufacturing, installation, source structure, and tonal frequency to a liner developed using deterministic design methods and generating a measure of improvement with respect to a uniform liner subjected to the same uncertainties. Deterministic design and analysis of the candidate checkerboard liner showed that it obtains a 1.5 dB per duct aspect ratio improvement in liner attenuation over a similarly designed uniform liner. When uncertainties in liner impedances, source structure, and frequency are considered, the performance of the checkerboard liner drops off dramatically. The final results of this paper show that the candidate checkerboard liner has a less than 25 percent chance of outperforming the uniform liner when moderate levels of uncertainty are considered. It is important to note that this study did not include the effects of mean flow on liner performance and, more important to note, that as a gradient based optimization process was used to design the checkerboard liner, it is almost certain that a global optimal design was not found for the candidate checkerboard liner. Had it been possible to find a better deterministically performing checkerboard liner, the probability that this candidate liner would outperform the uniform liner would certainly have been higher.

  11. Tests Of Shear-Flow Model For Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Parrot, Tony L.; Watson, Willie R.; Jones, Michael G.

    1992-01-01

    Tests described in report conducted to validate two-dimensional shear-flow analytical model for determination of acoustic impedance of acoustic liner in grazing-incidence, grazing-flow environment by use of infinite-waveguide method. Tests successful for both upstream and downstream propagations. Work has potential for utility in testing of engine ducts in commercial aircraft.

  12. Acoustic Characteristics of Various Treatment Panel Designs for HSCT Ejector Liner Acoustic Technology Development Program

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Kraft, R. E.; Syed, A. a.; Vu, D. D.; Mungur, P.; Langenbrunner, L. E.; Majjigi, R. K.

    2006-01-01

    The objectives of the initial effort (Phase I) of HSR Liner Technology Program, the selection of promising liner concepts, design and fabrication of these concepts for laboratory tests, testing these liners in the laboratory by using impedance tube and flow ducts, and developing empirical impedance/suppression correlation, are successfully completed. Acoustic and aerodynamic criteria for the liner design are established. Based on these criteria several liners are designed. The liner concepts designed and fabricated include Single-Degree-of-Freedom (SDOF), Two-Degree-of-Freedom (2DOF), and Bulk Absorber. Two types of SDOF treatment are fabricated, one with a perforated type face plate and the other with a wiremesh (woven) type faceplate. In addition, special configurations of these concepts are also included in the design. Several treatment panels are designed for parametric study. In these panels the facesheets of different porosity, hole diameter, and sheet thickness are utilized. Several deep panels (i.e., 1 in. deep) are designed and instrumented to measure DC flow resistance and insitu impedance in the presence of grazing flow. Basic components of these panels (i.e., facesheets, bulk materials, etc.) are also procured and tested. The results include DC flow resistance, normal impedance, and insertion loss.

  13. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  14. Acoustic-Liner Admittance in a Duct

    NASA Technical Reports Server (NTRS)

    Watson, W. R.

    1986-01-01

    Method calculates admittance from easily obtainable values. New method for calculating acoustic-liner admittance in rectangular duct with grazing flow based on finite-element discretization of acoustic field and reposing of unknown admittance value as linear eigenvalue problem on admittance value. Problem solved by Gaussian elimination. Unlike existing methods, present method extendable to mean flows with two-dimensional boundary layers as well. In presence of shear, results of method compared well with results of Runge-Kutta integration technique.

  15. Acoustic Panel Liner for an Engine Nacelle

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Nark, Douglas M. (Inventor); Ayle, Earl (Inventor); Ichihashi, Fumitaka (Inventor)

    2016-01-01

    An acoustic panel liner includes a face sheet, back plate, and liner core positioned there-between, which may be used in an engine nacelle. Elongated chambers contain variable amounts of septa at a calibrated depth or depths. The septa may have varying DC flow resistance. The chambers may have a hexagonal or other polygonal cross sections. The septa, such as mesh caps, may be bonded to an inner wall of a corresponding chamber. The insertion depths may be the same or different. If different, the pattern of distribution of the depths may be randomized.

  16. A Computational Study of the Flow Physics of Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Tam, Christopher

    2006-01-01

    The present investigation is a continuation of a previous joint project between the Florida State University and the NASA Langley Research Center Liner Physics Team. In the previous project, a study of acoustic liners, in two dimensions, inside a normal incidence impedance tube was carried out. The study consisted of two parts. The NASA team was responsible for the experimental part of the project. This involved performing measurements in an impedance tube with a large aspect ratio slit resonator. The FSU team was responsible for the computation part of the project. This involved performing direct numerical simulation (DNS) of the NASA experiment in two dimensions using CAA methodology. It was agreed that upon completion of numerical simulation, the computed values of the liner impedance were to be sent to NASA for validation with experimental results. On following this procedure good agreements were found between numerical results and experimental measurements over a wide range of frequencies and sound-pressure-level. Broadband incident sound waves were also simulated numerically and measured experimentally. Overall, good agreements were also found.

  17. Innovative Liner Concepts: Experiments and Impedance Modeling of Liners Including the Effect of Bias Flow

    NASA Technical Reports Server (NTRS)

    Kelly, Jeff; Betts, Juan Fernando; Fuller, Chris

    2000-01-01

    The study of normal impedance of perforated plate acoustic liners including the effect of bias flow was studied. Two impedance models were developed by modeling the internal flows of perforate orifices as infinite tubes with the inclusion of end corrections to handle finite length effects. These models assumed incompressible and compressible flows, respectively, between the far field and the perforate orifice. The incompressible model was used to predict impedance results for perforated plates with percent open areas ranging from 5% to 15%. The predicted resistance results showed better agreement with experiments for the higher percent open area samples. The agreement also tended to deteriorate as bias flow was increased. For perforated plates with percent open areas ranging from 1% to 5%, the compressible model was used to predict impedance results. The model predictions were closer to the experimental resistance results for the 2% to 3% open area samples. The predictions tended to deteriorate as bias flow was increased. The reactance results were well predicted by the models for the higher percent open area, but deteriorated as the percent open area was lowered (5%) and bias flow was increased. A fit was done on the incompressible model to the experimental database. The fit was performed using an optimization routine that found the optimal set of multiplication coefficients to the non-dimensional groups that minimized the least squares slope error between predictions and experiments. The result of the fit indicated that terms not associated with bias flow required a greater degree of correction than the terms associated with the bias flow. This model improved agreement with experiments by nearly 15% for the low percent open area (5%) samples when compared to the unfitted model. The fitted model and the unfitted model performed equally well for the higher percent open area (10% and 15%).

  18. Adaptive Back Sheet Material for Acoustic Liner Applications-ARMD Seedling Fund Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Farrar, Dawnielle

    2014-01-01

    A recently developed piezo-electric composite film is evaluated for its usefulness in application in acoustic liners. Researchers at the NASA Langley Research Center Liner Technology Facility developed experiments to measure the electrical response of the material to acoustic excitation and the vibrational response of the material to electrical excitation. The robustness of the piezo-electric film was also assessed. The material's electrical response to acoustic excitation is found to be comparable to a commercial microphone in the range of frequencies from 500 to 3000 Hz. However, the vibrational response to electrical excitation in the frequency range of interest is an order of magnitude less than may be necessary for application to acoustic liners. Nevertheless, experimental results indicate that the potential exists for the material to produce a measurable change in the impedance spectrum of a liner. Work continues to improve the authority of the piezo-electric film.

  19. Experimental Validation of Numerical Simulations for an Acoustic Liner in Grazing Flow

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Pastouchenko, Nikolai N.; Jones, Michael G.; Watson, Willie R.

    2013-01-01

    A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a rectangular flow duct with a 2 inch by 2.5 inch cross section. Spatial distribution of sound pressure levels and relative phases are measured on the wall opposite the liner in the presence of a Mach 0.3 grazing flow. The computer code is validated by comparing computed results with experimental measurements. Good agreements are found. The numerical simulation code is then used to investigate the physical properties of the acoustic liner. It is shown that an acoustic liner can produce self-noise in the presence of a grazing flow and that a feedback acoustic resonance mechanism is responsible for the generation of this liner self-noise. In addition, the same mechanism also creates additional liner drag. An estimate, based on numerical simulation data, indicates that for a resonant liner with a 10% open area ratio, the drag increase would be about 4% of the turbulent boundary layer drag over a flat wall.

  20. A method to determine the acoustical properties of locally and nonlocally reacting duct liners in grazing flow

    NASA Technical Reports Server (NTRS)

    Succi, G.

    1982-01-01

    The acoustical properties of locally and nonlocally reacting acoustical liners in grazing flow are described. The effect of mean flow and shear flow are considered as well as the application to rigid and limp bulk reacting materials. The axial wavenumber of the least attenuated mode in a flow duct is measured. The acoustical properties of duct liners is then deduced from the measured axial wavenumber and known flow profile and boundary conditions. This method is a natural extension of impedance-like measurements.

  1. Micro- and Macro-Fluid Dynamics and Acoustics of Resonant Liners

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Watson, Willie (Technical Monitor)

    2002-01-01

    The objectives of this project are to perform direct numerical simulation of the micro-fluid and acoustic fields of a resonant acoustic liner and to investigate the physical processes by which incident sound waves are damped by the acoustic liner. We would like to report that our research work and results have fulfilled both objectives of the grant. The following is a summary of the important accomplishments: (1) Two dimensional direct numerical simulation of the flow and acoustic field around the cavity of resonant liner were successfully carried out; (2) The simulations of (1) were extended to include a laminar grazing flow; (3) The numerical simulations provided strong evidence that there are two principal mechanisms by which a resonant liner damps out an incident acoustic wave; (4) A validation test was performed by comparing the computed dissipation coefficients (not impedance) with impedance tube measurements done at GTRI; and (5) Some resources of this grant were used to support the development of new CAA methods. (Our work on numerical simulation of acoustic liners has benefited by the availability of these improved methods).

  2. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-01-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  3. Duct wall impedance control as an advanced concept for acoustic suppression enhancement. [engine noise reduction

    NASA Technical Reports Server (NTRS)

    Dean, P. D.

    1978-01-01

    A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.

  4. Development of a Tunable Electromechanical Acoustic Liner for Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Liu, Fei; Sheplak, Mark; Cattafesta, Louis N., III

    2007-01-01

    This report describes the development of a tunable electromechanical Helmholtz resonator (EMHR) for engine nacelles using smart materials technology. This effort addresses both near-term and long-term goals for tunable electromechanical acoustic liner technology for the Quiet Aircraft Technology (QAT) Program. Analytical models, i.e. lumped element model (LEM) and transfer matrix (TM) representation of the EMHR, have been developed to predict the acoustic behavior of the EMHR. The models have been implemented in a MATLAB program and used to compare with measurement results. Moreover, the prediction performance of models is further improved with the aid of parameter extraction of the piezoelectric backplate. The EMHR has been experimentally investigated using standard two-microphone method (TMM). The measurement results validated both the LEM and TM models of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom DOF) system and an enhanced tuning range of over 20% that is not restricted by the short- and open-circuit limits. Damping coefficient ' measurements for piezoelectric backplates in a vacuum chamber are also performed and indicate that the damping is dominated by the structural damping losses, such as compliant boundaries, and other intrinsic loss mechanisms. Based on models of the EMHR, a Pareto optimization design of the EMHR has been performed for the EMHR with non-inductive loads. The EMHR with non-inductive loads is a 2DOF system with two resonant fiequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously; a trade-off (i.e., a Pareto solution) must be reached. The Pareto solution

  5. Duct wall impedance control as an advanced concept for acoustic impression

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Tester, B. J.

    1975-01-01

    Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.

  6. Bayesian identification of acoustic impedance in treated ducts.

    PubMed

    Buot de l'Épine, Y; Chazot, J-D; Ville, J-M

    2015-07-01

    The noise reduction of a liner placed in the nacelle of a turbofan engine is still difficult to predict due to the lack of knowledge of its acoustic impedance that depends on grazing flow profile, mode order, and sound pressure level. An eduction method, based on a Bayesian approach, is presented here to adjust an impedance model of the liner from sound pressures measured in a rectangular treated duct under multimodal propagation and flow. The cost function is regularized with prior information provided by Guess's [J. Sound Vib. 40, 119-137 (1975)] impedance of a perforated plate. The multi-parameter optimization is achieved with an Evolutionary-Markov-Chain-Monte-Carlo algorithm. PMID:26233052

  7. Optimization of Acoustic Pressure Measurements for Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.

    2007-01-01

    As noise constraints become increasingly stringent, there is continued emphasis on the development of improved acoustic liner concepts to reduce the amount of fan noise radiated to communities surrounding airports. As a result, multiple analytical prediction tools and experimental rigs have been developed by industry and academia to support liner evaluation. NASA Langley has also placed considerable effort in this area over the last three decades. More recently, a finite element code (Q3D) based on a quasi-3D implementation of the convected Helmholtz equation has been combined with measured data acquired in the Langley Grazing Incidence Tube (GIT) to reduce liner impedance in the presence of grazing flow. A new Curved Duct Test Rig (CDTR) has also been developed to allow evaluation of liners in the presence of grazing flow and controlled, higher-order modes, with straight and curved waveguides. Upgraded versions of each of these two test rigs are expected to begin operation by early 2008. The Grazing Flow Impedance Tube (GFIT) will replace the GIT, and additional capabilities will be incorporated into the CDTR. The current investigation uses the Q3D finite element code to evaluate some of the key capabilities of these two test rigs. First, the Q3D code is used to evaluate the microphone distribution designed for the GFIT. Liners ranging in length from 51 to 610 mm are investigated to determine whether acceptable impedance eduction can be achieved with microphones placed on the wall opposite the liner. This analysis indicates the best results are achieved for liner lengths of at least 203 mm. Next, the effects of moving this GFIT microphone array to the wall adjacent to the liner are evaluated, and acceptable results are achieved if the microphones are placed off the centerline. Finally, the code is used to investigate potential microphone placements in the CDTR rigid wall adjacent to the wall containing an acoustic liner, to determine if sufficient fidelity can be

  8. Results From a Parametric Acoustic Liner Experiment Using P and W GEN1 HSR Mixer/Ejector Model

    NASA Technical Reports Server (NTRS)

    Boyd, Kathleen C.; Wolter, John D.

    2004-01-01

    This report documents the results of an acoustic liner test performed using a Gen 1 HSR mixer/ejector model installed on the Jet Exit Rig in the Nozzle Acoustic Test Rig in the Aeroacoustic Propulsion Laboratory or NASA Glenn Research Center. Acoustic liner effectiveness and single-component thrust performance results are discussed. Results from 26 different types of single-degree-of-freedom and bulk material liners are compared with each other and against a hardwall baseline. Design parameters involving all aspects of the facesheet, the backing cavity, and the type of bulk material were varied in order to study the effects of these design features on the acoustic impedance, acoustic effectiveness and on nozzle thrust performance. Overall, the bulk absorber liners are more effective at reducing the jet noise than the single-degree-of-freedom liners. Many of the design parameters had little effect on acoustic effectiveness, such as facesheeet hole diameter and honeycomb cell size. A relatively large variation in the impedance of the bulk absorber in a bulk liner is required to have a significant impact on the noise reduction. The thrust results exhibit a number of consistent trends, supporting the validity of this new addition to the facility. In general, the thrust results indicate that thrust performance benefits from increased facesheet thickness and decreased facesheet porosity.

  9. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  10. Configuration Effects on Acoustic Performance of a Duct Liner

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Nark, Douglas; Howerton, Brian M.

    2008-01-01

    Continued success in aircraft engine noise reduction necessitates ever more complete understanding of the effect that flow path geometry has on sound propagation in the engine. The Curved Duct Test Rig (CDTR) has been developed at NASA Langley Research Center to investigate sound propagation through a duct of comparable size (approximately the gap of GE90) and physical characteristics to the aft bypass duct of typical aircraft engines. The liner test section is designed to mimic the outer/inner walls of an engine exhaust bypass duct that has been unrolled circumferentially. Experiments to investigate the effect of curvature along the flow path on the acoustic performance of a test liner are performed in the CDTR and reported in this paper. Flow paths investigated include both straight and curved with offsets from the inlet to the discharge plane of and 1 duct width, respectively. The test liners are installed on the side walls of the liner test section. The liner samples are perforate over honeycomb core, which design is typical of liners installed in aircraft nacelles. In addition to fully treated side walls, combinations of treated and acoustically rigid walls are investigated. While curvature in the hard wall duct is found not to reduce the incident sound significantly, it does cause mode scattering. It is found that asymmetry of liner treatment causes scattering of the incident mode into less attenuated modes, which degrades the overall liner attenuation. It is also found that symmetry of liner treatment enhances liner performance by eliminating scattering into less attenuated modes. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation (CDUCT-LaRC) have also been made and are reported in this paper. The effect of curvature in the rigid wall configuration estimated by CDUCT-LaRC is similar to the observed results, and the mode scattering seen in the measurements also occurs in the

  11. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  12. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  13. Advanced Technology Development for Active Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark; Cattafesta, Louis N., III; Nishida, Toshikazu; Kurdila, Andrew J.

    2001-01-01

    Objectives include: (1) Develop electro-mechanical/acoustic models of a Helmholtz resonator possessing a compliant diaphragm coupled to a piezoelectric device; (2) Design and fabricate the energy reclamation module and active Helmholtz resonator; (3) Develop and build appropriate energy reclamation/storage circuit; (4) Develop and fabricate appropriate piezoelectric shunt circuit to tune the compliance of the active Helmholtz resonator via a variable capacitor; (5) Quantify energy reclamation module efficiency in a grazing-flow plane wave tube possessing known acoustic energy input; and (6) Quantify actively tuned Helmholtz resonator performance in grazing-flow plane wave tube for a white-noise input

  14. Nonlinear acoustic impedance of thermoacoustic stack

    NASA Astrophysics Data System (ADS)

    Ge, Huan; Fan, Li; Xiao, Shu-yu; Tao, Sha; Qiu, Mei-chen; Zhang, Shu-yi; Zhang, Hui

    2012-09-01

    In order to optimize the performances of the thermoacoustic refrigerator working with the high sound pressure level, the nonlinear acoustic characteristics of the thermoacoustic stack in the resonant pipe are studied. The acoustic fluid impedance of the stack made of copper mesh and set up in a resonant pipe is measured in the acoustic fields with different intensities. It is found that when the sound pressure level in the pipe increases to a critical value, the resistance of the stack increases nonlinearly with the sound pressure, while the reactance of the stack keeps constant. Based on the experimental results, a theory model is set up to describe the acoustic characteristics of the stack, according to the rigid frame theory and Forchheimmer equation. Furthermore, the influences of the sound pressure level, operating frequency, volume porosity, and length of the stack on the nonlinear impedance of the stack are evaluated.

  15. Acoustic input impedance measurements on brass instruments

    NASA Astrophysics Data System (ADS)

    Pyle, Robert W., Jr.

    2002-11-01

    Measurement of the acoustic input impedance of a brass instrument can reveal something about the instrument's intonation, its reasonable playing range, its tone color, and perhaps whether the mouthpiece used for the impedance measurement is appropriate for the instrument. Such measurements are made at sound-presssure levels much lower than those encountered under playing conditions. Thus, impedance measurements may offer the only feasible way to infer something about the playing characteristics of instruments, typically museum specimens, that are too rare or too fragile to be played. In this paper the effects of some of the available choices of sound source and stimulus signal on measurement accuracy will be explored. Driver-transducer nonlinearity, source impedance, signal-to-noise ratio, and any necessary signal processing will be discussed.

  16. Post Test Evaluation of HSCT Nozzle Acoustic Liner Subcomponents Subjected to a Hot Acoustic Durability Test

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Lee, Kuan

    2008-01-01

    The acoustic liner system designed for use in the High Speed Civil Transport (HSCT) was tested in a thermal-acoustic environment. Five ceramic matrix composite (CMC) acoustic tile configurations, five bulk acoustic absorbers, and one thermal protection system design were tested. The CMC acoustic tiles were subjected to two 2 3/4 hr ambient temperature acoustic exposures to measure their dynamic response. One exposure was conducted on the tiles alone and the second exposure included the tiles and the T-foam bulk absorber. The measured tile RMS strains were small. With or without the T-foam absorber, the dynamic strains were below strain levels that would cause damage during fatigue loading. After the ambient exposure, a 75-hr durability test of the entire acoustic liner system was conducted using a thermal-acoustic cycle that approximated the anticipated service cycle. Acoustic loads up to 139 dB/Hz and temperatures up to 1670 F (910 C) were employed during this 60 cycle test. During the durability test, the CMC tiles were exposed to temperatures up to 1780 F and a transient through thickness gradient up to 490 F. The TPS peak temperatures on the hot side of the panels ranged from 750 to 1000 F during the 60 cycles. The through thickness delta T ranged from 450 to 650 F, varying with TPS location and cycle number. No damage, such as cracks or chipping, was observed in the CMC tiles after completion of the testing. However, on tile warped during the durability test and was replaced after 43 or 60 cycles. No externally observed damage was found in this tile. No failure of the CMC fasteners occurred, but damage was observed. Cracks and missing material occurred, only in the fastener head region. No indication of damage was observed in the T-foam acoustic absorbers. The SiC foam acoustic absorber experienced damage after about 43 cycles. Cracking in the TPS occurred around the attachment holes and under a vent. In spite of the development of damage, the TPS maintained

  17. Acoustic properties of multiple cavity resonance liner for absorbing higher-order duct modes.

    PubMed

    Zhou, Di; Wang, Xiaoyu; Jing, Xiaodong; Sun, Xiaofeng

    2016-08-01

    This paper describes analytical and experimental studies conducted to investigate the acoustic properties of axially non-uniform multiple cavity resonance liner for absorbing higher-order duct modes. A three-dimensional analytical model is proposed based upon transfer element method. The model is assessed by making a comparison with results of a liner performance experiment concerning higher-order modes propagation, and the agreement is good. According to the present results, it is found that the performance of multiple cavity resonance liner is related to the incident sound waves. Moreover, an analysis of the corresponding response of liner perforated panel-cavity system is performed, in which the features of resonance frequency and dissipation of the system under grazing or oblique incidence condition are revealed. The conclusions can be extended to typical non-locally reacting liners with single large back-cavity, and it would be beneficial for future non-locally reacting liner design to some extent. PMID:27586753

  18. Acoustic characteristics of the medium with gradient change of impedance

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu; Shi, Jie; Shi, Shengguo; Zhang, Haoyang

    2015-10-01

    The medium with gradient change of acoustic impedance is a new acoustic structure which developed from multiple layer structures. In this paper, the inclusion is introduced and a new set of equations is developed. It can obtain better acoustic properties based on the medium with gradient change of acoustic impedance. Theoretical formulation has been systematically addressed which demonstrates how the idea of utilizing this method. The sound reflection and absorption coefficients were obtained. At last, the validity and the correctness of this method are assessed by simulations. The results show that appropriate design of parameters of the medium can improve underwater acoustic properties.

  19. Development of a Liner Design Methodology and Relevant Results of Acoustic Suppression in the Farfield for Mixer-Ejector Nozzles

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.

    2006-01-01

    We have developed a process to predict noise field interior to the ejector and in the farfield for any liner design for a mixer-ejector of arbitrary scale factor. However, a number of assumptions, not verified for the current application, utilized in this process, introduce uncertainties in the final result, especially, on a quantitative basis. The normal impedance model for bulk with perforated facesheet is based on homogeneous foam materials of low resistivity. The impact of flow conditions for HSCT application as well as the impact of perforated facesheet on predicted impedance is not properly accounted. Based on the measured normal impedance for deeper bulk samples (i.e., 2.0 in.) the predicted reactance is much higher compared to the data at frequencies above 2 kHz for T-foam and 200 ppi SiC. The resistance is under predicted at lower frequencies (below 4 kHz) for these samples. Thus, the use of such predicted data in acoustic suppression is likely to introduce inaccuracies. It should be noted that the impedance prediction methods developed recently under liner technology program are not utilized in the studies described in this report due to the program closeout. Acoustic suppression prediction is based on the uniform flow and temperature conditions in a two-sided treated constant area rectangular duct. In addition, assumptions of equal energy per mode noise field and interaction of all frequencies with the treated surface for the entire ejector length may not be accurate. While, the use of acoustic transfer factor minimizes the inaccuracies associated with the prediction for a known test case, the assumption of the same factor for other liner designs and with different linear scale factor ejectors seems to be very optimistic. As illustrated in appendix D that the predicted noise suppression for LSM-1 is lower compared to the measured data is an indication of the above argument. However, the process seems to be more reliable when used for the same scale

  20. Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Abrahamson, A. Louis; Jones, Michael G.

    1988-01-01

    An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities.

  1. Modifying the acoustic impedance of polyurea-based composites

    NASA Astrophysics Data System (ADS)

    Nantasetphong, Wiroj; Amirkhizi, Alireza V.; Jia, Zhanzhan; Nemat-Nasser, Sia

    2013-04-01

    Acoustic impedance is a material property that depends on mass density and acoustic wave speed. An impedance mismatch between two media leads to the partial reflection of an acoustic wave sent from one medium to another. Active sonar is one example of a useful application of this phenomenon, where reflected and scattered acoustic waves enable the detection of objects. If the impedance of an object is matched to that of the surrounding medium, however, the object may be hidden from observation (at least directly) by sonar. In this study, polyurea composites are developed to facilitate such impedance matching. Polyurea is used due to its excellent blast-mitigating properties, easy casting, corrosion protection, abrasion resistance, and various uses in current military technology. Since pure polyurea has impedance higher than that of water (the current medium of interest), low mass density phenolic microballoon particles are added to create composite materials with reduced effective impedances. The volume fraction of particles is varied to study the effect of filler quantity on the acoustic impedance of the resulting composite. The composites are experimentally characterized via ultrasonic measurements. Computational models based on the method of dilute-randomly-distributed inclusions are developed and compared with the experimental results. These experiments and models will facilitate the design of new elastomeric composites with desirable acoustic impedances.

  2. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection.

    PubMed

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717

  3. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    NASA Astrophysics Data System (ADS)

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-08-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.

  4. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    PubMed Central

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717

  5. Statistically Based Approach to Broadband Liner Design and Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    A broadband liner design optimization includes utilizing in-duct attenuation predictions with a statistical fan source model to obtain optimum impedance spectra over a number of flow conditions for one or more liner locations in a bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners having impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increasing weighting to specific frequencies and/or operating conditions. One or more broadband design approaches are utilized to produce a broadband liner that targets a full range of frequencies and operating conditions.

  6. Matching Impedances and Modes in Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.

    1985-01-01

    Temperature differences accommodated with tunable coupler. Report discusses schemes for coupling sound efficiently from cool outside atmosphere into hot acoustic-levitation chamber. Theoretical studies have practical implications for material-processing systems that employ acoustic levitation.

  7. On the attenuation of sound by three-dimensionally segmented acoustic liners in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Koch, W.

    1979-01-01

    Axial segmentation of acoustically absorbing liners in rectangular, circular or annual duct configurations is a very useful concept for obtaining higher noise attenuation with respect to the bandwidth of absorption as well as the maximum attenuation. As a consequence, advanced liner concepts are proposed which induce a modal energy transfer in both cross-sectional directions to further reduce the noise radiated from turbofan engines. However, these advanced liner concepts require three-dimensional geometries which are difficult to treat theoretically. A very simple three-dimensional problem is investigated analytically. The results show a strong dependence on the positioning of the liner for some incident source modes while the effect of three-dimensional segmentation appears to be negligible over the frequency range considered.

  8. The design and flight test of an engine inlet bulk acoustic liner

    NASA Technical Reports Server (NTRS)

    Lester, H. C.; Preisser, J. S.; Parrott, T. L.

    1983-01-01

    This paper summarizes the design, fabrication and flight evaluation of a Kevlar acoustic liner configuration for a JT15D turbofan engine. The liner was designed to suppress, by a measurable amount, a dominant (13,0) BPF tone. This tone or spinning mode was produced for research purposes by installing 41 circumferentially distributed small diameter rods upstream of the 28 fan blades. Duct liner attenuations calculated by a finite element procedure were compared to far field power (insertion) losses deduced from flight data. The finite element program modeled the variable geometry of the JT15D inlet and used a uniform flow with a boundary layer roll-off to model the inlet flow field. Calculated liner losses were generally conservative. That is, measured far field power losses were generally greater than attenuations calculated by the finite element computer program.

  9. Estimating surface acoustic impedance with the inverse method.

    PubMed

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics. PMID:21939599

  10. Tapered labyrinthine acoustic metamaterials for broadband impedance matching

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2013-11-01

    We present five kinds of labyrinthine or space-coiling acoustic metamaterials with tapered channels and apertures. These designs exhibit negative index behavior with modest dispersion, and also have substantially improved impedance matching compared to previously investigated labyrinthine cells. Experimentally measured effective material parameters are in good agreement with numerically computed results for the first two designs. Numerical results are presented for the other three unit cells. By virtue of their design tunability and small size, these tapered labyrinthine acoustic metamaterials show potential as building blocks for a wide range of acoustic wave manipulation and imaging applications.

  11. Temperature dependence of acoustic impedance for specific fluorocarbon liquids.

    PubMed

    Marsh, Jon N; Hall, Christopher S; Wickline, Samuel A; Lanza, Gregory M

    2002-12-01

    Recent studies by our group have demonstrated the efficacy of perfluorocarbon liquid nanoparticles for enhancing the reflectivity of tissuelike surfaces to which they are bound. The magnitude of this enhancement depends in large part on the difference in impedances of the perfluorocarbon, the bound substrate, and the propagating medium. The impedance varies directly with temperature because both the speed of sound and the mass density of perfluorocarbon liquids are highly temperature dependent. However, there are relatively little data in the literature pertaining to the temperature dependence of the acoustic impedance of these compounds. In this study, the speed of sound and density of seven different fluorocarbon liquids were measured at specific temperatures between 20 degrees C and 45 degrees C. All of the samples demonstrated negative, linear dependencies on temperature for both speed of sound and density and, consequently, for the acoustic impedance. The slope of sound speed was greatest for perfluorohexane (-278 +/- 1.5 cm/s-degrees C) and lowest for perfluorodichlorooctane (-222 +/- 0.9 cm/s-degrees C). Of the compounds measured, perfluorohexane exhibited the lowest acoustic impedance at all temperatures, and perfluorodecalin the highest at all temperatures. Computations from a simple transmission-line model used to predict reflectivity enhancement from surface-bound nanoparticles are discussed in light of these results.

  12. Impedance matched joined drill pipe for improved acoustic transmission

    DOEpatents

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  13. Broadband Liner Optimization for the Source Diagnostic Test Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.

    2012-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations.

  14. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators. PMID:22481769

  15. A new method to measure the acoustic surface impedance outdoors.

    PubMed

    Carpinello, S; L'Hermite, Ph; Bérengier, M; Licitra, G

    2004-01-01

    In the European countries noise pollution is considered to be one of the most important environmental problems. With respect to traffic noise, different researchers are working on the reduction of noise at the source, on the modelling of the acoustic absorption of the road structure and on the effects of the pavement on the propagation. The aim of this paper is to propose a new method to measure the acoustic impedance of surfaces located outdoors, which allows us to further noise propagation models, in order to evaluate exactly the noise exposure.

  16. Acoustic Treatment Design Scaling Methods. Volume 4; Numerical Simulation of the Nonlinear Acoustic Impedance of a Perforated Plate Single-Degree-of-Freedom Resonator Using a Time-Domain Finite Difference Method

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1999-01-01

    Single-degree-of-freedom resonators consisting of honeycomb cells covered by perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine ducts. The acoustic resistance and mass reactance of such liners are known to vary with the intensity of the sound incident upon the panel. Since the pressure drop across a perforated liner facesheet increases quadratically with the flow velocity through the facesheet, this is known as the nonlinear resistance effect. In the past, two different empirical frequency domain models have been used to predict the Sound Pressure Level effect of the incident wave on the perforated liner impedance, one that uses the incident particle velocity in isolated narrowbands, and one that models the particle velocity as the overall velocity. In the absence of grazing flow, neither frequency domain model is entirely accurate in predicting the nonlinear effect that is measured for typical perforated sheets. The time domain model is developed in an attempt to understand and improve the model for the effect of spectral shape and amplitude of multi-frequency incident sound pressure on the liner impedance. A computer code for the time-domain finite difference model is developed and predictions using the models are compared to current frequency-domain models.

  17. Tunable acoustic radiation pattern assisted by effective impedance boundary

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Quan, Li; Wang, Li-Wei; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2016-02-01

    The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no fingerprint of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No.11474160), the Fundamental Research Funds for Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201401), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  18. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  19. Broadband acoustic diode by using two structured impedance-matched acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Liang, Qing-Xuan; Song, Ai-Ling

    2016-07-01

    An acoustic diode (AD) is proposed and designed based on a mechanism different from the previous designs by using two structured impedance-matched acoustic metasurfaces. This AD can realize unidirectional acoustic transmission within a broad band with high transmission efficiency due to the impedance-matching condition while allowing other entities such as objects or fluids to pass freely. What is more, the backtracking waves that come from the incoming waves can be efficiently prevented and cannot disturb the source. The acoustic pressure field distribution, intensity distribution, and transmission efficiency are calculated by using the finite element method. The simulation results agree well with the theoretical predictions. Our proposed mechanism can experimentally provide a simple approach to design an AD and have potential applications in various fields such as medical ultrasound and noise insulation.

  20. An analysis of the acoustic input impedance of the ear.

    PubMed

    Withnell, Robert H; Gowdy, Lauren E

    2013-10-01

    Ear canal acoustics was examined using a one-dimensional lossy transmission line with a distributed load impedance to model the ear. The acoustic input impedance of the ear was derived from sound pressure measurements in the ear canal of healthy human ears. A nonlinear least squares fit of the model to data generated estimates for ear canal radius, ear canal length, and quantified the resistance that would produce transmission losses. Derivation of ear canal radius has application to quantifying the impedance mismatch at the eardrum between the ear canal and the middle ear. The length of the ear canal was found, in general, to be longer than the length derived from the one-quarter wavelength standing wave frequency, consistent with the middle ear being mass-controlled at the standing wave frequency. Viscothermal losses in the ear canal, in some cases, may exceed that attributable to a smooth rigid wall. Resistance in the middle ear was found to contribute significantly to the total resistance. In effect, this analysis "reverse engineers" physical parameters of the ear from sound pressure measurements in the ear canal.

  1. Suppression of nonlinear oscillations in combustors with partial length acoustic liners

    NASA Technical Reports Server (NTRS)

    Espander, W. R.; Mitchell, C. E.; Baer, M. R.

    1975-01-01

    An analytical model is formulated for a three-dimensional nonlinear stability problem in a rocket motor combustion chamber. The chamber is modeled as a right circular cylinder with a short (multi-orifice) nozzle, and an acoustic linear covering an arbitrary portion of the cylindrical periphery. The combustion is concentrated at the injector and the gas flow field is characterized by a mean Mach number. The unsteady combustion processes are formulated using the Crocco time lag model. The resulting equations are solved using a Green's function method combined with numerical evaluation techniques. The influence of acoustic liners on the nonlinear waveforms is predicted. Nonlinear stability limits and regions where triggering is possible are also predicted for both lined and unlined combustors in terms of the combustion parameters.

  2. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  3. Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency

    NASA Technical Reports Server (NTRS)

    Dean, L. W.

    1975-01-01

    An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.

  4. Simulating Reflex Induced Changes in the Acoustic Impedance of the Ear.

    ERIC Educational Resources Information Center

    Sirlin, Mindy W.; Levitt, Harry

    1991-01-01

    A simple procedure for measuring changes in the acoustic impedance of the ear is described. The technique has several applications, including simulation using a standard coupler of changes in real ear impedance produced by the acoustic reflex, and calibration of response time of an otoadmittance meter. (Author/DB)

  5. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal

    NASA Astrophysics Data System (ADS)

    Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le

    2016-08-01

    The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.

  6. Bonding and impedance matching of acoustic transducers using silver epoxy.

    PubMed

    Son, Kyu Tak; Lee, Chin C

    2012-04-01

    Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles.

  7. Otosclerosis in a black child: diagnostic acoustic impedance studies.

    PubMed

    Schweitzer, V G; Lilly, D J

    1984-10-01

    Otosclerosis classically describes an osteodystrophic change in the bony labyrinth and stapes footplate, of autosomal dominant inheritance, reported rare under the age of 5, extremely "rare" in the Oriental and Black race, "non-existent" in the American Indian, and with a clinical incidence of 5 per 1000 Caucasians. The differential diagnosis of a non-effusion conductive hearing loss in a child should include otosclerosis, congenital malleus or footplate fixation, tympanosclerotic fixation, congenital cholesteatoma, lysis of the incus long process, Paget's disease, osteogenesis imperfecta, and fibromuscular hyperplasia of the renal artery. Presented is a case report of a 14-year-old black male with bilateral clinical otosclerosis and a persistent stapedial artery. Preoperative multiple-frequency tympanometry and Zwislocki acoustic reactance and resistance analysis demonstrated absence of the "W" resonance pattern on high-frequency tympanometry and the classic friction and stiffness patterns of otosclerotic fixation. Repeat multiple-frequency tympanometry testing post-stapedectomy demonstrated prosthesis articulation. Prosthesis position can be monitored postoperatively by these acoustic impedance studies. PMID:6500827

  8. In-Duct and Far-Field Experimental Measrements from the ANCF for the Purpose of Improved Broadband Liner Optimization

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Jones, Michael G.; Nark, Douglas M.

    2014-01-01

    A process for the design and evaluation of novel broadband acoustic liner concepts with limited fan source information is being evaluated. A pair of advanced broad-bandwidth liners were designed and manufactured for the NASA Glenn Research Center's Advanced Noise Control Fan (ANCF): (i) a constant impedance liner and (ii) a variable impedance liner. The insertion loss of both liners was measured in-duct utilizing the ANCF's Configurable Fan Artificial Noise System in a clean configuration with no-flow. Additionally, the acoustic characteristics of the Variable Impedance Liner were measured in the standard ANCF configuration with and without flow. The experimental setup, in-duct mode power levels, and far-field directivity are presented herein.

  9. Numerical analysis of ultrasound propagation and reflection intensity for biological acoustic impedance microscope.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-08-01

    This paper proposes a new method for microscopic acoustic imaging that utilizes the cross sectional acoustic impedance of biological soft tissues. In the system, a focused acoustic beam with a wide band frequency of 30-100 MHz is transmitted across a plastic substrate on the rear side of which a soft tissue object is placed. By scanning the focal point along the surface, a 2-D reflection intensity profile is obtained. In the paper, interpretation of the signal intensity into a characteristic acoustic impedance is discussed. Because the acoustic beam is strongly focused, interpretation assuming vertical incidence may lead to significant error. To determine an accurate calibration curve, a numerical sound field analysis was performed. In these calculations, the reflection intensity from a target with an assumed acoustic impedance was compared with that from water, which was used as a reference material. The calibration curve was determined by changing the assumed acoustic impedance of the target material. The calibration curve was verified experimentally using saline solution, of which the acoustic impedance was known, as the target material. Finally, the cerebellar tissue of a rat was observed to create an acoustic impedance micro profile. In the paper, details of the numerical analysis and verification of the observation results will be described.

  10. Status of Duct Liner Technology for Application to Aircraft Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Watson, Willie R.

    2005-01-01

    Grazing flows and high acoustic intensities impose unusual design requirements on acoustic liner treatments used in aircraft engine nacelles. Increased sound absorption efficiency (requiring increased accuracy of liner impedance specification) is particularly critical in the face of ever decreasing nacelle wall area available for liner treatments in modern, high-bypass ratio engines. This paper reviews the strategy developed at Langley Research Center for achieving a robust measurement technology that is crucial for validating impedance models for aircraft liners. Specifically, the paper describes the current status of computational and data acquisition technologies for reducing impedance in a flow duct. Comparisons of reduced impedances for a "validation liner" using 1980's and 2000's measurement technology are consistent, but show significant deviations (up to 0.5 c exclusive of liner anti-resonance region) from a first principles impedance prediction model as grazing flow centerline Mach numbers increase up to 0.5. The deviations, in part, are believed related to uncertainty in the choice of grazing flow parameters (e.g. cross-section averaged, core-flow averaged, or centerline Mach number?). Also, there may be an issue with incorporating the impedance discontinuities corresponding to the hard wall to liner interface (i.e. leading and trailing edge of test liner) within the discretized finite element model.

  11. Gas hydrate saturation from acoustic impedance and resistivity logs in the shenhu area, south china sea

    USGS Publications Warehouse

    Wang, X.; Wu, S.; Lee, M.; Guo, Y.; Yang, S.; Liang, J.

    2011-01-01

    During the China's first gas hydrate drilling expedition -1 (GMGS-1), gas hydrate was discovered in layers ranging from 10 to 25 m above the base of gas hydrate stability zone in the Shenhu area, South China Sea. Water chemistry, electrical resistivity logs, and acoustic impedance were used to estimate gas hydrate saturations. Gas hydrate saturations estimated from the chloride concentrations range from 0 to 43% of the pore space. The higher gas hydrate saturations were present in the depth from 152 to 177 m at site SH7 and from 190 to 225 m at site SH2, respectively. Gas hydrate saturations estimated from the resistivity using Archie equation have similar trends to those from chloride concentrations. To examine the variability of gas hydrate saturations away from the wells, acoustic impedances calculated from the 3 D seismic data using constrained sparse inversion method were used. Well logs acquired at site SH7 were incorporated into the inversion by establishing a relation between the water-filled porosity, calculated using gas hydrate saturations estimated from the resistivity logs, and the acoustic impedance, calculated from density and velocity logs. Gas hydrate saturations estimated from acoustic impedance of seismic data are ???10-23% of the pore space and are comparable to those estimated from the well logs. The uncertainties in estimated gas hydrate saturations from seismic acoustic impedances were mainly from uncertainties associated with inverted acoustic impedance, the empirical relation between the water-filled porosities and acoustic impedances, and assumed background resistivity. ?? 2011 Elsevier Ltd.

  12. Numerical and experimental investigation of the acoustic damping effect of single-layer perforated liners with joint bias-grazing flow

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Ang, Linus; Ji, C. Z.

    2015-04-01

    As one of the most commonly used acoustic dampers, perforated liners are receiving wide spread interest for reducing engine noise and stabilizing combustion systems. Generally, acoustic liner is a cylindrical sheet with perforated orifices fitted along the bounding wall of the combustor. In this work, the damping performances of seven single- and one double-layer perforated liners with different open area ratios are experimentally investigated. For this, a cold-flow pipe with a lined section is designed. Both grazing (mean flow through the pipe) and bias flows (air flow through the perforated holes) are applied and their flow rates are variable. The effects of the open area ratio η, the joint grazing-bias flow and the number of perforated layers on the liner's damping behavior are studied. It is shown experimentally that increasing the liner's open area ratio can increase its damping effect at higher frequency in terms of power absorption. In addition, increasing the grazing flow is shown to reduce the maximum acoustic power absorption, while the bias flow can increase the liners damping effect. Furthermore, the power absorption coefficient is varied periodically over forcing frequency. And the local maximum value is decreased with increased frequency. Comparison is then made between the performance of the single-layer liner and that of double-layer one. It is found that the double-layer liner can increase the damping effect at higher frequency range. In order to simulate the liner damping behavior, a time-domain numerical model is used. It is shown that the liner thickness needs to be considered to correct the predicted damping trend so that the estimated acoustic power absorption agrees well with the measured one over the interested frequency range.

  13. Further Development and Assessment of a Broadband Liner Optimization Process

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2016-01-01

    The utilization of advanced fan designs (including higher bypass ratios) and shorter engine nacelles has highlighted a need for increased fan noise reduction over a broader frequency range. Thus, improved broadband liner designs must account for these constraints and, where applicable, take advantage of advanced manufacturing techniques that have opened new possibilities for novel configurations. This work focuses on the use of an established broadband acoustic liner optimization process to design a variable-depth, multi-degree of freedom liner for a high speed fan. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design a liner aimed at producing impedance spectra that most closely match the predicted optimum values. The multi-degree of freedom design is carried through design, fabrication, and testing. In-duct attenuation predictions compare well with measured data and the multi-degree of freedom liner is shown to outperform a more conventional liner over a range of flow conditions. These promising results provide further confidence in the design tool, as well as the enhancements made to the overall design process.

  14. Development of an Acoustic Impedance Tube Testbed for Material Sample Testing

    NASA Technical Reports Server (NTRS)

    Doty, Benjamin J.; Kolaini, Ali R.

    2012-01-01

    Acoustic impedance tube method: uses Traveling wave amplitudes are measured on either side of a sample in a tube. Many acoustic properties of the sample can be calculated. It is Simple and inexpensive to set up, ideal for high volume optimization tests

  15. Absorption and impedance boundary conditions for phased geometrical-acoustics methods.

    PubMed

    Jeong, Cheol-Ho

    2012-10-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been developed on which boundary condition produces accurate results. In this study, various boundary conditions in terms of normal, random, and field incidence absorption coefficients and normal incidence surface impedance are used in a phased beam tracing model, and the simulated results are validated with boundary element solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. Effects of the neglect of reflection phase shift are also investigated. It is concluded that the impedance, random incidence, and field incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials.

  16. Validation of an Impedance Education Method in Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Parrott, Tony L.

    2004-01-01

    This paper reports results of a research effort to validate a method for educing the normal incidence impedance of a locally reacting liner, located in a grazing incidence, nonprogressive acoustic wave environment with flow. The results presented in this paper test the ability of the method to reproduce the measured normal incidence impedance of a solid steel plate and two soft test liners in a uniform flow. The test liners are known to be locally react- ing and exhibit no measurable amplitude-dependent impedance nonlinearities or flow effects. Baseline impedance spectra for these liners were therefore established from measurements in a conventional normal incidence impedance tube. A key feature of the method is the expansion of the unknown impedance function as a piecewise continuous polynomial with undetermined coefficients. Stewart's adaptation of the Davidon-Fletcher-Powell optimization algorithm is used to educe the normal incidence impedance at each Mach number by optimizing an objective function. The method is shown to reproduce the measured normal incidence impedance spectrum for each of the test liners, thus validating its usefulness for determining the normal incidence impedance of test liners for a broad range of source frequencies and flow Mach numbers. Nomenclature

  17. Acoustic input impedance of the avian inner ear measured in ostrich (Struthio camelus).

    PubMed

    Muyshondt, Pieter G G; Aerts, Peter; Dirckx, Joris J J

    2016-09-01

    In both mammals and birds, the mechanical behavior of the middle ear structures is affected by the mechanical impedance of the inner ear. In this study, the aim was to quantify the acoustic impedance of the avian inner ear in the ostrich, which allows us to determine the effect on columellar vibrations and middle ear power flow in future studies. To determine the inner ear impedance, vibrations of the columella were measured for both the quasi-static and acoustic stimulus frequencies. In the frequency range of 0.3-4 kHz, we used electromagnetic stimulation of the ossicle and a laser Doppler vibrometer to measure the vibration response. At low frequencies, harmonic displacements were imposed on the columella using piezo stimulation and the resulting force response was measured with a force sensor. From these measurement data, the acoustic impedance of the inner ear could be determined. A simple RLC model in series of the impedance measurements resulted in a stiffness reactance of KIE = 0.20·10(12) Pa/m³, an inertial impedance of MIE = 0.652·10(6) Pa s(2)/m³, and a resistance of RIE = 1.57·10(9) Pa s/m. We found that values of the inner ear impedance in the ostrich are one to two orders in magnitude smaller than what is found in mammal ears. PMID:27473506

  18. Acoustic input impedance of the avian inner ear measured in ostrich (Struthio camelus).

    PubMed

    Muyshondt, Pieter G G; Aerts, Peter; Dirckx, Joris J J

    2016-09-01

    In both mammals and birds, the mechanical behavior of the middle ear structures is affected by the mechanical impedance of the inner ear. In this study, the aim was to quantify the acoustic impedance of the avian inner ear in the ostrich, which allows us to determine the effect on columellar vibrations and middle ear power flow in future studies. To determine the inner ear impedance, vibrations of the columella were measured for both the quasi-static and acoustic stimulus frequencies. In the frequency range of 0.3-4 kHz, we used electromagnetic stimulation of the ossicle and a laser Doppler vibrometer to measure the vibration response. At low frequencies, harmonic displacements were imposed on the columella using piezo stimulation and the resulting force response was measured with a force sensor. From these measurement data, the acoustic impedance of the inner ear could be determined. A simple RLC model in series of the impedance measurements resulted in a stiffness reactance of KIE = 0.20·10(12) Pa/m³, an inertial impedance of MIE = 0.652·10(6) Pa s(2)/m³, and a resistance of RIE = 1.57·10(9) Pa s/m. We found that values of the inner ear impedance in the ostrich are one to two orders in magnitude smaller than what is found in mammal ears.

  19. Equivalent acoustic impedance model. Part 1: experiments and semi-physical model

    NASA Astrophysics Data System (ADS)

    Faverjon, B.; Soize, C.

    2004-09-01

    The context of this research is devoted to the construction of an equivalent acoustic impedance model for a soundproofing scheme consisting of a three-dimensional porous medium inserted between two thin plates. Part 1 of this paper presents the experiments performed and a probabilistic algebraic model of the wall acoustic impedance constructed using the experimental data basis for the medium- and high-frequency ranges. The probabilistic algebraic model is constructed by using the general mathematical properties of wall acoustic impedance operators (symmetry, odd and even functions with respect to the frequency, decreasing functions when frequency goes to infinity, behaviour when frequency goes to zero and so on). The parameters introduced in this probabilistic algebraic model are fitted with the experimental data basis. Finally, this probabilistic algebraic model summarizes all the experimental data bases and consequently can be reused for other researches.

  20. Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.

    PubMed

    Lulich, Steven M; Arsikere, Harish

    2015-06-01

    This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed.

  1. Advanced Nacelle Acoustic Lining Concepts Development

    NASA Technical Reports Server (NTRS)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  2. Optimization of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Schiller, N. H.; Born, J. C.

    2016-01-01

    This paper employs three acoustic propagation codes to explore variable-depth liner configurations for the NASA Langley Grazing Flow Impedance Tube (GFIT). The initial study demonstrates that a variable impedance can acceptably be treated as a uniform impedance if the spatial extent over which this variable impedance occurs is less than one-third of a wavelength of the incident sound. A constrained optimization study is used to design a variable-depth liner and to select an optimization metric. It also provides insight regarding how much attenuation can be achieved with variable-depth liners. Another optimization study is used to design a liner with much finer chamber depth resolution for the Mach 0.0 and 0.3 test conditions. Two liners are designed based on spatial rearrangement of chambers from this liner to determine whether the order is critical. Propagation code predictions suggest this is not the case. Both liners are fabricated via additive manufacturing and tested in the GFIT for the Mach 0.0 condition. Predicted and measured attenuations compare favorably across the full frequency range. These results clearly suggest that the chambers can be arranged in any order, thus offering the potential for innovative liner designs to minimize depth and weight.

  3. Evaluation of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2015-01-01

    This paper explores the effects of variable-depth geometry on the amount of noise reduction that can be achieved with acoustic liners. Results for two variable-depth liners tested in the NASA Langley Grazing Flow Impedance Tube demonstrate significant broadband noise reduction. An impedance prediction model is combined with two propagation codes to predict corresponding sound pressure level profiles over the length of the Grazing Flow Impedance Tube. The comparison of measured and predicted sound pressure level profiles is sufficiently favorable to support use of these tools for investigation of a number of proposed variable-depth liner configurations. Predicted sound pressure level profiles for these proposed configurations reveal a number of interesting features. Liner orientation clearly affects the sound pressure level profile over the length of the liner, but the effect on the total attenuation is less pronounced. The axial extent of attenuation at an individual frequency continues well beyond the location where the liner depth is optimally tuned to the quarter-wavelength of that frequency. The sound pressure level profile is significantly affected by the way in which variable-depth segments are distributed over the length of the liner. Given the broadband noise reduction capability for these liner configurations, further development of impedance prediction models and propagation codes specifically tuned for this application is warranted.

  4. Underwater asymmetric acoustic transmission structure using the medium with gradient change of impedance

    NASA Astrophysics Data System (ADS)

    Bo, Hu; Jie, Shi; Sheng-Guo, Shi; Yu, Sun; Zhong-Rui, Zhu

    2016-02-01

    We propose an underwater asymmetric acoustic transmission structure comprised of two media each with a gradient change of acoustic impedance. By gradually increasing the acoustic impedances of the media, the propagating direction of the acoustic wave can be continuously bent, resulting in allowing the acoustic wave to pass through along the positive direction and blocking acoustic waves from the negative one. The main advantages of this structure are that the asymmetric transmission effect of this structure can be realized and enhanced more easily in water. We investigate both numerically and experimentally the asymmetric transmission effect. The experimental results show that a highly efficient asymmetric acoustic transmission can be yielded within a remarkable broadband frequency range, which agrees well with the numerical prediction. It is of potential practical significance for various underwater applications such as reducing vibration and noise. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204049 and 11204050), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1228), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20122304120023 and 20122304120011).

  5. Inverse estimation of the acoustic impedance of a porous woven hose from measured transmission coefficients.

    PubMed

    Park, Chul-Min; Ih, Jeong-Guon; Nakayama, Yoshio; Takao, Hideo

    2003-01-01

    A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake noise. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. However, the accurate measurement of the wall impedance of a porous woven hose is not easy because of its peculiar acoustical and structural characteristics. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement setup, and, as a result, it is very simple. A variation of the proposed method, an inverse estimation method using one of the four-pole parameters is also proposed. An error sensitivity analysis was performed to investigate the effect of measurement error on the accuracy of the final result. The measured TL for samples with arbitrary lengths and arbitrary porous frequency are in reasonably good agreement with values predicted from curve-fitted impedance data. PMID:12558253

  6. Inverse estimation of the acoustic impedance of a porous woven hose from measured transmission coefficients.

    PubMed

    Park, Chul-Min; Ih, Jeong-Guon; Nakayama, Yoshio; Takao, Hideo

    2003-01-01

    A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake noise. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. However, the accurate measurement of the wall impedance of a porous woven hose is not easy because of its peculiar acoustical and structural characteristics. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement setup, and, as a result, it is very simple. A variation of the proposed method, an inverse estimation method using one of the four-pole parameters is also proposed. An error sensitivity analysis was performed to investigate the effect of measurement error on the accuracy of the final result. The measured TL for samples with arbitrary lengths and arbitrary porous frequency are in reasonably good agreement with values predicted from curve-fitted impedance data.

  7. Alignment of an acoustic manipulation device with cepstral analysis of electronic impedance data.

    PubMed

    Hughes, D A; Qiu, Y; Démoré, C; Weijer, C J; Cochran, S

    2015-02-01

    Acoustic particle manipulation is an emerging technology that uses ultrasonic standing waves to position objects with pressure gradients and acoustic radiation forces. To produce strong standing waves, the transducer and the reflector must be aligned properly such that they are parallel to each other. This can be a difficult process due to the need to visualise the ultrasound waves and as higher frequencies are introduced, this alignment requires higher accuracy. In this paper, we present a method for aligning acoustic resonators with cepstral analysis. This is a simple signal processing technique that requires only the electrical impedance measurement data of the resonator, which is usually recorded during the fabrication process of the device. We first introduce the mathematical basis of cepstral analysis and then demonstrate and validate it using a computer simulation of an acoustic resonator. Finally, the technique is demonstrated experimentally to create many parallel linear traps for 10 μm fluorescent beads inside an acoustic resonator.

  8. Acoustical impedance defined by wave-function solutions of the reduced Webster equation.

    PubMed

    Forbes, Barbara J

    2005-07-01

    The electrical impedance was first defined by Heaviside in 1884, and the analogy of the acoustical impedance was made by Webster in 1919. However, it can be shown that Webster did not draw a full analogy with the electromagnetic potential, the potential energy per unit charge. This paper shows that the analogous "acoustical potential" the potential energy per unit displacement of fluid, corresponds to the wave function Psi of the reduced Webster equation, which is of Klein-Gordon form. The wave function is found to obey all of Dirichlet, Von Neumann, and mixed (Robins) boundary conditions, and the latter give rise to resonance phenomena that are not elucidated by Webster's analysis. It is shown that the exact Heaviside analogy yields a complete analytic account of the one-dimensional input impedance, that accounts for both plane- and dispersive-wave propagation both at the origin and throughout the duct.

  9. Boundary layer effects on liners for aircraft engines

    NASA Astrophysics Data System (ADS)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  10. Air-ground interface: Surface waves, surface impedance and acoustic-to-seismic coupling coefficient

    NASA Technical Reports Server (NTRS)

    Daigle, Gilles; Embleton, Tony

    1990-01-01

    In atmospheric acoustics, the subject of surface waves has been an area of discussion for many years. The existence of an acoustic surface wave is now well established theoretically. The mathematical solution for spherical wave propagation above an impedance boundary includes the possibility of a contribution that possesses all the standard properties for a surface wave. Surface waves exist when the surface is sufficiently porous, relative to its acoustical resistance, that it can influence the airborne particle velocity near the surface and reduce the phase velocity of sound waves in air at the surface. This traps some of the sound energy in the air to remain near the surface as it propagates. Above porous grounds, the existence of surface waves has eluded direct experimental confirmation (pulse experiments have failed to show a separate arrival expected from the reduced phase speed) and indirect evidence for its existence has appeared contradictory. The experimental evidence for the existence of an acoustical surface wave above porous boundaries is reviewed. Recent measurements including pulse experiments are also described. A few years ago the acoustic impedance of a grass-covered surface was measured in the frequency range 30 to 300 Hz. Here, further measurements on the same site are discussed. These measurements include core samples, a shallow refractive survey to determine the seismic velocities, and measurements of the acoustic-to-seismic coupling coefficient.

  11. On the Propagation of Plane Acoustic Waves in a Duct With Flexible and Impedance Walls

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Vu, Bruce

    2003-01-01

    This Technical Memorandum (TM) discusses the harmonic and random plane acoustic waves propagating from inside a duct to its surroundings. Various duct surfaces are considered, such as rigid, flexible, and impedance. In addition, the effects of a mean flow are studied when the duct alone is considered. Results show a significant reduction in overall sound pressure levels downstream of the impedance wall for both mean flow and no mean flow cases and for a narrow duct. When a wider duct is used, the overall sound pressure level (OSPL) reduction downstream of the impedance wall is much smaller. In the far field, the directivity is such that the overall sound pressure level is reduced by about 5 decibels (dB) on the side of the impedance wall. When a flexible surface is used, the far field directivity becomes asymmetric with an increase in the OSPL on the side of the flexible surface of about 7 dB.

  12. Measurement of cantilever vibration using impedance-loaded surface acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Hamashima, Hiromitsu; Kondoh, Jun

    2016-07-01

    In this study, an impedance-loaded surface acoustic wave (SAW) sensor was demonstrated to monitor the vibration frequency. Commercialized pressure sensors and a variable capacitor were chosen as external sensors, which were connected to a reflector on a SAW device. As the reflection coefficient of the reflector depended on the impedance, the echo amplitude was influenced by changes in the impedance of the external sensor. The vibration frequency of the cantilever was determined by monitoring the echo amplitude of the SAW device. Moreover, the attenuation constant of an envelope was estimated. The results of our feasibility study indicate that the impedance-loaded SAW sensor can be applied as a detector for structural health monitoring.

  13. Improved Broadband Liner Optimization Applied to the Advanced Noise Control Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.; Ayle, Earl; Ichihashi, Fumitaka

    2014-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more desirable. This paper describes improvements to a previously established broadband acoustic liner optimization process using the Advanced Noise Control Fan rig as a demonstrator. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom designs are carried through design, fabrication, and testing to validate the efficacy of the design process. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of these liner designs. This study also provides an application for demonstrating the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  14. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  15. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  16. Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces

    PubMed Central

    Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung

    2016-01-01

    Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication. PMID:27562634

  17. Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces

    NASA Astrophysics Data System (ADS)

    Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung

    2016-08-01

    Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication.

  18. Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces.

    PubMed

    Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung

    2016-01-01

    Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication. PMID:27562634

  19. Evaluation of a multi-point method for determining acoustic impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Parrott, Tony L.

    1988-01-01

    An investigation was conducted to explore potential improvements provided by a Multi-Point Method (MPM) over the Standing Wave Method (SWM) and Two-Microphone Method (TMM) for determining acoustic impedance. A wave propagation model was developed to model the standing wave pattern in an impedance tube. The acoustic impedance of a test specimen was calculated from a best fit of this standing wave pattern to pressure measurements obtained along the impedance tube centerline. Three measurement spacing distributions were examined: uniform, random, and selective. Calculated standing wave patterns match the point pressure measurement distributions with good agreement for a reflection factor magnitude range of 0.004 to 0.999. Comparisons of results using 2, 3, 6, and 18 measurement points showed that the most consistent results are obtained when using at least 6 evenly spaced pressure measurements per half-wavelength. Also, data were acquired with broadband noise added to the discrete frequency noise and impedances were calculated using the MPM and TMM algorithms. The results indicate that the MPM will be superior to the TMM in the presence of significant broadband noise levels associated with mean flow.

  20. Reflection of an acoustic line source by an impedance surface with uniform flow

    NASA Astrophysics Data System (ADS)

    Brambley, E. J.; Gabard, G.

    2014-10-01

    An exact analytic solution is derived for the 2D acoustic pressure field generated by a time-harmonic line mass source located above an impedance surface with uniform grazing flow. Closed-form asymptotic solutions in the far field are also provided. The analysis is valid for both locally-reacting and nonlocally-reacting impedances, as is demonstrated by analyzing a nonlocally reacting effective impedance representing the presence of a thin boundary layer over the surface. The analytic solution may be written in a form suggesting a generalization of the method of images to account for the impedance surface. The line source is found to excite surface waves on the impedance surface, some of which may be leaky waves which contradict the assumption of decay away from the surface predicted in previous analyses of surface waves with flow. The surface waves may be treated either (correctly) as unstable waves or (artificially) as stable waves, enabling comparison with previous numerical or mathematical studies which make either of these assumptions. The computer code for evaluating the analytic solution and far-field asymptotics is provided in the supplementary material. It is hoped this work will provide a useful benchmark solution for validating 2D numerical acoustic codes.

  1. Multi-stage pulse tube cryocooler with acoustic impedance constructed to reduce transient cool down time and thermal loss

    NASA Technical Reports Server (NTRS)

    Gedeon, David R. (Inventor); Wilson, Kyle B. (Inventor)

    2008-01-01

    The cool down time for a multi-stage, pulse tube cryocooler is reduced by configuring at least a portion of the acoustic impedance of a selected stage, higher than the first stage, so that it surrounds the cold head of the selected stage. The surrounding acoustic impedance of the selected stage is mounted in thermally conductive connection to the warm region of the selected stage for cooling the acoustic impedance and is fabricated of a high thermal diffusivity, low thermal radiation emissivity material, preferably aluminum.

  2. Modeling of Broadband Liners Applied to the Advanced Noise Control Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2015-01-01

    The broadband component of fan noise has grown in relevance with an increase in bypass ratio and incorporation of advanced fan designs. Therefore, while the attenuation of fan tones remains a major factor in engine nacelle acoustic liner design, the simultaneous reduction of broadband fan noise levels has received increased interest. As such, a previous investigation focused on improvements to an established broadband acoustic liner optimization process using the Advanced Noise Control Fan (ANCF) rig as a demonstrator. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom liner designs were carried through design, fabrication, and testing. This paper addresses a number of areas for further research identified in the initial assessment of the ANCF study. Specifically, incident source specification and uncertainty in some aspects of the predicted liner impedances are addressed. This information is incorporated in updated predictions of the liner performance and comparisons with measurement are greatly improved. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of various liner designs. This study also provides further confidence in the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  3. Measurement of acoustic impedance and reflectance in the human ear canal.

    PubMed

    Voss, S E; Allen, J B

    1994-01-01

    The pressure reflectance R (omega) is the transfer function which may be defined for a linear one-port network by the ratio of the reflected complex pressure divided by the incident complex pressure. The reflectance is a function that is closely related to the impedance of the 1-port. The energy reflectance R (omega) is defined as magnitude of [R]2. It represents the ratio of reflected to incident energy. In the human ear canal the energy reflectance is important because it is a measure of the inefficiency of the middle ear and cochlea, and because of the insight provided by its simple frequency domain interpretation. One may characterize the ear canal impedance by use of the pressure reflectance and its magnitude, sidestepping the difficult problems of (a) the unknown canal length from the measurement point to the eardrum, (b) the complicated geometry of the drum, and (c) the cross-sectional area changes in the canal as a function of distance. Reported here are acoustic impedance measurements, looking into the ear canal, measured on ten young adults with normal hearing (ages 18-24). The measurement point in the canal was approximately 0.85 cm from the entrance of the canal. From these measurements, the pressure reflectance in the canal is computed and impedance and reflectance measurements from 0.1 to 15.0 kHz are compared among ears. The average reflectance and the standard deviation of the reflectance for the ten subjects have been determined. The impedance and reflectance of two common ear simulators, the Brüel & Kjaer 4157 and the Industrial Research Products DB-100 (Zwislocki) coupler are also measured and compared to the average human measurements. All measurements are made using controls that assure a uniform accuracy in the acoustic calibration across subjects. This is done by the use of two standard acoustic resistors whose impedances are known. From the experimental results, it is concluded that there is significant subject variability in the magnitude

  4. Acoustic impedance studies in Triassic reservoirs in the Netherlands - application to development and exploration

    SciTech Connect

    Griffiths, M.; Ford, J.

    1995-08-01

    Simple and cost effective seismic forward modelling techniques have been used in conjunction with petrophysical and geological data to provide an integrated approach to understanding the seismic response of Triassic gas reservoirs onshore and offshore Netherlands. Analysis shows that for the Volpriehausen Sandstone in the offshore sector a relationship exists between reservoir acoustic impedance and porosity such that an increase in porosity leads to a decrease in acoustic impedance. Data can be sub-divided on the basis of fluid fill and cementation with trends for both gas and water cases. Regression analysis has defined the optimum relationship for each fluid case and these relationships have been used to predict the acoustic impedance profiles for a variety of reservoir scenarios. Modelling shows that the highest seismic amplitudes and the greatest relative amplitude variation with fluid fill are related to high porosity reservoir. In the onshore sector, analysis for the Roet Sandstone has shown that even small scale variations in reservoir properties can be recorded within the detail of the seismic response. Results from seismic forward modelling compare with amplitude variations observed in real data and suggest that, within the limitations of the dataset and methodology, the technique can be used to predict reservoir attributes from the seismic response. So far, the technique has been sucessfully applied to both exploration and field development projects.

  5. Acoustic impedance of micro perforated membranes: Velocity continuity condition at the perforation boundary.

    PubMed

    Li, Chenxi; Cazzolato, Ben; Zander, Anthony

    2016-01-01

    The classic analytical model for the sound absorption of micro perforated materials is well developed and is based on a boundary condition where the velocity of the material is assumed to be zero, which is accurate when the material vibration is negligible. This paper develops an analytical model for finite-sized circular micro perforated membranes (MPMs) by applying a boundary condition such that the velocity of air particles on the hole wall boundary is equal to the membrane vibration velocity (a zero-slip condition). The acoustic impedance of the perforation, which varies with its position, is investigated. A prediction method for the overall impedance of the holes and the combined impedance of the MPM is also provided. The experimental results for four different MPM configurations are used to validate the model and good agreement between the experimental and predicted results is achieved. PMID:26827008

  6. Investigation of the thickness effect to impedance analysis results AlGaN acoustic sensor

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Bilgiç, Eyüp; Gülmez, Gülay; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2016-03-01

    In this study, AlGaN acoustic sensors were deposited on aluminum metal substrate by thermionic vacuum arc (TVA) method, for the first time. Impedance analyses of the fabricated acoustic sensors were investigated for the determining of effect of the nano layer thickness. Thickness values are very close to each others. Fabricated sensors have been fabricated from AlGaN deposited on aluminum substrates. Gallium materials are used in many applications for optoelectronic device and semiconductor technology. Thermionic vacuum arc is the deposition technology for the variously materials and applications field. TVA production parameters and some properties of the deposited layers were investigated. TVA is the fast deposition technology for the gallium compounds and doped gallium compounds. Obtained results that AlGaN layer are very promising material for an acoustic sensor but also TVA is proper fast technology for the production.

  7. Uncertainty Analysis of the Grazing Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  8. Advanced Computational and Experimental Techniques for Nacelle Liner Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.; Nark, Douglas

    2009-01-01

    The Curved Duct Test Rig (CDTR) has been developed to investigate sound propagation through a duct of size comparable to the aft bypass duct of typical aircraft engines. The axial dimension of the bypass duct is often curved and this geometric characteristic is captured in the CDTR. The semiannular bypass duct is simulated by a rectangular test section in which the height corresponds to the circumferential dimension and the width corresponds to the radial dimension. The liner samples are perforate over honeycomb core and are installed on the side walls of the test section. The top and bottom surfaces of the test section are acoustically rigid to simulate a hard wall bifurcation or pylon. A unique feature of the CDTR is the control system that generates sound incident on the liner test section in specific modes. Uniform air flow, at ambient temperature and flow speed Mach 0.275, is introduced through the duct. Experiments to investigate configuration effects such as curvature along the flow path on the acoustic performance of a sample liner are performed in the CDTR and reported in this paper. Combinations of treated and acoustically rigid side walls are investigated. The scattering of modes of the incident wave, both by the curvature and by the asymmetry of wall treatment, is demonstrated in the experimental results. The effect that mode scattering has on total acoustic effectiveness of the liner treatment is also shown. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation to the convected Helmholtz equation are reported. The spectra of attenuation produced by the analytic model are similar to experimental results for both walls treated, straight and curved flow path, with plane wave and higher order modes incident. The numerical model is used to define the optimized resistance and reactance of a liner that significantly improves liner attenuation in the frequency range 1900-2400 Hz. A

  9. Characterizing the ear canal acoustic impedance and reflectance by pole-zero fitting.

    PubMed

    Robinson, Sarah R; Nguyen, Cac T; Allen, Jont B

    2013-07-01

    This study characterizes middle ear complex acoustic reflectance (CAR) and impedance by fitting poles and zeros to real-ear measurements. The goal of this work is to establish a quantitative connection between pole-zero locations and the underlying physical properties of CAR data. Most previous studies have analyzed CAR magnitude; while the magnitude accounts for reflected power, it does not encode latency information. Thus, an analysis that studies the real and imaginary parts of the data together, being more general, should be more powerful. Pole-zero fitting of CAR data is examined using data compiled from various studies, dating back to Voss and Allen (1994). Recent CAR measurements were taken using the Mimosa Acoustics HearID system, which makes complex acoustic impedance and reflectance measurements in the ear canal over a 0.2-6.0 [kHz] frequency range. Pole-zero fits to measurements over this range are achieved with an average RMS relative error of less than 3% with 12 poles. Factoring the reflectance fit into its all-pass and minimum-phase components estimates the effect of the residual ear canal, allowing for comparison of the eardrum impedance and admittance across measurements. It was found that individual CAR magnitude variations for normal middle ears in the 1-4 [kHz] range often give rise to closely-placed pole-zero pairs, and that the locations of the poles and zeros in the s-plane may systematically differ between normal and pathological middle ears. This study establishes a methodology for examining the physical and mathematical properties of CAR using a concise parametric model. Pole-zero modeling accurately parameterizes CAR data, providing a foundation for detection and identification of middle ear pathologies. This article is part of a special issue entitled "MEMRO 2012".

  10. Configuration Effects on Liner Performance

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

    2012-01-01

    The acoustic performance of a duct liner depends not only on the intrinsic properties of the liner but also on the configuration of the duct in which it is used. A series of experiments is performed in the NASA Langley Research Center Curved Duct Test Rig (at Mach 0.275) to evaluate the effect of duct configuration on the acoustic performance of single degree of freedom perforate-over-honeycomb liners. The liners form the sidewalls of the duct's test section. Variations of duct configuration include: asymmetric (liner on one side and hard wall opposite) and symmetric (liner on both sides) wall treatment; inlet and exhaust orientation, in which the sound propagates either against or with the flow; and straight and curved flow path. The effect that duct configuration has on the overall acoustic performance, particularly the shift in frequency and magnitude of peak attenuation, is quantified. The redistribution of incident mode content is shown. The liners constitute the side walls of the liner test section and the scatter of incident horizontal order 1 mode by the asymmetric treatment and order 2 mode by the symmetric treatment into order 0 mode is shown. Scatter of order 0 incident modes into higher order modes is also shown. This redistribution of mode content is significant because it indicates that the liner design can be manipulated such that energy is scattered into more highly attenuated modes, thus enhancing liner performance.

  11. Digital PIV Measurements of Acoustic Particle Displacements in a Normal Incidence Impedance Tube

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Bartram, Scott M.; Parrott, Tony L.; Jones, Michael G.

    1998-01-01

    Acoustic particle displacements and velocities inside a normal incidence impedance tube have been successfully measured for a variety of pure tone sound fields using Digital Particle Image Velocimetry (DPIV). The DPIV system utilized two 600-mj Nd:YAG lasers to generate a double-pulsed light sheet synchronized with the sound field and used to illuminate a portion of the oscillatory flow inside the tube. A high resolution (1320 x 1035 pixel), 8-bit camera was used to capture double-exposed images of 2.7-micron hollow silicon dioxide tracer particles inside the tube. Classical spatial autocorrelation analysis techniques were used to ascertain the acoustic particle displacements and associated velocities for various sound field intensities and frequencies. The results show that particle displacements spanning a range of 1-60 microns can be measured for incident sound pressure levels of 100-130 dB and for frequencies spanning 500-1000 Hz. The ability to resolve 1 micron particle displacements at sound pressure levels in the 100 dB range allows the use of DPIV systems for measurement of sound fields at much lower sound pressure levels than had been previously possible. Representative impedance tube data as well as an uncertainty analysis for the measurements are presented.

  12. A combined complex electrical impedance and acoustic emission study in limestone samples under uniaxial loading

    NASA Astrophysics Data System (ADS)

    Saltas, V.; Fitilis, I.; Vallianatos, F.

    2014-12-01

    In the present work, complex electrical impedance measurements in the frequency range of 10 mHz to 1 MHz were carried out in conjunction with acoustic emission monitoring in limestone samples subjected to linear and stepped-like uniaxial loading, up to ultimate failure. Cole-Cole plots of the complex impedance during the stepped loading of limestone have been used to discriminate the contributions of grains interior, grain boundaries and electrode polarization effects to the overall electrical behavior. The latter is well-described with an equivalent-circuit model which comprises components of constant phase elements and resistances in parallel connection. Electrical conductivity increases upon uniaxial loading giving rise to negative values of effective activation volume. This is a strong experimental evidence for the generation of transient electric signals recorded prior to seismic events and may be attributed to charge transfer (proton conduction) due to cracks generation and propagation as a result of the applied stress. The time-series of ac-conductivity at two distinct frequencies (10 kHz, 200 kHz) during linear loading of limestone samples exhibits a strong correlation with the acoustic emission activity obeying the same general self-similar law for critical phenomena that has been reported for the energy release before materials fracture.

  13. Random and systematic measurement errors in acoustic impedance as determined by the transmission line method

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.; Smith, C. D.

    1977-01-01

    The effect of random and systematic errors associated with the measurement of normal incidence acoustic impedance in a zero-mean-flow environment was investigated by the transmission line method. The influence of random measurement errors in the reflection coefficients and pressure minima positions was investigated by computing fractional standard deviations of the normalized impedance. Both the standard techniques of random process theory and a simplified technique were used. Over a wavelength range of 68 to 10 cm random measurement errors in the reflection coefficients and pressure minima positions could be described adequately by normal probability distributions with standard deviations of 0.001 and 0.0098 cm, respectively. An error propagation technique based on the observed concentration of the probability density functions was found to give essentially the same results but with a computation time of about 1 percent of that required for the standard technique. The results suggest that careful experimental design reduces the effect of random measurement errors to insignificant levels for moderate ranges of test specimen impedance component magnitudes. Most of the observed random scatter can be attributed to lack of control by the mounting arrangement over mechanical boundary conditions of the test sample.

  14. Energy transfer through a multi-layer liner for shaped charges

    DOEpatents

    Skolnick, Saul; Goodman, Albert

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  15. Investigation of Liner Characteristics in the NASA Langley Curved Duct Test Rig

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Watson, Willie R.; Jones, Michael G.

    2007-01-01

    The Curved Duct Test Rig (CDTR), which is designed to investigate propagation of sound in a duct with flow, has been developed at NASA Langley Research Center. The duct incorporates an adaptive control system to generate a tone in the duct at a specific frequency with a target Sound Pressure Level and a target mode shape. The size of the duct, the ability to isolate higher order modes, and the ability to modify the duct configuration make this rig unique among experimental duct acoustics facilities. An experiment is described in which the facility performance is evaluated by measuring the sound attenuation by a sample duct liner. The liner sample comprises one wall of the liner test section. Sound in tones from 500 to 2400 Hz, with modes that are parallel to the liner surface of order 0 to 5, and that are normal to the liner surface of order 0 to 2, can be generated incident on the liner test section. Tests are performed in which sound is generated without axial flow in the duct and with flow at a Mach number of 0.275. The attenuation of the liner is determined by comparing the sound power in a hard wall section downstream of the liner test section to the sound power in a hard wall section upstream of the liner test section. These experimentally determined attenuations are compared to numerically determined attenuations calculated by means of a finite element analysis code. The code incorporates liner impedance values educed from measured data from the NASA Langley Grazing Incidence Tube, a test rig that is used for investigating liner performance with flow and with (0,0) mode incident grazing. The analytical and experimental results compare favorably, indicating the validity of the finite element method and demonstrating that finite element prediction tools can be used together with experiment to characterize the liner attenuation.

  16. Evaluating the Acoustic Effect of Over-the-Rotor Foam-Metal Liner Installed on a Low Speed Fan Using Virtual Rotating Microphone Imaging

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Dougherty, Robert P.; Walker, Bruce E.

    2010-01-01

    An in-duct beamforming technique for imaging rotating broadband fan sources has been used to evaluate the acoustic characteristics of a Foam-Metal Liner installed over-the-rotor of a low-speed fan. The NASA Glenn Research Center s Advanced Noise Control Fan was used as a test bed. A duct wall-mounted phased array consisting of several rings of microphones was employed. The data are mathematically resampled in the fan rotating reference frame and subsequently used in a conventional beamforming technique. The steering vectors for the beamforming technique are derived from annular duct modes, so that effects of reflections from the duct walls are reduced.

  17. Assessment of Bulk Absorber Properties for Multi-Layer Perforates in Porous Honeycomb Liners

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Parrott, Tony L.

    2006-01-01

    CONTINUING progress in materials technology provides potential for improved acoustic liners for attenuating broadband fan noise emissions from aircraft engine nacelles. Conventional liners (local-reacting perforate-over-honeycomb structures) provide significant narrow-band attenuation, but limited attenuation over wide bandwidths. Two approaches for increasing attenuation bandwidth are to (1) replace the honeycomb structure with bulk material, or (2) cascade multiple layers of perforate/honeycomb structures. Usage of the first approach is limited because of mechanical and maintenance reasons, while multi-layer liners are limited to about three layers because of their additional mechanical complexity, depth and weight. The current research concerns a novel approach reported by the University of Cincinnati, in which a single-layer conventional liner is converted into an extended-reaction, broadband absorber by making the honeycomb core structure porous. This modified single-layer liner requires no increase in depth and weight, and minimal increase in mechanical complexity. Langley has initiated research to identify potential benefits of liner structures with porous cell walls. This research has two complementary goals: (1) develop and validate experimental techniques for treating multi-layer perforates (representative of the internal cells of a liner with porous cell walls) as 1-D bulk materials, and (2) develop analytical approaches to validate this bulk material assumption. If successful, the resultant model can then be used to design optimized porous honeycomb liners. The feasibility of treating an N-layer perforate system (N porous plates separated by uniform air gaps) as a one-dimensional bulk absorber is assessed using the Two-Thickness Method (TTM), which is commonly used to educe bulk material intrinsic acoustic parameters. Tests are conducted with discrete tone and random noise sources, over an SPL range sufficient to determine the nonlinearity of the test

  18. Contribution to classification of buried objects based on acoustic impedance matching.

    PubMed

    Stepanić, J; Wüstenberg, H; Krstelj, V; Mrasek, H

    2003-03-01

    Determination of material the buried objects are made of could contribute significantly to their recognition, or classification. This is important in detecting buried antipersonnel landmines within the context of humanitarian demining, as well as in a variety of other applications. In this article the concept has been formulated of the approach to buried object's material determination starting with ultrasonic impulse propagation analysis in a particular testing set configuration. The impulse propagates through a characterized transfer material in such a way that a part of it, a reflected wave, carries the information about the buried object's surface material acoustic impedance. The limit of resolution capability is theoretically analyzed and experimentally evaluated and the influencing factors described. Among these, the contact between clean surfaces of the transfer material and buried object is emphasized. PMID:12565075

  19. Minimization of sonic-boom parameters in real and isothermal atmospheres. [overpressure and acoustic impedance

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1975-01-01

    The procedure for sonic-boom minimization introduced by Seebass and George for an isothermal atmosphere was converted for use in the real atmosphere by means of the appropriate equations for sonic-boom pressure signature advance, ray-tube area, and acoustic impedance. Results of calculations using both atmospheres indicate that except for low Mach numbers or high altitudes, the isothermal atmosphere with a scale height of 7620 m (25 000 ft) gives a reasonable estimate of the values of overpressure, impulse, and characteristic overpressure obtained by using the real atmosphere. The results also show that for aircraft design studies, propagation of a known F-function, or minimization studies at low supersonic Mach numbers, the isothermal approximation is not adequate.

  20. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations.

  1. Implementation of In-Situ Impedance Techniques on a Full Scale Aero-Engine System

    NASA Technical Reports Server (NTRS)

    Gaeta, R. J.; Mendoza, J. M.; Jones, M. G.

    2007-01-01

    Determination of acoustic liner impedance for jet engine applications remains a challenge for the designer. Although suitable models have been developed that take account of source amplitude and the local flow environment experienced by the liner, experimental validation of these models has been difficult. This is primarily due to the inability of researchers to faithfully mimic the environment in jet engine nacelles in the laboratory. An in-situ measurement technique, one that can be implemented in an actual engine, is desirable so an accurate impedance can be determined for future modeling and quality control. This paper documents the implementation of such a local acoustic impedance measurement technique that is used under controlled laboratory conditions as well as on full scale turbine engine liner test article. The objective for these series of in-situ measurements is to substantiate treatment design, provide understanding of flow effects on installed liner performance, and provide modeling input for fan noise propagation computations. A series of acoustic liner evaluation tests are performed that includes normal incidence tube, grazing incidence tube, and finally testing on a full scale engine on a static test stand. Lab tests were intended to provide insight and guidance for accurately measuring the impedance of the liner housed in the inlet of a Honeywell Tech7000 turbofan. Results have shown that one can acquire very reasonable liner impedance data for a full scale engine under realistic test conditions. Furthermore, higher fidelity results can be obtained by using a three-microphone coherence technique that can enhance signal-to-noise ratio at high engine power settings. This research has also confirmed the limitations of this particular type of in-situ measurement. This is most evident in the installation of instrumentation and its effect on what is being measured.

  2. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  3. Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic induction (MAT-MI).

    PubMed

    Li, Xu; Xu, Yuan; He, Bin

    2007-02-01

    We have conducted computer simulation and experimental studies on magnetoacoustic-tomography with magnetic induction (MAT-MI) for electrical impedance imaging. In MAT-MI, the object to be imaged is placed in a static magnetic field, while pulsed magnetic stimulation is applied in order to induce eddy current in the object. In the static magnetic field, the Lorentz force acts upon the eddy current and causes acoustic vibrations in the object. The propagated acoustic wave is then measured around the object to reconstruct the electrical impedance distribution. In the present simulation study, a two-layer spherical model is used. Parameters of the model such as sample size, conductivity values, strength of the static and pulsed magnetic field, are set to simulate features of biological tissue samples and feasible experimental constraints. In the forward simulation, the electrical potential and current density are solved using Poisson's equation, and the acoustic pressure is calculated as the forward solution. The electrical impedance distribution is then reconstructed from the simulated pressure distribution surrounding the sample. The present computer simulation results suggest that MAT-MI can reconstruct conductivity images of biological tissue with high spatial resolution and high contrast. The feasibility of MAT-MI in providing high spatial resolution images containing impedance-related information has also been demonstrated in a phantom experiment.

  4. Numerical and Physical Modeling of the Response of Resonator Liners to Intense Sound and Grazing Flow

    NASA Technical Reports Server (NTRS)

    Hersh, Alan S.; Tam, Christopher

    2009-01-01

    Two significant advances have been made in the application of computational aeroacoustics methodology to acoustic liner technology. The first is that temperature effects for discrete sound are not the same as for broadband noise. For discrete sound, the normalized resistance appears to be insensitive to temperature except at high SPL. However, reactance is lower, significantly lower in absolute value, at high temperature. The second is the numerical investigation the acoustic performance of a liner by direct numerical simulation. Liner impedance is affected by the non-uniformity of the incident sound waves. This identifies the importance of pressure gradient. Preliminary design one and two-dimensional impedance models were developed to design sound absorbing liners in the presence of intense sound and grazing flow. The two-dimensional model offers the potential to empirically determine incident sound pressure face-plate distance from resonator orifices. This represents an important initial step in improving our understanding of how to effectively use the Dean Two-Microphone impedance measurement method.

  5. Comparative Study of Impedance Eduction Methods, Part 2: NASA Tests and Methodology

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Howerton, Brian M.; Busse-Gerstengarbe, Stefan

    2013-01-01

    A number of methods have been developed at NASA Langley Research Center for eduction of the acoustic impedance of sound-absorbing liners mounted in the wall of a flow duct. This investigation uses methods based on the Pridmore-Brown and convected Helmholtz equations to study the acoustic behavior of a single-layer, conventional liner fabricated by the German Aerospace Center and tested in the NASA Langley Grazing Flow Impedance Tube. Two key assumptions are explored in this portion of the investigation. First, a comparison of results achieved with uniform-flow and shear-flow impedance eduction methods is considered. Also, an approach based on the Prony method is used to extend these methods from single-mode to multi-mode implementations. Finally, a detailed investigation into the effects of harmonic distortion on the educed impedance is performed, and the results are used to develop guidelines regarding acceptable levels of harmonic distortion

  6. Multiscale analysis of the acoustic scattering by many scatterers of impedance type

    NASA Astrophysics Data System (ADS)

    Challa, Durga Prasad; Sini, Mourad

    2016-06-01

    We are concerned with the acoustic scattering problem, at a frequency {κ}, by many small obstacles of arbitrary shapes with impedance boundary condition. These scatterers are assumed to be included in a bounded domain {Ω} in {{R}^3} which is embedded in an acoustic background characterized by an eventually locally varying index of refraction. The collection of the scatterers {D_m, m=1,ldots,M} is modeled by four parameters: their number M, their maximum radius a, their minimum distance d and the surface impedances {λ_m, m=1,ldots,M}. We consider the parameters M, d and {λ_m}'s having the following scaling properties: {M:=M(a)=O(a^{-s}), d:=d(a)≈ a^t} and {λ_m:=λ_m(a)=λ_{m,0}a^{-β}}, as {a→ 0}, with non negative constants s, t and {β} and complex numbers {λ_{m, 0}}'s with eventually negative imaginary parts. We derive the asymptotic expansion of the far-fields with explicit error estimate in terms of a, as {a→ 0}. The dominant term is the Foldy-Lax field corresponding to the scattering by the point-like scatterers located at the centers {z_m}'s of the scatterers {D_m}'s with {λ_m \\vert partial D_m\\vert} as the related scattering coefficients. This asymptotic expansion is justified under the following conditions a ≤ a_0, \\vert Re (λ_{m,0})\\vert ≥ λ_-,quad \\vertλ_{m,0}\\vert ≤ λ_+,quad β < 1,quad 0 ≤ s ≤2-β,quads/3 ≤ t and the error of the approximation is {C a^{3-2β-s}}, as {a → 0}, where the positive constants {a_0, λ_-,λ_+} and C depend only on the a priori uniform bounds of the Lipschitz characters of the obstacles {D_m}'s and the ones of {M(a)a^s} and {d(a)/a^t}. We do not assume the periodicity in distributing the small scatterers. In addition, the scatterers can be arbitrary close since t can be arbitrary large, i.e., we can handle the mesoscale regime. Finally, for spherical scatterers, we can also allow the limit case {β=1} with a slightly better error of the approximation.

  7. Optimal one-section and two-section circular sound-absorbing duct liners for plane-wave and monopole sources without flow

    NASA Technical Reports Server (NTRS)

    Lester, H. C.; Posey, J. W.

    1976-01-01

    A discrete frequency study is made of the influence of source characteristics on the optimal properties of acoustically lined uniform and two section ducts. Two simplified sources, a plane wave and a monopole, are considered in some detail and over a greater frequency range than has been previously studied. Source and termination impedance effects are given limited examination. An example of a turbomachinery source and three associated source variants is also presented. Optimal liner designs based on modal theory approach the Cremer criterion at low frequencies and the geometric acoustics limit at high frequencies. Over an intermediate frequency range, optimal two section liners produced higher transmission losses than did the uniform configurations. Source distribution effects were found to have a significant effect on optimal liner design, but source and termination impedance effects appear to be relatively unimportant.

  8. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, G.N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are disclosed. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material. 6 figs.

  9. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic-impedance measurements. [Patent application

    DOEpatents

    Not Available

    1981-06-10

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are presented. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  10. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, Gary N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  11. Impedance analysis of nano thickness layered AlGaN acoustic sensor deposited by thermionic vacuum arc

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Bilgiç, Eyüp; Gülmez, Gülay; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2016-03-01

    In this study, AlGaN acoustic sensor was deposited on aluminum metal substrate by thermionic vacuum arc (TVA) method for the first time. Gallium materials are used in many applications for optoelectronic device and semiconductor technology. Thermionic vacuum arc is the deposition technology for the variously materials and applications field. The thickness of the acoustic sensor is in deposited as nano layer. Impedance analyses were realized. Also, TVA production parameters and some properties of the deposited layers were investigated. TVA is a fast deposition technology for the gallium compounds and doped gallium compounds. Obtained results show that AlGaN materials are very promising materials. Moreover, these acoustic sensors have been produced by TVA technology.

  12. A direct method for measuring acoustic ground impedance in long-range propagation experiments.

    PubMed

    Soh, Jin H; Gilbert, Kenneth E; Frazier, W M Garth; Talmadge, Carrick L; Waxler, Roger

    2010-11-01

    A method is reported for determining ground impedance in long-range propagation experiments by using the definition of impedance directly. The method is envisioned as way of measuring the impedence at multiple locations along the propagation path, using the signals broadcast during the experiment itself. In a short-range (10 m) test, the direct method was in good agreement with a more conventional model-based least-squares method. The utility of the direct method was demonstrated in a 400 m propagation experiment in a agricultural field. The resulting impedance was consistent with the impedance measured previously in the same field. PMID:21110540

  13. Acoustic Characteristics of Various Treatment Panel Designs Specific to HSCT Mixer-Ejector Application

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Kinzie, K.; Vu, D. D.; Langenbrunner, L. E.; Szczepkowski, G. T.

    2006-01-01

    The development process of liner design methodology is described in several reports. The results of the initial effort of concept development, screening, laboratory testing of various liner concepts, and preliminary correlation (generic data) are presented in a report Acoustic Characteristics of Various Treatment Panel Designs for HSCT Ejector Liner Acoustic Technology Development Program. The second phase of laboratory test results of more practical concepts and their data correlations are presented in this report (product specific). In particular, this report contains normal incidence impedance measurements of several liner types in both a static rig and in a high temperature flow duct rig. The flow duct rig allows for temperatures up to 400 F with a grazing flow up to Mach 0.8. Measurements of impedance, DC flow resistance, and in the flow rig cases, impact of the liner on boundary layer profiles are documented. In addition to liner rig tests, a limited number of tests were made on liners installed in a mixer-Ejector nozzle to confirm the performance of the liner prediction in an installed configuration.

  14. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2012-01-01

    The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the

  15. Comparative Study of Impedance Eduction Methods. Part 1; DLR Tests and Methodology

    NASA Technical Reports Server (NTRS)

    Busse-Gerstengarbe, Stefan; Bake, Friedrich; Enghardt, Lars; Jones, Michael G.

    2013-01-01

    The absorption efficiency of acoustic liners used in aircraft engines is characterized by the acoustic impedance. World wide, many grazing ow test rigs and eduction methods are available that provide values for that impedance. However, a direct comparison and assessment of the data of the di erent rigs and methods is often not possible because test objects and test conditions are quite di erent. Only a few papers provide a direct comparison. Therefore, this paper together with a companion paper, present data measured with a reference test object under similar conditions in the DLR and NASA grazing ow test rigs. Additionally, by applying the in-house methods Liner Impedance Non-Uniform ow Solving algorithm (LINUS, DLR) and Convected Helmhholtz Equation approach (CHE, NASA) on the data sets, similarities and differences due to underlying theory are identi ed and discussed.

  16. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.

    PubMed

    Ozeri, Shaul; Shmilovitz, Doron

    2014-09-01

    The advancement and miniaturization of body implanted medical devices pose several challenges to Ultrasonic Transcutaneous Energy Transfer (UTET), such as the need to reduce the size of the piezoelectric resonator, and the need to maximize the UTET link power-transfer efficiency. Accordingly, the same piezoelectric resonator that is used for energy harvesting at the body implant, may also be used for ultrasonic backward data transfer, for instance, through impedance modulation. This paper presents physical considerations and design guidelines of the body implanted transducer of a UTET link with impedance modulation for a backward data transfer. The acoustic matching design procedure was based on the 2×2 transfer matrix chain analysis, in addition to the Krimholtz Leedom and Matthaei KLM transmission line model. The UTET power transfer was carried out at a frequency of 765 kHz, continuous wave (CW) mode. The backward data transfer was attained by inserting a 9% load resistance variation around its matched value (550 Ohm), resulting in a 12% increase in the acoustic reflection coefficient. A backward data transmission rate of 1200 bits/s was experimentally demonstrated using amplitude shift keying, simultaneously with an acoustic power transfer of 20 mW to the implant. PMID:24861424

  17. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.

    PubMed

    Ozeri, Shaul; Shmilovitz, Doron

    2014-09-01

    The advancement and miniaturization of body implanted medical devices pose several challenges to Ultrasonic Transcutaneous Energy Transfer (UTET), such as the need to reduce the size of the piezoelectric resonator, and the need to maximize the UTET link power-transfer efficiency. Accordingly, the same piezoelectric resonator that is used for energy harvesting at the body implant, may also be used for ultrasonic backward data transfer, for instance, through impedance modulation. This paper presents physical considerations and design guidelines of the body implanted transducer of a UTET link with impedance modulation for a backward data transfer. The acoustic matching design procedure was based on the 2×2 transfer matrix chain analysis, in addition to the Krimholtz Leedom and Matthaei KLM transmission line model. The UTET power transfer was carried out at a frequency of 765 kHz, continuous wave (CW) mode. The backward data transfer was attained by inserting a 9% load resistance variation around its matched value (550 Ohm), resulting in a 12% increase in the acoustic reflection coefficient. A backward data transmission rate of 1200 bits/s was experimentally demonstrated using amplitude shift keying, simultaneously with an acoustic power transfer of 20 mW to the implant.

  18. Attenuation of sound in ducts with acoustic treatment: A generalized approximate equation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1975-01-01

    A generalized approximate equation for duct lining sound attenuation is presented. The specification of two parameters, the maximum possible attenuation and the optimum wall acoustic impedance is shown to completely determine the sound attenuation for any acoustic mode at any selected wall impedance. The equation is based on the nearly circular shape of the constant attenuation contours in the wall acoustic impedance plane. For impedances far from the optimum, the equation reduces to Morse's approximate expression. The equation can be used for initial acoustic liner design. Not least important is the illustrative nature of the solutions which provide an understanding of the duct propagation problem usually obscured in the exact calculations. Sample calculations using the approximate attenuation equation show that the peak and the bandwidth of the sound attenuation spectrum can be represented by quite simple functions of the ratio of actual wall acoustic resistance to optimum resistance.

  19. On the Use of Experimental Methods to Improve Confidence in Educed Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.

    2011-01-01

    Results from impedance eduction methods developed by NASA Langley Research Center are used throughout the acoustic liner community. In spite of recent enhancements, occasional anomalies persist with these methods, generally at frequencies where the liner produces minimal attenuation. This investigation demonstrates an experimental approach to educe impedance with increased confidence over a desired frequency range, by combining results from successive tests with different cavity depths. A series of tests is conducted with three wire-mesh facesheets, for which the results should be weakly dependent on source sound pressure level and mean grazing flow speed. First, a raylometer is used to measure the DC flow resistance of each facesheet. These facesheets are then mounted onto a frame and a normal incidence tube is used to determine their respective acoustic impedance spectra. A comparison of the acoustic resistance component with the DC flow resistance for each facesheet is used to validate the measurement process. Next, each facesheet is successively mounted onto three frames with different cavity depths, and a grazing flow impedance tube is used to educe their respective acoustic impedance spectra with and without mean flow. The no-flow results are compared with those measured in the normal incidence tube to validate the impedance eduction method. Since the anti-resonance frequency varies with cavity depth, each sample provides robust results over a different frequency range. Hence, a combination of results can be used to determine the facesheet acoustic resistance. When combined with the acoustic reactance, observed to be weakly dependent on the source sound pressure level and grazing flow Mach number, the acoustic impedance can be educed with increased confidence. Representative results of these tests are discussed, and the complete database is available in electronic format upon request.

  20. Acoustic impedance and interface phonon scattering in Bi$_2$Te$_3$ and other semiconducting materials

    SciTech Connect

    Chen, Xin; Parker, David S; Singh, David J

    2013-01-01

    We present first principles calculations of the phonon dispersions of \\BiTe and discuss these in relation to the acoustic phonon interface scattering in ceramics. The phonon dispersions show agreement with what is known from neutron scattering for the optic modes. We find a difference between the generalized gradient approximation and local density results for the acoustic branches. This is a consequence of an artificial compression of the van der Waals bonded gaps in the \\BiTe structure when using the generalized gradient approximation. As a result local density approximation calculations provide a better description of the phonon dispersions in Bi$_{2}$Te$_{3}$. A key characteristic of the acoustic dispersions is the existence of a strong anisotropy in the velocities. We develop a model for interface scattering in ceramics with acoustic wave anisotropy and apply this to \\BiTe and compare with PbTe and diamond.

  1. Saturation diving with heliox to 350 meters. Observation on hearing threshold, brainstem evoked response and acoustic impedance.

    PubMed

    Wang, L; Jiang, W; Gong, J H; Zheng, X Y

    1994-12-01

    Four divers were compressed to 350 m to observe changes in hearing threshold, brainstem evoked response and acoustic impedance. The divers experienced no tinnitus, impairment of hearing, earache during compression. Examination showed that the threshold of lower frequency range of hearing was elevated because of the masking effect of the noise in the hyperbaric chamber. Changes in waveform and latency of brainstem evoked response were due to changes in sound wave transmission affected by the chamber pressure and a poor ratio of signal to noise in the hyperbaric environment with heliox. All these changes were transient. After leaving the chamber, the hearing threshold and brainstem evoked response returned to normal. Besides, there were no changes in tympanogram, acoustic compliance and stapedius reflex before and after diving. This indicated the designed speed of compression and decompression in the experiment caused no damage to the divers' acoustic system, and the functions of their Eustachain tubes, middle and inner ears were normal during the diving test. PMID:7882734

  2. Numerical simulation of the processes in the normal incidence tube for high acoustic pressure levels

    NASA Astrophysics Data System (ADS)

    Fedotov, E. S.; Khramtsov, I. V.; Kustov, O. Yu.

    2016-10-01

    Numerical simulation of the acoustic processes in an impedance tube at high levels of acoustic pressure is a way to solve a problem of noise suppressing by liners. These studies used liner specimen that is one cylindrical Helmholtz resonator. The evaluation of the real and imaginary parts of the liner acoustic impedance and sound absorption coefficient was performed for sound pressure levels of 130, 140 and 150 dB. The numerical simulation used experimental data having been obtained on the impedance tube with normal incidence waves. At the first stage of the numerical simulation it was used the linearized Navier-Stokes equations, which describe well the imaginary part of the liner impedance whatever the sound pressure level. These equations were solved by finite element method in COMSOL Multiphysics program in axisymmetric formulation. At the second stage, the complete Navier-Stokes equations were solved by direct numerical simulation in ANSYS CFX in axisymmetric formulation. As the result, the acceptable agreement between numerical simulation and experiment was obtained.

  3. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  4. Scatterer size and concentration estimation technique based on a 3D acoustic impedance map from histologic sections

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2001-05-01

    Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.

  5. Effect of grazing flow on the acoustic impedance of Helmholtz resonators consisting of single and clustered orifices

    NASA Technical Reports Server (NTRS)

    Hersch, A. S.; Walker, B.

    1979-01-01

    A semiempirical fluid mechanical model is derived for the acoustic behavior of thin-walled single orifice Helmholtz resonators in a grazing flow environment. The incident and cavity sound fields are connected in terms of an orifice discharge coefficient whose values are determined experimentally using the two-microphone method. Measurements show that at high grazing flow speeds, acoustical resistance is almost linearly proportional to the grazing flow speed and almost independent of incident sound pressure. The corresponding values of reactance are much smaller and tend towards zero. For thicker-walled orifice plates, resistance and reactance were observed to be less sensitive to grazing flow as the ratio of plate thickness to orifice diameter increased. Loud tones were observed to radiate from a single orifice Helmholtz resonator due to interaction between the grazing flow shear layer and the resonator cavity. Measurements showed that the tones radiated at a Strouhal number equal to 0.26. The effects of grazing flow on the impedance of Helmholtz resonators consisting of clusters of orifices was also studied. In general, both resistance and reaction were found to be virtually independent of orifice relative spacing and number. These findings are valid with and without grazing flow.

  6. Impedance Eduction in Ducts with Higher-Order Modes and Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2009-01-01

    An impedance eduction technique, previously validated for ducts with plane waves at the source and duct termination planes, has been extended to support higher-order modes at these locations. Inputs for this method are the acoustic pressures along the source and duct termination planes, and along a microphone array located in a wall either adjacent or opposite to the test liner. A second impedance eduction technique is then presented that eliminates the need for the microphone array. The integrity of both methods is tested using three sound sources, six Mach numbers, and six selected frequencies. Results are presented for both a hardwall and a test liner (with known impedance) consisting of a perforated plate bonded to a honeycomb core. The primary conclusion of the study is that the second method performs well in the presence of higher-order modes and flow. However, the first method performs poorly when most of the microphones are located near acoustic pressure nulls. The negative effects of the acoustic pressure nulls can be mitigated by a judicious choice of the mode structure in the sound source. The paper closes by using the first impedance eduction method to design a rectangular array of 32 microphones for accurate impedance eduction in the NASA LaRC Curved Duct Test Rig in the presence of expected measurement uncertainties, higher order modes, and mean flow.

  7. Liner Optimization Studies Using the Ducted Fan Noise Prediction Code TBIEM3D

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Farassat, F.

    1998-01-01

    In this paper we demonstrate the usefulness of the ducted fan noise prediction code TBIEM3D as a liner optimization design tool. Boundary conditions on the interior duct wall allow for hard walls or a locally reacting liner with axially segmented, circumferentially uniform impedance. Two liner optimization studies are considered in which farfield noise attenuation due to the presence of a liner is maximized by adjusting the liner impedance. In the first example, the dependence of optimal liner impedance on frequency and liner length is examined. Results show that both the optimal impedance and attenuation levels are significantly influenced by liner length and frequency. In the second example, TBIEM3D is used to compare radiated sound pressure levels between optimal and non-optimal liner cases at conditions designed to simulate take-off. It is shown that significant noise reduction is achieved for most of the sound field by selecting the optimal or near optimal liner impedance. Our results also indicate that there is relatively large region of the impedance plane over which optimal or near optimal liner behavior is attainable. This is an important conclusion for the designer since there are variations in liner characteristics due to manufacturing imprecisions.

  8. A Spherically-Shaped PZT Thin Film Ultrasonic Transducer with an Acoustic Impedance Gradient Matching Layer Based on a Micromachined Periodically Structured Flexible Substrate

    PubMed Central

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-01-01

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20–50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a −6 dB bandwidth of approximately 65%. PMID:24113683

  9. Acoustical properties of highly porous fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1979-01-01

    Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.

  10. Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance.

    PubMed

    Alcoverro, Benoit; Le Pichon, Alexis

    2005-04-01

    The implementation of the infrasound network of the International Monitoring System (IMS) for the enforcement of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) increases the effort in the design of suitable noise reducer systems. In this paper we present a new design consisting of low impedance elements. The dimensioning and the optimization of this discrete mechanical system are based on numerical simulations, including a complete electroacoustical modeling and a realistic wind-noise model. The frequency response and the noise reduction obtained for a given wind speed are compared to statistical noise measurements in the [0.02-4] Hz frequency band. The effects of the constructive parameters-the length of the pipes, inner diameters, summing volume, and number of air inlets-are investigated through a parametric study. The studied system consists of 32 air inlets distributed along an overall diameter of 16 m. Its frequency response is flat up to 4 Hz. For a 2 m/s wind speed, the maximal noise reduction obtained is 15 dB between 0.5 and 4 Hz. At lower frequencies, the noise reduction is improved by the use of a system of larger diameter. The main drawback is the high-frequency limitation introduced by acoustical resonances inside the pipes.

  11. A straightforward method for wall impedance eduction in a flow duct.

    PubMed

    Jing, Xiaodong; Peng, Sen; Sun, Xiaofeng

    2008-07-01

    The development of the advanced liner technology for aeroengine noise control necessitates the impedance measurement method under realistic flow conditions. Currently, the methods for this need are mainly based on the inverse impedance eduction principle, confronting with the problems of initial guess, high computation cost, and low convergence. In view of this, a new strategy is developed that straightforwardly educes the impedance from the sound pressure information measured on the duct wall opposing to the test acoustic liner embedded in a flow duct. Here, the key insight is that the modal nature of the duct acoustic field renders a summed-exponential representation of the measured sound pressure; thus, the characterizing axial wave number can be readily extracted by means of Prony's method, and further the unknown impedance is calculated from the eigenvalue and dispersion relations based on the classical mode-decomposition analysis. This straightforward method is simple in its basic principle but remarkably has the advantages of ultimately overcoming the drawbacks inherent to the inverse methods, incorporating the realistic multimode nonprogressive wave effects, high computational efficiency, possibly reducing the measurement points, and even avoiding the necessity of the duct exit impedance that bothers perhaps all the existing waveguide methods.

  12. Acoustic Treatment Design Scaling Methods. Volume 3; Test Plans, Hardware, Results, and Evaluation

    NASA Technical Reports Server (NTRS)

    Yu, J.; Kwan, H. W.; Echternach, D. K.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The ability to design, build, and test miniaturized acoustic treatment panels on scale-model fan rigs representative of the full-scale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. To be able to use scale model treatment as a full-scale design tool, it is necessary that the designer be able to reliably translate the scale model design and performance to an equivalent full-scale design. The primary objective of the study presented in this volume of the final report was to conduct laboratory tests to evaluate liner acoustic properties and validate advanced treatment impedance models. These laboratory tests include DC flow resistance measurements, normal incidence impedance measurements, DC flow and impedance measurements in the presence of grazing flow, and in-duct liner attenuation as well as modal measurements. Test panels were fabricated at three different scale factors (i.e., full-scale, half-scale, and one-fifth scale) to support laboratory acoustic testing. The panel configurations include single-degree-of-freedom (SDOF) perforated sandwich panels, SDOF linear (wire mesh) liners, and double-degree-of-freedom (DDOF) linear acoustic panels.

  13. Flap Side Edge Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  14. Landing Gear Door Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)

    2014-01-01

    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  15. The effective ratio of acoustic impedance in predicting stress and velocity of wave propagation in viscoelastic material (standard linear solid model)

    NASA Astrophysics Data System (ADS)

    Musa, Abu Bakar

    2013-09-01

    The study is about impact of a short elastic rod(or slug) on a stationary semi-infinite viscoelastic rod. The viscoelastic materials are modeled as standard linear solid which involve three material parameters and the motion is treated as one-dimensional. We first establish the governing equations pertaining to the impact of viscoelastic materials subject to certain boundary conditions for the case when an elastic slug moving at a speed V impacts a semi-infinite stationary viscoelastic rod. The objective is to predict stresses and velocities at the interface following wave transmissions and reflections in the slug after the impact using viscoelastic discontinuity. If the stress at the interface becomes tensile and the velocity changes its sign, then the slug and the rod part company. If the stress at the interface is compressive after the impact, the slug and the rod remain in contact. In the process of predicting the stress and velocity of wave propagation using viscoelastic discontinuity, the Z-effective which is the effective ratio of acoustic impedance plays important role. It can be shown that effective ratio of acoustic impedance can help us to determine whether the slug and the rod move together or part company after the impact. After modeling the impact and solve the governing system of partial differential equations in the Laplace transform domain. We invert the Laplace transformed solution numerically to obtain the stresses and velocities at the interface for several viscosity time constants and ratios of acoustic impedances. In inverting the Laplace transformed equations, we used the complex inversion formula because there is a branch cut and infinitely many poles within the Bromwich contour. In the discontinuity analysis, we look at the moving discontinuities in stress and velocity using the impulse-momentum relation and kinematical condition of compatibility. Finally, we discussed the relationship of the stresses and velocities using numeric and the

  16. Comparison of a Convected Helmholtz and Euler Model for Impedance Eduction in Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2006-01-01

    Impedances educed from a well-tested convected Helmholtz model are compared to that of a recently developed linearized Euler model using two ceramic test liners under the assumed conditions or uniform flow and a plane wave source. The convected Helmholtz model is restricted to uniform mean flow whereas the linearized Euler model can account for the effect or the shear layer. Test data to educe the impedance is acquired from measurements obtained in the NASA Langley Research Center Grazing Incidence Tube for mean flow Mach numbers ranging from 0.0 to 0.5 and source frequencies ranging from 0.5 kHz to 3.0 kHz. The unknown impedance of the liner b educed by judiciously chooingth e impedance via an optimization method to match the measured acoustic pressure on the wall opposite the test liner. Results are presented on four spatial grids using three different optimization methods (contour deformation, Davidon-Fletcher Powell, and the Genetic Algorithm). All three optimization methods converge to the same impedance when used with the same model and to nearly identical impedances when used on different models. h anomaly was observed only at 0.5 kHz for high mean flow speeds. The anomaly is likely due to the use of measured data in a flow regime where shear layer effects are important but are neglected in the math models. Consistency between the impedances educed using the two models provides confidence that the linearized Euler model is ready For application to more realistic flows, such as those containing shear layers.

  17. Interaction of a turbulent boundary layer with a cavity-backed circular orifice and tonal acoustic excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Bodony, Daniel

    2013-11-01

    Acoustic liners are effective reducers of jet exhaust and core noise and work by converting acoustic-bound energy into non-radiating, vorticity-bound energy through scattering, viscous, and non-linear processes. Modern liners are designed using highly-calibrated semi-empirical models that will not be effective for expected parameter spaces on future aircraft. The primary model limitation occurs when a turbulent boundary layer (TBL) grazes the liner; there are no physics-based methods for predicting the sound-liner interaction. We thus utilize direct numerical simulations to study the interaction of a Mach 0.5 zero pressure gradient TBL with a cavity-backed circular orifice under acoustic excitation. Acoustic field frequencies span the energy-containing range within the TBL and amplitudes range from 6 to 40 dB above the turbulent fluctuations. Impedance predictions are in agreement with NASA Langley-measured data and the simulation databases are analyzed in detail. A physics-based reduced-order model is proposed that connects the turbulence-vorticity-acoustic interaction and its accuracy and limitations are discussed. This work is funded by Aeroacoustics Research Consortium.

  18. Liner environment effects study

    NASA Technical Reports Server (NTRS)

    Venkataramani, K. S.; Ekstedt, E. E.

    1984-01-01

    The Liner Environment Effects Study Program is aimed at establishing a broad heat transfer data base under controlled experimental conditions by quantifying the effects of the combustion system conditions on the combustor liner thermal loading and on the flame radiation characteristics. Five liner concepts spanning the spectrum of liner design technology from the very simple to the most advanced concepts are investigated. These concepts comprise an uncooled liner, a conventional film cooled liner, an impingement/film cooled liner, a laser drilled liner approaching the concept of a porous wall, and a siliconized silicon carbide ceramic liner. Effect of fuel type is covered by using fuels containing 11.8, 12.8, and 14% hydrogen. Tests at 100, 200, and 300 psia provide a basis for evaluating the effect of pressure on the heat transfer. The effects of the atomization quality and spray characteristics are examined by varying the fuel spray Sauter mean diameter and the spray angle. Additional varied parameters include reference velocity, a wide range of equivalence ratio, cooling flow rate, coolant temperature and the velocity of the coolant stream on the backside of the liner.

  19. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  20. A Requirements-Driven Optimization Method for Acoustic Treatment Design

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2016-01-01

    Acoustic treatment designers have long been able to target specific noise sources inside turbofan engines. Facesheet porosity and cavity depth are key design variables of perforate-over-honeycomb liners that determine levels of noise suppression as well as the frequencies at which suppression occurs. Layers of these structures can be combined to create a robust attenuation spectrum that covers a wide range of frequencies. Looking to the future, rapidly-emerging additive manufacturing technologies are enabling new liners with multiple degrees of freedom, and new adaptive liners with variable impedance are showing promise. More than ever, there is greater flexibility and freedom in liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. The subject of this paper is an analytical method that derives the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground.

  1. Liner mounting assembly

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A mounting assembly includes an annular supporting flange disposed coaxially about a centerline axis which has a plurality of circumferentially spaced apart supporting holes therethrough. An annular liner is disposed coaxially with the supporting flange and includes a plurality of circumferentially spaced apart mounting holes aligned with respective ones of the supporting holes. Each of a plurality of mounting pins includes a proximal end fixedly joined to the supporting flange through a respective one of the supporting holes, and a distal end disposed through a respective one of the liner mounting holes for supporting the liner to the supporting flange while unrestrained differential thermal movement of the liner relative to the supporting flange.

  2. Direct numerical simulation of turbulent flow with an impedance condition

    NASA Astrophysics Data System (ADS)

    Olivetti, Simone; Sandberg, Richard D.; Tester, Brian J.

    2015-05-01

    DNS solutions for a pipe/jet configuration are re-computed with the pipe alone to investigate suppression of previously identified internal noise source(s) with an acoustic liner, using a time domain acoustic liner model developed by Tam and Auriault (AIAA Journal, 34 (1996) 913-917). Liner design parameters are chosen to achieve up to 30 dB attenuation of the broadband pressure field over the pipe length without affecting the velocity field statistics. To understand the effect of the liner on the acoustic and turbulent components of the unsteady wall pressure, an azimuthal/axial Fourier transform is applied and the acoustic and turbulent wavenumber regimes clearly identified. It is found that the spectral component occupying the turbulent wavenumber range is unaffected by the liner whereas the acoustic wavenumber components are strongly attenuated, with individual radial modes being evident as each cuts on with increasing Strouhal number.

  3. Numerical study of acoustic instability in a partly lined flow duct using the full linearized Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Xin, Bo; Sun, Dakun; Jing, Xiaodong; Sun, Xiaofeng

    2016-07-01

    Lined ducts are extensively applied to suppress noise emission from aero-engines and other turbomachines. The complex noise/flow interaction in a lined duct possibly leads to acoustic instability in certain conditions. To investigate the instability, the full linearized Navier-Stokes equations with eddy viscosity considered are solved in frequency domain using a Galerkin finite element method to compute the sound transmission in shear flow in the lined duct as well as the flow perturbation over the impedance wall. A good agreement between the numerical predictions and the published experimental results is obtained for the sound transmission, showing that a transmission peak occurs around the resonant frequency of the acoustic liner in the presence of shear flow. The eddy viscosity is an important influential factor that plays the roles of both providing destabilizing and making coupling between the acoustic and flow motions over the acoustic liner. Moreover, it is shown from the numerical investigation that the occurrence of the sound amplification and the magnitude of transmission coefficient are closely related to the realistic velocity profile, and we find it essential that the actual variation of the velocity profile in the axial direction over the liner surface be included in the computation. The simulation results of the periodic flow patterns possess the proper features of the convective instability over the liner, as observed in Marx et al.'s experiment. A quantitative comparison between numerical and experimental results of amplitude and phase of the instability is performed. The corresponding eigenvalues achieve great agreement.

  4. An investigation of the diffraction of an acoustic plane wave by a curved surface of finite impedance

    NASA Astrophysics Data System (ADS)

    Kearns, James Andrew

    1990-08-01

    The diffraction effects which would occur near the tops of hills and ridges was analyzed. The diffraction of a high frequency plane wave due to its grazing of a two-dimensional curved surface of finite impedance was studied. Laboratory scale models were constructed and measurements were made of the field on, above, and behind either of two curved surfaces possessing distinctly different impedances; that is, one was soft while the other was hard. The experimental technique consisted of simultaneously measuring the pressure at a reference point and at a field point due to a transient pulse generated by an electric spark. The pressure waveforms were digitized and processed. The ratio of the discrete Fourier transforms of the two waveforms provided an estimate of the insertion loss between them. The results of the measurements were compared with the predictions of theory which was derived by Pierce using the method of matched asymptotic expansions (MAE). The predictions relied upon the experimental evaluation of the impedance of each surface at grazing angles of incidence. This evaluation was achieved by a fairly standard technique involving empirical models of various generic types of surfaces. An example was shown of the important role that the structural intricacies of a surface play in the determination of an appropriate model. The comparison between the measurements and predictions clearly indicated that the theory gives an excellent description of the field anywhere near a curved surface. The theory was also shown to give nearly as good of a description of the field surrounding a curved surface even at distances far behind the surface yet near the line of sight.

  5. A Investigation of the Diffraction of AN Acoustic Plane Wave by a Curved Surface of Finite Impedance.

    NASA Astrophysics Data System (ADS)

    Kearns, James Andrew

    Phenomena associated with long range propagation of sound over irregular topography motivated the research work which was described in this thesis. Specifically,the goal of the work was to analyze the diffraction effects which would occur near the tops of hills and ridges. From this particular goal, the research work evolved into a study of the diffraction of a high frequency plane wave due to its grazing of a two-dimensional curved surface of finite impedance. Laboratory scale models were constructed and measurements were made of the field on, above, and behind either of two curved surfaces possessing distinctly different impedances; that is, one was soft while the other was hard. The experimental technique consisted of simultaneously measuring the pressure at a reference point and at a field point due to a transient pulse generated by an electric spark. The pressure waveforms were digitized and processed. As described in the thesis, the ratio of the discrete Fourier transforms of the two waveforms provided an estimate of the insertion loss between them. The results of the measurements were compared with the predictions of a theory which was derived by Pierce using the method of Matched Asymptotic Expansions (MAE). The predictions relied upon the experimental evaluation of the impedance of each surface at grazing angles of incidence. This evaluation was achieved by a fairly standard technique involving empirical models of various generic types of surfaces. An example was shown of the important role that the structural intricacies of a surface play in the determination of an appropriate model. The comparison between the measurements and predictions clearly indicated that the theory gives an excellent description of the field anywhere near a curved surface. Further, with a simple modification, the theory was also shown to give nearly as good of a description of the field surrounding a curved surface even at distances far behind the surface yet near the line of sight.

  6. An investigation of the diffraction of an acoustic plane wave by a curved surface of finite impedance

    NASA Astrophysics Data System (ADS)

    Kearns, James A.

    1989-12-01

    Phenomena associated with long range propagation of sound over irregular topography motivated this work, which was to analyze the diffraction effects which would occur near the tops of hills and ridges. The diffraction of a high frequency plane wave due to its grazing of a two-dimensional curved surface of finite impedance was also studied. Laboratory scale models were constructed and measurements were made of the field on, above, and behind either of two curved surfaces possessing distinctly different impedances; that is, one was soft while the other was hard. The experimental technique consisted of simultaneously measuring the pressure at a reference point and at a field point due to a transient pulse generated by an electric spark. The pressure waveforms were digitized and processed. The ratio of the discrete Fourier transforms of the two waveforms provided an estimate of the insertion loss between them. The results of the measurements were compared with the predictions of a theory which was derived by Pierce using the method of Matched Asymptotic Expansions (MAE). The predictions relied upon the experimental evaluation of the impedance of each surface at grazing angles of incidence. This evaluation was achieved by a fairly standard technique involving empirical models of various generic types of surfaces. An example was shown of the important role that the structural intricacies of a surface play in the determination of an appropriate model. The comparison between the measurements and predictions indicated that the theory gives an excellent description of the field anywhere near a curved surface. Further, with a simple modification, the theory was also shown to give nearly as good of a description of the field surrounding a curved surface even at distances far behind the surface yet near the line of sight.

  7. Three-Dimensional Nacelle Aeroacoustics Code With Application to Impedance Education

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.

    2000-01-01

    A three-dimensional nacelle acoustics code that accounts for uniform mean flow and variable surface impedance liners is developed. The code is linked to a commercial version of the NASA-developed General Purpose Solver (for solution of linear systems of equations) in order to obtain the capability to study high frequency waves that may require millions of grid points for resolution. Detailed, single-processor statistics for the performance of the solver in rigid and soft-wall ducts are presented. Over the range of frequencies of current interest in nacelle liner research, noise attenuation levels predicted from the code were in excellent agreement with those predicted from mode theory. The equation solver is memory efficient, requiring only a small fraction of the memory available on modern computers. As an application, the code is combined with an optimization algorithm and used to reduce the impedance spectrum of a ceramic liner. The primary problem with using the code to perform optimization studies at frequencies above I1kHz is the excessive CPU time (a major portion of which is matrix assembly). The research recommends that research be directed toward development of a rapid sparse assembler and exploitation of the multiprocessor capability of the solver to further reduce CPU time.

  8. Combustor liner cooling system

    DOEpatents

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  9. Design and Evaluation of Modifications to the NASA Langley Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Parrott, Tony L.; Smith, Charles D.

    2004-01-01

    The need to minimize fan noise radiation from commercial aircraft engine nacelles continues to provide an impetus for developing new acoustic liner concepts. If the full value of such concepts is to be attained, an understanding of grazing flow effects is crucial. Because of this need for improved understanding of grazing flow effects, the NASA Langley Research Center Liner Physics Group has invested a large effort over the past decade into the development of a 2-D finite element method that characterizes wave propagation through a lined duct. The original test section in the Langley Grazing IncidenceTube was used to acquire data needed for implementation of this finite element method. This test section employed a stepper motor-driven axial-traversing bar, embedded in the wall opposite the test liner, to position a flush-mounted microphone at pre-selected locations. Complex acoustic pressure data acquired with this traversing microphone were used to educe the acoustic impedance of test liners using this 2-D finite element method and a local optimization technique. Results acquired in this facility have been extensively reported, and were compared with corresponding results from various U.S. aeroacoustics laboratories in the late 1990 s. Impedance data comparisons acquired from this multi-laboratory study suggested that it would be valuable to incorporate more realistic 3-D aeroacoustic effects into the impedance eduction methodology. This paper provides a description of modifications that have been implemented to facilitate studies of 3-D effects. The two key features of the modified test section are (1) the replacement of the traversing bar and its flush-mounted microphone with an array of 95 fixed-location microphones that are flush-mounted in all four walls of the duct, and (2) the inclusion of a suction device to modify the boundary layer upstream of the lined portion of the duct. The initial results achieved with the modified test section are provided in this

  10. Combustor liner durability analysis

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1981-01-01

    An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.

  11. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  12. A re-expansion method for determining the acoustical impedance and the scattering matrix for the waveguide discontinuity problem

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2010-01-01

    The paper gives a new method for analyzing planar discontinuities in rectangular waveguides. The method consists of a re-expansion of the normal modes in the two ducts at the junction plane into a system of functions accounting for the velocity singularities at the corner points. As the new expansion has an exponential convergence, only a few terms have to be considered for obtaining the solution of most practical problems. To see how the method works some closed form solutions, obtained by the conformal mapping method, are used to discuss the convergence of the re-expanded series when the number of retained terms increases. The equivalent impedance accounting for nonplanar waves into a plane-wave analysis is determined. Finally, the paper yields the scattering matrix which describes the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both parts of the duct. PMID:20707432

  13. A re-expansion method for determining the acoustical impedance and the scattering matrix for the waveguide discontinuity problem.

    PubMed

    Homentcovschi, Dorel; Miles, Ronald N

    2010-08-01

    The paper gives a new method for analyzing planar discontinuities in rectangular waveguides. The method consists of a re-expansion of the normal modes in the two ducts at the junction plane into a system of functions accounting for the velocity singularities at the corner points. As the new expansion has an exponential convergence, only a few terms have to be considered for obtaining the solution of most practical problems. To see how the method works some closed form solutions, obtained by the conformal mapping method, are used to discuss the convergence of the re-expanded series when the number of retained terms increases. The equivalent impedance accounting for nonplanar waves into a plane-wave analysis is determined. Finally, the paper yields the scattering matrix which describes the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both parts of the duct.

  14. Acoustic Treatment Design Scaling Methods. Phase 2

    NASA Technical Reports Server (NTRS)

    Clark, L. (Technical Monitor); Parrott, T. (Technical Monitor); Jones, M. (Technical Monitor); Kraft, R. E.; Yu, J.; Kwan, H. W.; Beer, B.; Seybert, A. F.; Tathavadekar, P.

    2003-01-01

    The ability to design, build and test miniaturized acoustic treatment panels on scale model fan rigs representative of full scale engines provides not only cost-savings, but also an opportunity to optimize the treatment by allowing multiple tests. To use scale model treatment as a design tool, the impedance of the sub-scale liner must be known with confidence. This study was aimed at developing impedance measurement methods for high frequencies. A normal incidence impedance tube method that extends the upper frequency range to 25,000 Hz. without grazing flow effects was evaluated. The free field method was investigated as a potential high frequency technique. The potential of the two-microphone in-situ impedance measurement method was evaluated in the presence of grazing flow. Difficulties in achieving the high frequency goals were encountered in all methods. Results of developing a time-domain finite difference resonator impedance model indicated that a re-interpretation of the empirical fluid mechanical models used in the frequency domain model for nonlinear resistance and mass reactance may be required. A scale model treatment design that could be tested on the Universal Propulsion Simulator vehicle was proposed.

  15. Determination of ammonium in Kjeldahl digests by gas-diffusion flow-injection analysis with a bulk acoustic wave-impedance sensor.

    PubMed

    Su, X L; Nie, L H; Yao, S Z

    1997-11-01

    A novel flow-injection analysis (FIA) system has been developed for the rapid and direct determination of ammonium in Kjeldahl digests. The method is based on diffusion of ammonia across a PTFE gas-permeable membrane from an alkaline (NaOH/EDTA) stream into a stream of diluted boric acid. The trapped ammonium in the acceptor is determined on line by a bulk acoustic wave (BAW)-impedance sensor and the signal is proportional to the ammonium concentration present in the digests. The proposed system exhibits a favorable frequency response to 5.0 x 10(-6)-4.0 x 10(-3) mol l(-1) ammonium with a detection limit of 1.0 x 10(-6) mol l(-1), and the precision was better than 1% (RSD) for 0.025-1.0 mM ammonium at a through-put of 45-50 samples h(-1). Results obtained for nitrogen determination in amino acids and for proteins determination in blood products are in good agreement with those obtained by the conventional distillation/titration method, respectively. The effects of composition of acceptor stream, cell constant of conductivity electrode, sample volume, flow rates and potential interferents on the FIA signals were discussed in detail.

  16. The Aerodynamic Performance of an Over-the-Rotor Liner With Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.; Hughes, Christopher E.; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1 percent which is within the repeatability of this experiment.

  17. The Aerodynamic Performance of an Over-The-Rotor Liner with Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Hughes, Christopher; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1% which is within the repeatability of this experiment.

  18. Combustor liner construction

    NASA Technical Reports Server (NTRS)

    Craig, H. M.; Wagner, W. B.; Strock, W. J. (Inventor)

    1983-01-01

    A combustor liner is fabricated from a plurality of individual segments each containing counter/parallel Finwall material and are arranged circumferentially and axially to define the combustion zone. Each segment is supported by a hook and ring construction to an opened lattice frame with sufficient tolerance between the hook and ring to permit thermal expansion with a minimum of induced stresses.

  19. One-Liners

    ERIC Educational Resources Information Center

    Hathaway, Nan

    2008-01-01

    This article describes an exercise appropriate for all grade levels. This exercise is based on a book of Picasso's contour drawings called "Picasso's One-Liners," which combines a delightful assortment of one-line drawings with accompanying one-line quotes. Students are given a stack of copy paper and a black fine-tip marker. Students then take…

  20. Low-Speed Fan Noise Attenuation from a Foam-Metal Liner

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Jones, Michael G.

    2011-01-01

    A foam-metal liner for attenuation of fan noise was developed for and tested on a low-speed fan. This type of liner represents a significant advance over traditional liners, due to the possibility of placement in close proximity to the rotor. An advantage of placing treatment in this region is that the acoustic near field is modified, thereby inhibiting the noise-generation mechanism. This can result in higher attenuation levels than could be achieved by liners located in the nacelle inlet. In addition, foam-metal liners could potentially replace the fan rub strip and containment components, ultimately reducing engine components and thus weight, which can result in a systematic increase in noise reduction and engine performance. Foam-metal liners have the potential to reduce fan noise by 4 dB based on this study.

  1. Foam-Metal Liner Attenuation of Low-Speed Fan Noise

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel R.; Jones, Michael G.

    2008-01-01

    A foam-metal liner for attenuation of fan noise was developed for and tested on a low speed fan. This type of liner represents a significant advance over traditional liners due to the possibility for placement in close proximity to the rotor. An advantage of placing treatment in this region is the modification of the acoustic near field, thereby inhibiting noise generation mechanisms. This can result in higher attenuation levels than can be achieved by liners located in the nacelle inlet. In addition, foam-metal liners could potentially replace the fan rub-strip and containment components, ultimately reducing engine components and thus weight, which can result in a systematic increase in noise reduction and engine performance. Foam-metal liners have the potential to reduce fan noise by 4 dB based on this study.

  2. Polished rod liner puller assmbly

    SciTech Connect

    Baxter, B.V.

    1990-01-02

    This patent describes a polished rod liner puller assembly operable with a well casing head assembly to remove a polished rod liner member of a polished rod liner assembly from a well. It comprises: a work table assembly operable to be placed around the well casing head assembly and enclose the polished rod liner assembly; a base plate assembly mounted on the work table assembly; a piston and cylinder jack assembly mounted on the base plate assembly and extended upwardly therefrom; and a winged rod clamp assembly connectable to the piston and cylinder jack assembly and to a polished rod member of the polished rod liner assembly and operable on actuation of the piston and cylinder jack assembly to axially move the polished rod member and the polished rod liner member to remove the polished rod liner member from the well.

  3. High temperature combustor liner

    SciTech Connect

    Able, E.C.; Gibler, M.J.

    1992-05-19

    This patent describes a combustor liner. It comprises a support panel having a plurality of apertures therein, which apertures each have a wide portion and a narrow portion, a plurality of ceramic tiles, each tile having a knob upstanding on a neck from a face of such tile, each of the knobs being sized to fit through the larger end of the apertures but not the smaller end thereof, the knobs being inserted through the larger end of the apertures and shifted over the smaller end thereof and over the support panel, the necks passing therethrough and supporting the tiles below the support panel, holding means to secure the knobs proximate the smaller ends of the apertures and means to mount the support panel to the combustor line so as to mount the tiles before the liner as a heat shield therefor.

  4. Double shell liner implosions

    SciTech Connect

    Sorokin, S. A.; Chaikovsky, S. A.

    1997-05-05

    Experiments on the double shell liner (DSL) implosions with and without an initial axial magnetic were performed on the SNOP-3 pulse generator (1.1 MA, 100 ns). In implosions of a DSL without an initial axial magnetic field, high radial compressions of the inner shell were observed, as in previous experiments with an initial axial magnetic field. Possible mechanisms for the formation of the initial azimuthal magnetic field are discussed.

  5. Instrumentation for in-flight acoustic measurements in an engine intake

    NASA Astrophysics Data System (ADS)

    Vanleeuwen, S. S.; Zandbergen, I.

    1983-09-01

    Acoustic measurements were carried out in the engine intake ducts of the Fokker F28 test aircraft during flight. One of the low bypass ratio engines with a hard walled intake was instrumented to detect the circumferential modes of the sound field. Aerodynamic measurements were carried out to determine the flow conditions in the intake near the wall. In the other engine the impedance of the inlet acoustic liner was measured. An error analysis of the instrumentation is given. It is concluded that the in-flight measurement of acoustic pressure ratios with an accuracy of 4.08% and 2.61 deg., and the measurement of stationary pressure with an accuracy of 0.55% is feasible.

  6. Impedance analysis of acupuncture points and pathways

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  7. Modal analysis of thin cylindrical shells with cardboard liners and estimation of loss factors

    NASA Astrophysics Data System (ADS)

    Koruk, Hasan; Dreyer, Jason T.; Singh, Rajendra

    2014-04-01

    Cardboard liners are often installed within automotive drive shafts to reduce radiated noise over a certain frequency range. However, the precise mechanisms that yield noise attenuation are not well understood. To overcome this void, a thin shell (under free boundaries) with different cardboard liner thicknesses is examined using analytical, computational and experimental methods. First, an experimental procedure is introduced to determine the modal behavior of a cylindrical shell with a cardboard liner. Then, acoustic and vibration frequency response functions are measured in acoustic free field, and natural frequencies and the loss factors of structures are determined. The adverse effects caused by closely spaced modes during the identification of modal loss factors are minimized, and variations in measured natural frequencies and loss factors are explored. Material properties of a cardboard liner are also determined using an elastic plate treated with a thin liner. Finally, the natural frequencies and modal loss factors of a cylindrical shell with cardboard liners are estimated using analytical and computational methods, and the sources of damping mechanisms are identified. The proposed procedure can be effectively used to model a damped cylindrical shell (with a cardboard liner) to predict its vibro-acoustic response.

  8. Preparations to ship EPICOR liners

    SciTech Connect

    Queen, S P

    1983-06-01

    The sampling and analysis of the hydrogen rich atmosphere of the 49 EPICOR II ion-exchange prefilter liners generated in the decontamination of radioactive water at TMI-2 will provide data to ensure safe storage and shipment of highly loaded ion-exchange media. This report discusses the prototype gas sampling tool used to breech the containment of the liners, the tool support equipment for sampling and inerting the liners, and the characterization program used for determining the radiolytic hydrogen generation rates in the liners.

  9. Acetabular liner fixation by cement.

    PubMed

    Jiranek, William A

    2003-12-01

    Many situations in revision THA require the exchange of a PE liner in the setting of a well-fixed cementless acetabular shell. Unfortunately, a replacement liner is not always available, the locking mechanism of the metal shell may be damaged or incompatible with the desired liner, or the shell is malpositioned. Revision of a well-fixed cementless acetabular shell has been associated with considerable morbidity. This raises several questions: can a new PE liner be fixed in the existing shell using bone cement, and if so, which techniques can improve the end result, and in which patients should they be used? Biomechanical testing of cemented PE liners has shown initial fixation strengths that exceed conventional locking mechanisms. It is not known during what period this initial fixation will fail, but clinical reports with followup of as many as 6 years have shown survival in approximately 90% of cases. These studies have shown the importance of proper patient selection, accurate sizing of the PE liner, careful preparation of the substrate of the liner and the shell, and good cement technique. The potential advantages of this technique are less surgical morbidity, more rapid surgery and patient recovery, the ability to incorporate antibiotics in the cement, and more liner options.

  10. Summary of the impedance working group

    SciTech Connect

    Chao, A.W.

    1995-05-01

    The impedance working group concentrated on the LHC design during the workshop. They look at the impedance contributions of liner, beam position monitors, shielded bellows, experimental chambers, superconducting cavities, recombination chambers, space charge, kickers, and the resistive wall. The group concluded that the impedance budgeting and the conceptual designs of the vacuum chamber components looked basically sound. It also noted, not surprisingly, that a large amount of studies are to be carried out further, and it ventured to give a partial list of these studies.

  11. Sound attenuation by liners in a blown flap environment

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Vijayaraghavan, A.

    1980-01-01

    Sound propagation through a hot wall-jet flow over an absorbing wall is studied. The radiated sound field subject to the influence of flow convection and refraction is evaluated, and the nature of acoustic attenuation attributable to a sound absorbing liner is determined. Using a two-dimensional model, the noise field under the aircraft is also determined, and a slug-flow model is used to describe the influence of flow, density, and temperature on acoustic sources in jets. Results show significant changes in the radiated source due to the interference phenomenon, and a good absorber has the potential of changing the sound pressure range of variation to unity. A liner is also found to increase or decrease sound pressure, depending on the frequency.

  12. Impedance modelling of pipes

    NASA Astrophysics Data System (ADS)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  13. Attenuation of FJ44 Turbofan Engine Noise with a Foam-Metal Liner Installed Over-the-Rotor

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Elliott, Dave M.; Jones, Michael G.; Hartley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was used as a demonstrator for a Foam-Metal Liner (FML) installed in close proximity to the fan. Two FML designs were tested and compared to the hardwall baseline. Traditional single degree-of-freedom liner designs were also evaluated to provide a comparison. Farfield acoustic levels and limited engine performance results are presented in this paper. The results show that the FML achieved up to 5 dB Acoustic Power Level (PWL) overall attenuation in the forward quadrant, equivalent to the traditional liner design. An earlier report presented the test set-up and conditions.

  14. A Finite Element Theory for Predicting the Attenuation of Extended-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2009-01-01

    A non-modal finite element theory for predicting the attenuation of an extended-reacting liner containing a porous facesheet and located in a no-flow duct is presented. The mathematical approach is to solve separate wave equations in the liner and duct airway and to couple these two solutions by invoking kinematic constraints at the facesheet that are consistent with a continuum theory of fluid motion. Given the liner intrinsic properties, a weak Galerkin finite element formulation with cubic polynomial basis functions is used as the basis for generating a discrete system of acoustic equations that are solved to obtain the coupled acoustic field. A state-of-the-art, asymmetric, parallel, sparse equation solver is implemented that allows tens of thousands of grid points to be analyzed. A grid refinement study is presented to show that the predicted attenuation converges. Excellent comparison of the numerically predicted attenuation to that of a mode theory (using a Haynes 25 metal foam liner) is used to validate the computational approach. Simulations are also presented for fifteen porous plate, extended-reacting liners. The construction of some of the porous plate liners suggest that they should behave as resonant liners while the construction of others suggest that they should behave as broadband attenuators. In each case the finite element theory is observed to predict the proper attenuation trend.

  15. Electron Impedances

    SciTech Connect

    P Cameron

    2011-12-31

    It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

  16. Megabar liner experiments on Pegasus II

    SciTech Connect

    Lee, H.; Bartsch, R.R.; Bowers, R.L.

    1997-09-01

    Using pulsed power to implode a liner onto a target can produce high shock pressures for many interesting application experiments. With a Pegasus II facility in Los Alamos, a detailed theoretical analysis has indicated that the highest attainable pressure is around 2 Mbar for a best designed aluminum liner. Recently, an interesting composite liner design has been proposed which can boost the shock pressure performance by a factor 4 over the aluminum liner. This liner design was adopted in the first megabar (Megabar-1) liner experiment carried out on Pegasus last year to verify the design concept and to compare the effect of Rayleigh-Taylor instabilities on liner integrity with the code simulations. We present briefly the physical considerations to explain why the composite liner provides the best shock pressure performance. The theoretical modeling and performance of Megabar-1 liner are discussed. Also presented are the first experimental results and the liner design modification for our next experiment.

  17. Acoustic Treatment Design Scaling Methods. Volume 1; Overview, Results, and Recommendations

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.

    1999-01-01

    Scale model fan rigs that simulate new generation ultra-high-bypass engines at about 1/5-scale are achieving increased importance as development vehicles for the design of low-noise aircraft engines. Testing at small scale allows the tests to be performed in existing anechoic wind tunnels, which provides an accurate simulation of the important effects of aircraft forward motion on the noise generation. The ability to design, build, and test miniaturized acoustic treatment panels on scale model fan rigs representative of the fullscale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. The primary objective of this study was to develop methods that will allow scale model fan rigs to be successfully used as acoustic treatment design tools. The study focuses on finding methods to extend the upper limit of the frequency range of impedance prediction models and acoustic impedance measurement methods for subscale treatment liner designs, and confirm the predictions by correlation with measured data. This phase of the program had as a goal doubling the upper limit of impedance measurement from 6 kHz to 12 kHz. The program utilizes combined analytical and experimental methods to achieve the objectives.

  18. Reducing the distal profile of dual mobility liners can mitigate soft-tissue impingement and liner entrapment without affecting mechanical performance.

    PubMed

    Varadarajan, Kartik Mangudi; Zumbrunn, Thomas; Duffy, Michael Patrick; Patel, Rajan; Freiberg, Andrew A; Rubash, Harry E; Malchau, Henrik; Muratoglu, Orhun K

    2016-05-01

    Soft-tissue impingement with dual mobility liners can cause anterior hip pain and intra-prosthetic dislocation. The hypothesis of this study was that reducing liner profile below the equator (contoured design) can mitigate soft-tissue impingement without compromising inner-head pull-out resistance and hip joint stability. The interaction of conventional and contoured liners with anterior soft tissues was evaluated in cadaver specimens via visual observation and fluoroscopic imaging. Resistance to inner-head pull-out was evaluated via finite element analyses, and hip joint stability was evaluated by rigid-body mechanics simulation of dislocation in two modes (A, B). Cadaveric experiments showed that distal portion of conventional liners impinge on anterior hip capsule and cause iliopsoas tenting at low flexion angles (≤30°). During hip extension, the rotation imparted to the liner from posterior engagement with femoral neck was impeded by anterior soft-tissue impingement. The iliopsoas tenting was significantly reduced with contoured liners (p ≤ 0.04). Additionally, the contoured and conventional liners had identical inner-head pull-out resistance (901 N vs. 909 N), jump distance (9.4 mm mode-A, 11.7 mm mode-B) and impingement-free range of motion (47° mode-A, 29° mode-B). Thus, soft-tissue impingement with conventional dual mobility liners may be mitigated by reducing liner profile below the equator, without affecting mechanical performance. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:889-897, 2016.

  19. Contoured-gap coaxial guns for imploding plasma liner experiments

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  20. A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.; Parrott, T. L.

    2005-01-01

    A 2-D impedance eduction methodology is extended to quasi-3-D sound fields in uniform or shearing mean flow. We introduce a nonlocal, nonreflecting boundary condition to terminate the duct and then educe the impedance by minimizing an objective function. The introduction of a parallel, sparse, equation solver significantly reduces the wall clock time for educing the impedance when compared to that of the sequential band solver used in the 2-D methodology. The accuracy, efficiency, and robustness of the methodology is demonstrated using two examples. In the first example, we show that the method reproduces the known impedance of a ceramic tubular test liner. In the second example, we illustrate that the approach educes the impedance of a four-segment liner where the first, second, and fourth segments consist of a perforated face sheet bonded to honeycomb, and the third segment is a cut from the ceramic tubular test liner. The ability of the method to educe the impedances of multisegmented liners has the potential to significantly reduce the amount of time and cost required to determine the impedance of several uniform liners by allowing them to be placed in series in the test section and to educe the impedance of each segment using a single numerical experiment. Finally, we probe the objective function in great detail and show that it contains a single minimum. Thus, our objective function is ideal for use with local, inexpensive, gradient-based optimizers.

  1. Impedance Scaling and Impedance Control

    NASA Astrophysics Data System (ADS)

    Chou, W.; Griffin, J.

    1997-05-01

    When a machine becomes really large, such as the Really Large Hadron Collider (RLHC),(G. W. Foster and E. Malamud, Fermilab-TM-1976 (June, 1996).) of which the circumference could reach the order of megameters, beam instability could be an essential bottleneck. This paper studies the scaling of the instability threshold vs. machine size when the coupling impedance scales in a ``normal'' way. It is shown that the beam would be intrinsically unstable for the RLHC. As a possible solution to this problem, it is proposed to introduce local impedance inserts for controlling the machine impedance. In the longitudinal plane, this could be done by using a heavily detuned rf cavity (e.g., a biconical structure), which could provide large imaginary impedance with the right sign (i.e., inductive or capacitive) while keeping the real part small. In the transverse direction, a carefully designed variation of the cross section of a beam pipe could generate negative impedance that would partially compensate the transverse impedance in one plane.

  2. Collaboration with Williams International to Demonstrate the Characteristics of a Foam-Metal-Liner Installed Over-the-Rotor of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel; Elliott, Dave; Jones, Mike; Hartley, Tom

    2008-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was used as a demonstrator for foam-metal liner installed in close proximity to the fan. Two foam metal liner designs were tested and compared to the hardwall. Traditional Single-Degree-of-Freedom liner designs were also evaluated to provide a comparison. Normalized information on farfield acoustics is presented in this paper. The results show that up to 5 dB PWL overall attenuation was achieved in the forward quadrant. In general, the foam-metal liners performed better when the fan tip speed was below sonic.

  3. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  4. Effect of Resonator Axis Skew on Normal Incidence Impedance

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Homeijer, Brian

    2003-01-01

    High by-pass turbofan engines have fewer fan blades and lower rotation speeds than their predecessors. Consequently, the noise suppression at the low frequency end of the noise spectra has become an increasing concern. This has led to a renewed emphasis on improving noise suppression efficiency of passive, duct liner treatments at the lower frequencies. For a variety of reasons, passive liners are comprised of locally-reacting, resonant absorbers. One reason for this design choice is to satisfy operational and economic requirements. The simplest liner design consists of a single layer of honeycomb core sandwiched between a porous facesheet and an impervious backing plate. These resonant absorbing structures are integrated into the nacelle wall and are very ef- ficient over a limited bandwidth centered on their resonance frequency. Increased noise suppression bandwidth and greater suppression at lower frequencies is typically achieved for conventional liners by increasing the liner depth and incorporating thin porous septa into the honeycomb core. However, constraints on liner depth in modern high by-pass engine nacelles severely limit the suppression bandwidth extension to lower frequencies. Also, current honeycomb core liners may not be suitable for irregular geometric volumes heretofore not considered. It is of interest, therefore, to find ways to circumvent liner depth restrictions and resonator cavity shape constraints. One way to increase effective liner depth is to skew the honeycomb core axis relative to the porous facesheet surface. Other possibilities are to alter resonator cavity shape, e.g. high aspect ratio, narrow channels that possibly include right angle bends, 180. channel fold-backs, and splayed channel walls to conform to irregular geometric constraints. These possibilities constitute the practical motivation for expanding impedance modeling capability to include unconventional resonator orientations and shapes. The work reported in this paper is

  5. Preventing Cracks in Silicon-Reactor Liners

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1987-01-01

    Correct placement helps prevent contamination while eliminating crack-causing deposits. Repositioning quartz liner in silicon fluidized-bed reactor prevents cracking of liner when cools. Liner protects stainless-steel walls of reactor from abrasion by particles in fluidized bed. Prevents contamination of newly formed silicon by material abraded from wall and ensures high-quality product.

  6. Acoustic data transmission through a drill string

    DOEpatents

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  7. Characterization of EPICOR II Prefilter Liner 16

    SciTech Connect

    Yesso, J D; Pasupathi, V; Lowry, L

    1982-08-01

    As part of the overall TMI-2 Information and Examination Program, EPICOR II Prefilter Liner 16 was examined to provide information to aid in the development of technology for safely processing highly loaded ion-exchange media. The characterization program included sampling and analyses of the liner contents, including ion-exchange media, liquids and gases, as well as examinations of the liner interior and exterior. This report details the handling of the liner, sampling and analysis of the contents, and the examinations of the liner.

  8. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  9. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, Andrew H.; Holcombe, Cressie E.

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  10. Novel Materials for Prosthetic Liners

    NASA Technical Reports Server (NTRS)

    Ragolta, Carolina I.; Morford, Megan

    2011-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury that reduce quality of life. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications. Three tests were performed on several types of aerogel to assess the properties of each material. Moisture vapor permeability was tested by incubating four aerogel varieties with an artificial sweat solution at 37.0 C and less than 20% relative humidity for 24 hours. Two aerogel varieties were eliminated from the study due to difficulties in handling the material, and further testing proceeded with Pyrogel in 2.0 and 6.0 mm thicknesses. Force distribution was tested by compressing samples under a load of 4448 N at a rate of 2.5 mm/min. Biofilm formation was tested in a high-shear CDC Biofilm Reactor. Results showed that 2.0 mm Pyrogel blanket allowed 55.7 plus or minus 28.7% of an artificial sweat solution to transpire, and 35.5 plus or minus 27.8% transpired through 6.0 mm Pyrogel blanket. Samples also outperformed the load-bearing capabilities of existing liner materials. No statistically significant difference was found between the two Pyrogel thicknesses for either moisture vapor permeability or force distribution. In addition, biofilm formation results showed no change between the two Pyrogel thicknesses. The breathability and load bearing properties of aerogel make it a suitable material for application to prosthetic liners.

  11. Sound propagation in and radiation from acoustically lined flow ducts: A comparison of experiment and theory

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr.; Dean, P. D.; Wynne, G. A.; Burrin, R. H.

    1973-01-01

    The results of an experimental and theoretical study of many of the fundamental details of sound propagation in hard wall and soft wall annular flow ducts are reported. The theory of sound propagation along such ducts and the theory for determining the complex radiation impedance of higher order modes of an annulus are outlined, and methods for generating acoustic duct modes are developed. The results of a detailed measurement program on propagation in rigid wall annular ducts with and without airflow through the duct are presented. Techniques are described for measuring cut-on frequencies, modal phase speed, and radial and annular mode shapes. The effects of flow velocity on cut-on frequencies and phase speed are measured. Comparisons are made with theoretical predictions for all of the effects studies. The two microphone method of impedance is used to measure the effects of flow on acoustic liners. A numerical study of sound propagation in annular ducts with one or both walls acoustically lined is presented.

  12. Reciprocal engine with floating liner

    SciTech Connect

    Paul, M.A.; Paul, A.

    1989-06-27

    An internal combustion engine with a heat recovery system is described comprising: a cylinder with a cylinder wall; a piston with a piston head, the piston being reciprocally displaceable in the cylinder; a fuel injection means with fuel connected to the cylinder; and, an air intake passage and an exhaust passage connected to the cylinder, such that air is delivered to the cylinder, compressed by the piston, and fuel from the fuel injection means is delivered to the cylinder and combusted in a working chamber; wherein the heat recovery system includes an air-porous, heat-resistant tubular liner suspended in the cylinder and displaced from the wall of the cylinder, the piston having a deep groove with inner and outer walls in the head of the piston into which the liner is received when the piston is displaced compressing the air, the liner being spaced from the inner and outer walls of the groove such that three insulating zones are provided between combustion gases in the cylinder and the cylinder wall during displacement of the piston.

  13. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  14. Optimization of suppression for two-element treatment liners for turbomachinery exhaust ducts

    NASA Technical Reports Server (NTRS)

    Motsinger, R. E.; Kraft, R. E.; Zwick, J. W.; Vukelich, S. I.; Minner, G. L.; Baumeister, K. J.

    1976-01-01

    Sound wave propagation in a soft-walled rectangular duct with steady uniform flow was investigated at exhaust conditions, incorporating the solution equations for sound wave propagation in a rectangular duct with multiple longitudinal wall treatment segments. Modal analysis was employed to find the solution equations and to study the effectiveness of a uniform and of a two-sectional liner in attenuating sound power in a treated rectangular duct without flow (M = 0) and with uniform flow of Mach 0.3. Two-segment liners were shown to increase the attenuation of sound as compared to a uniform liner. The predicted sound attenuation was compared with measured laboratory results for an optimized two-segment suppressor. Good correlation was obtained between the measured and predicted suppressions when practical variations in the modal content and impedance were taken into account. Two parametric studies were also completed.

  15. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason; Eskridge, Richard; Kirkpatrick, Ronald C.; Knapp, Charles E.; Lee, Michael; Martin, Adam; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    For practical applications of magnetized target fusion, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Quasi-spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a quasi-spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). Theoretical analysis and computer modeling of the concept are presented. It is shown that, with the appropriate choice of the flow parameters in the liner and the target, the impact between the liner and the target plasma can be made to be shockless in the liner or to generate at most a very weak shock in the liner. Additional information is contained in the original extended abstract.

  16. Testing and Characterization of CMC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    Multiple combustor liner applications, both segmented and fully annular designs, have been configured for exposure in NASA's High Pressure Burner Rig (HPBR). The segmented liners were attached to the rig structure with SiC/SiC fasteners and exposed to simulated gas turbine conditions for nearly 200 hours. Test conditions included pressures of 6 atm., gas velocity of 42 m/s, and gas temperatures near 1450 C. The temperatures of both the cooled and combustion flow sides of the liners were measured using optical and contact measurement techniques. Minor weight loss was observed, but the liners remained structural sound, although damage was noted in some fasteners.

  17. Cracks in Flow Liners and Their Resolution

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Raju, I. S.

    2005-01-01

    Cracks were detected in flow liners at the gimbal joints in the LH2 feedlines of the space shuttle's main engines. The cracks initiated at defects in the drainage slots of the flow liners and grew due to high cycle fatigue. Fracture mechanics analyses were conducted to evaluate the life of the liners. These analyses yielded extremely short lives in the presence of small surface or corner cracks. A high fidelity detection method, edge replication, was used to detect the very small cracks. The detected cracks were removed by polishing and the surface quality of the slots was reestablished to improve life of the liners.

  18. Fabrication of a Kevlar liner assembly

    SciTech Connect

    Schloman, A.H.

    1980-07-01

    Several liner assemblies were fabricated with Kevlar 49 and epoxy using various wet layup and prepreg processes. A production process, using prepreg material, was developed for fabricating the liner and a wet layup molding process was used to fabricate the Kevlar hat-shaped tunnels. Fabrication of the tunnels using Kevlar prepreg with an autoclave curving process was evaluated.

  19. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  20. HYDRAULIC CONDUCTIVITY OF THREE GEOSYNTHETIC CLAY LINERS

    EPA Science Inventory

    The hydraulic conductivity of three 2.9 m2 (32 sq ft) geosynthetic clay liners (GCLs) was measured. Tests were performed on individual sheets of the GCLs, on overlapped pieces of GCLs, and on composite liners consisting of a punctured geomembrane overlying a GCL. Hyd...

  1. Water movement through an experimental soil liner

    USGS Publications Warehouse

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.R.; Herzog, B.L.

    1991-01-01

    A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (???1 x 10-7 cm s-1). The 8 x 15 x 0.9m liner was constructed in 15 cm compacted lifts using a 20,037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 x 10-9, 4.0 x 10-8, and 5.0 x 10-8 cm s-1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively. Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4-12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (??? 1 ?? 10-7 cm s-1). The 8 ?? 15 ?? 0.9 m liner was constructed in 15 cm compacted lifts using a 20.037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water

  2. Stabilized Liner Compressor: The Return of Linus

    NASA Astrophysics Data System (ADS)

    Turchi, Peter; Frese, Sherry; Frese, Michael; Mielke, Charles; Hinrichs, Mark; Nguyen, Doan

    2015-11-01

    To access the lower cost regime of magneto-inertial fusion at megagauss magnetic field-levels requires the use of dynamic conductors in the form of imploding cylindrical shells, aka, liners. Such liner implosions can compress magnetic flux and plasma to attain fusion conditions, but are subject to Rayleigh-Taylor instabilities, both in the launch and recovery of the liner material and in the final few diameters of implosion. These instabilities were overcome in the Linus program at the Naval Research Laboratory, c. 1979, providing the experimentally-demonstrated basis for repetitive operation and leading to an economical reactor concept at low fusion gain. The recent ARPA-E program for low-cost fusion technology has revived interest in this approach. We shall discuss progress in modeling and design of a Stabilized Liner Compressor (SLC) that extends the earlier work to higher pressures and liner speeds appropriate to potential plasma targets. Sponsored by ARPA-E ALPHA Program.

  3. Evaluation of Wall Boundary Conditions for Impedance Eduction Using a Dual-Source Method

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2012-01-01

    The accuracy of the Ingard-Myers boundary condition and a recently proposed modified Ingard-Myers boundary condition is evaluated for use in impedance eduction under the assumption of uniform mean flow. The evaluation is performed at three centerline Mach numbers, using data acquired in a grazing flow impedance tube, using both upstream and downstream propagating sound sources, and on a database of test liners for which the expected behavior of the impedance spectra is known. The test liners are a hard-wall insert consisting of 12.6 mm thick aluminum, a linear liner without a facesheet consisting of a number of small diameter but long cylindrical channels embedded in a ceramic material, and two conventional nonlinear liners consisting of a perforated facesheet bonded to a honeycomb core. The study is restricted to a frequency range for which only plane waves are cut on in the hard-wall sections of the flow impedance tube. The metrics used to evaluate each boundary condition are 1) how well it educes the same impedance for upstream and downstream propagating sources, and 2) how well it predicts the expected behavior of the impedance spectra over the Mach number range. The primary conclusions of the study are that the same impedance is educed for upstream and downstream propagating sources except at the highest Mach number, that an effective impedance based on both the upstream and downstream measurements is more accurate than an impedance based on the upstream or downstream data alone, and that the Ingard-Myers boundary condition with an effective impedance produces results similar to that achieved with the modified Ingard-Myers boundary condition.

  4. Accelerating Thick Aluminum Liners Using Pulsed Power

    SciTech Connect

    Kyrala, G.A.; Hammerburg, J.E.; Bowers, D.; Stokes, J.; Morgan, D.V.; Anderson, W.E.; Cochrane, J.C.

    1999-06-28

    The authors have investigated the acceleration of very thick cylindrical aluminum liners using the Pegasus II capacitory bank. These accelerated solid liners will be used to impact other objects at velocities below 1.5 km/sec, allowing one to generate and sustain shocks of a few 100 kilobar for a few microseconds. A cylindrical shell of 1100 series aluminum with an initial inner radius of 23.61 mm, an initial thickness of 3.0 mm, and a height of 20 mm, was accelerated using a current pulse of 7.15 MA peak current and a 7.4 microsecond quarter cycle time. The aluminum shell was imploded within confining copper glide planes with decreasing separation with an inward slope of 8 degrees. At impact with a cylindrical target of diameter 3-cm, the liner was moving at 1.4 km/sec and its thickness increased to 4.5 mm. Radial X-ray radiograms of the liner showed both the liner and the glide plane interface. The curvature of the inner surface of the liner was measured before impact with the 15-mm radius target. The radiograms also showed that the copper glide planes distorted as the liner radius decreased and that some axial stress is induced in the liner. The axial stresses did not affect the inner curvature significantly. Post-shot calculations of the liner behavior indicated that the thickness of the glide plane played a significant role in the distortion of the interface between the liner and the glide plane.

  5. Hybrid mode-scattering/sound-absorbing segmented liner system and method

    NASA Technical Reports Server (NTRS)

    Rice, Edward J. (Inventor); Walker, Bruce E. (Inventor); Hersh, Alan S. (Inventor)

    1999-01-01

    A hybrid mode-scattering/sound-absorbing segmented liner system and method in which an initial sound field within a duct is steered or scattered into higher-order modes in a first mode-scattering segment such that it is more readily and effectively absorbed in a second sound-absorbing segment. The mode-scattering segment is preferably a series of active control components positioned along the annulus of the duct, each of which includes a controller and a resonator into which a piezoelectric transducer generates the steering noise. The sound-absorbing segment is positioned acoustically downstream of the mode-scattering segment, and preferably comprises a honeycomb-backed passive acoustic liner. The invention is particularly adapted for use in turbofan engines, both in the inlet and exhaust.

  6. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H.; Fleming, James G.; Tuck, Melanie R.

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  7. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  8. Development of plasma spray coated cylinder liners

    SciTech Connect

    Tricard, M.; Hagan, J.; Redington, P.; Subramanian, K.; Haselkorn, M.

    1996-09-01

    Improved fuel economy and reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, such insulation will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150 C to over 300 C. Since existing ring/liner materials cannot withstand these higher operating temperatures alternatives are needed for this critical tribological interface. This paper describes the development of a cost effective ID grinding technique for machining the bores of plasma sprayed diesel engine cylinder liners.

  9. Refractory liner materials used in slagging gasifiers

    SciTech Connect

    Bennett, James P.

    2004-09-01

    Refractory liners are used on the working face of entrained flow slagging gasifiers that react coal, petroleum coke, or other carbon feedstock with oxygen and water. The refractory liners protect the gasifier shell from elevated temperatures, corrosive slags, and thermal cycling during gasification. Refractory failure is primarily by two means, corrosive dissolution and spalling. High chrome oxide refractory materials have evolved as the material of choice to line the hot face of gasifiers, yet the performance of these materials does not meet the service requirements of industry. A review of gasifier liner materials, their evolution, issues impacting their performance, and future research direction are discussed.

  10. Validation of a New Procedure for Impedance Eduction in Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2010-01-01

    A new impedance eduction procedure is validated by comparing the educed impedance spectrum to that of an older but well-tested eduction procedure. The older procedure requires the installation of a microphone array in the liner test section but the new procedure removes this requirement. A 12.7-mm stainless steel plate and a conventional liner consisting of a perforated plate bonded to a honeycomb core are tested. Test data is acquired from a grazing flow, impedance tube facility for a range of source frequencies and mean flow Mach numbers for which only plane waves are cut on. For the stainless steel plate, the educed admittance spectrum using the new procedure shows an improvement over that of the old procedure. This improvement shows up primarily in the educed conductance spectrum. Both eduction procedures show discrepancies in educed admittance in the mid-frequency range. Indications are that this discrepancy is triggered by an inconsistency between the measured eduction data (that contains boundary layer effects) and the two eduction models (for which the boundary layer is neglected). For the conventional liner, both eduction procedures are in very good agreement with each other. Small discrepancies occur for one or two frequencies in the mid-frequency range and for frequencies beyond the cut on frequency of higher-order duct modes. This discrepancy in the midfrequency range occurs because an automated optimizer is used to educe the impedance and the objective function used by the optimizer is extremely flat and therefore sensitive to initial starting values. The discrepancies at frequencies beyond the cut on frequency of higher order duct modes are due to the assumption of only plane waves in the impedance eduction model, although higher order modes are propagating in the impedance tube facility.

  11. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    SciTech Connect

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Davis, J.-P.; Flicker, D. G.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M.; and others

    2013-05-15

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B-dot ” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.

  12. ADVANCES IN IMPEDANCE THEORY

    SciTech Connect

    Stupakov, G.; /SLAC

    2009-06-05

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  13. Corrosion of Metal Modular Cup Liners.

    PubMed

    Hothi, Harry S; Ilo, Kevin; Whittaker, Robert K; Eskelinen, Antti; Skinner, John A; Hart, Alister J

    2015-09-01

    Numerous studies have reported on corrosion at the modular head taper, however less is known about the interface between the metal shell and liner of modular cups. This study examined the backside of a series of metal modular cup liners of two designs (DePuy Pinnacle and Smith & Nephew R3), retrieved from 67 patients. Visual inspection found evidence of corrosion in virtually all liners, with the engaging rim surface significantly more corroded than the polar regions (P<0.001). EDX confirmed that black surface deposits were chromium rich corrosion debris, while SEM analysis revealed considerable pitting in the vicinity of the black debris. The R3 liners were significantly more corroded that the Pinnacles (P<0.001); this may help to explain the higher revision rates of this design. PMID:25890504

  14. Corrosion of Metal Modular Cup Liners.

    PubMed

    Hothi, Harry S; Ilo, Kevin; Whittaker, Robert K; Eskelinen, Antti; Skinner, John A; Hart, Alister J

    2015-09-01

    Numerous studies have reported on corrosion at the modular head taper, however less is known about the interface between the metal shell and liner of modular cups. This study examined the backside of a series of metal modular cup liners of two designs (DePuy Pinnacle and Smith & Nephew R3), retrieved from 67 patients. Visual inspection found evidence of corrosion in virtually all liners, with the engaging rim surface significantly more corroded than the polar regions (P<0.001). EDX confirmed that black surface deposits were chromium rich corrosion debris, while SEM analysis revealed considerable pitting in the vicinity of the black debris. The R3 liners were significantly more corroded that the Pinnacles (P<0.001); this may help to explain the higher revision rates of this design.

  15. CANMET Gasifier Liner Coupon Material Test Report

    SciTech Connect

    Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

    2007-01-31

    This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

  16. Pocketing mechanics of SRM nozzle liner

    NASA Technical Reports Server (NTRS)

    Verderaime, V. S.

    1986-01-01

    A systems approach was adopted to study the pocketing phenomena on a solid rocket nozzle liner. The classical thermoelastic analysis was used to identify marginally strained regions on the composite liner erosion surface and at a depth coincident with the peak value of the across ply coefficient of thermal expansion. A failure criterion was introduced which included a thermal term and permitted failure assessment over the charred liner. The method was verified by satisfactory application to a reported related experiment. Liner pocketing mechanism was attributed to very localized material degradation caused during manufacturing process either by reduction of fiber strength and/or by concentration of resin volume fraction. Pocketing scenario over the degraged material was constructed with supporting formulation to predict size of fissures with respect to degraded material size and location in the liner and with burn time. Sensitivities of liner material parameters were determined to influence test programs designed to update mechanical data base of carbon cloth phenolic over the char temperature range.

  17. Consequence analysis of a liner breach due to steam under the liner

    SciTech Connect

    HIMES, D.A.

    1999-06-01

    Radiological and toxicological consequences are estimated for a steam release from tank C-106 associated with a breach of the tank liner due to formation of steam under the liner after dry-out of the sludge layer in the tank. The consequences are shown to be well below the most restrictive risk guidelines.

  18. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  19. Composite liner design to maximize the shock pressure beyond megabars

    SciTech Connect

    Lee, H.

    1996-09-01

    Among the solid liners made of a single material which are imploded onto a target under the same driving condition, the aluminum liner produces the highest shock pressure. The authors propose the composite liner design which can increase the shock pressure several times over the best performance obtainable from an aluminum liner. They have also developed a general formulation to optimize the composite liner design for any driving current, and derived a set of very useful scaling relations. Finally, the authors present some 1-D simulations of the optimal composite liners to be fielded at Pegasus and Procyon in the upcoming megabar experiments.

  20. Sealing leaks in geomembrane liners using electrophoresis

    SciTech Connect

    Darilek, G.T.; Corapcioglu, M.Y.; Yeung, A.T.

    1996-06-01

    An innovative method was demonstrated to seal leaks in geomembrane liners by attracting clay particles to the leaks using electrophoresis. Electrophoresis is the movement of electrically charged particles suspended in a liquid by the action of an electric field. A direct-current voltage impressed across the liner causes electrical current to flow through the leaks. The current produces a strong electric field at leaks. When a clay slurry is dispersed into the liquid in the impoundment, electrophoresis attracts the clay particles to the leaks, thereby sealing them. The method can seal leaks in liquid impoundments without removing the liquid or locating or accessing the leaks. The laboratory and full-scale test results were remarkable in that electrophoresis sealed the leaks completely when a layer of geofabric was under the liner, and electrophoresis reduced the leakage rate through holes as large as 10 mm in diameter by a factor of 1,600 in the field test with gravel under the liner, and by a factor of 1,667 in the laboratory basin with geonet under the liner.

  1. MiniBooNE liner integrity study

    SciTech Connect

    Ray Stefanski, Phil Martin and Jeff Sims

    2001-11-09

    The civil construction for the MiniBooNE project includes a 50-m decay path and beam absorbers. The decay path is a six-foot diameter corrugated metal pipe (CMP). To prevent activation of the groundwater, the CMP and beam absorbers are surrounded by crushed aggregate, and enclosed in a double-walled geotextile membrane, referred to as the liner. The minimum distance from the beam centerline to the liner is 10 feet. The double-wall construction of the liner forms three regions, the containment volume, the interstitial volume, and the exterior. Each of these volumes is connected to monitoring wells at both the upstream and downstream ends of the decay volume, i.e. a total of six monitoring pipes extend to the surface. To confirm the integrity of the liner system following its placement, the firm Earth Tech was contracted to perform tests. Michael Williams was the primary contact with Earth Tech. The following is the report from Earth Tech, with minor changes in the interest of clarity. A sketch of the decay region is shown; only one of the layers of the liner is shown, and only one monitoring port. At the time of these tests, the excavation in general, but particularly in the vicinity of the monitoring wells had not been backfilled in the final grade, as indicated by the dashed lines.

  2. Use of FGD as an impervious liner

    SciTech Connect

    Wolfe, W.E.; Butalia, T.S.

    1998-07-01

    Increasing generation of coal combustion products (CCPs), particularly flue gas desulfurization (FGD) material, has led utilities to look for beneficial uses of these products. This paper presents one such utilization application of CCPs, i.e., the use of FGD material as an impervious liner for ponds and lagoons. The construction of a full scale lagoon using compacted FGD as a liner is presented. The project was undertaken primarily to address two critical questions, (1) what is the quality of water that permeates through an FGD liner and (2) what is the quantity of water permeating through a field compacted FGD fill of known thickness? The effects of construction processes on the behavior of compacted FGD are evaluated. The monitoring of the performance of the lagoon liner is discussed. Preliminary results indicate that the permeability of the field compacted FGD liner is reducing with time and is approaching the EPA recommended value of 1 x 10{sup {minus}7} cm/sec for waste containment facilities.

  3. Use of FGD as an impervious liner

    SciTech Connect

    Wolfe, W.E.; Butalia, T.S.

    1998-04-01

    Increasing generation of coal combustion products (CCPs), particularly flue gas desulfurization (FGD) material, has led utilities to look for beneficial uses of these products. This paper presents one such utilization application of CCPs, i.e., the use of FGD material as an impervious liner for ponds and lagoons. The construction of a full scale lagoon using compacted FGD as a liner is presented. The project was undertaken primarily to address two critical questions, (1) what is the quality of water that permeates through an FGD liner and (2) what is the quantity of water permeating through a field compacted FGD fill of known thickness? The effects of construction processes on the behavior of compacted FGD are evaluated. The monitoring of the performance of the lagoon liner is discussed. Preliminary results indicate that the permeability of the field compacted FGD liner is reducing with time and is approaching the EPA recommended value of 1x10{sup -7} cm/sec for waste containment facilities.

  4. Contaminant transport in organophilic waste deposit liners

    SciTech Connect

    Stockmeyer, M.R.; Madsen, F.T.; Kahr, G.

    1995-12-31

    The advective transport and diffusive transport of phenol through a soil liner material improve with organophilic bentonites was studied. The results were compared with the transport of phenol through the unimproved soil, a silty sand with a natural clay minerals content of approximately 5%, and through samples which were blended with a common calcium bentonite. With an increasing amount of added organophilic bentonite the adsorption capacity of the liner material and the contaminant retention increase. The diffusive transport of phenol is significantly retarded in the presence of organophilic bentonites, whereas the addition of a common hydrophilic calcium bentonite to the liner material only reduces the hydraulic permeability. There is little contaminant retention due to a low adsorption capacity for phenol of the hydrophilic bentonite. The diffusion is independent on the permeability of a liner material. In the appendix, the significance and the velocity of the hydraulic and diffusive contaminant transport of phenol as an organic test compound in a mineral sealing layer were studied. In a natural, hydrophilic, 1 m-thick liner, diffusion was calculated to be the faster transport mechanism. In the presence of organophilic bentonites the diffusive transport of phenol was found to be considerably hindered. 17 refs., 8 figs., 5 tabs.

  5. Parallel-Plate Acoustic Absorbers For Hot Environments

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Parrot, Tony L.

    1995-01-01

    Stacking patterns and materials chosen to suppress noise. Acoustic liners incorporating parallel-plate absorbing elements proposed for use in suppressing broadband aerodynamic noise originating in flows of hot gases in ducts. One potential application lies in suppressing noise generated in exhaust-jet mixer/ejectors in propulsion system of proposed High-Speed Civil Transport. In addition, such absorbers useful in any situation in which high temperature limits use of such conventional resonant acoustic-liner materials as perforated face sheets bonded to honey-comb-core panels.

  6. Quartz lamp thermocycling rig for combustion liners

    SciTech Connect

    Pfeifer, G.D.

    1986-01-01

    Improved combustor liner durability is a major design objective for advanced combustors. Combinations of low cycle fatigue, creep, oxidation and crack propagation are the damage mechanisms that reduce durability. Each of these mechanisms is a consequence of cyclic thermal loading. Closely controlled rig tests can simulate these damage mechanisms. Although rig testing requires duplicating the actual thermal strain range on a full size liner, it is economically more attractive than full-engine testing. A suitable rig for controlled cyclic thermal loading of large size cylindrical test specimens is developed using a 672 KW electric quartz lamp radiant heat source. The design objectives, operational features and development shake-down test results are presented in this paper. The development discusses deals specifically with combustor liner test specimens. The rig is also suitable for high temperature testing of large advanced material specimens including composite ceramics.

  7. Lifecycle Verification of Tank Liner Polymers

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Smith, Barton

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties and to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2

  8. Burner liner thermal/structural load modelling

    NASA Technical Reports Server (NTRS)

    Maffeo, R. J.

    1984-01-01

    A serious problem exists interfacing the output temperatures and temperature gradients from either the heat transfer codes or engine tests with the input to stress analysis codes. A thermal load transfer code was developed and was used in conjunction with a three-dimensional model of a combustor liner for verification. The 3D heat transfer and stress analysis models of combustor liners and turbine blades were used to validate the mapped temperature produced by the transfer module. Verification cases were made for both finite element and finite difference heat transfer codes. A user manual for the code was written and is available.

  9. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  10. Structural response of an advanced combustor liner: Test and analysis

    NASA Technical Reports Server (NTRS)

    Moorhead, Paul E.; Thompson, Robert L.; Tong, M.; Higgins, M.

    1987-01-01

    An advanced (segmented) combustor liner supplied by Pratt and Whitney Aircraft was tested in the structural component test rig at Lewis Research Center. It was found that the segmented liner operated at much lower temperatures than the conventional liner (about 400 F lower) for the same heat flux. At the lower temperatures and low thermal gradients, little distortion to the segments was observed. The operating conditions were not severe enough to distort or damage the segmented liner.

  11. Assessing liner performance using on-farm milk meters.

    PubMed

    Penry, J F; Leonardi, S; Upton, J; Thompson, P D; Reinemann, D J

    2016-08-01

    The primary objective of this study was to quantify and compare the interactive effects of liner compression, milking vacuum level, and pulsation settings on average milk flow rates for liners representing the range of liner compression of commercial liners. A secondary objective was to evaluate a methodology for assessing liner performance that can be applied on commercial dairy farms. Eight different liner types were assessed using 9 different combinations of milking system vacuum and pulsation settings applied to a herd of 80 cows with vacuum and pulsation conditions changed daily for 36d using a central composite experimental design. Liner response surfaces were created for explanatory variables milking system vacuum (Vsystem) and pulsator ratio (PR) and response variable average milk flow rate (AMF=total yield/total cups-on time) expressed as a fraction of the within-cow average flow rate for all treatments (average milk flow rate fraction, AMFf). Response surfaces were also created for between-liner comparisons for standardized conditions of claw vacuum and milk ratio (fraction of pulsation cycle during which milk is flowing). The highest AMFf was observed at the highest levels of Vsystem, PR, and overpressure. All liners showed an increase in AMF as milking conditions were changed from low to high standardized conditions of claw vacuum and milk ratio. Differences in AMF between liners were smallest at the most gentle milking conditions (low Vsystem and low milk ratio), and these between-liner differences in AMF increased as liner overpressure increased. Differences were noted with vacuum drop between Vsystem and claw vacuum depending on the liner venting system, with short milk tube vented liners having the greater vacuum drop than mouthpiece chamber vented liners. The accuracy of liner performance assessment in commercial parlors fitted with milk meters can be improved by using a central composite experimental design with a repeated center point treatment

  12. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  13. A Unique Test Facility to Measure Liner Performance with a Summary of Initial Test Results

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.

    1997-01-01

    A very ambitious study was initiated to obtain detailed acoustic and flow data with and without a liner in a duct containing a mean flow so that available theoretical models of duct liners can be validated. A unique flow-duct facility equipped with a sound source, liner box, flush-walled microphones, traversable microphones and traversable pressure and temperature probes was built. A unique set of instrumentation boxes equipped with computer controlled traverses were designed and built that allowed measurements of Mach number, temperature, SPLs and phases in two planes upstream of a liner section and two planes downstream at a large number of measurement points. Each pair of planes provided acoustic pressure gradients for use in estimating the particle velocities. Specially-built microphone probes were employed to make measurements in the presence of the flow. A microphone traverse was also designed to measure the distribution of SPLs and phases from the beginning of the liner to its end along the duct axis. All measurements were made with the help of cross-correlation techniques to reject flow noise and/or other obtrusive noise, if any. The facility was designed for future use at temperatures as high as 1500 F. In order to validate 2-D models in the presence of mean flow, the flow duct was equipped with a device to modify boundary layer flow on the smaller sides of a rectangular duct to simulate 2-D flow. A massive amount of data was acquired for use in validating duct liner models and will be provided to NASA in an electronic form. It was found that the sound in the plane-wave regime is well behaved within the duct and the results are repeatable from one run to another. At the higher frequencies corresponding to the higher-order modes, the SPLs within a duct are not repeatable from run to run. In fact, when two or more modes have the same frequency (i.e., for the degenerate modes), the SPLs in the duct varied between 2 dB to 12 dB from run to run. This made the

  14. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of...

  15. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of...

  16. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of...

  17. Acoustic attenuation analysis program for ducts with mean flow

    NASA Technical Reports Server (NTRS)

    Kunze, R. K., Jr.

    1972-01-01

    A computerized acoustic attenuation prediction procedure has been developed to evaluate acoustically lined ducts for various geometric and environmental parameters. The analysis procedure is based on solutions to the acoustic wave equation, assuming uniform airflow on a duct cross section, combined with appropriate mathematical lining impedance models. The impedance models included in the analysis procedure are representative of either perforated sheet or porous polyimide impregnated fiberglass facing sheet coupled with a cellular backing space. Advantages and limitations of the analysis procedure are reviewed.

  18. Diagnostics for the plasma liner experiment.

    PubMed

    Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T

    2010-10-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  19. Welded polypropylene liners for large descaling tanks

    NASA Technical Reports Server (NTRS)

    Abel, H. P.

    1971-01-01

    Liners for nitric and hydrofluoric acid tanks show no sign of deterioration after 18 months of continuous use. Each side of each edge of the polypropylene sheets is chamfered, and sheets are welded from both sides with polypropylene filler rod and a special hot-air welding torch.

  20. Membrane behavior of clay liner materials

    NASA Astrophysics Data System (ADS)

    Kang, Jong Beom

    Membrane behavior represents the ability of porous media to restrict the migration of solutes, leading to the existence of chemico-osmosis, or the flow of liquid in response to a chemical concentration gradient. Membrane behavior is an important consideration with respect to clay soils with small pores and interactive electric diffuse double layers associated with individual particles, such as bentonite. The results of recent studies indicate the existence of membrane behavior in bentonite-based hydraulic barriers used in waste containment applications. Thus, measurement of the existence and magnitude of membrane behavior in such clay soils is becoming increasingly important. Accordingly, this research focused on evaluating the existence and magnitude of membrane behavior for three clay-based materials that typically are considered for use as liners for waste containment applications, such as landfills. The three clay-based liner materials included a commercially available geosynthetic clay liner (GCL) consisting of sodium bentonite sandwiched between two geotextiles, a compacted natural clay known locally as Nelson Farm Clay, and compacted NFC amended with 5% (dry wt.) of a sodium bentonite. The study also included the development and evaluation of a new flexible-wall cell for clay membrane testing that was used subsequently to measure the membrane behaviors of the three clay liner materials. The consolidation behavior of the GCL under isotropic states of stress also was evaluated as a preliminary step in the determination of the membrane behavior of the GCL under different effective consolidation stresses.

  1. Diagnostics for the Plasma Liner Experiment

    SciTech Connect

    Lynn, A. G.; Merritt, E.; Gilmore, M.; Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.

    2010-10-15

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical ''plasma liners'' via merging high Mach number plasma jets to reach peak liner pressures of {approx}0.1 Mbar using {approx}1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n{sub i}{approx}10{sup 16} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}1 eV at the plasma gun mouth to n{sub i}>10{sup 19} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  2. Turbulator for a liner cooling jacket

    NASA Technical Reports Server (NTRS)

    Hoag, Kevin L. (Inventor)

    1995-01-01

    A turbulator for a liner cooling jacket includes a metal panel which is suitable to be coiled into a generally cylindrical shape so as to be placed in a relief area between an engine cylinder block and a cylinder liner. The relief area may be machined into either the block or the cylinder liner and the metal panel is formed with a pattern of protuberances shaped like corrugations. In one embodiment, the corrugations have a shape similar to a sine wave and are arranged in a plurality of generally parallel axial segments. The corrugation wave pattern of one segment may be the same as its adjacent segment or may be staggered by one corrugation which would mean one-half of a full wave cycle. The corrugation pattern in the turbulator panel may be created by any one of various stamping or forming operations and when placed between the cylinder liner and block, increases turbulence of the cooling liquid in order to enhance heat transfer.

  3. Generalized wave envelope analysis of sound propagation in ducts with stepped noise source profiles and variable axial impedance

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1975-01-01

    A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution tends not to oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude. Example solutions indicate that stepped noise source profiles have much higher attenuation than plane waves in a uniform impedance liner. Also, multiple stepped impedance liners are shown to have higher attenuation than uniform ducts if the impedances are chosen properly. For optimum noise reduction with axial variations in impedance, the numerical analysis indicates that for a plane wave input the resistance should be near zero at the entrance of a suppressor duct, while the reactance should be near the optimum value associated with the least-attenuated mode in a uniform duct.

  4. Acoustical problems in high energy pulsed E-beams lasers

    NASA Technical Reports Server (NTRS)

    Horton, T. E.; Wylie, K. F.

    1976-01-01

    During the pulsing of high energy, CO2, electron beam lasers, a significant fraction of input energy ultimately appears as acoustical disturbances. The magnitudes of these disturbances were quantified by computer analysis. Acoustical and shock impedance data are presented on materials (Rayleigh type) which show promise in controlling acoustical disturbance in E-beam systems.

  5. Studies of acoustical properties of bulk porous flexible materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1984-01-01

    Acoustic prediction and measurement of bulk porous materials with flexible frames is investigated. The acoustic properties of Kevlar 29 are examined. Various acoustic tests are employed to determine impedance, sound wave propagation, and wave pressure equations for the highly porous fiber composites. The derivation of design equations and future research goals are included.

  6. Implementation and Validation of an Impedance Eduction Technique

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Gerhold, Carl H.

    2011-01-01

    Implementation of a pressure gradient method of impedance eduction in two NASA Langley flow ducts is described. The Grazing Flow Impedance Tube only supports plane-wave sources, while the Curved Duct Test Rig supports sources that contain higher-order modes. Multiple exercises are used to validate this new impedance eduction method. First, synthesized data for a hard wall insert and a conventional liner mounted in the Grazing Flow Impedance Tube are used as input to the two impedance eduction methods, the pressure gradient method and a previously validated wall pressure method. Comparisons between the two results are excellent. Next, data measured in the Grazing Flow Impedance Tube are used as input to both methods. Results from the two methods compare quite favorably for sufficiently low Mach numbers but this comparison degrades at Mach 0.5, especially when the hard wall insert is used. Finally, data measured with a hard wall insert mounted in the Curved Duct Test Rig are used as input to the pressure gradient method. Significant deviation from the known solution is observed, which is believed to be largely due to 3-D effects in this flow duct. Potential solutions to this issue are currently being explored.

  7. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner.

  8. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. PMID:24718363

  9. FE analysis of dynamic characteristics for mill's liners

    NASA Astrophysics Data System (ADS)

    Feng, Xianzhang; Cui, Yanmei; Jiang, Zhiqiang; Hou, Tao

    2009-07-01

    Slab side pressing is an online regulation width technology for continuous casting slab, the liner at the bottom of the framework under the larger impact force, it often can occurrence accident of liner Board broken during working of sizing press rolling mill. In order to analyze force distribution and its peak in the liner of rolling mill during side pressing, liner dynamics model is established using nonlinear function of finite element software, and the contact mode is established for liner and wheel by Hertz law theory. It yields the relations between maximal stress and tap hole in the liner, the design scheme is extracted for improving condition of linerboard's stress, and the calculated results were much inosculated with the measured values. The studied results indicated that the liner's life gets improve obviously in field.

  10. Minimal backside surface changes observed in retrieved acetabular liners.

    PubMed

    Akbari, Abtin; Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J; Schnettgoecke, Daniel J

    2011-08-01

    Modular polyethylene liners offer versatility in total hip arthroplasty, but the locking mechanism may allow micromotion and backside wear. We evaluated the backside surface of 56 retrieved acetabular liners (mean 5.54 years in vivo, range 0.003-13.1 years) to determine whether damage correlated with liner age in vivo, patient factors associated with higher activity, and polyethylene quality. Half of the liners exhibited minimal damage, half exhibited no damage and none exhibited severe damage. Backside damage significantly correlated only to liner age in vivo. Ten of the 28 liners revised for osteolysis exhibited no backside damage, but the osteolytic cysts were peripheral and did not originate from screw holes. The results suggest that modular polyethylene liners in a porous titanium-coated shell with screw holes can be designed such that clinically significant backside wear is minimal. PMID:20875939

  11. Liner Stability Experiments at Pegasus: Diagnostics and Experimental Results

    SciTech Connect

    Clark, D.A.; Morgan, D.V.; Rodriguez, G.

    1998-10-18

    A series of experiments to compare imploding liner performance with magneto-hydrodynamic (MHD) modeling has been performed at the Los Alamos National Laboratory Pegasus II pulse power machine. Liner instability growth originating from initial perturbations machined into the liner has been observed with high resolution. Three major diagnostics were used: radiography, Velocity Interferometer for a Surface of Any Reflector (VISAR), and fiber optic impact pins. For radiography, three flash x-ray units were mounted radially to observe liner shape at three different times during the implosion. Liner velocity was measured continuously with the VISAR for the entire distance traveled in two experiments. Optical impact pins provide a high-resolution measure of liner symmetry and shape near the end of travel. Liner performance has compared well with predictions.

  12. Acoustic results of supersonic tip speed fan blade modification

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Kazin, S. B.

    1974-01-01

    A supersonic tip speed single stage fan was modified with the intent of reducing multiple pure tone (MPT) or buzz saw noise. There were three modifications to the blades from the original design. The modifications to the blade resulted in an increase in cascade throat area causing the shock to start at a lower corrected fan speed. The acoustic results without acoustically absorbing liners showed substantial reduction in multiple pure tone levels. However, an increase in the blade passing frequency noise at takeoff fan speed accompanied the MPT reduction. The net result however, was a reduction in the maximum 1000-foot (304.8 m) altitude level flyover PNL. For the case with acoustic treatment in the inlet outer wall, the takeoff noise increased relative to an acoustically treated baseline. This was largely due to the increased blade passing frequency noise which was not effectively reduced by the liner.

  13. Wakefields and coupling impedances

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey

    1995-02-01

    After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example.

  14. Propagation of quasiplane waves along an impedance boundary

    NASA Technical Reports Server (NTRS)

    Mcaninch, G. L.; Myers, M. K.

    1988-01-01

    The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a time harmonic plane wave at grazing incidence to a finite impedance boundary. The resulting equations possess a solution which may be expressed in terms of the complementary error function. Asymptotic expansion of this solution for field points near the boundary provides results compatible with those for a point source on the boundary for both the soft boundary (finite impedance) and hard boundary (the limit in which the impedance becomes infinite) cases. The presence of a surface wave in the solution is also established.

  15. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  16. Sound Absorption of a 2DOF Resonant Liner with Negative Bias Flow

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Cataldi, P.; Gaeta, R. J., Jr.; Jones, Mike (Technical Monitor)

    2000-01-01

    This report describes an experimental study conducted to determine the effect of negative bias flow on the sound absorption of a two degree-of-freedom liner. The backwall for the liner was designed to act as a double-Helmholtz resonator so as to act as a hard wall at all frequencies except at its resonant frequencies. All normal incident impedance data presented herein was acquired in an impedance tube. The effect of bias flow is investigated for a buried septum porosity of 2% and 19.5% for bias flow orifice mach numbers up to 03 11. As a porous backwall is needed for the flow to pass through, the effect of bias flow on this backwall all had to be evaluated first. The bias flow appears to modify the resistance and reactance of the backwall alone at lower frequencies up to about 2 kHz, with marginal effects at higher frequencies. Absorption coefficients close to unity are achieved for a frequency range of 500-4000 Hz for the overall liner for a septum porosity of 2% and orifice mach number of 0.128. Insertion loss tests performed in a flow duct facility for grazing flow Mach numbers up to 0.2 and septum mach numbers up to 0.15 showed that negative bias flow can increase insertion loss by as much as 10 dB at frequencies in the range of 500 - 1400 Hz compared to no grazing flow. The effectiveness of the negative bias flow is diminished as the grazing flow velocity is increased.

  17. A Theoretical and Experimental Study of Acoustic Propagation in Multisectioned Circular Ducts. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.

    1976-01-01

    The propagation of plane waves and higher order acoustic modes in a circular multisectioned duct was studied. A unique source array consisting of two concentric rings of sources, providing phase and amplitude control in the radial, as well as circumferential direction, was developed to generate plane waves and both spinning and nonspinning higher order modes. Measurements of attenuation and radial mode shapes were taken with finite length liners inserted between the hard wall sections of an anechoically terminated duct. Materials tested as liners included a glass fiber material and both sintered fiber metals and perforated sheet metals with a honeycomb backing. The fundamental acoustic properties of these materials were studied with emphasis on the attenuation of sound by the liners and the determination of local versus extended reaction behavior for the boundary condition. A search technique was developed to find the complex eigenvalues for a liner under the assumption of a locally reacting boundary condition.

  18. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  19. Stability of Magnetically Implode Liners for High Energy Density Experiments

    SciTech Connect

    Reinovsky, R.E.; Anderson, W.E.; Atchison, W.L.; Bartsch, R.R.; Clark, D.A.; Ekdahl, C.E.; Faehl, R.J.; Goforth, J.H.; Keinigs, R.K.; Lindemuth, I.R.; Morgan, D.; Rodriguez, G.; Tasker, D.G.; Trainor, R.J.; Shlachter, J.S.

    1998-10-18

    Magnetically imploded cylindrical metal shells (z-pinch liners) are attractive drivers for a wide variety of hydrodynamics and material properties experiments. The ultimate utility of liners depends on the acceleration of near-solid density shells to velocities exceeding 20 km/sec with good azimuthal symmetry and axial uniformity. Two pulse power systems (Ranchero and Atlas) currently operational or under development at Los Alamos provide electrical energy adequate to accelerate {approximately}50 gr. liners to 1-2 MJ/cm kinetic energy. As in all z-pinches, the outer surface of a magnetically imploded liner is unstable to magneto-Rayleigh-Taylor (RT) modes during acceleration. Large-scale distortion in the liners from RT modes growing from glide plane interactions or initial imperfections could make liners unusable for man experiments. On the other hand, material strength in the liner should, from first principles, reduce the growth rate of RT modes - and can render some combinations of wavelength and amplitude analytically stable. The growth of instabilities in both soft aluminum liners and in high strength aluminum alloy liners has been studied analytically, computationally and experimentally at liner kinetic energies up to 100 KJ/cm on the Pegasus capacitor bank using driving currents up to 12 MA.

  20. Low-Convergence Magnetized Liner Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Vesey, Roger; Sinars, Daniel; Sefkow, Adam

    2013-10-01

    Numerical simulations indicate that pulsed-power driven liner-implosions could produce substantial fusion yields if the deuterium-tritium (DT) fuel is first magnetized and preheated [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. As with all inertial fusion, the implosions could be degraded by the Rayleigh-Taylor instability. Since highly convergent implosions are more susceptible to this instability, we have explored the necessary conditions to obtain significant fusion yield with low-convergence liner-implosions. Such low-convergence implosions can be obtained if the fuel is sufficiently preheated and magnetized. We present analytic and numerical studies of laser plasma heating, which indicate that low convergence implosions should be possible with sufficient laser energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contra.

  1. Atlas performance and imploding liner parameter space

    SciTech Connect

    Reinovsky, R.; Lindemuth, I. R.; Atchison, W. L.; Cochrane, J. C. , Jr.; Faehl, R. J.

    2002-01-01

    Ultra-high magnetic fields have many applications in the confining and controlling plasmas and in exploring electron physics as manifested in the magnetic properties of materials. Another application of high fields is the acceleration of metal conductors to velocities higher than that achievable with conventional high explosive drive or gas guns. The Atlas pulse power system is the world's first pulse power system specifically designed to implode solid and near-solid density metal liners for use in pulse power hydrodynamic experiments. This paper describes the Atlas system during the first year of its operational life at Los Alamos, (comprising 10-15 implosion experiments); describes circuit models that adequately predicted the bulk kinematic behavior of liner implosions; and shows how those (now validated) models can be used to describe the range of parameters accessible through Atlas implosions.

  2. Progress in plasma liner modeling for MIF

    NASA Astrophysics Data System (ADS)

    Loverich, John; Hakim, Ammar; Zhou, Sean

    2009-11-01

    Magnetic confinement fusion and inertial confinement fusion represent the two extremes in terms of density and confinement time in fusion energy research. Both approaches have been studied extensively through the decades pushing technology to the limits. An alternative fusion approach exists between these regimes called magnetized target fusion. In magnetized target fusion longer confinement times are achieved than in ICF through the use of strong magnetic fields, the long confinement time reduces the required plasma density to reach ignition--the approach has advantages over MFE in that it is much more compact and higher density. This work explores computationally a form of magnetized target implosion using a plasma liner. This concept is to be compared with solid liner implosion approach which may not be commercially viable as a reactor due to the ``standoff'' problem, portions of the device are destroyed with each target implosion. We present simulation results of plasma liner formation, jet merging, and plasma jet magnetized target interaction using a fluid plasma code (TxFluids) developed at Tech-X corporation.

  3. Unveiling the liner nature of NGC1052

    NASA Astrophysics Data System (ADS)

    Diniz, S. I. F.; Pastoriza, M. G.; Riffel, R.; Riffel, R. A.; Diniz, M. R.; Storchi-Bergmann, T.

    2014-10-01

    NGC 1052 is an E4 galaxy and classified as a typical LINER harboring a stellar rotating disk. However, the central region is spectroscopically unusual with broad optical emission lines, the nature of its emission line gas remains unclear. According to recent studies NGC 1052 exhibit Hα luminosities an order of magnitude above that estimated for an evolved population of extreme horizontal branch stars. Their Hα equivalent widths and optical-to-near infrared (NIR) spectral energy distributions are consistent with them being young stellar clusters aged < 7 Myr, and according to previous works, NGC 1052 may have experienced a merger event about 1 Gyr ago. There are mainly three possibilities to explain LINER's spectra: i) post asymptotic giant branch stars (post-AGB) that ionize their rapidly expanding shells, (ii) active galactic nuclei (AGNs) powered by the in fall of matter into an accretion disk, and (iii) shocks. The stellar population (SP) of AGNs shows an excess of intermediate age stars. Besides, NIR stellar population studies have revealed that the continuum of active galaxies is dominated by the contribution of intermediate age stellar populations. Hot dust emission unresolved is also commonly detected in NIR nuclear spectra of galaxies Seyfert and LINERs. Aimed to discriminate the dominant ionizing source of NGC 1052 we present preliminary results of high spatial resolution integral field spectroscopy, taken with gemini NIFS to map the dominant stellar population, as well as disentangling the featureless and hot dust components.

  4. Overview of the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.; Gilmore, M. A.; the PLX Team

    2011-10-01

    The Plasma Liner Experiment (PLX) is a multi-institutional collaboration that is exploring and demonstrating the formation of imploding spherical plasma liners to reach peak pressures exceeding 0.1 Mbar upon stagnation. The liners will be formed via the merging of 30 dense high Mach number plasma jets (n ~1017 cm-3, M ~ 10 -35, v ~ 50 km/s, rjet ~ 2 . 5 cm) in a spherically convergent geometry. We are aiming for two follow-on applications if this work is successful: (1) assembling repetitive, macroscopic (cm and μs scale) plasmas suitable for fundamental HEDLP scientific studies and (2) a standoff driver for magneto-inertial fusion. This is a staged project where scientific issues will be studied first at modest stored energies (~ 300 kJ) before attempting to reach HED- relevant pressures (requiring ~ 1 . 5 MJ). This poster provides an overview of the project's status/plans and emphasizes the progress made in the past year: completion of phase one facility and diagnostic construction, progress in numerical simulations, and initial experiments on single jet propagation and two jet merging. Finally, we describe cosmically-relevant collisionless shock experiments based on the head-on collision of two lower density but higher velocity plasma jets. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  5. Consecutive plate acoustic suppressor apparatus and methods

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph (Inventor); Parrott, Tony (Inventor)

    1992-01-01

    An apparatus and method for suppressing acoustic noise utilizes consecutive plates, closely spaced to each other so as to exploit dissipation associated with sound propagation in narrow channels to optimize the acoustic resistance at a liner surface. The closely spaced plates can be utilized as high temperature structural materials for jet engines by constructing the plates from composite materials. Geometries of the plates, such as plate depth, shape, thickness, inter-plate spacing, arrangement, etc., can be selected to achieve bulk material-like behavior.

  6. Consecutive Plate Acoustic Suppressor Apparatus and Methods

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph (Inventor); Parrott, Tony L. (Inventor)

    1993-01-01

    An apparatus and method for suppressing acoustic noise utilizes consecutive plates, closely spaced to each other so as to exploit dissipation associated with sound propagation in narrow channels to optimize the acoustic resistance at a liner surface. The closely spaced plates can be utilized as high temperature structural materials for jet engines by constructing the plates from composite materials. Geometries of the plates, such as plate depth, shape, thickness, inter-plate spacing, arrangement, etc., can be selected to achieve bulk material-like behavior.

  7. An investigation of the diffraction of an acoustic plane wave by a curved surface of finite impedance. Ph.D. Thesis Final Technical Report, 1 Feb. 1985 - 1 Sep. 1989

    NASA Technical Reports Server (NTRS)

    Kearns, James A.

    1989-01-01

    Phenomena associated with long range propagation of sound over irregular topography motivated this work, which was to analyze the diffraction effects which would occur near the tops of hills and ridges. The diffraction of a high frequency plane wave due to its grazing of a two-dimensional curved surface of finite impedance was also studied. Laboratory scale models were constructed and measurements were made of the field on, above, and behind either of two curved surfaces possessing distinctly different impedances; that is, one was soft while the other was hard. The experimental technique consisted of simultaneously measuring the pressure at a reference point and at a field point due to a transient pulse generated by an electric spark. The pressure waveforms were digitized and processed. The ratio of the discrete Fourier transforms of the two waveforms provided an estimate of the insertion loss between them. The results of the measurements were compared with the predictions of a theory which was derived by Pierce using the method of Matched Asymptotic Expansions (MAE). The predictions relied upon the experimental evaluation of the impedance of each surface at grazing angles of incidence. This evaluation was achieved by a fairly standard technique involving empirical models of various generic types of surfaces. An example was shown of the important role that the structural intricacies of a surface play in the determination of an appropriate model. The comparison between the measurements and predictions indicated that the theory gives an excellent description of the field anywhere near a curved surface. Further, with a simple modification, the theory was also shown to give nearly as good of a description of the field surrounding a curved surface even at distances far behind the surface yet near the line of sight.

  8. Method for selectively controlling flow across slotted liners

    SciTech Connect

    Peavy, M.A.; Dees, J.M.

    1993-08-31

    A process is described for decreasing flow rate across the radial boundary of a selected interval in a well bore containing a slotted liner comprising: placing an explosive and an internally catalyzed resin solution inside an elongated container; locating the elongated container opposite the selected interval in the well bore where flow rate through the slotted liner is to be decreased; firing the explosive; and allowing the resin to cure on the slotted liner before initiating flow through the well. A method is described for decreasing production of unwanted fluids from a horizontal well containing a slotted liner comprising: placing an explosive and an internally catalyzed resin inside an elongated container; placing the elongated container opposite an interval in the horizontal well where unwanted fluid is entering the well bore through the slotted liner; firing the explosive; and permitting the resin to cure on the slotted liner before initiating flow in the well.

  9. Accelerated aging tests of liners for uranium mill tailings disposal

    SciTech Connect

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing.

  10. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  11. Analysis of dry cylinder liner behavior during engine operation

    SciTech Connect

    Mizutani, Kazunori; Murata, Katsuhiro; Suzawa, Takashi; Niitsu, Yasuhiko

    1996-09-01

    Engine manufacturers are continuing to develop new engine designs that provide higher power output, lower fuel consumption and lower engine weight. In order to achieve significant engine weight reduction, the light weight cylinder block structure employs dry cylinder liners rather than wet cylinder liners. The cast iron dry liner structure is utilized because of the superior wear and scuff resistance of the cast iron. Thin wall dry cast iron liners are being employed in both gasoline and diesel engines. Dry cylinder liners with wall thickness of 1.5 mm are in production for Japanese automotive diesel engines. In the case of the dry thin wall cast iron liners, 2 design configurations are employed: loose-fit type having a specified clearance between the outer liner surface and the cylinder bore surface; press-in type having an interference fit between the outer surface of liner and the cylinder bore surface. The physical properties of cast iron must be considered during the design phase if successful production designs are to be provided. In addition the operating stress caused by piston slap, combustion pressure variation and resultant effect on operating stress in the liner must be considered during the design. This paper summarizes the results of a series of studies undertaken to determine the effect of piston slap, combustion pressure and initial stress on resultant behavior of thin wall cylinder liners under engine operating conditions. The resultant data may be utilized to improve the overall design of thin wall dry cylinder liners, especially for loose-fit liners.

  12. Use of natural zeolites as a landfill liner.

    PubMed

    Tuncan, Ahmet; Tuncan, Mustafa; Koyuncu, Hakan; Guney, Yucel

    2003-02-01

    The purpose of this study is to investigate certain features of a novel material proposed to serve as an impervious liner in landfills. Various ratios of bentonites and zeolites (B/Z) compacted at optimum water content were tested to determine the strength parameters, permeability, pH, heavy metals and other properties. A B/Z ratio of 0.10 was found to be an ideal landfill liner material regarding its low hydraulic conductivity and high cation exchange capacity. The use of B/Z mixtures as an alternative to clay liners would provide potential to significantly reduce the thickness of base liner for landfills.

  13. Durability of organobentonite-amended liner for decelerating chloroform transport.

    PubMed

    He, Shichong; Zhu, Lizhong

    2016-04-01

    Chloroform is added to landfill for suppressing methane generation, which however may transport through landfill liners and lead to contamination of groundwater. To decelerate chloroform transport, the enhanced sorption ability of clay liners following organobentonite addition was tested. In this study, we used batch sorption to evaluate sorption capacity of chloroform to organobentonite, followed by column tests and model simulations for assessing durability of different liners. Results show that adding 10% CTMAB-bentonite (organobentonite synthesized using cetyltrimethylammonium bromide) increased the duration of a bentonite liner by 88.5%. CTMAB-bentonite consistently showed the highest sorption capacity (Qm) among six typical organobentonites under various environmental conditions. The removal rate of chloroform by CTMAB-bentonite was 3.6-23 times higher than that by natural soils. According to the results derived by model simulation, a 70-cm 10% CTMAB-bentonite liner exhibited much better durability than a 100-cm compact clay liner (CCL) and natural bentonite liner evidenced by the delayed and lower peak of eluent concentration. A minimum thickness of 65.8 cm of the 10% CTMAB-bentonite liner could completely sorb the chloroform in a 100-m-high landfill. The 10% CTMAB-bentonite liner exhibiting much better durability has the promise for reducing environmental risk of chloroform in landfill.

  14. Theory and Modeling of the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Cassibry, J. T.; Stanic, M. D.; Awe, T. J.; Hanna, D. S.; Davis, J. S.; Hsu, S. C.; Witherspoon, F. D.

    2010-11-01

    High pressures and temperatures may be generated at the center an imploding plasma liner. These phenomena are being studied on the Plasma Liner Experiment (PLX) in which a spherical liner is formed via the merging of plasma jets. The basic physical processes include pulsed plasma acceleration, plasma jet propagation in a vacuum, plasma jet merging, liner formation, liner implosion, stagnation, and rarefaction. Each of these processes is dominated by different physics, requiring different models. For example, λei at the jet merging radius may be ˜1 cm, so that liner formation is partially collisionless, while liner implosion is collision dominated. Further, the liner transitions from optically thin to gray during the implosion. An overview of the theory and modeling plan in support of PLX will be given, which includes 1D rad-hydro, 3D hydro, 3D MHD, 2D PIC, and 2D hybrid codes. We will emphasize our recent 3D hydro modeling, which provides insights into liner formation, implosion, and effects of initial jet parameters on scaling of peak pressure.

  15. User's Manual for LINER: FORTRAN Code for the Numerical Simulation of Plane Wave Propagation in a Lined Two-Dimensional Channel

    NASA Technical Reports Server (NTRS)

    Reichert, R, S.; Biringen, S.; Howard, J. E.

    1999-01-01

    LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave propagation and noise suppression in a rectangular channel with a continuous liner at the top wall. This new implementation is designed to streamline the usage of the several codes making up LINER, resulting in a useful design tool. Major input parameters are placed in two main data files, input.inc and nurn.prm. Output data appear in the form of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed account of program usage, including input formats and graphical options. A sample run is also provided. Finally, Section 5 briefly describes the individual program files.

  16. Eigenmodes of triaxial ellipsoidal acoustical cavities with mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Willatzen, M.; Lew Yan Voon, L. C.

    2004-12-01

    The linear acoustics problem of resonant vibrational modes in a triaxial ellipsoidal acoustic cavity with walls of arbitrary acoustic impedance has been quasi-analytically solved using the Frobenius power-series expansion method. Eigenmode results are presented for the lowest two eigenmodes in cases with pressure-release, rigid-wall, and lossy-wall boundary conditions. A mode crossing is obtained as a function of the specific acoustic impedance of the wall; the degeneracy is not symmetry related. Furthermore, the damping of the wave is found to be maximal near the crossing. .

  17. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shoe, or subsequent liner shoes if set. The District Manager may approve or require other liner test... formation fracture pressure at the casing shoe into which the liner is lapped. (c) You may not...

  18. Effect of ceramic coating of JT8D combustor liner on maximum liner temperatures and other combustor performance parameters

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Liebert, C. H.

    1976-01-01

    The effect of ceramic coating of a JT8D combustor liner was investigated at simulated cruise and takeoff conditions with two fuels of widely different aromatic contents. Substantial decreases in maximum liner temperatures and flame radiation values were obtained with the ceramic-coated liner. Small reductions in exhaust gas smoke concentrations were observed with the ceramic-coated liner. Other performance parameters such as combustion efficiency and emissions of unburned hydrocarbons, CO, and NOx were not affected significantly. No deterioration of the ceramic coating was observed after about 6 hours of cyclic operation including several startups and shutdowns.

  19. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  20. Tunable sound transmission at an impedance-mismatched fluidic interface assisted by a composite waveguide

    PubMed Central

    Zhang, Hui; Wei, Zhi; Fan, Li; Qu, Jianmin; Zhang, Shu-yi

    2016-01-01

    We report a composite waveguide fabricated by attaching a coupling aperture to a waveguide. The acoustic impedance of the composite waveguide can be regulated by merely controlling its coupling vibrations, depending on its structure size. By changing the size to adjust the acoustic impedance of the composite waveguide at an impedance-mismatched fluidic interface, tunable sound transmission at the desired frequencies is achieved. The reported composite waveguide provides a new method for sound regulation at a mismatched fluidic interface and has extensive frequency hopping and frequency agility applications in air-water sound communication. PMID:27698379

  1. Tunable sound transmission at an impedance-mismatched fluidic interface assisted by a composite waveguide

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wei, Zhi; Fan, Li; Qu, Jianmin; Zhang, Shu-Yi

    2016-10-01

    We report a composite waveguide fabricated by attaching a coupling aperture to a waveguide. The acoustic impedance of the composite waveguide can be regulated by merely controlling its coupling vibrations, depending on its structure size. By changing the size to adjust the acoustic impedance of the composite waveguide at an impedance-mismatched fluidic interface, tunable sound transmission at the desired frequencies is achieved. The reported composite waveguide provides a new method for sound regulation at a mismatched fluidic interface and has extensive frequency hopping and frequency agility applications in air-water sound communication.

  2. Micro-Horn Arrays for Ultrasonic Impedance Matching

    NASA Technical Reports Server (NTRS)

    Rao, Shanti; Palmer, Dean

    2009-01-01

    Thin-layered structures containing arrays of micromachined horns, denoted solid micro-horn arrays (SMIHAs), have been conceived as improved means of matching acoustic impedances between ultrasonic transducers and the media with which the transducers are required to exchange acoustic energy. Typically, ultrasonic transducers (e.g., those used in medical imaging) are piezoelectric or similar devices, which produce small displacements at large stresses. However, larger displacements at smaller stresses are required in the target media (e.g., human tissues) with which acoustic energy is to be exchanged. Heretofore, efficiencies in transmission of acoustic energy between ultrasonic transducers and target media have been severely limited because substantial mismatches of acoustic impedances have remained, even when coupling material layers have been interposed between the transducers and the target media. In contrast, SMIHAs can, in principle, be designed to effect more nearly complete acoustic impedance matching, leading to power transmission efficiencies of 90 percent or even greater. The SMIHA concept is based on extension, into the higher-frequency/ lower-wavelength ultrasonic range, of the use of horns to match acoustic impedances in the audible and lower-frequency ultrasonic ranges. In matching acoustic impedance in transmission from a higher-impedance acoustic source (e.g., a piezoelectric transducer) and a lowerimpedance target medium (e.g., air or human tissue), a horn acts as a mechanical amplifier. The shape and size of the horn can be optimized for matching acoustic impedance in a specified frequency range. A typical SMIHA would consist of a base plate, a face plate, and an array of horns that would constitute pillars that connect the two plates (see figure). In use, the base plate would be connected to an ultrasonic transducer and the face plate would be placed in contact with the target medium. As at lower frequencies, the sizes and shapes of the pillars

  3. Verification of a variable rate sprayer for nursery liner applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experimental variable-rate sprayer designed for liner applications was tested by comparing its spray deposit and coverage, and droplet density inside canopies of six nursery liner varieties with constant-rate applications. Spray samplers, including water sensitive papers (WSP) and nylon screens, ...

  4. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calcium hydroxide cavity liner. 872.3250 Section 872.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner....

  5. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calcium hydroxide cavity liner. 872.3250 Section 872.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner....

  6. CONSTRUCTION, MONITORING, AND PERFORMANCE OF TWO SOIL LINERS

    EPA Science Inventory

    A prototype soil liner and a field-scale soil liner were constructed to test whether compacted soil barrier systems could be built to meet the standard set by the U.S. Environmental Protection Agency (EPA) for saturated hydraulic conductivity (< 1 x 10'7 cm/s). In situ ponded inf...

  7. Optimal Spray Application Rates for Ornamental Nursery Liner Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray deposition and coverage at different application rates for nursery liners of different sizes were investigated to determine the optimal spray application rates. Experiments were conducted on two and three-year old red maple liners. A traditional hydraulic sprayer with vertical booms was used t...

  8. Wet/dry cylinder liner for high output engines

    SciTech Connect

    Eisenberg, E.; Lindsay, F.E.; Evans, J.J.; Collins, R.H.

    1990-05-22

    This patent describes a cooling arrangement in an internal combustion engine comprising a cylinder head and cylinders each of which includes a cylinder wall and cylinder bore. It comprises: a cylinder liner having a predetermined length and being received in each of the bores, a lower portion of each liner being a dry portion of the liner which is received in a corresponding bore with an interference fit along the substantial length of the lower portion under operating conditions, the lower portion constituting approximately two-third of the length of the liner and providing support for the liner; an upper portion of the liner being disposed at a combustion region of the cylinder and being formed to provide a plurality of passages for liquid coolant extending in a substantially parallel arcuate paths around the cylinder liner, the arcuate paths comprise means for increasing velocity of the liquid coolant around the combustion region the passages being of substantially constant cross-section so as to provide substantially uniform high velocity circulation of liquid coolant around the cylinder liner in the combustion region.

  9. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  10. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    PubMed Central

    Augustsson, Per; Karlsen, Jonas T.; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-01-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size. PMID:27180912

  11. Point source moving above a finite impedance reflecting plane - Experiment and theory

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Liu, C. H.

    1978-01-01

    A widely used experimental version of the acoustic monopole consists of an acoustic driver of restricted opening forced by a discrete frequency oscillator. To investigate the effects of forward motion on this source, it was mounted above an automobile and driven over an asphalt surface at constant speed past a microphone array. The shapes of the received signal were compared to results computed from an analysis of a fluctuating-mass-type point source moving above a finite impedance reflecting plane. Good agreement was found between experiment and theory when a complex normal impedance representative of a fairly hard acoustic surface was used in the analysis.

  12. Hydraulic conductivity of three geosynthetic clay liners

    SciTech Connect

    Estornell, P.; Daniel, D.E.

    1992-01-01

    The hydraulic conductivity of three 2.9 sq m (32 sq ft) geosynthetic clay liners (GCLs) was measured. Tests were performed on individual sheets of the GCLs, on overlapped pieces of GCLs, and on composite liners consisting of a punctured geomembrane overlying a GCL. Hydraulic conductives of two of the GCLs were in the range of 10 to the minus 10 10 to the minus 8 cm/s. No flow was measured through the third GCL, but the conductivity was obviously very low. The hydraulic conductivities of overlapped GCLs were about the same as those of the control samples with no overlap; an effective hydraulic seal developed along the overlaps in all the materials tested. Performance of the punctured geomembrane-GCL composites varied--performance was best when the punctured geomembrane was placed directly against bentonite and no geotextile separated the punctured geomembrane from the bentonite. For those GCLs with geotextiles on both sides, problems with migration of bentonite into the underlying drainage layer were encountered when inadequate filtration was provided. However, with a suitable filtration layer separating the drainage layer from the GCL, problems with migration of bentonite were liminated.

  13. Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Sawdy, D. T.

    1971-01-01

    An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.

  14. Modular liquid-cooled helmet liner for thermal comfort

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Shitzer, A.

    1974-01-01

    A modular liquid-cooled helmet liner made of eight form-fitting neoprene patches was constructed. The liner was integrated into the sweatband of an Army SPH-4 helicopter aircrew helmet. This assembly was tested on four subjects seated in a hot (47 C), humid (40%) environment. Results indicate a marked reduction in the rate of increase of physiological body functions. Rectal temperature, weight loss, heart rate, and strain indices are all reduced to approximately 50% of uncooled levels. The cooling liner removed from 10% to 30% of total metabolic heat produced. This study also demonstrated the technical feasilibity of using a cooling liner in conjunction with a standard hard helmet. Potential applications of the cooling liner in thermally stressful environments are numerous, notably for helicopter and other aircrews.

  15. Evaluating the accuracy of wear formulae for acetabular cup liners.

    PubMed

    Wu, James Shih-Shyn; Hsu, Shu-Ling; Chen, Jian-Horng

    2010-02-01

    This study proposes two methods for exploring the wear volume of a worn liner. The first method is a numerical method, in which SolidWorks software is used to create models of the worn out regions of liners at various wear directions and depths. The second method is an experimental one, in which a machining center is used to mill polyoxymethylene to manufacture worn and unworn liner models, then the volumes of the models are measured. The results show that the SolidWorks software is a good tool for presenting the wear pattern and volume of a worn liner. The formula provided by Ilchmann is the most suitable for computing liner volume loss, but is not accurate enough. This study suggests that a more accurate wear formula is required. This is crucial for accurate evaluation of the performance of hip components implanted in patients, as well as for designing new hip components.

  16. Waterproof versus cotton cast liners: a randomized, prospective comparison.

    PubMed

    Haley, Chad A; DeJong, E Schuyler; Ward, John A; Kragh, John F

    2006-03-01

    Casting injured extremities can cause complications (eg, itching, odor, rashes, skin maceration), many of which are associated with the inability to wash the extremity because of water retention and slow drying of conventional cast liners. A waterproof cast liner allows casts to become wet and perhaps improves hygiene and comfort. Fifty-nine patients (age, > or = 10 years) with upper or lower extremity injuries were randomized to a waterproof-liner group (n = 29) or a cotton-liner group (n = 30). Both groups had casts made of fiberglass tape. At each clinic visit, patients and physicians completed questionnaires evaluating comfort and skin condition, respectively. The waterproof-liner group had better scores for itch (P = .008), discomfort (P < .001), irritation (P = .002), overall patient score (P = .012), and overall physician score (P = .049).

  17. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  18. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  19. High energy imploding liner experiment HEL-1: Experimental results

    SciTech Connect

    Clark, D.A.; Anderson, B.G.; Ekdahl, C.A.

    1997-09-01

    Magnetically driven imploding liner systems can be used as a source of shock energy for materials equation of state studies, implosion driven magnetized plasma fusion experiments, and other similar applications. The imploding liner is a cylinder of conducting material through which a current is passed in the longitudinal direction. Interaction of the current with its own magnetic field causes the liner to implode. Sources of electrical energy for imploding liner systems are capacitor banks or explosive pulse power systems seeded by capacitor banks. In August, 1996, a high energy liner experiment (HEL-1) was conducted at the All-Russia Scientific Research Institute (VNIIEF) in Sarov, Russia. A 5 tier 1 meter diameter explosive disk generator provided electrical energy to drive a 48 cm outside diameter, 4 mm thick, aluminum alloy liner having a mass of about 11kg onto an 11 cm diameter diagnostic package. The purpose of the experiment was to measure performance of the explosive pulse power generator and the heavy imploding liner. Electrical performance diagnostics included inductive (B-dot) probes, Faraday Rotation current measurement, Rogowski total current measurement, and voltage probes. Flux loss and conductor motion diagnostics included current-joint voltage measurements and motion sensing contact pins. Optical and electrical impact pins, inductive (B-dot) probes, manganin pressure probes, and continuously recording resistance probes in the Central Measuring Unit (CMU) and Piezo and manganin pressure probes, optical beam breakers, and inductive probes located in the glide planes were used as liner symmetry and velocity diagnostics. Preliminary analysis of the data indicate that a peak current of more than 100 MA was attained and the liner velocity was between 6.7 km/sec and 7.5 km/sec. Liner kinetic energy was between 22 MJ and 35 MJ. 4 refs., 6 figs., 1 tab.

  20. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  1. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  2. A new approach to the study of impedance characteristics of tympanic membrane.

    PubMed

    Bogomolov, A V; Dragan, S P

    2015-01-01

    A new approach to studying the tympanic membrane impedance characteristics, based on the analysis of polyharmonic acoustic signals reflected by the tympanic membrane, is described. For this purpose, the acoustic pressure and the phase difference between the acoustic vibrations in two sections of a waveguide sealingly connecting the external auditory meatus and a generator of polyharmonic audio signals is measured. By processing the results of measurements, the estimates of the frequency-dependent reflection coefficients, absorption coefficients, and components of the acoustic impedance of the tympanic membrane are calculated. The features that principally distinguish the developed approach from other approaches are the absence of the necessity to create a positive pressure in the external auditory meatus, the absence of ultrasonic radiation into the external auditory meatus and a high-intensity sound, and the possibility of direct measurement of the tympanic membrane impedance in the audio frequency range with any step. PMID:26518544

  3. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  4. Improved Calibration Of Acoustic Plethysmographic Sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Davis, David C.

    1993-01-01

    Improved method of calibration of acoustic plethysmographic sensors involves acoustic-impedance test conditions like those encountered in use. Clamped aluminum tube holds source of sound (hydrophone) inside balloon. Test and reference sensors attached to outside of balloon. Sensors used to measure blood flow, blood pressure, heart rate, breathing sounds, and other vital signs from surfaces of human bodies. Attached to torsos or limbs by straps or adhesives.

  5. Acoustic reflex and general anaesthesia.

    PubMed

    Farkas, Z

    1983-01-01

    Infant and small children are not always able to cooperate in impedance measurements. For this reason it was decided, -in special cases, -to perform acoustic reflex examination under general anaesthesia. The first report on stapedius reflex and general anaesthesia was published by Mink et al. in 1981. Under the effect of Tiobutabarbital, Propanidid and Diazepam there is no reflex response. Acoustic reflex can be elicited with Ketamin-hydrochlorid and Alphaxalone-alphadolone acetate narcosis. The reflex threshold remains unchanged and the amplitude of muscle contraction is somewhat increased. The method was used: 1. to assess the type and degree of hearing loss in children with cleft palate and/or lip prior to surgery. 2. to exclude neuromuscular disorders with indication of pharyngoplasties. 3. to quantify hearing level in children--mostly multiply handicapped--with retarded speech development. The results of Behavioral Observation and Impedance Audiometry are discussed and evaluated.

  6. Impedances of Tevatron separators

    SciTech Connect

    K. Y. Ng

    2003-05-28

    The impedances of the Tevatron separators are revisited and are found to be negligibly small in the few hundred MHz region, except for resonances at 22.5 MHz. The later are contributions from the power cables which may drive head-tail instabilities if the bunch is long enough.

  7. Longitudinal impedance of RHIC

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Mernick, K.

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  8. Implantable Impedance Plethysmography

    PubMed Central

    Theodor, Michael; Ruh, Dominic; Ocker, Martin; Spether, Dominik; Förster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Manoli, Yiannos; Zappe, Hans; Seifert, Andreas

    2014-01-01

    We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term. PMID:25123467

  9. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  10. Analyses of Impedance Microstructure and Wave Propagation Characteristics in Rocks

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Mukerji, T.

    2002-12-01

    Seismic methods are our primary tools to image subsurface structures and to derive information about microstructural properties at subsurface that are pertinent to exploration. However, velocity - physical property transforms are mostly empirical or qualitative in nature, mainly because microstructural descriptions are qualitative. Although, sedimentary systems produce distinctive textures that influence physical properties and seismic signatures, these textures are not quantified in terms comparable to seismic. We present a method to quantify microsctructure in terms of acoustic impedance and show how these microstructural impedance maps can be used to analyze wave propagation characteristics in rocks. Using image analyses techniques, the texture of the calibrated scanned images is quantified by spatial autocorrelation functions and binary morphological operations. Parametric modeling of the empirical autocorrelation functions is used to estimate the textural anisotropy. We quantify microstructural impedance anisotropy and compare these textural maps to ultrasonic velocity anisotropy measurements. Inclusion based effective medium theory is used to upscale the impedances at the microstructural scale to the core plug scale. In the example of optically opaque kerogen-rich shales, we find that 1. Acoustic impedance in kerogen shales increases with shale maturity, 2. Impedance measured on a micrometer scale and centimeter scale match well, indicating that seismic wave propagation are controlled by the microtexture 3. With increasing maturity, there is a transition from kerogen supported to grain supported framework We thank the Fraunhofer Institute for Nondestructive Testing (IZfP) for use of AM facilities, Walter Arnold (IZfP) for discussions about acoustic microscopy, ARCO and SRB Project for support. This work was performed under the auspices of National Science Foundation (Grant No. EAR 0074330) and Department of Energy (Award No. DE-FC26-01BC15354).

  11. Wear of a sequentially annealed polyethylene acetabular liner

    PubMed Central

    Gascoyne, Trevor C; Petrak, Martin J; Turgeon, Thomas R; Bohm, Eric R

    2014-01-01

    Background and purpose We previously reported on a randomized controlled trial (RCT) that examined the effect of adding tobramycin to bone cement after femoral stem migration. The present study examined femoral head penetration into both conventional and highly crosslinked polyethylene acetabular liners in the same group of RCT patients, with a minimum of 5 years of postoperative follow-up. Patients and methods Linear penetration of the femoral head into an X3 (Stryker) crosslinked polyethylene (XLPE) liner was measured in 18 patients (19 hips) using radiostereometric analysis (RSA). Femoral head penetration was also measured in 6 patients (6 hips) with a conventional polyethylene liner (CPE), which served as a control group. Results The median proximal femoral head penetration in the XLPE group after 5.5 years was 0.025 mm with a steady-state penetration rate of 0.001 mm/year between year 1 and year 5. The CPE liner showed a median proximal head penetration of 0.274 mm after 7.2 years, at a rate of 0.037 mm/year. Interpretation The Trident X3 sequentially annealed XLPE liner shows excellent in vivo wear resistance compared to non-crosslinked CPE liners at medium-term implantation. The rate of linear head penetration in the XLPE liners after > 5 years of follow-up was 0.001 mm/year, which is in close agreement with the results of previous studies. PMID:25140986

  12. Thermographic inspection of pipes, tanks, and containment liners

    SciTech Connect

    Renshaw, Jeremy B. Muthu, Nathan; Lhota, James R.; Shepard, Steven M.

    2015-03-31

    Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concrete for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.

  13. Thermographic inspection of pipes, tanks, and containment liners

    NASA Astrophysics Data System (ADS)

    Renshaw, Jeremy B.; Lhota, James R.; Muthu, Nathan; Shepard, Steven M.

    2015-03-01

    Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concrete for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.

  14. CANMET Gasifier Liner Coupon Material Test Plan

    SciTech Connect

    Mark Fitzsimmons; Alan Darby; Fred Widman

    2005-10-30

    The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

  15. Liners for ion transport membrane systems

    SciTech Connect

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  16. Formed platelet combustor liner construction feasibility, phase A

    NASA Astrophysics Data System (ADS)

    Hayes, W. A.; Janke, D. E.

    1992-09-01

    Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase

  17. Formed platelet combustor liner construction feasibility, phase A

    NASA Technical Reports Server (NTRS)

    Hayes, W. A.; Janke, D. E.

    1992-01-01

    Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase

  18. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  19. Acoustics of the piezo-electric pressure probe

    NASA Technical Reports Server (NTRS)

    Dutt, G. S.

    1974-01-01

    Acoustical properties of a piezoelectric device are reported for measuring the pressure in the plasma flow from an MPD arc. A description and analysis of the acoustical behavior in a piezoelectric probe is presented for impedance matching and damping. The experimental results are presented in a set of oscillographic records.

  20. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  1. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  2. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  3. Investigation of ground reflection and impedance from flyover noise measurements

    NASA Technical Reports Server (NTRS)

    Chapkis, R. L.; Marsh, A. H.

    1978-01-01

    An extensive series of flyover noise tests was conducted for the primary purpose of studying meteorological effects on propagation of aircraft noise. The test airplane, a DC 9-10, flew several level-flight passes at various heights over a taxiway. Two microphone stations were located under the flight path. A total of 37 runs was selected for analysis and processed to obtain a consistant set of 1/3 octave band sound pressure levels at half-second intervals. The goal of the present study was to use the flyover noise data to deduce acoustical reflection coefficients and hence, acoustical impedances.

  4. Superconducting active impedance converter

    SciTech Connect

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1992-12-31

    This invention is comprised of a transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10--80 K temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  5. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon

    2016-07-12

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  6. Impedance Measurement Box

    SciTech Connect

    Christophersen, Jon

    2011-01-01

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  7. A Comparison of Signal Enhancement Methods for Extracting Tonal Acoustic Signals

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.

    1998-01-01

    The measurement of pure tone acoustic pressure signals in the presence of masking noise, often generated by mean flow, is a continual problem in the field of passive liner duct acoustics research. In support of the Advanced Subsonic Technology Noise Reduction Program, methods were investigated for conducting measurements of advanced duct liner concepts in harsh, aeroacoustic environments. This report presents the results of a comparison study of three signal extraction methods for acquiring quality acoustic pressure measurements in the presence of broadband noise (used to simulate the effects of mean flow). The performance of each method was compared to a baseline measurement of a pure tone acoustic pressure 3 dB above a uniform, broadband noise background.

  8. Nondestructive laboratory measurement of geotechnical and geoacoustic properties through intact core-liner

    USGS Publications Warehouse

    Kayen, R.E.; Edwards, B.D.; Lee, H.J.

    1999-01-01

    High-resolution automated measurement of the geotechnical and geoacoustic properties of soil at the U.S. Geological Survey (USGS) is performed with a state-of-the-art multi-sensor whole-core logging device. The device takes measurements, directly through intact sample-tube wall, of p-wave acoustic velocity, of soil wet bulk density, and magnetic susceptibility. This paper summarizes our methodology for determining soil-sound speed and wet-bulk density for material encased in an unsplit liner. Our methodology for nondestructive measurement allows for rapid, accurate, and high-resolution (1 cm-spaced) mapping of the mass physical properties of soil prior to sample extrusion.

  9. Impedance Measurement Box

    SciTech Connect

    Morrison, William

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  10. Inverse potential scattering in duct acoustics.

    PubMed

    Forbes, Barbara J; Pike, E Roy; Sharp, David B; Aktosun, Tuncay

    2006-01-01

    The inverse problem of the noninvasive measurement of the shape of an acoustical duct in which one-dimensional wave propagation can be assumed is examined within the theoretical framework of the governing Klein-Gordon equation. Previous deterministic methods developed over the last 40 years have all required direct measurement of the reflectance or input impedance but now, by application of the methods of inverse quantum scattering to the acoustical system, it is shown that the reflectance can be algorithmically derived from the radiated wave. The potential and area functions of the duct can subsequently be reconstructed. The results are discussed with particular reference to acoustic pulse reflectometry.

  11. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  12. Subscale hot-fire testing of a formed platelet liner

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Hayes, William A.

    1993-01-01

    To investigate low-cost options for fabricating main combustion chambers, formed platelet liners are being developed. The savings in manufacturing time and cost associated with platelet liners are accompanied by promising thermal advantages, such as lower-wall temperatures and increased cycle life. A subscale liner was tested by NASA at Marshall Space Flight Center (MSFC) to demonstrate its thermal performance. Testing to date has provided chamber pressures up to 2524 psia, while a maximum chamber pressure of 2700 psia is planned. In general, the liner has remained in good condition and performed well, with only minor areas of localized roughening. Data from this subscale test program is being used to develop a full size chamber for testing on a Space Shuttle Main Engine at MSFC in 1994.

  13. IET. Stack interior. Masons lay fire brick liner, leaving air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Stack interior. Masons lay fire brick liner, leaving air layer between bricks and concrete wall. Date: May 20, 1955. INEEL negative no. 55-1306 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  14. High-speed velocimetry inside imploding cylindrical liners

    NASA Astrophysics Data System (ADS)

    Dolan, Daniel; Lemke, Ray; Dalton, Devon; Harding, Eric; McBride, Ryan; Martin, Matthew; Blue, Brent; Walker, Scott

    2014-03-01

    Dynamic planar compression is conceptually simple but difficult to maintain at extreme pressure (>5 Mbar). Higher pressures are attainable with imploding cylindrical liners, using Photonic Doppler velocimetry (PDV) to track the liner interior. PDV measures Doppler shift directly--1 GHz of beat frequency for every 1 km/s of velocity--requiring a special ``leapfrog'' approach for liners traveling in excess of 20 km/s. Single-point and multi-point PDV measurements have been performed in aluminum, beryllium, and tantalum liners under ramp compression, and the technique can readily applied to other implosion experiments. Combined with electrical current diagnostics, these measurements test thermodynamic equations of state at pressures up to 10 MBar and beyond. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  15. Method of repairing a wellbore liner for sand control

    SciTech Connect

    Dees, J.M.

    1992-10-13

    This patent describes a method of repairing a damaged wellbore liner for controlling sand and other fine materials. It comprises: positioning a quantity of fluid resin material in alignment with the portion of the wellbore liner to be repaired; positioning a gas generator in proximity with the fluid resin material; actuating the gas generator to increase wellbore pressure in a substantially instantaneous manner to a pressure substantially in excess of well pressure to force the fluid resin material from the wellbore into the damaged area of the wellbore liner; and subsequently polymerizing the resin material to form a consolidated, porous permeable matrix that allows the flow of production fluid into the well while preventing the flow of sand, or other fine materials into the well through the previously damaged area of the wellbore liner.

  16. The propagation and attenuation of complex acoustic waves in treated circular and annular ducts

    NASA Technical Reports Server (NTRS)

    Reethof, G.

    1976-01-01

    The propagation of plane waves and higher order acoustic modes in a circular multisectioned duct was studied. A unique source array consisting of two concentric rings of sources, providing phase and amplitude control in the radial, as well as circumferential direction, was developed to generate plane waves and both spinning and nonspinning higher order modes. Measurements of attenuation and radial mode shapes were taken with finite length liners between the hard wall sections of an anechoically terminated duct. Materials tested as liners included a glass fiber material and both sintered fiber metals and perforated sheet metals with a honeycomb backing. The fundamental acoustic properties of these materials were studied with emphasis on the attenuation of sound by the liners and the determination of local versus extended reaction behavior for the boundary condition. The experimental results were compared with a mathematical model for the multisectioned duct.

  17. Optimizing liner implosions for high energy density physics experiments

    SciTech Connect

    Ekdahl, C.; Humphries, S. Jr.

    1996-12-31

    Cylindrical metal shells imploded by magnetic fields - liners - are used as kinetic energy drivers for high energy density physics experiments in hydrodynamics and dynamic material property measurements. There are at least three ways in which liners have been, or are expected to be, used to produce high energy density, i.e., high pressure, in target materials. A common approach uses the liner as a convergent flyer plate, which impacts a material target cylinder after having been shocklessly accelerated across an intervening gap. The resultant shock and piston hydrodynamic flow in the target are used in exploration of a wide variety of phenomena and material properties. Another common method is to slowly compress a liner containing a material sample in a such fashion that little heating occurs. This technique is most useful for investigated physical properties at low temperature and extreme density. Finally, one can use a hybrid approach to shock heat with an impacting liner followed by slower adiabatic, if not isentropic, compression to explore material properties in extrema. The magnetic fields for driving these liners may be produced by either high explosive pulsed power generators or by capacitor banks. Here we will consider only capacitor banks.

  18. The Nature of the Energy Source in LINER's

    NASA Technical Reports Server (NTRS)

    Colina, L.; Koratkar, Anuradha

    1996-01-01

    LINER's (low-ionization nuclear emission-line regions) are found in about 30% of all bright galaxies, including luminous infrared galaxies. They form a heterogeneous class powered by a variety of ionizing mechanisms such as low-luminosity AGNs (active galactic nuclei), starbursts, shocks, or any combination of these. In early-type spirals, LINER's are powered by a low-luminosity AGN, or by an AGN surrounded by circumnuclear star-forming regions. In luminous infrared galaxies, LINER's are powered by starbursts with associated wind-related extended shocks, and an AGN may play a minor role, if any. LINER's in some FR I radio galaxies show strong evidence for the presence of a massive central black hole, and there are indications for the existence of shocks in the nuclear disks of these galaxies. Yet, the dominant ionizing mechanism for LINER's in radio-quiet ellipticals and FR I host galaxies is still unclear. Multifrequency high spatial resolution imaging and spectroscopy are essential to discriminate among the different ionizing mechanisms present in LINER's.

  19. Composite Liner, Multi-Megabar Shock Driver Development

    SciTech Connect

    Cochrane, J.C. Jr.; Bartsch, R.R.; Clark, D.A.; Morgan, D.V.; Anderson, W.E.; Lee, H.; Bowers, R.L.; Atchison, W.L.; Oona, H.; Stokes, J.L.; Veeser, L.R.; Broste, W.B.

    1998-10-18

    The multi-megabar shock driver development is a series of experiments in support of the Los Alamos High Energy Density Physics Experimental Program. Its purpose is to develop techniques to impact a uniform, stable, composite liner upon a high Z target to produce a multi-megabar shock for EOS studies. To date, experiments have been done on the Pegasus II capacitor bank with a current of {approximately}12MA driving the impactor liner. The driving field is {approximately}200 T at the target radius of 1cm. Data will be presented on the impactor liner. The driving field is {approximately}200 T at the target radius of 1 cm. Data will be presented on the stability and uniformity of the impactor liner when it impacts the target cylinder. Three experiments have been done with emphasis on liner development. Shock pressures greater than a megabar have been done with emphasis on liner development. Shock pressures greater than a megabar have been produced with an Al target cylinder. A Pt target cylinder should produce shock pressures in th e 5-megabar range.

  20. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  1. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  2. Uncertainty and Sensitivity Analyses of a Two-Parameter Impedance Prediction Model

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Parrott, T. L.; Watson, W. R.

    2008-01-01

    This paper presents comparisons of predicted impedance uncertainty limits derived from Monte-Carlo-type simulations with a Two-Parameter (TP) impedance prediction model and measured impedance uncertainty limits based on multiple tests acquired in NASA Langley test rigs. These predicted and measured impedance uncertainty limits are used to evaluate the effects of simultaneous randomization of each input parameter for the impedance prediction and measurement processes. A sensitivity analysis is then used to further evaluate the TP prediction model by varying its input parameters on an individual basis. The variation imposed on the input parameters is based on measurements conducted with multiple tests in the NASA Langley normal incidence and grazing incidence impedance tubes; thus, the input parameters are assigned uncertainties commensurate with those of the measured data. These same measured data are used with the NASA Langley impedance measurement (eduction) processes to determine the corresponding measured impedance uncertainty limits, such that the predicted and measured impedance uncertainty limits (95% confidence intervals) can be compared. The measured reactance 95% confidence intervals encompass the corresponding predicted reactance confidence intervals over the frequency range of interest. The same is true for the confidence intervals of the measured and predicted resistance at near-resonance frequencies, but the predicted resistance confidence intervals are lower than the measured resistance confidence intervals (no overlap) at frequencies away from resonance. A sensitivity analysis indicates the discharge coefficient uncertainty is the major contributor to uncertainty in the predicted impedances for the perforate-over-honeycomb liner used in this study. This insight regarding the relative importance of each input parameter will be used to guide the design of experiments with test rigs currently being brought on-line at NASA Langley.

  3. Acoustic metafluids.

    PubMed

    Norris, Andrew N

    2009-02-01

    Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic metafluids are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials. The derivation uses the notion of finite deformation to define the transformation of one region to another. The main result is found by considering energy density in the original and transformed regions. Properties of acoustic metafluids are discussed, and general conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially opens up the possibility of achieving broadband cloaking. PMID:19206861

  4. Computation of instantaneous and time-averaged active acoustic intensity field around rotating source

    NASA Astrophysics Data System (ADS)

    Mao, Yijun; Xu, Chen; Qi, Datong

    2015-02-01

    A vector aeroacoustics method is developed to analyze the acoustic energy flow path from the rotating source. In this method, the instantaneous and time-averaged active acoustic intensity vectors are evaluated from the time-domain and frequency-domain acoustic pressure and acoustic velocity formulations, respectively. With the above method, the acoustic intensity vectors and the acoustic energy streamlines are visualized to investigate the propagation feature of the noise radiated from the monopole and dipole point sources and the rotor in subsonic rotation. The result reveals that a portion of the acoustic energy spirals many circles before moving towards the far field, and another portion of the acoustic energy firstly flows inward along the radial direction and then propagates along the axial direction. Further, an acoustic black hole exists in the plane of source rotation, from which the acoustic energy cannot escape once the acoustic energy flows into it. Moreover, by visualizing the acoustic intensity field around the rotating sources, the acoustic-absorption performance of the acoustic liner built in the casing and centerbody is discussed.

  5. Reflection and Scattering of Acoustical Waves from a Discontinuity in Absorption

    NASA Astrophysics Data System (ADS)

    Jones, J. P.; Leeman, S.; Nolan, E.; Lee, D.

    The reflection and transmission of a plane acoustical wave from a planar boundary at the interface between two homogeneous media of different acoustical properties is a classical problem in acoustics that has served as a basis for many developments in acoustics for over 100 years. This problem, detailed in virtually every textbook on acoustics, provides us with the acoustical analogue to Snell's Law in optics and gives us correspondingly simple results. Classical acoustics predicts that a reflection from a boundary occurs only if the characteristic acoustical impedances of the two media are different. Here we show that a reflection also occurs if the media have the same impedances but different absorption coefficients. Our analysis yields some surprising results. For example, a reflection will occur at a discontinuity in absorption even if the impedance is uniform and continuous across the interface. In addition, a discontinuity in impedance at an interface between two media that have constant and equal, but non-zero absorption, results in a reflection coefficient that is dependent on absorption as well as impedance. In general, reflection coefficients now become frequency dependent. To experimentally test our results, we measured the reflection at the interface between water and castor oil, two liquids with similar impedances but very different absorption coefficients. Measurement of the reflection coefficient between 1 and 50 MHz demonstrated a frequency dependence that was in good agreement with our analysis.

  6. Hydraulic conductivity of desiccated geosynthetic clay liners

    SciTech Connect

    Boardman, B.T.; Daniel, D.E.

    1996-03-01

    Large-scale tests were performed to determine the effect of a cycle of wetting and drying on the hydraulic conductivity of several geosynthetic clay liners (GCLs). The GCLs were covered with 0.6 m of pea gravel and permeated with water. After steady seepage had developed, the water was drained away, and the GCL was desiccated by circulating heated air through the overlying gravel. The drying caused severe cracking in the bentonite component of the GCLs. The GCLs were again permeated with water. As the cracked bentonite hydrated and swelled, the hydraulic conductivity slowly decreased from an initially high value. The long-term, steady value of hydraulic conductivity after the wetting and drying cycle was found to be essentially the same as the value for the undesiccated GCL. It is concluded that GCLs possess the ability to self-heal after a cycle of wetting and drying, which is important for applications in which there may be alternate wetting and drying of a hydraulic barrier (e.g. within a landfill final cover).

  7. Expandable Metal Liner For Downhole Components

    DOEpatents

    Hall, David R.; Fox, Joe R.

    2004-10-05

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  8. Geosynthetic clay liners - slope stability field study

    SciTech Connect

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  9. Impoundment liner repair by electrophoresis of clay

    SciTech Connect

    Yeung, A.T.; Corapcioglu, M.Y.; Stallard, W.M.; Chung, M.

    1997-10-01

    Electrophoresis of clay particles from dilute suspensions is an innovative technology to seal leaks in operating surface impoundments that does not require removal of impoundment contents, exposure of workers to contaminants, or prior knowledge of the leak locations. A suspension of clay particles is added to the impoundment liquid. A cathode (negative electrode) is placed inside and an anode (positive electrode) is placed outside the leaking impoundment. A direct current (DC) electric field is imposed externally across the geomembrane liner through the leaks. The clay particles migrate to the leaks under the influence of the imposed electric field to form a clay cake seal. The results of laboratory experiments to evaluate the use of a DC electric field to direct migration of clay particles into a leak and the hydraulic integrity of the resulting seal are presented in this paper. The effects of clay type, clay particle concentration in suspension, size of leak, and electric field strength on the migration of clay particles and process of cake formation are evaluated. The sealing effectiveness and internal structure of the resulting clay cakes are examined by hydraulic conductivity measurements and nuclear magnetic resonance imaging. Electrophoretic mobilities of bentonite particles in different chemical environments were also measured to evaluate the feasibility of the technology in practical situations.

  10. Impedance group summary

    NASA Astrophysics Data System (ADS)

    Blaskiewicz, M.; Dooling, J.; Dyachkov, M.; Fedotov, A.; Gluckstern, R.; Hahn, H.; Huang, H.; Kurennoy, S.; Linnecar, T.; Shaposhnikova, E.; Stupakov, G.; Toyama, T.; Wang, J. G.; Weng, W. T.; Zhang, S. Y.; Zotter, B.

    1999-12-01

    The impedance working group was charged to reply to the following 8 questions relevant to the design of high-intensity proton machines such as the SNS or the FNAL driver. These questions were first discussed one by one in the whole group, then each ne of them assigned to one member to summarize. On the lst morning these contributions were publicly read, re-discussed and re-written where required—hence they are not the opinion of a particular person, but rather the averaged opinion of all members of the working group. (AIP)

  11. An experimental technique for determining middle ear impedance.

    PubMed

    Blayney, A W; McAvoy, G J; Rice, H J; Williams, K R

    1996-03-01

    A two-microphone technique was used to determine the middle ear impedance of a live subject. The procedure involved the application of standing wave tube theory and the assumption that the ear canal behaves like an homogeneous cylinder with plane acoustic wave propagation up to a certain frequency--2 kHz for the current analysis. During experimentation the subject lay on a bench with his head braced against a wooden fixture. Acoustic pressures were recorded from the ear canal by the use of a spectrum analyser and probe microphones with flexible tips. Resultant impedance curves show middle ear natural frequencies at 831 Hz and 1,970 Hz with high levels of damping. The reactive impedance curves show the influence of stiffness and ossicular mass on middle ear sound transmission. An advantage of the approach is that using features of the recorded data it is possible to calculate the effective probe tip to eardrum distance required for the calculation of the middle ear impedance. The two-microphone technique appears to be a promising tool for assessing healthy and diseased middle ear function. PMID:8725514

  12. Scattering from impedance gratings and surface wave formation.

    PubMed

    Zhu, Wenhao; Stinson, Michael R; Daigle, Gilles A

    2002-05-01

    The scattering problem of acoustic plane waves from comb-like impedance gratings on a rigid surface has been investigated in this paper. A rigorous analytic approach for homogeneous plane-wave incidence is presented based on the periodicity of the grating structure, in which the problem was solved as a mixed boundary value problem and the scattered field was represented by the tangent velocity difference across a partition wall of the grating. A singular integral equation has been derived for the tangent velocity difference, which can directly be solved with the Gauss-Chebyshev procedure. The resulting solution consists of a series of Bloch-Floquet waves (plane bulk wave and surface wave modes) with explicit expressions for the expansion coefficients. When the grating period is much less than the incident wavelength (ka < 1), the grating structure is equivalent to a plane impedance surface and no surface waves can be excited with homogeneous plane-wave incidence. When the grating period is comparable to the incident wavelength, resonance phenomena are predicted under certain conditions and surface waves can form, even with homogeneous plane-wave incidence. The dispersion relation for surface waves has also been examined. The impedance effects of the grating on the reflection and diffraction waves as well as on the dispersion and formation of surface waves have been studied, with the acoustically hard grating being the special case of the general impedance grating.

  13. Explanation of Anomalous Behavior Observed in Impedance Eduction Techniques Using Measured Data

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2010-01-01

    Several enhancements that improve the accuracy and robustness of an impedance eduction technique that use an automatic optimizer are presented. These enhancements are then used to launch an intensive investigation into the cause of anomalous behavior that occurs for a small number of test conditions. This anomalous behavior is investigated for both a hardwall insert and a conventional liner. The primary conclusions of the study are that: (1) for the hard wall insert, the anomalies are due to narrow peaks in the objective function, (2) For the conventional liner, the anomalies are due to the presence of an extremely flat objective function, and (3) the anomalies appear to be triggered by inconsistencies between the duct propagation model and the measured data. At high frequencies, the duct propagation model may need to include the effects of higher-order duct modes, whereas at low frequencies, the effects of the mean boundary layer may have to be included.

  14. Wave guide impedance matching method and apparatus

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.

  15. Aerogel as a Soft Acoustic Metamaterial for Airborne Sound

    NASA Astrophysics Data System (ADS)

    Guild, Matthew D.; García-Chocano, Victor M.; Sánchez-Dehesa, José; Martin, Theodore P.; Calvo, David C.; Orris, Gregory J.

    2016-03-01

    Soft acoustic metamaterials utilizing mesoporous structures have been proposed recently as a means for tuning the overall effective properties of the metamaterial and providing better coupling to the surrounding air. In this paper, the use of silica aerogel is examined theoretically and experimentally as part of a compact soft acoustic metamaterial structure, which enables a wide range of exotic effective macroscopic properties to be demonstrated, including negative density, density near zero, and nonresonant broadband slow-sound propagation. Experimental data are obtained on the effective density and sound speed using an air-filled acoustic impedance tube for flexural metamaterial elements, which have been investigated previously only indirectly due to the large contrast in acoustic impedance compared to that of air. Experimental results are presented for silica aerogel arranged in parallel with either one or two acoustic ports and are in very good agreement with the theoretical model.

  16. Acoustic Properties of Lens Materials for Ultrasonic Probes

    NASA Astrophysics Data System (ADS)

    Fujii, Hideji; Nakaya, Chitose; Takeuchi, Hiroshi; Kondo, Toshio; Ishikawa, Yasuo

    1995-01-01

    The acoustic velocities and densities of 20 types of commercial rubber have been measured at a frequency of 2 MHz at room temperature, and they are evaluated in terms of their application to an acoustic lens or an acoustic window of probes of an ultrasonic diagnostic instrument. Fluorosilicone rubber and phoshazene rubber have lower acoustic velocities than the human body, and they have excellent impedance matching with the human body. Both the acoustic velocities and densities of butadiene rubber, polybutadiene rubber, acrylic rubber and polyurethane match those of the human body. It is also described that rubber having good impedance matching with the human body can be fabricated by adjusting the volume fraction of the added filler.

  17. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  18. Optically stimulated differential impedance spectroscopy

    DOEpatents

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  19. IMPEDANCE OF FINITE LENGTH RESISTOR

    SciTech Connect

    KRINSKY, S.; PODOBEDOV, B.; GLUCKSTERN, R.L.

    2005-05-15

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity {sigma}, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency, k >> 1/a. In the equilibrium regime, , the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity {sigma}. In the transient regime, ka{sup 2} >> g, we derive analytic expressions for the impedance and wakefield.

  20. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  1. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  2. Underwater Acoustics.

    ERIC Educational Resources Information Center

    Creasey, D. J.

    1981-01-01

    Summarizes the history of underwater acoustics and describes related research studies and teaching activities at the University of Birmingham (England). Also includes research studies on transducer design and mathematical techniques. (SK)

  3. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  4. Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage

    SciTech Connect

    Cherry, J.L.; Smith, J.A.

    1998-11-19

    Incidents of liner corrosion in nuclear power containment structures have been recorded. These incidents and concerns of other possible liner corrosion in containment have prompted an interest in determining g the capacity of a degraded containment. Finite element analyses of a typical pressurized water reactor (PWR) reinforced concrete containment with liner corrosion were conducted using the A13AQUS finite element code with the ANACAP-U nonlinear concrete constitutive model. The effect of liner corrosion on containment capacity was investigated. A loss of coolant accident was simulated by applying pressure and temperature changes to the structure without corrosion to determine baseline failure limits, followed by multiple analyses of the containment with corrosion at different locations and varying degrees of liner degradation. The corrosion locations were chosen at the base of the containment wall, near the equipment hatch, and at the midheight of the containment wall. Using a strain-based failure criterion the different scenarios were evaluated to prioritize their effect on containment capacity

  5. Hydrodynamic Modeling of the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Hsu, Scott; Witherspoon, Doug; Gilmore, Marc

    2009-11-01

    Implosions of plasma liners in cylindrically or spherically convergent geometries can produce high pressures and temperatures with a confinement or dwell time of the order of the rarefaction timescale of the liner. The Plasma Liner Experiment (PLX), to be built at LANL, will explore and demonstrate the feasibility of forming imploding plasma liners with the spherical convergence of hypersonic plasma jets. Modeling will be performed using SPHC and MACH2. According to preliminary 3D SPHC results, high Z plasma liners imploding on vacuum with ˜1.5MJ of initial stored energy will reach ˜100kbar, which is a main objective of the experimental program. Among the objectives of the theoretical PLX effort are to assist in the diagnostic analysis of the PLX, identify possible deleterious effects due to instabilities or asymmetries, identify departures from ideal behavior due to thermal and radiative transport, and help determine scaling laws for possible follow-on applications of ˜1 Mbar HEDP plasmas and magneto-inertial fusion. An overview of the plan to accomplish these objectives will be presented, and preliminary results will be summarized.

  6. Non-contact optical three dimensional liner metrology.

    SciTech Connect

    Sebring, R. J.; Anderson, W. E.; Bartos, J. J.; Garcia, F.; Randolph, B.; Salazar, M. A.; Edwards, J. M.

    2001-01-01

    We optically captured the 'as-built' liner geometry of NTLX (near term liner experiments) for Shiva Star using ultra-precision ranging lasers. We subsequently verified the resulting digitized geometry against the 3D CAD model of the part. The results confirmed that the Liner contours are within designed tolerances but revealed subtle fabrication artifacts that would typically go undetected. These features included centimeters long waviness and saddle and bulge regions of 1 micron or less in magnitude. The laser technology typically provided 10 micron spatial resolution with {+-}12 nanometer ranging precision. Atlas liners in the future may have to be diamond turned and will have the centimeter wavelength and 100 angstrom amplitude requirements. The advantages of using laser technology are (1) it avoids surface damage that may occur with conventional contact probes and (2) dramatically improves spatial resolution over CMM, capacitance and inductance type probes. Our work is the result of a perceived future need to develop precision, non-contact, liner inspection techniques to verify geometry, characterize machining artifacts and map wall thickness on delicate diamond turned surfaces. Capturing 'as-built' geometry in a non-contact way coupled with part-to-CAD verification software tools creates a new metrology competency for MST-7.

  7. Overview, Status, and Plans of the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Awe, T. J.; Hanna, D. S.; Davis, J. S.; Witherspoon, F. D.; Cassibry, J. T.; Gilmore, M. A.; Hwang, D. Q.

    2010-11-01

    The Plasma Liner Experiment (PLX) is a multi-institutional collaboration that is exploring and demonstrating the feasibility of forming imploding spherical plasma liners to reach peak pressures ˜0.1 Mbar upon stagnation. The liners will be formed via merging of 30--60 dense high Mach number plasma jets (n˜10^17 cm-3, M˜10--35, v˜50--70 km/s, rjet˜5 cm) in spherically convergent geometry. We are aiming for two potential follow-on applications if this work is successful: (1) assembling repetitive, macroscopic (cm and μs scale) plasmas suitable for fundamental HEDLP scientific studies and (2) a standoff driver solution for magneto-inertial fusion. This is a staged project where scientific issues will be studied first at modest stored energies (˜300 kJ) before attempting to reach HED-relevant pressures (requiring ˜1.5 MJ)@. This poster provides an overview/status of the project and the research plan, which includes numerical/theoretical and experimental studies of plasma jet formation/acceleration, propagation/merging, liner convergence/stagnation, and laser driven beat waves for magnetizing the imploding liner.

  8. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  9. Materials analyses and electrochemical impedance of implantable metal electrodes.

    PubMed

    Howlader, Matiar M R; Ul Alam, Arif; Sharma, Rahul P; Deen, M Jamal

    2015-04-21

    Implantable electrodes with high flexibility, high mechanical fixation and low electrochemical impedance are desirable for neuromuscular activation because they provide safe, effective and stable stimulation. In this paper, we report on detailed materials and electrical analyses of three metal implantable electrodes - gold (Au), platinum (Pt) and titanium (Ti) - using X-ray photoelectron spectroscopy (XPS), scanning acoustic microscopy, drop shape analysis and electrochemical impedance spectroscopy. We investigated the cause of changes in electrochemical impedance of long-term immersed Au, Pt and Ti electrodes on liquid crystal polymers (LCPs) in phosphate buffered saline (PBS). We analyzed the surface wettability, surface and interface defects and the elemental depth profile of the electrode-adhesion layers on the LCP. The impedance of the electrodes decreased at lower frequencies, but increased at higher frequencies compared with that of the short-term immersion. The increase of impedances was influenced by the oxidation of the electrode/adhesion-layers that affected the double layer capacitance behavior of the electrode/PBS. The oxidation of the adhesion layer for all the electrodes was confirmed by XPS. Alkali ions (sodium) were adsorbed on the Au and Pt surfaces, but diffused into the Ti electrode and LCPs. The Pt electrode showed a higher sensitivity to surface and interface defects than that of Ti and Au electrodes. These findings may be useful when designing electrodes for long-term implantable devices.

  10. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wei, Qi; Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-11-01

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  11. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    SciTech Connect

    Tian, Ye; Wei, Qi Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-11-30

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  12. Acoustic Poisson-like effect in periodic structures.

    PubMed

    Titovich, Alexey S; Norris, Andrew N

    2016-06-01

    Redirection of acoustic energy by 90° is shown to be possible in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode is excited by matching Bragg scattering with a quadrupole scatterer resonance. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson-like effect is demonstrated using the first flexural resonance in cylindrical shells of elastic solids. Simulations for a finite array of acrylic shells that are impedance and index matched to water show dramatic acoustic energy redirection in an otherwise acoustically transparent medium. PMID:27369161

  13. Beryllium liner implosion experiments on the Z accelerator in preparation for Magnetized Liner Inertial Fusion (MagLIF)*

    NASA Astrophysics Data System (ADS)

    McBride, Ryan D.

    2012-10-01

    Magnetized Liner Inertial Fusion (MagLIF) [1] is a concept that involves using a pulsed electrical current to implode an initially-solid, cylindrical metal tube (liner) filled with preheated and magnetized fusion fuel. One- and two-dimensional simulations predict that if sufficient liner integrity can be maintained throughout the implosion, then significant fusion yield (>100 kJ) is possible on the 25-MA, 100-ns Z accelerator. The greatest threat to the liner integrity is the Magneto-Rayleigh-Taylor (MRT) instability, which first develops on the outer liner surface, and then works its way inward toward the inner surface throughout the implosion. Two-dimensional simulations predict that a thick liner, with Router/δR=6, should be robust enough to keep the MRT instability from overly disrupting the fusion burn at stagnation. This talk will present the first experiments designed to study a thick, MagLIF-relevant liner implosion through to stagnation on Z [2]. The use of beryllium for the liner material enabled us to obtain penetrating monochromatic (6151±0.5 eV) radiographs that reveal information about the entire volume of the imploding liner. This talk will also discuss experiments that investigated Z's pulse-shaping capabilities to either shock- or shocklessly-compress the imploding liners [3], as well as our most recent experiments that used 2-micron-thick aluminum sleeves to provide high-contrast tracers for the positions and states of the inner surfaces of the imploding beryllium liners. The radiography data to be presented provide stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities, where quantitative areal density measurements, particularly of convergent fusion targets, are relatively scarce. We will also present power-flow tests of the MagLIF load hardware as well as new micro-B-dot measurements of the azimuthal drive magnetic field that penetrates the initially vacuum

  14. In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)

    SciTech Connect

    Melchior, S.

    1997-12-31

    Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m{sup 2} to 500 m{sup 2}. Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10{sup -10} m{sup 3} m{sup -2} s{sup -1} to 4 x 10{sup -8} m{sup 3} m{sup -2} s{sup -1}. Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates.

  15. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  16. Color stability of long-term soft denture liners.

    PubMed

    Shotwell, J L; Razzoog, M E; Koran, A

    1992-11-01

    The use of resilient denture liners in complete denture construction has become increasingly popular for providing comfort for denture wearers. The primary disadvantage of these materials is that the physical and mechanical properties change rapidly with time in a service environment. The purpose of this study is to evaluate the color stability of five commercially available soft denture liners as a function of accelerated aging. Color measurements were made before aging with a colorimeter and data processor. The samples were then weathered for 100 hours in an accelerated aging chamber in the presence of a xenon ultraviolet visible-light source, an intermittent water spray at 110 degrees F, and 90% humidity. After aging, color measurements were made again and color differences (delta E) were calculated. Results were statistically tested with analysis of variance and Scheffé intervals were calculated at 0.96. It was concluded that accelerated aging can be used to evaluate color stability of soft denture liners.

  17. Liner cooling research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Acosta, Waldo A.

    1987-01-01

    Described are recently completed and current advanced liner research applicable to advanced small gas turbine engines. Research relating to the evolution of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently under way at NASA Lewis Research Center. As part of this research, a reverse-flow combustor geometry was maintained while different advanced liner wall cooling techniques were investigated and compared to a baseline combustor. The performance of the combustors featuring counterflow film-cooled (CFFC) panels, transpiration cooled liner walls (TRANS), and compliant metal/ceramic (CMC) walls was obtained over a range of simulated flight conditions of a 16:1 pressure ratio gas turbine engine and fuel/air ratios up to 0.034. All the combustors featured an identical fuel injection system, identical geometric configuration outline, and similar designed internal aerothermodynamics.

  18. Fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1975-01-01

    The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.

  19. Cast adrift: Gortex cast liners allow greater patient activity.

    PubMed

    Dubowitz, Gerald; Miller, Deborah M

    2003-01-01

    Extremity fractures are a common injury, with nearly 1.5 million cases reported in the United States in 1998. Treatment often involves lengthy periods of immobilization. This report outlines the use of a Gortex cast liner by a subject who was able to engage in swimming and scuba diving during the healing process. We report that a Gortex cast liner may be considered for an active patient who is keen to return to limited activities during fracture healing. Apparently because of a lack of knowledge of their existence, physicians currently are underutilizing this method of casting in active patients. The use of Gortex liners elsewhere has been reported to have higher patient and physician satisfaction in both use and performance, with no reported detrimental effects on outcome.

  20. Optimization of a Ranchero driven high energy liner driver system

    SciTech Connect

    Atchison, Walter L; Kaul, Ann; Rousculp, Chris L; Watt, Robert G

    2008-01-01

    An experimental series is planned to implode a dense heavy liner to a velocity in excess of 1 cm/microsecond (10 mm/microsecond) using a RANCHERO coaxial explosive flux compression generator. The goal of this study is to choose the liner mass and starting radius that will deliver the greatest amount of kinetic energy to a target at 1 cm final radius. In this study we used the 1D-MHD simulation code RA YEN to search for the proper initial conditions. The results will be used as a starting point for 2-D simulations and preliminary designs for the first experiments planned in the 2009/2010 time frame. The preliminary results indicate that a liner velocity of 1.25 cm/microsecond and a kinetic energy of greater than 4 megajoules may be possible.

  1. Transmissivity evolution through interface of composite liners under applied constraint.

    PubMed

    Diagne, M

    2011-08-01

    In landfill liners, geomembranes have defects that constitute preferential passages of leachate from rainwater percolation. Non-woven geotextiles are widely used in wastelandfills as materials having the functions of protection, separation, filtration and drainage. This study seeks to select geotextiles through an investigation conducted among landfill operators who commonly arise a geotextile in the geomembrane-clay interface to facilitate geomembrane welding and to prevent its puncture by angular materials. It also attempts to find out the influence of geotextile in a decimetric transmissivity cell size under 50 kPa stress and smooth ground surface. The results show that the transmissivity in composite liner interface is almost the same as the one calculated with the European standard EN ISO 12958. Transmissivity depends on the mechanical stress applied to the bottom liner, on the geotextile type in the interface and on the ground surface.

  2. Technique for measurement of characteristic impedance and propagation constant for porous materials

    NASA Astrophysics Data System (ADS)

    Jung, Ki Won; Atchley, Anthony A.

    2005-09-01

    Knowledge of acoustic properties such as characteristic impedance and complex propagation constant is useful to characterize the acoustic behaviors of porous materials. Song and Bolton's four-microphone method [J. Acoust. Soc. Am. 107, 1131-1152 (2000)] is one of the most widely employed techniques. In this method two microphones are used to determine the complex pressure amplitudes for each side of a sample. Muehleisen and Beamer [J. Acoust. Soc. Am. 117, 536-544 (2005)] improved upon a four-microphone method by interchanging microphones to reduce errors due to uncertainties in microphone response. In this paper, a multiple microphone technique is investigated to reconstruct the pressure field inside an impedance tube. Measurements of the acoustic properties of a material having square cross-section pores is used to check the validity of the technique. The values of characteristic impedance and complex propagation constant extracted from the reconstruction agree well with predicted values. Furthermore, this technique is used in investigating the acoustic properties of reticulated vitreous carbon (RVC) in the range of 250-1100 Hz.

  3. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure-integrity test below that liner shoe, or subsequent liner shoes if set. The District Manager may... a minimum of 500 psi above the formation fracture pressure at the casing shoe into which the...

  4. Acoustic bandpass filters employing shaped resonators

    NASA Astrophysics Data System (ADS)

    Červenka, M.; Bednařík, M.

    2016-11-01

    This work deals with acoustic bandpass filters realized by shaped waveguide-elements inserted between two parts of an acoustic transmission line with generally different characteristic impedance. It is shown that the formation of a wide passband is connected with the eigenfrequency spectrum of the filter element which acts as an acoustic resonator and that the required filter shape substantially depends on whether the filter characteristic impedance is higher or lower than the characteristic impedance of the waveguide. It is further shown that this class of filters can be realized even without the need of different characteristic impedance. A heuristic technique is proposed to design filter shapes with required transmission properties; it is employed for optimization of low-frequency bandpass filters as well as for design of bandpass filters with wide passband surrounded by wide stopbands as it is typical for phononic crystals, however, in this case the arrangement is much simpler as it consists of only one simple-shaped homogeneous element.

  5. Constraining the Accretion Mode in LINER 1.9s

    NASA Astrophysics Data System (ADS)

    Sabra, Bassem; Der Sahaguian, Elias; Badr, Elie

    2016-01-01

    The accretion mode and the dominant power source in low-ionization nuclear emission-line regions (LINERs), a class of active galactic nuclei (AGN), are still elusive. We focus on a sample of 22 LINER 1.9s (Ho et al. 1997), a subclass of LINERs that show broad Halpha lines, a signature of blackhole-powered accretion, to test the hypothesis that the ionizing continuum emitted by a radiatively inefficient accretion flow (RIAF) could lead to the LINER ultraviolet (UV) emission-line ratios. Optical line-ratio diagrams are a weak diagnostic tool in distinguishing between possible power sources (Sabra et al. 2003). We search the Mikulski Archive for Space Telescopes (MAST) for UV spectra of the objects in the above sample and also perform photoionization simulations using CLOUDY (Ferland et al. 2013). Unfortunately, only one object (NGC 1052; Gabel et al. 2000) of the 22 LINER 1.9s has UV spectra that cover many emission lines; the rest of the objects either do not have any UV spectra, the spectral coverage is in-adequate, or the spectra have very low signal-to-noise ratios. Our photoionization simulations set up two identical grids of clouds with a range of densities and ionization parameters. We illuminate one grid with radiation emitted by a thin accretion disk (AD) and we illuminate the other grid with radiation from a RIAF. We overplot the UV emission-line ratio predictions for AD and RIAF illumination, together with the available line ratios for NGC 1052. Initial results show that UV lines could be used as diagnostics for the accretion mode in AGN. More UV spectral coverage of LINER 1.9s is needed in order to more fully utilize the diagnostic powers of UV emission line ratios.

  6. Impedance in School Screening Programs.

    ERIC Educational Resources Information Center

    Robarts, John T.

    1985-01-01

    This paper examines the controversy over use of impedance screening in public schools to identify students with hearing problems, including otitis media, a common ear condition in infants and young children. It cites research that questions the value of pure tone screening as a single test and raises critics' objections to the use of impedance,…

  7. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  8. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  9. Fracture Test Methods for Plastically Responding COPV Liners

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Lewis, Joseph C.

    2009-01-01

    An experimental procedure for evaluating the validity of using uniaxial tests to provide a conservative bound on the fatigue crack growth rate behavior small cracks in bi-axially loaded Composite Overwrapped Pressure Vessel (COPV) liners is described. The experimental procedure included the use of a laser notch to quickly generate small surface fatigue cracks with the desired size and aspect ratios. An out-of-plane constraint system was designed to allow fully reversed, fully plastic testing of thin sheet uniaxial coupons. Finally, a method was developed to determine to initiate small cracks in the liner of COPVs.

  10. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, S. B. Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H.; and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  11. Novel Processing of 81-mm Cu Shaped Charge Liners

    SciTech Connect

    Schwartz, A; Korzekwa, D

    2002-01-16

    A seven-step procedure was developed for producing shaped charge liner blanks by back extrusion at liquid nitrogen temperatures. Starting with a 38.1-mm diameter, 101.6-mm long cylinder at 77K, three forging steps with a flat-top die are required to produce the solid cone while maintaining low temperature. The solid cone is forged in four individual back extrusions at 77K to produce the rough liner blank. This procedure is capable of being run in batch processes to improve the time efficiency.

  12. Shock-absorbing behavior of four processed soft denture liners.

    PubMed

    Kawano, F; Kon, M; Koran, A; Matsumoto, N

    1994-12-01

    The cushioning effect of soft denture liners was evaluated with the use of a free drop test with an accelerometer. The materials tested included SuperSoft, Kurepeet-Dough, Molteno Soft, and Molloplast-B brands. All materials were found to reduce the impact force when compared with denture base resin. A 2.4 mm layer of soft denture material demonstrated good shock absorption. The Molloplast-B and Molteno Soft materials showed excellent shock absorption. When the soft denture liner was stored in distilled water for 180 days, the damping effect recorded for all materials tested was increased. The aging of all materials also affected the cushioning effect.

  13. Thermal Radiation Brightness in Double Liner and Dynamic Hohlraum

    NASA Astrophysics Data System (ADS)

    Zakharov, S. V.; Novikov, V. G.

    2001-10-01

    In the concept of the magnetically driven Double Liner ^1 and Dynamic Hohlraum ^2, the high intensity thermal X-radiation is generated by strongly radiating shock wave of colliding outer onto inner dens plasma shells (liners). The radiation is partially trapped by the outer liner and due to that radiation field inside may be much more intensive than outside. That trapped radiation may be used to irradiate a target for High Energy Density Physics or Inertial Confinement Fusion research. In this report we propose some ideas to optimize the Double Liner system to enhance trapped radiation brightness in current and future experiments. Our ideas are based on the model ^1 and new level of understanding of physical processes in Double Liner dynamics and radiation behavior in non-LTE heavy ion plasmas. In our model, due to a diffusive and convective (in view of Rayleigh-Taylor instability) penetration of high magnetic field into heavy ion plasma of the outer shell the radiating shock wave is generated in a substance of the inner liner by the compressed magnetic field pressure. The high intensity thermal radiation is produced in the shock wave as result of a chain of processes i.e. light ion component viscosity heating, electron heating in ion-electron elastic collisions, electron excitation of doped multicharged (Z>>1) ions. For this reason and to be optically thin to ensure a penetration of radiation to target from one side and to produce the line X-radiation effectively from the other one the inner shell substance is compounded from light and heavy atoms in certain proportion. The radiation is reabsorbed and thermolized by outer liner plasma shell. To intensify reabsorbing and thermolizing the outer shell has to contain some portion of the same kind of heavy ions like inner one and to consist of mixture of heavy ions with overlapping line wings of different ions and covering the whole substantial spectral band. Brightness for pure tungsten outer shell and optimal

  14. Diagnosing magnetized liner inertial fusion experiments on Z

    DOE PAGES

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; et al

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  15. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; McBride, Ryan D.; Jennings, Christopher; Geissel, Matthias; Harvey-Thompson, Adam James; Peterson, K. J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Herrmann, Mark C.; Mark Harry Hess; Johns, Owen; Lamppa, Derek C.; Martin, Matthew; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, Diana; Tomlinson, K.

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  16. The analysis of directionality of honed cylinder liners surfaces.

    PubMed

    Pawlus, P; Reizer, R; Wieczorowski, M

    2014-01-01

    Various methods describing the directionality of honed cylinder liner surface topography are compared. The procedure of deep valleys recognition and determination of angular spectra on the basis of ratio of valleys widths in perpendicular directions is described in detail. The applications of deep valleys analysis, power spectral density, and cross-correlation functions for measured plateau-honed cylinder surface topographies were studied. It was found that method based on the deep valleys study assured correct values of honing angle estimation. Procedure of sampling interval selection for this method application was developed. Usefulness of deep valleys analysis for obtaining parameters characterizing other features specific for cylinder liner surfaces is described. PMID:23784941

  17. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  18. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  19. Effect of liner and porcelain application on zirconia surface structure and composition.

    PubMed

    Alghazzawi, Tariq F; Janowski, Gregg M

    2016-01-01

    The purpose of this study was to determine if there is an effect of liner and porcelain application (layering and pressing techniques) on the surface of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), which were exposed to permutations of liner, layered porcelain, and pressed porcelain. Scanning electron microscope (SEM)/energy dispersive spectroscope (EDS) was used to identify changes in composition and microstructure after removing liner and porcelain with hydrofluoric acid. Simulated aging was also conducted to determine the effect of liner and porcelain on low-temperature degradation. The control group had a typical equiaxed grain structure, referred to as unaffected. When covered with liner or porcelain, some areas changed in structure and composition and were termed affected. The frequency of affected structure decreased when liner was covered with either layered porcelain or pressed porcelain. There were statistical differences (P<0.05) in the composition between affected and unaffected for zirconium (layered porcelain with liner: affected=60% (0.8%) (m/m), unaffected=69% (4%), layered porcelain without liner: affected=59% (3%), unaffected=65% (3%)) and oxygen (layered porcelain with liner: affected=35% (2%), unaffected=26% (4%), layered porcelain without liner: affected=35% (3%), unaffected=30% (2%)). However, there were statistical differences (P<0.05) in the composition for zirconium and oxygen of the aged layered porcelain without liner only. The liner should not be used before porcelain application, especially when using the layering technique for zirconia restorations. Furthermore, pressing should be considered the technique of choice over layering.

  20. Acoustic sensor array extracts physiology during movement

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2001-08-01

    An acoustic sensor attached to a person's neck can extract heart and breath sounds, as well as voice and other physiology related to their health and performance. Soldiers, firefighters, law enforcement, and rescue personnel, as well as people at home or in health care facilities, can benefit form being remotely monitored. ARLs acoustic sensor, when worn around a person's neck, picks up the carotid artery and breath sounds very well by matching the sensor's acoustic impedance to that of the body via a gel pad, while airborne noise is minimized by an impedance mismatch. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that obscure the meaningful physiology. To exacerbate signal extraction, these interfering signals are usually covariant with the heart sounds, in that as a person walks faster the heart tends to beat faster, and motion noises tend to contain low frequency component similar to the heart sounds. A noise-canceling configuration developed by ARL uses two acoustic sensor on the front sides of the neck as physiology sensors, and two additional acoustic sensor on the back sides of the neck as noise references. Breath and heart sounds, which occur with near symmetry and simultaneously at the two front sensor, will correlate well. The motion noise present on all four sensor will be used to cancel the noise on the two physiology sensors. This report will compare heart rate variability derived from both the acoustic array and from ECG data taken simultaneously on a treadmill test. Acoustically derived breath rate and volume approximations will be introduced as well. A miniature 3- axis accelerometer on the same neckband provides additional noise references to validate footfall and motion activity.

  1. The acoustic monopole in motion

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Liu, C. H.

    1976-01-01

    The results of an experiment are presented in which a small monochromatic source which behaves like an acoustic monopole when stationary is moved at a constant speed over an asphalt surface past stationary microphones. An analysis of the monopole moving above a finite impedance reflecting plane is given. The theoretical and experimental results are compared for different ground to observer heights, source frequencies, and source velocities. A computation of the effects of source acceleration on the noise radiated by the monopole is also presented.

  2. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    DOEpatents

    Richardson, John G.

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  3. I/O impedance controller

    DOEpatents

    Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan

    2004-03-09

    There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.

  4. FORENSIC INVESTIGATION OF A GENERATION OLD CIPP LINER

    EPA Science Inventory

    There is limited information regarding the in-situ performance of rehabilitation methods used for prolonging the service life of buried municipal pipeline systems. With some CIPP liners nearly 30 years in service, municipalities are expressing a strong interest in the collection ...

  5. Slope Stability of Geosynthetic Clay Liner Test Plots

    EPA Science Inventory

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  6. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    NASA Technical Reports Server (NTRS)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  7. A flash x-ray system for diagnosing liner implosions

    SciTech Connect

    Anderson, B. G.; Oro, D. M.; Olson, R. T.; Studebaker, J. K.; Platts, D.

    2003-01-01

    This paper describes a low energy flash X-ray system that is ideal for radiographing a wide variety of experimental phenomenon on both capacitor-bank pulsed power facilities and explosively driven magnetic-flux compression experiments. The versatility of this system has allowed us to obtain both single X-radiographs of imploding liners and multiple, temporally resolved radiographic sequences of target evolution. The dynamic liner radiographs are acquired with radially oriented X-ray heads that are instrumental for observing and diagnosing liner shape and symmetry, Rayleigh-Taylor instability growth, and liner-glide plane interaction (see Fig. 1). Multiframe radiographs acquired along the axis of a cylindrical target are used to provide physical data on phenomena such as shock-driven target hydrodynamics, Richtmyer-Meshkov instability growth, spall, fiction, and equations of state. The flexibility of this X-ray system has also allowed it to be successfully fielded both at various gas and powder gun facilities and explosively driven shock physics experiments.

  8. High-Yield Magnetized Liner Fusion Explosions and Blast Mitigation

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Vesey, Roger; Cuneo, Michael

    2011-10-01

    Cylindrical liner implosions with preheated and magnetized deuterium-tritium (DT) are predicted to reach fusion conditions on present pulsed power machines [S.A. Slutz et al Phys. Plasmas 17, 056303 (2010)]. We present simulations indicating that high yields (1-10 GJ) and gains (100-1000) may be possible at currents of about 60-70 MA if a cryogenic layer of solid DT is provided on the inside surface of the metal liner. A hot spot is formed from the central preheated magnetized low-density gas and a burn wave propagates radially into the surrounding cold dense fuel. These yields and gains are more than adequate for inertial fusion energy. However, the pulsed-power driver must be protected from the blast of these high-yield explosions. Numerical simulations are presented which show that the blast can be deflected and the fusion neutrons absorbed by a blanket that partially surrounds the liner. Thus a modest length transmission line can be used to deliver power to the liner. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Conductivity and transit time estimates of a soil liner

    USGS Publications Warehouse

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.H.; Herzog, B.L.

    1990-01-01

    A field-scale soil linear was built to assess the feasibilty of constructing a liner to meet the saturated hydraulic conductivity requirement of the U.S. EPA (i.e., less than 1 ?? 10-7 cm/s), and to determine the breakthrough and transit times of water and tracers through the liner. The liner, 8 ?? 15 ?? 0.9 m, was constructed in 15-cm compacted lifts using a 20,037-kg pad-foot compactor and standard engineering practices. Estimated saturated hydraulic conductivities were 2.4 ?? 10-9 cm/s, based on data from large-ring infiltrometers; 4.0 ?? 10-8 cm/s from small-ring infiltrometers; and 5.0 ?? 10-8 cm/s from a water-balance analysis. These estimates were derived from 1 year of monitoring water infiltration into the linear. Breakthrough of tracers at the base of the liner was estimated to be between 2 and 13 years, depending on the method of calculation and the assumptions used in the calculation.

  10. Retrospective Study of In-Service CIPP Liners

    EPA Science Inventory

    Cured-in-place pipe (CIPP) has been used for rehabilitation of deteriorating wastewater pipes for nearly 30 years in the US with much success. However, little quantitative data is available regarding the performance of these liners, to verify their estimated design life of 50 yea...

  11. Risk assessment for the transportation of radioactive zeolite liners

    SciTech Connect

    Not Available

    1982-01-01

    The risk is estimated for the shipment of radioactive zeolite liners in support of the Zeolite Vitrification Demonstration Program currently underway at Pacific Northwest Laboratory under the sponsorship of the US Department of Energy. This program will establish the feasibility of zeolite vitrification as an effective means of immobilizing high-specific-activity wastes. In this risk assessment, it is assumed that two zeolite liners, each loaded around July 1, 1981 to 60,000 Ci, will be shipped by truck around January 1, 1982. However, to provide a measure of conservatism, each liner is assumed to initially hole 70,000 Ci, with the major radioisotopes as follow: /sup 90/Sr = 3000 Ci, /sup 134/Cs = 7000 Ci, /sup 137/Cs = 60,000 Ci. Should shipment take place with essentially no delay after initial loading (regardless of loading date), the shipment loading would be only 2.7% higher than that for the assumed six-month delay. This would negligibly affect the overall risk. As a result of this risk assessment, it is concluded that the transport of the radioactive zeolite liners from TMI to PNL by truck can be conducted at an insignificant level of risk to the public.

  12. Improved materials for durable rings, liners, and injector nozzles

    SciTech Connect

    Mehan, R.L.; Rairden, J.R.

    1990-06-01

    This report is the first Topical Report on the subject of Durability. The work was performed at GE's Research and Development Center (GE-CRD) in support of GE Transportations system's (GETS) effort to develop the necessary technology for future commercialization of a coal-fueled diesel power system. The technical areas covered are durable materials development for piston rings, cylinder liners, and injector nozzles. The development of an erosion-resistant nozzle for the coal-fueled locomotive was given the highest priority. Erosion tests demonstrated that nozzles built of diamond would withstand the erosive nature of the high-velocity slurry. A nozzle with diamond nozzles was designed, fabricated, and tested in a test engine. The development of piston rings and cylinder liners that could withstand the abrasive nature of the coal ash-deposited on the combustion liner was also a high priority activity. Bench scale tests were used to select optimized materials and processing conditions for plasma-deposited coatings. Tungsten carbide/cobalt was the material of choice for both the ring and liner. Small-scale engine components were built and tested. Finally, test were conducted to identify the optimum plasma spray processing conditions for deposits of tungsten carbide/cobalt mixtures. The results of these tests are described. 13 refs., 21 figs., 10 tabs.

  13. Mesoscale Probing of Local Perturbations in PBX-driven Liners

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Guirguis, Raafat; Rodrigues, Luis; Mendes, Ricardo; Plaksin, Svyatoslav; ADAI, Univ of Coimbra; NSWC-IH Collaboration

    2013-06-01

    Efforts are aimed on experimental studies of how to improve a dynamic performance of the shaped charge jet. We postulated four basic elements to the problem: (1) The fluctuations in properties inherent in PBXs cause kinetic localizations in the detonation reaction zone (DRZ) structure, which cause (2) perturbations in the detonation products velocity and pressure, which induce (3) Perturbations in the response of the PBX-driven liner; and (4) Local perturbations/instabilities in liner are amplified during its collapse phase causing micro-fragmentations and ejected debris from the cumulative jet at initial stage, and then the incoherence and premature breakup of the resulting shaped charge jet. Spatially-resolved scenarios of each of phenomena (1-4) were obtained in experiments with copper-liners and HMX-based PBXs fabricated on maximum packing density of crystalline constituents, in which the DRZ-induced perturbations were recorded and quantitatively measured in the mesoscale range with application of the 96-channel optical analyzer MCOA-UC. Obtained experimental evidence is indicative that ejecta from the DRZ and ejecta-driven detonation cells are dominating in wide spectrum perturbations translated to a PBX-driven liner. This work was supported by the Office of Naval Research under the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and Shawn Thorne Program Managers.

  14. Fracture of the alumina-bearing couple delta ceramic liner.

    PubMed

    Taheriazam, Afshin; Mohajer, Mohammad Azizbaig; Aboulghasemian, Mansoour; Hajipour, Babak

    2012-01-01

    The fracture rate of third-generation ceramic liners is greatly reduced compared with first- and second-generation liners because of improvements in the design and manufacturing process. Fractures of the alumina-bearing couple are rare for the same reason.This article describes a case of a fracture of an alumina-bearing couple delta ceramic liner without trauma history that was treated with ceramic-on-polyethylene revision total hip arthroplasty. A 57-year-old man was admitted to the hip ward because of an alumina-bearing couple delta ceramic liner fracture. He underwent hip replacement by anterior approach 18 months previously in the same center because of left hip primary osteoarthritis. He received a 54×36-mm modular press-fit cup ceramic alumina-bearing couple delta insert. Probable causes of such fractures are manufacture production failure and edge loading based on cup inclination, but in our patient, inacceptable range of motion, failure of the locking mechanism during implantation insertion, or cracking were possible causes of fracture.Although the fracture rate of third-generation alumina-bearing couples is low, we believe that it may not be possible to eliminate the actual risk of alumina head fracture. Patients should be informed about the potential for this complication before receiving an alumina-bearing couple.

  15. Evaluation of a stack: A concrete chimney with brick liner

    SciTech Connect

    Joshi, J.R.; Amin, J.A.; Porthouse, R.A.

    1995-12-31

    A 200 ft. tall stack, consisting of a concrete chimney with an independent acid proof brick liner built in the 1950`s, serving the Separations facility at the Savannah River Site (SRS), was evaluated for the performance category 3 (PC3) level of Natural Phenomena Hazards (NPH) effects. The inelastic energy absorption capacity of the concrete chimney was considered in the evaluation of the earthquake resistance, in particular, to compute the F{sub {mu}} factor. The calculated value of F{sub {mu}} exceeded 3.0, while the seismic demand for the PC3 level, using an F{sub {mu}} value of 1.5, was found to be less than the capacity of the concrete chimney. The capacity formulation of ACI 307 was modified to incorporate the effect of an after design opening on the tension side. There are considerable uncertainties in determining the earthquake resistance of the independent brick liner. The critical liner section, located at the bottom of the breeching opening, does not meet the current recommendations. A discussion is provided for the possible acceptable values for the ``Moment Reduction Factor``, R{sub w} or F{sub {mu}} for the liner. Comments are provided on the comparison of stack demands using response spectra (RS) versus time history (TH) analysis, with and without soil structure interaction (SSI) effects.

  16. 225-B Pool Cell 5 Liner Leak Investigation

    SciTech Connect

    Rasmussen, J.H., Westinghouse Hanford

    1996-06-07

    This document describes the actions taken to confirm and respond to a very small (0.046 ml/min) leak in the stainless steel liner of Hanford`s Waste Encapsulation and Storage Facility (WESF) storage pool cell 5 in Building 225-B. Manual level measurements confirmed a consistent weekly accumulation of 0.46 liters of water in the leak detection grid sump below the pool cell 5 liner. Video inspections and samples point to the capsule storage pool as the source of the water. The present leak rate corresponds to a decrease of only 0.002 inches per week in the pool cell water level, and consequently does not threaten any catastrophic loss of pool cell shielding and cooling water. The configuration of the pool cell liner, sump system, and associated risers will limit the short-term consequences of even a total liner breach to a loss of 1 inch in pool cell level. The small amount of demineralized pool cell water which has been in contact with the concrete structure is not enough to cause significant structural damage. However, ongoing water-concrete interaction increases. The pool cell leak detection sump instrumentation will be modified to improve monitoring of the leak rate in the future. Weekly manual sump level measurements continue in the interim. Contingency plans are in place to relocate the pool cell 5 capsules if the leak worsens.

  17. Impedance measurement techniques for one-port and two-port networks.

    PubMed

    Bai, Mingsian R; Lo, Yi-Yang; Chen, You Siang

    2015-10-01

    A microphone array impedance matrix measurement technique is presented for linear and passive acoustic two-port networks. Two impedance tubes fitted with three non-uniformly spaced microphones are required in the measurement. The non-uniform spacing is intended to avoid ill-posedness problems in calculating two plane-wave components traveling in opposite directions. Based on the one-port measurement, acoustic two-port networks modeled with the source and the load connected are examined. Three experimental procedures, the two-load measurement method (TLMM), the reciprocal-constrained method (RCM), and the reciprocity-symmetry-constrained method (RSCM), are developed to measure the acoustic impedance matrix. Experiments are conducted for several acoustic two-port systems to verify the proposed techniques. The results demonstrate the efficacy of the three experimental procedures when applied to symmetrical and reciprocal systems. For asymmetrical systems, the TLMM and RCM are preferred over the RSCM for measuring the impedance matrix. On top of that, the non-uniform array in conjunction with TLMM is extended to a general electroacoustic two-port system, which can be regarded as a unique contribution of the present work. PMID:26520309

  18. LDV measurement of bird ear vibrations to determine inner ear impedance and middle ear power flow

    NASA Astrophysics Data System (ADS)

    Muyshondt, Pieter G. G.; Pires, Felipe; Dirckx, Joris J. J.

    2016-06-01

    The mechanical behavior of the middle ear structures in birds and mammals is affected by the fluids in the inner ear (IE) that are present behind the oval window. In this study, the aim was to gather knowledge of the acoustic impedance of the IE in the ostrich, to be able to determine the effect on vibrations and power flow in the single-ossicle bird middle ear for future studies. To determine the IE impedance, vibrations of the ossicle were measured for both the quasi-static and acoustic stimulus frequencies. In the acoustic regime, vibrations were measured with a laser Doppler vibrometer and electromagnetic stimulation of the ossicle. The impedance of the inner ear could be determined by means of a simple RLC model in series, which resulted in a stiffness reactance of KIE = 0.20.1012 Pa/m3, an inertial impedance of MIE = 0.652.106 Pa s2/m3, and a resistance of RIE = 1.57.109 Pa s/m. The measured impedance is found to be considerably smaller than what is found for the human IE.

  19. Small gas turbine combustor experimental study: Compliant metal/ceramic liner and performance evaluation

    NASA Technical Reports Server (NTRS)

    Acosta, W. A.; Norgren, C. T.

    1986-01-01

    Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1) splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.

  20. Performance of semi-transportation-cooled liner in high-temperature-rise combustors

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.

    1981-01-01

    Results from tests with the Lamilloy combustor liner are compared with results obtained from a conventionally designed, film cooled, step-louver liner. Operation of the Lamilloy liner with counterrotating swirl combustor fuel modules with mixing venturis was possible to a fuel-air ratio of 0.065 without obtaining excessive liner metal temperatures. At the 0.065 fuel-air condition the average liner metal temperature was 140 K and the maximum local temperature 280 K above the inlet air temperature. Combustion efficiency, pattern factor, and smoke data are discussed.

  1. RQL Sector Rig Testing of SiC/SiC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Martin, Lisa C.; Brewer, David N.

    2002-01-01

    Combustor liners, manufactured from silicon carbide fiber-reinforced silicon carbide (SiC/SiC) were tested for 260 hr using a simulated gas turbine engine cycle. This report documents the results of the last 56 hr of testing. Damage occurred in one of the six different components that make up the combustor liner set, the rich zone liner. Cracks in the rich zone liner initiated at the leading edge due to stresses resulting from the component attachment configuration. Thin film thermocouples and fiber optic pyrometers were used to measure the rich zone liner's temperature and these results are reported.

  2. High-temperature combustor liner tests in structural component response test facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Paul E.

    1988-01-01

    Jet engine combustor liners were tested in the structural component response facility at NASA Lewis. In this facility combustor liners were thermally cycled to simulate a flight envelope of takeoff, cruise, and return to idle. Temperatures were measured with both thermocouples and an infrared thermal imaging system. A conventional stacked-ring louvered combustor liner developed a crack at 1603 cycles. This test was discontinued after 1728 cycles because of distortion of the liner. A segmented or float wall combustor liner tested at the same heat flux showed no significant change after 1600 cycles. Changes are being made in the facility to allow higher temperatures.

  3. Liners and Low Luminosity AGN in the ROSAT Database

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; West, Donald K. (Technical Monitor)

    2003-01-01

    This program has led to a series of papers being written and published in the Astrophysical Journal. Together these papers try to explain major parts of the LINER and low luminosity AGN puzzle. One paper ('Accretion Disk Instabilities, Cold Dark Matter Models, and Their Role in Quasar Evolution', Hatziminaoglou E., Siemiginowska A., & Elvis M., 2001, ApJ, 547, 90) describes an analytical model for the evolution of the quasar luminosity function. By combining the Press-Schechter formalism for the masses of initial structures with the luminosity distribution for a population of single mass black holes given by an unstable accretion disk an almost complete end-to-end physics-based model of quasar evolution is produced. In this model black holes spend 75% of their time in a low accretion state (at L(Edd)). This low state population of black holes is likely to be observed as the LINER and low luminosity AGNs in the local universe. Another paper ('Broad Emission Line Regions in AGN: the Link with the Accretion Power', Nicastro F., 2000, ApJ Letters, 530, L65) gives a physical basis for why low state black holes appear as LINERS. By linking the Lightman-Eardley instability in an accretion disk to the ori.gin of a wind that contains the broad emission line cloud material this model explains the large widths seen in these lines as being the Keplerian velocity of the disk at the instability radius. For LINERS the key is that below an accretion rate of 10(exp -3)M(sub Edd)the Lightman-Eardley instability falls within the innermost stable orbit of the disk, and so leaves the entire disk stable. No wind occurs, and so no broad emission lines are seen. Most LINERS are likely to be black holes in this low state. Tests of this model are being considered.

  4. Polyimide Aerogels and Porous Membranes for Ultrasonic Impedance Matching to Air

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Sands, Obed S.; Meador, Mary Ann B.

    2014-01-01

    This work investigates acoustic impedance matching materials for coupling 200 kHz ultrasonic signals from air to materials with similar acoustic properties to that of water, flesh, rubber and plastics. Porous filter membranes as well as a new class of cross-linked polyimide aerogels are evaluated. The results indicate that a single impedance matching layer consisting of these new aerogel materials will recover nearly half of the loss in the incident-to-transmitted ultrasound intensity associated with an air/water, air/flesh or air/gelatin boundary. Furthermore, the experimental results are obtained where other uncertainties of the "real world" are present such that the observed impedance matching gains are representative of real-world applications. Performance of the matching layer devices is assessed using the idealized 3-layer model of infinite half spaces, yet the experiments conducted use a finite gelatin block as the destination medium.

  5. Input impedance of microstrip antennas

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1982-01-01

    Using Richmond's reaction integral equation, an expression is derived for the input impedance of microstrip patch antennas excited by either a microstrip line or a coaxial probe. The effects of the finite substrate thickness, a dielectric protective cover, and associated surface waves are properly included by the use of the exact dyadic Green's function. Using the present formulation the input impedance of a rectangular microstrip antenna is determined and compared with experimental and earlier calculated results.

  6. Acoustic coupling in capacitive microfabricated ultrasonic transducers: modeling and experiments.

    PubMed

    Caronti, Alessandro; Savoia, Alessandro; Caliano, Giosuè; Pappalardo, Massimo

    2005-12-01

    In the design of low-frequency transducer arrays for active sonar systems, the acoustic interactions that occur between the transducer elements have received much attention. Because of these interactions, the acoustic loading on each transducer depends on its position in the array, and the radiated acoustic power may vary considerably from one element to another. Capacitive microfabricated ultrasonic transducers (CMUT) are made of a two-dimensional array of metallized micromembranes, all electrically connected in parallel, and driven into flexural motion by the electrostatic force produced by an applied voltage. The mechanical impedance of these membranes is typically much lower than the acoustic impedance of water. In our investigations of acoustic coupling in CMUTs, interaction effects between the membranes in immersion were observed, similar to those reported in sonar arrays. Because CMUTs have many promising applications in the field of medical ultrasound imaging, understanding of cross-coupling mechanisms and acoustic interaction effects is especially important for reducing cross-talk between array elements, which can produce artifacts and degrade image quality. In this paper, we report a finite-element study of acoustic interactions in CMUTs and experimental results obtained by laser interferometry measurements. The good agreement found between finite element modeling (FEM) results and optical displacement measurements demonstrates that acoustic interactions through the liquid represent a major source of cross coupling in CMUTs.

  7. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  8. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  9. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  10. DEVELOPMENT OF ASME SECTION X CODE RULES FOR HIGH PRESSURE COMPOSITE HYDROGEN PRESSURE VESSELS WITH NON-LOAD SHARING LINERS

    SciTech Connect

    Rawls, G.; Newhouse, N.; Rana, M.; Shelley, B.; Gorman, M.

    2010-04-13

    The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPa (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.

  11. Consideration of liners and covers in performance assessments

    SciTech Connect

    Phifer, Mark A.; Seitz, Robert R.; Suttora, Linda C.

    2014-09-18

    On-site disposal cells are in use and being considered at several United States Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These disposal cells are typically regulated by States and/or the U.S. Environmental Protection Agency under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management due to the radioactive waste. The USDOE-Environmental Management Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these CERCLA disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to CERCLA risk assessments and DOE Order 435.1 performance assessments in support of a Record of Decision and Disposal Authorization Statement, respectively. One of the issues considered by the working group, which is addressed in this report, was how to appropriately consider the performance of covers and liners/leachate collections systems in the context of a DOE Order 435.1 performance assessment (PA). This same information may be appropriate for consideration within CERCLA risk assessments for these facilities. These OSDCs are generally developed to meet hazardous waste (HW) disposal design standards under the Resource Conservation and Recovery Act (RCRA) as well as the DOE Order 435.1 performance based standards for disposal of radioactive waste. To meet the standards for HW, the facilities typically include engineered covers and liner/leachate collection systems. Thus, when considering such facilities in the context of a DOE Order 435.1 PA, there is a need to address the evolution of performance of covers and liner/leachate collection systems in the context of meeting a performance standard considering time

  12. A Numerical Theory for Impedance Education in Three-Dimensional Normal Incidence Tubes

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2016-01-01

    A method for educing the locally-reacting acoustic impedance of a test sample mounted in a 3-D normal incidence impedance tube is presented and validated. The unique feature of the method is that the excitation frequency (or duct geometry) may be such that high-order duct modes may exist. The method educes the impedance, iteratively, by minimizing an objective function consisting of the difference between the measured and numerically computed acoustic pressure at preselected measurement points in the duct. The method is validated on planar and high-order mode sources with data synthesized from exact mode theory. These data are then subjected to random jitter to simulate the effects of measurement uncertainties on the educed impedance spectrum. The primary conclusions of the study are 1) Without random jitter the method is in excellent agreement with that for known impedance samples, and 2) Random jitter that is compatible to that found in a typical experiment has minimal impact on the accuracy of the educed impedance.

  13. Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system.

    PubMed

    Moon, Seheum; Nam, Kyoungphile; Kim, Jae Young; Hwan, Shim Kyu; Chung, Moonkyung

    2008-01-01

    A compacted soil liner (CSL) has been widely used as a single barrier layer or a part of composite barrier layer in the landfill final cover system to prevent water infiltration into solid wastes for its acceptable hydraulic permeability. This study was conducted to test whether the CSL was also effective in prohibiting landfill gas emissions. For this purpose, three different compaction methods (i.e., reduced, standard, and modified Proctor methods) were used to prepare the soil specimens, with nitrogen as gas, and with water and heptane as liquid permeants. Measured gas permeability ranged from 2.03 x 10(-10) to 4.96 x 10(-9) cm(2), which was a magnitude of two or three orders greater than hydraulic permeability (9.60 x 10(-13) to 1.05 x 10(-11) cm(2)). The difference between gas and hydraulic permeabilities can be explained by gas slippage, which makes gas more permeable, and by soil-water interaction, which impedes water flow and then makes water less permeable. This explanation was also supported by the result that a liquid permeability measured with heptane as a non-polar liquid was similar to the intrinsic gas permeability. The data demonstrate that hydraulic requirement for the CSL is not enough to control the gas emissions from a landfill. PMID:17964132

  14. Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system.

    PubMed

    Moon, Seheum; Nam, Kyoungphile; Kim, Jae Young; Hwan, Shim Kyu; Chung, Moonkyung

    2008-01-01

    A compacted soil liner (CSL) has been widely used as a single barrier layer or a part of composite barrier layer in the landfill final cover system to prevent water infiltration into solid wastes for its acceptable hydraulic permeability. This study was conducted to test whether the CSL was also effective in prohibiting landfill gas emissions. For this purpose, three different compaction methods (i.e., reduced, standard, and modified Proctor methods) were used to prepare the soil specimens, with nitrogen as gas, and with water and heptane as liquid permeants. Measured gas permeability ranged from 2.03 x 10(-10) to 4.96 x 10(-9) cm(2), which was a magnitude of two or three orders greater than hydraulic permeability (9.60 x 10(-13) to 1.05 x 10(-11) cm(2)). The difference between gas and hydraulic permeabilities can be explained by gas slippage, which makes gas more permeable, and by soil-water interaction, which impedes water flow and then makes water less permeable. This explanation was also supported by the result that a liquid permeability measured with heptane as a non-polar liquid was similar to the intrinsic gas permeability. The data demonstrate that hydraulic requirement for the CSL is not enough to control the gas emissions from a landfill.

  15. Porosity of temporary denture soft liners containing antifungal agents

    PubMed Central

    Lima, Jozely Francisca Mello; Maciel, Janaína Gomes; Hotta, Juliana; Vizoto, Ana Carolina Pero; Honório, Heitor Marques; Urban, Vanessa Migliorini; Neppelenbroek, Karin Hermana

    2016-01-01

    ABSTRACT Incorporation of antifungals in temporary denture soft liners has been recommended for denture stomatitis treatment; however, it may affect their properties. Objective: To evaluate the porosity of a tissue conditioner (Softone) and a temporary resilient liner (Trusoft) modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm. Material and Methods: The porosity was measured by water absorption, based on exclusion of the plasticizer effect. Initially, it was determined by sorption isotherms that the adequate storage solution for specimens (65×10×3.3 mm) of both materials was 50% anhydrous calcium chloride (S50). Then, the porosity factor (PF) was calculated for the study groups (n=10) formed by specimens without (control) or with drug incorporation at MICs (nystatin: Ny-0.032 g, chlorhexidine diacetate: Chx-0.064 g, or ketoconazole: Ke-0.128 g each per gram of soft liner powder) after storage in distilled water or S50 for 24 h, seven and 14 d. Data were statistically analyzed by 4-way repeated measures ANOVA and Tukey's test (α=.05). Results: Ke resulted in no significant changes in PF for both liners in water over 14 days (p>0.05). Compared with the controls, Softone and Trusoft PFs were increased at 14-day water immersion only after addition of Ny and Chx, and Chx, respectively (p<0.05). Both materials showed no significant changes in PF in up to 14 days of S50 immersion, compared with the controls (p>0.05). In all experimental conditions, Softone and Trusoft PFs were significantly lower when immersed in S50 compared with distilled water (p<0.05). Conclusions: The addition of antifungals at MICs resulted in no harmful effects for the porosity of both temporary soft liners in different periods of water immersion, except for Chx and Ny in Softone and Chx in Trusoft at 14 days. No deleterious effect was observed for the porosity of both soft liners modified by the drugs at MICs over 14 days of S50 immersion

  16. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  17. Proposed ATLAS liner design fabricated for hydrodynamics experiments on Shiva Star

    SciTech Connect

    Anderson, W. E.; Adams, C. D.; Armijo, E. V.; Bartos, J. J.; Cameron, B. J.; Garcia, F.; Henneke, B.; Randolph, B.; Salazar, M. A.; Steckle, W. P. , Jr.; Turchi, Peter J.; Gale, D.

    2001-01-01

    An entirely new cylindrical liner system has been designed and fabricated for use on the Shiva Star capacitor bank. The design incorporates features expected to be applicable to a future power flow channel of the Atlas capacitor bank with the intention of keeping any required liner design modifications to a minimum when the power flow channel at Atlas is available. Four shots were successfully conducted at Shiva Star that continued a series of hydrodynamics physics experiments started on the Los Alamos Pegasus capacitor bank. Departures from the diagnostic suite that had previously been used at Pegasus required new techniques in the fabrication of the experiment insert package. We describe new fabrication procedures that were developed by the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division to fabricate the Shiva Star experiment loads. Continuing MST-7 development of interference fit processes for liner experiment applications, current joints at the glide planes were assembled by thermal shrink fit using liquid nitrogen as a coolant. The liner material was low strength, high conductance 1100 series aluminum. The liner glide plane electrodes were machined from full hard copper rod with a 10 ramp to maintain liner to glide plane contact as the liner was imploded. The parts were fabricated with 0.015 mm radial interference fit between the liner inside diameter (ID) and the glide plane outside diameter (OD). to form the static liner current joints. The liner was assembled with some axial clearance at each end to allow slippage if any axial force was generated as the liner assembly cassette was bolted into Shiva Star, a precaution to guard against buckling the liner during installation of the load cassette. Other unique or unusual processes were developed and are described. Minor adaptations of the liner design are now being fabricated for first Atlas experiments.

  18. Attenuation of landfill leachate by clay liner materials in laboratory columns: 2. Behaviour of inorganic contaminants.

    PubMed

    Thornton, S F; Lerner, D N; Tellam, J H

    2001-02-01

    The chemical attenuation of inorganic contaminants in methanogenic landfill leachate, spiked with heavy metals (Cd, Cd, Ni and Zn), by two UK clay liner materials was compared in laboratory columns over 15 months. Ammonium was attenuated by ion-exchange but this attenuation was finite and when exhausted, NH4 passed through the liners at concentrations found in the leachate. The breakthrough behaviour of NH4 could be described by a simple distribution coefficient. Heavy metals were attenuated by sorption and precipitation of metal sulphide and carbonate compounds near the top of the liner. Adequate SO4 and CaCO3 in the liner is necessary to ensure the long term retention of heavy metals, and pH buffering agents added to stabilise reactive metal fractions should be admixed with the liner. Some metals may not be chemically attenuated by clay liners due to the formation of stable complexes with organic and/or colloidal fractions in leachate. Flushing of the liners with oxygenated water after leachate caused mobilisation of attenuated contaminants. Sorbed NH4 was released by the liners but groundwater loadings were manageable. Re-oxidation of metal sulphides under these conditions resulted in the release of heavy metals from the liners when the pH buffering capacity was poor. Contaminant attenuation by the clay liners was similar and the attenuation of NH4 and heavy metals could be predicted from the geochemical properties of the liner using simple tests. A conceptual model of clay liner performance is presented. Chemical attenuation of inorganic pollutants can be included in containment liner design to produce a dual reactive-passive barrier for landfills.

  19. Attenuation of landfill leachate by clay liner materials in laboratory columns: 2. Behaviour of inorganic contaminants.

    PubMed

    Thornton, S F; Lerner, D N; Tellam, J H

    2001-02-01

    The chemical attenuation of inorganic contaminants in methanogenic landfill leachate, spiked with heavy metals (Cd, Cd, Ni and Zn), by two UK clay liner materials was compared in laboratory columns over 15 months. Ammonium was attenuated by ion-exchange but this attenuation was finite and when exhausted, NH4 passed through the liners at concentrations found in the leachate. The breakthrough behaviour of NH4 could be described by a simple distribution coefficient. Heavy metals were attenuated by sorption and precipitation of metal sulphide and carbonate compounds near the top of the liner. Adequate SO4 and CaCO3 in the liner is necessary to ensure the long term retention of heavy metals, and pH buffering agents added to stabilise reactive metal fractions should be admixed with the liner. Some metals may not be chemically attenuated by clay liners due to the formation of stable complexes with organic and/or colloidal fractions in leachate. Flushing of the liners with oxygenated water after leachate caused mobilisation of attenuated contaminants. Sorbed NH4 was released by the liners but groundwater loadings were manageable. Re-oxidation of metal sulphides under these conditions resulted in the release of heavy metals from the liners when the pH buffering capacity was poor. Contaminant attenuation by the clay liners was similar and the attenuation of NH4 and heavy metals could be predicted from the geochemical properties of the liner using simple tests. A conceptual model of clay liner performance is presented. Chemical attenuation of inorganic pollutants can be included in containment liner design to produce a dual reactive-passive barrier for landfills. PMID:11525477

  20. The evolution of instabilities during magnetically driven liner implosions.

    SciTech Connect

    Jennings, Christopher A.; Slutz, Stephen A.; Cuneo, Michael Edward; McBride, Ryan D.; Herrmann, Mark C.; Sinars, Daniel Brian

    2010-11-01

    Numerical simulations [S.A. Slutz et al Phys. Plasmas 17, 056303 (2010)] indicate that fuel magnetization and preheat could enable cylindrical liner implosions to become an efficient means to generate fusion conditions. A series of simulations has been performed to study the stability of magnetically driven liner implosions. These simulations exhibit the initial growth and saturation of an electro-thermal instability. The Rayleigh-Taylor instability further amplifies the resultant density perturbations developing a spectrum of modes initially peaked at short wavelengths. With time the spectrum of modes evolves towards longer wavelengths developing an inverse cascade. The effects of mode coupling, the radial dependence of the magnetic pressure, and the initial surface roughness will be discussed.

  1. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  2. Demonstration of laser speckle system on burner liner cyclic rig

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1986-01-01

    A demonstration test was conducted to apply speckle photogrammetry to the measurement of strains on a sample of combustor liner material in a cyclic fatigue rig. A system for recording specklegrams was assembled and shipped to the NASA Lewis Research Center, where it was set up and operated during rig tests. Data in the form of recorded specklegrams were sent back to United Technologies Research Center for processing to extract strains. Difficulties were found in the form of warping and bowing of the sample during the tests which degraded the data. Steps were taken by NASA personnel to correct this problem and further tests were run. Final data processing indicated erratic patterns of strain on the burner liner sample.

  3. FRACTURE PROPAGATION PROPENSITY OF CERAMIC LINERS DURING IMPINGEMENT-SUBLUXATION

    PubMed Central

    Elkins, Jacob M.; Pedersen, Douglas R.; Callaghan, John J.; Brown, Thomas D.

    2011-01-01

    Although improvements in materials engineering have greatly reduced fracture rates in ceramic femoral heads, concerns still exist for liners. Ceramics are vulnerable fracture due to impact, and from stress concentrations (point and line loading) such as those associated with impingement-subluxation. Thus, ceramic cup fracture propensity is presumably very sensitive to surgical cup positioning. A novel fracture mechanics finite element formulation was developed to identify cup orientations most susceptible to liner fracture propagation, for several impingement-prone patient maneuvers. Other factors being equal, increased cup inclination and increased anteversion were found to elevate fracture risk. Squatting, stooping and leaning shoe-tie maneuvers were associated with highest fracture risk. These results suggest that fracture risk can be reduced by surgeons’ decreasing cup abduction and by patients’ avoiding of specific activities. PMID:21855277

  4. Precision high energy liner implosion experiments PHELIX [1

    SciTech Connect

    Reass, William A; Baca, David M; Griego, Jeffrey R; Reinovsky, Robert E; Rousculp, Christopher L; Turchi, Peter J

    2009-01-01

    This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.

  5. Composite-Material Tanks with Chemically Resistant Liners

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  6. Micro-beam friction liner and method of transferring energy

    DOEpatents

    Mentesana, Charles

    2007-07-17

    A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.

  7. Zonal isolation and evaluation for cemented horizontal liners

    SciTech Connect

    Gai, H; Summers, T.D.; Cocking, D.A.; Greaves, C.

    1996-12-01

    This paper discusses the novel application of technology in the cementing and bond evaluation from the world-record breaking extended-reach drilling (ERD) wells in Wytch Farm, where horizontal liners of the order of 800 to 1,300 m at TVD of approximately 1,600 m have been successfully cemented and perforated. Detailed analysis of the conditions by a multidisciplinary team provided some practical procedures that enabled the authors to achieve their objectives of zonal isolation and cement bond evaluation successfully. Important aspects of zonal isolation, such as the use of spiral-blade centralizers, rotating the liner, and trials of the external casing packer (ECP), are discussed in detail. Cement bond evaluation is also detailed, involving coiled tubing (CT) deployment and various bond-logging tools, including ultrasonic tools. The cement bond log (CBL) was found to be surprisingly reliable if used correctly.

  8. Report of the SSC impedance workshop

    SciTech Connect

    1985-10-28

    This workshop focused attention on the transverse, single-bunch instability and the detailed analysis of the broadband impedance which would drive it. Issues discussed included: (1) single bunch stability -- impact of impedance frequency shape, coupled-mode vs. fast blowup regimes, possible stopband structure; (2) numerical estimates of transverse impedance of inner bellows and sliding contact shielded bellows; (3) analytic estimates of pickup and kicker impedance contributions; and (4) feasibility studies of wire and beam measurements of component impedance.

  9. NEW APPROACHES: A hot air balloon from dustbin liners

    NASA Astrophysics Data System (ADS)

    Weaver, Nicholas

    1998-07-01

    This article describes how a simple hot air balloon, inflated by a hair dryer, can be made out of household bin liners and Sellotape. It can be used at sixth-form level as an application of the ideal gas equation, = constant, and is rather more exciting than heated pistons. It gives a taste of a simple engineering design process, although the students do have to be reasonably adept at geometry and algebra.

  10. Liner Compression of a MAGO / Inverse-Pinch Configuration

    SciTech Connect

    Siemon, R E; Atchison, W L; Awe, T; Bauer, B S; Buyko, A M; Chernyshev, V K; Cowan, T E; Degnan, J H; Faehl, R J; Fuelling, S; Garanin, S F; Goodrich, T; Ivanovsky, A V; Lindemuth, I R; Makhin, V; Mokhov, V N; Reinovsky, R E; Ryutov, D D; Scudder, D W; Taylor, T; Yakubov, V B

    2005-05-18

    In the ''metal liner'' approach to Magnetized Target Fusion (MTF), a preheated magnetized plasma target is compressed to thermonuclear temperature and high density by externally driving the implosion of a flux conserving metal enclosure, or liner, which contains the plasma target. As in inertial confinement fusion, the principle fusion fuel heating mechanism is pdV work by the imploding enclosure, called a pusher in ICF. One possible MTF target, the hard-core diffuse z pinch, has been studied in MAGO experiments at VNIIEF, and is one possible target being considered for experiments on the Atlas pulsed power facility. Numerical MHD simulations show two intriguing and helpful features of the diffuse z pinch with respect to compressional heating. First, in two-dimensional simulations the m=0 interchange modes, arising from an unstable pressure profile, result in turbulent motions and self-organization into a stable pressure profile. The turbulence also gives rise to convective thermal transport, but the level of turbulence saturates at a finite level, and simulations show substantial heating during liner compression despite the turbulence. The second helpful feature is that pressure profile evolution during compression tends towards improved stability rather than instability when analyzed according to the Kadomtsev criteria. A liner experiment is planned for Atlas to study compression of magnetic flux without plasma as a first step. The Atlas geometry is compatible with a diffuse z pinch, and simulations of possible future experiments show that keV temperatures and useful neutron production for diagnostic purposes should be possible if a suitable plasma injector is added to the Atlas facility.

  11. Reliability-based condition assessment of steel containment and liners

    SciTech Connect

    Ellingwood, B.; Bhattacharya, B.; Zheng, R.

    1996-11-01

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs.

  12. Thin walled liner hanger equipment enables well deepening project

    SciTech Connect

    Sutherland, J.; Weaver, C.; Aiello, P.

    1996-12-31

    Shell Canada estimates that a thin-walled, slimhole design for liner equipment can save up to $3--4 million (US) per well in deep re-entry applications by allowing existing wells to be deepened (or sidetracked) rather than drilling new wells from surface. The design makes it possible to reenter existing wells, successfully isolate depleted zones, and deepen the well into virgin-pressured reservoirs. The design includes thin-walled, close-tolerance liner hangers, liner top packers, tie-back seal assemblies, and liner setting sleeves that provide reasonable burst and collapse resistance while maintaining an inside diameter to facilitate drilling deep, deviated 4-3/4 in. hole with a tapered 2-7/8 in. x 3-1/2 in. drill string. The authors will explain the design and the rationale behind it, and illustrate its value, using case studies from Shell Canada`s Waterton field as examples. In this field, gas-producing wells originally drilled in the 1950s, `60s and `70s to depths of up to 14,760 ft (4,500 m) were completed with perforations in 7 in. casing and open hole. These wells are now being reentered in an attempt to tap new reserves. The reentries encounter particularly challenging sour-gas/low-temperature/diverse-formation-pressure conditions. The objective of the reentry program is to seal off the depleted bottom zones of the wells and tap into the same fault-repeated formations at virgin pressure, at a deeper level.

  13. Effects of Non-Homogeneities on the Eigenmodes of Acoustic Pressure in Combustion Chambers

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Williams, F. A.

    1998-02-01

    Modifications to acoustic eigenmodes in combustion chambers such as those of liquid propellant rocket engines, produced by spatial variations of density and sound speed that arise mainly through progress of combustion processes, are analyzed by using a variational method. The variational principle shows that the eigenvalue is the ratio of a weighted acoustic kinetic energy to a weighted acoustic potential energy, and the eigenfunction is the minimizing function of this ratio. A sample calculation is made for the case in which variations of the properties occur dominantly in the longitudinal direction, with lower temperatures and higher densities prevailing near the injector. The results of the calculation exhibit two major characteristics: the longitudinal density variation aids transfer of acoustic kinetic energy from a lower mode to the adjacent higher mode, so that the pure transverse modes have substantially larger reductions (sometimes exceeding 50%) of their eigenvalues than the combined modes; and variations of the acoustic pressure gradients are found to be larger in high-density regions, so that the acoustic pressure amplitude for purely tangential modes is found to be much higher near the injector than near the nozzle. The higher head acoustic pressure may contribute to the greater sensitivity of acoustic instability to characteristics of the flames near the injectors, as commonly found in engine tests. The improved acoustic eigensolutions can also be helpful in sizing damping devices, such as baffles or acoustic liners.

  14. A Physics Exploratory Experiment on Plasma Liner Formation

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  15. A semi-analytic model of magnetized liner inertial fusion

    SciTech Connect

    McBride, Ryan D.; Slutz, Stephen A.

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  16. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    NASA Technical Reports Server (NTRS)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  17. Magnetized Target Fusion With Centimeter-Size Liner

    SciTech Connect

    Ryutov, D

    2005-07-21

    The author concentrates on the version of magnetized target fusion (MTF) that involves 3D implosions of a wall-confined plasma with the density in the compressed state {approx} 10{sup 21}-10{sup 22} cm{sup -3}. Possible plasma configurations suitable for this approach are identified. The main physics issues are outlined (equilibrium, stability, transport, plasma-liner interaction, etc). Specific parameters of the experiment reaching the plasma Q{approx}1 are presented (Q is the ratio of the fusion yield to the energy delivered to the plasma). It is emphasized that there exists a synergy between the physics and technology of MTF and dense Z-pinches (DZP). Specific areas include the particle and heat transport in a high-beta plasma, plasma-liner interaction, liner stability, stand-off problem for the power source, reaching a rep-rate regime in the energy-producing reactor, etc. Possible use of existing pulsed-power facilities for addressing these issues is discussed.

  18. Ceramic composite liner material for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.; Walker, C. L.; Norgren, C. T.

    1984-01-01

    Advanced commercial and military gas turbine engines may operate at combustor outlet temperatures in excess of 1920 K (3000 F). At these temperatures combustors liners experience extreme convective and radiative heat fluxes. The ability of a plasma sprayed ceramic coating to reduce liner metal temperature has been recognized. However, the brittleness of the ceramic layer and the difference in thermal expansion with the metal substrate has caused cracking, spalling and some separation of the ceramic coating. Research directed at turbine tip seals (or shrouds) has shown the advantage of applying the ceramic to a compliant metal pad. This paper discusses recent studies of applying ceramics to combustor liners in which yttria stabilized zirconia plasma sprayed on compliant metal substrates which were exposed to near stoichiometric combustion, presents performance and durability results, and describes a conceptual design for an advanced, small gas turbine combustor. Test specimens were convectively cooled or convective-transpiration cooled and were evaluated in a 10 cm square flame tube combustor at inlet air temperatures of 533 K (500 F) and at a pressure of 0.5 MPa (75 psia). The ceramics were exposed to flame temperatures in excess of 2000 K (3320 F). Results appear very promising with all 30 specimens surviving a screening test and one of two specimens surviving a cyclic durability test.

  19. Aging test results of an asphalt membrane liner

    SciTech Connect

    Buelt, J.L.; Barnes, S.M.

    1983-07-01

    The objective of the asphalt aging study described in this report was to determine the expected performance lifetime of a catalytically airblown asphalt membrane as a seepage barrier for inactive uranium mill tailings. The study, conducted by Pacific Northwest Laboratory for the Department of Energy's Uranium Mill Tailings Remedial Action Program, showed through chemical compatibility tests that the asphalt membrane is well suited for this purpose. The chemical compatibility tests were designed to accelerate the aging reactions in the asphalt and to determine the accelerated aging effect. Higher temperatures and oxygen concentrations proved to be effective acceleration parameters. By infrared spectral analysis, the asphalt was determined to have undergone 7 years of equivalent aging in a 3-month period when exposed to 40/sup 0/C and 1.7 atm oxygen pressure. However, the extent of aging was limited to a maximum penetration of 0.5% of the total liner thickness. It was concluded that the liner could be expected to be effective as a seepage barrier for at least 1000 years before the entire thickness of the liner would be degraded.

  20. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].