Science.gov

Sample records for acoustic microscopy technique

  1. An acoustic microscopy technique reveals hidden morphological defenses in Daphnia.

    PubMed

    Laforsch, Christian; Ngwa, Wilfred; Grill, Wolfgang; Tollrian, Ralph

    2004-11-01

    Inducible defenses are common strategies for coping with the selective force of predation in heterogeneous environments. In recent years the conspicuous and often dramatic morphological plasticity of several waterflea species of the genus Daphnia have been found to be inducible defenses activated by chemical cues released by predators. However, the exact defensive mechanisms remained mysterious. Because even some minute morphological alterations proved to be protective against predatory invertebrates, it has been suggested that the visible morphological changes are only the tip of the iceberg of the entire protective mechanisms. Here we applied a method of ultrasonic microscopy with vector contrast at 1.2 GHz to probe hidden morphological defenses. We found that induction with predator kairomones increases the stability of the carapace in two Daphnia species up to 350%. This morphological plasticity provides a major advantage for the induced morphs during predation because predatory invertebrates need to crush or puncture the carapace of their prey to consume them. Our ultrastructural analyses revealed that the internal architecture of the carapace ensures maximal rigidity with minimal material investment. Our results uncover hidden morphological plasticity and suggest a reconsideration of former classification systems in defended and undefended genotypes in Daphnia and possibly in other prey organisms as well.

  2. An acoustic microscopy technique reveals hidden morphological defenses in Daphnia

    PubMed Central

    Laforsch, Christian; Ngwa, Wilfred; Grill, Wolfgang; Tollrian, Ralph

    2004-01-01

    Inducible defenses are common strategies for coping with the selective force of predation in heterogeneous environments. In recent years the conspicuous and often dramatic morphological plasticity of several waterflea species of the genus Daphnia have been found to be inducible defenses activated by chemical cues released by predators. However, the exact defensive mechanisms remained mysterious. Because even some minute morphological alterations proved to be protective against predatory invertebrates, it has been suggested that the visible morphological changes are only the tip of the iceberg of the entire protective mechanisms. Here we applied a method of ultrasonic microscopy with vector contrast at 1.2 GHz to probe hidden morphological defenses. We found that induction with predator kairomones increases the stability of the carapace in two Daphnia species up to 350%. This morphological plasticity provides a major advantage for the induced morphs during predation because predatory invertebrates need to crush or puncture the carapace of their prey to consume them. Our ultrastructural analyses revealed that the internal architecture of the carapace ensures maximal rigidity with minimal material investment. Our results uncover hidden morphological plasticity and suggest a reconsideration of former classification systems in defended and undefended genotypes in Daphnia and possibly in other prey organisms as well. PMID:15520396

  3. Bulk microstructure and local elastic properties of carbon nanocomposites studied by impulse acoustic microscopy technique

    NASA Astrophysics Data System (ADS)

    Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.

    2016-05-01

    Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.

  4. Jitter reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection

    PubMed Central

    Kang, Bong Jin; Yoon, Changhan; Man Park, Jin; Hwang, Jae Youn; Shung, K. Kirk

    2015-01-01

    We demonstrate a jitter noise reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), which promises to be capable of measuring cell mechanics. To reduce the jitter noise induced by Q-switched pulsed laser operated at high repetition frequency, photoacoustic signals from the surface of an ultrasound transducer are aligned by cross-correlation and peak-to-peak detection, respectively. Each method is then employed to measure the displacements of a target sample in an agar phantom and a breast cancer cell due to ARFI application, followed by the quantitative comparison between their performances. The suggested methods for PA-ARFI significantly reduce jitter noises, thus allowing us to measure displacements of a target cell due to ARFI application by less than 3 μm. PMID:26367579

  5. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  6. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  7. Acoustic microscopy in the food industry

    NASA Astrophysics Data System (ADS)

    Watson, N.; Povey, M.; Corona, E.; Benedito, J.; Parker, N.

    2012-12-01

    Acoustic microscopy has been used for many years to image and measure the elastic properties of materials across a wide range of scientific disciplines. However the application of this technique in the food industry is scarce. In this paper we outline the operation of a reflection-mode acoustic microscope and discuss some of the issues relevant to its operation in the food sector. We then present two relevant case studies in which we employ acoustic microscopy to analyse potato cells and the fat structure in Iberian ham and chorizo.

  8. Application of scanning acoustic microscopy to advanced structural ceramics

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1987-01-01

    A review is presentod of research investigations of several acoustic microscopy techniques for application to structural ceramics for advanced heat engines. Results obtained with scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM) are compared. The techniques were evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described with emphasis on statistics of detectability of flaws that constitute potential fracture origins.

  9. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  10. Latch-up signature analysis technique for plastic dual-in-line package (PDIP) devices using scanning acoustic microscopy

    SciTech Connect

    Mahanpour, M.; Morgan, I.; Li, S.; Kaufmann, M.

    1995-12-31

    Cracks in the top surface of plastic package product (PDIP), as shown in a figure, resulting from Latch-Up (LU), DC Vcc Over-Voltage, or Reverse Insertion in the socket are usually similar in appearance. A scanning acoustic microscope can not determine the root cause of this Electrical Over-Stress (EOS) damage since all of the above show similar delamination. Even after device decapsulation, carbonized epoxy around Vcc and Vss bond wires doesn`t always indicate the exact root cause of failure. However, a nondestructive technique has been developed to distinguish (LU) from other EOS failures using a Scanning Acoustic Microscope (SAM). Finally, to verify the validity of the results, a computer analysis using a 3-Dimensional Finite Element Model (FEM) was used. The calculated stress distribution in the plastic IC package in the sustained LU condition agreed with the observations of delamination using SAM on product subjected to Transient Latch-Up (TLU) simulation on the power supply pin.

  11. What does See the Impulse Acoustic Microscopy inside Nanocomposites?

    NASA Astrophysics Data System (ADS)

    Levin, V. M.; Petronyuk, Y. S.; Morokov, E. S.; Celzard, A.; Bellucci, S.; Kuzhir, P. P.

    The paper presents results of studying bulk microstructure in carbon nanocomposites by impulse acoustic microscopy technique. Nanocomposite materials are in the focus of interest because of their outstanding properties in minimal nanofiller content. Large surface area and high superficial activity cause strong interaction between nanoparticles that can result in formation of fractal conglomerates. This paper involves results of the first direct observation of nanoparticle conglomerates inside the bulk of epoxy-carbon nanocomposites. Diverse types of carbon nanofiller have been under investigation. The impulse acoustic microscope SIAM-1 (Acoustic Microscopy Lab, IBCP RAS) has been employed for 3D imaging bulk microstructure and measuring elastic properties of the nanocomposite specimens. The range of 50-200 MHz allows observing microstructure inside the entire specimen bulk. Acoustic images are obtained in the ultramicroscopic regime; they are formed by the Rayleigh type scattered radiation. It has been found the high-resolution acoustic vision (impulse acoustic microscopy) is an efficient technique to observe mesostructure formed by fractal cluster inside nanocomposites. The clusterization takes its utmost form in nanocomposites with graphite nanoplatelets as nanofiller. The nanoparticles agglomerate into micron-sized conglomerates distributed randomly over the material. Mesostructure in nanocomposites filled with carbon nanotubes is alternation of regions with diverse density of nanotube packing. Regions with alternative density of CNT packing are clearly seen in acoustical images as neighboring pixels of various brightness.

  12. Human immunoglobulin adsorption investigated by means of quartz crystal microbalance dissipation, atomic force microscopy, surface acoustic wave, and surface plasmon resonance techniques.

    PubMed

    Zhou, Cheng; Friedt, Jean-Michel; Angelova, Angelina; Choi, Kang-Hoon; Laureyn, Wim; Frederix, Filip; Francis, Laurent A; Campitelli, Andrew; Engelborghs, Yves; Borghs, Gustaaf

    2004-07-01

    Time-resolved adsorption behavior of a human immunoglobin G (hIgG) protein on a hydrophobized gold surface is investigated using multitechniques: quartz crystal microbalance/dissipation (QCM-D) technique; combined surface plasmon resonance (SPR) and Love mode surface acoustic wave (SAW) technique; combined QCM-D and atomic force microscopy (AFM) technique. The adsorbed hIgG forms interfacial structures varying in organization from a submonolayer to a multilayer. An "end-on" IgG orientation in the monolayer film, associated with the surface coverage results, does not corroborate with the effective protein thickness determined from SPR/SAW measurements. This inconsistence is interpreted by a deformation effect induced by conformation change. This conformation change is confirmed by QCM-D measurement. Combined SPR/SAW measurements suggest that the adsorbed protein barely contains water after extended contact with the hydrophobic surface. This limited interfacial hydration also contributed to a continuous conformation change in the adsorbed protein layer. The viscoelastic variation associated with interfacial conformation changes induces about 1.5 times overestimation of the mass uptake in the QCM-D measurements. The merit of combined multitechnique measurements is demonstrated.

  13. Acoustic techniques in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Sinha, D.N.

    1995-07-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  14. Fundamental Potential for Acoustic Microscopy Evaluation of Dental Tissues

    NASA Astrophysics Data System (ADS)

    Denisova, L. A.; Maev, R. Gr.; Rusanov, F. S.; Maeva, A. R.; Denisov, A. F.; Gavrilov, D. Yu.; Bakulin, E. Yu.; Severin, F. M.

    Comprehensive analysis of the present-day acoustic microscopy experimental approaches from the standpoint of their potential application in dental research and diagnostics has been performed. Whole extracted human teeth and specially prepared dental tissue samples have been investigated. The results of the study demonstrate that there are several experimental techniques that can be used for precise quantitative evaluation of the tissues local mechanical properties in flat-parallel teeth slices, for the pathomorphological investigation of the tissues strength spatial distribution in flat cuts. In the whole tooth, the acoustic microscopy techniques allow us to precisely measure the enamel and dentine layers thickness, the distance between the external surface and pulp, to reveal hidden caries and restoration disbonding. These opportunities form a real ground for the further design of the special acousto-microscopical methods and new equipment for the clinical diagnostics

  15. Correlative Techniques in Microscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imaging is an important component in basic research, product development and understanding structure/function relationships in agricultural commodities and products. An array of microscopes and techniques can be used illustrate the structure and microchemistry of diverse samples. Examples of the var...

  16. Microscopy techniques in flavivirus research.

    PubMed

    Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee

    2014-04-01

    The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses.

  17. Evaluation of solar cell welds by scanning acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Frey, W. E.; Baraona, C. R.

    1982-01-01

    Scanning laser acoustic microscopy was used to nondestructively evaluate solar cell interconnect bonds made by resistance welding. Both copper-silver and silver-silver welds were analyzed. The bonds were produced either by a conventional parallel-gap welding technique using rectangular electrodes or new annular gap design with a circular electrode cross section. With the scanning laser acoustic microscope, it was possible to produce a real time television image which reveales the weld configuration as it relates to electrode geometry. The effect of electrode misalinement with the surface of the cell was also determined. A preliminary metallographic analysis was performed on selected welds to establish the relationship between actual size and shape of the weld area and the information available from acoustic micrographs.

  18. Characterization of the geometry of microscale periodic structures using acoustic microscopy.

    PubMed

    Shaw, Anurupa; Liu, Jingfei; Yoon, Suk Wang; Declercq, Nico F

    2016-08-01

    Periodic structures are very common in both scientific investigations and engineering applications. The geometry of the periodic structure is important for its designed functionality. Although the techniques such as optical and electron microscopy are capable of measuring the periodicity of microscale periodically-corrugated structures, they cannot be used to measure the height or depth of the corrugation. The technique of acoustic microscopy has been developed rapidly and it has been applied in the studies of steel integrated structures, ferro-elastic ceramics, human retina, semiconductors, composites, etc. In acoustic microscopy, V(z) curves have been used to investigate the visco-elastic parameters of thin sliced samples of composites, animal tissue, etc., while in this work it is applied in characterizing the geometry of periodically corrugated structures. The measurements of the geometry of periodic structures obtained using acoustic microscopy are compared with those obtained using optical microscopy, and the reliability of this acoustic technique is also examined. PMID:27259118

  19. Characterization of the geometry of microscale periodic structures using acoustic microscopy.

    PubMed

    Shaw, Anurupa; Liu, Jingfei; Yoon, Suk Wang; Declercq, Nico F

    2016-08-01

    Periodic structures are very common in both scientific investigations and engineering applications. The geometry of the periodic structure is important for its designed functionality. Although the techniques such as optical and electron microscopy are capable of measuring the periodicity of microscale periodically-corrugated structures, they cannot be used to measure the height or depth of the corrugation. The technique of acoustic microscopy has been developed rapidly and it has been applied in the studies of steel integrated structures, ferro-elastic ceramics, human retina, semiconductors, composites, etc. In acoustic microscopy, V(z) curves have been used to investigate the visco-elastic parameters of thin sliced samples of composites, animal tissue, etc., while in this work it is applied in characterizing the geometry of periodically corrugated structures. The measurements of the geometry of periodic structures obtained using acoustic microscopy are compared with those obtained using optical microscopy, and the reliability of this acoustic technique is also examined.

  20. Interference techniques in fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet

    We developed a set of interference-based optical microscopy techniques to study biological structures through nanometer-scale axial localization of fluorescent biomarkers. Spectral self-interference fluorescence microscopy (SSFM) utilizes interference of direct and reflected waves emitted from fluorescent molecules in the vicinity of planar reflectors to reveal the axial position of the molecules. A comprehensive calculation algorithm based on Green's function formalism is presented to verify the validity of approximations used in a far-field approach that describes the emission of fluorescent markers near interfaces. Using the validated model, theoretical limits of axial localization were determined with emphasis given to numerical aperture (NA) dependence of localization uncertainty. SSFM was experimentally demonstrated in conformational analysis of nucleoproteins. In particular, interaction between surface-tethered 75-mer double strand DNA and integration host factor (IHF) protein was probed on Si-SiO2 substrates by determining the axial position of fluorescent labels attached to the free ends of DNA molecules. Despite its sub-nanometer precision axial localization capability, SSFM lacks high lateral resolution due to the low-NA requirement for planar reflectors. We developed a second technique, 4Pi-SSFM, which improves the lateral resolution of a conventional SSFM system by an order of magnitude while achieving nanometer-scale axial localization precision. Using two opposing high-NA objectives, fluorescence signal is interferometrically collected and spectral interference pattern is recorded. Axial position of emitters is found from analysis of the spectra. The 4Pi-SSFM technique was experimentally demonstrated by determining the surface profiles of fabricated glass surfaces and outer membranes of Shigella, a type of Gram-negative bacteria. A further discussion is presented to localize surface O antigen, which is an important oligosaccharide structure in the

  1. Mechanical property quantification of endothelial cells using scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shelke, A.; Brand, S.; Kundu, T.; Bereiter-Hahn, J.; Blase, C.

    2012-04-01

    The mechanical properties of cells reflect dynamic changes of cellular organization which occur during physiologic activities like cell movement, cell volume regulation or cell division. Thus the study of cell mechanical properties can yield important information for understanding these physiologic activities. Endothelial cells form the thin inner lining of blood vessels in the cardiovascular system and are thus exposed to shear stress as well as tensile stress caused by the pulsatile blood flow. Endothelial dysfunction might occur due to reduced resistance to mechanical stress and is an initial step in the development of cardiovascular disease like, e.g., atherosclerosis. Therefore we investigated the mechanical properties of primary human endothelial cells (HUVEC) of different age using scanning acoustic microscopy at 1.2 GHz. The HUVECs are classified as young (tD < 90 h) and old (tD > 90 h) cells depending upon the generation time for the population doubling of the culture (tD). Longitudinal sound velocity and geometrical properties of cells (thickness) were determined using the material signature curve V(z) method for variable culture condition along spatial coordinates. The plane wave technique with normal incidence is assumed to solve two-dimensional wave equation. The size of the cells is modeled using multilayered (solid-fluid) system. The propagation of transversal wave and surface acoustic wave are neglected in soft matter analysis. The biomechanical properties of HUVEC cells are quantified in an age dependent manner.

  2. Air Coupled Acoustic Thermography (acat) Inspection Technique

    NASA Astrophysics Data System (ADS)

    Zalameda, J. N.; Winfree, W. P.; Yost, W. T.

    2008-02-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of +/-6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  3. Air Coupled Acoustic Thermography (ACAT) Inspection Technique

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph; Winfree, William P.; Yost, William T.

    2007-01-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of plus or minus 6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  4. Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities

    SciTech Connect

    Torello, D.; Degertekin, F. Levent

    2013-11-15

    A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelf components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.

  5. Acoustic Location of Lightning Using Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Erives, H.; Arechiga, R. O.; Stock, M.; Lapierre, J. L.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    Acoustic arrays have been used to accurately locate thunder sources in lightning flashes. The acoustic arrays located around the Magdalena mountains of central New Mexico produce locations which compare quite well with source locations provided by the New Mexico Tech Lightning Mapping Array. These arrays utilize 3 outer microphones surrounding a 4th microphone located at the center, The location is computed by band-passing the signal to remove noise, and then computing the cross correlating the outer 3 microphones with respect the center reference microphone. While this method works very well, it works best on signals with high signal to noise ratios; weaker signals are not as well located. Therefore, methods are being explored to improve the location accuracy and detection efficiency of the acoustic location systems. The signal received by acoustic arrays is strikingly similar to th signal received by radio frequency interferometers. Both acoustic location systems and radio frequency interferometers make coherent measurements of a signal arriving at a number of closely spaced antennas. And both acoustic and interferometric systems then correlate these signals between pairs of receivers to determine the direction to the source of the received signal. The primary difference between the two systems is the velocity of propagation of the emission, which is much slower for sound. Therefore, the same frequency based techniques that have been used quite successfully with radio interferometers should be applicable to acoustic based measurements as well. The results presented here are comparisons between the location results obtained with current cross correlation method and techniques developed for radio frequency interferometers applied to acoustic signals. The data were obtained during the summer 2013 storm season using multiple arrays sensitive to both infrasonic frequency and audio frequency acoustic emissions from lightning. Preliminary results show that

  6. Quantitative flaw characterization with scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.; Roth, D. J.

    1986-01-01

    Surface roughness and diffraction are two factors that have been observed to affect the accuracy of flaw characterization with scanning laser acoustic microscopy. In accuracies can arise when the surface of the test sample is acoustically rough. It is shown that, in this case, Snell's law is no longer valid for determining the direction of sound propagation within the sample. The relationship between the direction of sound propagation within the sample, the apparent flaw depth, and the sample's surface roughness is investigated. Diffraction effects can mask the acoustic images of minute flaws and make it difficult to establish their size, depth, and other characteristics. It is shown that for Fraunhofer diffraction conditions the acoustic image of a subsurface defect corresponds to a two-dimensional Fourier transform. Transforms based on simulated flaws are used to infer the size and shape of the actual flaw.

  7. Quantitative flaw characterization with scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.; Roth, D. J.

    1986-01-01

    Surface roughness and diffraction are two factors that have been observed to affect the accuracy of flaw characterization with scanning laser acoustic microscopy. Inaccuracies can arise when the surface of the test sample is acoustically rough. It is shown that, in this case, Snell's law is no longer valid for determining the direction of sound propagation within the sample. The relationship between the direction of sound propagation within the sample, the apparent flaw depth, and the sample's surface roughness is investigated. Diffraction effects can mask the acoustic images of minute flaws and make it difficult to establish their size, depth, and other characteristics. It is shown that for Fraunhofer diffraction conditions the acoustic image of a subsurface defect corresponds to a two-dimensional Fourier transform. Transforms based on simulated flaws are used to infer the size and shape of the actual flaw.

  8. Theory and application of scanning electron acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Qian, Menglu; Chen, Ruiyi; Yost, William T.

    1992-01-01

    A three-dimensional theoretical model based on the application of the thermal conduction and Navier equations to a chopped electron beam incident on a disk specimen is used to obtain the particle displacement field in the specimen. The results lead to a consideration of the signal generation, spatial resolution, and contrast mechanisms in scanning electron acoustic microscopy (SEAM). The model suggests that the time-variant heat source produced by the beam chopping generates driving source, thermal wave, and acoustic wave displacements simultaneously in the specimen. Evidence of the correctness of the prediction is obtained from the mathematically similar problem of pulsed laser light injection into a tank of water. High speed Schlieren photographs taken following laser injection show the simultaneous evolution of thermal and acoustic waveforms. Examples of contrast reversal, stress-induced contrast, and acoustic zone contrast and resolution with SEAM are presented and explained in terms of the model features.

  9. Scanning acoustic microscopy of SCS-6 silicon carbide fiber

    SciTech Connect

    Sathish, S.; Cantrell, J.H.; Yost, W.T.

    1996-01-01

    Scanning acoustic microscopy of SCS-6 silicon carbide fiber reveals large radial variations in acoustic reflectivity associated with the chemical composition and microstructure of a given fiber region. Rayleigh wave fringe patterns observed in each of five subregions are used to calculate the average Young modulus of that subregion. The Young modulus is found to increase monotonically from 40 GPa in the carbon core to a value of 413 GPa in the stoichiometric SiC region. The effective Young modulus of the fiber as a whole is estimated from the moduli of the individual regions and it is compared with mechanical measurements reported in the literature.

  10. Imaging Defects in Thin DLC Coatings Using High Frequency Scanning Acoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Fei, Dong; Rebinsky, Douglas A.; Zinin, Pavel; Koehler, Bernd

    2004-02-01

    In this work high frequency scanning acoustic microscopy was employed to nondestructively characterize subsurface defects in chromium containing DLC (Cr-DLC) coatings. Subsurface defects as small as one micron were successfully detected in a flat Cr-DLC coated steel coupon. Depth of the imaged subsurface defects was estimated using a simple geometrical acoustics model. The nature of the subsurface defects was investigated by using FIB/SEM technique. Curved Cr-DLC coated components including a roller and gear tooth were also imaged, and the encountered challenges were addressed.

  11. Evaluation of the biomechanics of atherosclerosis by acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Saijo, Yoshifumi; Nitta, Shin-ichi; Schiott Jorgensen, Claus; Falk, Erling

    2001-07-01

    Acoustic microscopy provides not only the morphology, but also the biomechanical properties of the biological soft tissues. The biomechanics of atherosclerosis is important because the pathophysiology of atherosclerosis is closely related with mechanical properties and mechanical stress. Rupture of the fibrous cap of atheromatous plaque is the initial event in acute coronary syndrome such as acute myocardial infarction or unstable angina. In addition to extrinsic physical stresses to the plaque, the intrinsic biomechanical property of the plaque is important for assessing the mechanism of the rupture. Two sets of SAMs operating in 100 to 200 MHz and in 800 MHz to 1.3 GHz were equipped to measure the acoustic properties of atherosclerosis of human or mouse arteries. The values of attenuation and sound speed in the tissue components of atherosclerosis were measured by analyzing the frequency dependent characteristics of the amplitude and phase signals. Both values were highest in calcification and lowest in lipid pool. Although attenuation and sound speed were relatively high in intimal fibrosis, the inhomogeneity of acoustic parameters was found within the fibrous cap. Polarized microscopy for the collagen stained with Picrosirius red showed that the attenuation of ultrasound was significantly higher in type I collagen with orange polarized color compared to type III collagen with green color. SAM has shown the possibility to detect the plaque vulnerability and it might improve our understanding of the sudden rupture from micro-mechanical point of view.

  12. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  13. An acoustic mode measurement technique

    NASA Astrophysics Data System (ADS)

    Joppa, P. D.

    1984-10-01

    Turbomachinery noise propagates in aircraft jet engine ducts in a complicated manner. Measurement of this propagation is useful both to identify source mechanisms and to design efficient linings. A practical method of making these measurements has been developed, using linear arrays of equally spaced microphones mounted flush with the duct wall. Circumferential or axial arrays are analyzed by spatial Fourier transform, giving sound level as a function of spinning order or axial wavenumber respectively. Complex demodulation is used to acquire data in a modest bandwidth around a high frequency of interest. A joint NASA/Boeing test of the system used 32 microphones in a JT15D turbofan engine inlet. A 400-Hz bandwidth centered at blade passage frequency and at half blade passage frequency was studied. The theoretically predicted modes were clearly seen at blade passage frequency; broadband noise at half blade passage frequency was biased towards modes corotating with the fan. Interference between similar modes was not a significant problem. A lining design study indicated a 15 percent improvement in lining efficiency was possible when mode data were used, for this particular engine. The technique has proven reliable and useful for source diagnostics and lining design.

  14. Mechanisms of CFR composites destruction studying with pulse acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Petronyuk, Y. S.; Morokov, E. S.; Levin, V. M.; Ryzhova, T. B.; Chernov, A. V.

    2016-05-01

    Non-destructive inspection of carbon-fiber-reinforced (CFR) composites applied in aerospace industry attracts a wide attention. In the paper, high frequency focused ultrasound (50-100 MHz) has been applied to study the bulk microstructure of the CFR material and mechanisms of its destruction under the mechanical loading. It has been shown impulse acoustic microscopy provides detecting the areas of adhesion loss at millimeter and micron level. Behavior of the CFR laminate structure fabricated by prepreg or infusion technology has been investigated under the tensile and impact loading.

  15. Techniques in audio and acoustic measurement

    NASA Astrophysics Data System (ADS)

    Kite, Thomas D.

    2003-10-01

    Measurement of acoustic devices and spaces is commonly performed with time-delay spectrometry (TDS) or maximum length sequence (MLS) analysis. Both techniques allow an impulse response to be measured with a signal-to-noise ratio (SNR) that can be traded off against the measurement time. However, TDS suffers from long measurement times because of its linear sweep, while MLS suffers from the corruption of the impulse response by distortion. Recently a logarithmic sweep-based method has been devised which offers high SNR, short measurement times, and the ability to separate the linear impulse response from the impulse responses of distortion products. The applicability of these methods to audio and acoustic measurement will be compared.

  16. In vivo switchable optical- and acoustic-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Jeon, Seungwan; Kim, Jaewoo; Kim, Chulhong

    2016-03-01

    Photoacoustic microscopy (PAM) provides high resolution and large penetration depth by utilizing the high optical sensitivity and low scattering of ultrasound. Hybrid PAM systems can be classified into two categories: opticalresolution photoacoustic microscopy (OR-PAM) and acoustic-resolution photoacoustic microscopy (AR-PAM). ORPAM provides a very high lateral resolution with a strong optical focus, but the penetration depth is limited to one optical transport mean free path. AR-PAM provides a relatively greater penetration depth using diffused light in biological tissues. The resolution of AR-PAM is determined by its ultrasonic parameters. In this study, we performed an in vivo testing of a switchable OR-/AR-PAM system. In this system, two modes can be switched by changing its collimator lens and optical fiber. The lateral resolution of OR-PAM was measured using a resolution test target, and the full width at half maximum (FWHM) of the edge spread function was 2.5 μm. To calculate the lateral resolution of ARPAM, a 6-μm-diameter carbon fiber was used, and the FWHM of the line spread function was 80.2 μm. We successfully demonstrated the multiscale imaging capability of the switchable OR-/AR-PAM system by visualizing microvascular networks in mouse ears, brain, legs, skin, and eyes.

  17. Acoustic and photoacoustic microscopy imaging of single leukocytes

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Moore, Michael J.; Kolios, Michael C.

    2016-03-01

    An acoustic/photoacoustic microscope was used to create micrometer resolution images of stained cells from a blood smear. Pulse echo ultrasound images were made using a 1000 MHz transducer with 1 μm resolution. Photoacoustic images were made using a fiber coupled 532 nm laser, where energy losses through stimulated Raman scattering enabled output wavelengths from 532 nm to 620 nm. The laser was focused onto the sample using a 20x objective, and the laser spot co-aligned with the 1000 MHz transducer opposite the laser. The blood smear was stained with Wright-Giemsa, a common metachromatic dye that differentially stains the cellular components for visual identification. A neutrophil, lymphocyte and a monocyte were imaged using acoustic and photoacoustic microscopy at two different wavelengths, 532 nm and 600 nm. Unique features in each imaging modality enabled identification of the different cell types. This imaging method provides a new way of imaging stained leukocytes, with applications towards identifying and differentiating cell types, and detecting disease at the single cell level.

  18. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to

  19. Simultaneous multiplane confocal microscopy using acoustic tunable lenses.

    PubMed

    Duocastella, Martí; Vicidomini, Giuseppe; Diaspro, Alberto

    2014-08-11

    Maximizing the amount of spatiotemporal information retrieved in confocal laser scanning microscopy is crucial to understand fundamental three-dimensional (3D) dynamic processes in life sciences. However, current 3D confocal microscopy is based on an inherently slow stepwise process that consists of acquiring multiple 2D sections at different focal planes by mechanical or optical z-focus translation. Here, we show that by using an acoustically-driven optofluidic lens integrated in a commercial confocal system we can capture an entire 3D image in a single step. Our method is based on continuous axial scanning at speeds as high as 140 kHz combined with fast readout. In this way, one or more focus sweeps are produced on a pixel by pixel basis and the detected photons can be assigned to their corresponding focal plane enabling simultaneous multiplane imaging. We exemplify this method by imaging calibration and biological fluorescence samples. These results open the door to exploring new fundamental processes in science with an unprecedented time resolution.

  20. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  1. Characterization of Homopolymer and Polymer Blend Films by Phase Sensitive Acoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Wannemacher, Reinhold; Grill, Wolfgang

    2003-03-01

    CHARACTERIZATION OF HOMOPOLYMER AND POLYMER BLEND FILMS BY PHASE SENSITIVE ACOUSTIC MICROSCOPY W Ngwa, R Wannemacher, W Grill Institute of Experimental Physics II, University of Leipzig, 04103 Leipzig, Germany Abstract We have used phase sensitive acoustic microscopy (PSAM) to study homopolymer thin films of polystyrene (PS) and poly (methyl methacrylate) (PMMA), as well as PS/PMMA blend films. We show from our results that PSAM can be used as a complementary and highly valuable technique for elucidating the three-dimensional (3D) morphology and micromechanical properties of thin films. Three-dimensional image acquisition with vector contrast provides the basis for: complex V(z) analysis (per image pixel), 3D image processing, height profiling, and subsurface image analysis of the polymer films. Results show good agreement with previous studies. In addition, important new information on the three dimensional structure and properties of polymer films is obtained. Homopolymer film structure analysis reveals (pseudo-) dewetting by retraction of droplets, resulting in a morphology that can serve as a starting point for the analysis of polymer blend thin films. The outcome of confocal laser scanning microscopy studies, performed on the same samples are correlated with the obtained results. Advantages and limitations of PSAM are discussed.

  2. Application of Acoustic Techniques for Characterization of Biological Samples

    NASA Astrophysics Data System (ADS)

    Tittmann, Bernhard R.; Ebert, Anne

    The atomic force microscope (AFM) is emerging as a powerful tool in cell biology. Originally developed for high-resolution imaging purposes, the AFM also has unique capabilities as a nano-indenter to probe the dynamic viscoelastic material properties of living cells in culture. In particular, AFM elastography combines imaging and indentation modalities to map the spatial distribution of cell mechanical properties, which in turn reflect the structure and function of the underlying cytoskeleton. Such measurements have contributed to our understanding of cell mechanics and cell biology and appear to be sensitive to the presence of disease in individual cells. Examples of applications and considerations on the effective capability of ultrasonic AFM techniques on biological samples (both mammalian and plant) are reported in this chapter. Included in the discussion is scanning near-field ultrasound holography an acoustic technique which has been used to image structure and in particular nanoparticles inside cells. For illustration an example that is discussed in some detail is a technique for rapid in vitro single-cell elastography. The technique is based on atomic force acoustic microscopy (AFAM) but (1) requires only a few minutes of scan time, (2) can be used on live cells briefly removed from most of the nutrient fluid, (3) does negligible harm or damage to the cell, (4) provides semi-quantitative information on the distribution of modulus across the cell, and (5) yields data with 1-10 nm resolution. The technique is shown to enable rapid assessment of physical/biochemical signals on the cell modulus and contributes to current understanding of cell mechanics.

  3. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    SciTech Connect

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  4. Using the Acoustic Emission Technique for Estimating Body Composition

    NASA Astrophysics Data System (ADS)

    González-Solís, J. L.; Sanchis-Sabater, A.; Sosa-Aquino, M.; Gutiérrez-Juárez, G.; Vargas-Luna, M.; Bernal-Alvarado, J.; Huerta-Franco, R.

    2003-09-01

    This work proposes a new technique for estimation of body composition by using acoustic emission. A simple apparatus for the acoustic emission is proposed.The estimation of the body composition is made by analyzing the correlation between a set of acoustic resonance and skinfold measurements. One device was designed to measure the position and width of the acoustic resonances and a caliper was used to measure the skinfolds. The results show the plausibility of application of the method to measurement the human body fat.

  5. Whispering-gallery acoustic sensing: Characterization of mesoscopic films and scanning probe microscopy applications

    NASA Astrophysics Data System (ADS)

    La Rosa, Andres H.; Li, Nan; Fernandez, Rodolfo; Wang, Xiaohua; Nordstrom, Richard; Padigi, S. K.

    2011-09-01

    Full understanding of the physics underlying the striking changes in viscoelasticity, relaxation time, and phase transitions that mesoscopic fluid-like films undergo at solid-liquid interfaces, or under confinement between two sliding solid boundaries, constitutes one of the major challenges in condensed matter physics. Their role in the imaging process of solid substrates by scanning probe microscopy (SPM) is also currently controversial. Aiming at improving the reliability and versatility of instrumentation dedicated to characterize mesoscopic films, a noninvasive whispering-gallery acoustic sensing (WGAS) technique is introduced; its application as feedback control in SPM is also demonstrated. To illustrate its working principle and potential merits, WGAS has been integrated into a SPM that uses a sharp tip attached to an electrically driven 32-kHz piezoelectric tuning fork (TF), the latter also tighten to the operating microscope's frame. Such TF-based SPMs typically monitor the TF's state of motion by electrical means, hence subjected to the effects caused by the inherent capacitance of the device (i.e., electrical resonance differing from the probe's mechanical resonance). Instead, the novelty of WGAS resides in exploiting the already existent microscope's frame as an acoustic cavity (its few centimeter-sized perimeter closely matching the operating acoustic wavelength) where standing-waves (generated by the nanometer-sized oscillations of the TF's tines) are sensitively detected by an acoustic transducer (the latter judiciously placed around the microscope's frame perimeter for attaining maximum detection). This way, WGAS is able to remote monitoring, via acoustic means, the nanometer-sized amplitude motion of the TF's tines. (This remote-detection method resembles the ability to hear faint, but still clear, levels of sound at the galleries of a cathedral, despite the extraordinary distance location of the sound source.) In applications aiming at

  6. Techniques for Primary Acoustic Thermometry to 800 K

    NASA Astrophysics Data System (ADS)

    Ripple, D. C.; Defibaugh, D. R.; Moldover, M. R.; Strouse, G. F.

    2003-09-01

    The NIST Primary Acoustic Thermometer will measure the difference between the International Temperature Scale of 1990 and the Kelvin Thermodynamic Scale throughout the range 273 K to 800 K with uncertainties of only a few millikelvins. The acoustic thermometer determines the frequencies of the acoustic resonances of pure argon gas contained within a spherical cavity with uncertainties approaching one part in 106. To achieve this small uncertainty at these elevated temperatures we developed new acoustic transducers and new techniques for the maintenance of gas purity and for temperature control. The new electro-acoustic transducers are based on the capacitance between a flexible silicon wafer and a rigid backing plate. Without the damping usually provided by polymers, mechanical vibrations caused unstable, spurious acoustic signals. We describe our techniques for suppression of these vibrations. Our acoustic thermometer allows the argon to be continuously flushed through the resonator, thereby preventing the build up of hydrogen that evolves from the stainless-steel resonator. We describe how the argon pressure is stabilized while flushing. The argon exiting from the resonator is analyzed with a customized gas chromatograph. Because the acoustic resonator was so large—it has an outer diameter of 20 cm—a sophisticated furnace, based on surrounding the resonator with three concentric aluminum shells, was designed to maintain thermal uniformity and stability of the resonator at a level of 1 mK. We describe the design, modeling, and operational characteristics of the furnace.

  7. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1986-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  8. Reliability of void detection in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1985-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  9. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    SciTech Connect

    Roth, D.J.; Klima, S.J.; Kiser, J.D.; Baaklini, G.Y.

    1986-05-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics. 20 references.

  10. Noncontact microrheology at acoustic frequencies using frequency-modulated atomic force microscopy.

    PubMed

    Gavara, Núria; Chadwick, Richard S

    2010-08-01

    We report an atomic force microscopy (AFM) method for assessing elastic and viscous properties of soft samples at acoustic frequencies under non-contact conditions. The method can be used to measure material properties via frequency modulation and is based on hydrodynamics theory of thin gaps we developed here. A cantilever with an attached microsphere is forced to oscillate tens of nanometers above a sample. The elastic modulus and viscosity of the sample are estimated by measuring the frequency-dependence of the phase lag between the oscillating microsphere and the driving piezo at various heights above the sample. This method features an effective area of pyramidal tips used in contact AFM but with only piconewton applied forces. Using this method, we analyzed polyacrylamide gels of different stiffness and assessed graded mechanical properties of guinea pig tectorial membrane. The technique enables the study of microrheology of biological tissues that produce or detect sound. PMID:20562866

  11. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Lawson, Gareth L.

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  12. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  13. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function. PMID:26515810

  14. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  15. Visualization of subsurface nanoparticles in a polymer matrix using resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy.

    PubMed

    Kimura, Kuniko; Kobayashi, Kei; Yao, Atsushi; Yamada, Hirofumi

    2016-10-14

    A visualization technique of subsurface features with a nanometer-scale spatial resolution is strongly demanded. Some research groups have demonstrated the visualization of subsurface features using various techniques based on atomic force microscopy. However, the imaging mechanisms have not yet been fully understood. In this study, we demonstrated the visualization of subsurface Au nanoparticles buried in a polymer matrix 900 nm from the surface using two techniques; i.e., resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy. It was clarified that the subsurface features were visualized by the two techniques as the area with a higher contact resonance frequency and a higher Q-factor than those in the surrounding area, which suggests that the visualization is realized by the variation of the contact stiffness and damping of the polymer matrix due to the existence of the buried nanoparticles. PMID:27607548

  16. Visualization of subsurface nanoparticles in a polymer matrix using resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy.

    PubMed

    Kimura, Kuniko; Kobayashi, Kei; Yao, Atsushi; Yamada, Hirofumi

    2016-10-14

    A visualization technique of subsurface features with a nanometer-scale spatial resolution is strongly demanded. Some research groups have demonstrated the visualization of subsurface features using various techniques based on atomic force microscopy. However, the imaging mechanisms have not yet been fully understood. In this study, we demonstrated the visualization of subsurface Au nanoparticles buried in a polymer matrix 900 nm from the surface using two techniques; i.e., resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy. It was clarified that the subsurface features were visualized by the two techniques as the area with a higher contact resonance frequency and a higher Q-factor than those in the surrounding area, which suggests that the visualization is realized by the variation of the contact stiffness and damping of the polymer matrix due to the existence of the buried nanoparticles.

  17. Visualization of subsurface nanoparticles in a polymer matrix using resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Kuniko; Kobayashi, Kei; Yao, Atsushi; Yamada, Hirofumi

    2016-10-01

    A visualization technique of subsurface features with a nanometer-scale spatial resolution is strongly demanded. Some research groups have demonstrated the visualization of subsurface features using various techniques based on atomic force microscopy. However, the imaging mechanisms have not yet been fully understood. In this study, we demonstrated the visualization of subsurface Au nanoparticles buried in a polymer matrix 900 nm from the surface using two techniques; i.e., resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy. It was clarified that the subsurface features were visualized by the two techniques as the area with a higher contact resonance frequency and a higher Q-factor than those in the surrounding area, which suggests that the visualization is realized by the variation of the contact stiffness and damping of the polymer matrix due to the existence of the buried nanoparticles.

  18. Microwave de-embedding techniques applied to acoustics.

    PubMed

    Jackson, Charles M

    2005-07-01

    This paper describes the use of the microwave techniques of time domain reflectometry (TDR) and de-embedding in an acoustical application. Two methods of calibrating the reflectometer are presented to evaluate the consistency of the method. Measured and modeled S-parameters of woodwind instruments are presented. The raw measured data is de-embedded to obtain an accurate measurement. The acoustic TDR setup is described. PMID:16212248

  19. Techniques for classifying acoustic resonant spectra

    SciTech Connect

    Roberts, R.S.; Lewis, P.S.; Chen, J.T.; Vela, O.A.

    1995-12-31

    A second-generation nondestructive evaluation (NDE) system that discriminates between different types of chemical munitions is under development. The NDE system extracts features from the acoustic spectra of known munitions, builds templates from these features, and performs classification by comparing features extracted from an unknown munition to a template library. Improvements over first-generation feature extraction template construction and classification algorithms are reported. Results are presented on the performance of the system and a large data set collected from surrogate-filled munitions.

  20. Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Turner, Jake; Kneipp, Moritz; Razansky, Daniel

    2014-04-01

    Conventional optoacoustic microscopy operates in two distinct modes of optical resolution, for visualization of superficial tissue layers, or acoustic resolution, intended for deep imaging in scattering tissues. Here we introduce a new microscope design with hybrid optical and acoustic resolution, which provides a smooth transition from optical resolution in superficial microscopic imaging to ultrasonic resolution when imaging at greater depths within intensely scattering tissue layers. Experimental validation of the new hybrid optoacoustic microscopy method was performed in phantoms and by means of transcranial mouse brain imaging in vivo.

  1. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    SciTech Connect

    Tittmann, B. R.; Xi, X.

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  2. Low-temperature electron microscopy: techniques and protocols.

    PubMed

    Fleck, Roland A

    2015-01-01

    Low-temperature electron microscopy endeavors to provide "solidification of a biological specimen by cooling with the aim of minimal displacement of its components through the use of low temperature as a physical fixation strategy" (Steinbrecht and Zierold, Cryotechniques in biological electron microscopy. Springer-Verlag, Berlin, p 293, 1987). The intention is to maintain confidence that the tissue observed retains the morphology and dimensions of the living material while also ensuring soluble cellular components are not displaced. As applied to both scanning and transmission electron microscopy, cryo-electron microscopy is a strategy whereby the application of low-temperature techniques are used to reduce or remove processing artifacts which are commonly encountered in more conventional room temperature electron microscopy techniques which rely heavily on chemical fixation and heavy metal staining. Often, cryo-electron microscopy allows direct observation of specimens, which have not been stained or chemically fixed.

  3. Characterizing intestinal strictures with acoustic resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Lei, Hao; Xu, Guan; Liu, Shengchun; Johnson, Laura A.; Moons, David S.; Higgins, Peter D. R.; Rice, Michael D.; Ni, Jun; Wang, Xueding

    2016-03-01

    Crohn's disease (CD) is an autoimmune disease, which may cause obstructing intestinal strictures due to inflammation, fibrosis (deposition of collagen), or a combination of both. Identifying the different stages of the disease progression is still challenging. In this work, we indicated the feasibility of non-invasively characterizing intestinal strictures using photoacoustic imaging (PAI), utilizing the uniquely optical absorption of hemoglobin and collagen. Surgically removed human intestinal stricture specimens were investigated with a prototype PAI system. 2D PA images with acoustic resolution at wavelength 532, 1210 and 1310 nm were formulated, and furthermore, the PA histochemical components images which show the microscopic distributions of histochemical components were solved. Imaging experiments on surgically removed human intestinal specimens has demonstrated the solved PA images were significantly different associated with the presence of fibrosis, which could be applied to characterize the intestinal strictures for given specimens.

  4. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  5. NEW NONLINEAR ACOUSTIC TECHNIQUES FOR NDE

    SciTech Connect

    J. A. TENCATE

    2000-09-01

    Acoustic nonlinearity in a medium may occur as a result of a variety of mechanisms. Some of the more common nonlinear effects may come from: (1) one or several cracks, volumetrically distributed due to age or fatigue or single disbonds or delamination; (2) imperfect grain-to-grain contacts, e.g., materials like concretes that are cemented together and have less than perfect bonds; (3) hard parts in a soft matrix, e.g., extreme duty materials like tungsten/copper alloys; or (4) atomic-scale nonlinearities. Nonlinear effects that arise from the first two mechanisms are considerably larger than the last two; thus, we have focused considerable attention on these. The most pervasive nonlinear measure of damage today is a second harmonic measurement. We show that for many cases of interest to NDE, a second harmonic measurement may not be the best choice. We examine the manifestations of nonlinearity in (nonlinear) materials with cracks and/or imperfect bonds and illustrate their applicability to NDE. For example, nonlinear resonance frequency shifts measured at increasing drive levels correlate strongly with the amount of ASR (alkali-silica reaction) damage of concrete cores. Memory effects (slow dynamics) also seem to correlate with the amount of damage.

  6. Elastic characterization of swine aorta by scanning acoustic microscopy at 30 MHz

    NASA Astrophysics Data System (ADS)

    Blase, Christopher; Shelke, Amit; Kundu, Tribikram; Bereiter-Hahn, Jürgen

    2011-04-01

    The mechanical properties of blood vessel walls are important determinants of physiology and pathology of the cardiovascular system. Acoustic imaging (B mode) is routinely used in a clinical setting to determine blood flow and wall distensibility. In this study scanning acoustic microscopy in vitro is used to determine spatially resolved tissue elastic properties. Broadband excitation of 30 MHz has been applied through scanning acoustic microscopy (SAM) for topographical imaging of swine thoracic aorta in reflection mode. Three differently treated tissue samples were investigated with SAM: a) treated with elastase to remove elastin, b) autoclaving for 5 hours to remove collagen and c) fresh controlled untreated sample as control. Experimental investigations are conducted for studying the contribution of individual protein components (elastin and collagen) to the material characteristics of the aortic wall. Conventional tensile testing has been conducted on the tissue samples to study the mechanical behavior. The mechanical properties measured by SAM and tensile testing show qualitative agreement.

  7. Swept-frequency acoustic interferometry technique for noninvasive chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.N.; Han, Wei; Lizon, D.C.; Houlton, R.J.

    1997-02-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range from outside a container (e.g., reactor vessel, tank, pipe, industrial containers etc.). From the frequency dependence of sound attenuation, fluid density can also be determined. These physical parameters. when combined together, can be used to identify a range of chemicals. This technique can be adapted for chemical diagnostic applications, particularly in process control where monitoring of acoustic properties of chemicals (liquids, mixtures, emulsions, suspensions, etc.) may provide appropriate feedback information. The SFAI theory is discussed and experimental techniques are presented. Examples of several novel applications of the SFAI technique are also presented.

  8. Characterization of defects in Mn-Zn ferrites by scanning laser acoustic microscopy (SLAM)

    SciTech Connect

    Boehning, C.W.; Tuohig, W.D.

    1987-06-01

    A scanning laser acoustic microscope (SLAM) has been used to evaluate the integrity of Mn-Zn ferrite ceramic components which comprise part of the magnetic circuit in an electromechanical code interrogation device. Cracking of the ferrites during processing and assembly emerged as a significant manufacturing problem. Operations such as grinding, metallization, joining, and welding were suspected of causing damage, and acoustic microscopy was used to monitor these processes. Parts which produced suspicious acoustic images were dismantled and destructively sectioned to identify specific physical defects. Correlations between the defects and their acoustic signatures were established. This procedure has provided the basis for several process modifications and improvements which have resulted in acceptable production yields. The SLAM is used as an engineering tool for the detection and characterization of defects and is presently being used routinely to inspect production ferrite components.

  9. Backscattered Electron Microscopy as an Advanced Technique in Petrography.

    ERIC Educational Resources Information Center

    Krinsley, David Henry; Manley, Curtis Robert

    1989-01-01

    Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)

  10. Photothermal technique in cell microscopy studies

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitry; Chebot'ko, Igor; Kutchinsky, Georgy; Cherenkevitch, Sergey

    1995-01-01

    Photothermal (PT) method is applied for a cell imaging and quantitative studies. The techniques for cell monitoring, imaging and cell viability test are developed. The method and experimental set up for optical and PT-image acquisition and analysis is described. Dual- pulsed laser set up combined with phase contrast illumination of a sample provides visualization of temperature field or absorption structure of a sample with spatial resolution 0.5 micrometers . The experimental optics, hardware and software are designed using the modular principle, so the whole set up can be adjusted for various experiments: PT-response monitoring or photothermal spectroscopy studies. Sensitivity of PT-method provides the imaging of the structural elements of live (non-stained) white blood cells. The results of experiments with normal and subnormal blood cells (red blood cells, lymphocytes, neutrophyles and lymphoblasts) are reported. Obtained PT-images are different from optical analogs and deliver additional information about cell structure. The quantitative analysis of images was used for cell population comparative diagnostic. The viability test for red blood cell differentiation is described. During the study of neutrophyles in norma and sarcoidosis disease the differences in PT-images of cells were found.

  11. An Acoustic Communication Technique of Nanorobot Swarms for Nanomedicine Applications.

    PubMed

    Loscrí, Valeria; Vegni, Anna Maria

    2015-09-01

    In this contribution, we present a communication paradigm among nanodevices, based on acoustic vibrations for medical applications. We consider a swarm of nanorobots able to communicate in a distributed and decentralized fashion, propelled in a biological environment (i.e., the human brain). Each nanorobot is intended to i) recognize a cancer cell, ii) destroy it, and then iii) forward information about the presence of cancer formation to other nanorobots, through acoustic signals. The choice of acoustic waves as communication mean is related to the application context, where it is not advisable either to use indiscriminate chemical substances or electromagnetic waves. The effectiveness of the proposed approach is assessed in terms of achievement of the objective (i.e., to destroy the majority of tumor cells), and the velocity of detection and destruction of cancer cells, through a comparison with other related techniques. PMID:25898028

  12. An Acoustic Communication Technique of Nanorobot Swarms for Nanomedicine Applications.

    PubMed

    Loscrí, Valeria; Vegni, Anna Maria

    2015-09-01

    In this contribution, we present a communication paradigm among nanodevices, based on acoustic vibrations for medical applications. We consider a swarm of nanorobots able to communicate in a distributed and decentralized fashion, propelled in a biological environment (i.e., the human brain). Each nanorobot is intended to i) recognize a cancer cell, ii) destroy it, and then iii) forward information about the presence of cancer formation to other nanorobots, through acoustic signals. The choice of acoustic waves as communication mean is related to the application context, where it is not advisable either to use indiscriminate chemical substances or electromagnetic waves. The effectiveness of the proposed approach is assessed in terms of achievement of the objective (i.e., to destroy the majority of tumor cells), and the velocity of detection and destruction of cancer cells, through a comparison with other related techniques.

  13. Acoustic microscopy and nonlinear effects in pressurized superfluid helium. Technical report

    SciTech Connect

    Moulthrop, A.A.; Muha, M.S.; Kozlowski, G.C.; Silva, C.P.; Hadimioglu, B.

    1993-08-31

    The operation of an acoustic microscope having a resolution of 15 nm has been demonstrated. It uses as a coupling medium superfluid 4He colder than 0.9 K and pressurized to greater than 20 bar. The microscope is now being used to image objects that show little or no contrast on a scanning electron microscope. In addition, the acoustic microscope is being used to study the properties of sound propagation in the coupling fluid. At low acoustic intensities, the coupling fluid has very low acoustic attenuation at the microscope's operating frequency (15.3 GHz), but near the focal point the acoustic intensity can be high enough that the helium behaves with extreme nonlinearity. In fact, this medium is capable of entering new regimes of nonlinear interaction. Plots of the received signal versus input power display a nearly complete pump depletion at certain input power levels and a reconversion to the pump frequency at higher power levels. Such behavior has never before been observed. The authors present arguments that the process underlying this nonlinear behavior is harmonic generation. Cryogenic microscopy, Harmonic generation, Nonlinear acoustics.

  14. Atomic force acoustic microscopy: Influence of the lateral contact stiffness on the elastic measurements.

    PubMed

    Flores-Ruiz, F J; Espinoza-Beltrán, F J; Diliegros-Godines, C J; Siqueiros, J M; Herrera-Gómez, A

    2016-09-01

    Atomic force acoustic microscopy is a dynamic technique where the resonances of a cantilever, that has its tip in contact with the sample, are used to quantify local elastic properties of surfaces. Since the contact resonance frequencies (CRFs) monotonically increase with the tip-sample contact stiffness, they are used to evaluate the local elastic properties of the surfaces through a suitable contact mechanical model. The CRFs depends on both, normal and lateral contact stiffness, kN and kS respectively, where the last one is taken either as constant (kS<1), or as zero, leading to uncertainty in the estimation of the elastic properties of composite materials. In this work, resonance spectra for free and contact vibration were used in a finite element analysis of cantilevers to show the influence of kS in the resonance curves due to changes in the kS/kN ratio. These curves have regions for the different vibrational modes that are both, strongly and weakly dependent on kS, and they can be used in a selective manner to obtain a precise mapping of elastic properties. PMID:27428309

  15. Atomic force acoustic microscopy: Influence of the lateral contact stiffness on the elastic measurements.

    PubMed

    Flores-Ruiz, F J; Espinoza-Beltrán, F J; Diliegros-Godines, C J; Siqueiros, J M; Herrera-Gómez, A

    2016-09-01

    Atomic force acoustic microscopy is a dynamic technique where the resonances of a cantilever, that has its tip in contact with the sample, are used to quantify local elastic properties of surfaces. Since the contact resonance frequencies (CRFs) monotonically increase with the tip-sample contact stiffness, they are used to evaluate the local elastic properties of the surfaces through a suitable contact mechanical model. The CRFs depends on both, normal and lateral contact stiffness, kN and kS respectively, where the last one is taken either as constant (kS<1), or as zero, leading to uncertainty in the estimation of the elastic properties of composite materials. In this work, resonance spectra for free and contact vibration were used in a finite element analysis of cantilevers to show the influence of kS in the resonance curves due to changes in the kS/kN ratio. These curves have regions for the different vibrational modes that are both, strongly and weakly dependent on kS, and they can be used in a selective manner to obtain a precise mapping of elastic properties.

  16. Intraoperative neuromonitoring techniques in the surgical management of acoustic neuromas.

    PubMed

    Oh, Taemin; Nagasawa, Daniel T; Fong, Brendan M; Trang, Andy; Gopen, Quinton; Parsa, Andrew T; Yang, Isaac

    2012-09-01

    Unfavorable outcomes such as facial paralysis and deafness were once unfortunate probable complications following resection of acoustic neuromas. However, the implementation of intraoperative neuromonitoring during acoustic neuroma surgery has demonstrated placing more emphasis on quality of life and preserving neurological function. A modern review demonstrates a great degree of recent success in this regard. In facial nerve monitoring, the use of modern electromyography along with improvements in microneurosurgery has significantly improved preservation. Recent studies have evaluated the use of video monitoring as an adjunctive tool to further improve outcomes for patients undergoing surgery. Vestibulocochlear nerve monitoring has also been extensively studied, with the most popular techniques including brainstem auditory evoked potential monitoring, electrocochleography, and direct compound nerve action potential monitoring. Among them, direct recording remains the most promising and preferred monitoring method for functional acoustic preservation. However, when compared with postoperative facial nerve function, the hearing preservation is only maintained at a lower rate. Here, the authors analyze the major intraoperative neuromonitoring techniques available for acoustic neuroma resection. PMID:22937857

  17. Mechanical characterization of porous nano-thin films by use of atomic force acoustic microscopy.

    PubMed

    Kopycinska-Müller, M; Clausner, A; Yeap, K-B; Köhler, B; Kuzeyeva, N; Mahajan, S; Savage, T; Zschech, E; Wolter, K-J

    2016-03-01

    The indentation modulus of thin films of porous organosilicate glass with a nominal porosity content of 30% and thicknesses of 350nm, 200nm, and 46nm is determined with help of atomic force acoustic microscopy (AFAM). This scanning probe microscopy based technique provides the highest possible depth resolution. The values of the indentation modulus obtained for the 350nm and 200nm thin films were respectively 6.3GPa±0.2GPa and 7.2GPa±0.2GPa and free of the substrate influence. The sample with the thickness of 46nm was tested in four independent measurement sets. Cantilevers with two different tip radii of about 150nm and less than 50nm were applied in different force ranges to obtain a result for the indentation modulus that was free of the substrate influence. A detailed data analysis yielded value of 8.3GPa±0.4GPa for the thinnest film. The values of the indentation modulus obtained for the thin films of porous organosilicate glasses increased with the decreasing film thickness. The stiffening observed for the porous films could be explained by evolution of the pore topology as a function of the film thickness. To ensure that our results were free of the substrate influence, we analyzed the ratio of the sample deformation as well as the tip radius to the film thickness. The results obtained for the substrate parameter were compared for all the measurement series and showed, which ones could be declared as free of the substrate influence. PMID:26799327

  18. Mechanical characterization of porous nano-thin films by use of atomic force acoustic microscopy.

    PubMed

    Kopycinska-Müller, M; Clausner, A; Yeap, K-B; Köhler, B; Kuzeyeva, N; Mahajan, S; Savage, T; Zschech, E; Wolter, K-J

    2016-03-01

    The indentation modulus of thin films of porous organosilicate glass with a nominal porosity content of 30% and thicknesses of 350nm, 200nm, and 46nm is determined with help of atomic force acoustic microscopy (AFAM). This scanning probe microscopy based technique provides the highest possible depth resolution. The values of the indentation modulus obtained for the 350nm and 200nm thin films were respectively 6.3GPa±0.2GPa and 7.2GPa±0.2GPa and free of the substrate influence. The sample with the thickness of 46nm was tested in four independent measurement sets. Cantilevers with two different tip radii of about 150nm and less than 50nm were applied in different force ranges to obtain a result for the indentation modulus that was free of the substrate influence. A detailed data analysis yielded value of 8.3GPa±0.4GPa for the thinnest film. The values of the indentation modulus obtained for the thin films of porous organosilicate glasses increased with the decreasing film thickness. The stiffening observed for the porous films could be explained by evolution of the pore topology as a function of the film thickness. To ensure that our results were free of the substrate influence, we analyzed the ratio of the sample deformation as well as the tip radius to the film thickness. The results obtained for the substrate parameter were compared for all the measurement series and showed, which ones could be declared as free of the substrate influence.

  19. Experimental source characterization techniques for studying the acoustic properties of perforates under high level acoustic excitation.

    PubMed

    Bodén, Hans

    2011-11-01

    This paper discusses experimental techniques for obtaining the acoustic properties of in-duct samples with non-linear acoustic characteristic. The methods developed are intended both for studies of non-linear energy transfer to higher harmonics for samples only accessible from one side such as wall treatment in aircraft engine ducts or automotive exhaust systems and for samples accessible from both sides such as perforates or other top sheets. When harmonic sound waves are incident on the sample nonlinear energy transfer results in sound generation at higher harmonics at the sample (perforate) surface. The idea is that these sources can be characterized using linear system identification techniques similar to one-port or two-port techniques which are traditionally used for obtaining source data for in-duct sources such as IC-engines or fans. The starting point will be so called polyharmonic distortion modeling which is used for characterization of nonlinear properties of microwave systems. It will be shown how acoustic source data models can be expressed using this theory. Source models of different complexity are developed and experimentally tested. The results of the experimental tests show that these techniques can give results which are useful for understanding non-linear energy transfer to higher harmonics.

  20. Acoustic microscopy of functionally graded thermal sprayed coatings using stiffness matrix method and Stroh formalism

    NASA Astrophysics Data System (ADS)

    Deng, X. D.; Monnier, T.; Guy, P.; Courbon, J.

    2013-06-01

    Acoustic microscopy of multilayered media as well as functionally graded coatings on substrate necessitates to model acoustic wave propagation in such materials. In particular, we chose to use Stroh formalism and the recursive stiffness matrix method to obtain the reflection coefficient of acoustic waves on these systems because this allows us to address the numerical instability of the conventional transfer matrix method. In addition, remarkable simplification and computational efficiency are obtained. We proposed a modified formulation of the angular spectrum of the transducer based on the theoretical analysis of a line-focus transducer for broadband acoustic microscopy. A thermally sprayed coating on substrate is treated as a functionally graded material along the depth of the coating and is approximately represented by a number of homogeneous elastic layers with exponentially graded elastic properties. The agreement between our experimental and numerical analyses on such thermal sprayed coatings with different thicknesses confirms the efficiency of the method. We proved the ability of the inversion procedure to independently determine both thickness and gradient of elastic properties. The perspective of this work is the opportunity to non-destructively measure these features in functionally graded materials.

  1. Development of Cell Staining Technique for X-Ray Microscopy

    SciTech Connect

    Tseng, P. Y.; Shih, Y. T.; Liu, C. J.; Hsu, T.; Chien, C. C.; Leng, W. H.; Liang, K. S.; Yin, G. C.; Chen, F. R.; Je, J. H.; Margaritondo, G.; Hwu, Y.

    2007-01-19

    We report a technique for detection of sub-cellular organelles and proteins with hard x-ray microscopy. Several metals were used for enhancing contrast for x-ray microscopy. Osmium tetroxide provides an excellent stain for lipid and can delineate cell membrane. Uranyl acetate has high affinity for nucleotide and can stain nucleus. Immunolocalization of specific proteins and sub-cellular organelles was achieved by 3'3 diaminobenzidine (DAB) with nickel enhancement and nanogold-conjugated secondary antibody with silver enhancement. The x-rays emitted from synchrotron source was monochromatized by double crystal monochromator, the photon energy was fixed at 8 keV to optimize the focusing efficiency of the zone plates. The estimated resolution is about 60 nm. When compared with visible light and conventional confocal microscopy, the X-ray microscopy provides a superior resolution to both conventional optical microscopes.

  2. Development of Cell Staining Technique for X-Ray Microscopy

    NASA Astrophysics Data System (ADS)

    Tseng, P. Y.; Shih, Y. T.; Liu, C. J.; Hsu, T.; Chien, C. C.; Leng, W. H.; Liang, K. S.; Yin, G. C.; Chen, F. R.; Je, J. H.; Margaritondo, G.; Hwu, Y.

    2007-01-01

    We report a technique for detection of sub-cellular organelles and proteins with hard x-ray microscopy. Several metals were used for enhancing contrast for x-ray microscopy. Osmium tetroxide provides an excellent stain for lipid and can delineate cell membrane. Uranyl acetate has high affinity for nucleotide and can stain nucleus. Immunolocalization of specific proteins and sub-cellular organelles was achieved by 3'3 diaminobenzidine (DAB) with nickel enhancement and nanogold-conjugated secondary antibody with silver enhancement. The x-rays emitted from synchrotron source was monochromatized by double crystal monochromator, the photon energy was fixed at 8 keV to optimize the focusing efficiency of the zone plates. The estimated resolution is about 60 nm. When compared with visible light and conventional confocal microscopy, the X-ray microscopy provides a superior resolution to both conventional optical microscopes.

  3. Munitions classification using an Acoustic Resonance Spectroscopic technique

    SciTech Connect

    Roberts, R.S.; Chen, J.T.; Vela, O.A.; Lewis, P.S.

    1993-12-01

    In support of the Bilateral Chemical Weapons Agreement between the United States and Russia, Los Alamos National Laboratory has developed a nondestructive evaluation (NDE) technique that discriminates between different types of artillery munitions. This NDE classification technique allows on-site inspectors to rapidly classify the munitions as chemical or high explosive, and furthermore discriminates between various subclasses of these types of munitions. This technique, based on acoustic resonance measurements, has been successfully demonstrated on a wide variety of high explosive and chemical munitions. The technique consists of building templates of spectral features from sets of known munitions. Spectral features of unknown munitions are compared with a library of templates, and the degree of match between the features and the templates is used to classify the munition. This paper describes the technique, including the feature extraction, clustering and classification algorithms.

  4. Acoustic source identification using a Generalized Weighted Inverse Beamforming technique

    NASA Astrophysics Data System (ADS)

    Presezniak, Flavio; Zavala, Paulo A. G.; Steenackers, Gunther; Janssens, Karl; Arruda, Jose R. F.; Desmet, Wim; Guillaume, Patrick

    2012-10-01

    In the last years, acoustic source identification has gained special attention, mainly due to new environmental norms, urbanization problems and more demanding acoustic comfort expectation of consumers. From the current methods, beamforming techniques are of common use, since normally demands affordable data acquisition effort, while producing clear source identification in most of the applications. In order to improve the source identification quality, this work presents a method, based on the Generalized Inverse Beamforming, that uses a weighted pseudo-inverse approach and an optimization procedure, called Weighted Generalized Inverse Beamforming. To validate this method, a simple case of two compact sources in close vicinity in coherent radiation was investigated by numerical and experimental assessment. Weighted generalized inverse results are compared to the ones obtained by the conventional beamforming, MUltiple Signal Classification, and Generalized Inverse Beamforming. At the end, the advantages of the proposed method are outlined together with the computational effort increase compared to the Generalized Inverse Beamforming.

  5. Acoustical Characteristics of Mastication Sounds: Application of Speech Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Brochetti, Denise

    Food scientists have used acoustical methods to study characteristics of mastication sounds in relation to food texture. However, a model for analysis of the sounds has not been identified, and reliability of the methods has not been reported. Therefore, speech analysis techniques were applied to mastication sounds, and variation in measures of the sounds was examined. To meet these objectives, two experiments were conducted. In the first experiment, a digital sound spectrograph generated waveforms and wideband spectrograms of sounds by 3 adult subjects (1 male, 2 females) for initial chews of food samples differing in hardness and fracturability. Acoustical characteristics were described and compared. For all sounds, formants appeared in the spectrograms, and energy occurred across a 0 to 8000-Hz range of frequencies. Bursts characterized waveforms for peanut, almond, raw carrot, ginger snap, and hard candy. Duration and amplitude of the sounds varied with the subjects. In the second experiment, the spectrograph was used to measure the duration, amplitude, and formants of sounds for the initial 2 chews of cylindrical food samples (raw carrot, teething toast) differing in diameter (1.27, 1.90, 2.54 cm). Six adult subjects (3 males, 3 females) having normal occlusions and temporomandibular joints chewed the samples between the molar teeth and with the mouth open. Ten repetitions per subject were examined for each food sample. Analysis of estimates of variation indicated an inconsistent intrasubject variation in the acoustical measures. Food type and sample diameter also affected the estimates, indicating the variable nature of mastication. Generally, intrasubject variation was greater than intersubject variation. Analysis of ranks of the data indicated that the effect of sample diameter on the acoustical measures was inconsistent and depended on the subject and type of food. If inferences are to be made concerning food texture from acoustical measures of mastication

  6. Local elastic modulus of RF sputtered HfO{sub 2} thin film by atomic force acoustic microscopy

    SciTech Connect

    Jena, S. Tokas, R. B. Sarkar, P. Thakur, S.; Sahoo, N. K.; Misal, J. S.; Rao, K. D.

    2014-04-24

    Atomic force acoustic microscopy (AFAM) is a useful nondestructive technique for measurement of local elastic modulus of materials at nano-scale spatial resolution by measuring the contact resonance spectra for higher order modes of the AFM cantilever. The elastic modulus of RF sputtered HfO{sub 2} thin film has been measured quantitatively, using reference approach in which measurements are performed on the test and reference samples. Using AFAM, the measured elastic modulus of the HfO{sub 2} thin film is 223±27 GPa, which is in agreement with the literature value of 220±40 GPa for atomic layer deposited HfO{sub 2} thin film using nanoindentation technique.

  7. Scanning Acoustic Microscopy-A Novel Noninvasive Method to Determine Tumor Interstitial Fluid Pressure in a Xenograft Tumor Model.

    PubMed

    Hofmann, Matthias; Pflanzer, Ralph; Habib, Anowarul; Shelke, Amit; Bereiter-Hahn, Jürgen; Bernd, August; Kaufmann, Roland; Sader, Robert; Kippenberger, Stefan

    2016-06-01

    Elevated tumor interstitial fluid pressure (TIFP) is a prominent feature of solid tumors and hampers the transmigration of therapeutic macromolecules, for example, large monoclonal antibodies, from tumor-supplying vessels into the tumor interstitium. TIFP values of up to 40 mm Hg have been measured in experimental solid tumors using two conventional invasive techniques: the wick-in-needle and the micropuncture technique. We propose a novel noninvasive method of determining TIFP via ultrasonic investigation with scanning acoustic microscopy at 30-MHz frequency. In our experimental setup, we observed for the impedance fluctuations in the outer tumor hull of A431-vulva carcinoma-derived tumor xenograft mice. The gain dependence of signal strength was quantified, and the relaxation of tissue was calibrated with simultaneous hydrostatic pressure measurements. Signal patterns from the acoustical images were translated into TIFP curves, and a putative saturation effect was found for tumor pressures larger than 3 mm Hg. This is the first noninvasive approach to determine TIFP values in tumors. This technique can provide a potentially promising noninvasive assessment of TIFP and, therefore, can be used to determine the TIFP before treatment approach as well to measure therapeutic efficacy highlighted by lowered TFP values. PMID:27267834

  8. Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy.

    PubMed

    Phani, M Kalyan; Kumar, Anish; Jayakumar, T; Arnold, Walter; Samwer, Konrad

    2015-01-01

    The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V) measured by using atomic force acoustic microscopy (AFAM) is reported in the present study. The real and imaginary parts of the contact stiffness k (*) are obtained from the contact-resonance spectra and by using these two quantities, the maps of local elastic stiffness and the damping factor are derived. The evaluation of the data is based on the mass distribution of the cantilever with damped flexural modes. The cantilever dynamics model considering damping, which was proposed recently, has been used for mapping of indentation modulus and damping of different phases in a metallic structural material. The study indicated that in a Ti-6Al-4V alloy the metastable β phase has the minimum modulus and the maximum damping followed by α'- and α-phases. Volume fractions of the individual phases were determined by using a commercial material property evaluation software and were validated by using X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) studies on one of the heat-treated samples. The volume fractions of the phases and the modulus measured through AFAM are used to derive average modulus of the bulk sample which is correlated with the bulk elastic properties obtained by ultrasonic velocity measurements. The average modulus of the specimens estimated by AFAM technique is found to be within 5% of that obtained by ultrasonic velocity measurements. The effect of heat treatments on the ultrasonic attenuation in the bulk sample could also be understood based on the damping measurements on individual phases using AFAM.

  9. Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy

    PubMed Central

    Phani, M Kalyan; Kumar, Anish; Jayakumar, T; Samwer, Konrad

    2015-01-01

    Summary The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V) measured by using atomic force acoustic microscopy (AFAM) is reported in the present study. The real and imaginary parts of the contact stiffness k * are obtained from the contact-resonance spectra and by using these two quantities, the maps of local elastic stiffness and the damping factor are derived. The evaluation of the data is based on the mass distribution of the cantilever with damped flexural modes. The cantilever dynamics model considering damping, which was proposed recently, has been used for mapping of indentation modulus and damping of different phases in a metallic structural material. The study indicated that in a Ti-6Al-4V alloy the metastable β phase has the minimum modulus and the maximum damping followed by α′- and α-phases. Volume fractions of the individual phases were determined by using a commercial material property evaluation software and were validated by using X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) studies on one of the heat-treated samples. The volume fractions of the phases and the modulus measured through AFAM are used to derive average modulus of the bulk sample which is correlated with the bulk elastic properties obtained by ultrasonic velocity measurements. The average modulus of the specimens estimated by AFAM technique is found to be within 5% of that obtained by ultrasonic velocity measurements. The effect of heat treatments on the ultrasonic attenuation in the bulk sample could also be understood based on the damping measurements on individual phases using AFAM. PMID:25977847

  10. Power cepstrum technique with application to model helicopter acoustic data

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Burley, C. L.

    1986-01-01

    The application of the power cepstrum to measured helicopter-rotor acoustic data is investigated. A previously applied correction to the reconstructed spectrum is shown to be incorrect. For an exact echoed signal, the amplitude of the cepstrum echo spike at the delay time is linearly related to the echo relative amplitude in the time domain. If the measured spectrum is not entirely from the source signal, the cepstrum will not yield the desired echo characteristics and a cepstral aliasing may occur because of the effective sample rate in the frequency domain. The spectral analysis bandwidth must be less than one-half the echo ripple frequency or cepstral aliasing can occur. The power cepstrum editing technique is a useful tool for removing some of the contamination because of acoustic reflections from measured rotor acoustic spectra. The cepstrum editing yields an improved estimate of the free field spectrum, but the correction process is limited by the lack of accurate knowledge of the echo transfer function. An alternate procedure, which does not require cepstral editing, is proposed which allows the complete correction of a contaminated spectrum through use of both the transfer function and delay time of the echo process.

  11. Damage Detection and Analysis in CFRPs Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis Laron

    Real time monitoring of damage is an important aspect of life management of critical structures. Acoustic emission (AE) techniques allow for measurement and assessment of damage in real time. Acoustic emission parameters such as signal amplitude and duration were monitored during the loading sequences. Criteria that can indicate the onset of critical damage to the structure were developed. Tracking the damage as it happens gives a better analysis of the failure evolution that will allow for a more accurate determination of structural life. The main challenge is distinguishing between legitimate damage signals and "false positives" which are unrelated to damage growth. Such false positives can be related to electrical noise, friction, or mechanical vibrations. This research focuses on monitoring signals of damage growth in carbon fiber reinforced polymers (CFRPs) and separating the relevant signals from the false ones. In this Dissertation, acoustic emission signals from CFRP specimens were experimentally recorded and analyzed. The objectives of this work are: (1) perform static and fatigue loading of CFRP composite specimens and measure the associated AE signals, (2) accurately determine the AE parameters (energy, frequency, duration, etc.) of signals generated during failure of such specimens, (3) use fiber optic sensors to monitor the strain distribution of the damage zone and relate these changes in strain measurements to AE data.

  12. Scanning Acoustic Microscopy for Characterization of Coatings and Near-Surface Features of Ceramics

    SciTech Connect

    Qu, Jun; Blau, Peter Julian

    2006-01-01

    Scanning Acoustic Microscopy (SAcM) has been widely used for non-destructive evaluation (NDE) in various fields such as material characterization, electronics, and biomedicine. SAcM uses high-frequency acoustic waves (60 MHz to 2.0 GHz) providing much higher resolution (up to 0.5 {micro}m) compared to conventional ultrasonic NDE, which is typically about 500 {micro}m. SAcM offers the ability to non-destructively image subsurface features and visualize the variations in elastic properties. These attributes make SAcM a valuable tool for characterizing near-surface material properties and detecting fine-scale flaws. This paper presents some recent applications of SAcM in detecting subsurface damage, assessing coatings, and visualizing residual stress for ceramic and semiconductor materials.

  13. Scanning electron acoustic microscopy of residual stresses in ceramics: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Qian, Menglu

    1992-01-01

    Several reviews have highlighted a number of applications of scanning electron acoustic microscopy (SEAM) to metals and semiconductors which show that SEAM can provide new information on surface and near-surface features of such materials, but there have been few studies attempting to determine the capabilities of SEAM for characterizing ceramic materials. We have recently observed image contrast in SEAM from residual stress fields induced in brittle materials by Vickers indentations that is strongly dependent on the electron beam chopping frequency. We have also recently developed a three-dimensional mathematical model of signal generation and contrast in SEAM, appropriate to the brittle materials studied, that we use as a starting point in this paper for modeling the effect of residual stress fields on the generated electron acoustic signal. The influence of the electron beam chopping frequency is also considered under restrictive assumptions.

  14. Properties of cells through life and death – an acoustic microscopy investigation

    PubMed Central

    Pasternak, Maurice M; Strohm, Eric M; Berndl, Elizabeth SL; Kolios, Michael C

    2015-01-01

    Current methods to evaluate the status of a cell are largely focused on fluorescent identification of molecular biomarkers. The invasive nature of these methods – requiring either fixation, chemical dyes, genetic alteration, or a combination of these – prevents subsequent analysis of samples. In light of this limitation, studies have considered the use of physical markers to differentiate cell stages. Acoustic microscopy is an ultrahigh frequency (>100 MHz) ultrasound technology that can be used to calculate the mechanical and physical properties of biological cells in real-time, thereby evaluating cell stage in live cells without invasive biomarker evaluation. Using acoustic microscopy, MCF-7 human breast adenocarcinoma cells within the G1, G2, and metaphase phases of the proliferative cell cycle, in addition to early and late programmed cell death, were examined. Physical properties calculated include the cell height, sound speed, acoustic impedance, cell density, adiabatic bulk modulus, and the ultrasonic attenuation. A total of 290 cells were measured, 58 from each cell phase, assessed using fluorescent and phase contrast microscopy. Cells actively progressing from G1 to metaphase were marked by a 28% decrease in attenuation, in contrast to the induction of apoptosis from G1, which was marked by a significant 81% increase in attenuation. Furthermore late apoptotic cells separated into 2 distinct groups based on ultrasound attenuation, suggesting that presently-unidentified sub-stages may exist within late apoptosis. A methodology has been implemented for the identification of cell stages without the use of chemical dyes, fixation, or genetic manipulation. PMID:26178635

  15. Total internal reflection microscopy: a surface inspection technique.

    PubMed

    Temple, P A

    1981-08-01

    Structure at and near the surface of a transparent sample or in a film on a transparent substrate can be observed by illuminating the sample from within using a well-collimated polarized laser beam incident at an angle equal to or greater than the critical angle of the sample material and examining the air side of the surface using an optical microscope. Although the technique is similar to dark-field microscopy, additional information can be obtained here concerning the size and depth of scattering sites on or near the surface. This technique, total internal reflection microscopy (TIRM), is complementary to phase contrast (Nomarski) microscopy. Two TIRM microscopes are shown, one of which is used as an attachment to a commercial Nomarski microscope and the second of which is used in laser damage measurements. This surface inspection technique had been used to study surface polishing and cleaning methods, laser damage nucleation sites, ion milling of optical surfaces, and thin film inclusions. A biological application for liquid medium studies is suggested. A description of the electric fields present at and near the air sample interface is given.

  16. Scanning electron acoustic microscopy of residual stresses in ceramics - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Qian, Menglu

    1992-01-01

    The paper presents a three-dimensional mathematical model of signal generation and contrast in brittle materials and uses the model to simulate the effect of residual stress fields on the scanning electron acoustic microscopy (SEAM)-generated electron acoustic signal. According to the model, a positive (tensile) strain produces an increase in the output signal, whereas a negative (compressive) strain produces a decrease in the ouput signal. Dark field contrast conditions occur at a chopping frequency at which V2 - V1 is greater than 0 (where V2 = V is the SEAM output in a region of residual stresses, and V1 is the output in a stress-free region of the sample). Under ideal conditions (maximum contrast) V1 approaches zero. It was found that tensile strains of the order 0.2-0.3 percent, possible in brittle materials, would produce a variation of the acoustic output signal of the order 10 nV (about 1 percent), well within the image contrast and signal processing capability of the SEAM electronics.

  17. The role of angular reflection in assessing elastic properties of bone by scanning acoustic microscopy.

    PubMed

    Puchegger, S; Fix, D; Pilz-Allen, C; Roschger, P; Fratzl, P; Weinkamer, R

    2014-01-01

    For an assessment of the mechanical performance of bone, a quantitative description of its mechanical heterogeneity is necessary. Previously, scanning acoustic microscopy (SAM) was used as a non-destructive method to estimate bone stiffness on the micrometer scale. While up to now only the normal incidence of acoustic waves is taken into account, we extend in our study the evaluation procedure by considering the full opening of the acoustic lens. The importance of this technical aspect is demonstrated by determining the contrast in Young's modulus between newly formed osteons and the surrounding higher mineralized interstitial bone. Several regions of human cortical bone of a femur in cross-section were imaged. For all the regions quantitative backscattered-electron imaging (qBEI) to estimate the local mass density was combined with SAM measurements. These measurements reveal a non-monotonic dependence between acoustic reflectivity and Young's modulus, which shows that it is actually necessary to consider the lens opening in a quantitative way. This problem was experimentally and theoretically approached by using lenses with two different opening angles operated at different frequencies (52° at 400MHz and 80° at 820MHz) to image the same specimen. The mass density of bone in osteons was found to be 1930kg/m(3) on average, while the higher mineral content in interstitial bone results in a 9% increase of the density. The contrast in the effective Young's modulus E, as determined through SAM, is more pronounced, with an average value of 14GPa in osteons and a more than 60% increase in interstitial bone. Additionally, SAM maps show oscillations in E with a periodicity of the typical bone lamella thickness of approximately 7µm in both osteons and interstitial bone. This mechanical heterogeneity can be explained by the varying orientation of the mineralized collagen fibers.

  18. New Techniques of Acoustic Seabed Classification at Ocean Margins

    NASA Astrophysics Data System (ADS)

    BLONDEL, P.

    2001-12-01

    Ocean margins have become the focus of most current geophysical and environmental surveys, because of their economic, scientific and oceanographic significance. These surveys deliver increasingly larger volumes of data, acquired by many types of techniques and sensors. Despite its importance, most of this data is still interpreted visually and qualitatively by skilled interpreters. The problem is that human interpretation is time-consuming and difficult to standardise. In certain conditions, it can be also be subject to more or less systematic errors. Current research in data processing is shifting toward computer-based interpretation techniques, and in particular seafloor classification. This presentation will review the different notions and objectives of classification. This will be followed with a review of acoustic (mainly sonar) classification techniques, supplemented with actual examples from around the world. In particular, new techniques recently developed will be presented, such as multistatic or multi-aspect 3-D sonar imaging. They provide access to a new wealth of useful parameters, often at extremely high-resolution. Seabed classification, in general and at ocean margins in particular, is fast becoming a major tool in seafloor surveying and monitoring,particularly with the development and increasing use of ROVs and autonomous platforms.

  19. Modern Techniques in Acoustical Signal and Image Processing

    SciTech Connect

    Candy, J V

    2002-04-04

    Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve this goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.

  20. A pilot study of scanning acoustic microscopy as a tool for measuring arterial stiffness in aortic biopsies

    PubMed Central

    Akhtar, Riaz; Cruickshank, J. Kennedy; Zhao, Xuegen; Derby, Brian; Weber, Thomas

    2016-01-01

    This study explores the use of scanning acoustic microscopy (SAM) as a potential tool for characterisation of arterial stiffness using aortic biopsies. SAM data is presented for human tissue collected during aortic bypass graft surgery for multi-vessel coronary artery disease. Acoustic wave speed as determined by SAM was compared to clinical data for the patients namely, pulse wave velocity (PWV), blood pressure, cholesterol and glucose levels. There was no obvious trend relating acoustic wave speed to PWV values, and an inverse relationship was found between systolic and diastolic blood pressure and acoustic wave speed. However, in patients with a higher cholesterol or glucose level, the acoustic wave speed increased. A more detailed investigation is needed to relate SAM data to clinical measurements. PMID:26985242

  1. Computational and experimental techniques for coupled acoustic/structure interactions.

    SciTech Connect

    Sumali, Anton Hartono; Pierson, Kendall Hugh; Walsh, Timothy Francis; Dohner, Jeffrey Lynn; Reese, Garth M.; Day, David Minot

    2004-01-01

    This report documents the results obtained during a one-year Laboratory Directed Research and Development (LDRD) initiative aimed at investigating coupled structural acoustic interactions by means of algorithm development and experiment. Finite element acoustic formulations have been developed based on fluid velocity potential and fluid displacement. Domain decomposition and diagonal scaling preconditioners were investigated for parallel implementation. A formulation that includes fluid viscosity and that can simulate both pressure and shear waves in fluid was developed. An acoustic wave tube was built, tested, and shown to be an effective means of testing acoustic loading on simple test structures. The tube is capable of creating a semi-infinite acoustic field due to nonreflecting acoustic termination at one end. In addition, a micro-torsional disk was created and tested for the purposes of investigating acoustic shear wave damping in microstructures, and the slip boundary conditions that occur along the wet interface when the Knudsen number becomes sufficiently large.

  2. Gabor-based fusion technique for Optical Coherence Microscopy.

    PubMed

    Rolland, Jannick P; Meemon, Panomsak; Murali, Supraja; Thompson, Kevin P; Lee, Kye-sung

    2010-02-15

    We recently reported on an Optical Coherence Microscopy technique, whose innovation intrinsically builds on a recently reported - 2 microm invariant lateral resolution by design throughout a 2 mm cubic full-field of view - liquid-lens-based dynamic focusing optical probe [Murali et al., Optics Letters 34, 145-147, 2009]. We shall report in this paper on the image acquisition enabled by this optical probe when combined with an automatic data fusion method developed and described here to produce an in-focus high resolution image throughout the imaging depth of the sample. An African frog tadpole (Xenopus laevis) was imaged with the novel probe and the Gabor-based fusion technique, demonstrating subcellular resolution in a 0.5 mm (lateral) x 0.5 mm (axial) without the need, for the first time, for x-y translation stages, depth scanning, high-cost adaptive optics, or manual intervention. In vivo images of human skin are also presented.

  3. The application of acoustic emission technique to fatigue crack measurement. [in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Crews, J. H., Jr.

    1974-01-01

    The applicability of acoustic emission technique to measure fatigue cracks in aluminum alloy specimens was investigated. There are several variables, such as the metallurgical and the physical treatment of the specimen, that can affect the level of acoustic activity of a fatigue specimen. It is therefore recommended that the acoustic emission technique be supplemented by other nondestructive evaluation methods to obtain quantitative data on crack growth.

  4. Advanced microscopy techniques resolving complex precipitates in steels

    NASA Astrophysics Data System (ADS)

    Saikaly, W.; Soto, R.; Bano, X.; Issartel, C.; Rigaut, G.; Charaï, A.

    1999-06-01

    Scanning electron microscopy as well as analytical transmission electron microscopy techniques such as high resolution, electron diffraction, energy dispersive X-ray spectrometry (EDX), parallel electron energy loss spectroscopy (PEELS) and elemental mapping via a Gatan Imaging Filter (GIF) have been used to study complex precipitation in commercial dual phase steels microalloyed with titanium. Titanium nitrides, titanium carbosulfides, titanium carbonitrides and titanium carbides were characterized in this study. Both carbon extraction replicas and thin foils were used as sample preparation techniques. On both the microscopic and nanometric scales, it was found that a large amount of precipitation occurred heterogeneously on already existing inclusions/precipitates. CaS inclusions (1 to 2 μm), already present in liquid steel, acted as nucleation sites for TiN precipitating upon the steel's solidification. In addition, TiC nucleated on existing smaller TiN (around 30 to 50 nm). Despite the complexity of such alloys, the statistical analysis conducted on the non-equilibrium samples were found to be in rather good agreement with the theoretical equilibrium calculations. Heterogeneous precipitation must have played a role in bringing these results closer together.

  5. Scanning electron acoustic microscopy of indentation-induced cracks and residual stresses in ceramics

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Qian, Menglu; Ravichandran, M. V.; Knowles, K. M.

    1990-01-01

    The ability of scanning electron acoustic microscopy (SEAM) to characterize ceramic materials is assessed. SEAM images of Vickers indentations in SiC whisker-reinforced alumina clearly reveal not only the radial cracks, the length of which can be used to estimate the fracture toughness of the material, but also reveal strong contrast, interpreted as arising from the combined effects of lateral cracks and the residual stress field left in the SiC whisker-reinforced alumina by the indenter. The strong contrast is removed after the material is heat treated at 1000 C to relieve the residual stresses around the indentations. A comparison of these observations with SEAM and reflected polarized light observations of Vickers indentations in soda-lime glass both before and after heat treatment confirms the interpretation of the strong contrast.

  6. Amplitude modulation atomic force microscopy, is acoustic driving in liquid quantitatively reliable?

    PubMed

    Liu, Fei; Zhao, Cunlu; Mugele, Frieder; van den Ende, Dirk

    2015-09-25

    Measuring quantitative tip-sample interaction forces in dynamic atomic force microscopy in fluids is challenging because of the strong damping of the ambient viscous medium and the fluid-mediated driving forces. This holds in particular for the commonly used acoustic excitation of the cantilever oscillation. Here we present measurements of tip-sample interactions due to conservative DLVO and hydration forces and viscous dissipation forces in aqueous electrolytes using tips with radii varying from typical 20 nm for the DLVO and hydration forces, to 1 μm for the viscous dissipation. The measurements are analyzed using a simple harmonic oscillator model, continuous beam theory with fluid-mediated excitation and thermal noise spectroscopy (TNS). In all cases consistent conservative forces, deviating less than 40% from each other, are obtained for all three approaches. The DLVO forces are even within 5% of the theoretical expectations for all approaches. Accurate measurements of dissipative forces within 15% of the predictions of macroscopic fluid dynamics require the use of TNS or continuous beam theory including fluid-mediated driving. Taking this into account, acoustic driving in liquid is quantitatively reliable. PMID:26335613

  7. In vivo deconvolution acoustic-resolution photoacoustic microscopy in three dimensions.

    PubMed

    Cai, De; Li, Zhongfei; Chen, Sung-Liang

    2016-02-01

    Acoustic-resolution photoacoustic microscopy (ARPAM) provides a spatial resolution on the order of tens of micrometers, and is becoming an essential tool for imaging fine structures, such as the subcutaneous microvasculature. High lateral resolution of ARPAM is achieved using high numerical aperture (NA) of acoustic transducer; however, the depth of focus and working distance will be deteriorated correspondingly, thus sacrificing the imaging range and accessible depth. The axial resolution of ARPAM is limited by the transducer's bandwidth. In this work, we develop deconvolution ARPAM (D-ARPAM) in three dimensions that can improve the lateral resolution by 1.8 and 3.7 times and the axial resolution by 1.7 and 2.7 times, depending on the adopted criteria, using a 20-MHz focused transducer without physically increasing its NA and bandwidth. The resolution enhancement in three dimensions by D-ARPAM is also demonstrated by in vivo imaging of the microvasculature of a chick embryo. The proposed D-ARPAM has potential for biomedical imaging that simultaneously requires high spatial resolution, extended imaging range, and long accessible depth.

  8. Amplitude modulation atomic force microscopy, is acoustic driving in liquid quantitatively reliable?

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Zhao, Cunlu; Mugele, Frieder; van den Ende, Dirk

    2015-09-01

    Measuring quantitative tip-sample interaction forces in dynamic atomic force microscopy in fluids is challenging because of the strong damping of the ambient viscous medium and the fluid-mediated driving forces. This holds in particular for the commonly used acoustic excitation of the cantilever oscillation. Here we present measurements of tip-sample interactions due to conservative DLVO and hydration forces and viscous dissipation forces in aqueous electrolytes using tips with radii varying from typical 20 nm for the DLVO and hydration forces, to 1 μm for the viscous dissipation. The measurements are analyzed using a simple harmonic oscillator model, continuous beam theory with fluid-mediated excitation and thermal noise spectroscopy (TNS). In all cases consistent conservative forces, deviating less than 40% from each other, are obtained for all three approaches. The DLVO forces are even within 5% of the theoretical expectations for all approaches. Accurate measurements of dissipative forces within 15% of the predictions of macroscopic fluid dynamics require the use of TNS or continuous beam theory including fluid-mediated driving. Taking this into account, acoustic driving in liquid is quantitatively reliable.

  9. Real-time vehicle noise cancellation techniques for gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, Antonio L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2012-06-01

    Acoustical sniper positioning systems rely on the detection and direction-of-arrival (DOA) estimation of the shockwave and the muzzle blast in order to provide an estimate of a potential snipers location. Field tests have shown that detecting and estimating the DOA of the muzzle blast is a rather difficult task in the presence of background noise sources, e.g., vehicle noise, especially in long range detection and absorbing terrains. In our previous work presented in the 2011 edition of this conference we highlight the importance of improving the SNR of the gunshot signals prior to the detection and recognition stages, aiming at lowering the false alarm and miss-detection rates and, thereby, increasing the reliability of the system. This paper reports on real-time noise cancellation techniques, like Spectral Subtraction and Adaptive Filtering, applied to gunshot signals. Our model assumes the background noise as being short-time stationary and uncorrelated to the impulsive gunshot signals. In practice, relatively long periods without signal occur and can be used to estimate the noise spectrum and its first and second order statistics as required in the spectral subtraction and adaptive filtering techniques, respectively. The results presented in this work are supported with extensive simulations based on real data.

  10. Measurement of transmission loss characteristics using acoustic intensity techniques at the KU-FRL Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1983-01-01

    The transmission loss characteristics of panels using the acoustic intensity technique is presented. The theoretical formulation, installation of hardware, modifications to the test facility, and development of computer programs and test procedures are described. A listing of all the programs is also provided. The initial test results indicate that the acoustic intensity technique is easily adapted to measure transmission loss characteristics of panels. Use of this method will give average transmission loss values. The fixtures developed to position the microphones along the grid points are very useful in plotting the intensity maps of vibrating panels.

  11. Local elasticity and mobility of twin boundaries in martensitic films studied by atomic force acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Luo, Yuansu; Büchsenschütz-Göbeler, Matthias; Arnold, Walter; Samwer, Konrad

    2014-01-01

    Nanoscale elastic properties of twinned martensite NiMnGa films were characterized by means of atomic force acoustic microscopy using cantilever contact-resonance spectra to measure the local contact stiffness k* and the local damping Q-1, which contains information on the crystallographic anisotropy of martensitic twin variants and the dissipative motion of twin boundaries (TBs). Images of k* and indentation modulus maps were obtained. Similar to topography images measured by conventional atomic force microscopy in contact mode, they show the nature of the twin structure and thus a regular variation in local elastic modulus. A correlation between k* and Q-1 was observed and mirrors the motion of the TB accompanied by a viscoelastic procedure. The k*-image and the topography image measured are opposite in contrast, which likely arises from mobile and immobile TBs depending on the geometry of twinning. Multi-resonance spectra were measured, which can be related to martensitic multivariants and are explainable as different types of nanotwins. A critical stress, defined as the starting point of softening due to TB movement was determined to be about 0.5 GPa for a thick film (1 μm) and 0.75 GPa for a thin film (0.15 μm), respectively. The values are much larger than that measured for bulk materials, but reasonable due to a large internal stress in the films.

  12. Continuous Surveillance Technique for Flow Accelerated Corrosion of Pipe Wall Using Electromagnetic Acoustic Transducer

    NASA Astrophysics Data System (ADS)

    Kojima, F.; Kosaka, D.; Umetani, K.

    2011-06-01

    In this paper, we propose a on-line monitoring technique using electromagnetic acoustic transducer (EMAT). In the series of laboratory experiments, carbon steel pipes were used and each sample was fabricated to simulate FAC. Electromagnetic acoustic resonance method (EMAR) is successfully tested for pipe wall thickness measurements. The validity and the feasibility of our method are also demonstrated through the laboratory experiments.

  13. Photoacoustic Microscopy

    PubMed Central

    Yao, Junjie; Wang, Lihong V.

    2012-01-01

    Photoacoustic microscopy (PAM) is a hybrid in vivo imaging technique that acoustically detects optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM takes advantage of the weak acoustic scattering in tissue and thus breaks through the optical diffusion limit (~1 mm in soft tissue). With its excellent scalability, PAM can provide high-resolution images at desired maximum imaging depths up to a few millimeters. Compared with backscattering-based confocal microscopy and optical coherence tomography, PAM provides absorption contrast instead of scattering contrast. Furthermore, PAM can image more molecules, endogenous or exogenous, at their absorbing wavelengths than fluorescence-based methods, such as wide-field, confocal, and multi-photon microscopy. Most importantly, PAM can simultaneously image anatomical, functional, molecular, flow dynamic and metabolic contrasts in vivo. Focusing on state-of-the-art developments in PAM, this Review discusses the key features of PAM implementations and their applications in biomedical studies. PMID:24416085

  14. New electron microscopy techniques of the study of meteoritic metal.

    SciTech Connect

    Michael, Joseph Richard; Goldstein, Joseph I.; Kotula, Paul Gabriel; Jones, R. H.

    2005-02-01

    Metallic Phases in extraterrestrial materials are composed of Fe-Ni with minor amounts of Co, P, Si, Cr, etc. Electron microscopy techniques (SEM, TEM, EPMA, AEM) have been used for almost 50 years to study micron and submicron microscopic features in the metal phases (Fig. 1) such as clear taenite, cloudy zone, plessite, etc [1,2]. However lack of instrumentation to prepare TEM thin foils in specific sample locations and to obtain micro-scale crystallographic data have limited these investigations. New techniques such as the focused ion beam (FIB) and the electron backscatter electron diffraction (EBSD) techniques have overcome these limitations. The application of the FIB instrument has allowed us to prepare {approx}10 um long by {approx} 5um deep TEM thin sections of metal phases from specific regions of metal particles, in chondrites, irons and stony iron meteorites, identified by optical and SEM observation. Using a FEI dual beam FIB we were able to study very small metal particles in samples of CH chondrites [3] and zoneless plessite (ZP) in ordinary chondrites. Fig. 2 shows a SEM photomicrograph of a {approx}40 um ZP particle in Kernouve, a H6 chondrite. Fig. 3a,b shows a TEM photograph of a section of the FIB prepared TEM foil of the ZP particle and a Ni trace through a tetrataenite/kamacite region of the particle. It has been proposed that the Widmanstatten pattern in low P iron meteorites forms by martensite decomposition, via the reaction {gamma} {yields} {alpha}{sub 2} + {gamma} {yields} {alpha} + {gamma} in which {alpha}{sub 2}, martensite, decomposes to the equilibrium {alpha} and {gamma} phases during the cooling process [4]. In order to show if this mechanism for Widmanstatten pattern formation is correct, crystallographic information is needed from the {gamma} or taenite phases throughout a given meteorite. The EBSD technique was employed in this study to obtain the orientation of the taenite surrounding the initial martensite phase and the

  15. Delineation of excessive strength soils through acoustic to seismic techniques

    NASA Astrophysics Data System (ADS)

    Howard, Wheeler B.

    Soils overlying a naturally occurring hardpans, such as a fragipan, normally experience decreased crop yield and increased erosion rates. The motivation for this work stems from the desire to map the fragipan horizon in order to judiciously distribute agricultural resources. Currently, the fragipan horizon is mapped via core samples, auger holes, cone penetrometer measurements, and trench studies. The focus of this study is the application of a/s coupling techniques, which are less invasive, potentially more expedient, and inherently sensitive to changes in mechanical properties, to determine the depth to the fragipan. Previous investigations correlated various attributes of the acoustic to seismic (a/s) signature to physical quantities of the soil. These results showed promise for characterizing the near surface distribution of the soil's mechanical properties. This work further refines the a/s coupling technique to determine the depth to the soil-fragipan interface and the mechanical properties of the soil-fragipan system. The a/s coupling signature was measured at two field sites along with seismic refraction, cone penetrometer, trench, and core sample surveys. The ground truth served as a guide for the inversion of the a/s coupling field data. A multi-layered Thompson-Haskell viscoelastic forward model was employed to model the a,/s signature of the soil. Simulations with the forward model indicated that the a/s signature behaved as a quarter wavelength resonance prior to the onset of critical angles.Significant shins in the amplitude and frequency of the a/s signature occurred as critical angles were traversed. Inversion of svnthetic data via a hybrid algorithm was successful for both one and two layers over a half-space when the shear velocity was constrained. The measured a/s and modeled a/s signatures did not agree whether using the ground truth in modeling the als signature or comparing to the results from the a/s inversion. This may be because the a/s is

  16. A survey on acoustic signature recognition and classification techniques for persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Alkilani, Amjad

    2012-06-01

    Application of acoustic sensors in Persistent Surveillance Systems (PSS) has received considerable attention over the last two decades because they can be rapidly deployed and have low cost. Conventional utilization of acoustic sensors in PSS spans a wide range of applications including: vehicle classification, target tracking, activity understanding, speech recognition, shooter detection, etc. This paper presents a current survey of physics-based acoustic signature classification techniques for outdoor sounds recognition and understanding. Particularly, this paper focuses on taxonomy and ontology of acoustic signatures resulted from group activities. The taxonomy and supportive ontology considered include: humanvehicle, human-objects, and human-human interactions. This paper, in particular, exploits applicability of several spectral analysis techniques as a means to maximize likelihood of correct acoustic source detection, recognition, and discrimination. Spectral analysis techniques based on Fast Fourier Transform, Discrete Wavelet Transform, and Short Time Fourier Transform are considered for extraction of features from acoustic sources. In addition, comprehensive overviews of most current research activities related to scope of this work are presented with their applications. Furthermore, future potential direction of research in this area is discussed for improvement of acoustic signature recognition and classification technology suitable for PSS applications.

  17. Acoustic holography: Problems associated with construction and reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    The implications of the difference between the inspecting and interrogating radiations are discussed. For real-time, distortionless, sound viewing, it is recommended that infrared radiation of wavelength comparable to the inspecting sound waves be used. The infrared images can be viewed with (IR visible) converter phosphors. The real-time display of the visible image of the acoustically-inspected object at low sound levels such as are used in medical diagnosis is evaluated. In this connection attention is drawn to the need for a phosphor screen which is such that its optical transmission at any point is directly related to the incident electron beam intensity at that point. Such a screen, coupled with an acoustical camera, can enable instantaneous sound wave reconstruction.

  18. Utilizing numerical techniques in turbofan inlet acoustic suppressor design

    NASA Astrophysics Data System (ADS)

    Baumeister, K. J.

    Numerical theories in conjunction with previously published analytical results are used to augment current analytical theories in the acoustic design of a turbofan inlet nacelle. In particular, a finite element-integral theory is used to study the effect of the inlet lip radius on the far field radiation pattern and to determine the optimum impedance in an actual engine environment. For some single mode JT15D data, the numerical theory and experiment are found to be in a good agreement.

  19. Autonomous Acoustic Receiver Deployment and Mooring Techniques for Use in Large Rivers and Estuaries

    SciTech Connect

    Titzler, P. Scott; McMichael, Geoffrey A.; Carter, Jessica A.

    2010-08-01

    Autonomous acoustic receivers are often deployed across a range of aquatic habitats to study aquatic species. The Juvenile Salmon Telemetry System autonomous acoustic receiver packages we deployed in the Columbia River and its estuary were comprised of an acoustic receiver, acoustic release, and mooring line sections and were deployed directly on the river bottom. Detection ranges and reception data from past optimization deployments helped determine acoustic receiver spacing in order to achieve acceptable detection probabilities for juvenile salmon survival estimation. Methods used in 2005, which resulted in a high equipment loss rate, were modified and used between 2006 and 2008 to increase crew safety and optimize receiver deployment and recovery operations in a large river system. By eliminating surface buoys and taglines (for anchor recovery), we experienced a recovery success rate greater than previous acoustic receiver deployment techniques used in the Columbia River and elsewhere. This autonomous acoustic receiver system has optimized deployment, recovery, and servicing efficiency to successfully detect acoustic-tagged salmonids in a variety of river environments.

  20. Measurement of liquid surface acoustic wave amplitudes using HeNe laser homodyne techniques

    NASA Astrophysics Data System (ADS)

    Hickman, G. D.; Hsu, Y. L.; Lee, M. S.; Bourgeois, B. S.; Hsieh, S. T.

    1988-01-01

    Recent results in the measurement of small amplitude acoustic waves on the water surface are presented. The research was performed using laser homodyne techniques in a small laboratory water tank. The homodyne system consists of optical, acoustic, and data acquisition subsystems. The optical subsystem includes an HeNe laser and polarizing components. THe acoustic subsystem consists of standard low power transducers and a power amplifier. The data acquisition subsystem includes a spectrum analyzer and a personal computer. Measurements were made in the acoustic frequency range of 15 - 23 kHz and sound pressure levels of 120-180 dB re 1 micropascal. It is estimated that the homodyne technique can detect surface amplitude deformations on the order of 90 A.

  1. Applications of swept-frequency acoustic interferometry technique in chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.; Lizon, D.; Hasse, R.

    1996-09-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range completely noninvasively from outside a container (e.g., pipe, tank, reactor vessel, etc.,). These acoustic parameters, along with their frequency-dependence, can be used to identify various chemicals. This technique can be adapted for a range of chemical diagnostic applications, particularly, in process control where monitoring of acoustic properties of chemicals may provide appropriate feedback information. Both experimental data and theoretical modeling are presented. Examples of several novel applications of the SFAI technique are discussed.

  2. The Development of Teaching and Learning in Bright-Field Microscopy Technique

    ERIC Educational Resources Information Center

    Iskandar, Yulita Hanum P.; Mahmud, Nurul Ethika; Wahab, Wan Nor Amilah Wan Abdul; Jamil, Noor Izani Noor; Basir, Nurlida

    2013-01-01

    E-learning should be pedagogically-driven rather than technologically-driven. The objectives of this study are to develop an interactive learning system in bright-field microscopy technique in order to support students' achievement of their intended learning outcomes. An interactive learning system on bright-field microscopy technique was…

  3. Acoustic levitation as an IR spectroscopy sampling technique

    SciTech Connect

    Cronin, J. T.; Brill, T. B.

    1989-02-01

    Acoustic levitation of liquid droplets (/lt/4 mm diameter), bubbles,and solid particles is described as an unusual sampling techniquefor obtaining the infrared spectrum of samples that might be incompatiblewith conventional sample support methods, and for studies of materialsunder extreme conditions. Excellent FT-IR spectra were recorded ofbubbles of a concentrated aqueous nitrate solution, of mineral oil,and of an aqueous surfactant solution. Polymethacrylic acidpacking foam also produced a high-quality spectrum. Large aqueousdroplets and dense solids gave unsatisfactory spectra. The designof the levitator and various spectroscopic considerations are discussed.

  4. Refinement and application of acoustic impulse technique to study nozzle transmission characteristics

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.

    1983-01-01

    An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.

  5. Investigation of pulmonary acoustic simulation: comparing airway model generation techniques

    NASA Astrophysics Data System (ADS)

    Henry, Brian; Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas

    2014-03-01

    Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable spectral, spatial and/or temporal changes in lung sound production and transmission. These changes, if properly quantified, might provide additional information about the etiology, severity and location of trauma, injury, or pathology. With this in mind, the authors are developing a comprehensive computer simulation model of pulmonary acoustics, known as The Audible Human Project™. Its purpose is to improve our understanding of pulmonary acoustics and to aid in interpreting measurements of sound and vibration in the lungs generated by airway insonification, natural breath sounds, and external stimuli on the chest surface, such as that used in elastography. As a part of this development process, finite element (FE) models were constructed of an excised pig lung that also underwent experimental studies. Within these models, the complex airway structure was created via two methods: x-ray CT image segmentation and through an algorithmic means called Constrained Constructive Optimization (CCO). CCO was implemented to expedite the segmentation process, as airway segments can be grown digitally. These two approaches were used in FE simulations of the surface motion on the lung as a result of sound input into the trachea. Simulation results were compared to experimental measurements. By testing how close these models are to experimental measurements, we are evaluating whether CCO can be used as a means to efficiently construct physiologically relevant airway trees.

  6. High speed microscopy techniques for signaling detection in live cells

    NASA Astrophysics Data System (ADS)

    de Mauro, C.; Cecchetti, C. A.; Alfieri, D.; Borile, Giulia; Urbani, A.; Mongillo, M.; Pavone, F. S.

    2014-05-01

    Alterations in intracellular cardiomyocyte calcium handling have a key role in initiating and sustaining arrhythmias. Arrhythmogenic calcium leak from sarcoplasmic reticulum (SR) can be attributed to all means by which calcium exits the SR store in an abnormal fashion. Abnormal SR calcium exit maymanifest as intracellular Ca2+ sparks and/or Ca2+ waves. Ca2+ signaling in arrhythmogenesis has been mainly studied in isolated cardiomyocytes and given that the extracellular matrix influences both Ca2+ and membrane potential dynamics in the intact heart and underlies environmentally mediated changes, understanding how Ca2+ and voltage are regulated in the intact heart will represent a tremendous advancement in the understanding of arrhythmogenic mechanisms. Using novel high-speed multiphoton microscopy techinques, such as multispot and random access, we investigated animal models with inherited and acquired arrhythmias to assess the role of Ca2+ and voltage signals as arrhythmia triggers in cell and subcellular components of the intact heart and correlate these with electrophysiology.

  7. Characterization of acoustic lenses with the Foucault test by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed Mohamed, E. T.; Abdelrahman, A.; Pluta, M.; Grill, W.

    2010-03-01

    In this work, the Foucault knife-edge test, which has traditionally been known as the classic test for optical imaging devices, is used to characterize an acoustic lens for operation at 1.2 GHz. A confocal laser scanning microscope (CLSM) was used as the illumination and detection device utilizing its pinhole instead of the classical knife edge that is normally employed in the Foucault test. Information about the geometrical characteristics, such as the half opening angle of the acoustic lens, were determined as well as the quality of the calotte of the lens used for focusing. The smallest focal spot size that could be achieved with the examined lens employed as a spherical reflector was found to be about 1 μm. By comparison to the idealized resolution a degradation of about a factor of 2 can be deduced. This limits the actual quality of the acoustic focus.

  8. An acoustic-array based structural health monitoring technique for wind turbine blades

    NASA Astrophysics Data System (ADS)

    Aizawa, Kai; Poozesh, Peyman; Niezrecki, Christopher; Baqersad, Javad; Inalpolat, Murat; Heilmann, Gunnar

    2015-04-01

    This paper proposes a non-contact measurement technique for health monitoring of wind turbine blades using acoustic beamforming techniques. The technique works by mounting an audio speaker inside a wind turbine blade and observing the sound radiated from the blade to identify damage within the structure. The main hypothesis for the structural damage detection is that the structural damage (cracks, edge splits, holes etc.) on the surface of a composite wind turbine blade results in changes in the sound radiation characteristics of the structure. Preliminary measurements were carried out on two separate test specimens, namely a composite box and a section of a wind turbine blade to validate the methodology. The rectangular shaped composite box and the turbine blade contained holes with different dimensions and line cracks. An acoustic microphone array with 62 microphones was used to measure the sound radiation from both structures when the speaker was located inside the box and also inside the blade segment. A phased array beamforming technique and CLEAN-based subtraction of point spread function from a reference (CLSPR) were employed to locate the different damage types on both the composite box and the wind turbine blade. The same experiment was repeated by using a commercially available 48-channel acoustic ring array to compare the test results. It was shown that both the acoustic beamforming and the CLSPR techniques can be used to identify the damage in the test structures with sufficiently high fidelity.

  9. Introduction to the Novel Techniques in Microscopy feature issue

    PubMed Central

    Mertz, Jerome; Potma, Eric O.

    2013-01-01

    The editors introduce the feature issue on “Novel Techniques in Microscopy”, which was the topic of a symposium held on April 14–18, 2013, in Waikoloa Beach, HI. This symposium was part of the Optics in the Life Sciences Congress. PMID:24156076

  10. Application of finite element techniques in predicting the acoustic properties of turbofan inlets

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Sigman, R. K.; Zinn, B. T.

    1978-01-01

    An analytical technique was developed for predicting the acoustic performance of turbofan inlets carrying a subsonic axisymmetric steady flow. The finite element method combined with the method of weighted residuals is used in predicting the acoustic properties of variable area, annular ducts with or without acoustic treatments along their walls. An approximate solution for the steady inviscid flow field is obtained using an integral method for calculating the incompressible potential flow field in the inlet with a correction to account for compressibility effects. The accuracy of the finite element technique was assessed by comparison with available analytical solutions for the problems of plane and spinning wave propagation through a hard walled annular cylinder with a constant mean flow.

  11. Scanning Acoustic Microscopy Investigation of Frequency-Dependent Reflectance of Acid-Etched Human Dentin Using Homotopic Measurements

    PubMed Central

    Marangos, Orestes; Misra, Anil; Spencer, Paulette; Katz, J. Lawrence

    2013-01-01

    Composite restorations in modern restorative dentistry rely on the bond formed in the adhesive-infiltrated acid-etched dentin. The physical characteristics of etched dentin are, therefore, of paramount interest. However, characterization of the acid-etched zone in its natural state is fraught with problems stemming from a variety of sources including its narrow size, the presence of water, heterogeneity, and spatial scale dependency. We have developed a novel homotopic (same location) measurement methodology utilizing scanning acoustic microscopy (SAM). Homotopic measurements with SAM overcome the problems encountered by other characterization/ imaging methods. These measurements provide us with acoustic reflectance at the same location of both the pre- and post-etched dentin in its natural state. We have applied this methodology for in vitro measurements on dentin samples. Fourier spectra from acid-etched dentin showed amplitude reduction and shifts of the central frequency that were location dependent. Through calibration, the acoustic reflectance of acid-etched dentin was found to have complex and non-monotonic frequency dependence. These data suggest that acid-etching of dentin results in a near-surface graded layer of varying thickness and property gradations. The measurement methodology described in this paper can be applied to systematically characterize mechanical properties of heterogeneous soft layers and interfaces in biological materials. PMID:21429849

  12. Assessment of Microelastic Properties of Bone Using Scanning Acoustic Microscopy: A Face-to-Face Comparison with Nanoindentation

    NASA Astrophysics Data System (ADS)

    Rupin, Fabienne; Saïed, Amena; Dalmas, Davy; Peyrin, Françoise; Haupert, Sylvain; Raum, Kay; Barthel, Etienne; Boivin, Georges; Laugier, Pascal

    2009-07-01

    The current work aimed at comparing, on site-matched cortical bone tissue, the micron-level elastic modulus Ea derived from 200 MHz-scanning acoustic microscopy (SAM) acoustic impedance (Z) combined with bone mineral density (assessed by synchrotron radiation microcomputed tomography, SR-µCT) to nanoindentation modulus En. A good correlation was observed between En and Z (R2=0.67, p<0.0001, root mean square error RMSE=1.9 GPa). The acoustical elastic modulus Ea derived from Z showed higher values of E compared to nanoindentation moduli. We assumed that the discrepancy between Ea and En values may likely be due to the fixed assumed value of Poisson's ratio while values comprised between 0.15 and 0.45 have been reported in the literature. Despite these differences, a highly significant correlation between Ea and En was found (R2=0.66, p<0.001, RMSE=1.8 GPa) suggesting that SAM can reliably be used as a modality to quantitatively map the local variations of tissue-level bone elasticity.

  13. Optical Microscopy Techniques to Inspect for Metallic Whiskers

    NASA Technical Reports Server (NTRS)

    Brusse, Jay A.

    2006-01-01

    Metal surface finishes of tin, zinc and cadmium are often applied to electronic components, mechanical hardware and other structures. These finishes sometimes unpredictably may form metal whiskers over periods that can take from hours to months or even many years. The metal whiskers are crystalline structures commonly having uniform cross sectional area along their entire length. Typical whisker dimensions are nominally on the order of only a few microns (um) across while their lengths can extend from a few microns to several millimeters. Metal whiskers pose a reliability hazard to electronic systems primarily as an electrical shorting hazard. The extremely narrow dimensions of metal whiskers can make observation with optical techniques very challenging. The videos herein were compiled to demonstrate the complexities associated with optical microscope inspection of electronic and mechanical components and assemblies for the presence or absence of metal whiskers. The importance of magnification, light source and angle of illumination play critical roles in being able to detect metal whiskers when present. Furthermore, it is demonstrated how improper techniques can easily obscure detection. It is hoped that these videos will improve the probability of detecting metal whiskers with optical inspection techniques.

  14. Evaluation of near-surface stress distributions in dissimilar welded joint by scanning acoustic microscopy.

    PubMed

    Kwak, Dong Ryul; Yoshida, Sanichiro; Sasaki, Tomohiro; Todd, Judith A; Park, Ik Keun

    2016-04-01

    This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints.

  15. Super-resolution imaging of photonic crystals using the dual-space microscopy technique.

    PubMed

    Desai, Darshan B; Sen, Sanchari; Zhelyeznyakov, Maksym V; Alenazi, Wedad; Grave de Peralta, Luis

    2016-05-20

    We present an experimental implementation of the recently proposed dual-space microscopy (DSM), an optical microscopy technique based on simultaneous observation of an object in the position and momentum spaces, using computer-controlled hemispherical digital condensers. We demonstrate that DSM is capable of resolving structures below the Rayleigh resolution limit.

  16. Numerical and experimental analysis of high frequency acoustic microscopy and infrared reflectance system for early detection of melanoma

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios; Apostolidis, Georgios; Georgoulias, Panagiotis

    2016-03-01

    Melanoma is a very malicious type of cancer as it metastasizes early and hence its late diagnosis leads to death. Consequently, early diagnosis of melanoma and its removal is considered the most effective way of treatment. We present a design of a high frequency acoustic microscopy and infrared reflectance system for the early detection of melanoma. Specifically, the identification of morphological changes related to carcinogenesis is required. In this work, we simulate of the propagation of the ultrasonic waves of the order of 100 MHz as well as of electromagnetic waves of the order of 100 THz in melanoma structures targeting to the estimation and optimization of the basic characteristics of the systems. The simulation results of the acoustic microscopy subsystem aim to provide information such as the geometry of the transducer, the center frequency of operation, the focal length where the power transmittance is optimum and the spot size in focal length. As far as the infrared is concerned the optimal frequency range and the spot illumination size of the external probe is provided. This information is next used to assemble a properly designed system which is applied to melanoma phantoms as well as real skin lesions. Finally, the measurement data are visualized to reveal the information of the experimented structures, proving noteworthy accuracy.

  17. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.

    PubMed

    Tomitori, Masahiko; Sasahara, Akira

    2014-11-01

    Over a hundred years an atomistic point of view has been indispensable to explore fascinating properties of various materials and to develop novel functional materials. High-resolution microscopies, rapidly developed during the period, have taken central roles in promoting materials science and related techniques to observe and analyze the materials. As microscopies with the capability of atom-imaging, field ion microscopy (FIM), scanning tunneling microscopy (STM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) can be cited, which have been highly evaluated as methods to ultimately bring forward the viewpoint of reductionism in materials science. On one hand, there have been difficulties to derive useful and practical information on large (micro) scale unique properties of materials using these excellent microscopies and to directly advance the engineering for practical materials. To make bridges over the gap between an atomic scale and an industrial engineering scale, we have to develop emergence science step-by-step as a discipline having hierarchical structures for future prospects by combining nanoscale and microscale techniques; as promising ways, the combined microscopic instruments covering the scale gap and the extremely sophisticated methods for sample preparation seem to be required. In addition, it is noted that spectroscopic and theoretical methods should implement the emergence science.Fundamentally, the function of microscope is to determine the spatial positions of a finite piece of material, that is, ultimately individual atoms, at an extremely high resolution with a high stability. To define and control the atomic positions, the STM and AFM as scanning probe microscopy (SPM) have successfully demonstrated their power; the technological heart of SPM lies in an atomically sharpened tip, which can be observed by FIM and TEM. For emergence science we would like to set sail using the tip as a base. Meanwhile, it is significant

  18. Acoustic angiography: a new high frequency contrast ultrasound technique for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Shelton, Sarah E.; Lindsey, Brooks D.; Gessner, Ryan; Lee, Yueh; Aylward, Stephen; Lee, Hyunggyun; Cherin, Emmanuel; Foster, F. Stuart; Dayton, Paul A.

    2016-05-01

    Acoustic Angiography is a new approach to high-resolution contrast enhanced ultrasound imaging enabled by ultra-broadband transducer designs. The high frequency imaging technique provides signal separation from tissue which does not produce significant harmonics in the same frequency range, as well as high resolution. This approach enables imaging of microvasculature in-vivo with high resolution and signal to noise, producing images that resemble x-ray angiography. Data shows that acoustic angiography can provide important information about the presence of disease based on vascular patterns, and may enable a new paradigm in medical imaging.

  19. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  20. Determination of near-surface material properties by line-focus acoustic microscopy

    SciTech Connect

    Achenbach, J.D.; Li, W.

    1996-12-31

    A line-focus acoustic microscope is used in conjunction with a multiple wave-mode method to determine elastic constants from a single V(z) measurement. V(z) curves which include contributions from different wave modes, measured using the line-focus acoustic microscope at 225 MHz, have been compared with theoretical results predicted by a V(z) measurement model. The determination of elastic constants has been achieved numerically by seeking a set of elastic constants that leads to the best fit, in the least square sense, of the theoretical results to the experimental ones. The method has been applied to isotropic materials in bulk, and plate and thin-film configurations. Elastic constants for each of these cases have been determined. The consistency, convergence, sensitivity and accuracy of the procedure have been investigated.

  1. Damage Source Identification of Reinforced Concrete Structure Using Acoustic Emission Technique

    PubMed Central

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures. PMID:23997681

  2. Stereological characterization of the {gamma}' particles in a nickel base superalloy: Comparison between transmission electron microscopy and atomic force microscopy techniques

    SciTech Connect

    Risbet, M. Feaugas, X.; Guillemer-Neel, C.; Clavel, M.

    2008-09-15

    Critical comparison of transmission electron microscopy and atomic force microscopy techniques was provided concerning size measurements of {gamma}' precipitates in a nickel-base superalloy. The divergence between results is explained in terms of the resolution limit for atomic force microscopy, linked both to the tip dimension and the diameter of the investigated particles.

  3. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500–2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  4. Detection of internal cracks in Manchego cheese using the acoustic impulse-response technique and ultrasounds.

    PubMed

    Conde, T; Mulet, A; Clemente, G; Benedito, J

    2008-03-01

    Nowadays, due to the more global nature of markets, the commercialization of cheese relies on the high quality of the product. Internal defects such as cracks or flaws may affect quality. Two different nondestructive inspection techniques (ultrasonic and acoustic experiments) were used to detect cracks in Manchego cheese. The existence of small eyes in this type of cheese limited the use of ultrasonic pulse-echo experiments due to high scattering, and only cracks close to the surface of the cheese could be detected. The acoustic impulse-response technique, however, allowed us to study wheel pieces with cracks located elsewhere in the cheese. Two different impact probes (A and B) were assayed. The energy content of the acoustic spectrum was higher for cracked wheel pieces (7,116 and 17,520 V Hz(1/2) for probes A and B, respectively) than for normal ones (6,841 and 16,821 V Hz(1/2)). The differences were mainly found for frequencies higher than 150 Hz, which made the centroid for cracked pieces higher (162 and 170 Hz for probes A and B, respectively) than that for normal cheeses (132 and 148 Hz for probes A and B, respectively). Discriminant functions were developed to classify wheel pieces, and the input variables used were the acoustic parameters from the spectrum and the principal components extracted from the whole spectrum. The best classification procedure used the principal components from the principal components analysis of the spectrum for probe B. In this case, the 50 wheel pieces used in this study were correctly classified. These results showed that a simple and low-cost acoustic impulse-response technique could be used to detect cheese cracks, formed at different moments of Manchego cheese maturation. PMID:18292247

  5. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.

  6. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500-2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  7. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment. PMID:27441427

  8. Microscopy techniques for investigating the control of organic constituents on biomineralization

    PubMed Central

    Hendley, Coit T.; Tao, Jinhui; Kunitake, Jennie A.M.R.; De Yoreo, James J.; Estroff, Lara A.

    2016-01-01

    This article addresses recent advances in the application of microscopy techniques to characterize crystallization processes as they relate to biomineralization and bio-inspired materials synthesis. In particular, we focus on studies aimed at revealing the role organic macromolecules and functionalized surfaces play in modulating the mechanisms of nucleation and growth. In nucleation studies, we explore the use of methods such as in situ transmission electron microscopy, atomic force microscopy, and cryogenic electron microscopy to delineate formation pathways, phase stabilization, and the competing effects of free energy and kinetic barriers. In growth studies, emphasis is placed on understanding the interactions of macromolecular constituents with growing crystals and characterization of the internal structures of the resulting composite crystals using techniques such as electron tomography, atom probe tomography, and vibrational spectromicroscopy. Examples are drawn from both biological and bio-inspired synthetic systems. PMID:27358507

  9. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  10. Comparison of preparation techniques for nuclear materials for transmission electron microscopy (TEM)

    SciTech Connect

    Aitkaliyeva, Assel; Madden, James W.; Miller, Brandon D; Cole, James I; Gan, Jian

    2015-04-01

    Preparation of highly radioactive and irradiated nuclear fuels and materials for transmission electron microscopy (TEM) is conjoined with a set of unique challenges, including but not limited to personnel radiation exposure and contamination. The paper evaluates three specimen preparation techniques for preparation of irradiated materials and determines which technique yields to the most reliable characterization of radiation damage microstructure. Various specimen preparation artifacts associated with each technique are considered and ways of minimizing these artifacts are addressed.

  11. Laser photoacoustic technique for ultrasonic surface acoustic wave velocity evaluation on porcelain

    NASA Astrophysics Data System (ADS)

    Qian, K.; Tu, S. J.; Gao, L.; Xu, J.; Li, S. D.; Yu, W. C.; Liao, H. H.

    2016-10-01

    A laser photoacoustic technique has been developed to evaluate the surface acoustic wave (SAW) velocity of porcelain. A Q-switched Nd:YAG laser at 1064 nm was focused by a cylindrical lens to initiate broadband SAW impulses, which were detected by an optical fiber interferometer with high spatial resolution. Multiple near-field surface acoustic waves were observed on the sample surface at various locations along the axis perpendicular to the laser line source as the detector moved away from the source in the same increments. The frequency spectrum and dispersion curves were obtained by operating on the recorded waveforms with cross-correlation and FFT. The SAW phase velocities of the porcelain of the same source are similar while they are different from those of different sources. The marked differences of Rayleigh phase velocities in our experiment suggest that this technique has the potential for porcelain identification.

  12. Possible temperature effects computed for acoustic microscopy used for living cells.

    PubMed

    Kujawska, T; Wójcik, J; Filipczyński, L

    2004-01-01

    Imaging of living cells or tissues at a microscopic resolution, where GHz frequencies are used, provides a foundation for many new biological applications. The possible temperature increase causing a destructive influence on the living cells should be then avoided. However, there is no information on possible local temperature increases at these very high frequencies where, due to strongly focused ultrasonic beams, nonlinear propagation effects occur. Acoustic parameters of living cells were assumed to be close to those of water; therefore, the power density of heat sources in a water medium was determined as a basic quantity. Hence, the numerical solution of temperature distributions at the frequency of 1 GHz was computed for high and low powers generated by the transducer equal to 0.32 W and 0.002 W. In the first case, typical nonlinear propagation effects were demonstrated and, in the second one, propagation was almost linear. The focal temperature increase obtained in water equaled 14 degrees C for the highest possible theoretical repetition frequency of fr = 10 MHz and for the thermal insulation at the sapphire lens-water boundary. Simultaneously, the scanning velocity of the tested object was assumed to be incomparably low in respect to the acoustic beam velocity. The maximum temperature increase in water occurred exactly at this boundary, being equal there to 20 degrees C. It was shown that, first of all, the very high absorption of water was significant for the temperature distribution in the investigated region, suppressing the focal temperature peaks. Because the temperature increases are proportional to the repetition frequency, so for example, at its practical value of fr = 0.1 MHz, all temperature increases will be 100 times lower than listed above. For the low transducer power of 0.002 W, the corresponding temperature increases were about 140 times lower than those for the high power of 0.32 W. The presented solutions are devoted mainly to the

  13. On measurement of the acoustic nonlinearity parameter using the finite amplitude insertion substitution (FAIS) technique

    NASA Astrophysics Data System (ADS)

    Zeqiri, Bajram; Cook, Ashley; Rétat, Lise; Civale, John; ter Haar, Gail

    2015-04-01

    The acoustic nonlinearity parameter, B/A, is an important parameter which defines the way a propagating finite amplitude acoustic wave progressively distorts when travelling through any medium. One measurement technique used to determine its value is the finite amplitude insertion substitution (FAIS) method which has been applied to a range of liquid, tissue and tissue-like media. Importantly, in terms of the achievable measurement uncertainties, it is a relative technique. This paper presents a detailed study of the method, employing a number of novel features. The first of these is the use of a large area membrane hydrophone (30 mm aperture) which is used to record the plane-wave component of the acoustic field. This reduces the influence of diffraction on measurements, enabling studies to be carried out within the transducer near-field, with the interrogating transducer, test cell and detector positioned close to one another, an attribute which assists in controlling errors arising from nonlinear distortion in any intervening water path. The second feature is the development of a model which estimates the influence of finite-amplitude distortion as the acoustic wave travels from the rear surface of the test cell to the detector. It is demonstrated that this can lead to a significant systematic error in B/A measurement whose magnitude and direction depends on the acoustic property contrast between the test material and the water-filled equivalent cell. Good qualitative agreement between the model and experiment is reported. B/A measurements are reported undertaken at (20 ± 0.5) °C for two fluids commonly employed as reference materials within the technical literature: Corn Oil and Ethylene Glycol. Samples of an IEC standardised agar-based tissue-mimicking material were also measured. A systematic assessment of measurement uncertainties is presented giving expanded uncertainties in the range ±7% to ±14%, expressed at a confidence level close to 95

  14. A functional technique based on the Euclidean algorithm with applications to 2-D acoustic diffractal diffusers

    NASA Astrophysics Data System (ADS)

    Cortés-Vega, Luis

    2015-09-01

    We built, based on the Euclidean algorithm, a functional technique, which allows to discover a direct proof of Chinese Remainder Theorem. Afterwards, by using this functional approach, we present some applications to 2-D acoustic diffractal diffusers. The novelty of the method is their functional algorithmic character, which improves ideas, as well as, other results of the author and his collaborators in a previous work.

  15. Evaluation of the inner-surface morphology of an artificial heart by acoustic microscopy.

    PubMed

    Saijo, Y; Okawai, H; Sasaki, H; Yambe, T; Nitta, S; Tanaka, M; Kobayashi, K; Honda, Y

    2000-01-01

    The total artificial heart (TAH) is being developed for permanent replacement of the natural heart instead of heart transplantation. The need for detecting the material fatigue in the TAH is increasing in order to guarantee long-term use. In this study, the inner surface morphology of the TAH was evaluated by a specially developed scanning acoustic microscope (SAM) system operating in the frequency range of 100-200 MHz. The inner sac of our TAH consisted of polyvinylchloride coated with polyurethane, and the SAM investigations were performed before and after the implantations in goats. The amplitude images of the SAM demonstrated protein adhesion on the inner surface of the TAH after the animal experiment, and the phase images showed distortion of the wall with spatial resolution of 0.2 microm. These results suggest the feasibility of a high-frequency ultrasound for evaluating the material fatigue of TAH.

  16. Theoretical detection threshold of the proton-acoustic range verification technique

    PubMed Central

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-01-01

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range

  17. Theoretical detection threshold of the proton-acoustic range verification technique

    SciTech Connect

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei; Xiang, Liangzhong

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic

  18. Subcellular chemical and morphological analysis by stimulated Raman scattering microscopy and image analysis techniques.

    PubMed

    D'Arco, Annalisa; Brancati, Nadia; Ferrara, Maria Antonietta; Indolfi, Maurizio; Frucci, Maria; Sirleto, Luigi

    2016-05-01

    The visualization of heterogeneous morphology, segmentation and quantification of image features is a crucial point for nonlinear optics microscopy applications, spanning from imaging of living cells or tissues to biomedical diagnostic. In this paper, a methodology combining stimulated Raman scattering microscopy and image analysis technique is presented. The basic idea is to join the potential of vibrational contrast of stimulated Raman scattering and the strength of imaging analysis technique in order to delineate subcellular morphology with chemical specificity. Validation tests on label free imaging of polystyrene-beads and of adipocyte cells are reported and discussed. PMID:27231626

  19. Subcellular chemical and morphological analysis by stimulated Raman scattering microscopy and image analysis techniques

    PubMed Central

    D’Arco, Annalisa; Brancati, Nadia; Ferrara, Maria Antonietta; Indolfi, Maurizio; Frucci, Maria; Sirleto, Luigi

    2016-01-01

    The visualization of heterogeneous morphology, segmentation and quantification of image features is a crucial point for nonlinear optics microscopy applications, spanning from imaging of living cells or tissues to biomedical diagnostic. In this paper, a methodology combining stimulated Raman scattering microscopy and image analysis technique is presented. The basic idea is to join the potential of vibrational contrast of stimulated Raman scattering and the strength of imaging analysis technique in order to delineate subcellular morphology with chemical specificity. Validation tests on label free imaging of polystyrene-beads and of adipocyte cells are reported and discussed. PMID:27231626

  20. Fluctuation microscopy: a technique for revealing atomic correlations in structurally noisy (disordered) materials

    NASA Astrophysics Data System (ADS)

    Treacy, Michael M. J.; Gibson, J. M.

    2003-05-01

    Flunctuation microscopy is a hybrid diffraction-imaging technique that yields information about higher-order correlations between structural units in materials. It has been shown to be well suited for detecting medium rangeorder in atomic positions in amorphous materials. This article presents a review of flunctuation microscopy as employed in a transmission electron microscope for the study of amorphous tetrahedral semiconductors. Possible extensions of the technique to other radiations such as x-rays, and for other structurally noisy materials such as polymers and starches, are discussed.

  1. Subcellular chemical and morphological analysis by stimulated Raman scattering microscopy and image analysis techniques.

    PubMed

    D'Arco, Annalisa; Brancati, Nadia; Ferrara, Maria Antonietta; Indolfi, Maurizio; Frucci, Maria; Sirleto, Luigi

    2016-05-01

    The visualization of heterogeneous morphology, segmentation and quantification of image features is a crucial point for nonlinear optics microscopy applications, spanning from imaging of living cells or tissues to biomedical diagnostic. In this paper, a methodology combining stimulated Raman scattering microscopy and image analysis technique is presented. The basic idea is to join the potential of vibrational contrast of stimulated Raman scattering and the strength of imaging analysis technique in order to delineate subcellular morphology with chemical specificity. Validation tests on label free imaging of polystyrene-beads and of adipocyte cells are reported and discussed.

  2. Acoustic Measurements in Opera Houses: Comparison Between Different Techniques and Equipment

    NASA Astrophysics Data System (ADS)

    FAUSTI, P.; FARINA, A.

    2000-04-01

    In room acoustics, many objective parameters to quantify subjective impressions have been introduced. These quantities can be measured by using a wide variety of powerful tools and equipment. The results can be influenced by the measurement techniques and instruments used. Furthermore, the results also depend on the measurement positions and on the condition of the hall (full, empty, etc.). The aim of this work is to define a tightly standardized measurement procedure for the collection of a complete objective description of an opera house's acoustics. In this paper some of the results obtained by the authors after measurements made in three different halls are presented. Comparisons were made both between different hardware and software tools (real-time analyzer, DAT, PC-board, source, microphones, post-processing software) and between different measurement methods (interrupted stationary noise, true-impulse, pseudo-random white noise with impulse-response doconvolution, sine sweep) as well as between different positions in the halls, with and without the presence of musicians and audience. The results have shown that the differences obtained when using different measurement techniques and equipment are not of significant importance. The only effective differences were found regarding the recording techniques, as the monaural measurements give appreciably different results from the average of left and right channel of binaural measurements. Slightly different results were alsofound between true impulsive sources (pistol shots, balloons) and omni-directional (dodecahedral) loudspeakers. Attention must be paid to the signal-to-noise ratio, as this can influence the correct calculation of some acoustical parameters. Some differences, not as great as expected, were found in the results with and without the musicians in the orchestra shell and with and without the audience in the hall. This is probably due to the high sound absorption that is typical in Italian opera

  3. Void-free Au-Sn eutectic bonding of GaAs dice and its characterization using scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Matljasevic, Goran; Lee, Chin C.

    1989-03-01

    A new technique to produce perfect bonding between GaAs dice and alumina substrates is reported. Utilizing this technique, void-free bondings have been achieved consistently. The quality of the bonded devices is confirmed by a Scanning Acoustic Microscope (SAM) having a spatial resolution of 25 µm. Thermal cycling between -25° C and 125° C, and thermal shock between -196° C and 135° C, have been used to assess the reliability of the specimens. The SAM was used to study the variation of the bonds in the tests. After the tests, the bonds show no sign of degradation and the GaAs dice did not crack. Shear test has also been performed. All the well bonded specimens passed the shear test. The shear strength correlated very well with the SAM images of the specimens taken before the test.

  4. Swept frequency acoustic interferometry technique for chemical weapons verification and monitoring

    SciTech Connect

    Sinha, D.N.; Anthony, B.W.; Lizon, D.C.

    1995-03-01

    Nondestructive evaluation (NDE) techniques are important for rapid on-site verification and monitoring of chemical munitions, such as artillery shells and bulk containers. Present NDE techniques provide only limited characterizations of such munitions. This paper describes the development of a novel noninvasive technique, swept-frequency acoustic interferometry (SFAI), that significantly enhances the capability of munitions characterizations. The SFAI technique allows very accurate and simultaneous determination of sound velocity and attenuation of chemical agents over a large frequency range inside artillery shells, in addition to determining agent density. The frequency-dependent sound velocity and attenuation can, in principle, provide molecular relaxation properties of the chemical agent. The same instrument also enables a direct fill-level measurement in bulk containers. Industrial and other applications of this general-purpose technique are also discussed.

  5. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  6. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    PubMed Central

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878

  7. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.

    PubMed

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-10-14

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  8. Recent advances in freeze-fracture electron microscopy: the replica immunolabeling technique

    PubMed Central

    2008-01-01

    Freeze-fracture electron microscopy is a technique for examining the ultrastructure of rapidly frozen biological samples by transmission electron microscopy. Of a range of approaches to freeze-fracture cytochemistry that have been developed and tried, the most successful is the technique termed freeze-fracture replica immunogold labeling (FRIL). In this technique, samples are frozen, fractured and replicated with platinum-carbon as in standard freeze fracture, and then carefully treated with sodium dodecylsulphate to remove all the biological material except a fine layer of molecules attached to the replica itself. Immunogold labeling of these molecules permits their distribution to be seen superimposed upon high resolution planar views of membrane structure. Examples of how this technique has contributed to our understanding of lipid droplet biogenesis and function are discussed. PMID:18385807

  9. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  10. Acoustic levitation technique for containerless processing at high temperatures in space

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.; Danley, Thomas J.

    1988-01-01

    High temperature processing of a small specimen without a container has been demonstrated in a set of experiments using an acoustic levitation furnace in the microgravity of space. This processing technique includes the positioning, heating, melting, cooling, and solidification of a material supported without physical contact with container or other surface. The specimen is supported in a potential energy well, created by an acoustic field, which is sufficiently strong to position the specimen in the microgravity environment of space. This containerless processing apparatus has been successfully tested on the Space Shuttle during the STS-61A mission. In that experiment, three samples wer successfully levitated and processed at temperatures from 600 to 1500 C. Experiment data and results are presented.

  11. Acoustic emission: Towards a real-time diagnosis technique for Proton Exchange Membrane Fuel Cell operation

    NASA Astrophysics Data System (ADS)

    Legros, B.; Thivel, P.-X.; Bultel, Y.; Boinet, M.; Nogueira, R. P.

    This paper deals with one of the needs for PEMFC to be economically reliable: diagnosis tool for water management. This issue is actually a key parameter for both performance and durability improvement. Acoustic emission (AE) technique was employed to survey PEM single cell under various operating conditions. AE events coming from different sources have thus been identified, classified and finally ascribed to different phenomena induced by MEA water uptake and/or biphasic flow in the gas channel thanks to a statistical post-treatment of the acoustic data. Results, although qualitative, seems trusty enough to unravel hidden correlations between AE hits and physicochemical phenomena taking place during the cell operation and open up the way for an innovative and non-invasive online diagnosis tool.

  12. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  13. Video and acoustic camera techniques for studying fish under ice: a review and comparison

    SciTech Connect

    Mueller, Robert P.; Brown, Richard S.; Hop, Haakon H.; Moulton, Larry

    2006-09-05

    Researchers attempting to study the presence, abundance, size, and behavior of fish species in northern and arctic climates during winter face many challenges, including the presence of thick ice cover, snow cover, and, sometimes, extremely low temperatures. This paper describes and compares the use of video and acoustic cameras for determining fish presence and behavior in lakes, rivers, and streams with ice cover. Methods are provided for determining fish density and size, identifying species, and measuring swimming speed and successful applications of previous surveys of fish under the ice are described. These include drilling ice holes, selecting batteries and generators, deploying pan and tilt cameras, and using paired colored lasers to determine fish size and habitat associations. We also discuss use of infrared and white light to enhance image-capturing capabilities, deployment of digital recording systems and time-lapse techniques, and the use of imaging software. Data are presented from initial surveys with video and acoustic cameras in the Sagavanirktok River Delta, Alaska, during late winter 2004. These surveys represent the first known successful application of a dual-frequency identification sonar (DIDSON) acoustic camera under the ice that achieved fish detection and sizing at camera ranges up to 16 m. Feasibility tests of video and acoustic cameras for determining fish size and density at various turbidity levels are also presented. Comparisons are made of the different techniques in terms of suitability for achieving various fisheries research objectives. This information is intended to assist researchers in choosing the equipment that best meets their study needs.

  14. Distance-domain based localization techniques for acoustic emission sources: a comparative study

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Gawronski, Mateusz; Nakatani, Hayato; Packo, Pawel; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw; Uhl, Tadeusz; Kundu, Tribikram

    2015-04-01

    Acoustic Emission phenomenon is of great importance for analyzing and monitoring health status of critical structural components. In acoustic emission, elastic waves generated by sources propagate through the structure and are acquired by networks of sensors. Ability to accurately locate the event strongly depends on the type of medium (e.g. geometrical features) and material properties, that result in wave signals distortion. These effects manifest themselves particularly in plate structures due to intrinsic dispersive nature of Lamb waves. In this paper two techniques for acoustic emission source localization in elastic plates are compared: one based on a time-domain distance transform and the second one is a two-step hybrid technique. A time-distance domain transform approach, transforms the time-domain waveforms into the distance domain by using wavenumber-frequency mapping. The transform reconstructs the source signal removing distortions resulting from dispersion effects. The method requires input of approximate material properties and geometrical features of the structure that are relatively easy to estimate prior to measurement. Hence, the method is of high practical interest. Subsequently, a two-step hybrid technique, which does not require apriori knowledge of material parameters, is employed. The method requires a setup of two predefined clusters of three sensors in each. The Lamb wave source is localized from the intersection point of the predicted wave propagation directions for the two clusters. The second step of the two-step hybrid technique improves the prediction by minimizing an objective function. The two methods are compared for analytic, simulated and experimental signals.

  15. A Dry Membrane Protection Technique to Allow Surface Acoustic Wave Biosensor Measurements of Biological Model Membrane Approaches

    PubMed Central

    Reder-Christ, Katrin; Schmitz, Patrick; Bota, Marian; Gerber, Ursula; Falkenstein-Paul, Hildegard; Fuss, Christian; Enachescu, Marius; Bendas, Gerd

    2013-01-01

    Model membrane approaches have attracted much attention in biomedical sciences to investigate and simulate biological processes. The application of model membrane systems for biosensor measurements is partly restricted by the fact that the integrity of membranes critically depends on the maintenance of an aqueous surrounding, while various biosensors require a preconditioning of dry sensors. This is for example true for the well-established surface acoustic wave (SAW) biosensor SAM®5 blue. Here, a simple drying procedure of sensor-supported model membranes is introduced using the protective disaccharide trehalose. Highly reproducible model membranes were prepared by the Langmuir-Blodgett technique, transferred to SAW sensors and supplemented with a trehalose solution. Membrane rehydration after dry incorporation into the SAW device becomes immediately evident by phase changes. Reconstituted model membranes maintain their full functionality, as indicated by biotin/avidin binding experiments. Atomic force microscopy confirmed the morphological invariability of dried and rehydrated membranes. Approximating to more physiological recognition phenomena, the site-directed immobilization of the integrin VLA-4 into the reconstituted model membrane and subsequent VCAM-1 ligand binding with nanomolar affinity were illustrated. This simple drying procedure is a novel way to combine the model membrane generation by Langmuir-Blodgett technique with SAW biosensor measurements, which extends the applicability of SAM®5 blue in biomedical sciences. PMID:24064603

  16. Combination of different microscopy techniques for the integrated study of extremophile endolithic microorganisms and their habitats

    NASA Astrophysics Data System (ADS)

    de Los Ríos, Asunción; Wierzchos, Jacek; Sancho, Leopoldo G.; Ascaso, Carmen

    2001-08-01

    Some micro-organisms are able to withstand extreme environments and form communities within rocks. To characterise these endolithic micro-ecosystems, several microscopy and microanalytical approaches need to be combined, including scanning electron microscopy with back scattered electron imaging (SEM-BSE), low temperature scanning electron microscopy (LTSEM), confocal scanning laser microscopy (CSLM), and the X-ray energy dispersive spectroscopy (EDS) microanalytical system. These techniques have allowed the simultaneous observation of these micro-organisms and their habitats. SEM-BSE and LTSEM serve to evaluate the biodiversity of the rock from a morphological and ultrastructural perspective. LTSEM also permits water localisation in the cells and their microhabitats. Information on the spatial distribution of the micro-organisms inside the rock is provided by CSLM. Lithobiontic communities have been shown to interact with their substrate. The EDS technique coupled to SEM-BSE permits the chemical characterisation of mineral features, the detection of biomobilisation and biomineralisation processes, and yields information on the chemical environment. These techniques are also applicable in the search for fossilised micro-organisms.

  17. Temporal isolation of surface-acoustic-wave-driven luminescence from a lateral p n junction using pulsed techniques

    NASA Astrophysics Data System (ADS)

    Gell, J. R.; Ward, M. B.; Atkinson, P.; Bremner, S. P.; Anderson, D.; Norman, C. E.; Kataoka, M.; Barnes, C. H. W.; Jones, G. A. C.; Shields, A. J.; Ritchie, D. A.

    2008-04-01

    The authors report surface-acoustic-wave-driven luminescence from a lateral p-n junction formed by molecular-beam epitaxy regrowth of a modulation doped GaAs/AlGaAs quantum well on a patterned GaAs substrate. Pulsed techniques are used to isolate the surface-acoustic-wave-driven emission from any emission due to pick-up of the free-space electromagnetic wave. The luminescence provides a fast probe of the signals arriving at the p-n junction allowing the response of the junction to the surface-acoustic-wave to be studied in the time domain. Oscillations in the surface-acoustic-wave-driven component of the light intensity are resolved at the resonant frequency of the transducer, suggesting that the surface-acoustic-wave is transporting electrons across the junction in packets.

  18. Imaging Acoustic Phonon Dynamics on the Nanometer-Femtosecond Spatiotemporal Length-Scale with Ultrafast Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Plemmons, Dayne; Flannigan, David

    Coherent collective lattice oscillations known as phonons dictate a broad range of physical observables in condensed matter and act as primary energy carriers across a wide range of material systems. Despite this omnipresence, analysis of phonon dynamics on their ultrashort native spatiotemporal length scale - that is, the combined nanometer (nm), spatial and femtosecond (fs), temporal length-scales - has largely remained experimentally inaccessible. Here, we employ ultrafast electron microscopy (UEM) to directly image discrete acoustic phonons in real-space with combined nm-fs resolution. By directly probing electron scattering in the image plane (as opposed to the diffraction plane), we retain phase information critical for following the evolution, propagation, scattering, and decay of phonons in relation to morphological features of the specimen (i.e. interfaces, grain boundaries, voids, ripples, etc.). We extract a variety of morphologically-specific quantitative information from the UEM videos including phonon frequencies, phase velocities, and decays times. We expect these direct manifestations of local elastic properties in the vicinity of material defects and interfaces will aide in the understanding and application of phonon-mediated phenomena in nanostructures. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.

  19. Nanoscale structural and functional mapping of nacre by scanning probe microscopy techniques

    NASA Astrophysics Data System (ADS)

    Zhou, Xilong; Miao, Hongchen; Li, Faxin

    2013-11-01

    Nacre has received great attention due to its nanoscale hierarchical structure and extraordinary mechanical properties. Meanwhile, the nanoscale piezoelectric properties of nacre have also been investigated but the structure-function relationship has never been addressed. In this work, firstly we realized quantitative nanomechanical mapping of nacre of a green abalone using atomic force acoustic microscopy (AFAM). The modulus of the mineral tablets is determined to be ~80 GPa and that of the organic biopolymer no more than 23 GPa, and the organic-inorganic interface width is determined to be about 34 +/- 9 nm. Then, we conducted both AFAM and piezoresponse force microscopy (PFM) mapping in the same scanning area to explore the correlations between the nanomechanical and piezoelectric properties. The PFM testing shows that the organic biopolymer exhibits a significantly stronger piezoresponse than the mineral tablets, and they permeate each other, which is very difficult to reproduce in artificial materials. Finally, the phase hysteresis loops and amplitude butterfly loops were also observed using switching spectroscopy PFM, implying that nacre may also be a bio-ferroelectric material. The obtained nanoscale structural and functional properties of nacre could be very helpful in understanding its deformation mechanism and designing biomimetic materials of extraordinary properties.

  20. Study of fracture mechanisms of short fiber reinforced AS composite by acoustic emission technique

    SciTech Connect

    Kida, Sotoaki; Suzuki, Megumu

    1995-11-01

    The fracture mechanisms of short fiber reinforced AS composites are studied by acoustic emission technique for examining the effects of fiber contents. The loads P{sub b} and P{sub c} which the damage mechanisms change are obtained at the inflection points of the total AE energy curve the energy gradient method. The damages are generated by fiber breaking at the load point of P{sub b} and P{sub c} in B material, and by the fiber breaking and the debonding between resin and fiber at the load points of P{sub b} and P{sub c} in C material.

  1. Comparison of Acoustic Impedance Eduction Techniques for Locally-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Parrott, T. L.; Watson, W. R.

    2003-01-01

    Typical acoustic liners used in current aircraft inlets and aft-fan ducts consist of some type of perforated facesheet bonded to a honeycomb core. A number of techniques for determining the acoustic impedance of these locallyreacting liners have been developed over the last five decades. In addition, a number of models have been developed to predict the acoustic impedance of locallyreacting liners in the presence of grazing flow, and to use that information together with aeroacoustic propagation codes to assess the noise absorption provided by these liners. These prediction models have incorporated the results from databases acquired with specific impedance eduction techniques. Thus, while these prediction models are acceptable for liners that are similar to those tested in these databases, their application to new liner configurations must be viewed with caution. The primary purpose of this paper is to provide a comparison of impedance eduction techniques that have been implemented at various aerospace research laboratories in the United States (NASA Langley Research Center, General Electric Aircraft Engines, B. F. Goodrich and Boeing). A secondary purpose is to provide data for liner configurations that extend the porosity range beyond that which has been previously used in common aircraft engine nacelles. Two sets of liners were designed to study the effects of three parameters: perforate hole diameter, facesheet thickness and porosity. These two sets of liners were constructed for testing in each of the laboratories listed above. The first set of liners was designed to fit into the NASA Langley and Boeing test facilities. The second set was designed to fit into the General Electric Aircraft Engines and B. F. Goodrich test facilities. By using the same parent material, both sets of liners were identical to within the limits of material and fabrication variability. Baseline data were obtained in the normal incidence impedance tubes at NASA Langley and B. F

  2. Damage characterization in engineering materials using a combination of optical, acoustic, and thermal techniques

    NASA Astrophysics Data System (ADS)

    Tragazikis, I. K.; Exarchos, D. A.; Dalla, P. T.; Matikas, T. E.

    2016-04-01

    This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.

  3. Combining low-energy electron microscopy and scanning probe microscopy techniques for surface science: Development of a novel sample-holder

    NASA Astrophysics Data System (ADS)

    Cheynis, F.; Leroy, F.; Ranguis, A.; Detailleur, B.; Bindzi, P.; Veit, C.; Bon, W.; Müller, P.

    2014-04-01

    We introduce an experimental facility dedicated to surface science that combines Low-Energy Electron Microscopy/Photo-Electron Emission Microscopy (LEEM/PEEM) and variable-temperature Scanning Probe Microscopy techniques. A technical challenge has been to design a sample-holder that allows to exploit the complementary specifications of both microscopes and to preserve their optimal functionality. Experimental demonstration is reported by characterizing under ultrahigh vacuum with both techniques: Au(111) surface reconstruction and a two-layer thick graphene on 6H-SiC(0001). A set of macros to analyze LEEM/PEEM data extends the capabilities of the setup.

  4. Combining low-energy electron microscopy and scanning probe microscopy techniques for surface science: Development of a novel sample-holder

    SciTech Connect

    Cheynis, F.; Leroy, F.; Ranguis, A.; Detailleur, B.; Bindzi, P.; Veit, C.; Bon, W.; Müller, P.

    2014-04-15

    We introduce an experimental facility dedicated to surface science that combines Low-Energy Electron Microscopy/Photo-Electron Emission Microscopy (LEEM/PEEM) and variable-temperature Scanning Probe Microscopy techniques. A technical challenge has been to design a sample-holder that allows to exploit the complementary specifications of both microscopes and to preserve their optimal functionality. Experimental demonstration is reported by characterizing under ultrahigh vacuum with both techniques: Au(111) surface reconstruction and a two-layer thick graphene on 6H-SiC(0001). A set of macros to analyze LEEM/PEEM data extends the capabilities of the setup.

  5. Contact x-ray microscopy. A new technique for imaging cellular fine structure.

    PubMed Central

    Beese, L; Feder, R; Sayre, D

    1986-01-01

    Contact x-ray microscopy potentially allows living, wet cells to be visualized at a resolution of up to 100 A. Furthermore, differential absorption by specific elements permits the study of the distribution of those elements in biological specimens. In contact x-ray microscopy, soft x-rays (10 A to 100 A) pass through a biological sample and expose an underlying x-ray sensitive polymer (resist), producing an image that reflects the photon absorbance within the specimen. The high penetrating power of soft x-ray enables images to be obtained from specimens up to several microns thick. In this paper, the technique is described, some of the areas currently under study are considered, and biological examples of the use of contact x-ray microscopy are given. Images FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:3955174

  6. X-ray tomography as a complementary technique to nuclear microscopy for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gomez-Morilla, Inmaculada; Pinheiro, Teresa; Odenbach, Stefan; Alcala, Maria Dolores Ynsa

    2009-06-01

    X-ray micro-computed tomography is an excellent tool to examine the morphology of a sample in a non-destructive way, making its inner structure visible. Nuclear microscopy provides quantitative information about the elemental distribution and concentration. Both can be used as complementary techniques in order to get more information about the samples. Osteoporosis is a disease that deteriorates the bone due to, among other things, a failure in the normal hormonal function. In this project, bones from rats under osteoporosis treatments based on hormonal supplementation, as well as healthy bones and osteoporotic ones without treatment, have been analyzed by both nuclear microscopy and X-ray micro-tomography. Following the results achieved by nuclear microscopy, quantitative concentration and distribution of elements such as Ca and P suggested a change in bone density. In order to image this change of density, the same samples have been analyzed by micro-tomography.

  7. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  8. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  9. The development of optical microscopy techniques for the advancement of single-particle studies

    NASA Astrophysics Data System (ADS)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  10. Coal liquefaction process streams characterization and evaluation. Novel analytical techniques for coal liquefaction: Fluorescence microscopy

    SciTech Connect

    Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

    1991-10-01

    This study demonstrated the feasibility of using fluorescence and reflectance microscopy techniques for the examination of distillation resid materials derived from direct coal liquefaction. Resid, as defined here, is the 850{degrees}F{sup +} portion of the process stream, and includes soluble organics, insoluble organics and ash. The technique can be used to determine the degree of hydrogenation and the presence of multiple phases occurring within a resid sample. It can also be used to infer resid reactivity. The technique is rapid, requiring less than one hour for sample preparation and examination, and thus has apparent usefulness for process monitoring. Additionally, the technique can distinguish differences in samples produced under various process conditions. It can, therefore, be considered a potentially useful technique for the process developer. Further development and application of this analytical method as a process development tool is justified based on these results.

  11. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    SciTech Connect

    Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar; Singh, V.N.

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  12. Growth and location of bacterial colonies within dairy foods using microscopy techniques: a review

    PubMed Central

    Hickey, Cian D.; Sheehan, Jeremiah J.; Wilkinson, Martin G.; Auty, Mark A. E.

    2015-01-01

    The growth, location, and distribution of bacterial colonies in dairy products are important factors for the ripening and flavor development of cheeses, yogurts, and soured creams. Starter, non-starter, spoilage, and pathogenic bacteria all become entrapped in the developing casein matrix of dairy foods. In order to visualize these bacterial colonies and the environments surrounding them, microscopy techniques are used. The use of various microscopy methods allow for the rapid detection, enumeration, and distribution of starter, non-starter and pathogenic bacteria in dairy foods. Confocal laser scanning microscopy is extensively utilized to identify bacteria location via the use of fluorescent dyes. Further study is needed in relation to the development of micro- gradients and localized ripening parameters in dairy products due to the location of bacteria at the protein–fat interface. Development in the area of bacterial discrimination using microscopy techniques and fluorescent dyes/tags is needed as the benefits of rapidly identifying spoilage/pathogenic bacteria early in product manufacture would be of huge benefit in relation to both safety and financial concerns. PMID:25741328

  13. Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques.

    PubMed

    Kimura, Kuniko; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2013-10-01

    Recently, some papers reported successful imaging of subsurface features using atomic force microscopy (AFM). Some theoretical studies have also been presented, however the imaging mechanisms are not fully understood yet. In the preceeding papers, imaging of deeply buried nanometer-scale features has been successful only if they were buried in a soft matrix. In this paper, subsurface features (Au nanoparticles) buried in a soft polymer matrix were visualized. To elucidate the imaging mechanisms, various AFM techniques; heterodyne force microscopy, ultrasonic atomic force microscopy (UAFM), 2nd-harmonic UAFM and force modulation microscopy (FMM) were employed. The particles buried under 960 nm from the surface were successfully visualized which has never been achieved. The results elucidated that it is important for subsurface imaging to choose a cantilever with a suitable stiffness range for a matrix. In case of using the most suitable cantilever, the nanoparticles were visualized using every technique shown above except for FMM. The experimental results suggest that the subsurface features buried in a soft matrix with a depth of at least 1 µm can affect the local viscoelasticity (mainly viscosity) detected as the variation of the amplitude and phase of the tip oscillation on the surface. This phenomenon presumably makes it possible to visualize such deeply buried nanometer-scale features in a soft matrix. PMID:23770541

  14. Optimal Suturing Technique and Number of Sutures for Surgical Implantation of Acoustic Transmitters in Juvenile Salmonids

    SciTech Connect

    Deters, Katherine A.; Brown, Richard S.; Boyd, James W.; Eppard, M. B.; Seaburg, Adam

    2012-01-02

    The size reduction of acoustic transmitters has led to a reduction in the length of incision needed to implant a transmitter. Smaller suture knot profiles and fewer sutures may be adequate for closing an incision used to surgically implant an acoustic microtransmitter. As a result, faster surgery times and reduced tissue trauma could lead to increased survival and decreased infection for implanted fish. The objective of this study was to assess the effects of five suturing techniques on mortality, tag and suture retention, incision openness, ulceration, and redness in juvenile Chinook salmon Oncorhynchus tshawytscha implanted with acoustic microtransmitters. Suturing was performed by three surgeons, and study fish were held at two water temperatures (12°C and 17°C). Mortality was low and tag retention was high for all treatments on all examination days (7, 14, 21, and 28 days post-surgery). Because there was surgeon variation in suture retention among treatments, further analyses included only the one surgeon who received feedback training in all suturing techniques. Incision openness and tissue redness did not differ among treatments. The only difference observed among treatments was in tissue ulceration. Incisions closed with a horizontal mattress pattern had more ulceration than other treatments among fish held for 28 days at 17°C. Results from this study suggest that one simple interrupted 1 × 1 × 1 × 1 suture is adequate for closing incisions on fish under most circumstances. However, in dynamic environments, two simple interrupted 1 × 1 × 1 × 1 sutures should provide adequate incision closure. Reducing bias in survival and behavior tagging studies is important when making comparisons to the migrating salmon population. Therefore, by minimizing the effects of tagging on juvenile salmon (reduced tissue trauma and reduced surgery time), researchers can more accurately estimate survival and behavior.

  15. Acoustic puncture assist device versus loss of resistance technique for epidural space identification

    PubMed Central

    Mittal, Amit Kumar; Goel, Nitesh; Chowdhury, Itee; Shah, Shagun Bhatia; Singh, Brijesh Pratap; Jakhar, Pradeep

    2016-01-01

    Background and Aims: The conventional techniques of epidural space (EDS) identification based on loss of resistance (LOR) have a higher chance of complications, patchy analgesia and epidural failure, which can be minimised by objective confirmation of space before catheter placement. Acoustic puncture assist device (APAD) technique objectively confirms EDS, thus enhancing success, with lesser complications. This study was planned with the objective to evaluate the APAD technique and compare it to LOR technique for EDS identification and its correlation with ultrasound guided EDS depth. Methods: In this prospective study, the lumbar vertebral spaces were scanned by the ultrasound for measuring depth of the EDS and later correlated with procedural depth measured by either of the technique (APAD or LOR). The data were subjected to descriptive statistics; the concordance correlation coefficient and Bland-Altman analysis with 95% confidence limits. Results: Acoustic dip in pitch and descent in pressure tracing on EDS localisation was observed among the patients of APAD group. Analysis of concordance correlation between the ultrasonography (USG) depth and APAD or LOR depth was significant (r ≥ 0.97 in both groups). Bland-Altman analysis revealed a mean difference of 0.171cm in group APAD and 0.154 cm in group LOR. The 95% limits of agreement for the difference between the two measurements were − 0.569 and 0.226 cm in APAD and − 0.530 to 0.222 cm in LOR group. Conclusion: We found APAD to be a precise tool for objective localisation of the EDS, co-relating well with the pre-procedural USG depth of EDS. PMID:27212720

  16. A novel self-sensing technique for tapping-mode atomic force microscopy

    SciTech Connect

    Ruppert, Michael G.; Moheimani, S. O. Reza

    2013-12-15

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  17. Investigating the mesostructure of ordered porous silica nanocomposites by transmission electron microscopy techniques

    SciTech Connect

    Bullita, S.; Casula, M. F.; Piludu, M.; Falqui, A.; Carta, D.; Corrias, A.

    2014-10-21

    Nanocomposites made out of FeCo alloy nanocrystals supported onto pre-formed mesoporous ordered silica which features a cubic arrangement of pores (SBA-16) were investigated. Information on the effect of the nanocrystals on the mesostructure (i.e. pore arrangement symmetry, pore size, and shape) were deduced by a multitechnique approach including N2 physisorption, low angle X-ray diffraction, and Transmission electron microscopy. It is shown that advanced transmission electron microscopy techniques are required, however, to gain direct evidence on key compositional and textural features of the nanocomposites. In particular, electron tomography and microtomy techniques make clear that the FeCo nanocrystals are located within the pores of the SBA-16 silica, and that the ordered mesostructure of the nanocomposite is retained throughout the observed specimen.

  18. A novel self-sensing technique for tapping-mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ruppert, Michael G.; Moheimani, S. O. Reza

    2013-12-01

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  19. Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques.

    PubMed

    Paddock, Stephen W; Eliceiri, Kevin W

    2014-01-01

    Confocal microscopy is an established light microscopical technique for imaging fluorescently labeled specimens with significant three-dimensional structure. Applications of confocal microscopy in the biomedical sciences include the imaging of the spatial distribution of macromolecules in either fixed or living cells, the automated collection of 3D data, the imaging of multiple labeled specimens and the measurement of physiological events in living cells. The laser scanning confocal microscope continues to be chosen for most routine work although a number of instruments have been developed for more specific applications. Significant improvements have been made to all areas of the confocal approach, not only to the instruments themselves, but also to the protocols of specimen preparation, to the analysis, the display, the reproduction, sharing and management of confocal images using bioinformatics techniques. PMID:24052346

  20. A non-invasive acoustic and vibration analysis technique for evaluation of hip joint conditions.

    PubMed

    Glaser, Diana; Komistek, Richard D; Cates, Harold E; Mahfouz, Mohamed R

    2010-02-10

    The performance evaluation of THA outcome is difficult and surgeons often use invasive methods to investigate effectiveness. A non-invasive acoustic and vibration analysis technique has recently been developed for more-in-depth evaluation of in vivo hip conditions. Gait kinematics, corresponding vibration and sound measurement of five THA subjects were analyzed post-operatively using video-fluoroscopy, sound and accelerometer measurements while walking on a treadmill. The sound sensor and a pair of tri-axial accelerometers, externally attached to the pelvic and femoral bone prominences, detected frequencies that are propagated through the femoral head and acetabular cup interactions. A data acquisition system was used to amplify the signal and filter out noise generated by undesired frequencies. In vivo kinematics and femoral head sliding quantified using video fluoroscopy were correlated to the sound and acceleration measurements. Distinct variations between the different subjects were identified. A correlation of sound and acceleration impulses with separation has been achieved. Although, in vivo sounds are quite variable in nature and all correlated well with the visual images. This is the first study to document and correlate visual and audible effects of THA under in-vivo conditions. This study has shown that the development of the acoustic and vibration technique provides a practical method and generates new possibilities for a better understanding of THA performance.

  1. A non-invasive acoustic and vibration analysis technique for evaluation of hip joint conditions.

    PubMed

    Glaser, Diana; Komistek, Richard D; Cates, Harold E; Mahfouz, Mohamed R

    2010-02-10

    The performance evaluation of THA outcome is difficult and surgeons often use invasive methods to investigate effectiveness. A non-invasive acoustic and vibration analysis technique has recently been developed for more-in-depth evaluation of in vivo hip conditions. Gait kinematics, corresponding vibration and sound measurement of five THA subjects were analyzed post-operatively using video-fluoroscopy, sound and accelerometer measurements while walking on a treadmill. The sound sensor and a pair of tri-axial accelerometers, externally attached to the pelvic and femoral bone prominences, detected frequencies that are propagated through the femoral head and acetabular cup interactions. A data acquisition system was used to amplify the signal and filter out noise generated by undesired frequencies. In vivo kinematics and femoral head sliding quantified using video fluoroscopy were correlated to the sound and acceleration measurements. Distinct variations between the different subjects were identified. A correlation of sound and acceleration impulses with separation has been achieved. Although, in vivo sounds are quite variable in nature and all correlated well with the visual images. This is the first study to document and correlate visual and audible effects of THA under in-vivo conditions. This study has shown that the development of the acoustic and vibration technique provides a practical method and generates new possibilities for a better understanding of THA performance. PMID:19931084

  2. Application and correlation of nano resolution microscopy techniques to viral protein localization

    NASA Astrophysics Data System (ADS)

    Hodges, Jeffery Allen

    This dissertation is primarily focused on the application of super-resolution microscopy techniques to localization of viral proteins within envelope viruses. Advances in optical super-resolution microscopy techniques have enabled scientists to observe phenomena much smaller than the Abbe diffraction limit by stochastically limiting the number of molecules excited at a given instance and localizing their positions one at a time. Additionally, methods such as Atomic Force Microscopy (AFM) allow scientists to measure the topological features and material properties of samples through contact with a force probe. This dissertation describes the application of these two techniques to virology in order to localize internal viral proteins of enveloped virions, and measure their effect on the elastic properties of the virion. By utilizing super-resolution microscopy techniques such as Fluorescent Photo-Activated Localization Microscopy (fPALM) on virions, which have had their surface glycoproteins labeled with a photo-switchable label, the viral envelope may be accurately recovered. This dissertation describes the development and application of this technique as it applies to envelope recovery of Vesicular Stomatitis Virus (VSV) and Human Immunodeficiency Virus-1 (HIV-1). By fluorescently labeling proteins, which are internal to each of these viruses, I have been able to localize a variety of viral proteins within their recovered envelopes. This is done without significant damage to the virion, making this method a highly effective in vivo technique. In the case of VSV, an asymmetric localization along the central axis towards the blunt 5' end was found to exist for both the polymerase and phosphoproteins. These have been determined to occupy a region in the central cavity of ˜57 +/- 12 nm on the 5' end. This inhomogeneity of the underlying proteins such an asymmetry would predict that the Young's modulus would vary along the central axis of the virion. This dissertation

  3. Electron and Light Microscopy Techniques Suitable for Studying Fatigue Damage in a Crystallized Glass Ceramic

    NASA Technical Reports Server (NTRS)

    Harrell, Shelley; Zaretsky, Erwin V.

    1961-01-01

    The crystals of Pyroceram are randomly oriented and highly reflective so that standard microscopy techniques are not satisfactory for studying this material. Standard replicating procedures proved difficult to use. New microscopy techniques and procedures have therefore been developed. A method for locating, orienting, and identifying specific areas to be viewed with an electron microscope is described. This method not require any special equipment. Plastic replicas were found to be unsatisfactory because of their tendency to adhere to Pryoceram. This caused them to tear when released or resulted in artifacts. Preshadowed silicon monoxide replicas were satisfactory but required a releasing agent. A method of depositing the releasing agent is described. To polish specimens without evidence of fire-polishing, it was found necessary to use a vibratory polishing technique. Chrome oxide was used as the abrasive and either water or kerosene as the lubricant. Vibratory polishing is extremely slow, but surfaces so polished show no evidence of fire polishing, even when examined by electron microscopy. The most satisfactory etching process used for Pyroceram 9608 consisted of a primary etch of 5 milliliters of hydrochloric acid (concentrated), 5 milliliters of hydrogen fluoride (45 percent), and 45 milliliters of water, and a secondary etch with methyl alcohol replacing the water. Best results were obtained with total etching times from 25 to 30 seconds. Staining of the Pyroceram surface with a Sanford's marker was found to be an expedient way to reduce the glare of reflected light.

  4. In-vivo lymph dynamic monitoring using speckle-correlation technique and light microscopy

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekateryna I.; Fedosov, Ivan V.; Solov'eva, Anastasiya V.; Stepanova, Tatyana V.; Tuchin, Valery V.; Brill, Gregory E.

    2002-05-01

    In this work we described the new modification of experimental setup designed on the basis of transmission microscopy and high-resolution speckle-correlation technique. This combined technique provides the simultaneous speckle and video registration of lymph dynamics that allows one to calibrate the speckle-correlation velocity sensor and to determine an absolute flow velocity and its direction. As a result many parameters of lymph dynamic were measured quickly, conveniently and simultaneously and a new data about the lymph flow velocity and other functions of microcirculation were received. The results of the experimental study of lymph microcirculation in small intestine mesentery of rat in vivo are presented.

  5. Using Complementary Acoustic and Optical Techniques for Quantitative Monitoring of Biomolecular Adsorption at Interfaces

    PubMed Central

    Konradi, Rupert; Textor, Marcus; Reimhult, Erik

    2012-01-01

    The great wealth of different surface sensitive techniques used in biosensing, most of which claim to measure adsorbed mass, can at first glance look unnecessary. However, with each technique relying on a different transducer principle there is something to be gained from a comparison. In this tutorial review, different optical and acoustic evanescent techniques are used to illustrate how an understanding of the transducer principle of each technique can be exploited for further interpretation of hydrated and extended polymer and biological films. Some of the most commonly used surface sensitive biosensor techniques (quartz crystal microbalance, optical waveguide spectroscopy and surface plasmon resonance) are briefly described and five case studies are presented to illustrate how different biosensing techniques can and often should be combined. The case studies deal with representative examples of adsorption of protein films, polymer brushes and lipid membranes, and describe e.g., how to deal with strongly vs. weakly hydrated films, large conformational changes and ordered layers of biomolecules. The presented systems and methods are compared to other representative examples from the increasing literature on the subject. PMID:25586027

  6. Quantitative comparison of multiframe data association techniques for particle tracking in time-lapse fluorescence microscopy.

    PubMed

    Smal, Ihor; Meijering, Erik

    2015-08-01

    Biological studies of intracellular dynamic processes commonly require motion analysis of large numbers of particles in live-cell time-lapse fluorescence microscopy imaging data. Many particle tracking methods have been developed in the past years as a first step toward fully automating this task and enabling high-throughput data processing. Two crucial aspects of any particle tracking method are the detection of relevant particles in the image frames and their linking or association from frame to frame to reconstruct the trajectories. The performance of detection techniques as well as specific combinations of detection and linking techniques for particle tracking have been extensively evaluated in recent studies. Comprehensive evaluations of linking techniques per se, on the other hand, are lacking in the literature. Here we present the results of a quantitative comparison of data association techniques for solving the linking problem in biological particle tracking applications. Nine multiframe and two more traditional two-frame techniques are evaluated as a function of the level of missing and spurious detections in various scenarios. The results indicate that linking techniques are generally more negatively affected by missing detections than by spurious detections. If misdetections can be avoided, there appears to be no need to use sophisticated multiframe linking techniques. However, in the practically likely case of imperfect detections, the latter are a safer choice. Our study provides users and developers with novel information to select the right linking technique for their applications, given a detection technique of known quality.

  7. Characterization of third-degree burned skin by nonlinear microscopy technique

    NASA Astrophysics Data System (ADS)

    dos Santos, Moisés O.; Pelegati, Vitor B.; Cesar, Carlos L.; Correa, Paulo R.; Zorn, Telma Maria T.; Zezell, Denise M.

    2011-03-01

    Nonlinear microscopy imaging technique enable take both images of collagen fibers in dermis through second harmonic generation (SHG) signal and elastic fibers by two-photon emission fluorescence microscopy (TPEFM). These techniques are the most commonly used technique for turbid and thick tissue imaging and also to image biological samples which presents highly ordered structural proteins without any exogenous label. The objective of this study is characterizing dermis of third-degree burned skin by TPEFM and SHG technique. The modelocked laser (Spectra Physics) source used in this study with pulse width of approximately 100 fs at 80 MHz was directed into a multiphoton microscope using a laser scanning unit (Olympus Fluoview 300), mounted on an inverted confocal system microscope (Olympus IX81), with focusing objective (40x, NA = 1.30). The samples were obtained from Wistar rats, male, adult. One dorsum area was submitted to burn caused by vapour exposure. The biopsies obtained were cryosectioned in slices of 20 μm width. Selected area of interface between the injured and healthy subdermal burned skin were imaged by TPEFM and SHG technique. Two different autofluorescence signals are observed as a function of excitation wavelength. The autofluorescence observed at 760 nm and 690 nm suggest components of extracellular matrix at differents depths. In SHG images, collagen fibers are visible. According to the images obtained, these methodologies can be used to characterize dermis of burned tissue as its healing process with reduced out-of-plane photobleaching and phototoxicity.

  8. Advanced Time-Resolved Fluorescence Microscopy Techniques for the Investigation of Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Anthony, Neil R.

    The ubiquitous cross beta sheet peptide motif is implicated in numerous neurodegenerative diseases while at the same time offers remarkable potential for constructing isomorphic high-performance bionanomaterials. Despite an emerging understanding of the complex folding landscape of cross beta structures in determining disease etiology and final structure, we lack knowledge of the critical initial stages of nucleation and growth. In this dissertation, I advance our understanding of these key stages in the cross-beta nucleation and growth pathways using cutting-edge microscopy techniques. In addition, I present a new combined time-resolved fluorescence analysis technique with the potential to advance our current understanding of subtle molecular level interactions that play a pivotal role in peptide self-assembly. Using the central nucleating core of Alzheimer's Amyloid-beta protein, Abeta(16 22), as a model system, utilizing electron, time-resolved, and non-linear microscopy, I capture the initial and transient nucleation stages of peptide assembly into the cross beta motif. In addition, I have characterized the nucleation pathway, from monomer to paracrystalline nanotubes in terms of morphology and fluorescence lifetime, corroborating the predicted desolvation process that occurs prior to cross-beta nucleation. Concurrently, I have identified unique heterogeneous cross beta domains contained within individual nanotube structures, which have potential bionanomaterials applications. Finally, I describe a combined fluorescence theory and analysis technique that dramatically increases the sensitivity of current time-resolved techniques. Together these studies demonstrate the potential for advanced microscopy techniques in the identification and characterization of the cross-beta folding pathway, which will further our understanding of both amyloidogenesis and bionanomaterials.

  9. Biomechanical Properties of Human Corneas Following Low- and High-Intensity Collagen Cross-Linking Determined With Scanning Acoustic Microscopy

    PubMed Central

    Beshtawi, Ithar M.; Akhtar, Riaz; Hillarby, M. Chantal; O'Donnell, Clare; Zhao, Xuegen; Brahma, Arun; Carley, Fiona; Derby, Brian; Radhakrishnan, Hema

    2013-01-01

    Purpose. To assess and compare changes in the biomechanical properties of the cornea following different corneal collagen cross-linking protocols using scanning acoustic microscopy (SAM). Methods. Ten donor human corneal pairs were divided into two groups consisting of five corneal pairs in each group. In group A, five corneas were treated with low-fluence (370 nm, 3 mW/cm2) cross-linking (CXL) for 30 minutes. In group B, five corneas were treated with high-fluence (370 nm, 9 mW/cm2) CXL for 10 minutes. The contralateral control corneas in both groups had similar treatment but without ultraviolet A. The biomechanical properties of all corneas were tested using SAM. Results. In group A, the mean speed of sound in the treated corneas was 1677.38 ± 10.70 ms−1 anteriorly and 1603.90 ± 9.82 ms−1 posteriorly, while it was 1595.23 ± 9.66 ms−1 anteriorly and 1577.13 ± 8.16 ms−1 posteriorly in the control corneas. In group B, the mean speed of sound of the treated corneas was 1665.06 ± 9.54 ms−1 anteriorly and 1589.89 ± 9.73 ms−1 posteriorly, while it was 1583.55 ± 8.22 ms−1 anteriorly and 1565.46 ± 8.13 ms−1 posteriorly in the untreated control corneas. The increase in stiffness between the cross-linked and control corneas in both groups was by a factor of 1.051×. Conclusions. SAM successfully detected changes in the corneal stiffness after application of collagen cross-linking. A higher speed-of-sound value was found in the treated corneas when compared with the controls. No significant difference was found in corneal stiffness between the corneas cross-linked with low- and high-intensity protocols. PMID:23847309

  10. Optical microscopy as a comparative analytical technique for single-particle dissolution studies.

    PubMed

    Svanbäck, Sami; Ehlers, Henrik; Yliruusi, Jouko

    2014-07-20

    Novel, simple and cost effective methods are needed to replace advanced chemical analytical techniques, in small-scale dissolution studies. Optical microscopy of individual particles could provide such a method. The aim of the present work was to investigate and verify the applicability of optical microscopy as an analytical technique for drug dissolution studies. The evaluation was performed by comparing image and chemical analysis data of individual dissolving particles. It was shown that the data obtained by image analysis and UV-spectrophotometry produced practically identical dissolution curves, with average similarity and difference factors above 82 and below 4, respectively. The relative standard deviation for image analysis data, of the studied particle size range, varied between 1.9% and 3.8%. Consequently, it is proposed that image analysis can be used, on its own, as a viable analytical technique in single-particle dissolution studies. The possibility for significant reductions in sample preparation, operational cost, time and substance consumption gives optical detection a clear advantage over chemical analytical methods. Thus, image analysis could be an ideal and universal analytical technique for rapid small-scale dissolution studies.

  11. Combined Use of Electron and Light Microscopy Techniques Reveals False Secondary Shell Units in Megaloolithidae Eggshells.

    PubMed

    Moreno-Azanza, Miguel; Bauluz, Blanca; Canudo, José Ignacio; Gasca, José Manuel; Torcida Fernández-Baldor, Fidel

    2016-01-01

    Abnormalities in the histo- and ultrastructure of the amniote eggshell are often related to diverse factors, such as ambient stress during egg formation, pathologies altering the physiology of the egg-laying females, or evolutionarily selected modifications of the eggshell structure that vary the physical properties of the egg, for example increasing its strength so as to avoid fracture during incubation. When dealing with fossil materials, all the above hypotheses are plausible, but a detailed taphonomical study has to be performed to rule out the possibility that secondary processes of recrystallization have occurred during fossilization. Traditional analyses, such as optical microscopy inspection and cathodoluminescence, have proven not to be enough to understand the taphonomic story of some eggshells. Recently, electron backscatter diffraction has been used, in combination with other techniques, to better understand the alteration of fossil eggshells. Here we present a combined study using scanning electron microscopy, optical microscopy, cathodoluminescence and electron backscatter diffraction of eggshell fragments assigned to Megaloolithus cf. siruguei from the Upper Cretaceous outcrops of the Cameros Basin. We focus our study on the presence of secondary shell units that mimic most aspects of the ultrastructure of the eggshell mammillae, but grow far from the inner surface of the eggshell. We call these structures extra-spherulites, describe their crystal structure and demonstrate their secondary origin. Our study has important implications for the interpretation of secondary shell units as biological or pathological structures. Thus, electron backscatter diffraction complements other microscope techniques as a useful tool for understanding taphonomical alterations in fossil eggshells.

  12. Evaluation of agave fiber delignification by means of microscopy techniques and image analysis.

    PubMed

    Hernández-Hernández, Hilda M; Chanona-Pérez, Jorge J; Calderón-Domínguez, Georgina; Perea-Flores, María J; Mendoza-Pérez, Jorge A; Vega, Alberto; Ligero, Pablo; Palacios-González, Eduardo; Farrera-Rebollo, Reynold R

    2014-10-01

    Recently, the use of different types of natural fibers to produce paper and textiles from agave plants has been proposed. Agave atrovirens can be a good source of cellulose and lignin; nevertheless, the microstructural changes that happen during delignification have scarcely been studied. The aim of this work was to study the microstructural changes that occur during the delignification of agave fibers by means of microscopy techniques and image analysis. The fibers of A. atrovirens were obtained from leaves using convective drying, milling, and sieving. Fibers were processed using the Acetosolv pulping method at different concentrations of acetic acid; increasing acid concentration promoted higher levels of delignification, structural damage, and the breakdown of fiber clumps. Delignification followed by spectrometric analysis and microstructural studies were carried out by light, confocal laser scanning and scanning electron microscopy and showed that the delignification process follows three stages: initial, bulk, and residual. Microscopy techniques and image analysis were efficient tools for microstructural characterization during delignification of agave fibers, allowing quantitative evaluation of the process and the development of linear prediction models. The data obtained integrated numerical and microstructural information that could be valuable for the study of pulping of lignocellulosic materials. PMID:25156546

  13. Evaluation of agave fiber delignification by means of microscopy techniques and image analysis.

    PubMed

    Hernández-Hernández, Hilda M; Chanona-Pérez, Jorge J; Calderón-Domínguez, Georgina; Perea-Flores, María J; Mendoza-Pérez, Jorge A; Vega, Alberto; Ligero, Pablo; Palacios-González, Eduardo; Farrera-Rebollo, Reynold R

    2014-10-01

    Recently, the use of different types of natural fibers to produce paper and textiles from agave plants has been proposed. Agave atrovirens can be a good source of cellulose and lignin; nevertheless, the microstructural changes that happen during delignification have scarcely been studied. The aim of this work was to study the microstructural changes that occur during the delignification of agave fibers by means of microscopy techniques and image analysis. The fibers of A. atrovirens were obtained from leaves using convective drying, milling, and sieving. Fibers were processed using the Acetosolv pulping method at different concentrations of acetic acid; increasing acid concentration promoted higher levels of delignification, structural damage, and the breakdown of fiber clumps. Delignification followed by spectrometric analysis and microstructural studies were carried out by light, confocal laser scanning and scanning electron microscopy and showed that the delignification process follows three stages: initial, bulk, and residual. Microscopy techniques and image analysis were efficient tools for microstructural characterization during delignification of agave fibers, allowing quantitative evaluation of the process and the development of linear prediction models. The data obtained integrated numerical and microstructural information that could be valuable for the study of pulping of lignocellulosic materials.

  14. Individual Particle Analysis of Ambient PM 2.5 Using Advanced Electron Microscopy Techniques

    SciTech Connect

    Gerald J. Keeler; Masako Morishita

    2006-12-31

    The overall goal of this project was to demonstrate a combination of advanced electron microscopy techniques that can be effectively used to identify and characterize individual particles and their sources. Specific techniques to be used include high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM energy dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM). A series of ambient PM{sub 2.5} samples were collected in communities in southwestern Detroit, MI (close to multiple combustion sources) and Steubenville, OH (close to several coal fired utility boilers). High-resolution TEM (HRTEM) -imaging showed a series of nano-metal particles including transition metals and elemental composition of individual particles in detail. Submicron and nano-particles with Al, Fe, Ti, Ca, U, V, Cr, Si, Ba, Mn, Ni, K and S were observed and characterized from the samples. Among the identified nano-particles, combinations of Al, Fe, Si, Ca and Ti nano-particles embedded in carbonaceous particles were observed most frequently. These particles showed very similar characteristics of ultrafine coal fly ash particles that were previously reported. By utilizing HAADF-STEM, STEM-EDX, and EF-TEM, this investigation was able to gain information on the size, morphology, structure, and elemental composition of individual nano-particles collected in Detroit and Steubenville. The results showed that the contributions of local combustion sources - including coal fired utilities - to ultrafine particle levels were significant. Although this combination of advanced electron microscopy techniques by itself can not identify source categories, these techniques can be utilized as complementary analytical tools that are capable of providing detailed information on individual particles.

  15. Innovative techniques for analyzing the three-dimensional behavioral results from acoustically tagged fish

    NASA Astrophysics Data System (ADS)

    Steig, Tracey W.; Timko, Mark A.

    2005-04-01

    Acoustic tags were used to monitor the swimming patterns of downstream migrating salmon smolts approaching various dams on the Columbia River, USA. Downstream migrating yearling chinook (Oncorhynchus tshawytscha), steelhead (Oncorhynchus mykiss), sockeye (Oncorhynchus nerka), and sub-yearling chinook smolts were surgically implanted with acoustic tags. Fish were tracked in three-dimensions as they approached and passed into the turbine intakes, spillways, and surface bypass channel entrances at the dams during the 2004 spring and summer outmigrations. A number of advances in the analysis techniques and software have been made over the past few years. Some of these improvements include the development of various fish density algorithms, stream trace modeling analysis, and advances of three-dimensional animation programs. Three-dimensional tracks of fish approaching the turbine intakes, spillways, and surface bypass channel entrances will be presented. Concentrations of fish passage will be presented as three-dimensional fish densities superimposed over dam structures. Stream trace modeling animation will be presented showing predicted fish passage routes.

  16. Correlative Microscopy Techniques for the Analysis of Particles in Safeguards Environmental Samples

    NASA Astrophysics Data System (ADS)

    Dzigal, N.; Chinea-Cano, E.

    2015-10-01

    This paper presents a novel approach to environmental particle analysis for safeguards by means of a combination of micro-analytical techniques. It includes the tandem utilization of two separate light microscopes, a scanning electron microscope and a femtosecond laser-ablation ICP-MS. These are: a light microscopy automated particle relocation device (Zeiss Z2m); an optical-microscopy-based laser micro-dissection system (IX83 MMI+Olympus); a focussed ion beam scanning electron microscope equipped with a time-of-flight mass spectrometer extension (Tescan Lyra3) and a fs LA-ICP-MS (J200 from Applied Spectra Inc. and Thermofisher Scientific iCap Q). The samples examined in this contribution are analysed for their nuclear material signatures, in particular the presence of uranium isotopes.

  17. Dynamic Light Scattering Microscopy. A Novel Optical Technique to Image Submicroscopic Motions. I: Theory

    PubMed Central

    Dzakpasu, Rhonda; Axelrod, Daniel

    2004-01-01

    The theoretical basis of an optical microscope technique to image dynamically scattered light fluctuation decay rates (dynamic light scattering microscopy) is developed. It is shown that relative motions between scattering centers even smaller than the optical resolution of the microscope are sufficient to produce significant phase variations resulting in interference intensity fluctuations in the image plane. The timescale and time dependence for the temporal autocorrelation function of these intensity fluctuations is derived. The spatial correlation distance, which reports the average distance between constructive and destructive interference in the image plane, is calculated and compared with the pixel size, and the distance dependence of the spatial correlation function is derived. The accompanying article in this issue describes an experimental implementation of dynamic light scattering microscopy. PMID:15298930

  18. Scanning Electrochemical Cell Microscopy: A Versatile Technique for Nanoscale Electrochemistry and Functional Imaging

    NASA Astrophysics Data System (ADS)

    Ebejer, Neil; Güell, Aleix G.; Lai, Stanley C. S.; McKelvey, Kim; Snowden, Michael E.; Unwin, Patrick R.

    2013-06-01

    Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, at the end of a double-barreled (theta) pipette, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science.

  19. Elastic modulus measurements at variable temperature: Validation of atomic force microscopy techniques

    NASA Astrophysics Data System (ADS)

    Natali, Marco; Reggente, Melania; Passeri, Daniele; Rossi, Marco

    2016-06-01

    The development of polymer-based nanocomposites to be used in critical thermal environments requires the characterization of their mechanical properties, which are related to their chemical composition, size, morphology and operating temperature. Atomic force microscopy (AFM) has been proven to be a useful tool to develop techniques for the mechanical characterization of these materials, thanks to its nanometer lateral resolution and to the capability of exerting ultra-low loads, down to the piconewton range. In this work, we demonstrate two techniques, one quasi-static, i.e., AFM-based indentation (I-AFM), and one dynamic, i.e., contact resonance AFM (CR-AFM), for the mechanical characterization of compliant materials at variable temperature. A cross-validation of I-AFM and CR-AFM has been performed by comparing the results obtained on two reference materials, i.e., low-density polyethylene (LDPE) and polycarbonate (PC), which demonstrated the accuracy of the techniques.

  20. Microscopy and Spectroscopy Techniques to Guide Parameters for Modeling Mineral Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Veghte, D. P.; Moore, J. E.; Jensen, L.; Freedman, M. A.

    2013-12-01

    Mineral dust aerosol particles are the second largest emission by mass into the atmosphere and contribute to the largest uncertainty in radiative forcing. Due to the variation in size, composition, and shape, caused by physical and chemical processing, uncertainty exists as to whether mineral dust causes a net warming or cooling effect. We have used Cavity Ring-Down Aerosol Extinction Spectroscopy (CRD-AES), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) to measure extinction cross sections and morphologies of size-selected, non-absorbing and absorbing mineral dust aerosol particles. We have found that microscopy is essential for characterizing the polydispersity of the size selection of non-spherical particles. Through the combined use of CRD-AES, microscopy, and computation (Mie theory and Discreet Dipole Approximation), we have determined the effect of shape on the optical properties of additional species including clay minerals, quartz, and hematite in the sub-micron regime. Our results have shown that calcite can be treated as polydisperse spheres while quartz and hematite need additional modeling parameters to account for their irregularity. Size selection of clay minerals cannot be performed due to their irregular shape, but microscopy techniques can be used to better quantify the particle aspect ratio. Our results demonstrate a new method that can be used to extend cavity ring-down spectroscopy for the measurement of the optical properties of non-spherical particles. This characterization will lead to better aerosol extinction parameters for modeling aerosol optical properties in climate models and satellite retrieval algorithms.

  1. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  2. Sound field separation technique based on equivalent source method and its application in nearfield acoustic holography.

    PubMed

    Bi, Chuan-Xing; Chen, Xin-Zhao; Chen, Jian

    2008-03-01

    A technique for separating sound fields using two closely spaced parallel measurement surfaces and based on equivalent source method is proposed. The method can separate wave components crossing two measurement surfaces in opposite directions, which makes nearfield acoustic holography (NAH) applications in a field where there exist sources on the two sides of the hologram surface, in a reverberant field or in a scattered field, possible. The method is flexible in applications, simple in computation, and very easy to implement. The measurement surfaces can be arbitrarily shaped, and they are not restricted to be regular as in the traditional field separation technique. And, because the method performs field separation calculations directly in the spatial domain-not in the wave number domain--it avoids the errors and limitations (the window effects, etc.) associated with the traditional field separation technique based on the spatial Fourier transform method. In the paper, a theoretical description is first given, and the performance of the proposed field separation technique and its application in NAH are then evaluated through experiments.

  3. Acoustic emission source location in complex structures using full automatic delta T mapping technique

    NASA Astrophysics Data System (ADS)

    Al-Jumaili, Safaa Kh.; Pearson, Matthew R.; Holford, Karen M.; Eaton, Mark J.; Pullin, Rhys

    2016-05-01

    An easy to use, fast to apply, cost-effective, and very accurate non-destructive testing (NDT) technique for damage localisation in complex structures is key for the uptake of structural health monitoring systems (SHM). Acoustic emission (AE) is a viable technique that can be used for SHM and one of the most attractive features is the ability to locate AE sources. The time of arrival (TOA) technique is traditionally used to locate AE sources, and relies on the assumption of constant wave speed within the material and uninterrupted propagation path between the source and the sensor. In complex structural geometries and complex materials such as composites, this assumption is no longer valid. Delta T mapping was developed in Cardiff in order to overcome these limitations; this technique uses artificial sources on an area of interest to create training maps. These are used to locate subsequent AE sources. However operator expertise is required to select the best data from the training maps and to choose the correct parameter to locate the sources, which can be a time consuming process. This paper presents a new and improved fully automatic delta T mapping technique where a clustering algorithm is used to automatically identify and select the highly correlated events at each grid point whilst the "Minimum Difference" approach is used to determine the source location. This removes the requirement for operator expertise, saving time and preventing human errors. A thorough assessment is conducted to evaluate the performance and the robustness of the new technique. In the initial test, the results showed excellent reduction in running time as well as improved accuracy of locating AE sources, as a result of the automatic selection of the training data. Furthermore, because the process is performed automatically, this is now a very simple and reliable technique due to the prevention of the potential source of error related to manual manipulation.

  4. Accumulated damage process of thermal sprayed coating under rolling contact by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Xu, Jia; Zhou, Zhen-yu; Piao, Zhong-yu

    2016-09-01

    The accumulated damage process of rolling contact fatigue (RCF) of plasma-sprayed coatings was investigated. The influences of surface roughness, loading condition, and stress cycle frequency on the accumulated damage status of the coatings were discussed. A ball-ondisc machine was employed to conduct RCF experiments. Acoustic emission (AE) technique was introduced to monitor the RCF process of the coatings. AE signal characteristics were investigated to reveal the accumulated damage process. Result showed that the polished coating would resist the asperity contact and remit accumulated damage. The RCF lifetime would then extend. Heavy load would aggravate the accumulated damage status and induce surface fracture. Wear became the main failure mode that reduced the RCF lifetime. Frequent stress cycle would aggravate the accumulated damage status and induce interface fracture. Fatigue then became the main failure mode that also reduced the RCF lifetime.

  5. Accumulated damage process of thermal sprayed coating under rolling contact by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Xu, Jia; Zhou, Zhen-yu; Piao, Zhong-yu

    2016-07-01

    The accumulated damage process of rolling contact fatigue (RCF) of plasma-sprayed coatings was investigated. The influences of surface roughness, loading condition, and stress cycle frequency on the accumulated damage status of the coatings were discussed. A ball-ondisc machine was employed to conduct RCF experiments. Acoustic emission (AE) technique was introduced to monitor the RCF process of the coatings. AE signal characteristics were investigated to reveal the accumulated damage process. Result showed that the polished coating would resist the asperity contact and remit accumulated damage. The RCF lifetime would then extend. Heavy load would aggravate the accumulated damage status and induce surface fracture. Wear became the main failure mode that reduced the RCF lifetime. Frequent stress cycle would aggravate the accumulated damage status and induce interface fracture. Fatigue then became the main failure mode that also reduced the RCF lifetime.

  6. Analysis Techniques of Acoustic Emission Data for Damage Assessment of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Garilli, G.; Proverbio, E.; Marino, A.; de Domenico, D.; Termini, D.; Teramo, A.

    2010-12-01

    The aim of this work is the arrangement, through Acoustics Emission (AE) techniques, of a procedure aimed at early diagnosis of building diseases with the assessment of the causes that have produced a crack in a given structural element, in order to plan suitable structural adjustment works. To this end, bending tests were performed, divided into different cycles of increasing load on a concrete beam, to assess the damage level and response in relation to the stress change. Through the proposed procedure and different indicators of the damage level of material, such as b, Ib and Z-value, it was possible to identify in the study sample areas where cracks were detected, assessing the size, evolution process typology of microcraks. The recorded parameters of AE (Counts, Amplitude) are well related to the damage extent and applied load, providing a significant validation of the reliability analysis procedures used for monitoring and early detection of building diseases.

  7. Stellar acoustic radii, mean densities, and ages from seismic inversion techniques

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Reese, D. R.; Dupret, M. A.; Samadi, R.

    2015-01-01

    Context. Determining stellar characteristics such as the radius, mass or age is crucial when studying stellar evolution or exoplanetary systems, or when characterising stellar populations in the Galaxy. Asteroseismology is the golden path to accurately obtain these characteristics. In this context, a key question is how to make these methods less model-dependent. Aims: Building on the previous work of Daniel Reese, we wish to extend the Substractive Optimally Localized Averages (SOLA) inversion technique to new stellar global characteristics beyond the mean density. The goal is to provide a general framework in which to estimate these characteristics as accurately as possible in low-mass main-sequence stars. Methods: First, we describe our framework and discuss the reliability of the inversion technique and possible sources of error. We then apply this methodology to the acoustic radius, an age indicator based on the sound speed derivative and the mean density, and compare it to estimates based on the average large and small frequency separations. These inversions are carried out for several test cases including various metallicities, different mixing-lengths, non-adiabatic effects, and turbulent pressure. Results: We observe that the SOLA method yields accurate results in all test cases whereas results based on the large and small frequency separations are less accurate and more sensitive to surface effects and structural differences in the models. If we include the surface corrections of Kjeldsen et al. (2008, ApJ, 683, L175), we obtain results of comparable accuracy for the mean density. Overall, the mean density and acoustic radius inversions are more robust than the inversions for the age indicator. Moreover, the current approach is limited to relatively young stars with radiative cores. Increasing the number of observed frequencies improves the reliability and accuracy of the method. Appendices are available in electronic form at http://www.aanda.org

  8. Towards a more realistic picture of in situ biocide actions: combining physiological and microscopy techniques.

    PubMed

    Speranza, M; Wierzchos, J; De Los Rios, A; Perez-Ortega, S; Souza-Egipsy, V; Ascaso, C

    2012-11-15

    In this study, we combined chlorophyll a fluorescence (ChlaF) measurements, using pulse-amplitude-modulate (PAM) equipment, with scanning electron microscopy in backscattered electron mode (SEM-BSE) and transmission electron microscopy (TEM) images to evaluate the actions of Koretrel at lower concentrations on Verrucaria nigrescens colonising a dolostone. ChlaF measurements are good indicators of the damaging effects of biocides. However, these indicators only provide an incomplete view of the mechanism of biocides used to control biodeterioration agents. The death of the V. nigrescens photobiont at two biocide concentrations was revealed by PAM, SEM-BSE and TEM. Once Koretrel was applied, the Fv/Fm ratios markedly fell in the first few hours after the 1.5% treatment, and ratios for the 3% dilution remained close to zero throughout the study. The algal zone shows the plasmolysed appearance of the photobiont cells, and important aspects related to the action of the biocide on free and lichenised fungi were also detected using SEM-BSE. Many of the mycobiont cells had only their cell walls preserved; although, some fungal hyphae in lichen thalli and some microorganisms in endolithic clusters maintained lipid storage in their cytoplasm. These results indicated that the combination of physiological and microscopy techniques improves the assessment of biocide action in situ and this will help to optimize protocols in order to reduce the emission of these compounds to the environment. PMID:23063916

  9. Towards a more realistic picture of in situ biocide actions: combining physiological and microscopy techniques.

    PubMed

    Speranza, M; Wierzchos, J; De Los Rios, A; Perez-Ortega, S; Souza-Egipsy, V; Ascaso, C

    2012-11-15

    In this study, we combined chlorophyll a fluorescence (ChlaF) measurements, using pulse-amplitude-modulate (PAM) equipment, with scanning electron microscopy in backscattered electron mode (SEM-BSE) and transmission electron microscopy (TEM) images to evaluate the actions of Koretrel at lower concentrations on Verrucaria nigrescens colonising a dolostone. ChlaF measurements are good indicators of the damaging effects of biocides. However, these indicators only provide an incomplete view of the mechanism of biocides used to control biodeterioration agents. The death of the V. nigrescens photobiont at two biocide concentrations was revealed by PAM, SEM-BSE and TEM. Once Koretrel was applied, the Fv/Fm ratios markedly fell in the first few hours after the 1.5% treatment, and ratios for the 3% dilution remained close to zero throughout the study. The algal zone shows the plasmolysed appearance of the photobiont cells, and important aspects related to the action of the biocide on free and lichenised fungi were also detected using SEM-BSE. Many of the mycobiont cells had only their cell walls preserved; although, some fungal hyphae in lichen thalli and some microorganisms in endolithic clusters maintained lipid storage in their cytoplasm. These results indicated that the combination of physiological and microscopy techniques improves the assessment of biocide action in situ and this will help to optimize protocols in order to reduce the emission of these compounds to the environment.

  10. Characterization of acoustic effects on flame structures by beam deflection technique

    SciTech Connect

    Bedat, B.; Kostiuk, L.W.; Cheng, R.K.

    1993-10-01

    This work shows that the acoustic effects are the causes of the small amplitude flame wrinkling and movements seen in all the different gravitational conditions. The comparison between the acoustic velocity and beam deflection spectra for the two conditions studied (glass beads and fiber glass) demonstrates clearly this flame/acoustic coupling. This acoustic study shows that the burner behaves like a Helmholtz resonator. The estimated resonance frequency corresponds well to the experimental measurements. The fiber glass damps the level of the resonance frequency and the flame motion. The changes shown in normalized beam deflection spectra give further support of this damping. This work demonstrates that the acoustics has a direct influence on flame structure in the laminar case and the preliminary results in turbulent case also show a strong coupling. The nature of this flame/acoustic coupling are still not well understood. Further investigation should include determining the frequency limits and the sensitivity of the flame to acoustic perturbations.

  11. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  12. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques.

    PubMed

    Kranz, Christine

    2014-01-21

    In recent years, major developments in scanning electrochemical microscopy (SECM) have significantly broadened the application range of this electroanalytical technique from high-resolution electrochemical imaging via nanoscale probes to large scale mapping using arrays of microelectrodes. A major driving force in advancing the SECM methodology is based on developing more sophisticated probes beyond conventional micro-disc electrodes usually based on noble metals or carbon microwires. This critical review focuses on the design and development of advanced electrochemical probes particularly enabling combinations of SECM with other analytical measurement techniques to provide information beyond exclusively measuring electrochemical sample properties. Consequently, this critical review will focus on recent progress and new developments towards multifunctional imaging.

  13. Integrated atomic force microscopy techniques for analysis of biomaterials: Study of membrane proteins

    NASA Astrophysics Data System (ADS)

    Connelly, Laura S.

    Atomic Force Microscopy (AFM) is the prominent techniques for structural studies of biological materials in physiological relevant fluidic environments. AFM has been used to resolve the three-dimensional (3D) surface structure of cells, membranes, and proteins structures. Ion channels, formed by membrane proteins, are the key structures that control the activity of all living systems. This dissertation focuses on the structural evaluation of membrane proteins through atomic force microscopy. In Part I, AFM is utilized to study one of the most prominent medical issues facing our society, Alzheimer's Disease (AD). AD is a misfolded protein disease characterized by the accumulation of beta-amyloid (Abeta) peptide as senile plaques, progressive neurodegeneration, and memory loss. Recent evidence suggests that AD pathology is linked to the destabilization of cellular ionic homeostasis mediated by toxic channel structures composed of Abeta peptides. Selectively engineered sequences of Abeta were examined by AFM to elucidate the substructures and thus activity Abeta channels. Key residues were evaluated with the intent better understand the exact nature by which these pores conduct electrical and molecular signals, which could aid in identifying potential therapeutic targets for the prevention/treatment of AD. Additionally, AFM was used to analyze brain derived Abeta and newly developed pharmacological agents to study membranes and Abeta. Part II, presents a novel technology that incorporates electrophysiology into the AFM interface, enabling simultaneous imaging and complementary conductance measurements. The activity of ion channels is studied by various techniques, including patch clamp, free standing lipid bilayers, droplet interface bilayers, and supported lipid bilayers. However, direct correlation with channel structures has remained a challenge. The integrated atomic force microscopy system presented offers a solution to this challenge. The functionality of the

  14. Combined Use of Electron and Light Microscopy Techniques Reveals False Secondary Shell Units in Megaloolithidae Eggshells

    PubMed Central

    Bauluz, Blanca; Canudo, José Ignacio; Gasca, José Manuel; Torcida Fernández-Baldor, Fidel

    2016-01-01

    Abnormalities in the histo- and ultrastructure of the amniote eggshell are often related to diverse factors, such as ambient stress during egg formation, pathologies altering the physiology of the egg-laying females, or evolutionarily selected modifications of the eggshell structure that vary the physical properties of the egg, for example increasing its strength so as to avoid fracture during incubation. When dealing with fossil materials, all the above hypotheses are plausible, but a detailed taphonomical study has to be performed to rule out the possibility that secondary processes of recrystallization have occurred during fossilization. Traditional analyses, such as optical microscopy inspection and cathodoluminescence, have proven not to be enough to understand the taphonomic story of some eggshells. Recently, electron backscatter diffraction has been used, in combination with other techniques, to better understand the alteration of fossil eggshells. Here we present a combined study using scanning electron microscopy, optical microscopy, cathodoluminescence and electron backscatter diffraction of eggshell fragments assigned to Megaloolithus cf. siruguei from the Upper Cretaceous outcrops of the Cameros Basin. We focus our study on the presence of secondary shell units that mimic most aspects of the ultrastructure of the eggshell mammillae, but grow far from the inner surface of the eggshell. We call these structures extra-spherulites, describe their crystal structure and demonstrate their secondary origin. Our study has important implications for the interpretation of secondary shell units as biological or pathological structures. Thus, electron backscatter diffraction complements other microscope techniques as a useful tool for understanding taphonomical alterations in fossil eggshells. PMID:27144767

  15. Identification of the fragmentation of brittle particles during compaction process by the acoustic emission technique.

    PubMed

    Favretto-Cristini, Nathalie; Hégron, Lise; Sornay, Philippe

    2016-04-01

    Some nuclear fuels are currently manufactured by a powder metallurgy process that consists of three main steps, namely preparation of the powders, powder compaction, and sintering of the compact. An optimum between size, shape and cohesion of the particles of the nuclear fuels must be sought in order to obtain a compact with a sufficient mechanical strength, and to facilitate the release of helium and fission gases during irradiation through pores connected to the outside of the pellet after sintering. Being simple to adapt to nuclear-oriented purposes, the Acoustic Emission (AE) technique is used to control the microstructure of the compact by monitoring the compaction of brittle Uranium Dioxide (UO2) particles of a few hundred micrometers. The objective is to identify in situ the mechanisms that occur during the UO2 compaction, and more specifically the particle fragmentation that is linked to the open porosity of the nuclear matter. Three zones of acoustic activity, strongly related to the applied stress, can be clearly defined from analysis of the continuous signals recorded during the compaction process. They correspond to particle rearrangement and/or fragmentation. The end of the noteworthy fragmentation process is clearly defined as the end of the significant process that increases the compactness of the material. Despite the fact that the wave propagation strongly evolves during the compaction process, the acoustic signature of the fragmentation of a single UO2 particle and a bed of UO2 particles under compaction is well identified. The waveform, with a short rise time and an exponential-like decay of the signal envelope, is the most reliable descriptor. The impact of the particle size and cohesion on the AE activity, and then on the fragmentation domain, is analyzed through the discrete AE signals. The maximum amplitude of the burst signals, as well as the mean stress corresponding to the end of the recorded AE, increase with increasing mean diameter of

  16. Use of acoustic velocity methodology and remote sensing techniques to measure unsteady flow on the lower Yazoo River in Mississippi

    USGS Publications Warehouse

    Turnipseed, D. Phil; Cooper, Lance M.; Davis, Angela A.

    1998-01-01

    Methodologies have been developed for computing continuous discharge during varied, non-uniform low and medium flows on the Yazoo River at the U.S. Geological Survey streamgage below Steele Bayou near Long Lake, Mississippi, using acoustic signal processing and conventional streamgaging techniques. Procedures were also developed to compute locations of discharges during future high flow events when the stream reach is subject to hi-directional and reverse flow caused by rising stages on the Mississippi River using a combination of acoustic equipment and remote sensing technology. A description of the study area is presented. Selected results of these methods are presented for the period from March through September 1997.

  17. Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques

    NASA Astrophysics Data System (ADS)

    Giorli, Giacomo

    Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an

  18. High-resolution scanning-electron microscopy of stereocilia using the osmium-thiocarbohydrazide coating technique.

    PubMed

    Furness, D N; Hackney, C M

    1986-01-01

    Further observations on the detailed morphology of stereocilia have been made using high-resolution scanning-electron microscopy of osmium-thiocarbohydrazide-coated guinea pig cochleae. Three types of cross-link have been observed between stereocilia. Side-to-side and row-to-row linkages are composed of a filamentous network whilst upward-pointing links are a fine single strand, often with a terminal widening. The stereocilia have rough surfaces. These features are observed on both inner and outer hair cells despite reported sensitivity to long periods of osmium fixation. We suggest that osmium sensitivity may be altered by the buffering conditions used during preparation. The observations on osmium-coated material correspond more closely with those made using transmission-electron microscopy than those made using other scanning-electron microscopical preparation techniques, since gold-coating artefacts are absent and the degree of specimen collapse is less. This has enabled us to observe fine details of the links and their attachments which have not been reported previously in SEM.

  19. Fluorescence microscopy techniques for characterizing the microscale mechanical response of entangled actin networks

    NASA Astrophysics Data System (ADS)

    Blair, Savanna; Falzone, Tobias; Robertson-Anderson, Rae

    2015-03-01

    Actin filaments are semiflexible polymers that display complex viscoelastic properties when entangled in networks. In order to characterize the molecular-level physical and mechanical properties of entangled actin networks it is important to know the in-network length distribution and the response of entangled filaments to local forcing. Here we describe two single-molecule microscopy protocols developed to investigate these properties. Using confocal fluorescence microscopy and ImageJ image analysis we have developed a protocol to accurately measure the in-network actin length distribution. To characterize the deformation of actin filaments in response to perturbation, we trap micron size beads embedded in the network with optical tweezers and propagate the beads through the entangled filaments while simultaneously recording images of fluorescent-labeled filaments in the network. A sparse number of labeled filaments dispersed throughout the network allow us to visualize the movement of individual filaments during perturbation. Analysis of images taken during forcing is carried out using a combination of vector mapping and skeletonization techniques to directly reveal the deformation and subsequent relaxation modes induced in entangled actin filaments by microscale strains. We also determine the dependence of deformation modes on the relative filament position relative to the strain.

  20. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    PubMed Central

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Background Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. Methods We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. Results In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. Conclusion In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary. PMID:18215290

  1. Assessment of in-depth degradation of artificially aged triterpenoid paint varnishes using nonlinear microscopy techniques.

    PubMed

    Filippidis, George; Mari, Meropi; Kelegkouri, Lambrini; Philippidis, Aggelos; Selimis, Aleksandros; Melessanaki, Kristallia; Sygletou, Maria; Fotakis, Costas

    2015-04-01

    The present work investigates the applicability of nonlinear imaging microscopy for the precise assessment of degradation of the outer protective layers of painted artworks as a function of depth due to aging. Two fresh and artificially aged triterpenoid varnishes, dammar and mastic, were tested. Nonlinear imaging techniques have been employed as a new diagnostic tool for determination of the exact thickness of the affected region due to artificial aging of the natural varnishes. The measured thicknesses differ from the calculated mean penetration depths of the samples. These nondestructive, high resolution modalities are valuable analytical tools for aging studies and they have the potential to provide unique in-depth information. Single photon laser induced fluorescence measurements and Raman spectroscopy were used for the integrated investigation and analysis of aging effects in varnishes.

  2. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  3. Surface energy control techniques for photomask fabrication and their characterizations with scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Kurihara, Masaaki; Hatakeyama, Sho; Yoshida, Kouji; Abe, Makoto; Totsukawa, Daisuke; Morikawa, Yasutaka; Mohri, Hiroshi; Hayashi, Naoya

    2008-05-01

    Most of photomask issues such as pattern collapse, HAZE, and cleaning damage relate to behavior of mask surfaces. Therefore it is coming to be important to control surface energy in photomask processes. Especially adhesion analysis in micro region is strongly desired to optimize material and process designs in photomask fabrication. Quantitative measurements of adhesive forces of resists on photomask blanks were realized with scanning probe microscopy (SPM) techniques. Then surface energy on photomask blanks was able to be controlled by modification with some silanization reagents. In addition, adhesive forces of resists on surfaces modified with some silanes were able to be also controlled. The SPM method is proved to be effective for measuring adhesive energy of micro patterns on photomask blanks.

  4. Surface nanobubbles studied by atomic force microscopy techniques: Facts, fiction, and open questions

    NASA Astrophysics Data System (ADS)

    Schönherr, Holger; Hain, Nicole; Walczyk, Wiktoria; Wesner, Daniel; Druzhinin, Sergey I.

    2016-08-01

    In this review surface nanobubbles, which are presumably gas-filled enclosures found at the solid-liquid interface, are introduced and discussed together with key experimental findings that suggest that these nanoscale features indeed exist and are filled with gas. The most prominent technique used thus far has been atomic force microscopy (AFM). However, due to its potentially invasive nature, AFM data must be interpreted with great care. Owing to their curved interface, the Laplace internal pressure of surface nanobubbles exceeds substantially the outside ambient pressure, and the experimentally observed long term stability is in conflict with estimates of gas transport rates and predicted surface nanobubble lifetimes. Despite recent explanations of both the stability and the unusual nanoscopic contact angles, the development of new co-localization approaches and the adequate analysis of AFM data of surface nanobubbles are important as a means to confirm the gaseous nature and correctly estimate the interfacial curvature.

  5. Analysis of Maize Seed Germs by Photoacoustic Microscopy and Photopyroelectric Technique

    NASA Astrophysics Data System (ADS)

    Pacheco, A. Domínguez; Aguilar, C. Hernández; Cruz-Orea, A.

    2013-05-01

    A knowledge about thermal parameters of structural components of maize seed is of great relevance in the seed technology practice. The objective of the present study was to determine the thermal effusivity of germs of maize ( Zea mays L.) of different genotypes by means of the photopyroelectric technique (PPE) in the inverse configuration and obtaining the thermal imaging of these samples by photoacoustic microscopy (PAM). Germs from crystalline maize (white pigment), semi-crystalline maize (yellow pigment), and floury maize (blue pigment) were used in this investigation. The results show differences between germs of maize seeds mainly in the values of their thermal effusivities. The thermal images showed minimum inhomogeneity of these seed germs. Characterizations of thermal parameters in seeds are important in agriculture and food production and could be particularly useful to define their quality and determine their utility. PPE and PAM can be considered as potential diagnostic tools for the characterization of agriculture seeds.

  6. Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid.

    PubMed

    He, Li; Zhang, Pei; Besser, Matthew F; Kramer, Matthew Joseph; Voyles, Paul M

    2015-08-01

    Electron correlation microscopy (ECM) is a new technique that utilizes time-resolved coherent electron nanodiffraction to study dynamic atomic rearrangements in materials. It is the electron scattering equivalent of photon correlation spectroscopy with the added advantage of nanometer-scale spatial resolution. We have applied ECM to a Pd40Ni40P20 metallic glass, heated inside a scanning transmission electron microscope into a supercooled liquid to measure the structural relaxation time τ between the glass transition temperature T g and the crystallization temperature, T x . τ determined from the mean diffraction intensity autocorrelation function g 2(t) decreases with temperature following an Arrhenius relationship between T g and T g +25 K, and then increases as temperature approaches T x . The distribution of τ determined from the g 2(t) of single speckles is broad and changes significantly with temperature.

  7. Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials

    NASA Astrophysics Data System (ADS)

    Guz, Nataliia

    In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.

  8. The Application of Electron Microscopy Techniques to the Space Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Jerman, Greg

    2005-01-01

    The Space Shuttle Columbia was returning from a 16-day research mission, STS- 107, with nominal system performance prior to the beginning of the entry interface into earth's upper atmosphere. Approximately one minute and twenty four seconds into the peak heating region of the entry interface, an off-nominal temperature rise was observed in the left main landing gear brake line. Nearly seven minutes later, all contact was lost with Columbia. Debris was observed periodically exiting the Shuttle's flight path throughout the reentry profile over California, Nevada, and New Mexico, until its final breakup over Texas. During the subsequent investigation, electron microscopy techniques were crucial in revealing the location of the fatal damage that resulted in the loss of Columbia and her crew.

  9. A specimen preparation technique for plane-view studies of surfaces using transmission electron microscopy.

    PubMed

    Foss, Steinar; Taftø, Johan; Haakenaasen, Randi

    2010-01-01

    A method for preparing plane-view transmission electron microscope (TEM) samples is presented. With this inclined pseudo-plane-view technique, the undisturbed surface of the sample can be studied in plane view. Thus, nanostructures on the surface of a substrate can be studied with TEM in much the same way as with scanning electron microscopy (SEM), but in transmission at a much higher spatial resolution and with the opportunity of performing nanoscale diffraction. A glued sandwich with two surfaces facing each other was thinned at a low angle relative to the surfaces. The resultant construction contained thin wedges of the surfaces upon which it was possible to do TEM analysis. SEM analysis before and TEM analysis after such sample preparation was found to be consistent.

  10. Surface nanobubbles studied by atomic force microscopy techniques: Facts, fiction, and open questions

    NASA Astrophysics Data System (ADS)

    Schönherr, Holger; Hain, Nicole; Walczyk, Wiktoria; Wesner, Daniel; Druzhinin, Sergey I.

    2016-08-01

    In this review surface nanobubbles, which are presumably gas-filled enclosures found at the solid–liquid interface, are introduced and discussed together with key experimental findings that suggest that these nanoscale features indeed exist and are filled with gas. The most prominent technique used thus far has been atomic force microscopy (AFM). However, due to its potentially invasive nature, AFM data must be interpreted with great care. Owing to their curved interface, the Laplace internal pressure of surface nanobubbles exceeds substantially the outside ambient pressure, and the experimentally observed long term stability is in conflict with estimates of gas transport rates and predicted surface nanobubble lifetimes. Despite recent explanations of both the stability and the unusual nanoscopic contact angles, the development of new co-localization approaches and the adequate analysis of AFM data of surface nanobubbles are important as a means to confirm the gaseous nature and correctly estimate the interfacial curvature.

  11. Characterization of 6111-like aluminum alloys using electrochemical techniques and electron microscopy

    NASA Astrophysics Data System (ADS)

    Shi, Alan

    2003-10-01

    Aluminum and aluminum alloys are susceptible to localized corrosion in corrosive environments, particularly in halide-containing solutions. However, the mechanism(s) through which corrosion occurs on Al-Mg-Si alloys with or without Cu addition remained unclear. This dissertation reports on the investigation of pitting and IGC susceptibilities of three 6111-like aluminum alloys with 0%, 0.68%, and 1.47%Cu. The electrochemical behavior of the alloys was evaluated using open circuit exposure, conventional polarization techniques, and electrochemical noise technique. Scanning electron microscopy (SEM) was used to characterize the corrosion morphologies of the alloys. Transmission electron microscopy (TEM) was employed to characterize the alloys' microstructures. Scanning transmission electron microscopy (STEM) and EDS nano-profiling were used to study the grain boundary characteristics of the three alloys. All three alloys are susceptible to pitting and IGC attack in chloride-containing electrolytes. Electrochemical noise measurements revealed that the induction time for localized corrosion to initiate was often on the order of hours if not less, even in solution containing merely 5 mM NaCl. Regardless the heat treatment conditions and degree of polarization, the 6111-like alloy with 0%Cu exhibited crystallographic tunneling morphology. Over-aging treatment transformed the nature of intragranular attack on the Cu-containing 6111-like alloys from the hemispherical micropitting to a mixture of hemispherical micropitting and crystallographic tunneling. STEM/X-ray microanalysis yielded some significant findings on the three as-received alloys, which were never reported before. 30˜70 run wide Mg and Si depleted regions and 10˜40 nm wide Cu-depleted regions along some high angle grain boundaries (GB) have been detected in the Cu-free and Cu-containing 6111-like alloys, respectively. The presence of an Al-Cu-Mg-Si phase at some high angle GBs of the Cu-containing alloys has

  12. Modeling of the Acoustic Reverberation Special Research Program deep ocean seafloor scattering experiments using a hybrid wave propagation simulation technique

    NASA Astrophysics Data System (ADS)

    Robertsson, Johan O. A.; Levander, Alan; Holliger, Klaus

    1996-02-01

    Quantitative modeling of bottom-interacting ocean acoustic waves is complicated by the long propagation ranges and by the complexity of the scattering targets. We employ a two-dimensional (2-D) hybrid technique combining Gaussian beam, finite difference, and Kirchhoff integral solutions of the wave equation to simulate ocean acoustic experiments within half of a convergence zone in the SOFAR channel. The 2-D modeling approach is reasonable due to the one-dimensional (1-D) velocity distribution in the water column and the strong lineation of the seafloor morphology parallel to the mid-ocean ridges. Full-waveform modeling of ocean acoustic data requires that the topography and the material properties of the seafloor are available at scales that are several orders of magnitude smaller than typical bathymetric sampling rates. We have therefore investigated the effects on the ocean acoustic response of a stochastic interpolation scheme used to generate seafloor models. For typical grazing angles of the incident wave field (approximately 5°-20°), we found that different stochastic realizations of the same seafloor segment (sampled at 200 m) yield an intrinsic uncertainty of the order of 3-8 dB in amplitude and 0.1-0.3 s in time for individual prominent events in the reverberant acoustic field. Hybrid simulations are compared to beam-formed ocean acoustic data collected during the Acoustic Reverberation Special Research Program (ARSRP) cruises. Side lobe noise in the observed acoustic data is simulated by adding band-limited white noise at -30 dB relative to the maximum intensity in the synthetic data. Numerical simulations can be limited to the response of only one of the mirror azimuth beams provided that the experimental geometry is suitably chosen. For the 2-D approximation to be valid, the cross-range resolution of the observed data must be smaller than the characteristic scale of seafloor lineations, and the beams of interest must be approximately perpendicular to

  13. Calibration techniques and sampling resolution requirements for groundtruthing multibeam acoustic backscatter (EM3000) and QTC VIEW™ classification technology

    NASA Astrophysics Data System (ADS)

    Sutherland, T. F.; Galloway, J.; Loschiavo, R.; Levings, C. D.; Hare, R.

    2007-12-01

    Both acoustic and sediment surveys were carried out in the Broughton Archipelago, British Columbia, in order to map a former aquaculture site and calibrate acoustic surveys with georeferenced sediment properties. The acoustic surveys included EM3000 Multibeam (including backscatter) and QTC VIEW™ (Series IV) technologies, while the geotechnical survey entailed Van Veen grab sampling of surface sediments and associated analyses. The two acoustic technologies were consistent in their ability to identify distinct regions of seafloor characterized by rock outcrops, consolidated substrates, or gel-mud depositional fields. Both multibeam backscatter data and QTC VIEW™ number-coded classifications were extracted across a range of circular areas located at each georeferenced sampling station (radii: 2, 3, 4, 5, 8, 12, 16, 20 m). Statistical correlations were observed between backscatter and certain geotechnical properties, such as sediment porosity, sediment grain size fractions (<2 μm, silt content), and particulate sulfur concentration. The areal resolution of backscatter extraction was explored in terms of determining a sensitive calibration technique between backscatter and sediment properties. In general the highest r2 values between backscatter and sediment variables were observed across extraction radii between 8 and 20 m. Such groundtruthing techniques could be used to interpolate seafloor characteristics between sampling stations and provide a steering tool for sampling designs associated with benthic monitoring programs.

  14. Closer to the native state. Critical evaluation of cryo-techniques for Transmission Electron Microscopy: preparation of biological samples.

    PubMed

    Mielanczyk, Lukasz; Matysiak, Natalia; Michalski, Marek; Buldak, Rafal; Wojnicz, Romuald

    2014-01-01

    Over the years Transmission Electron Microscopy (TEM) has evolved into a powerful technique for the structural analysis of cells and tissues at various levels of resolution. However, optimal sample preservation is required to achieve results consistent with reality. During the last few decades, conventional preparation methods have provided most of the knowledge about the ultrastructure of organelles, cells and tissues. Nevertheless, some artefacts can be introduced at all stagesofstandard electron microscopy preparation technique. Instead, rapid freezing techniques preserve biological specimens as close as possible to the native state. Our review focuses on different cryo-preparation approaches, starting from vitrification methods dependent on sample size. Afterwards, we discuss Cryo-Electron Microscopy Of VItreous Sections (CEMOVIS) and the main difficulties associated with this technique. Cryo-Focused Ion Beam (cryo-FIB) is described as a potential alternative for CEMOVIS. Another post-processing route for vitrified samples is freeze substitution and embedding in resin for structural analysis or immunolocalization analysis. Cryo-sectioning according to Tokuyasu is a technique dedicated to high efficiency immunogold labelling. Finally, we introduce hybrid techniques, which combine advantages of primary techniques originally dedicated to different approaches. Hybrid approaches permit to perform the study of difficult-to-fix samples and antigens or help optimize the sample preparation protocol for the integrated Laser and Electron Microscopy (iLEM) technique.

  15. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake - Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  16. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake: Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  17. Coherent Anti-Stokes Raman Scattering (CARS) Microscopy: A Novel Technique for Imaging the Retina

    PubMed Central

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Lei, Tim C.

    2013-01-01

    Purpose. To image the cellular and noncellular structures of the retina in an intact mouse eye without the application of exogenous fluorescent labels using noninvasive, nondestructive techniques. Methods. Freshly enucleated mouse eyes were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). Cross sectional transverse sections and sequential flat (en face) sagittal sections were collected from a region of sclera approximately midway between the limbus and optic nerve. Imaging proceeded from the surface of the sclera to a depth of ∼60 μm. Results. The fluorescent signal from collagen fibers within the sclera was evident in the TPAF channel; the scleral collagen fibers showed no organization and appeared randomly packed. The sclera contained regions lacking TPAF and CARS fluorescence of ∼3 to 15 μm in diameter that could represent small vessels or scleral fibroblasts. Intense punctate CARS signals from the retinal pigment epithelial layer were of a size and shape of retinyl storage esters. Rod outer segments could be identified by the CARS signal from their lipid-rich plasma membranes. Conclusions. CARS microscopy can be used to image the outer regions of the mammalian retina without the use of a fluorescent dye or exogenously expressed recombinant protein. With technical advancements, CARS/TPAF may represent a new avenue for noninvasively imaging the retina and might complement modalities currently used in clinical practice. PMID:23580484

  18. An improved phase shift reconstruction algorithm of fringe scanning technique for X-ray microscopy

    SciTech Connect

    Lian, S.; Yang, H.; Kudo, H.; Momose, A.; Yashiro, W.

    2015-02-15

    The X-ray phase imaging method has been applied to observe soft biological tissues, and it is possible to image the soft tissues by using the benefit of the so-called “Talbot effect” by an X-ray grating. One type of the X-ray phase imaging method was reported by combining an X-ray imaging microscope equipped by a Fresnel zone plate with a phase grating. Using the fringe scanning technique, a high-precision phase shift image could be obtained by displacing the grating step by step and measuring dozens of sample images. The number of the images was selected to reduce the error caused by the non-sinusoidal component of the Talbot self-image at the imaging plane. A larger number suppressed the error more but increased radiation exposure and required higher mechanical stability of equipment. In this paper, we analyze the approximation error of fringe scanning technique for the X-ray microscopy which uses just one grating and proposes an improved algorithm. We compute the approximation error by iteration and substitute that into the process of reconstruction of phase shift. This procedure will suppress the error even with few sample images. The results of simulation experiments show that the precision of phase shift image reconstructed by the proposed algorithm with 4 sample images is almost the same as that reconstructed by the conventional algorithm with 40 sample images. We also have succeeded in the experiment with real data.

  19. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  20. Surface acoustic wave technique for the characterization of porous properties of microporous silicate thin films

    NASA Astrophysics Data System (ADS)

    Hietala, Susan Leslie

    1997-12-01

    Features of gas adsorption onto sol-gel derived microporous silicate thin films, for characterization of porous properties, are detailed using a surface acoustic wave (SAW) technique. Mass uptake and film effective modulus changes calculated from the SAW data are investigated in detail. The effects of stress and surface tension on the SAW sensor are calculated and found to be negligible in these experiments. Transient behavior recorded during nitrogen adsorption at 77 K is discussed in the context of mass uptake and effective modulus contributions. The time constant associated with the effective modulus calculation is consistent with that of diffusivity of nitrogen into a 5A zeolite. Further calculations indicate that the transient behavior is not due to thermal effects. A unique dual sensor SAW experiment to decouple the mass and effective modulus contributions to the frequency response was performed in conjunction with a Silicon beam-bending experiment. The beam-bending experiment results in a calculation of stress induced during adsorption of methanol on a microporous silicate thin film. The decoupled mass and effective modulus calculated from the SAW data have similar shaped isotherms, and are quite different from that of the stress developed in the Silicon beam. The total effective modulus change calculated from the SAW data is consistent with that calculated using Gassmann's equation. The SAW system developed for this work included unique electronics and customized hardware which is suitable for work under vacuum and at temperatures from 77K to 473K. This unique setup is suitable for running thin film samples on a Micromeritics ASAP 2000 Gas Adsorption unit in automatic mode. This setup is also general enough to be compatible with a custom gas adsorption unit and the beam bending apparatus, both using standard vacuum assemblies.

  1. Acoustic Techniques for Measuring Surface Sealing and Crusting of Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Hickey, C. J.; Leary, D.; Dicarlo, D. A.

    2004-12-01

    The microtopography of soils is an important surface characteristic that effects water ponding, infiltration, and consequently soil erosion. During a rainstorm event the surface microtopography and soil matrix evolve, thereby altering the erosion and runoff dynamics. The impact of raindrops cause the breakdown of soil aggregates into smaller particles, which can then be deposited into the smaller depressions. The redistribution of soil particles on the surface during rainfall produce a thin surface layer often referred to as surface sealing or crusting. For the purpose of this presentation, surface sealing will be used to describe a reduction in the ability of fluid to flow across the surface. Surface crusting will be associated with the formation of a thin layer of higher stiffness or larger mechanical strength. The sensitivity of acoustics to the effects of sealing and crusting was examined by measuring the acoustic-to seismic (A/S) transfer function and acoustic reflectivity on two different soils in a dry, wetted and rained-on state. The A/S transfer function measurement involves the use of a suspended loud speaker to impinge acoustic energy from the air onto the sample and a laser Doppler vibrometer (LDV) is used to measure the induced surface particle velocity. Therefore, the A/S transfer function is a measure of the seismic energy that has been transferred into the soil from the airborne wave. The acoustic surface reflectivity is a measurement of the amount of acoustic energy reflected from the surface and requires the use of a microphone suspended above the surface. Results suggests that the seismic energy transferred (A/S transfer function) is sensitive to crust formation but is not as sensitive to sealing. The amount of reflected acoustic energy appears to be more sensitive to sealing than crusting.

  2. Comparison of acoustic and conventional flow measurement techniques at the Raccoon Mountain Pumped-Storage Plant: Final report

    SciTech Connect

    March, P.A.; Missimer, J.R.; Voss, A.; Pearson, H.S.

    1987-08-01

    The Electric Power Research Institute (EPRI) initiated a research project to evaluate the technical and economic feasibility of using the acoustic method of flow measurement in hydroelectric power plant efficiency tests. As a portion of this program, the Tennessee Valley Authority's (TVA) Raccoon Mountain Pumped-Storage Plant was chosen as one of the sites to be tested. The primary objective of the TVA test was to compare the measurements of the Ocean Research Engineering (ORE), acoustic flowmeter installed on Unit 1 to the Volumetric and Winter-Kennedy Techniques for flow measurement. The Winter-Kennedy Technique is the standard flow measurement technique used in the plant. The Volumetric Technique consisted of accurate measurement of the upper reservoir volume over specified time increments. For calibration, the upper reservoir was initially drained and as it was being filled, aerial photographs were taken to obtain contour lines which were correlated with simultaneous stage measurements. The photographs were used to compute the differential volume of the reservoir associated with a change in stage. Six performance tests were conducted on Unit 1. During the tests no other units were operated. Five tests were conducted in the generating mode and one test was conducted in the pumping mode. The uncertainty in the measurements using the Volumetric Technique is of the order of 0.5 percent for changes of stage elevation in excess of two feet. The flowrate measured by the ORE acoustic flowmeter was consistently of the order of 1.5 percent lower than the flowrate determined from the Volumetric Technique in both the generating and pumping modes. 3 refs., 32 figs., 14 tabs.

  3. Use of the acoustic impulse-response technique for the nondestructive assessment of Manchego cheese texture.

    PubMed

    Benedito, J; Conde, T; Clemente, G; Mulet, A

    2006-12-01

    Manchego cheese pieces were hit with an impact probe and the acoustic response was recorded, analyzed, and used to assess the textural characteristics of the cheese pieces. The textural parameters measured by traditional instrumental methods increased during ripening, although the pattern of the increase was different for different batches. For the 2 acoustic impact probes used in this study, a change in the frequency spectrum took place as cheese matured, increasing higher frequencies and the energy content. Multiple linear regression (MLR) and partial least square regression (PLSR), considering the acoustical variables extracted from the spectrum, allowed for a good estimation of cheese texture. The textural characteristics of the cheese surface and in particular the maximum force in compression experiments (R(2) > 0.937 for MLR and R(2) > 0.852 for PLSR) were accurately predicted by the acoustic method; however, the texture of the central layers of the cheese are poorly assessed (R(2) < 0.720). The results obtained show the feasibility of using acoustic systems to assess Manchego cheese texture, aiding its classification. PMID:17106079

  4. Application and development of advanced Lorentz microscopy techniques for the study of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Beacham, Robert J.

    This PhD project presents an investigation into the development of magnetic imaging methods in the TEM and their application in imaging narrow domain walls in multilayer magnetic structures. Lorentz microscopy techniques are limited in quantitative magnetic imaging as this generally requires using scanning imaging modes which limits the capability of imaging dynamic processes. The first imaging method developed in this study is a phase gradient technique with the aim of producing quantitative magnetic contrast proportional to the magnetic induction of the sample whilst maintaining a live imaging mode. This method uses a specifically engineered, semi-electron-transparent graded wedge aperture to controllably perturb intensity in the back focal plane. The results of this study found that this method could produce magnetic contrast proportional to the sample induction, however the required gradient of the wedge aperture made this contrast close to the noise level with large associated errors. In the second part of this study we investigated the development of a technique aimed at gaining sub-microsecond temporal resolution within TEMs based on streak imaging. We are using ramped pulsed magnetic fields, applied across nanowire samples to both induce magnetic behaviour and detect the electron beam across the detector with respect to time. We are coupling this with a novel pixelated detector on the TEM in the form of a Medipix/Timepix chip capable of microsecond exposure times without adding noise. Running this detector in integral mode and allowing for practical limitations such as experiment time and aperture stability, the resultant streak images were taken in Fresnel, Foucault and low angle diffraction imaging modes. We found that while this method is theoretically viable, the limiting factor was the contrast of the magnetic signal in the streak and therefore the total image counts. Domain walls (DWs) in synthetic antiferromagnetically (SAF) coupled films patterned

  5. Acoustic emission non-destructive testing of structures using source location techniques.

    SciTech Connect

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  6. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow

    PubMed Central

    Sou, In Mei; Layman, Christopher N.; Ray, Chittaranjan

    2013-01-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  7. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow.

    PubMed

    Sou, In Mei; Allen, John S; Layman, Christopher N; Ray, Chittaranjan

    2011-11-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  8. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques

    NASA Astrophysics Data System (ADS)

    Brown, Craig J.; Smith, Stephen J.; Lawton, Peter; Anderson, John T.

    2011-05-01

    This review examines the various strategies and methods used to produce benthic habitat maps using acoustic remote sensing techniques, coupled with in situ sampling. The applications of three acoustic survey techniques are examined in detail: single-beam acoustic ground discrimination systems, sidescan sonar systems, and multi-beam echo sounders. Over the past decade we have witnessed the nascence of the field of benthic habitat mapping and, on the evidence of the literature reviewed in this paper, have seen a rapid evolution in the level of sophistication in our ability to image and thus map seafloor habitats. As acoustic survey tools have become ever more complex, new methods have been tested to segment, classify and combine these data with biological ground truth sample data. Although the specific methods used to derive habitat maps vary considerably, the review indicates that studies can generally be categorized into one of three over-arching strategies; 1) Abiotic surrogate mapping; 2) Assemble first, predict later (unsupervised classification); 3) Predict first, assemble later (supervised classification). Whilst there is still no widely accepted agreement on the best way to produce benthic habitat maps, all three strategies provide valuable map resources to support management objectives. Whilst there is still considerable work to be done before we can answer many of the outstanding technological, methodological, ecological and theoretical questions that have been raised here, the review concludes that the advent of spatial ecological studies founded on high-resolution environmental data sets will undoubtedly help us to examine patterns in community and species distributions. This is a vital first step in unraveling ecological complexities and thus providing improved spatial information for management of marine systems.

  9. Validation and verification of the acoustic emission technique for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Gagar, Daniel Omatsola

    The performance of the Acoustic Emission (AE) technique was investigated to establish its reliability in detecting and locating fatigue crack damage as well as distinguishing between different AE sources in potential SHM applications. Experiments were conducted to monitor the AE signals generated during fatigue crack growth in coupon 2014 T6 aluminium. The influence of stress ratio, stress range, sample geometry and whether or not the load spectrum was of constant or variable amplitude were all investigated. AE signals detected were correlated with values of applied cyclic load throughout the tests. Measurements of time difference of arrival were taken for assessment of errors in location estimates obtained using time of flight algorithms with a 1D location setup. At the onset of crack growth high AE Hit rates were observed for the first few millimetres after which they rapidly declined to minimal values for an extended period of crack growth. Another peak and then decline in AE Hit rates was observed for subsequent crack growth before yet another increase as the sample approached final failure.. AE signals were seen to occur in the lower two-thirds of the maximum load in the first few millimetres of crack growth before occurring at progressively smaller values as the crack length increased. A separate set of AE signals were observed close to the maximum cyclic stress throughout the entire crack growth process. At the failure crack length AE signals were generated across the entire loading range. Novel metrics were developed to statistically characterise variability of AE generation with crack growth and at particular crack lengths across different samples. A novel approach for fatigue crack length estimation was developed based on monitoring applied loads to the sample corresponding with generated AE signals. An acousto-ultrasonic method was used to calibrate the AE wave velocity in a representative wing-box structure which was used to successfully locate the

  10. Surface charge microscopy: novel technique for mapping charge-mosaic surfaces in electrolyte solutions.

    PubMed

    Yin, Xihui; Drelich, Jaroslaw

    2008-08-01

    The effective surface potential, called the zeta potential, is commonly determined from electrophoretic mobility measurements for particles moving in a solution in response to an electric field applied between two electrodes. The situation can be reversed, with the solution being forced to flow through a plug of packed particles, and the streaming potential of the particles can be calculated. A significant limitation of these electrokinetic measurements is that only an average value of the zeta potential/streaming potential is measured--regardless of whether the surface charge distribution is homogeneous or otherwise. However, in real-world situations, nearly all solids (and liquids) of technological significance exhibit surface heterogeneities. To detect heterogeneities in surface charge, analytical tools which provide accurate and spatially resolved information about the material surface potential--particularly at microscopic and submicroscopic resolutions--are needed. In this study, atomic force microscopy (AFM) was used to measure the surface interaction forces between a silicon nitride AFM cantilever and a multiphase volcanic rock. The experiments were conducted in electrolyte solutions with different ionic strengths and pH values. The colloidal force measurements were carried out stepwise across the boundary between adjacent phases. At each location, the force-distance curves were recorded. Surface charge densities were then calculated by fitting the experimental data with a DLVO theoretical model. Significant differences between the surface charge densities of the two phases and gradual transitions in the surface charge density at the interface were observed. It is demonstrated that this novel technique can be applied to examine one- and two-dimensional distributions of the surface potential. PMID:18620435

  11. Surface charge microscopy: novel technique for mapping charge-mosaic surfaces in electrolyte solutions.

    PubMed

    Yin, Xihui; Drelich, Jaroslaw

    2008-08-01

    The effective surface potential, called the zeta potential, is commonly determined from electrophoretic mobility measurements for particles moving in a solution in response to an electric field applied between two electrodes. The situation can be reversed, with the solution being forced to flow through a plug of packed particles, and the streaming potential of the particles can be calculated. A significant limitation of these electrokinetic measurements is that only an average value of the zeta potential/streaming potential is measured--regardless of whether the surface charge distribution is homogeneous or otherwise. However, in real-world situations, nearly all solids (and liquids) of technological significance exhibit surface heterogeneities. To detect heterogeneities in surface charge, analytical tools which provide accurate and spatially resolved information about the material surface potential--particularly at microscopic and submicroscopic resolutions--are needed. In this study, atomic force microscopy (AFM) was used to measure the surface interaction forces between a silicon nitride AFM cantilever and a multiphase volcanic rock. The experiments were conducted in electrolyte solutions with different ionic strengths and pH values. The colloidal force measurements were carried out stepwise across the boundary between adjacent phases. At each location, the force-distance curves were recorded. Surface charge densities were then calculated by fitting the experimental data with a DLVO theoretical model. Significant differences between the surface charge densities of the two phases and gradual transitions in the surface charge density at the interface were observed. It is demonstrated that this novel technique can be applied to examine one- and two-dimensional distributions of the surface potential.

  12. Analysis of residual stress in the resin of metal-resin adhesion structures by scanning acoustic microscopy.

    PubMed

    Ohno, Hiroki; Endo, Kazuhiko; Nagano-Takebe, Futami; Ida, Yusuke; Kakino, Ken; Narita, Toshio

    2013-01-01

    The residual stress caused by polymerization shrinkage and thermal contraction of a heat-curing resin containing 4-META on a metal-resin structure was measured by a scanning acoustic microscope. The tensile residual stress in the resin occurred within 70 µm of the adhesion interface with a flat plate specimen. The maximum tensile stress was about 58 MPa at the interface. On a metal plate specimen with retention holes, ring-like cracks in the resin occurred around the retention holes with the adhesive specimen and many linear cracks occurred in the resin vertical to the longitudinal direction of the metal frame with the non-adhesive specimens. There was tensile residual stress on the resin surface at the center of the retention holes of the adhesion specimen, indicating that the stress in the specimen with surface treatment for adhesion was higher than in that without surface treatment. PMID:24240901

  13. Analysis of residual stress in the resin of metal-resin adhesion structures by scanning acoustic microscopy.

    PubMed

    Ohno, Hiroki; Endo, Kazuhiko; Nagano-Takebe, Futami; Ida, Yusuke; Kakino, Ken; Narita, Toshio

    2013-01-01

    The residual stress caused by polymerization shrinkage and thermal contraction of a heat-curing resin containing 4-META on a metal-resin structure was measured by a scanning acoustic microscope. The tensile residual stress in the resin occurred within 70 µm of the adhesion interface with a flat plate specimen. The maximum tensile stress was about 58 MPa at the interface. On a metal plate specimen with retention holes, ring-like cracks in the resin occurred around the retention holes with the adhesive specimen and many linear cracks occurred in the resin vertical to the longitudinal direction of the metal frame with the non-adhesive specimens. There was tensile residual stress on the resin surface at the center of the retention holes of the adhesion specimen, indicating that the stress in the specimen with surface treatment for adhesion was higher than in that without surface treatment.

  14. Effects of different analysis techniques and recording duty cycles on passive acoustic monitoring of killer whales.

    PubMed

    Riera, Amalis; Ford, John K; Ross Chapman, N

    2013-09-01

    Killer whales in British Columbia are at risk, and little is known about their winter distribution. Passive acoustic monitoring of their year-round habitat is a valuable supplemental method to traditional visual and photographic surveys. However, long-term acoustic studies of odontocetes have some limitations, including the generation of large amounts of data that require highly time-consuming processing. There is a need to develop tools and protocols to maximize the efficiency of such studies. Here, two types of analysis, real-time and long term spectral averages, were compared to assess their performance at detecting killer whale calls in long-term acoustic recordings. In addition, two different duty cycles, 1/3 and 2/3, were tested. Both the use of long term spectral averages and a lower duty cycle resulted in a decrease in call detection and positive pod identification, leading to underestimations of the amount of time the whales were present. The impact of these limitations should be considered in future killer whale acoustic surveys. A compromise between a lower resolution data processing method and a higher duty cycle is suggested for maximum methodological efficiency.

  15. Investigation of hydrogen embrittlement in 4130 steel using acoustic emission techniques

    SciTech Connect

    Susetka, S.L.

    1986-01-01

    Hydrogen embrittlement has long been a problem in certain quenched and tempered steel weldments since it reduces fracture strength and ductility. Although the phenomenon has been studied extensively, controversy still exists over the interaction between hydrogen and the lattice. For this investigation the acoustic emission response from fracture roughness tests on a variety of microstructures of AISI 4130 steel was used to gain insight into the micromechanism of the fracture process. The data indicate the acoustic emission represents the onset of brittle crack extension and, further, that the summation of the square of the acoustic emission amplitude, ..sigma..g/sup 2/, represents the elastic energy released during the fracture process. A comparison of the acoustic emission response from hydrogen charged and uncharged samples reveals that hydrogen increases the elastic energy released for the same crack extension. The 20% increase in the brittle fracture are in hydrogen charged samples is insufficient to explain the two fold increase in ..sigma..g/sup 2/. The data also support the view that hydrogen can act to alter the relationship between the surface energy, ..gamma../sub s/, and the plastic work term, ..gamma../sub p/, as Thomson, McMahon, and Gilman have proposed.

  16. Effects of different analysis techniques and recording duty cycles on passive acoustic monitoring of killer whales.

    PubMed

    Riera, Amalis; Ford, John K; Ross Chapman, N

    2013-09-01

    Killer whales in British Columbia are at risk, and little is known about their winter distribution. Passive acoustic monitoring of their year-round habitat is a valuable supplemental method to traditional visual and photographic surveys. However, long-term acoustic studies of odontocetes have some limitations, including the generation of large amounts of data that require highly time-consuming processing. There is a need to develop tools and protocols to maximize the efficiency of such studies. Here, two types of analysis, real-time and long term spectral averages, were compared to assess their performance at detecting killer whale calls in long-term acoustic recordings. In addition, two different duty cycles, 1/3 and 2/3, were tested. Both the use of long term spectral averages and a lower duty cycle resulted in a decrease in call detection and positive pod identification, leading to underestimations of the amount of time the whales were present. The impact of these limitations should be considered in future killer whale acoustic surveys. A compromise between a lower resolution data processing method and a higher duty cycle is suggested for maximum methodological efficiency. PMID:23968036

  17. ACOUSTIC TECHNIQUES FOR THE MAPPING OF THE DISTRIBUTION OF CONTAMINATED SEDIMENTS

    EPA Science Inventory

    An overview of the last 30 years of analytical research into the acoustic properties of harbor marine sediments has allowed the extension of the original work of Hamilton (1970) into a production system for classifying the density and bulk physical properties of standard marine s...

  18. Underwater Acoustics.

    ERIC Educational Resources Information Center

    Creasey, D. J.

    1981-01-01

    Summarizes the history of underwater acoustics and describes related research studies and teaching activities at the University of Birmingham (England). Also includes research studies on transducer design and mathematical techniques. (SK)

  19. Correlating microscopy techniques and ToF-SIMS analysis of fully grown mammalian oocytes.

    PubMed

    Gulin, Alexander; Nadtochenko, Victor; Astafiev, Artyom; Pogorelova, Valentina; Rtimi, Sami; Pogorelov, Alexander

    2016-06-20

    The 2D-molecular thin film analysis protocol for fully grown mice oocytes is described using an innovative approach. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical microscopy imaging were applied to the same mice oocyte section on the same sample holder. A freeze-dried mice oocyte was infiltrated into embedding media, e.g. Epon, and then was cut with a microtome and 2 μm thick sections were transferred onto an ITO coated conductive glass. Mammalian oocytes can contain "nucleolus-like body" (NLB) units and ToF-SIMS analysis was used to investigate the NLB composition. The ion-spatial distribution in the cell components was identified and compared with the images acquired by SEM, AFM and optical microscopy. This study presents a significant advancement in cell embryology, cell physiology and cancer-cell biochemistry. PMID:27160416

  20. Joining patch-clamp and atomic force microscopy techniques for studying black lipid bilayers

    NASA Astrophysics Data System (ADS)

    Ovalle-García, Erasmo; Ortega-Blake, Iván

    2007-08-01

    An experimental protocol that enables the direct characterization of freestanding lipid bilayers through a combination of atomic force microscopy and single channel recording is presented. The method consists of producing a 15μm diameter pore in a 3μm thick Mylar film that delimits two vessels. The micropore was done by a glass microneedle. >L-α-phosphatidylcholine bilayers were routinely painted on the pore, observed by atomic force microscopy, and tested with gramicidin D ion channels.

  1. Characterization of the host response to the myxosporean parasite, Ceratomyxa shasta (Noble), by histology, scanning electron microscopy, and immunological techniques

    USGS Publications Warehouse

    Bartholomew, J.L.; Smith, C.E.; Rohovec, J.S.; Fryer, J.L.

    1989-01-01

    The tissue response of Salmo gairdneri Richardson, against the myxosporean parasite. Ceratomyxa shasta (Noble), was investigated using histological techniques, scanning electron microscopy and immunological methods. The progress of infection in C. shasta-susceptible and resistant steelhead and rainbow trout was examined by standard histological techniques and by indirect fluorescent antibody methods using monoclonal antibodies directed against C. shasta antigens. Trophozoite stages were first observed in the posterior intestine and there was indication that resistance was due to the inability of the parasite to penetrate this tissue rather than to an inflammatory response. Examination of a severely infected intestine by scanning electron microscopy showed extensive destruction of the mucosal folds of the posterior intestine. Western blotting and indirect fluorescent antibody techniques were used to investigate the immunological component of the host response. No antibodies specific for C. shasta were detected by either method.

  2. An in situ high voltage electron microscopy technique for the study of deformation and fracture: In multilayered materials

    SciTech Connect

    Wall, M.A.; Barbee, T.W. Jr.; Weihs, T.P.

    1995-04-14

    A novel, in situ, high voltage electron microscopy technique for the direct observation of the micromechanisms of tensile deformation and fracture in nanostructured materials is detailed. This technique is particularly well suited for the dynamic observations of deformation and fracture in multilayered materials. The success of this type of in situ technique is highly dependent upon unique specimen preparation procedures and sample design, the importance thereof will be discussed. The initial observations discussed here are expected to aid in the understanding of the mechanical behavior of this new class of atomically engineered materials.

  3. The determination of acoustic reflection coefficients by using cepstral techniques, I: Experimental procedures and measurements of polyurethane foam

    NASA Astrophysics Data System (ADS)

    Bolton, J. S.; Gold, E.

    1986-10-01

    The authors have previously outlined a transient free field technique, based on cepstral analysis, for the measurement of acoustic reflection coefficients. In this paper are described laboratory acoustical measurements of the normal incidence reflection coefficient of an absorbent material: emphasis is placed on practical aspects of the technique. Specifically, the origin of extraction noise, which distorts the reflector impulse response as it appears in the power cepstrum, is discussed and means of reducing it are described and implemented. Secondly, a means of identifying and removing the time delay introduced when the reflector impulse response is copied from the cepstrum is described; this procedure eliminates the need for highly accurate measurements of path length difference. The absorbent material tested was a commercial partially reticulated polyurethane foam. Bonded to one side of the foam was an impermeable polyurethane membrane, and the foam was measured in two configurations: first with its film covered face uppermost, then with its uncovered face uppermost. The broad frequency range of the measurements made possible by the cepstral technique has given a good picture of the properties of this material. These results will be considered in detail in a subsequent publication.

  4. Performance evaluation of an acoustic indoor localization system based on a fingerprinting technique

    NASA Astrophysics Data System (ADS)

    Aloui, Nadia; Raoof, Kosai; Bouallegue, Ammar; Letourneur, Stephane; Zaibi, Sonia

    2014-12-01

    We present an acoustic location system that adopts the time of arrival of the path of maximum amplitude as a signature and estimates the target position through nonparametric kernel regression. The system was evaluated in experiments for two main configurations: a privacy-oriented configuration with code division multiple access operation and a centralized configuration with time division multiple access operation. The effects of the number and positions of sources on the performance of the privacy-oriented system was studied. Moreover, the effect of the number of fingerprint positions on the performance of both systems was investigated. Results showed that our privacy-oriented scheme provides an accuracy of 8.5 cm with 87% precision, whereas our centralized system provides an accuracy of 2.7 cm for 93% of measurements. A comparison between our privacy-oriented system and another acoustic location system based on code division multiple access operation and lateration was conducted on our test bench and revealed that the cumulative error distribution function of the fingerprint-based system is better than that of the lateration-based system. This result is similar to that found for Wi-Fi radio-based localization. However, our experiments are the first to demonstrate the detrimental effect that reverberation has on naive acoustic localization approaches.

  5. Ballistic-Electron-Emission Microscopy Techniques for Nanometer-scale Characterization of Interfaces

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Grunthaner, F. J.; Hecht, M. H.; Manion, S. J.; Milliken, A. M.; Kaiser, W. J.

    1993-01-01

    Semiconductor interface properties are among the most important phenomena in materials science and technology. The study of metal/semiconductor Schottky barrier interfaces has been the primary focus of a large research and development community for decades. Throughout the long history of interface investigation, the study of interface defect electronic properties have been seriously hindered by the fundamental experimental difficulty of probing subsurface structures. A new method, Ballistic-Electron-Emission Microscopy (BEEM), has been developed which not only enables spectroscopic probing of subsurface interface properties, but also, provides nanometer-resolution imaging capabilities. BEEM employs Scanning Tunneling Microscopy (STM) and a unique spatially localized ballistic electron spectroscopy method...

  6. Engaging Students by Emphasising Botanical Concepts over Techniques: Innovative Practical Exercises Using Virtual Microscopy

    ERIC Educational Resources Information Center

    Bonser, Stephen P.; de Permentier, Patrick; Green, Jacinta; Velan, Gary M.; Adam, Paul; Kumar, Rakesh K.

    2013-01-01

    Student interest in botany and enrolment in plant sciences courses tends to be low compared to that in other biological disciplines. One potential way of increasing student interest in botany is to focus on course material designed to raise student enthusiasm and satisfaction. Here, we introduce and evaluate virtual microscopy in botany teaching.…

  7. Dislodgement and removal of dust-particles from a surface by a technique combining acoustic standing wave and airflow.

    PubMed

    Chen, Di; Wu, Junru

    2010-01-01

    It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size.

  8. Localization of quenches and mechanical disturbances in the Mu2e transport solenoid prototype using acoustic emission technique

    DOE PAGES

    Marchevsky, M.; Ambrosio, G.; Lamm, M.; Tartaglia, M. A.; Lopes, M. L.

    2016-02-12

    Acoustic emission (AE) detection is a noninvasive technique allowing the localization of the mechanical events and quenches in superconducting magnets. Application of the AE technique is especially advantageous in situations where magnet integrity can be jeopardized by the use of voltage taps or inductive pickup coils. As the prototype module of the transport solenoid (TS) for the Mu2e experiment at Fermilab represents such a special case, we have developed a dedicated six-channel AE detection system and accompanying software aimed at localizing mechanical events during the coil cold testing. The AE sensors based on transversely polarized piezoceramic washers combined with cryogenicmore » preamplifiers were mounted at the outer surface of the solenoid aluminum shell, with a 60° angular step around the circumference. Acoustic signals were simultaneously acquired at a rate of 500 kS/s, prefiltered and sorted based on their arrival time. Next, based on the arrival timing, angular and axial coordinates of the AE sources within the magnet structure were calculated. Furthermore, we present AE measurement results obtained during cooldown, spot heater firing, and spontaneous quenching of the Mu2e TS module prototype and discuss their relevance for mechanical stability assessment and quench localization.« less

  9. Dislodgement and removal of dust-particles from a surface by a technique combining acoustic standing wave and airflow.

    PubMed

    Chen, Di; Wu, Junru

    2010-01-01

    It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size. PMID:20058949

  10. A novel imaging technique based on the spatial coherence of backscattered waves: demonstration in the presence of acoustical clutter

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Pinton, Gianmarco F.; Lediju, Muyinatu; Trahey, Gregg E.

    2011-03-01

    In the last 20 years, the number of suboptimal and inadequate ultrasound exams has increased. This trend has been linked to the increasing population of overweight and obese individuals. The primary causes of image degradation in these individuals are often attributed to phase aberration and clutter. Phase aberration degrades image quality by distorting the transmitted and received pressure waves, while clutter degrades image quality by introducing incoherent acoustical interference into the received pressure wavefront. Although significant research efforts have pursued the correction of image degradation due to phase aberration, few efforts have characterized or corrected image degradation due to clutter. We have developed a novel imaging technique that is capable of differentiating ultrasonic signals corrupted by acoustical interference. The technique, named short-lag spatial coherence (SLSC) imaging, is based on the spatial coherence of the received ultrasonic wavefront at small spatial distances across the transducer aperture. We demonstrate comparative B-mode and SLSC images using full-wave simulations that include the effects of clutter and show that SLSC imaging generates contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) that are significantly better than B-mode imaging under noise-free conditions. In the presence of noise, SLSC imaging significantly outperforms conventional B-mode imaging in all image quality metrics. We demonstrate the use of SLSC imaging in vivo and compare B-mode and SLSC images of human thyroid and liver.

  11. Program for Continued Development and Use of Ocean Acoustic/GPS Geodetic Techniques

    NASA Technical Reports Server (NTRS)

    Spiess, Fred N.

    1997-01-01

    Under prior NASA grants our group, with collaboration from scientists at the CalTech Jet Propulsion Lab (JPL), visualized and carried out the initial development of a combined GPS and underwater acoustic (GPS/A) method for determining the location of points on the deep sea floor with accuracy relevant to studies of crustal deformation. Under an immediately preceding grant we built, installed and surveyed a set of the necessary seafloor marker precision transponders just seaward of the Cascadia Subduction Zone off British Columbia. The JPL group carried out processing of the GPS data.

  12. Application of pulse compression signal processing techniques to electromagnetic acoustic transducers for noncontact thickness measurements and imaging

    SciTech Connect

    Ho, K.S.; Gan, T.H.; Billson, D.R.; Hutchins, D.A.

    2005-05-15

    A pair of noncontact Electromagnetic Acoustic Transducers (EMATs) has been used for thickness measurements and imaging of metallic plates. This was performed using wide bandwidth EMATs and pulse-compression signal processing techniques, using chirp excitation. This gives a greatly improved signal-to-noise ratio for air-coupled experiments, increasing the speed of data acquisition. A numerical simulation of the technique has confirmed the performance. Experimental results indicate that it is possible to perform noncontact ultrasonic imaging and thickness gauging in a wide range of metal plates. An accuracy of up to 99% has been obtained for aluminum, brass, and copper samples. The resolution of the image obtained using the pulse compression approach was also improved compared to a transient pulse signal from conventional pulser(receiver). It is thus suggested that the combination of EMATs and pulse compression can lead to a wide range of online applications where fast time acquisition is required.

  13. Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    WenQin, Han; Ying, Luo; AiJun, Gu; Yuan, Fuh-Gwo

    2016-04-01

    Discrimination of acoustic emission (AE) signals related to different damage modes is of great importance in carbon fiber-reinforced plastic (CFRP) composite materials. To gain a deeper understanding of the initiation, growth and evolution of the different types of damage, four types of specimens for different lay-ups and orientations and three types of specimens for interlaminar toughness tests are subjected to tensile test along with acoustic emission monitoring. AE signals have been collected and post-processed, the statistical results show that the peak frequency of AE signal can distinguish various damage modes effectively. After a AE signal were decomposed by Empirical Mode Decomposition (EMD) method, it may separate and extract all damage modes included in this AE signal apart from damage mode corresponding to the peak frequency. Hilbert-Huang Transform (HHT) of AE signals can clearly illustrate the frequency distribution of Intrinsic Mode Functions (IMF) components in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition to help understanding the damage process.

  14. Magnetic force microscopy/current contrast imaging: A new technique for internal current probing of ICs

    SciTech Connect

    Campbell, A.N.; Cole, E.I. Jr.; Dodd, B.A.; Anderson, R.E.

    1993-09-01

    This invited paper describes recently reported work on the application of magnetic force microscopy (MFM) to image currents in IC conductors [1]. A computer model for MFM imaging of IC currents and experimental results demonstrating the ability to determine current direction and magnitude with a resolution of {approximately} 1 mA dc and {approximately} 1 {mu}A ac are presented. The physics of MFM signal generation and applications to current imaging and measurement are described.

  15. Simultaneously measuring thickness, density, velocity and attenuation of thin layers using V(z,t) data from time-resolved acoustic microscopy.

    PubMed

    Chen, Jian; Bai, Xiaolong; Yang, Keji; Ju, Bing-Feng

    2015-02-01

    To meet the need of efficient, comprehensive and automatic characterization of the properties of thin layers, a nondestructive method using ultrasonic testing to simultaneously measure thickness, density, sound velocity and attenuation through V(z,t) data, recorded by time-resolved acoustic microscopy is proposed. The theoretical reflection spectrum of the thin layer at normal incidence is established as a function of three dimensionless parameters. The measured reflection spectrum R(θ,ω) is obtained from V(z,t) data and the measured thickness is derived from the signals when the lens is focused on the front and back surface of the thin layer, which are picked up from the V(z,t) data. The density, sound velocity and attenuation are then determined by the measured thickness and inverse algorithm utilizing least squares method to fit the theoretical and measured reflection spectrum at normal incidence. It has the capability of simultaneously measuring thickness, density, sound velocity and attenuation of thin layer in a single V(z,t) acquisition. An example is given for a thin plate immersed in water and the results are satisfactory. The method greatly simplifies the measurement apparatus and procedures, which improves the efficiency and automation for simultaneous measurement of basic mechanical and geometrical properties of thin layers.

  16. Comparing high-resolution microscopy techniques for potential intraoperative use in guiding low-grade glioma resections

    PubMed Central

    Meza, Daphne; Wang, Danni; Wang, Yu “Winston”; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T.C.

    2015-01-01

    Background and Objectives Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced-PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. Materials and Methods Thick unsectioned human LGG tissue samples (n = 7) with ALA-induced-PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). Results HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. Conclusions Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR > 2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to

  17. Modified technique to recover microsporidian spores in sodium acetate-acetic acid-formalin-fixed fecal samples by light microscopy and correlation with transmission electron microscopy.

    PubMed Central

    Carter, P L; MacPherson, D W; McKenzie, R A

    1996-01-01

    Microsporidia are an emerging cause of significant disease, particularly in the immunocompromised host. Until recently, the diagnosis of enteric infections has required invasive sampling, the use of expensive technology, and considerable technological expertise. The purpose of the present study was to examine three modifications to the processing of fecal specimens for light microscopy (LM) examination for microsporidian spores: the use of pretreatment with potassium hydroxide, modified centrifugation conditions, and a modified staining technique. A sodium acetate-acetic acid-formalin-fixed fecal sample containing numerous microsporidian spores confirmed to be positive by transmission electron microscopy (TEM) was used in all studies performed. A simulation of a heavy to lightly infected individual was used. The results of LM were correlated with those of TEM. Duplicate smears were stained with Weber's modified trichrome and Giemsa (GS) stains. The stained slides were randomized and examined blindly by LM at x 625 and x 1,250 magnifications. A portion of the dilutions after centrifugation were fixed for TEM. The Weber modified trichrome stain performance rating was higher than the Giemsa stain rating because of ease of interpretation, and material stained with Weber modified trichrome stain required less examination time at a lower magnification. The number of positive smears and the quantity of spores detected were significantly higher following pretreatment of the sample with KOH. TEM was positive only when numerous spores were present, but the quality of the photomicrographs was superior after pretreatment with KOH. Pretreatment of sodium acetate-acetic acid-formalin-fixed fecal samples with 10% KOH and then a 5-min centrifugation time and staining with Weber modified trichrome stain provide for the excellent recovery of microsporidia in the routine diagnostic parasitology laboratory. PMID:8897162

  18. Acoustic emission descriptors

    NASA Astrophysics Data System (ADS)

    Witos, Franciszek; Malecki, Ignacy

    The authors present selected problems associated with acoustic emission interpreted as a physical phenomenon and as a measurement technique. The authors examine point sources of acoustic emission in isotropic, homogeneous linearly elastic media of different shapes. In the case of an unbounded medium the authors give the analytical form of the stress field and the wave shift field of the acoustic emission. In the case of a medium which is unbounded plate the authors give a form for the equations which is suitable for numerical calculation of the changes over time of selected acoustic emission values. For acoustic emission as a measurement technique, the authors represent the output signal as the resultant of a mechanical input value which describes the source, the transient function of the medium, and the transient function of specific components of the measurement loop. As an effect of this notation, the authors introduce the distinction between an acoustic measurement signal and an acoustic measurement impulse. The authors define the basic parameters of an arbitrary impulse. The authors extensively discuss the signal functions of acoustic emission impulses and acoustic emission signals defined in this article as acoustic emission descriptors (or signal functions of acoustic emission impulses) and advanced acoustic emission descriptors (which are either descriptors associated with acoustic emission applications or the signal functions of acoustic emission signals). The article also contains the results of experimental research on three different problems in which acoustic emission descriptors associated with acoustic emission pulses, acoustic emission applications, and acoustic emission signals are used. These problems are respectively: a problem of the amplitude-load characteristics of acoustic emission pulses in carbon samples subjected to compound uniaxial compression, the use of acoustic emission to predict the durability characteristics of conveyor belts, and

  19. Chromosome interior observation by focused ion beam/scanning electron microscopy (FIB/SEM) using ionic liquid technique.

    PubMed

    Hamano, Tohru; Dwiranti, Astari; Kaneyoshi, Kohei; Fukuda, Shota; Kometani, Reo; Nakao, Masayuki; Takata, Hideaki; Uchiyama, Susumu; Ohmido, Nobuko; Fukui, Kiichi

    2014-10-01

    Attempts to elucidate chromosome structure have long remained elusive. Electron microscopy is useful for chromosome structure research because of its high resolution and magnification. However, biological samples such as chromosomes need to be subjected to various preparation steps, including dehydration, drying, and metal/carbon coating, which may induce shrinkage and artifacts. The ionic liquid technique has recently been developed and it enables sample preparation without dehydration, drying, or coating, providing a sample that is closer to the native condition. Concurrently, focused ion beam/scanning electron microscopy (FIB/SEM) has been developed, allowing the investigation and direct analysis of chromosome interiors. In this study, we investigated chromosome interiors by FIB/SEM using plant and human chromosomes prepared by the ionic liquid technique. As a result, two types of chromosomes, with and without cavities, were visualized, both for barley and human chromosomes prepared by critical point drying. However, chromosome interiors were revealed only as a solid structure, lacking cavities, when prepared by the ionic liquid technique. Our results suggest that the existence and size of cavities depend on the preparation procedures. We conclude that combination of the ionic liquid technique and FIB/SEM is a powerful tool for chromosome study.

  20. Scanning electron microscopy combined with image processing technique: Microstructure and texture analysis of legumes and vegetables for instant meal.

    PubMed

    Pieniazek, Facundo; Messina, Valeria

    2016-04-01

    Development and innovation of new technologies are necessary especially in food quality; due that most instrumental technique for measuring quality properties involves a considerable amount of manual work. Image analysis is a technique that allows to provide objective evaluations from digitalized images that can estimate quality parameters for consumer's acceptance. The aim of the present research was to study the effect of freeze drying on the microstructure and texture of legume and vegetables using scanning electron microscopy at different magnifications' combined with image analysis. Cooked and cooked freeze dried rehydrated legumes and vegetables were analyzed individually by scanning electron microscopy at different magnifications' (250, 500, and 1000×).Texture properties were analyzed by texture analyzer and image analysis. Significant differences (P < 0.05) were obtained for image and instrumental texture parameters. A linear trend with a linear correlation was applied for instrumental and image features. Results showed that image features calculated from Grey level co-occurrence matrix at 1,000× had high correlations with instrumental features. In rice, homogeneity and contrast can be applied to evaluate texture parameters gumminess and adhesiviness; Lentils: contrast, correlation, energy, homogeneity, and entropy for hardness, adhesiviness, gumminess, and chewiness; Potato and carrots: contrast, energy, homogeneity and entropy for adhesiviness, chewiness, hardness, cohesiviness, and resilence. Results revealed that combing scanning electron microscopy with image analysis can be a useful tool to analyze quality parameters in legumes and vegetables. PMID:26789426

  1. Microscopy of Living Terrestrial and Aquatic Microorganisms: A Simple Technique Using Flat Glass Capillaries.

    ERIC Educational Resources Information Center

    Jeffries, Peter

    1982-01-01

    Techniques for examining terrestrial and aquatic microorganisms using flattened glass capillaries are described. Capillaries can be left in natural or artificial environments for appropriate periods of time and removed for direct microscopic examination. Examples of organisms observed using the technique are given and suggestions made for wider…

  2. A low-cost technique to manufacture a container to process meiofauna for scanning electron microscopy.

    PubMed

    Abolafia, J

    2015-09-01

    An easy and low-cost method to elaborate a container to dehydrate nematodes and other meiofauna in order to process them for scanning electron microscopy (SEM) is presented. Illustrations of its elaboration, step by step, are included. In addition, a brief methodology to process meiofauna, especially nematodes and kinorhynchs, and illustrations are provided. With this methodology it is possible to easily introduce the specimens, to lock them in a closed chamber allowing the infiltration of fluids and gases (ethanol, acetone, carbon dioxide) but avoiding losing the specimens. After using this meiofauna basket for SEM the results are efficient. Examples of nematode and kinorhynch SEM pictures obtained using this methodology are also included.

  3. A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy

    PubMed Central

    Karpf, Sebastian; Eibl, Matthias; Wieser, Wolfgang; Klein, Thomas; Huber, Robert

    2015-01-01

    Raman sensing and microscopy are among the most specific optical technologies to identify the chemical compounds of unknown samples, and to enable label-free biomedical imaging. Here we present a method for stimulated Raman scattering spectroscopy and imaging with a time-encoded (TICO) Raman concept. We use continuous wave, rapidly wavelength-swept probe lasers and combine them with a short-duty-cycle actively modulated pump laser. Hence, we achieve high stimulated Raman gain signal levels, while still benefitting from the narrow linewidth and low noise of continuous wave operation. Our all-fibre TICO-Raman setup uses a Fourier domain mode-locked laser source to achieve a unique combination of high speed, broad spectral coverage (750–3,150 cm−1) and high resolution (0.5 cm−1). The Raman information is directly encoded and acquired in time. We demonstrate quantitative chemical analysis of a solvent mixture and hyperspectral Raman microscopy with molecular contrast of plant cells. PMID:25881792

  4. A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy

    NASA Astrophysics Data System (ADS)

    Karpf, Sebastian; Eibl, Matthias; Wieser, Wolfgang; Klein, Thomas; Huber, Robert

    2015-04-01

    Raman sensing and microscopy are among the most specific optical technologies to identify the chemical compounds of unknown samples, and to enable label-free biomedical imaging. Here we present a method for stimulated Raman scattering spectroscopy and imaging with a time-encoded (TICO) Raman concept. We use continuous wave, rapidly wavelength-swept probe lasers and combine them with a short-duty-cycle actively modulated pump laser. Hence, we achieve high stimulated Raman gain signal levels, while still benefitting from the narrow linewidth and low noise of continuous wave operation. Our all-fibre TICO-Raman setup uses a Fourier domain mode-locked laser source to achieve a unique combination of high speed, broad spectral coverage (750-3,150 cm-1) and high resolution (0.5 cm-1). The Raman information is directly encoded and acquired in time. We demonstrate quantitative chemical analysis of a solvent mixture and hyperspectral Raman microscopy with molecular contrast of plant cells.

  5. SYSTEMATIC SCANNING ELECTRON MICROSCOPY TECHNIQUE FOR EVALUATING COMBINED BIOLOIGCAL/GRANULAR ACTIVATED CARBON TREATMENT PROCESSES

    EPA Science Inventory

    A systematic scanning election microscope analytical technique has been developed to examine granular activated carbon used a a medium for biomass attachment in liquid waste treatment. The procedure allows for the objective monitoring, comparing, and trouble shooting of combined ...

  6. Evaluation of damage progression and mechanical behavior under compression of bone cements containing core-shell nanoparticles by using acoustic emission technique.

    PubMed

    Pacheco-Salazar, O F; Wakayama, Shuichi; Sakai, Takenobu; Cauich-Rodríguez, J V; Ríos-Soberanis, C R; Cervantes-Uc, J M

    2015-06-01

    In this work, the effect of the incorporation of core-shell particles on the fracture mechanisms of the acrylic bone cements by using acoustic emission (AE) technique during the quasi-static compression mechanical test was investigated. Core-shell particles were composed of a poly(butyl acrylate) (PBA) rubbery core and a methyl methacrylate/styrene copolymer (P(MMA-co-St)) outer glassy shell. Nanoparticles were prepared with different core-shell ratio (20/80, 30/70, 40/60 and 50/50) and were incorporated into the solid phase of bone cement at several percentages (5, 10 and 15 wt%). It was observed that the particles exhibited a spherical morphology averaging ca. 125 nm in diameter, and the dynamic mechanical analysis (DMA) thermograms revealed the desired structuring pattern of phases associated with core-shell structures. A fracture mechanism was proposed taking into account the detected AE signals and the scanning electron microscopy (SEM) micrographs. In this regard, core-shell nanoparticles can act as both additional nucleation sites for microcracks (and crazes) and to hinder the microcrack propagation acting as a barrier to its growth; this behavior was presented by all formulations. Cement samples containing 15 wt% of core-shell nanoparticles, either 40/60 or 50/50, were fractured at 40% deformation. This fact seems related to the coalescence of microcracks after they surround the agglomerates of core-shell nanoparticles to continue growing up. This work also demonstrated the potential of the AE technique to be used as an accurate and reliable detection tool for quasi-static compression test in acrylic bone cements.

  7. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique.

    PubMed

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G; Alver, Ninel

    2015-08-05

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  8. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    PubMed Central

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  9. An investigation of the solidification of a metal and two n-paraffins using an acoustic technique.

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.; Davila, J. R.

    1971-01-01

    A novel acoustic technique is described for following the motion of the solid-liquid interface during the freezing of mercury, n-hexadecane and n-octadecane where heat transfer is unidirectional. It is shown that the actual amount of solidification occurring in a given time differs from that predicted using a numerical solution to the transient heat conduction problem. The differences are small for mercury but large for the paraffins. They are interpreted in terms of the nature of the solid-liquid interface. Furthermore the experimental and predicted temperature distributions in the liquid and solid phases differ. These differences are extremely small for mercury. The data for the three materials conform to a relationship observed previously according to which the thickness of the solidified layer is a linear function of the square root of time.

  10. A low-cost technique to manufacture a container to process meiofauna for scanning electron microscopy.

    PubMed

    Abolafia, J

    2015-09-01

    An easy and low-cost method to elaborate a container to dehydrate nematodes and other meiofauna in order to process them for scanning electron microscopy (SEM) is presented. Illustrations of its elaboration, step by step, are included. In addition, a brief methodology to process meiofauna, especially nematodes and kinorhynchs, and illustrations are provided. With this methodology it is possible to easily introduce the specimens, to lock them in a closed chamber allowing the infiltration of fluids and gases (ethanol, acetone, carbon dioxide) but avoiding losing the specimens. After using this meiofauna basket for SEM the results are efficient. Examples of nematode and kinorhynch SEM pictures obtained using this methodology are also included. PMID:26178782

  11. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE PAGES

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. In addition, we show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffractionmore » patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.« less

  12. Effects of acids used in the microabrasion technique: Microhardness and confocal microscopy analysis

    PubMed Central

    Pini, Núbia-Inocencya-Pavesi; Ambrosano, Gláucia-Maria-Bovi; da Silva, Wander-José; Aguiar, Flávio-Henrique-Baggio; Lovadino, José-Roberto

    2015-01-01

    Background This study evaluated the effects of the acids used in the microabrasion on enamel. Material and Methods Seventy enamel/dentine blocks (25 mm2) of bovine incisors were divided into 7 groups (n=10). Experimental groups were treated by active/passive application of 35% H3PO4 (E1/E2) or 6.6% HCl (E3/E4). Control groups were treated by microabrasion with H3PO4+pumice (C5), HCl+silica (C6), or no treatment (C7). The superficial (SMH) and cross-sectional (CSMH; depths of 10, 25, 50, and 75 µm) microhardness of enamel were analyzed. Morphology was evaluated by confocal laser-scanning microscopy (CLSM). Data were analyzed by analysis of variance (Proc Mixed), Tukey, and Dunnet tests (α=5%). Results Active application (E1 and E3) resulted in higher microhardness than passive application (E2 and E4), with no difference between acids. For most groups, the CSMH decreased as the depth increased. All experimental groups and negative controls (C5 and C6) showed significantly reduced CSMH values compared to the control. A significantly higher mean CSMH result was obtained with the active application of H3PO4 (E1) compared to HCl (E3). Passive application did not result in CSMH differences between acids. CLSM revealed the conditioning pattern for each group. Conclusions Although the acids displayed an erosive action, use of microabrasive mixture led to less damage to the enamel layers. Key words:Enamel microabrasion, enamel microhardness, confocal laser scanning microscopy. PMID:26535098

  13. Any Way You Slice It-A Comparison of Confocal Microscopy Techniques.

    PubMed

    Jonkman, James; Brown, Claire M

    2015-07-01

    The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research.

  14. Any Way You Slice It—A Comparison of Confocal Microscopy Techniques

    PubMed Central

    Jonkman, James

    2015-01-01

    The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490

  15. Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan Bradley

    The measurement of nanomechanical properties is of great interest to science and industry. Key to progress in this area is the development of new techniques and analysis methods to identify, measure, and quantify these properties. In this dissertation, new data analysis methods and experimental techniques for measuring nanomechanical properties with the atomic force microscope (AFM) are considered. These techniques are then applied to the study of cellulose nanoparticles, an abundant, plant derived nanomaterial. Quantifying uncertainty is a prerequisite for the manufacture of reliable nano-engineered materials and products. However, rigorous uncertainty quantification is rarely applied for material property measurements with the AFM. A framework is presented to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. This method is demonstrated by quantifying uncertainty in force displacement AFM based measurements of the transverse elastic modulus of tunicate cellulose nanocrystals. Next, a more comprehensive study of different types of cellulose nanoparticles is undertaken with contact resonance (CR) AFM. CR-AFM is a dynamic AFM technique that exploits the resonance frequency of the AFM cantilever while it is permanent contact with the sample surface to predict nanomechanical properties. This technique offers improved measurement sensitivity over static AFM methods for some material systems. The effects of cellulose source material and processing technique on the properties of cellulose nanoparticles are compared. Finally, dynamic AFM cantilever vibration shapes are studied. Many AFM modes exploit the dynamic response of a cantilever in permanent contact with a sample to extract local material properties. A common challenge to these modes is that they assume a certain shape of cantilever vibration, which is not accessible in

  16. Acoustic puncture assist device: A novel technique to identify the epidural space

    PubMed Central

    Al-Mokaddam, MA; Al-Harbi, MK; El-Jandali, ST; Al-Zahrani, TA

    2016-01-01

    Background: Acoustic puncture assist device (APAD) is designed to detect and signal the loss of resistance during the epidural procedure. We aimed to evaluate this device in terms of successful identification of the epidural space and the incidence of accidental dural puncture. Patients and Methods: Following Institutional Review Board approval and written informed consent obtained from all patients, 200 adult patients (107 males) American Society of Anesthesiologists I-III who underwent lower limb orthopedic surgery under lumbar epidural anesthesia using APAD were enrolled in the study. APAD system was connected to the epidural needle using normal saline prefilled extension tube. Numbers of successful epidural attempts and accidental dural tap were documented. Results: The mean values of the depth of epidural space and the time to perform epidural puncture were 5.8 ± 1.0 cm and 3.3 ± 1.4 min, respectively. In 63% of patients, epidural puncture was successful from the first attempt and in 1% it was successful from the fourth attempt. Epidural anesthesia by APAD was successful in 198 cases (99 %). Dural tap occurred in 2 cases (1%). Conclusions: Using APAD, the success of identifying the epidural space was high and reliable. PMID:27051369

  17. Development of Methodology to Assess the Failure Behaviour of Bamboo Single Fibre by Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Alam, Md. Saiful; Gulshan, Fahmida; Ahsan, Qumrul; Wevers, Martine; Pfeiffer, Helge; van Vuure, Aart-Willem; Osorio, Lina; Verpoest, Ignaas

    2016-06-01

    Acoustic emission (AE) was used as a tool for detecting, evaluating and for better understanding of the damage mechanism and failure behavior in composites during mechanical loading. Methodology was developed for tensile test of natural fibres (bamboo single fibre). A series of experiments were performed and load drops (one or two) were observed in the load versus time graphs. From the observed AE parameters such as amplitude, energy, duration etc. significant information corresponding to the load drops were found. These AE signals from the load drop occurred from such failure as debonding between two elementary fibre or from join of elementary fibre at edge. The various sources of load at first load drop was not consistent for the different samples (for a particular sample the value is 8 N, stress: 517.51 MPa). Final breaking of fibre corresponded to saturated level AE amplitude of preamplifier (99.9 dB) for all samples. Therefore, it was not possible to determine the exact AE energy value for final breaking. Same methodology was used for tensile test of three single fibres, which gave clear indication of load drop before the final breaking of first and second fibre.

  18. A novel technique for acoustic emission monitoring in civil structures with global fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Verstrynge, E.; Pfeiffer, H.; Wevers, M.

    2014-06-01

    The application of acoustic emission (AE)-based damage detection is gaining interest in the field of civil structural health monitoring. Damage progress can be detected and located in real time and the recorded AEs hold information on the fracture process which produced them. One of the drawbacks for on-site application in large-scale concrete and masonry structures is the relatively high attenuation of the ultrasonic signal, which limits the detection range of the AE sensors. Consequently, a large number of point sensors are required to cover a certain area. To tackle this issue, a global damage detection system, based on AE detection with a polarization-modulated, single mode fiber optic sensor (FOS), has been developed. The sensing principle, data acquisition and analysis in time and frequency domain are presented. During experimental investigations, this AE-FOS is applied for the first time as a global sensor for the detection of crack-induced AEs in a full-scale concrete beam. Damage progress is monitored during a cyclic four-point bending test and the AE activity, detected with the FOS, is related to the subsequent stages of damage progress in the concrete element. The results obtained with the AE-FOS are successfully linked to the mechanical behavior of the concrete beam and a qualitative correspondence is found with AE data obtained by a commercial system.

  19. Acoustic Modifications of the Ames 40x80 Foot Wind Tunnel and Test Techniques for High-Speed Research Model Testing

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Olson, Larry (Technical Monitor)

    1995-01-01

    The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.

  20. Measurement of velocity distribution for longitudinal acoustic waves in welds by a laser optoacoustic technique

    NASA Astrophysics Data System (ADS)

    Ivochkin, A. Yu.; Karabutov, A. A.; Lyamshev, M. L.; Pelivanov, I. M.; Rohatgi, U.; Subudhi, M.

    2007-07-01

    An optoacoustic technique for diagnostics of residual stress in metals is proposed. The theoretical part of the technique employs acoustoelastic relations establishing a linear relationship between the biaxial residual stress and the relative variation of the velocity of longitudinal ultrasonic waves. The experimental technique is based on laser excitation of nanosecond ultrasonic pulses at the surface of samples under investigation and their detection with a high time resolution. Distributions of the relative variation of longitudinal wave velocities due to the presence of residual stress in the samples are obtained.

  1. A multi-step transmission electron microscopy sample preparation technique for cracked, heavily damaged, brittle materials.

    PubMed

    Weiss Brennan, Claire V; Walck, Scott D; Swab, Jeffrey J

    2014-12-01

    A new technique for the preparation of heavily cracked, heavily damaged, brittle materials for examination in a transmission electron microscope (TEM) is described in detail. In this study, cross-sectional TEM samples were prepared from indented silicon carbide (SiC) bulk ceramics, although this technique could also be applied to other brittle and/or multiphase materials. During TEM sample preparation, milling-induced damage must be minimized, since in studying deformation mechanisms, it would be difficult to distinguish deformation-induced cracking from cracking occurring due to the sample preparation. The samples were prepared using a site-specific, two-step ion milling sequence accompanied by epoxy vacuum infiltration into the cracks. This technique allows the heavily cracked, brittle ceramic material to stay intact during sample preparation and also helps preserve the true microstructure of the cracked area underneath the indent. Some preliminary TEM results are given and discussed in regards to deformation studies in ceramic materials. This sample preparation technique could be applied to other cracked and/or heavily damaged materials, including geological materials, archaeological materials, fatigued materials, and corrosion samples.

  2. Clinical investigation of biofilm in non-healing wounds by high resolution microscopy techniques

    PubMed Central

    Hurlow, J.; Blanz, E.; Gaddy, J.A.

    2016-01-01

    Objective The aim of this study was to analyse wound biofilm from a clinical perspective. Research has shown that biofilm is the preferred microbial phenotype in health and disease and is present in a majority of chronic wounds. Biofilm has been linked to chronic wound inflammation, impairment in granulation tissue and epithelial migration, yet there lacks the ability to confirm the clinical presence of biofilm. This study links the clinical setting with microscopic laboratory confirmation of the presence of biofilm in carefully selected wound debridement samples. Method Human wound debridement samples were collected from adult patients with chronic non-healing wounds who presented at the wound care centre. Sample choice was guided by an algorithm that was developed based on what is known about the characteristics of wound biofilm. The samples were then evaluated by light microscopy and scanning electron microscopy for the presence of biofilm. Details about subject history and treatment were recorded. Adherence to biofilm-based wound care (BBWC) strategies was inconsistent. Other standard antimicrobial dressings were used and no modern antiseptic wound dressings with the addition of proven antibiofilm agents were available for use. Results Of the patients recruited, 75% of the macroscopic samples contained biofilm despite the prior use of modern antiseptic wound dressings and in some cases, systemic antibiotics. Wounds found to contain biofilm were not all acutely infected but biofilm was present when infection was noted. The clinical histories associated with positive samples were consistent with ideas presented in the algorithm used to guide sample selection. Conclusion Visual cues can be used by the clinician to guide suspicion of the presence of wound biofilm. This suspicion can be further enhanced with the use of a clinical algorithm. Standard antiseptic wound dressings used in this study demonstrated limited antibiofilm efficacy. This study also highlighted a

  3. Numerical techniques in linear duct acoustics. [finite difference and finite element analyses

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1980-01-01

    Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.

  4. Imaging Techniques for Small Animal Models of Pulmonary Disease: MR Microscopy

    PubMed Central

    Driehuys, Bastiaan; Hedlund, Laurence W.

    2009-01-01

    In vivo magnetic resonance microscopy (MRM) of the small animal lung has become a valuable research tool, especially for preclinical studies. MRM offers a noninvasive and nondestructive tool for imaging small animals longitudinally and at high spatial resolution. We summarize some of the technical and biologic problems and solutions associated with imaging the small animal lung and describe several important pulmonary disease applications. A major advantage of MR is direct imaging of the gas spaces of the lung using breathable gases such as helium and xenon. When polarized, these gases become rich MR signal sources. In animals breathing hyperpolarized helium, the dynamics of gas distribution can be followed and airway constrictions and obstructions can be detected. Diffusion coefficients of helium can be calculated from diffusion-sensitive images, which can reveal micro-structural changes in the lungs associated with pathologies such as emphysema and fibrosis. Unlike helium, xenon in the lung is absorbed by blood and exhibits different frequencies in gas, tissue, or erythrocytes. Thus, with MR imaging, the movement of xenon gas can be tracked through pulmonary compartments to detect defects of gas transfer. MRM has become a valuable tool for studying morphologic and functional changes in small animal models of lung diseases. PMID:17325972

  5. Imaging techniques for small animal models of pulmonary disease: MR microscopy.

    PubMed

    Driehuys, Bastiaan; Hedlund, Laurence W

    2007-01-01

    In vivo magnetic resonance microscopy (MRM) of the small animal lung has become a valuable research tool, especially for preclinical studies. MRM offers a noninvasive and nondestructive tool for imaging small animals longitudinally and at high spatial resolution. We summarize some of the technical and biologic problems and solutions associated with imaging the small animal lung and describe several important pulmonary disease applications. A major advantage of MR is direct imaging of the gas spaces of the lung using breathable gases such as helium and xenon. When polarized, these gases become rich MR signal sources. In animals breathing hyperpolarized helium, the dynamics of gas distribution can be followed and airway constrictions and obstructions can be detected. Diffusion coefficients of helium can be calculated from diffusion-sensitive images, which can reveal micro-structural changes in the lungs associated with pathologies such as emphysema and fibrosis. Unlike helium, xenon in the lung is absorbed by blood and exhibits different frequencies in gas, tissue, or erythrocytes. Thus, with MR imaging, the movement of xenon gas can be tracked through pulmonary compartments to detect defects of gas transfer. MRM has become a valuable tool for studying morphologic and functional changes in small animal models of lung diseases.

  6. Switching Transient Generation in Surface Interrogation Scanning Electrochemical Microscopy and Time-of-Flight Techniques.

    PubMed

    Ahn, Hyun S; Bard, Allen J

    2015-12-15

    In surface interrogation scanning electrochemical microscopy (SI-SECM), fine and accurate control of the delay time between substrate generation and tip interrogation (tdelay) is crucial because tdelay defines the decay time of the reactive intermediate. In previous applications of the SI-SECM, the resolution in the control of tdelay has been limited to several hundreds of milliseconds due to the slow switching of the bipotentiostat. In this work, we have improved the time resolution of tdelay control up to ca. 1 μs, enhancing the SI-SECM to be competitive in the time domain with the decay of many reactive intermediates. The rapid switching SI-SECM has been implemented in a substrate generation-tip collection time-of-flight (SG-TC TOF) experiment of a solution redox mediator, and the results obtained from the experiment exhibited good agreement with that obtained from digital simulation. The reaction rate constant of surface Co(IV) on oxygen-evolving catalyst film, which was inaccessible thus far due to the lack of tdelay control, has been measured by the rapid switching SI-SECM.

  7. Technique for measurement of magnetostriction in an individual nanowire using atomic force microscopy

    SciTech Connect

    Jin Park, Jung Flatau, Alison B.; Estrine, Eliot C.; Madhukar Reddy, Sai; Stadler, Bethanie J. H.

    2014-05-07

    We have investigated a method for measuring the dimensions of an individual multilayered Fe-Ga/Cu nanowire (NW) as it changes with induced magnetization. In this study, we demonstrate the proposed approach and establish this as a viable method for measuring the magnetostrictive behavior of an individual Fe-Ga/Cu NW using atomic force microscopy (AFM). When an external magnetic field (∼300 Oe) was applied perpendicular to the NW axis, the NW length appeared minimized. When a field (∼1000 Oe) was applied parallel to the NW axis, the height profile of the NW was found to be higher than in the case with no parallel external field. Since both ends of the NW were welded to the substrate, the magnetic field induced dimensional change of the NW caused deflection of the NW in the upward direction, which was significant enough to be detected by AFM. An average height difference of 15 nm was measured with and without an applied field which was then used to calculate the magnetostriction of the multilayered NW.

  8. Molecularly Imprinted Polymer Integrated with a Surface Acoustic Wave Technique for Detection of Sulfamethizole.

    PubMed

    Ayankojo, Akinrinade George; Tretjakov, Aleksei; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres; Rappich, Jörg; Furchner, Andreas; Hinrichs, Karsten; Syritski, Vitali

    2016-01-19

    The synergistic effect of combining molecular imprinting and surface acoustic wave (SAW) technologies for the selective and label-free detection of sulfamethizole as a model antibiotic in aqueous environment was demonstrated. A molecularly imprinted polymer (MIP) for sulfamethizole (SMZ) selective recognition was prepared in the form of a homogeneous thin film on the sensing surfaces of SAW chip by oxidative electropolymerization of m-phenylenediamine (mPD) in the presence of SMZ, acting as a template. Special attention was paid to the rational selection of the functional monomer using computational and spectroscopic approaches. SMZ template incorporation and its subsequent release from the polymer was supported by IR microscopic measurements. Precise control of the thicknesses of the SMZ-MIP and respective nonimprinted reference films (NIP) was achieved by correlating the electrical charge dosage during electrodeposition with spectroscopic ellipsometry measurements in order to ensure accurate interpretation of label-free responses originating from the MIP modified sensor. The fabricated SMZ-MIP films were characterized in terms of their binding affinity and selectivity toward the target by analyzing the binding kinetics recorded using the SAW system. The SMZ-MIPs had SMZ binding capacity approximately more than eight times higher than the respective NIP and were able to discriminate among structurally similar molecules, i.e., sulfanilamide and sulfadimethoxine. The presented approach for the facile integration of a sulfonamide antibiotic-sensing layer with SAW technology allowed observing the real-time binding events of the target molecule at nanomolar concentration levels and could be potentially suitable for cost-effective fabrication of a multianalyte chemosensor for analysis of hazardous pollutants in an aqueous environment. PMID:26704414

  9. Molecularly Imprinted Polymer Integrated with a Surface Acoustic Wave Technique for Detection of Sulfamethizole.

    PubMed

    Ayankojo, Akinrinade George; Tretjakov, Aleksei; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres; Rappich, Jörg; Furchner, Andreas; Hinrichs, Karsten; Syritski, Vitali

    2016-01-19

    The synergistic effect of combining molecular imprinting and surface acoustic wave (SAW) technologies for the selective and label-free detection of sulfamethizole as a model antibiotic in aqueous environment was demonstrated. A molecularly imprinted polymer (MIP) for sulfamethizole (SMZ) selective recognition was prepared in the form of a homogeneous thin film on the sensing surfaces of SAW chip by oxidative electropolymerization of m-phenylenediamine (mPD) in the presence of SMZ, acting as a template. Special attention was paid to the rational selection of the functional monomer using computational and spectroscopic approaches. SMZ template incorporation and its subsequent release from the polymer was supported by IR microscopic measurements. Precise control of the thicknesses of the SMZ-MIP and respective nonimprinted reference films (NIP) was achieved by correlating the electrical charge dosage during electrodeposition with spectroscopic ellipsometry measurements in order to ensure accurate interpretation of label-free responses originating from the MIP modified sensor. The fabricated SMZ-MIP films were characterized in terms of their binding affinity and selectivity toward the target by analyzing the binding kinetics recorded using the SAW system. The SMZ-MIPs had SMZ binding capacity approximately more than eight times higher than the respective NIP and were able to discriminate among structurally similar molecules, i.e., sulfanilamide and sulfadimethoxine. The presented approach for the facile integration of a sulfonamide antibiotic-sensing layer with SAW technology allowed observing the real-time binding events of the target molecule at nanomolar concentration levels and could be potentially suitable for cost-effective fabrication of a multianalyte chemosensor for analysis of hazardous pollutants in an aqueous environment.

  10. Analytical Microscopy

    SciTech Connect

    Not Available

    2006-06-01

    In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.

  11. Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques.

    PubMed

    Plascencia-Villa, Germán; Starr, Clarise R; Armstrong, Linda S; Ponce, Arturo; José-Yacamán, Miguel

    2012-11-01

    Use of engineered metal oxide nanoparticles in a plethora of biological applications and custom products has warned about some possible dose-dependent cytotoxic effects. Macrophages are key components of the innate immune system used to study possible toxic effects and internalization of different nanoparticulate materials. In this work, ultra-high resolution field emission scanning electron microscopy (FE-SEM) was used to offer new insights into the dynamical processes of interaction of nanomaterials with macrophage cells dosed with different concentrations of metal oxide nanoparticles (CeO(2), TiO(2) and ZnO). The versatility of FE-SEM has allowed obtaining a detailed characterization of processes of adsorption and endocytosis of nanoparticles, by using advanced analytical and imaging techniques on complete unstained uncoated cells, including secondary electron imaging, high-sensitive backscattered electron imaging, X-ray microanalysis and stereoimaging. Low voltage BF/DF-STEM confirmed nanoparticle adsorption and internalization into endosomes of CeO(2) and TiO(2), whereas ZnO develop apoptosis after 24 h of interaction caused by dissolution and invasion of cell nucleus. Ultra-high resolution scanning electron microscopy techniques provided new insights into interactions of inorganic nanoparticles with macrophage cells with high spatial resolution.

  12. A Comparison of Image Quality Evaluation Techniques for Transmission X-Ray Microscopy

    SciTech Connect

    Bolgert, Peter J; /Marquette U. /SLAC

    2012-08-31

    Beamline 6-2c at Stanford Synchrotron Radiation Lightsource (SSRL) is capable of Transmission X-ray Microscopy (TXM) at 30 nm resolution. Raw images from the microscope must undergo extensive image processing before publication. Since typical data sets normally contain thousands of images, it is necessary to automate the image processing workflow as much as possible, particularly for the aligning and averaging of similar images. Currently we align images using the 'phase correlation' algorithm, which calculates the relative offset of two images by multiplying them in the frequency domain. For images containing high frequency noise, this algorithm will align noise with noise, resulting in a blurry average. To remedy this we multiply the images by a Gaussian function in the frequency domain, so that the algorithm ignores the high frequency noise while properly aligning the features of interest (FOI). The shape of the Gaussian is manually tuned by the user until the resulting average image is sharpest. To automatically optimize this process, it is necessary for the computer to evaluate the quality of the average image by quantifying its sharpness. In our research we explored two image sharpness metrics, the variance method and the frequency threshold method. The variance method uses the variance of the image as an indicator of sharpness while the frequency threshold method sums up the power in a specific frequency band. These metrics were tested on a variety of test images, containing both real and artificial noise. To apply these sharpness metrics, we designed and built a MATLAB graphical user interface (GUI) called 'Blur Master.' We found that it is possible for blurry images to have a large variance if they contain high amounts of noise. On the other hand, we found the frequency method to be quite reliable, although it is necessary to manually choose suitable limits for the frequency band. Further research must be performed to design an algorithm which

  13. Color Kinesis: New Technique or Just Another Display of Acoustic Quantification?

    PubMed

    Mor-Avi, Victor; Godoy, Ivan E.; Lang, Roberto M.

    1999-01-01

    Color kinesis is a relatively new echocardiographic technique that allows color encoding of endocardial motion in real time. We briefly review the literature on the current clinical uses and limitations of this technique, as well as its potential future applications based on some of our results. The major advantage of this modality is that it provides the basis for objective and automated evaluation of regional systolic and diastolic function, which may have a direct impact on the diagnosis of various myocardial disease states and, in particular, coronary artery disease.

  14. Damage Characterization of Glass/Epoxy Composite Under Three-Point Bending Test Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Pashmforoush, Farzad; Fotouhi, Mohamad; Ahmadi, Mehdi

    2012-07-01

    Acoustic emission (AE) technique is an efficient non-destructive method for detection and identification of various damage mechanisms in composite materials. Discrimination of AE signals related to different damage modes is of great importance in the use of this technique. For this purpose, integration of k-means algorithm and genetic algorithm (GA) was used in this study to cluster AE events of glass/epoxy composite during three-point bending test. Performing clustering analysis, three clusters with separate frequency ranges were obtained, each one representing a distinct damage mechanism. Furthermore, time-frequency analysis of AE signals was performed based on wavelet packet transform (WPT). In order to find the dominant components associated with different damage mechanisms, the energy distribution criterion was used. The frequency ranges of the dominant components were then compared with k-means genetic algorithm (KGA) outputs. Finally, SEM observation was utilized to validate the results. The obtained results indicate good performance of the proposed methods in the damage characterization of composite materials.

  15. Visualization and characterization of the acoustic radiation force assisted displacement of particles using an OCT technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Razani, Marjan; Zam, Azhar; Arezza, Nico J. J.; Wang, Yan J.; Kolios, Michael C.

    2016-03-01

    In this study, we present a technique to image the enhanced particle displacement generated using an acoustic radiation force (ARF) excitation source. A swept-source OCT (SS-OCT) system with a center wavelength of 1310nm, a bandwidth of ~100nm, and an A-scan rate of 100 kHz (MEMS-VCSEL OCT Thorlabs) was used to detect gold nanoparticle (70nm in diameter) displacement .ARF was applied after the nanoparticles passed through a porous membrane and diffused into a collagen (6% collagen) matrix. B-mode, M-B mode, 3D and Speckle Variance (SV) images were acquired before and after the ARF beam was on. Differential OCT speckle variance images with and without the ARF were used to measure the particle displacement. The images were used to detect the microscopic enhancement of nanoparticle displacement generated by the ARF. Using this OCT imaging technique, the extravasation of particles though a porous membrane and characterization of the enhanced particle displacement in a collagen gel after using an ARF excitation was achieved.

  16. Effect of the insertion and polymerization technique in composite resin restorations: analysis of marginal gap by atomic force microscopy.

    PubMed

    da Silva, Marcos Aurélio Bomfim; de Oliveira, Guilherme José Pimentel Lopes; Tonholo, Josealdo; Júnior, José Ginaldo da Silva; Santos, Lucineide de Melo; Dos Reis, José Ivo Limeira

    2010-12-01

    This in vitro study evaluated the marginal gap at the composite tooth/resin interface in class V cavities under the influence of two insertion techniques and a curing system by means of atomic force microscopy (AFM). Forty enamel and dentin cavities were prepared on the buccal surface in bovine teeth with quadratic forms measuring 2 mm × 2 mm and depth of 1.5 mm. The teeth were then divided into four groups: group A, 10 cavities were restored in one increment, light cured by halogen light; group B, 10 cavities filled with bulk filling, light cured by the light emitting diodes (LED); group C, 10 cavities were restored by the incremental technique, light cured by halogen light; group D, 10 cavities were restored by the incremental technique, light cured by the LED. The teeth underwent the polishing procedure and were analyzed by AFM for tooth/restoration interface evaluation. The data were compared between groups using the nonparametric Kruskall-Wallis and Mann-Whitney tests (p < 0.05). The results showed a statistically significant difference between groups A and B and groups A and C. It was concluded that no insertion and polymerization technique was able to completely seal the cavity.

  17. A Fast and Efficient Technique for the Automatic Tracing of Corneal Nerves in Confocal Microscopy

    PubMed Central

    Guimarães, Pedro; Wigdahl, Jeffrey; Ruggeri, Alfredo

    2016-01-01

    Purpose We describe a novel fully automatic method capable of tracing the subbasal plexus nerves from human corneal confocal images. Methods Following an increasing interest in the automatic analysis of corneal nerves, a few approaches have been proposed. These, however, cannot cope with large images, such as mosaics, in due time. The rationale of the proposed method is to minimize required computing time while still providing accurate results. Our method consists of two sequential steps – a thresholding step followed by a supervised classification. For the classification we use a support vector machines (SVM) approach. Initially, a large set of features is computed, which is later reduced using a backward-elimination based on segmentation accuracy. To validate the obtained tracings, we evaluated the tracing accuracy and reliability of extracted clinical parameters (corneal nerves density and tortuosity). Results The proposed algorithm proved capable to correctly trace 0.89 ± 0.07 of the corneal nerves. The obtained performance level was comparable to a second human grader. Furthermore, the proposed approach compares favorably to other methods. For both evaluated clinical parameters the proposed approach performed well. An execution time of 0.61 ± 0.07 seconds per image was achieved. The proposed algorithm was applied successfully to mosaic images, with run times of the order of tens of seconds. Conclusions The achieved quality and processing time of the proposed method appear adequate for the application of this technique to clinical practice. Translational Relevance The automatic tracing of corneal nerves is an important step for the quantitative analysis of corneal nerves in daily clinical practice. The proposed fast technique allows features, such as corneal nerve density and tortuosity, to be computed in a few seconds. The application of nerve tracing to mosaics covering a large area can be a key component in clinical studies aimed at investigating

  18. Novel techniques with multiphoton microscopy: Deep-brain imaging with microprisms, neurometabolism of epilepsy, and counterfeit paper money detection

    NASA Astrophysics Data System (ADS)

    Chia, Thomas H.

    Multiphoton microscopy is a laser-scanning fluorescence imaging method with extraordinary potential. We describe three innovative multiphoton microscopy techniques across various disciplines. Traditional in vivo fluorescence microscopy of the mammalian brain has a limited penetration depth (<400 microm). We present a method of imaging 1 mm deep into mouse neocortex by using a glass microprism to relay the excitation and emission light. This technique enables simultaneous imaging of multiple cortical layers, including layer V, at an angle typical of slice preparations. At high-magnification imaging using an objective with 1-mm of coverglass correction, resolution was sufficient to resolve dendritic spines on layer V GFP neurons. Functional imaging of blood flow at various neocortical depths is also presented, allowing for quantification of red blood cell flux and velocity. Multiphoton fluorescence lifetime imaging (FLIM) of NADH reveals information on neurometabolism. NADH, an intrinsic fluorescent molecule and ubiquitous metabolic coenzyme, has a lifetime dependent on enzymatic binding. A novel NADH FLIM algorithm is presented that produces images showing spatially distinct NADH fluorescence lifetimes in mammalian brain slices. This program provides advantages over traditional FLIM processing of multi-component lifetime data. We applied this technique to a GFP-GFAP pilocarpine mouse model of temporal lobe epilepsy. Results indicated significant changes in the neurometabolism of astrocytes and neuropil in the cell and dendritic layers of the hippocampus when compared to control tissue. Data obtained with NADH FLIM were subsequently interpreted based on the abnormal activity reported in epileptic tissue. Genuine U.S. Federal Reserve Notes have a consistent, two-component intrinsic fluorescence lifetime. This allows for detection of counterfeit paper money because of its significant differences in fluorescence lifetime when compared to genuine paper money. We used

  19. Magnetic and Structural characterization of Co nanowires using advanced electron microscopy techniques

    NASA Astrophysics Data System (ADS)

    Cantu-Valle, Jesus; Ruiz-Zepeda, Francisco; Sanchez, John Eder; Mendoza-Santoyo, Fernando; Ponnce, Arturo; UTSA Team

    2015-03-01

    We report the magnetic imaging and crystalline structure of high aspect ratio cobalt nanowires. Experimental results of magnetization reversal in cobalt nanowires are presented to illustrate the functionality of the in situ magnetization process through the manipulation of the objective lens. By making use of this applicability, we measure the magnetization and show experimental evidence of the magnetic flux distribution in polycrystalline cobalt nanowires using off-axis electron holography. The retrieved phase map can distinguishes the magnetic contribution from the crystalline contribution with high accuracy. To determine the size and orientation of the grains within the Co nanowires, PED-assisted orientation mapping was performed. Finally, the magnetic analysis performed at individual nanowires was correlated with the crystalline orientation map, obtained by PED-assisted crystal phase orientation mapping. The large shape anisotropy determines the mayor magnetization direction rather than the magneto-crystalline anisotropy in the studied nanowires. The combination of the two techniques allowed us to directly visualize the effects of the crystallographic texture on the magnetization of the nanowire. The authors would like to acknowledge Dr. B.J.H. Stadler for providing the samples and financial support from NSF PREM #DMR 0934218, CONACYT, #215762 and Department of Defense #64756-RT-REP.

  20. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    NASA Astrophysics Data System (ADS)

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  1. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    SciTech Connect

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie; Santos-Villalobos, Hector J

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  2. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    SciTech Connect

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie; Santos-Villalobos, Hector J

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  3. Finite-difference time-domain-based optical microscopy simulation of dispersive media facilitates the development of optical imaging techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Capoglu, Ilker; Li, Yue; Cherkezyan, Lusik; Chandler, John; Spicer, Graham; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-06-01

    Combining finite-difference time-domain (FDTD) methods and modeling of optical microscopy modalities, we previously developed an open-source software package called Angora, which is essentially a "microscope in a computer." However, the samples being simulated were limited to nondispersive media. Since media dispersions are common in biological samples (such as cells with staining and metallic biomarkers), we have further developed a module in Angora to simulate samples having complicated dispersion properties, thereby allowing the synthesis of microscope images of most biological samples. We first describe a method to integrate media dispersion into FDTD, and we validate the corresponding Angora dispersion module by applying Mie theory, as well as by experimentally imaging gold microspheres. Then, we demonstrate how Angora can facilitate the development of optical imaging techniques with a case study.

  4. Acoustic emission signal processing technique to characterize reactor in-pile phenomena

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.; Smith, James A.

    2015-03-31

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  5. Acoustic Emission Signal Processing Technique to Characterize Reactor In-Pile Phenomena

    SciTech Connect

    Vivek Agarwal; Magdy Samy Tawfik; James A Smith

    2014-07-01

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In this paper, empirical mode decomposition technique is proposed to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal corresponds to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  6. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques

    PubMed Central

    Ludvigsson, Linus; Isaxon, Christina; Nilsson, Patrik T.; Tinnerberg, Hakan; Messing, Maria E.; Rissler, Jenny; Skaug, Vidar; Gudmundsson, Anders; Bohgard, Mats; Hedmer, Maria; Pagels, Joakim

    2016-01-01

    Introduction: An increased production and use of carbon nanotubes (CNTs) is occurring worldwide. In parallel, a growing concern is emerging on the adverse effects the unintentional inhalation of CNTs can have on humans. There is currently a debate regarding which exposure metrics and measurement strategies are the most relevant to investigate workplace exposures to CNTs. This study investigated workplace CNT emissions using a combination of time-integrated filter sampling for scanning electron microscopy (SEM) and direct reading aerosol instruments (DRIs). Material and Methods: Field measurements were performed during small-scale manufacturing of multiwalled carbon nanotubes using the arc discharge technique. Measurements with highly time- and size-resolved DRI techniques were carried out both in the emission and background (far-field) zones. Novel classifications and counting criteria were set up for the SEM method. Three classes of CNT-containing particles were defined: type 1: particles with aspect ratio length:width >3:1 (fibrous particles); type 2: particles without fibre characteristics but with high CNT content; and type 3: particles with visible embedded CNTs. Results: Offline sampling using SEM showed emissions of CNT-containing particles in 5 out of 11 work tasks. The particles were classified into the three classes, of which type 1, fibrous CNT particles contributed 37%. The concentration of all CNT-containing particles and the occurrence of the particle classes varied strongly between work tasks. Based on the emission measurements, it was assessed that more than 85% of the exposure originated from open handling of CNT powder during the Sieving, mechanical work-up, and packaging work task. The DRI measurements provided complementary information, which combined with SEM provided information on: (i) the background adjusted emission concentration from each work task in different particle size ranges, (ii) identification of the key procedures in each work

  7. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  8. A study of aluminum-lithium alloy solidification using acoustic emission techniques. Ph.D. Thesis, 1991

    NASA Technical Reports Server (NTRS)

    Henkel, Daniel P.

    1992-01-01

    Physical phenomena associated with the solidification of an aluminum lithium alloy was characterized using acoustic emission (AE) techniques. It is shown that repeatable patterns of AE activity may be correlated to microstructural changes that occur during solidification. The influence of the experimental system on generated signals was examined in the time and frequency domains. The analysis was used to show how an AE signal from solidifying aluminum is changed by each component in the detection system to produce a complex waveform. Conventional AE analysis has shown that a period of high AE activity occurs in pure aluminum, an Al-Cu alloy, and the Al-Li alloy, as the last fraction of solid forms. A model attributes this to the internal stresses of grain boundary formation. An additional period of activity occurs as the last fraction of solid forms, but only in the two alloys. A model attributes this to the formation of interdendritic porosity which was not present in the pure aluminum. The AE waveforms were dominated by resonant effects of the waveguide and the transducer.

  9. Scatterer size and concentration estimation technique based on a 3D acoustic impedance map from histologic sections

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2001-05-01

    Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.

  10. Signal processing techniques for acoustic measurement of sperm whale body lengths.

    PubMed

    Goold, J C

    1996-11-01

    Waveform cross correlation and cepstrum analysis were used to demonstrate possible techniques to measure pulse intervals within sperm whale sonar clicks. The structure of sperm whale clicks takes the form of a series of decaying broadband pulses separated by a time interval that is a function of sound velocity in spermaceti oil and the length of the spermaceti sac within the whales' head. Click signals were bandpass filtered and waveform cross correlation used on the filtered signals to obtain maxima in the correlation function. Such maxima occur when successive pulses within the filtered click waveforms align after time shifting of the replica waveform by integer multiples of the interpulse interval. As an alternative approach, cepstrum analysis was used on the spectra of individual clicks, which were found to contain ripples with periods corresponding to the reciprocal of the interpulse interval. Variable signal quality lead to the conclusion that neither method was reliable for spot measurements of IPIs from individual clicks. However, calculating IPIs by either method for several hundred clicks in 6-min sequences, and smoothing the results with moving averages, allowed realistic mean values to be obtained and interpulse interval trends to be observed with dive time. Interpulse intervals were generally found to decrease with dive time, in accordance with known sound velocity characteristics of spermaceti oil under increasing pressure. Mean values of interpulse intervals obtained by cepstrum analysis for each click sequence were used to estimate body lengths of the respective animals.

  11. Surface acoustic wave-assisted scanning probe microscopy—a summary

    NASA Astrophysics Data System (ADS)

    Hesjedal, Thorsten

    2010-01-01

    Elastic properties of nanoscopic materials, structures and thin films are important parameters controlling their growth, as well as their optical and electronic properties. Acoustic microscopy is a well-established method for elastic imaging. In order to overcome its micrometer-scale diffraction-limited lateral resolution, scanning probe microscopy-based acoustic near-field techniques have been developed. Among the acoustic modes used for microscopy, surface acoustic waves (SAWs) are especially suited for probing very small and thin objects due to their localization in the vicinity of the surface. Moreover, the study of SAWs is crucial for the design of frequency filter devices as well as for fundamental physical studies, for instance, the probing of composite fermions in two-dimensional electron systems. This review discusses the capabilities and limitations of SAW-based scanning probe microscopy techniques. Particular emphasis is laid on the review of surface acoustic waves and their interaction with elastic inhomogeneities. Scattering, diffraction and wave localization phenomena will be discussed in detail. Finally, the possibilities for quantitative acoustic microscopy of objects on the nanoscale, as well as practical applications, are presented.

  12. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  13. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  14. A highly sensitive, direct and label-free technique for Hg2+ detection using Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Park, Chanho; Jang, Kuewhan; Lee, Sangmyung; You, Juneseok; Lee, Soyoung; Ha, Hyunsoo; Yun, Kyungtak; Kim, Junseop; Lee, Howon; Park, Jinsung; Na, Sungsoo

    2015-07-01

    For several decades, various nanomaterials have been used in a wide range of industrial fields, research areas, and commercial products. Among many nanomaterials, nano-sized mercury materials are one of the most widely used nanomaterials in real life. However, due to the high toxicity of Hg2+, it is imperative to develop an effective and practical detection method for Hg2+ to protect human health and environment. In this study, a highly sensitive, label-free method of detecting Hg2+ that requires only a single drop of solution was developed. The detection mechanism is based on the different surface potential arising from Hg2+ binding to mismatched thymine-thymine sequences, creating a very stable base pair. The surface potential is measured with Kelvin probe force microscopy (KPFM) to a molecular resolution. The developed method is capable of detecting 2 fmol of Hg2+, which is 500 times more sensitive than previously reported techniques. Moreover, our method can selectively detect Hg2+ and can also be applied to tap water and river water. This KPFM-based Hg2+ detection method can be used as an early detection technique for practical applications.

  15. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable

  16. Combination of Different In Situ Characterization Techniques and Scanning Electron Microscopy Investigations for a Comprehensive Description of the Tensile Deformation Behavior of a CrMnNi TRIP/TWIP Steel

    NASA Astrophysics Data System (ADS)

    Weidner, Anja; Biermann, Horst

    2015-08-01

    The class of low-carbon, high-alloy CrMnNi steels exhibits outstanding mechanical properties with respect to high strength and ductility due to either transformation-induced plasticity (TRIP) or twinning-induced plasticity (TWIP) effect depending on chemical composition and deformation temperature. However, the ongoing deformation mechanisms like the formation of stacking faults, martensitic phase transformation or deformation-induced twinning are overlapping and the kinetics of the microstructure evolution are quite complex. Therefore, in addition to macroscopic deformation tests and microstructural investigations by scanning electron microscopy, a combination of several in situ characterization techniques with either high lateral and/or temporal resolution as well as providing integral volume information were chosen in order to give a thoroughly and comprehensive description of the deformation behavior of CrMnNi TRIP/TWIP steels. In addition, the complementary in situ techniques like in situ nanoindentation, micro-digital image correlation, and acoustic emission measurements provide excellent possibility for description of materials behavior on a multiscale level from the submicrometer scale up to the macroscopic range. The results obtained by the complementary techniques can support the future modeling of the deformation behavior of TRIP/TWIP steels dependent on chemical composition, temperature, grain size and grain orientation.

  17. Characterization techniques for nano-electronics, with emphasis to electron microscopy. The role of the European Project ANNA

    NASA Astrophysics Data System (ADS)

    Armigliato, A.

    2008-07-01

    In the present and future CMOS technology, due to the ever shrinking geometries of the electronic devices, the availability of techniques capable of performing quantitative analyses of the relevant parameters (structural, chemical, mechanical) at a nanoscale is of a paramount importance. The influence of these features on the electrical performances of the nanodevices is a key issue for the nanoelectronics industry. In the recent years, a significant progress has been made in this field by a number of techniques, such as X-ray diffraction, in particular with the advent of synchrotron sources, ion-microbeam based Rutherford backscattering and channeling spectrometry, and micro Raman spectrometry. In addition, secondary ion mass spectrometry (SIMS) has achieved an important role in the determination of the dopant depth profile in ultra-shallow junctions (USJs) in silicon. However, the technique which features the ultimate spatial resolution (at the nanometer scale) is scanning transmission electron microscopy (STEM). In this presentation it will be reported on the nanoanalysis by STEM of two very important physical quantities which need to be controlled in the fabrication processes of nanodevices: the dopant profile in the USJs and the lattice strain that is generated in the Si electrically active regions of isolation structures by the different technological steps. The former quantity is investigated by the so-called Z-contrast high-angle annular dark field (HAADF-STEM) method, whereas the mechanical strain can be two-dimensionally mapped by the convergent beam electron diffraction (CBED-STEM) method. A spatial resolution lower than one nanometer and of a few nanometers can be achieved in the two cases, respectively. To keep the pace with the scientific and technological progress an increasingly wide array of analytical techniques is necessary; their complementary role in the solution of present and future characterization problems must be exploited. Presently

  18. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-08-01

    Primary biological aerosol particles (PBAPs) can contribute significantly to the coarse particle burden in many environments. PBAPs can thus influence climate and precipitation systems as cloud nuclei and can spread disease to humans, animals, and plants. Measurement data and techniques for PBAPs in natural environments at high time- and size resolution are, however, sparse, and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in southwestern Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of a waveband integrated bioaerosol sensor (WIBS-4) with a ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behavior, with increased fluorescent bioparticle concentrations at night, when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each was correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multimodal distributions turning into a broad featureless single mode after averaging, and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent

  19. Fat graft-assisted internal auditory canal closure after retrosigmoid transmeatal resection of acoustic neuroma: Technique for prevention of cerebrospinal fluid leakage.

    PubMed

    Azad, Tareq; Mendelson, Zachary S; Wong, Anni; Jyung, Robert W; Liu, James K

    2016-02-01

    The retrosigmoid transmeatal approach remains an important strategy in the surgical management of acoustic neuromas. Gross total resection of acoustic neuromas requires removal of tumor within the cerebellopontine angle as well as tumor involving the internal auditory canal (IAC). Drilling into the petrous bone of the IAC can expose petrous air cells, which can potentially result in a fistulous tract to the nasopharynx manifesting as cerebrospinal fluid (CSF) rhinorrhea. We describe our method of IAC closure using autologous fat graft and assessed the rates of postoperative CSF leakage. We performed a retrospective study of 24 consecutive patients who underwent retrosigmoid transmeatal resection of acoustic neuroma who underwent our method of fat graft-assisted IAC closure. We assessed rates of postoperative CSF leak (incisional leak, rhinorrhea, or otorrhea), pseudomeningocele formation, and occurrence of meningitis. Twenty-four patients (10 males, 14 females) with a mean age of 47 years (range 18-84) underwent fat graft-assisted IAC closure. No lumbar drains were used postoperatively. There were no instances of postoperative CSF leak (incisional leak, rhinorrhea, or otorrhea), pseudomeningocele formation, or occurrence of meningitis. There were no graft site complications. Our results demonstrate that autologous fat grafts provide a safe and effective method of IAC defect closure to prevent postoperative CSF leakage after acoustic tumor removal via a retrosigmoid transmeatal approach. The surgical technique and operative nuances are described.

  20. High signal-to-noise acoustic sensor using phase-shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-11-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices.

  1. High signal-to-noise ratio acoustic sensor using phase shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2015-03-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices.

  2. Gamma-radiation of heart valves at 4° C; a comparative study using techniques of histochemistry and electron and light microscopy

    PubMed Central

    Donnelly, R. J.; Aparicio, S. R.; Dexter, F.; Deverall, P. B.; Watson, D. A.

    1973-01-01

    The optimal method of valve sterilization and storage is still not known. Pig aortic valve cusps have been studied using techniques of histochemistry, light microscopy, and electron microscopy, and the effects of gamma-radiation at 4° C have been determined. The effects of freezing, β-propriolactone, and freeze-drying were also studied. Gamma-radiation at 4° C and storage at this temperature in a polyionic environment for up to six weeks appears to have minimal adverse effects. This technique of sterilization and storage has now been used in our clinical valve programme for over two years with encouraging results. Images PMID:4265421

  3. Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques.

    PubMed

    De Los Ríos, A; Sancho, L G; Grube, M; Wierzchos, J; Ascaso, C

    2005-01-01

    Through the combined use of molecular and microscopy techniques, the endolithic lichens Lecidea cancriformis and Lecidea sp. were identified, even in the absence of fruiting bodies, and positioned under epilithic lichens. Cells of both algal and fungal symbionts were observed in fissures and cracks of the lithic substrate with no clear heteromerous structure. At the ultrastructural level, the two lichens differed in terms of their algal-fungal relationships. Only one genotype of Trebouxia ITS sequence was identified from specimens of Lecidea sp., Umbilicaria aprina and Buellia frigida from the same zone, which could be mainly determined by low availability of alga in these extreme environments. These lichens showed features typical of both chasmoendolithic and euendolithic microorganisms. Signs of biogeophysical and biogeochemical action on the substrate were detected close to fungal cells. This action seemed to be mainly conditioned by the local physico-chemical features of the substrate. Evidence for the biomobilization of elements by these endolithic lichens was found. L. cancriformis was observed to accumulate substantial amounts of calcium-rich biominerals. The combined approach proposed is useful for mapping the distribution of endolithic lichens and analysing the processes that occur in their microscopic environment.

  4. Microscopy and Chemical Inversing Techniques to Determine the Photonic Crystal Structure of Iridescent Beetle Scales in the Cerambycidae Family

    NASA Astrophysics Data System (ADS)

    Richey, Lauren; Gardner, John; Standing, Michael; Jorgensen, Matthew; Bartl, Michael

    2010-10-01

    Photonic crystals (PCs) are periodic structures that manipulate electromagnetic waves by defining allowed and forbidden frequency bands known as photonic band gaps. Despite production of PC structures operating at infrared wavelengths, visible counterparts are difficult to fabricate because periodicities must satisfy the diffraction criteria. As part of an ongoing search for naturally occurring PCs [1], a three-dimensional array of nanoscopic spheres in the iridescent scales of the Cerambycidae insects A. elegans and G. celestis has been found. Such arrays are similar to opal gemstones and self-assembled colloidal spheres which can be chemically inverted to create a lattice-like PC. Through a chemical replication process [2], scanning electron microscopy analysis, sequential focused ion beam slicing and three-dimensional modeling, we analyzed the structural arrangement of the nanoscopic spheres. The study of naturally occurring structures and their inversing techniques into PCs allows for diversity in optical PC fabrication. [1] J.W. Galusha et al., Phys. Rev. E 77 (2008) 050904. [2] J.W. Galusha et al., J. Mater. Chem. 20 (2010) 1277.

  5. Nonlinear Lock-In Infrared Microscopy: A Complementary Investigation Technique for the Analysis of Functional Electroceramic Components.

    PubMed

    Hofstätter, Michael; Raidl, Nadine; Sartory, Bernhard; Supancic, Peter

    2015-10-01

    Using lock-in infrared microscopy as a tool for current detection on the micrometer scale in AC-driven specimens in combination with iterative grinding procedure allows preparation of current dominating microstructure regions on well-polished surfaces. This technique is applied successfully on varistor components based on specially doped ZnO-based varistor ceramics. This peculiar electroceramic material exhibits exceptional high nonlinear current-voltage (I-V) characteristics, described by a power law according I~V(α), caused by double Schottky barriers at the grain boundaries. As a novelty the thermographic response is used to evaluate local electrical properties, namely the nonlinearity coefficient α, on basis of higher order harmonics with respect to the basic electrical driving AC-frequency. To correlate the observed electrical properties to the microstructure, the polar crystal orientation of the relevant ZnO grains is determined by combining electron backscatter diffraction and orientation-dependent patterns as a result of a chemical etching procedure. These findings support a modified new model for describing the grain boundary controlled current flow in a varistor microstructure including orientation-dependent barrier properties. Hence, the experimentally observed current direction-dependent behavior can be described consistently.

  6. Microscopy and X-ray spectroscopy analyses for assessment of gilding and silvering techniques of Portuguese illuminated manuscripts.

    PubMed

    Le Gac, Agnès; Nogueira, Isabel D; Guerra, Mauro; Frade, José Carlos; Longelin, Stéphane; Manso, Marta; Pessanha, Sofia; Seruya, Ana Isabel M; Carvalho, Maria Luisa

    2015-02-01

    The objects of this study are various local charters (cartas de foral, in Portuguese) granted by Dom Manuel I, King of Portugal (1495-1521), which substituted for medieval ones and were intended to achieve an administrative unification. These are luxuriously illuminated manuscripts, and our study aims at obtaining a better understanding of the gilding and silvering techniques applied to the parchments, in which the forais were written, between 1500 and 1520. The combined use of microscopy and X-ray spectroscopy analyses allowed us to identify the vestigial materials used for making the parchments, including products such as salt (NaCl), lime (CaO), pumice stone (SiO2+Al2O3), and chalk (CaCO3). Chalk was employed as a whitening agent to give the parchment its final color and opacity. Shell-gold and shell-silver mixed in with animal glue or gum binding media were directly applied on type 1 and 3 forais, while very thin gold leaves (<1 µm) were applied over lead-based tempera grounds (50-180 µm thick) in type 2 forais. Silver was always employed in its finest form without a further protective layer (thus its recursive state of corrosion), while gold was used in various alloy grades.

  7. Microscopy and X-ray spectroscopy analyses for assessment of gilding and silvering techniques of Portuguese illuminated manuscripts.

    PubMed

    Le Gac, Agnès; Nogueira, Isabel D; Guerra, Mauro; Frade, José Carlos; Longelin, Stéphane; Manso, Marta; Pessanha, Sofia; Seruya, Ana Isabel M; Carvalho, Maria Luisa

    2015-02-01

    The objects of this study are various local charters (cartas de foral, in Portuguese) granted by Dom Manuel I, King of Portugal (1495-1521), which substituted for medieval ones and were intended to achieve an administrative unification. These are luxuriously illuminated manuscripts, and our study aims at obtaining a better understanding of the gilding and silvering techniques applied to the parchments, in which the forais were written, between 1500 and 1520. The combined use of microscopy and X-ray spectroscopy analyses allowed us to identify the vestigial materials used for making the parchments, including products such as salt (NaCl), lime (CaO), pumice stone (SiO2+Al2O3), and chalk (CaCO3). Chalk was employed as a whitening agent to give the parchment its final color and opacity. Shell-gold and shell-silver mixed in with animal glue or gum binding media were directly applied on type 1 and 3 forais, while very thin gold leaves (<1 µm) were applied over lead-based tempera grounds (50-180 µm thick) in type 2 forais. Silver was always employed in its finest form without a further protective layer (thus its recursive state of corrosion), while gold was used in various alloy grades. PMID:25591998

  8. Conventional and high resolution scanning electron microscopy and cryofracture techniques as tools for tracing cerebellar short intracortical circuits.

    PubMed

    Castejón, O J; Apkarian, R P; Valero, C

    1994-01-01

    The present paper shows the potential contribution of conventional and high resolution scanning electron microscopy (SEM) to trace short intracortical circuits in cryofractured fish, primate and human cerebelli. Conventional SEM slicing technique allowed us to identify afferent mossy and climbing fibers and their synaptic relationship in the granular layer. SEM freeze-fracture method exposed the mossy glomerular synapses and the axo-dendritic connections of climbing fibers. At the Purkinje cell layer, the cryofracture process removed the satellite Bergmann glial cell layer, displaying a partial view of the supra- and infra-ganglionic plexuses of Purkinje cells and the ascending pathways of climbing fibers. High resolution SEM (HRSEM) showed the specimen specific secondary electron (SE-I) image of axosomatic synapses on Golgi cell surface. At the molecular layer, the outer surface of parallel fiber synaptic varicosities were distinguished, establishing the cruciform en passant synaptic contact with the Purkinje cell dendritic spines. HRSEM showed the fractured parallel fiber synaptic varicosities containing spheroidal synaptic vesicles embedded in a high dense extravesicular material. Conventional SEM and gold-palladium coating are useful to trace intracortical circuits. With HRSEM and chromium coating, it is possible to study the outer and inner surfaces of synaptic connections.

  9. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Yack, Tina M.

    California Bight (SCB). The preliminary measurement of the visually validated Baird's beaked whale echolocation signals recorded from the ship-based towed array were used as a basis for identifying Baird's signals in the seafloor-mounted autonomous recorder data. The passive acoustic detection algorithms for beaked whales developed using data from Chapters 2 and 3 were field tested during a three year period to test the reliability of acoustic beaked whale monitoring techniques and to use these methods to describe beaked whale habitat in the SCB. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the SCB and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study (SOCAL-BRS). The final step in this research was to utilize the passive acoustic detection techniques developed herin to predictively model beaked whale habitat use and preferences in the CCE. This chapter uses a multifaceted approach to model beaked whale encounter rates in the CCE. Beaked whale acoustic encounters are utilized to inform Generalized Additive Models (GAMs) of encounter rate for beaked whales in the CCE and compare these to visual based models. Acoustic and visual based models were independently developed for a small beaked whale group and Baird's beaked whales. Two models were evaluated for visual and acoustic encounters, one that also included Beaufort sea state as a predictor variable in addition to those listed and one that did not include Beaufort sea state. (Abstract shortened by UMI.)

  10. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-02-01

    Primary biological aerosol particles (PBAP) can contribute significantly to the coarse particle burden in many environments, may thus influence climate and precipitation systems as cloud nuclei, and can spread disease to humans, animals, and plants. Measurements of PBAP in natural environments taken at high time- and size- resolution are, however, sparse and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in south western Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of the waveband integrated bioaerosol sensor (WIBS-4) with the ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behaviour, with increased fluorescent bioparticle concentrations at night when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each were correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multi-modal distributions turning into a broad featureless single mode after averaging and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent particles

  11. Non-invasive current and voltage imaging techniques for integrated circuits using scanning probe microscopy. Final report, LDRD Project FY93 and FY94

    SciTech Connect

    Campbell, A.N.; Cole, E.I. Jr.; Tangyunyong, Paiboon

    1995-06-01

    This report describes the first practical, non-invasive technique for detecting and imaging currents internal to operating integrated circuits (ICs). This technique is based on magnetic force microscopy and was developed under Sandia National Laboratories` LDRD (Laboratory Directed Research and Development) program during FY 93 and FY 94. LDRD funds were also used to explore a related technique, charge force microscopy, for voltage probing of ICs. This report describes the technical work performed under this LDRD as well as the outcomes of the project in terms of publications and awards, intellectual property and licensing, synergistic work, potential future work, hiring of additional permanent staff, and benefits to DOE`s defense programs (DP).

  12. Introduction to acoustic emission

    NASA Technical Reports Server (NTRS)

    Possa, G.

    1983-01-01

    Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.

  13. Localization of a continuous CO2 leak from an isotropic flat-surface structure using acoustic emission detection and near-field beamforming techniques

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Cui, Xiwang; Guo, Miao; Han, Xiaojuan

    2016-11-01

    Seal capacity is of great importance for the safety operation of pressurized vessels. It is crucial to locate the leak hole timely and accurately for reasons of safety and maintenance. This paper presents the principle and application of a linear acoustic emission sensor array and a near-field beamforming technique to identify the location of a continuous CO2 leak from an isotropic flat-surface structure on a pressurized vessel in the carbon capture and storage system. Acoustic signals generated by the leak hole are collected using a linear high-frequency sensor array. Time-frequency analysis and a narrow-band filtering technique are deployed to extract effective information about the leak. The impacts of various factors on the performance of the localization technique are simulated, compared and discussed, including the number of sensors, distance between the leak hole and sensor array and spacing between adjacent sensors. Experiments were carried out on a laboratory-scale test rig to assess the effectiveness and operability of the proposed method. The results obtained suggest that the proposed method is capable of providing accurate and reliable localization of a continuous CO2 leak.

  14. Comparison of Active Noise Control Structures in the Presence of Acoustical Feedback by Using THEH∞SYNTHESIS Technique

    NASA Astrophysics Data System (ADS)

    Bai, M. R.; Lin, H. H.

    1997-10-01

    This study compares three control structures of active noise cancellation for ducts: feedback control, feedforward control, and hybrid control. These structures are compared in terms of performance, stability, and robustness by using a general framework of theH∞robust control theory. In addition, theH∞synthesis procedure automatically incorporates the acoustic feedback path that is usually a plaguing problem to feedforward control design. The controllers are implemented by using a digital signal processor and tested on a finite-length duct. In an experimental verification, the proposed controllers are also compared with the well-known filtered-uleast mean square (FULMS) controller. The advantages and disadvantages of each ANC structure as well as the adverse effects due to acoustic feedback are addressed.

  15. Correlative microscopy.

    PubMed

    Loussert Fonta, Céline; Humbel, Bruno M

    2015-09-01

    In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array

  16. Correlative microscopy.

    PubMed

    Loussert Fonta, Céline; Humbel, Bruno M

    2015-09-01

    In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array

  17. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  18. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space.

  19. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. PMID:23242824

  20. [application of the analytical transmission electron microscopy techniques for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in mammalian cells].

    PubMed

    Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V

    2014-01-01

    This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.

  1. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  2. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques.

  3. Materials characterization using frequency domain photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Balogun, Oluwaseyi Oladeinde

    A frequency domain photoacoustic microscopy system is developed for the characterization of micro- and nanoscale materials. An amplified, intensity modulated continuous wave (CW) laser source is used to generate narrow-bandwidth acoustic waves through the thermoelastic effect. The displacement resulting from acoustic wave interaction with material boundaries is measured using a path-stabilized Michelson interferometer. The signal from the interferometer is coupled to a RF lock-in amplifier or vector network analyzer, allowing for the bandwidth of the detection system to be matched to that of the acoustic signals. Measurements are made over an extremely narrow bandwidth by modulating the excitation laser source on the sample surface over a long time interval and selecting a corresponding integration time for the detection system. An analysis of the signal-to-noise ratio (SNR) of this system indicates that it offers substantial improvements over existing systems that incorporate pulsed laser sources to generate broad bandwidth acoustic waves. Using a bandwidth of 1.0 Hz, for instance, experimental results show a minimum detectable displacement of 3.1 fm. Extracting quantitative material parameters from the complex acoustic spectrum can be difficult when multiple acoustic modes are excited, or in the presence of reflections from sample boundaries. Two techniques are used to process the measured signals. In the first technique, the modulation frequency of the excitation laser is scanned over the bandwidth of interest, and a transient sample response is constructed from the frequency domain data. Acoustic arrivals that are separated in the time domain are time gated for further analysis. In the second approach, the modulation frequency of the excitation laser is fixed, but the source to receiver distance is varied. The spatial frequencies of the acoustic modes are found by analyzing the spatial variation of the phase, allowing for the velocity of each mode generated at

  4. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  5. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques

    PubMed Central

    Jemielita, Matthew; Taormina, Michael J.; DeLaurier, April; Kimmel, Charles B.; Parthasarathy, Raghuveer

    2013-01-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. (A) Schematic: Light sheet microscopy of zebrafish embryos. Opercle-forming osteoblasts following twenty-four hours of (B) light sheet imaging, showing normal growth, and (C) spinning disk confocal imaging, showing aberrant growth. PMID:23242824

  6. Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan. [quiet engine program

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.; Clemons, A.

    1977-01-01

    Sound data which were obtained during tests of a 50.8 cm diameter, subsonic tip speed, low pressure ratio fan were analyzed. The test matrix was divided into two major investigations: (1) source noise reduction techniques; and (2) aft duct noise reduction with acoustic treatment. Source noise reduction techniques were investigated which include minimizing second harmonic noise by varying vane/blade ratio, variation in spacing, and lowering the Mach number through the vane row to lower fan broadband noise. Treatment in the aft duct which includes flow noise effects, faceplate porosity, rotor OGV treatment, slant cell treatment, and splitter simulation with variable depth on the outer wall and constant thickness treatment on the inner wall was investigated. Variable boundary conditions such as variation in treatment panel thickness and orientation, and mixed porosity combined with variable thickness were examined. Significant results are reported.

  7. Large-scale and non-contact surface topography measurement using scanning ion conductance microscopy and sub-aperture stitching technique

    NASA Astrophysics Data System (ADS)

    Zhuang, Jian; Guo, Renfei; Li, Fei; Yu, Dehong

    2016-08-01

    In this paper, we propose a large-scale and non-contact surface topography measurement method using a non-contact scanning probe microscopy (SPM) technique, scanning ion conductance microscopy (SICM), combined with the sub-aperture stitching technique. The phase correlation techniques were first applied to the three-dimensional (3D) images measured by the SICM to acquire an initially coarse stitching position. Then the tip-tilt compensated sub-aperture stitching algorithm is utilized to eliminate tilts and translations among adjacent images and expand the lateral measuring range of the existing hopping mode SICM system. This SICM and the stitching based method has been used to measure some large-scale samples (micrometer to millimeter scale) in a non-contact, quantitative and high resolution way. Simulation and experimental results on these samples verify the feasibility of this method and the effectiveness of the stitching algorithm. A measuring range of 1.08 mm  ×  0.55 mm and a lateral resolution of 100 nm or even higher were obtained in these experiments. Compared with atomic force microscopy (AFM), the non-contact feature of the proposed method ensures less damage to the surface topography. The non-optical feature makes the data stitching simpler than the existing optical microscopic methods, which need consider how to compensate the vignetting effect caused by the inhomogeneity of light.

  8. Acoustic mapping velocimetry

    NASA Astrophysics Data System (ADS)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  9. Morphological and ultrastructural characterization of ionoregulatory cells in the teleost Oreochromis niloticus following salinity challenge combining complementary confocal scanning laser microscopy and transmission electron microscopy using a novel prefixation immunogold labeling technique.

    PubMed

    Fridman, Sophie; Rana, Krishen J; Bron, James E

    2013-10-01

    Aspects of ionoregulatory or mitochondria-rich cell (MRC) differentiation and adaptation in Nile tilapia yolk-sac larvae following transfer from freshwater to elevated salinities, that is, 12.5 and 20 ppt are described. Investigations using immunohistochemistry on whole-mount Nile tilapia larvae using anti- Na⁺/K⁺-ATPase as a primary antibody and Fluoronanogold™ (Nanoprobes) as a secondary immunoprobe allowed fluorescent labeling with the high resolution of confocal scanning laser microscopy combined with the detection of immunolabeled target molecules at an ultrastructural level using transmission electron microscopy (TEM). It reports, for the first time, various developmental stages of MRCs within the epithelial layer of the tail of yolk-sac larvae, corresponding to immature, developing, and mature MRCs, identifiable by their own characteristic ultrastructure and form. Following transfer to hyperosmotic salinities the density of immunogold particles and well as the intricacy of the tubular system appeared to increase. In addition, complementary confocal scanning laser microscopy allowed identification of immunopositive ramifying extensions that appeared to emanate from the basolateral portion of the cell that appeared to be correlated with the localization of subsurface tubular areas displaying immunogold labeled Na⁺/K⁺-ATPase. This integrated approach describes a reliable and repeatable prefixation immunogold labeling technique allowing precise visualization of NaK within target cells combined with a 3D imaging that offers valuable insights into MRC dynamics at an ultrastructural level.

  10. Influence of choking and arm lock technique in judo on the acoustic reflex threshold (art) in healthy well-trained male and female judoka.

    PubMed

    Raschka, Christoph; Koch, Horst Josef; Rau, Rüdiger

    2002-05-01

    The objective of this controlled parallel group study was to assess the effects of standardized choke holds (test) and arm lock techniques (controls) in on the acoustic hearing threshold. 104 (test group, 32 female subjects and 72 male subjects, mean age = 28.0 years, SD = 7.9 years) and 51 experienced judoka (controls. 21 female subjects, 30 male subjects; mean age = 26.8 years; SD = 13.2 years) participated. Acoustic reflex thresholds (ART [dB]) were measured separately before and after each manoeuvre both for air and bone conduction of the right and left side. The difference Dart of the ART before and after a manoeuvre (Dart = ARTbefore - ARTafter) was calculated. Data were presented descriptively and nonparametric statistics was applied for nonrelated (Kruskal Wallis ANOVA) or related samples (Friedman ANOVA). Wilcoxon tests were used for pre/post comparisons of original ART values. The effect of choking on Dart was significantly different from the effect of the arm lock technique on Dart independent of the experimental condition. A significant influence of applied frequencies on Dart was ascertained if a choking technique was used. For all frequency ranges applied a highly significant improvement of the ART after choking was found. With regard to bone conduction thresholds increased by an average of 6.1 dB and for air conduction the average increase was 4.9 dB. On the contrary, arm locks induced a slight mean deterioration of the ART for bone conduction of 1.8 dB. The ART for bone conduction also showed a trend towards a reduction after arm locks with a mean decrease of about 1.2 dB. In conclusion, standardized choking manoeuvres reduced the ART corresponding to an improved hearing both with regard to air and bone conduction. Such an effect on hearing ability was not found for arm lock techniques.

  11. High-Contrast Fluorescence Microscopy for a Biomolecular Analysis Based on Polarization Techniques Using an Optical Interference Mirror Slide

    PubMed Central

    Yasuda, Mitsuru; Akimoto, Takuo

    2014-01-01

    Fluorescence microscopy with an improved contrast for fluorescence images is developed using an optical interference mirror (OIM) slide, which can enhance the fluorescence from a fluorophore as a result of the double interference of the excitation light and emission light. To improve the contrast of a fluorescence image using an OIM slide, a linearly-polarized excitation light was employed, and the fluorescence emission polarized perpendicular to the polarization of the excitation light was detected. The image contrast with this optical system was improved 110-fold for rhodamine B spotted on the OIM, in comparison with a glass slide using a general fluorescence microscopy optical system. Moreover, a 24-fold improvement of the image contrast was achieved for the detection of Cy3-labeled streptavidin bound to immobilize biotin. PMID:25587437

  12. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    PubMed

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.

  13. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    PubMed

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  14. The Review of Nuclear Microscopy Techniques: An Approach for Nondestructive Trace Elemental Analysis and Mapping of Biological Materials

    PubMed Central

    Mulware, Stephen Juma

    2015-01-01

    The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented. PMID:26664356

  15. Note: Direct piezoelectric effect microscopy.

    PubMed

    Mori, T J A; Stamenov, P; Dorneles, L S

    2015-07-01

    An alternative method for investigating piezoelectric surfaces is suggested, exploiting the direct piezoeffect. The technique relies on acoustic (ultrasonic) excitation of the imaged surface and mapping of the resulting oscillatory electric potential. The main advantages arise from the spatial resolution of the conductive scanning probe microscopy in combination with the relatively large magnitude of the forward piezo signal Upf, which can be of the order of tens of mV even for non-ferroelectric piezoelectric materials. The potency of this experimental strategy is illustrated with measurements on well-crystallized quartz surfaces, where Upf ∼ 50 mV, for a piezoelectric coefficient of d33 = - 2.27  ×  10(-12) m/V, and applied stress of about T3 ∼ 5.7 kPa.

  16. Measurement of gamma' precipitates in a nickel-based superalloy using energy-filtered transmission electron microscopy coupled with automated segmenting techniques.

    PubMed

    Tiley, J S; Viswanathan, G B; Shiveley, A; Tschopp, M; Srinivasan, R; Banerjee, R; Fraser, H L

    2010-08-01

    Precipitates of the ordered L1(2) gamma' phase (dispersed in the face-centered cubic or FCC gamma matrix) were imaged in Rene 88 DT, a commercial multicomponent Ni-based superalloy, using energy-filtered transmission electron microscopy (EFTEM). Imaging was performed using the Cr, Co, Ni, Ti and Al elemental L-absorption edges in the energy loss spectrum. Manual and automated segmentation procedures were utilized for identification of precipitate boundaries and measurement of precipitate sizes. The automated region growing technique for precipitate identification in images was determined to measure accurately precipitate diameters. In addition, the region growing technique provided a repeatable method for optimizing segmentation techniques for varying EFTEM conditions. PMID:20434346

  17. Measurement of gamma' precipitates in a nickel-based superalloy using energy-filtered transmission electron microscopy coupled with automated segmenting techniques.

    PubMed

    Tiley, J S; Viswanathan, G B; Shiveley, A; Tschopp, M; Srinivasan, R; Banerjee, R; Fraser, H L

    2010-08-01

    Precipitates of the ordered L1(2) gamma' phase (dispersed in the face-centered cubic or FCC gamma matrix) were imaged in Rene 88 DT, a commercial multicomponent Ni-based superalloy, using energy-filtered transmission electron microscopy (EFTEM). Imaging was performed using the Cr, Co, Ni, Ti and Al elemental L-absorption edges in the energy loss spectrum. Manual and automated segmentation procedures were utilized for identification of precipitate boundaries and measurement of precipitate sizes. The automated region growing technique for precipitate identification in images was determined to measure accurately precipitate diameters. In addition, the region growing technique provided a repeatable method for optimizing segmentation techniques for varying EFTEM conditions.

  18. Development of in situ observation technique using scanning ion microscopy and demonstration of Mn depletion effect on intragranular ferrite transformation in low-alloy steel.

    PubMed

    Shigesato, Genichi; Sugiyama, Masaaki

    2002-01-01

    An in situ observation technique using scanning ion microscopy (SIM) to investigate the behaviour of phase transformation from austenite to ferrite in low-alloy steel is proposed. The most important advantage of the technique is the combined observation by SIM and fabrication by focused ion beam (FIB) at a wide range of temperature, from room temperature to 1673 K. Using this advantage, we have developed a new technique for observing intragranular ferrite (IGF) transformation in low-alloy steel, which is the phase transformation occurring at an inclusion existing inside a grain of austenite phase. We successfully observed the IGF transformation at 873 K by examining an inclusion exposed to the specimen surface by FIB fabrication at 1073 K during cooling from 1673 K. From the results of the in situ observation, we determined the role of Mn depletion due to precipitation of MnS for IGF transformation in steel.

  19. Coupling creep and damage in concrete under high sustained loading: Experimental investigation on bending beams and application of Acoustic Emission technique

    NASA Astrophysics Data System (ADS)

    Saliba, J.; Loukili, A.; Grondin, F.

    2010-06-01

    effect on concrete, probably because of the consolidation of the hardened cement paste. The influence of creep on fracture energy, fracture toughness, and characteristic length of concrete is also studied. The fracture energy and the characteristic length of concrete increases slightly when creep occurs prior to failure and the size of the fracture process zone increases too. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases with beams subjected to creep. Relatively more ductile fracture behavior was observed with beams subjected to creep. The contribution of non-destructive and instrumental investigation methods is currently exploited to check and measure the evolution of some negative structural phenomena, such as micro-and macro-cracking, finally resulting in a creep-like behaviour. Among these methods, the non-destructive technique based on acoustic Emission proves to be very effective, especially to check and measure micro-cracking that takes place inside a structure under mechanical loading. Thus as a part of the investigation quantitative acoustic emission techniques were applied to investigate microcracking and damage localization in concrete beams. The AE signals were captured with the AE WIN software and further analyzed with Noesis software analysis of acoustic emission data. AE waveforms were generated as elastic waves in concrete due to crack nucleation. And a multichannel data acquisition system was used to record the AE waveforms. During the three point bending tests, quantitative acoustic emission (AE) techniques were used to monitor crack growth and to deduce micro fracture mechanics in concrete beams before and after creep. Several specimens are experimented in order to match each cluster with corresponding damage mechanism of the material under loading. At the same time acoustic emission was used to

  20. Combination of transmission electron and atomic force microscopy techniques to determine volume equivalent diameter of submicrometer particles.

    PubMed

    Tumolva, Laarnie; Park, Ji-Yeon; Park, Kihong

    2012-04-01

    Morphological properties of atmospheric particles are directly related to their residence time and transport behaviors, and their deposition patterns in human respiratory systems. The projected properties of particles measured by transmission electron microscopy (TEM) were combined with the particle height measured by atomic force microscopy (AFM) to determine volume equivalent diameter of submicrometer particles. For nonvolatile (refractory) laboratory-generated spherical polystyrene latex and cubic NaCl particles, the measured volume equivalent diameters agreed well with the true values (within 4%). However, for nonrefractory (NH(4))(2)SO(4) particles, the measured volume equivalent diameter was much smaller than the true value due to evaporation of volatile species at low vacuum pressure and high electron-beam intensity conditions in TEM, and deformation of particles in AFM. We observed that the volume equivalent diameter of 100 nm mobility-classified atmospheric particles was 35 ± 5 nm, suggesting that these particles contain nonrefractory species, whereas that of 20 nm mobility-classified atmospheric particles was found to be 19 ± 6 nm, suggesting that these particles were refractory and spherical. PMID:21919129

  1. Real-time measurement of protein adsorption on electrophoretically deposited hydroxyapatite coatings and magnetron sputtered metallic films using the surface acoustic wave technique.

    PubMed

    Meininger, M; Schmitz, T; Wagner, T; Ewald, A; Gbureck, U; Groll, J; Moseke, C

    2016-04-01

    Surface acoustic wave (SAW) biosensors are highly sensitive for mass binding and are therefore used to detect protein-protein and protein-antibody interactions. Whilst the standard surface of the chips is a thin gold film, measurements on implant- or bone-like surfaces could significantly enhance the range of possible applications for this technique. The aim of this study was to establish methods to coat biosensor chips with Ti, TiN, and silver-doped TiN using physical vapor deposition as well as with hydroxyapatite by electrophoresis. To demonstrate that protein adsorption can be detected on these surfaces, binding experiments with fibronectin and fibronectin-specific antibodies have been performed with the coatings, which successfully proved the applicability of PVD and EPD for SAW biosensor functionalization.

  2. Dry fracturing and cutting techniques for scanning electron microscopy of poly-vinyl chloride particles: application to internal structure observations.

    PubMed

    Yañez, M J; de Lozano, V S

    1991-12-01

    Two methods for examining the internal structure of poly-vinyl chloride (PVC) particles are described. Very small PVC particles, polymerized by the emulsion process, were mounted on an aluminium adhesive tape and pressed with a similar tape. Both tapes were then pulled apart so that the specimen was broken in two fractions, which were observed by scanning electron microscopy. On the other hand, bigger PVC particles manufactured by following the suspension polymerization process, were frozen and hand sectioned with a razor blade under liquid nitrogen vapor. The results were highly satisfactory. These methods were easy to implement, the cost of materials for sample preparation was negligible, and they offered the ability to obtain multiple information from a single sample. PMID:1797991

  3. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Limberopoulos, Nicholaos I.; Derov, John S.; Walker, Dennis E.; Astratov, Vasily N.

    2014-02-01

    We demonstrate a series of advantages of microsphere-assisted imaging over confocal and solid immersion lens microscopies including intrinsic flexibility, better resolution, higher magnification, and longer working distances. We discerned minimal feature sizes of ˜50-60 nm in nanoplasmonic arrays at the illumination wavelength λ = 405 nm. It is demonstrated that liquid-immersed, high-index (n ˜ 1.9-2.1) spheres provide a superior image quality compared to that obtained by spheres with the same index contrast in an air environment. We estimate that using transparent microspheres at deep UV wavelengths of ˜200 nm might make possible imaging of various nanostructures with extraordinary high ˜30 nm resolution.

  4. Preservation of bone collagen from the late Cretaceous period studied by immunological techniques and atomic force microscopy.

    PubMed

    Avci, R; Schweitzer, M H; Boyd, R D; Wittmeyer, J L; Terán Arce, F; Calvo, J O

    2005-04-12

    Late Cretaceous avian bone tissues from Argentina demonstrate exceptional preservation. Skeletal elements are preserved in partial articulation and suspended in three dimensions in a medium-grained sandstone matrix, indicating unusual perimortem taphonomic conditions. Preservation extends to the microstructural and molecular levels. Bone tissues respond to collagenase digestion and histochemical stains. In situ immunohistochemistry localizes binding sites for avian collagen antibodies in fossil tissues. Immunohistochemical studies do not, however, guarantee the preservation of molecular integrity. A protein may retain sufficient antigenicity for antibody binding even though degradation may render it incapable of original function. Therefore, we have applied atomic force microscopy to address the integrity and functionality of retained organic structures. Collagen pull-off measurements not only support immunochemical evidence for collagen preservation for antibody recognition but also imply preservation of the whole molecular integrity. No appreciable differences in collagen pull-off properties were measured between fossil and extant bone samples under physiological conditions.

  5. Spatial variation of deep diving odontocetes' occurrence around a canyon region in the Ligurian Sea as measured with acoustic techniques

    NASA Astrophysics Data System (ADS)

    Giorli, Giacomo; Neuheimer, Anna; Au, Whitlow

    2016-10-01

    Understanding the distribution of animals is of paramount importance for management and conservation, especially for species that are impacted by anthropogenic threats. In the case of marine mammals there has been a growing concern about the impact of human-made noise, in particular for beaked whales and other deep diving odontocetes. Foraging (measured via echolocation clicks at depth) was studied for Cuvier's beaked whale (Ziphius cavirostris), sperm whale (Physeter macrocephalus), long-finned pilot whales (Globicephala melas) and Risso's dolphin (Grampus griseus) using three passive acoustics recorders moored to the bottom of the ocean in a canyon area in the Ligurian Sea between July and December 2011. A Generalized Linear Model was used to test whether foraging was influenced by location and day of the year, including the possibility of interactions between predictors. Contrary to previous studies conducted by visual surveys in this area, all species were detected at all locations, suggesting habitat overlapping. However, significant differences were found in the occurrence of each species at different locations. Beaked and sperm whales foraged significantly more in the northern and western locations, while long-finned pilot whales and Risso's dolphins hunted more in the northern and eastern location.

  6. Assessment of impact damage in Kevlar{reg_sign}-epoxy, filament-wound spherical test specimens by acoustic emission techniques

    SciTech Connect

    Whittaker, J.W.; Brosey, W.D.; Hamstad, M.A.

    1996-09-26

    The results of a study of the acoustic emission (AE) behavior of impact-damaged, spherical, composite test specimens subjected to thermal cycling and biaxial mechanical loading are presented. Seven Kevlar{reg_sign}-epoxy, filament-wound, spherical composite test specimens were subjected to different levels of impact damage. The seven specimens were a subset of a group of 77 specimens made with simulated fabrication-induced flaws. The specimens were subjected to two or three cycles of elevated temperature and then hydraulically pressurized to failure. The pressurization regime consisted of two cycles to different intermediate levels with a hold at each peak pressure level; a final pressurization to failure followed. The thermal and pressurization cycles were carefully designed to stimulate AE production under defined conditions. Both impacted and nonimpacted specimens produced thermo-AE (the term given to emission stimulated by thermal loading), but impacted specimens produced significantly more. Thermo-AE was produced primarily by damaged composite material. Damaged material produced emission as a function of both rising and falling temperature, but the effect was not repeatable. More seriously damaged specimens produced very large quantities of emission. Emission recorded during the static portion of the hydraulic loading cycles varied with load, time, and degree of damage. Static load AE behavior was quantified using a newly developed concept, the event-rate moment, and various correlations with residual strength were attempted. Correlations between residual strength, long-duration events, and even-rate moments were developed with varying degrees of success.

  7. Application of scanning electron microscopy to x-ray analysis of frozen- hydrated sections. I. Specimen handling techniques

    PubMed Central

    1981-01-01

    X-ray microanalysis of frozen-hydrated tissue sections permits direct quantitative analysis of diffusible elements in defined cellular compartments. Because the sections are hydrated, elemental concentrations can be defined as wet-weight mass fractions. Use of these techniques should also permit determination of water fraction in cellular compartments. Reliable preparative techniques provide flat, smooth, 0.5 micrometers-thick sections with little elemental and morphological disruption. The specimen support and transfer system described permits hydrated sections to be transferred to the scanning electron microscope cold stage for examination and analysis without contamination or water loss and without introduction of extraneous x- ray radiation. PMID:7204491

  8. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  9. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    PubMed Central

    Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J.

    2014-01-01

    Abstract. Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed. PMID:26157976

  10. Dictionary of Microscopy

    NASA Astrophysics Data System (ADS)

    Heath, Julian

    2005-10-01

    The past decade has seen huge advances in the application of microscopy in all areas of science. This welcome development in microscopy has been paralleled by an expansion of the vocabulary of technical terms used in microscopy: terms have been coined for new instruments and techniques and, as microscopes reach even higher resolution, the use of terms that relate to the optical and physical principles underpinning microscopy is now commonplace. The Dictionary of Microscopy was compiled to meet this challenge and provides concise definitions of over 2,500 terms used in the fields of light microscopy, electron microscopy, scanning probe microscopy, x-ray microscopy and related techniques. Written by Dr Julian P. Heath, Editor of Microscopy and Analysis, the dictionary is intended to provide easy navigation through the microscopy terminology and to be a first point of reference for definitions of new and established terms. The Dictionary of Microscopy is an essential, accessible resource for: students who are new to the field and are learning about microscopes equipment purchasers who want an explanation of the terms used in manufacturers' literature scientists who are considering using a new microscopical technique experienced microscopists as an aide mémoire or quick source of reference librarians, the press and marketing personnel who require definitions for technical reports.

  11. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  12. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  13. Domain characterization of Pb(Zn1/3Nb2/3)O3-(6%-7%)PbTiO3 single crystals using scanning electron acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Wong, Meng Fei; Heng, Xiangxin; Zeng, Kaiyang

    2008-10-01

    Domain structures of [001]T and [011]T-cut Pb(Zn1/3Nb2/3)O3-(6%-7%)PbTiO3 (PZN-PT) single crystals are studied using scanning electron acoustic microscope (SEAM) technique. The observation of the orientation of domain walls agree reasonably well with the trigonometric projection of rhombohedral and orthorhombic dipoles on the (001) and (011) surfaces, respectively. After mechanical loading with microindentation, domain switching is also observed to form a hyperbolic butterfly shape and extend preferentially along four diagonal directions, i.e., ⟨110⟩ on (001) surface and ⟨111¯⟩ on (011) surface. The critical shear stress to cause domain switching for PZN-PT crystal is estimated to be approximately 49 MPa for both {110} and {111¯} planes based on theoretical analysis. Generally, the SEAM technique has been successfully demonstrated to be a valid technique for observation of domain structures in single crystal PZN-PTs.

  14. Studies on the interaction of heparin with lysozyme by multi-spectroscopic techniques and atomic force microscopy.

    PubMed

    Tian, Lunfu; Hu, Xiaoli; Liu, Zhongfang; Liu, Shaopu

    2016-02-01

    The interaction between heparin (Hep) and lysozyme (Lyso) in vitro was studied by fluorescence, UV-vis, circular dichroism (CD), resonance Rayleigh scattering (RRS) spectroscopy and atomic force microscopy (AFM) under normal physiological conditions. UV-vis spectra of Lyso showed the absorbance was significantly increased with the addition of Hep. Fluorescence studies revealed that the emission quenching of Lyso with Hep was initiated by static quenching mechanism. CD spectral studies showed that Hep induced conformational changes in the secondary structure of Lyso. RRS spectra of Lyso showed the intensity of scattering was significantly increased with the addition of Hep and the enhanced RRS intensities were proportional to the concentration of Hep in a certain range. Thus, a new RRS method using Lyso as a probe could be used for the determination of Hep. The detection limit for Hep was 3.9 ng mL(-1). In addition, the shape of the complex was characterized by AFM. The possible reaction mechanism and the reasons for the enhancement of RRS intensity had been discussed through experimental results.

  15. Studies on the interaction of heparin with lysozyme by multi-spectroscopic techniques and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Hu, Xiaoli; Liu, Zhongfang; Liu, Shaopu

    2016-02-01

    The interaction between heparin (Hep) and lysozyme (Lyso) in vitro was studied by fluorescence, UV-vis, circular dichroism (CD), resonance Rayleigh scattering (RRS) spectroscopy and atomic force microscopy (AFM) under normal physiological conditions. UV-vis spectra of Lyso showed the absorbance was significantly increased with the addition of Hep. Fluorescence studies revealed that the emission quenching of Lyso with Hep was initiated by static quenching mechanism. CD spectral studies showed that Hep induced conformational changes in the secondary structure of Lyso. RRS spectra of Lyso showed the intensity of scattering was significantly increased with the addition of Hep and the enhanced RRS intensities were proportional to the concentration of Hep in a certain range. Thus, a new RRS method using Lyso as a probe could be used for the determination of Hep. The detection limit for Hep was 3.9 ng mL- 1. In addition, the shape of the complex was characterized by AFM. The possible reaction mechanism and the reasons for the enhancement of RRS intensity had been discussed through experimental results.

  16. Exploring the living cochlea using confocal microscopy.

    PubMed

    Ulfendahl, Mats; Boutet de Monvel, Jacques; Le Calvez, Sophie

    2002-01-01

    To obtain a more integrated view of the cellular behaviour of the cochlea it is essential to observe not only wider regions of the exposed turns but also to visualize structures below the reticular lamina. Using confocal microscopy and in vitro preparations of guinea pig and mouse inner ears, cellular structures within the intact organ of Corti can be visualized at high resolution. The approach thus offers a means to investigate detailed cellular events, e.g. structural reorganization following acoustic overstimulation. Confocal microscope images, although sharper than images acquired using regular light microscopy, are still subject to problems related to light scattering within the optical system and low signal-to-noise ratio. Significant image restoration can, however, be obtained by applying a combination of wavelet denoising techniques and deconvolution algorithms. Future work will focus both on more dynamical cellular events and on new in vivo models where the inner ear is visualized at a better functional state.

  17. Sensitive Technique Developed Using Atomic Force Microscopy to Measure the Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim D.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne; Youngstrom, Erica; Kaminski, Carolyn; Fine, Elizabeth; Marx, Laura

    2001-01-01

    A recession measurement technique has been developed at the NASA Glenn Research Center to determine the atomic oxygen durability of polymers exposed to the space environment for short durations. Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene, DuPont) are commonly used in spacecraft because of their desirable properties, such as flexibility, low density, and in the case of FEP, low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low- Earth-orbit environment are exposed to energetic atomic oxygen, resulting in erosion and potential structural loss. It is, therefore, important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data are rare and very costly, short-term exposures, such as on the space shuttles, are often relied on for atomic oxygen erosion determination. The most common technique for determining E is through mass-loss measurements. For limited-duration exposure experiments, such as shuttle flight experiments, the atomic oxygen fluence is often so small that mass-loss measurements are not sensitive enough. Therefore, a recession measurement technique has been developed at Glenn to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences.

  18. Endoscopic Microscopy

    PubMed Central

    Sokolov, Konstantin; Sung, Kung-Bin; Collier, Tom; Clark, Anne; Arifler, Dizem; Lacy, Alicia; Descour, Michael; Richards-Kortum, Rebecca

    2002-01-01

    In vivo endoscopic optical microscopy provides a tool to assess tissue architecture and morphology with contrast and resolution similar to that provided by standard histopathology – without need for physical tissue removal. In this article, we focus on optical imaging technologies that have the potential to dramatically improve the detection, prevention, and therapy of epithelial cancers. Epithelial pre-cancers and cancers are associated with a variety of morphologic, architectural, and molecular changes, which currently can be assessed only through invasive, painful biopsy. Optical imaging is ideally suited to detecting cancer-related alterations because it can detect biochemical and morphologic alterations with sub-cellular resolution throughout the entire epithelial thickness. Optical techniques can be implemented non-invasively, in real time, and at low cost to survey the tissue surface at risk. Our manuscript focuses primarily on modalities that currently are the most developed: reflectance confocal microscopy (RCM) and optical coherence tomography (OCT). However, recent advances in fluorescence-based endoscopic microscopy also are reviewed briefly. We discuss the basic principles of these emerging technologies and their current and potential applications in early cancer detection. We also present research activities focused on development of exogenous contrast agents that can enhance the morphological features important for cancer detection and that have the potential to allow vital molecular imaging of cancer-related biomarkers. In conclusion, we discuss future improvements to the technology needed to develop robust clinical devices. PMID:14646041

  19. Functional photoacoustic microscopy of pH

    NASA Astrophysics Data System (ADS)

    Chatni, M. Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, imbalance of pH regulation may result from or result in serious illness. Even though the regulation system of pH is very robust, tissue pH can be altered in many diseases such as cancer, osteoporosis and diabetes mellitus. Traditional high-resolution optical imaging techniques, such as confocal microscopy, routinely image pH in cells and tissues using pH sensitive fluorescent dyes, which change their fluorescence properties with the surrounding pH. Since strong optical scattering in biological tissue blurs images at greater depths, high-resolution pH imaging is limited to penetration depths of 1mm. Here, we report photoacoustic microscopy (PAM) of commercially available pH-sensitive fluorescent dye in tissue phantoms. Using both opticalresolution photoacoustic microscopy (OR-PAM), and acoustic resolution photoacoustic microscopy (AR-PAM), we explored the possibility of recovering the pH values in tissue phantoms. In this paper, we demonstrate that PAM was capable of recovering pH values up to a depth of 2 mm, greater than possible with other forms of optical microscopy.

  20. Atomic force microscopy and Langmuir–Blodgett monolayer technique to assess contact lens deposits and human meibum extracts☆

    PubMed Central

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir–Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. PMID:25620317

  1. Time reversed acoustics techniques for elastic imaging in reverberant and nonreverberant media: An experimental study of the chaotic cavity transducer concept

    NASA Astrophysics Data System (ADS)

    Van Damme, Bart; Van Den Abeele, Koen; Li, YiFeng; Matar, Olivier Bou

    2011-05-01

    In view of emerging imaging technologies based on the combination of Time Reversed Acoustics (TRA) with Nonlinear Elastic Wave Spectroscopy (NEWS) for the detection and localization of micro-damage in solids, we have investigated the benefits of chirped source signal excitation, inverse filtering techniques, and the implementation of chaotic cavity transducers to improve the quality of energy focusing, especially for weakly reverberant media. Chaotic cavity transducer focusing is defined as the hardware-software combination of a piezoelectric ceramic glued on a cavity of chaotic shape on the one hand with the reciprocal Time Reversal (or Inverse Filter) technique on the other hand. Experimental data for reverberant and nonreverberant composite plates show that the use of chirps, inverse filtering and chaotic cavity transducers significantly enhances the focusing process, and enables focusing in a nonreverberant medium using only one transducer. As a potential exploitation, the application of the chaotic cavity transducer concept for synthetic imaging is examined, revealing several properties similar to phased arrays.

  2. Debonding damage analysis in composite-masonry strengthening systems with polymer- and mortar-based matrix by means of the acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Verstrynge, E.; Wevers, M.; Ghiassi, B.; Lourenço, P. B.

    2016-01-01

    Different types of strengthening systems, based on fiber reinforced materials, are under investigation for external strengthening of historic masonry structures. A full characterization of the bond behavior and of the short- and long-term failure mechanisms is crucial to ensure effective design, compatibility with the historic substrate and durability of the strengthening solution. Therein, non-destructive techniques are essential for bond characterization, durability assessment and on-site condition monitoring. In this paper, the acoustic emission (AE) technique is evaluated for debonding characterization and localization on fiber reinforced polymer (FRP) and steel reinforced grout-strengthened clay bricks. Both types of strengthening systems are subjected to accelerated ageing tests under thermal cycles and to single-lap shear bond tests. During the reported experimental campaign, AE data from the accelerated ageing tests demonstrated the thermal incompatibility between brick and epoxy-bonded FRP composites, and debonding damage was successfully detected, characterized and located. In addition, a qualitative comparison is made with digital image correlation and infrared thermography, in view of efficient on-site debonding detection.

  3. Fabrication and study of CoF2O4 structures on Graphene substrates employing scanning probe microscopy techniques

    NASA Astrophysics Data System (ADS)

    Kuljanishvili, Irma; Surtchev, Marko; Cavin, John; Smetana, Alexander; Nattikadan, Saju

    2013-03-01

    Graphene materials are being investigated in recent years for verity of applications, including electric and optical devices and novel substrates. In this study we explore the route for assembling micro- and nanoscale architectures of magnetic complex oxide material directly on graphene surface using `direct write' parallel patterning techniques. Ferrimagnetic oxide CoFe2O4 (CFO) was prepared by sol-gel chemical route and used as `ink' for patterning structures. An array of CFO dots was fabricated using Dip Pen Nanolithography method at specific locations. Here we will discuss the surface properties of the formed dot structures of CoFe2O4 on graphene as compared to those formed on Si/SiO2 substrate. Structures fabricated on each substrate with the same ambient conditions and thermal processing show different morphology and magnetic interactions when studied using AFM and MFM techniques. We will describe our findings and results acquired on individual CFO dots of different sizes. We will also show that graphene substrate is likely influencing the magnetic characteristics of CFO dots that are formed on its surface, although the role of graphene as a substrate for CFO dot formation should be further investigated. IK acknowledges support provided by SLU start up funds.

  4. Three dimensional imaging and analysis of a single nano-device at the ultimate scale using correlative microscopy techniques

    SciTech Connect

    Grenier, A.; Barnes, J. P.; Serra, R.; Audoit, G.; Cooper, D.; Duguay, S.; Rolland, N.; Blavette, D.; Vurpillot, F.; Morin, P.; Gouraud, P.

    2015-05-25

    The analysis of a same sample using nanometre or atomic-scale techniques is fundamental to fully understand device properties. This is especially true for the dopant distribution within last generation nano-transistors such as MOSFET or FINFETs. In this work, the spatial distribution of boron in a nano-transistor at the atomic scale has been investigated using a correlative approach combining electron and atom probe tomography. The distortions present in the reconstructed volume using atom probe tomography have been discussed by simulations of surface atoms using a cylindrical symmetry taking into account the evaporation fields. Electron tomography combined with correction of atomic density was used so that to correct image distortions observed in atom probe tomography reconstructions. These corrected atom probe tomography reconstructions then enable a detailed boron doping analysis of the device.

  5. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  6. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  7. A constrained independent component analysis technique for artery-vein separation of two-photon laser scanning microscopy images of the cerebral microvasculature.

    PubMed

    Mehrabian, Hatef; Lindvere, Liis; Stefanovic, Bojana; Martel, Anne L

    2012-01-01

    Understanding brain hemodynamics as well as the coupling between microvascular hemodynamics and neural activity is important in pathophysiology of cerebral microvasculature. When local increases in neuronal activity occur, the blood volume changes in the surrounding brain vasculature. Dynamic contrast enhanced imaging (DCE) is a powerful technique that quantifies these changes in the blood flow by repeatedly imaging the vasculature over time. Separating artery, vein and capillaries in the images and extracting their intensity-time curves from the DCE image sequence is an important first step in understanding vascular function. A constrained independent component analysis (ICA) technique is developed to analyze the two photon laser scanning microscopy (2PLSM) images of rat brain microvasculature, where a bolus of fluorescent dye is administered to the vascular system as the contrast agent. A priori information inferred from the gamma variate model of cerebral microvasculature is incorporated with the data driven technique in temporal and spatial domains using two constraints. The constraints are: no independent component (IC) is allowed to have negative contribution in forming the images (positivity constraint) and the component curves follow a gamma variate function (model fitting constraint). Experimental and simulation studies are conducted to demonstrate the improved performance of the proposed constrained ICA (CICA) technique over the most commonly used classical ICA algorithm (fast-ICA) in providing physiologically meaningful ICs and its ability to separate the model following factors from other factors are shown. The efficiency of CICA in handling noise is compared to model based techniques. Its capability in providing improved separation between artery, vein and capillaries compared to the other two techniques is also demonstrated.

  8. Analysis of the effects of microalloying on glass formation in aluminum-yttrium-iron alloys by fluctuation electron microscopy and other techniques

    NASA Astrophysics Data System (ADS)

    Bondi, Karyn Spence

    Metallic glasses offer enhanced properties in processing and wear over their crystalline counterparts. Aluminum-based metallic glasses are further desired for their high strength-to-weight ratio and low cost. It has been observed that additions of very small amounts of additional elements to the base aluminum-based alloys can dramatically improve glass formability. Here, the effects of microalloying on glass formation and stability are systematically investigated by substituting 0.5 atomic percent of all 3-d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction, differential scanning calorimetry, differential thermal analysis, and transmission electron microscopy studies demonstrate enhanced glassy characteristics and stability in the microalloys. Further collaborative investigations using high-energy synchrotron X-ray diffraction, extended X-ray absorption fine structure analysis, and atom probe tomography reveal enhanced short- and medium-range order as well as a suppression of phase separation upon microalloying. A novel investigation method, fluctuation electron microscopy, was employed to quantify the extent of medium range order in the alloys by statistical analysis of microdiffraction patterns. Significant enhancements were made to the methodological protocol for this new technique, allowing for greatly enhanced experimental reproducibility.

  9. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  10. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  11. Transmission electron microscopy study of the formation of epitaxial CoSi2/Si (111) by a room-temperature codeposition technique

    NASA Technical Reports Server (NTRS)

    D'Anterroches, Cecile; Yakupoglu, H. Nejat; Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1988-01-01

    Co and Si have been codeposited on Si (111) substrates near room temperature in a stoichiometric 1:2 ratio in a molecular beam epitaxy system. Annealing of these deposits yields high-quality single-crystal CoSi2 layers. Transmission electron microscopy has been used to examine as-deposited layers and layers annealed at 300, 500, and 600 C. Single-crystal epitaxial grains of CoSi2 embedded in a matrix of amorphous Co/Si are observed in as-deposited samples, while the layer is predominantly single-crystal, inhomogeneously strained CoSi2 at 300 C. At 600 C, a homogeneously strained single-crystal layer with a high density of pinholes is observed. In contrast to other solid phase epitaxy techniques used to grow CoSi2 on Si (111), no intermediate silicide phases are observed prior to the formation of CoSi2.

  12. Spatially correlated structural and optical characterization of a single InGaAs quantum well fin selectively grown on Si by microscopy and cathodoluminescence techniques

    NASA Astrophysics Data System (ADS)

    David, S.; Roque, J.; Rochat, N.; Bernier, N.; Piot, L.; Alcotte, R.; Cerba, T.; Martin, M.; Moeyaert, J.; Bogumilowizc, Y.; Arnaud, S.; Bertin, F.; Bassani, F.; Baron, T.

    2016-05-01

    Structural and optical properties of InGaAs quantum well fins (QWFs) selectively grown on Si using the aspect ratio trapping (ART) method in 200 nm deep SiO2 trenches are studied. A new method combining cathodoluminescence, transmission electron microscopy, and precession electron diffraction techniques is developed to spatially correlate the presence of defects and/or strain with the light emission properties of a single InGaAs QWF. Luminescence losses and energy shifts observed at the nanoscale along InGaAs QWF are correlated with structural defects. We show that strain distortions measured around threading dislocations delimit both high and low luminescent areas. We also show that trapped dislocations on SiO2 sidewalls can also result in additional distortions. Both behaviors affect optical properties of QWF at the nanoscale. Our study highlights the need to improve the ART growth method to allow integration of new efficient III-V optoelectronic components on Si.

  13. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images.

    PubMed

    Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura

    2016-01-01

    The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset. PMID:27659985

  14. Acoustic Emission tomography based on simultaneous algebraic reconstruction technique to visualize the damage source location in Q235B steel plate

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Xu, Feiyun; Xu, Bingsheng

    2015-12-01

    Acoustic Emission (AE) tomography based on Simultaneous Algebraic Reconstruction Technique (SART), which combines the traditional location algorithm with the SART algorithm by using AE events as its signal sources, is a new visualization method for inspecting and locating the internal damages in the structure. In this paper, the proposed method is applied to examine and visualize two man-made damage source locations in the Q235B steel plate to validate its effectiveness. Firstly, the Q235B steel plate with two holes specimen is fabricated and the pencil lead break (PLB) signal is taken as the exciting source for AE tomography.Secondly, A 6-step description of the SART algorithm is provided and the three dimensional(3D)image contained the damage source locations is visualized by using the proposed algorithm in terms of a locally varying wave velocity distribution. It is shown that the AE tomography based on SART has great potential in the application of structure damage detection. Finally, to further improve the quality of 3D imaging, the Median Filter and the Adaptive Median Filter are used to reduce the noises resulting from AE tomography. The experiment results indicate that Median Filter is the optimal method to remove Salt & Pepper noises.

  15. Acoustic energy shaping

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D. (Inventor)

    1977-01-01

    A suspended mass is shaped by melting all or a selected portion of the mass and applying acoustic energy in varying amounts to different portions of the mass. In one technique for forming an optical waveguide slug, a mass of oval section is suspended and only a portion along the middle of the cross-section is heated to a largely fluid consistency. Acoustic energy is applied to opposite edges of the oval mass to press the unheated opposite edge portions together so as to form bulges at the middle of the mass. In another technique for forming a ribbon of silicon for constructing solar cells, a cylindrical thread of silicon is drawn from a molten mass of silicon, and acoustic energy is applied to opposite sides of the molten thread to flatten it into a ribbon.

  16. Effectiveness of Four Different Final Irrigation Activation Techniques on Smear Layer Removal in Curved Root Canals : A Scanning Electron Microscopy Study

    PubMed Central

    Ahuja, Puneet; Nandini, Suresh; Ballal, Suma; Velmurugan, Natanasabapathy

    2014-01-01

    Objective: The aim of this study was to assess the efficacy of apical negative pressure (ANP), manual dynamic agitation (MDA), passive ultrasonic irrigation (PUI) and needle irrigation (NI) as final irrigation activation techniques for smear layer removal in curved root canals. Materials and Methods: Mesiobuccal root canals of 80 freshly extracted maxillary first molars with curvatures ranging between 25° and 35° were used. A glide path with #08–15 K files was established before cleaning and shaping with Mtwo rotary instruments (VDW, Munich, Germany) up to size 35/0.04 taper. During instrumentation, 1 ml of 2.5% NaOCl was used at each change of file. Samples were divided into 4 equal groups (n=20) according to the final irrigation activation technique: group 1, apical negative pressure (ANP) (EndoVac); group 2, manual dynamic agitation (MDA); group 3, passive ultrasonic irrigation (PUI); and group 4, needle irrigation (NI). Root canals were split longitudinally and subjected to scanning electron microscopy. The presence of smear layer at coronal, middle and apical levels was evaluated by superimposing 300-μm square grid over the obtained photomicrographs using a four-score scale with X1,000 magnification. Results: Amongst all the groups tested, ANP showed the overall best smear layer removal efficacy (p < 0.05). Removal of smear layer was least effective with the NI technique. Conclusion: ANP (EndoVac system) can be used as the final irrigation activation technique for effective smear layer removal in curved root canals. PMID:24910670

  17. Ultra-precision geometrical measurement technique based on a statistical random phase clock combined with acoustic-optical deflection

    NASA Astrophysics Data System (ADS)

    Ekberg, Peter; Stiblert, Lars; Mattsson, Lars

    2010-12-01

    Mask writers and large area measurements systems are key systems for production of large liquid crystal displays (LCD) and image devices. With position tolerances in the sub-µm range over square meter sized masks, the metrology challenges are indeed demanding. Most systems used for this type of measurement rely on a microscope camera imaging system, provided with a charge coupled device, a complementary metal-oxide-semiconductor sensor or a time delay and integration sensor to transform the optical image to a digital gray-level image. From this image, processing algorithms are used to extract information such as location of edges. The drawback of this technique is the vast amount of data captured but never used. This paper presents a new approach for ultra-high-precision lateral measurement at nm-levels of chrome/glass patterns separated by centimeters, so called registration marks, on masks used for the LCD manufacturing. Registration specifications demand a positioning accuracy <200 nm and critical dimensions, i.e. chrome line widths, which need to be accurate in the 80 nm range. This accuracy has to be achieved on glass masks of 2.4 × 1.6 m2 size. Our new measurement method is based on nm-precise lateral scanning of a focused laser beam combined with statistical random phase sampling of the reflected signal. The precise scanning is based on an extremely accurate time measuring device controlling an acousto optic deflector crystal. The method has been successfully applied in measuring the 4 µm pitch of reference gratings at standard deviations σ of 0.5 nm and registration marks separated by several cm at standard deviations of 23 nm.

  18. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  19. Determining Equilibrium Position For Acoustical Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  20. Acoustic metafluids.

    PubMed

    Norris, Andrew N

    2009-02-01

    Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic metafluids are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials. The derivation uses the notion of finite deformation to define the transformation of one region to another. The main result is found by considering energy density in the original and transformed regions. Properties of acoustic metafluids are discussed, and general conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially opens up the possibility of achieving broadband cloaking. PMID:19206861

  1. Acoustics: Motion controlled by sound

    NASA Astrophysics Data System (ADS)

    Neild, Adrian

    2016-09-01

    A simple technique has been developed that produces holograms made of sound waves. These acoustic landscapes are used to manipulate microscale objects, and offer great potential in medical imaging and selective heating. See Letter p.518

  2. Unconventional Specimen Preparation Techniques Using High Resolution Low Voltage Field Emission Scanning Electron Microscopy to Study Cell Motility, Host Cell Invasion, and Internal Cell Structures in Toxoplasma gondii

    NASA Astrophysics Data System (ADS)

    Schatten, Heide; Ris, Hans

    2002-04-01

    Apicomplexan parasites employ complex and unconventional mechanisms for cell locomotion, host cell invasion, and cell division that are only poorly understood. While immunofluorescence and conventional transmission electron microscopy have been used to answer questions about the localization of some cytoskeletal proteins and cell organelles, many questions remain unanswered, partly because new methods are needed to study the complex interactions of cytoskeletal proteins and organelles that play a role in cell locomotion, host cell invasion, and cell division. The choice of fixation and preparation methods has proven critical for the analysis of cytoskeletal proteins because of the rapid turnover of actin filaments and the dense spatial organization of the cytoskeleton and its association with the complex membrane system. Here we introduce new methods to study structural aspects of cytoskeletal motility, host cell invasion, and cell division of Toxoplasma gondii, a most suitable laboratory model that is representative of apicomplexan parasites. The novel approach in our experiments is the use of high resolution low voltage field emission scanning electron microscopy (LVFESEM) combined with two new specimen preparation techniques. The first method uses LVFESEM after membrane extraction and stabilization of the cytoskeleton. This method allows viewing of actin filaments which had not been possible with any other method available so far. The second approach of imaging the parasite's ultrastructure and interactions with host cells uses semithick sections (200 nm) that are resin de-embedded (Ris and Malecki, 1993) and imaged with LVFESEM. This method allows analysis of structural detail in the parasite before and after host cell invasion and interactions with the membrane of the parasitophorous vacuole as well as parasite cell division.

  3. Optical and Acoustical Techniques for Non-viral Gene Delivery to Mammalian Cells and In-situ Study of Cytoskeletal Mechanics

    NASA Astrophysics Data System (ADS)

    Ma, Zili

    surface acoustic waves, which not only achieved a high efficiency of cells permeabilization in a quick speed, but also allowed us to observe the permeabilization process in real time by microscope. This device is also compatible with biophotonics studies based on fs laser, which can be further developed as a powerful tool for optical gene delivery with the capability of precisely controlling the fluid on-chip by SAW. SAW devices could also achieve exogenous gene delivery through the cell membrane without the need of adding chemical agents. Our results showed that the membrane of mammalian adherent cells could be effectively perforated transiently by applying a SAW. The transfection of pEGFP plasmids into endothelial cells was carried out successfully via this SAW-induced cell perforation. The expression of GFP was observed after 24-hour incubation subsequent to the SAW treatment. In regard to the application of fs lasers in cellular and subcellular level studies, we applied the optical nanoscissoring technique based on fs lasers in biomechanical studies to study the mechanical properties of single SF in-situ. Integrated into a confocal microscope, the fs laser showed great power in manipulating targeted in-situ subcellular structures under real-time imaging without damaging nearby regions. Here, how oxidative challenges would alter the mechanical properties of SFs in myoblasts was firstly investigated using the optical nanoscissoring technique to comprehend the whole picture of muscle tissue injury and repair from the basics. The prestress of stress fibers after the oxidative challenges was found through our modified viscoelastic retraction model and experiment result.

  4. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper.

  5. Axial Plane Optical Microscopy

    PubMed Central

    Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wong, Zi Jing; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang

    2014-01-01

    We present axial plane optical microscopy (APOM) that can, in contrast to conventional microscopy, directly image a sample's cross-section parallel to the optical axis of an objective lens without scanning. APOM combined with conventional microscopy simultaneously provides two orthogonal images of a 3D sample. More importantly, APOM uses only a single lens near the sample to achieve selective-plane illumination microscopy, as we demonstrated by three-dimensional (3D) imaging of fluorescent pollens and brain slices. This technique allows fast, high-contrast, and convenient 3D imaging of structures that are hundreds of microns beneath the surfaces of large biological tissues. PMID:25434770

  6. Axial Plane Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wong, Zi Jing; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang

    2014-12-01

    We present axial plane optical microscopy (APOM) that can, in contrast to conventional microscopy, directly image a sample's cross-section parallel to the optical axis of an objective lens without scanning. APOM combined with conventional microscopy simultaneously provides two orthogonal images of a 3D sample. More importantly, APOM uses only a single lens near the sample to achieve selective-plane illumination microscopy, as we demonstrated by three-dimensional (3D) imaging of fluorescent pollens and brain slices. This technique allows fast, high-contrast, and convenient 3D imaging of structures that are hundreds of microns beneath the surfaces of large biological tissues.

  7. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  8. Virtual touch tissue imaging on acoustic radiation force impulse elastography: a new technique for differential diagnosis between benign and malignant thyroid nodules.

    PubMed

    Zhang, Yi-Feng; He, Yong; Xu, Hui-Xiong; Xu, Xiao-Hong; Liu, Chang; Guo, Le-Hang; Liu, Lin-Na; Xu, Jun-Mei

    2014-04-01

    Objectives- Acoustic radiation force impulse elastography is a newly developed ultrasound elasticity imaging technique that included both Virtual Touch tissue quantification and Virtual Touch tissue imaging (VTI; Siemens Medical Solutions, Mountain View, CA). This study aimed to evaluate the usefulness of VTI in differentiating malignant from benign thyroid nodules. Methods- This study included 192 consecutive patients with thyroid nodules (n = 219) who underwent surgery for compressive symptoms or suspicion of malignancy. Tissue stiffness on VTI elastography was scored from 1 (soft) to 6 (hard). The VTI scores between malignant and benign thyroid nodules were compared. The intraobserver and interobserver agreement for VTI elastography was also assessed. Results- On VTI elastography: score 1 was found in 84 nodules (all benign); score 2 in 37 nodules (3 papillary carcinomas and 34 benign nodules); score 3 in 25 nodules (1 medullary carcinoma, 6 papillary carcinomas, and 18 benign nodules); score 4 in 53 nodules (50 papillary carcinomas and 3 benign nodules); score 5 in 17 nodules (14 papillary carcinomas and 3 benign nodules); and score 6 in 3 nodules (all papillary carcinomas). A VTI elasticity score of 4 or greater was highly predictive of malignancy (P< .01), and the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 87.0% (67 of 77), 95.8% (136 of 142), 91.8% (67 of 73), 93.1% (136 of 146), and 92.7% (203 of 219), respectively. The κ values were 0.69 for intraobserver agreement and 0.85 for interobserver agreement. Conclusions- Virtual Touch tissue elasticity imaging has great potential as an adjunctive tool combined with conventional sonography for differential diagnosis between benign and malignant thyroid nodules.

  9. High signal-to-noise ratio acoustic sensor using phase-shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices

  10. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  11. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  12. Super resolution fluorescence microscopy

    PubMed Central

    Huang, Bo; Bates, Mark; Zhuang, Xiaowei

    2010-01-01

    Achieving a spatial resolution that is not limited by the diffraction of light, recent developments of super-resolution fluorescence microscopy techniques allow the observation of many biological structures not resolvable in conventional fluorescence microscopy. New advances in these techniques now give them the ability to image three-dimensional (3D) structures, measure interactions by multicolor colocalization, and record dynamic processes in living cells at the nanometer scale. It is anticipated that super-resolution fluorescence microscopy will become a widely used tool for cell and tissue imaging to provide previously unobserved details of biological structures and processes. PMID:19489737

  13. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  14. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  15. Traditional coating techniques in scanning electron microscopy compared to uncoated charge compensator technology: looking at human blood fibrin networks with the ZEISS ULTRA Plus FEG-SEM.

    PubMed

    Pretorius, Etheresia

    2011-04-01

    Scanning electron microscopy (SEM) studies surface morphology. Biological material needs to be coated to render the material conductive, and gold coating is traditionally used, although other coating material like carbon and ruthenium vapors may also be used. With modern SEM technology (e.g., ZEISS ULTRA Plus FEG-SEM), we are able to work at very low kilovolts and also view fine surface structure in much better detail than with previous older technology. Some machines also allow for the study of uncoated material, although this is usually not done with biological material. This study focuses on surface clarity by comparing gold, ruthenium vapor, and carbon coating techniques for biological material. Human fibrin networks are used as example. Uncoated specimens are also viewed with a ZEISS ULTRA Plus FEG-SEM because of its unique nitrogen charge compensator, and here, the first micrographs for uncoated human fibrin networks versus carbon, gold, and ruthenium coating are shown. We conclude that gold coating for biological material is not preferable with the latest SEM machines, as this method forms gold islands on top of the biological material and therefore produces a false surface morphology.

  16. Novel comparison of microscopy and diffraction techniques on the structure of iron oxide nanoparticle monolayers transferred by Langmuir-Schaefer method

    SciTech Connect

    Stanley, Jacob; Dai, Yeling; Boucheron, Leandra; Shpyrko, Oleg E-mail: oshpyrko@physics.ucsd.edu; Lin, Binhua E-mail: oshpyrko@physics.ucsd.edu; Meron, Mati

    2015-06-15

    Iron oxide nanoparticles undergo self-assembly into well-ordered monolayer films of macroscopic size at the air-water interface. This self-assembly process is the result of the van der Waals forces between the constituent particles. For roughly spherical particles, this monolayer is a 2D hexagonal close packed lattice. With Grazing Incidence X-Ray Diffraction (GID), one can obtain global statistical information about the film’s spacing and correlation length. Herein, we demonstrate that comparable structural information can be obtained by a novel Fourier transform analysis method applied to Scanning Electron Microscopy (SEM) images taken of the film after it has been transferred to a silicon substrate. This consists of using numerical methods to isolate the lattice structure of the monolayer in the SEM image to which a 2D discrete Fourier Transform is applied and the result integrated. This results in Bragg peak information akin to that obtained from GID, whose structure shows the same hexagonal close packed lattice with similar spacing and of greater peak contrast. This analysis technique may prove to be a suitable alternative or compliment to GID for many applications.

  17. Microstructural investigation of the oxidation behavior of Cu in Ag-coated Cu films using a focused ion beam transmission electron microscopy technique

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hwan; Lee, Jong-Hyun

    2016-06-01

    With the aim of elucidating a detailed mechanism for the oxidation behavior in submicron Cu particles coated with a thin Ag layer, the dewetting of Ag and the oxidation behavior of Cu in Ag-coated Cu films upon heating were investigated with a focused ion beam transmission electron microscopy technique. A slight dewetting of the Ag layer began at approximately 200 °C and aggregates of Cu2O particles were formed on the Ag layer, indicating that the initial Cu2O phase was formed on the thin Ag layer. Voids were formed in the Cu layer because of Cu atoms diffusing through the thin Ag layer to be oxidized in the upper Cu2O aggregates. After being heated to 250 °C, the Ag layer became more irregular, and in some regions, it disappeared because of intensive dewetting. The number and average size of the voids also increased. At 300 °C, a hollow structure with a Cu2O shell was formed. Pillar-like structures of unoxidized Cu and large voids were found under the Cu2O layer.

  18. Determination of the easy axes of small ferromagnetic precipitates in a bulk material by combined magnetic force microscopy and electron backscatter diffraction techniques.

    PubMed

    Batista, L; Rabe, U; Hirsekorn, S

    2014-11-01

    A method to determine the magnetic easy axes of micro- and nanoscopic ferromagnetic precipitates embedded in a bulk material is proposed and applied to globular cementite (Fe₃C) embedded in a ferrite matrix. The method combines magnetic force microscopy (MFM) with electron backscattered diffraction (EBSD) measurements. Magnetic domain structures in globular and in lamellar cementite precipitates in unalloyed pearlitic steels were imaged using MFM. The domain structure of the precipitates was analyzed in dependency of their size, shape and crystallographic orientation. It was found that the magnetic moments of the cementite precipitates are highly geared to their crystalline axes. The combined MFM and EBSD studies allow the conclusion that the cementite easy direction of magnetization is the long [010] axis. For fine lamellae cementite the determination of their crystallographic orientations using electron diffraction techniques is very difficult. With the previous knowledge of the behavior of the domain structure in globular cementite, the crystalline orientations of the fine lamellae cementite can be estimated by simply observing the magnetic microstructures and the topographic profiles.

  19. Immunogold electron microscopy of soluble proteins: localization of Bet v I major allergen in ultra-thin sections of birch pollen after anhydrous fixation techniques.

    PubMed

    Grote, M

    1991-10-01

    To localize the highly water-soluble major allergen Bet v I in ultra-thin sections of birch pollen, pollen grains were cracked, air-dried, and processed for electron microscopy using one of the following preparation techniques: fixation in aqueous p-formaldehyde + cetylpyridinium chloride; fixation in p-formaldehyde vapor; fixation in benzoquinone vapor; inert dehydration; or no fixation. Afterwards the pollen grains were embedded in Lowicryl K4M resin at low temperature. Ultra-thin sections were cut and incubated with a monoclonal antibody against Bet v I, followed by a gold-labeled secondary antibody. In some experiments, commercial rabbit IgG antibodies against birth pollen allergens were also used, followed by incubation with the protein A-gold complex. Bet v I could be localized only after vapor fixation and in the inert dehydrated specimens. Best preservation of ultrastructure and antigenicity was obtained after p-formaldehyde vapor fixation. Bet v I antibody binding sites were detected only in the cytoplasmic matrix of the pollen grain, never in the pollen wall. Commercial rabbit antibodies bound to cytoplasm and wall of all prepared specimens, even after aqueous fixation. This might be explained by the assumption that these antibodies recognize a variety of antigenic and allergenic structures, not all of which are so highly soluble as Bet v I.

  20. Early imaging of integration response to polypropylene mesh in abdominal wall by environmental scanning electron microscopy: comparison of two placement techniques and correlation with tensiometric studies.

    PubMed

    Ferrando, J M; Vidal, J; Armengol, M; Huguet, P; Gil, J; Manero, J M; Planell, J A; Segarra, A; Schwartz, S; Arbos, M A

    2001-07-01

    The repair of incisional hernias has taken advantage of the strength provided by prosthetic mesh grafts, but the best position for inserting the materials has not been conclusively established. Environmental scanning electron microscopy (ESEM) provides imaging of biologic samples with minimal manipulation. We used ESEM for early imaging of the integration response to polypropylene meshes placed in two anatomic positions in the abdominal wall and correlated results with tensiometric studies. Two macroporous polypropylene prostheses were implanted in a rat model--one on the abdominal aponeurotic layer and one on the peritoneal surface--without creating a wall defect. Studies were performed over implantation intervals of 7, 15, and 30 days in strips obtained from the polypropylene fiber-receptor repair tissue interface. Microscopic appearance, tensile strength, percent elongation, and stiffness were evaluated. Meshes implanted on the abdominal aponeurotic layer showed better early tissue incorporation (higher collagen deposition, capillary density, cell accumulation) and increased tensile strength, reflecting tighter anchorage to the abdominal wall. The percent elongation increased from day 7 to day 30 after implantation, mainly in the deep stratum. The ESEM images correlated well with biomechanical results, indicating the potential of this technique as a powerful, effective tool for use in wound-healing studies.

  1. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  2. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  3. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  4. Acoustic Imaging in Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Chang, Hsiang-Kuang; Sun, Ming-Tsung; LaBonte, Barry; Chen, Huei-Ru; Yeh, Sheng-Jen; Team, The TON

    1999-04-01

    The time-variant acoustic signal at a point in the solar interior can be constructed from observations at the surface, based on the knowledge of how acoustic waves travel in the Sun: the time-distance relation of the p-modes. The basic principle and properties of this imaging technique are discussed in detail. The helioseismic data used in this study were taken with the Taiwan Oscillation Network (TON). The time series of observed acoustic signals on the solar surface is treated as a phased array. The time-distance relation provides the phase information among the phased array elements. The signal at any location at any time can be reconstructed by summing the observed signal at array elements in phase and with a proper normalization. The time series of the constructed acoustic signal contains information on frequency, phase, and intensity. We use the constructed intensity to obtain three-dimensional acoustic absorption images. The features in the absorption images correlate with the magnetic field in the active region. The vertical extension of absorption features in the active region is smaller in images constructed with shorter wavelengths. This indicates that the vertical resolution of the three-dimensional images depends on the range of modes used in constructing the signal. The actual depths of the absorption features in the active region may be smaller than those shown in the three-dimensional images.

  5. Electrochemical Processes Enhanced by Acoustic Liquid Manipulation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2004-01-01

    Acoustic liquid manipulation is a family of techniques that employ the nonlinear acoustic effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. Researchers at the NASA Glenn Research Center are exploring new methods of manipulating liquids for a variety of space applications, and we have found that acoustic techniques may also be used in the normal Earth gravity environment to enhance the performance of existing fluid processes. Working in concert with the NASA Commercial Technology Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation (Elgin, IL), researchers at Glenn have applied nonlinear acoustic principles to industrial applications. Collaborating with Alchemitron Corporation, we have adapted the devices to create acoustic streaming in a conventional electroplating process.

  6. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  7. An overview of Arctic Ocean acoustics

    NASA Astrophysics Data System (ADS)

    Hutt, Dan

    2012-11-01

    This paper presents a review of the underwater acoustics of the Arctic Ocean. It discusses the main features of the underwater acoustic environment and how they are so strongly affected by the presence of ice cover. The paper also discusses the history of Arctic Ocean acoustics research, how the motivation was originally military in character during the Cold War and how it changed to being driven by environmental considerations today. Originally, the physics of the Arctic Ocean was studied in order to predict its acoustic properties, and now acoustic techniques are used to help understand its physical environment.

  8. Huge seafloor movements associated with the 2011 off the Pacific coast of Tohoku Earthquake observed by GPS/acoustic combination technique

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Sato, M.; Ujihara, N.; Watanabe, S.; Fujita, M.; Mochizuki, M.; Asada, A.

    2011-12-01

    The Hydrographic and Oceanographic Department, Japan Coast Guard, have been developing precise seafloor positioning systems using the GPS/acoustic combination technique under technical cooperation with the Institute of Industrial Science, the University of Tokyo and carrying out campaign observations along the major trenches in the Pacific Ocean, such as the Japan Trench and the Nankai Trough. The primary purpose of these observations is to detect and monitor the crustal deformation caused by the subduction of the oceanic plate near the plate boundary where huge earthquakes repeatedly occur. On 11 March 2011, a large interplate earthquake [Mw = 9.0] occurred at the plate boundary off Miyagi Prefecture, northeastern Japan. Various studies have been under way to understand the mechanism of occurrence of this earthquake. For example, the Geospatial Information Authority of Japan (GSI) has reported coseismic displacements on land, on the basis of the dense GPS network. The largest displacement has been detected at the Oshika peninsula, amounting to about 5 m toward ESE and about 1 m downward. Because the Oshika peninsula is located about 130 km away from the epicenter of the earthquake, it is preferable to measure crustal movements closer to the focal regions, that is, on the seafloor, to better constrain the focal mechanism of the event. In order to monitor crustal movements offshore, we have been carrying out seafloor geodetic observations. Five sea-floor reference points were installed off the Tohoku region between 2000 and 2004 with campaign observations carried out three times a year on average. After the event, we conducted observations at these sites. Comparison between before and after the event yielded coseismic displacements of 5 to 24 m toward ESE and -0.8 to 3 m upward. In particular, at reference point near the epicenter, we detected a huge coseismic displacement of about 24 m toward ESE and about 3 m upward. This is more than four times larger than that

  9. Acoustic Microscope Inspection of Cylindrical Butt Laser Welds

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.; Severin, F.

    Presented work was made in order to develop the ultrasound technique for quality control of critical butt laser welds in automotive production. The set of powertrain assemblies was tested by high resolution acoustic microscopy method. The pulse-echo Tessonics AM 1102 scanning acoustic microscope was modified to accommodate cylindrical configuration of the parts. The spherically focused transducers with frequencies 15, 25 and 50 MHz were used; ultrasonic beam was focused on the joint area. Three-dimensional acoustic images were obtained and analyzed. The clear distinction between weld seam and remaining gap was demonstrated on the B- and C-scans representation. Seam depth varying from 0 up to 3.2 mm was measured along the weld. Different types of defects (porosity, cracks, lack of fusion) were detected and classified. The optimized analytical procedures for signal processing and advanced seam visualization were determined. The results were used as a basis for development of specialized instrumentation for inspection of this kind of parts in industrial environment. The technical requirements were established and the general design of new cylindrical acoustical scanner was made.

  10. Advanced microscopy techniques used for comparison of UVA- and γ-irradiation-induced DNA damage in the cell nucleus and nucleolus.

    PubMed

    Stixová, L; Hrušková, T; Sehnalová, P; Legartová, S; Svidenská, S; Kozubek, S; Bártová, E

    2014-01-01

    Every day, genomes are affected by genotoxic factors that create multiple DNA lesions. Several DNA repair systems have evolved to counteract the deleterious effects of DNA damage. These systems include a set of DNA repair mechanisms, damage tolerance processes, and activation of cell-cycle checkpoints. This study describes selected confocal microscopy techniques that investigate DNA damage-related nuclear events after UVA- and γ-irradiation and compare the DNA damage response (DDR) induced by the two experimental approaches. In both cases, we observed induction of the nucleotide excision repair (NER) pathway and formation of localized double-strand breaks (DSBs). This was confirmed by analysis of cyclobutane pyrimidine dimers (CPDs) in the DNA lesions and by increased levels of γH2AX and 53BP1 proteins in the irradiated genome. DNA damage by UVA-lasers was potentiated by either BrdU or Hoechst 33342 pre-sensitization and compared to non-photosensitized cells. DSBs were also induced without BrdU or Hoechst 33342 pre-treatment. Interestingly, no cyclobutane pyrimidine dimers (CPDs) were detected after 405 nm UVA laser micro-irradiation in non-photosensitized cells. The effects of UVA and γ-irradiation were also studied by silver staining of nucleolar organizer regions (AgNORs). This experimental approach revealed changes in the morphology of nucleoli after genome injury. Additionally, to precisely characterize DDR in locally induced DNA lesions, we analysed the kinetics of the 53BP1 protein involved in DDR by fluorescence recovery after photobleaching (FRAP).

  11. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  12. Simplified Rotation In Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  13. Stable And Oscillating Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  14. Development of hydroacoustical techniques for the monitoring and classification of benthic habitats in Puck Bay: Modeling of acoustic waves scattering by seagrass

    NASA Astrophysics Data System (ADS)

    Raczkowska, A.; Gorska, N.

    2012-12-01

    Puck Bay is an area of high species biodiversity belonging to the Coastal Landscape Park of Baltic Sea Protected Areas (BSPA) and is also included in the list of the World Wide Fund for Nature (WWF) and covered by the protection program "Natura 2000". The underwater meadows of the Puck Bay are important for Europe's natural habitats due to their role in enhancing the productivity of marine ecosystems and providing shelter and optimal feeding conditions for many marine organisms. One of the dominant species comprising the underwater meadows of the Southern Baltic Sea is the seagrass Zostera marina. The spatial extent of underwater seagrass meadows is altered by pollution and eutrophication; therefore, to properly manage the area one must monitor its ecological state. Remote acoustic methods are useful tools for the monitoring of benthic habitats in many marine areas because they are non-invasive and allow researchers to obtain data from a large area in a short period of time. Currently there is a need to apply these methods in the Baltic Sea. Here we present an analysis of the mechanism of scattering of acoustic waves on seagrass in the Southern Baltic Sea based on the numerical modeling of acoustic wave scattering by the biological tissues of plants. The study was conducted by adapting a model developed on the basis of DWBA (Distorted Wave Born Approximation) developed by Stanton and Chu (2005) for fluid-like objects, including the characteristics of the Southern Baltic seagrass. Input data for the model, including the morphometry of seagrass leaves, their angle of inclination and the density plant cover, was obtained through the analysis of biological materials collected in the Puck Bay in the framework of a research project financed by the Polish Government (Development of hydroacoustic methods for studies of underwater meadows of Puck Bay, 6P04E 051 20). On the basis of the developed model, we have analyzed the dependence of the target strength of a single

  15. Holograms for acoustics.

    PubMed

    Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer

    2016-01-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound. PMID:27652563

  16. Holograms for acoustics

    NASA Astrophysics Data System (ADS)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  17. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  18. Scanning Acoustic Microscope of 3D-Interconnect

    NASA Astrophysics Data System (ADS)

    Wai Kong, Lay; Diebold, A. C.; Rudack, A.; Arkalgud, S.

    2009-09-01

    The College of Nanoscale Science and Engineering of the University at Albany in collaboration with International SEMATECH is investigating the use of Scanning Acoustic Microscope (SAM) for analyzing 3D Interconnects. SAM is a non-destructive metrology technique which utilizes high frequency ultrasound to generate a microscopic image of the internal parts of a specimen. The goal of this project is to develop microscopic techniques for evaluating Through-Silicon Vias (TSVs) for 3D-Interconnects. Preliminary data shows voids and other defects in the interface between bonded wafers as shown in Figure 1. Our SAM laboratory system operates at 230 MHz and has a spatial resolution of 5-10 μm and focal length of 5.9 mm on a silicon wafer. The spatial resolution and sampling depth depend on the ultrasonic frequency, sound velocity, focal length and diameter of piezoelectric crystal. Typically, the silicon wafers have a thickness of 775 μm before they are bonded. Our initial work is focused on blanket wafers in order to develop the bonding process. The next step is to bond wafers with test die where the patterning obscures the interface. This paper will discuss the limitations of SAM and compare it to infrared microscopy which is another important imaging capability for 3D Interconnect. We also discuss the current status of research into more advanced acoustic microscopy methods and how this might impact 3D Interconnect imaging.

  19. Opto-acoustic cell permeation

    SciTech Connect

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  20. Quantitative optical phase microscopy.

    PubMed

    Barty, A; Nugent, K A; Paganin, D; Roberts, A

    1998-06-01

    We present a new method for the extraction of quantitative phase data from microscopic phase samples by use of partially coherent illumination and an ordinary transmission microscope. The technique produces quantitative images of the phase profile of the sample without phase unwrapping. The technique is able to recover phase even in the presence of amplitude modulation, making it significantly more powerful than existing methods of phase microscopy. We demonstrate the technique by providing quantitatively correct phase images of well-characterized test samples and show that the results obtained for more-complex samples correlate with structures observed with Nomarski differential interference contrast techniques.

  1. Low temperature and anhydrous electron microscopy techniques to observe the infection process of the bacterial pathogen Xanthomonas fragariae on strawberry leaves.

    PubMed

    Allan-Wojtas, P; Hildebrand, P D; Braun, P G; Smith-King, H L; Carbyn, S; Renderos, W E

    2010-09-01

    Preserving the structural arrangement of the components of a bacterial infection process within a plant for microscopy study is a technical challenge because of the different requirements of each component for optimal preservation and visualization. We used low temperature scanning electron microscopy (cryo-SEM), anhydrous fixation at ambient temperature and freeze-substitution for transmission electron microscopy to examine fractured and sectioned strawberry leaves infected with Xanthomonas fragariae. Cryo-SEM images of fractured samples showed the bacterial colonization of mesophyll air spaces in the leaf, limited by the vascular bundles and the orientation and packing of bacteria in extracellular polysaccharide. Transmission electron microscopy of samples fixed using osmium tetroxide dissolved in FC-72 solvent at ambient temperature showed that the entire plant/bacteria/extracellular polysaccharide system was preserved in situ, and showed plasmolysis of mesophyll cells and disruption of organelles. In freeze-substitution samples, osmium tetroxide in FC-72 solvent gave superior preservation of the extracellular polysaccharide as compared to a conventional cocktail. In addition, strands believed to be xanthan were preferentially contrasted to show their density and orientation around the bacterial cells. We conclude that anhydrous fixation using osmium tetroxide in FC-72 at ambient temperature gave the best preservation of the entire system, and freeze-substitution using this same fixative enhanced the visualization of strands in the biofilm. PMID:20701664

  2. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  3. Imaging interferometric microscopy.

    PubMed

    Schwarz, Christian J; Kuznetsova, Yuliya; Brueck, S R J

    2003-08-15

    We introduce and demonstrate a new microscopy concept: imaging interferometric microscopy (IIM), which is related to holography, synthetic-aperture imaging, and off-axis-dark-field illumination techniques. IIM is a wavelength-division multiplex approach to image formation that combines multiple images covering different spatial-frequency regions to form a composite image with a resolution much greater than that permitted by the same optical system using conventional techniques. This new type of microscopy involves both off-axis coherent illumination and reinjection of appropriate zero-order reference beams. Images demonstrate high resolution, comparable with that of a high-numerical-aperture (NA) objective, while they retain the long working distance, the large depth of field, and the large field of view of a low-NA objective. A Fourier-optics model of IIM is in good agreement with the experiment. PMID:12943079

  4. Acoustic emission from composite materials. [nondestructive tests

    NASA Technical Reports Server (NTRS)

    Visconti, I. C.; Teti, R.

    1979-01-01

    The two basic areas where the acoustic emission (AE) technique can be applied are materials research and the evaluation of structural reliability. This experimental method leads to a better understanding of fracture mechanisms and is an NDT technique particularly well suited for the study of propagating cracks. Experiments are described in which acoustic emissions were unambiguously correlated with microstructural fracture mechanisms. The advantages and limitations of the AE technique are noted.

  5. Acoustical sensing of cardiomyocyte cluster beating

    SciTech Connect

    Tymchenko, Nina; Kunze, Angelika; Dahlenborg, Kerstin; Svedhem, Sofia; Steel, Daniella

    2013-06-14

    Highlights: •An example of the application of QCM-D to live cell studies. •Detection of human pluripotent stem cell-derived cardiomyocyte cluster beating. •Clusters were studied in a thin liquid film and in a large liquid volume. •The QCM-D beating profile provides an individual fingerprint of the hPS-CMCs. -- Abstract: Spontaneously beating human pluripotent stem cell-derived cardiomyocytes clusters (CMCs) represent an excellent in vitro tool for studies of human cardiomyocyte function and for pharmacological cardiac safety assessment. Such testing typically requires highly trained operators, precision plating, or large cell quantities, and there is a demand for real-time, label-free monitoring of small cell quantities, especially rare cells and tissue-like structures. Array formats based on sensing of electrical or optical properties of cells are being developed and in use by the pharmaceutical industry. A potential alternative to these techniques is represented by the quartz crystal microbalance with dissipation monitoring (QCM-D) technique, which is an acoustic surface sensitive technique that measures changes in mass and viscoelastic properties close to the sensor surface (from nm to μm). There is an increasing number of studies where QCM-D has successfully been applied to monitor properties of cells and cellular processes. In the present study, we show that spontaneous beating of CMCs on QCM-D sensors can be clearly detected, both in the frequency and the dissipation signals. Beating rates in the range of 66–168 bpm for CMCs were detected and confirmed by simultaneous light microscopy. The QCM-D beating profile was found to provide individual fingerprints of the hPS-CMCs. The presented results point towards acoustical assays for evaluation cardiotoxicity.

  6. Enhanced efficiency in the excitation of higher modes for atomic force microscopy and mechanical sensors operated in liquids

    SciTech Connect

    Penedo, M. Hormeño, S.; Fernández-Martínez, I.; Luna, M.; Briones, F.; Raman, A.

    2014-10-27

    Recent developments in dynamic Atomic Force Microscopy where several eigenmodes are simultaneously excited in liquid media are proving to be an excellent tool in biological studies. Despite its relevance, the search for a reliable, efficient, and strong cantilever excitation method is still in progress. Herein, we present a theoretical modeling and experimental results of different actuation methods compatible with the operation of Atomic Force Microscopy in liquid environments: ideal acoustic, homogeneously distributed force, distributed applied torque (MAC Mode™), photothermal and magnetostrictive excitation. From the analysis of the results, it can be concluded that magnetostriction is the strongest and most efficient technique for higher eigenmode excitation when using soft cantilevers in liquid media.

  7. Sensitivity of photoacoustic microscopy

    PubMed Central

    Yao, Junjie; Wang, Lihong V.

    2014-01-01

    Building on its high spatial resolution, deep penetration depth and excellent image contrast, 3D photoacoustic microscopy (PAM) has grown tremendously since its first publication in 2005. Integrating optical excitation and acoustic detection, PAM has broken through both the optical diffusion and optical diffraction limits. PAM has 100% relative sensitivity to optical absorption (i.e., a given percentage change in the optical absorption coefficient yields the same percentage change in the photoacoustic amplitude), and its ultimate detection sensitivity is limited only by thermal noise. Focusing on the engineering aspects of PAM, this Review discusses the detection sensitivity of PAM, compares the detection efficiency of different PAM designs, and summarizes the imaging performance of various endogenous and exogenous contrast agents. It then describes representative PAM applications with high detection sensitivity, and outlines paths to further improvement. PMID:25302158

  8. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper (also available as NASA/TM-2015-218865). The NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject supported the current work. The fan and open rotor data were obtained under previous efforts supported by the NASA Quiet Aircraft Technology (QAT) Project and the NASA Environmentally Responsible Aviation (ERA) Project of the Integrated Systems Research Program in collaboration with GE Aviation, respectively. The overarching goal of the Advanced Air Transport (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  9. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  10. Analysis and Applications of Photothermal Microscopy

    NASA Astrophysics Data System (ADS)

    Fanton, Jeffrey T.

    1990-01-01

    Photothermal microscopy is a technique for measuring thermal properties on a small scale by using focussed laser beams as heat sources and as temperature probes. Typically used for nondestructive evaluation (NDE) of materials, its main advantage is its ability to measure types of flaws that are not visible optically or acoustically. Examples of these kinds of defects include disbonds and poor adhesion in layered media, subsurface cracks or crystal damage in opaque solids, and electrical defects in active circuits. The greatest limitation of these systems is their relatively poor signal-to-noise ratios and, consequently, slow imaging speeds. To circumvent this problem, a variety of approaches to the detection of thermal waves has been pursued in recent years. This thesis compares the relative merits of a common class of techniques that rely on direct observation of physical changes in the heated sample, including a novel approach to interferometric measurement of the thermal expansion. It is found that the optimum approach depends not only on the physical properties of the sample being studied, but also upon the resolution of the experiment and the damage threshold of the specimen. These points are illustrated in an assortment of examples of photothermal NDE. Finally, this dissertation describes our applications of photothermal microscopy to the study of the anisotropic thermal properties of the new high-T_{ rm c} superconductors. Because of their micron resolution, photothermal techniques are well suited for studying single-crystal specimens which tend to be too small or irregularly shaped for conventional bulk methods. Our measurements of the anisotropic thermal conductivity demonstrate that the heat flow along the superconducting planes is enhanced below the transition, and that no such enhancement exists in the non-superconducting direction. These effects can be explained as a product of the electron-phonon coupling. Furthermore, we present evidence that thermal

  11. Sonification of acoustic emission data

    NASA Astrophysics Data System (ADS)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  12. Virtual acoustic prototyping

    NASA Astrophysics Data System (ADS)

    Johnson, Marty

    2003-10-01

    In this paper the re-creation of 3-D sound fields so the full psycho-acoustic impact of sound sources can be assessed before the manufacture of a product or environment is examined. Using head related transfer functions (HRTFs) coupled with a head tracked set of headphones the sound field at the left and right ears of a listener can be re-created for a set of sound sources. However, the HRTFs require that sources have a defined location and this is not the typical output from numerical codes which describe the sound field as a set of distributed modes. In this paper a method of creating a set of equivalent sources is described such that the standard set of HRTFs can be applied in real time. A structural-acoustic model of a cylinder driving an enclosed acoustic field will be used as an example. It will be shown that equivalent sources can be used to recreate all of the reverberation of the enclosed space. An efficient singular value decomposition technique allows the large number of sources required to be simulated in real time. An introduction to the requirements necessary for 3-D virtual prototyping using high frequency Statistical Energy Analysis models will be presented. [Work supported by AuSim and NASA.

  13. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Balke, Nina; Jesse, Stephen; Yu, Pu; Carmichael, Ben; Kalinin, Sergei V.; Tselev, Alexander

    2016-10-01

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ˜1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

  14. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.

    PubMed

    Balke, Nina; Jesse, Stephen; Yu, Pu; Ben Carmichael; Kalinin, Sergei V; Tselev, Alexander

    2016-10-21

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ∼1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques. PMID:27631885

  15. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.

    PubMed

    Balke, Nina; Jesse, Stephen; Yu, Pu; Ben Carmichael; Kalinin, Sergei V; Tselev, Alexander

    2016-10-21

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ∼1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

  16. Study of surface plasmons with a scanning acoustic microscope

    SciTech Connect

    Bereiter-Hahn, J; Blase, C; Lozovik, Yurii E; Nazarov, Maksim M; Shkurinov, A P

    2003-05-31

    A new technique for investigating the surface plasmons by means of a scanning acoustic microscope is proposed. Within this technique, the surface electromagnetic wave (plasmon polariton) is excited by laser radiation on one side of a metal film, while a scanning acoustic microscope excites surface acoustic waves on the other side of the film. Obtained for the first time, the acoustic images of plasmons, propagating on the grating surface, demonstrate the possibility of studying the plasmon wave field distribution by means of a scanning acoustic microscope. (nonlinear optical phenomena)

  17. Direct Image-Based Correlative Microscopy Technique for Coupling Identification and Structural Investigation of Bacterial Symbionts Associated with Metazoans ▿ †

    PubMed Central

    Halary, Sébastien; Duperron, Sébastien; Boudier, Thomas

    2011-01-01

    Coupling prokaryote identification with ultrastructural investigation of bacterial communities has proven difficult in environmental samples. Prokaryotes can be identified by using specific probes and fluorescence in situ hybridization (FISH), but resolution achieved by light microscopes does not allow ultrastructural investigation. In the case of symbioses involving bacteria associated with metazoan tissues, FISH-based studies often indicate the co-occurrence of several bacterial types within a single host species. The ultrastructure is then relevant to address host and bacterial morphology and the intra- or extracellular localization of symbionts. A simple protocol for correlative light and electron microscopy (CLEM) is presented here which allows FISH-based identification of specific 16S rRNA phylotypes and transmission electron microscopy to be performed on a same sample. Image analysis tools are provided to superimpose images obtained and generate overlays. This procedure has been applied to two symbiont-bearing metazoans, namely, aphids and deep-sea mussels. The FISH protocol was modified to take into account constraints associated with the use of electron microscopy grids, and intense and specific signals were obtained. FISH signals were successfully overlaid with bacterial morphotypes in aphids. We thus used the method to address the question of symbiont morphology and localization in a deep-sea mussel. Signals from a type I methanotroph-related phylotype were associated with morphotypes displaying the stacked internal membranes typical for this group and three-dimensional electron tomography was performed, confirming for the first time the correspondence between morphology and phylotype. CLEM is thus feasible and reliable and could emerge as a potent tool for the study of prokaryotic communities. PMID:21515722

  18. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  19. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  20. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.