Sample records for acoustic monitoring system

  1. Acoustic emission monitoring of composite containment systems

    NASA Astrophysics Data System (ADS)

    Maguire, John R.

    2011-07-01

    This paper considers two different types of composite containment system, and two different types of acoustic emission (AE) monitoring approach. The first system is a composite reinforced pressure vessel (CRPV) which is monitored both during construction and in-service using a broadband modal acoustic emission (MAE) technique. The second system is a membrane cargo containment system which is monitored using both a global as well as a local AE technique. For the CRPV, the damage assessment is concerned mainly with the integrity of the composite outer layer at the construction stage, and possible fatigue cracking of the inner steel liner at the in-service stage. For the membrane tank, the damage assessment is concerned with locating and quantifying any abnormal porosities that might develop in-service. By comparing and contrasting the different types of structural system and different monitoring approaches inferences are drawn as to what role AE monitoring could take in the damage assessment of other types of composite containment system. (Detailed technical data have not been included, due to client confidentiality constraints.)

  2. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  3. Design of acoustic emission monitoring system based on VC++

    NASA Astrophysics Data System (ADS)

    Yu, Yang; He, Wei

    2015-12-01

    At present, a lot of companies at home and abroad have researched and produced a batch of specialized monitoring instruments for acoustic emission (AE). Most of them cost highly and the system function exists in less stable and less portability for the testing environment and transmission distance and other aspects. Depending on the research background and the status quo, a dual channel intelligent acoustic emission monitoring system was designed based on Microsoft Foundation Classes in Visual Studio C++ to solve some of the problems in the acoustic emission research and meet the needs of actual monitoring task. It contains several modules such as main module, acquisition module, signal parameters setting module and so on. It could give out corrosion AE waveform and signal parameters results according to the main menu selected parameters. So the needed information could be extracted from the experiments datum to solve the problem deeply. This soft system is the important part of AE detection g system.

  4. Acoustic Flow Monitor System - User Manual

    USGS Publications Warehouse

    LaHusen, Richard

    2005-01-01

    INTRODUCTION The Acoustic Flow Monitor (AFM) is a portable system that was designed by the U.S. Geological Survey Cascades Volcano Observatory to detect and monitor debris flows associated with volcanoes. It has been successfully used internationally as part of real-time warning systems in valleys threatened by such flows (Brantley, 1990; Marcial and others, 1996; Lavigne and others, 2000). The AFM system has also been proven to be an effective tool for monitoring some non-volcanic debris flows. This manual is intended to serve as a basic guide for the installation, testing, and maintenance of AFM systems. An overview of how the system works, as well as instructions for installation and guidelines for testing, is included. Interpretation of data is not covered in this manual; rather, the user should refer to the references provided for published examples of AFM data.

  5. Development of a portable passive-acoustic bedload monitoring system

    USDA-ARS?s Scientific Manuscript database

    A hydrophone-based passive acoustic bedload-monitoring system was designed, tested and deployed by researchers at the University of Mississippi and the National Sedimentation Laboratory in Oxford, MS. The hydrophone system was designed to be easily deployed and operated by non-experts. In addition, ...

  6. Smart acoustic emission system for wireless monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol

    2008-03-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical

  7. Acoustic Techniques for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  8. Comparison of PAM Systems for Acoustic Monitoring and Further Risk Mitigation Application.

    PubMed

    Ludwig, Stefan; Kreimeyer, Roman; Knoll, Michaela

    2016-01-01

    We present results of the SIRENA 2011 research cruises conducted by the NATO Undersea Research Centre (NURC) and joined by the Research Department for Underwater Acoustics and Geophysics (FWG), Bundeswehr Technical Centre (WTD 71) and the Universities of Kiel and Pavia. The cruises were carried out in the Ligurian Sea. The main aim of the FWG was to test and evaluate the newly developed towed hydrophone array as a passive acoustic monitoring (PAM) tool for risk mitigation applications. The system was compared with the PAM equipment used by the other participating institutions. Recorded sounds were used to improve an automatic acoustic classifier for marine mammals, and validated acoustic detections by observers were compared with the results of the classifier.

  9. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  10. Simultaneous acoustic and dielectric real time curing monitoring of epoxy systems

    NASA Astrophysics Data System (ADS)

    Gkikas, G.; Saganas, Ch.; Grammatikos, S. A.; Aggelis, D. G.; Paipetis, A. S.

    2012-04-01

    The attainment of structural integrity of the reinforcing matrix in composite materials is of primary importance for the final properties of the composite structure. The detailed monitoring of the curing process on the other hand is paramount (i) in defining the optimal conditions for the impregnation of the reinforcement by the matrix (ii) in limiting the effects of the exotherm produced by the polymerization reaction which create unwanted thermal stresses and (iii) in securing optimal behavior in matrix controlled properties, such as off axis or shear properties and in general the durability of the composite. Dielectric curing monitoring is a well known technique for distinguishing between the different stages of the polymerization of a typical epoxy system. The technique successfully predicts the gelation and the vitrification of the epoxy and has been extended for the monitoring of prepregs. Recent work has shown that distinct changes in the properties of the propagated sound in the epoxy which undergoes polymerization is as well directly related to the gelation and vitrification of the resin, as well as to the attainment of the final properties of the resin system. In this work, a typical epoxy is simultaneously monitored using acoustic and dielectric methods. The system is isothermally cured in an oven to avoid effects from the polymerization exotherm. Typical broadband sensors are employed for the acoustic monitoring, while flat interdigital sensors are employed for the dielectric scans. All stages of the polymerization process were successfully monitored and the validity of both methods was cross checked and verified.

  11. Thermal protection system (TPS) monitoring using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hurley, D. A.; Huston, D. R.; Fletcher, D. G.; Owens, W. P.

    2011-04-01

    This project investigates acoustic emission (AE) as a tool for monitoring the degradation of thermal protection systems (TPS). The AE sensors are part of an array of instrumentation on an inductively coupled plasma (ICP) torch designed for testing advanced thermal protection aerospace materials used for hypervelocity vehicles. AE are generated by stresses within the material, propagate as elastic stress waves, and can be detected with sensitive instrumentation. Graphite (POCO DFP-2) is used to study gas-surface interaction during degradation of thermal protection materials. The plasma is produced by a RF magnetic field driven by a 30kW power supply at 3.5 MHz, which creates a noisy environment with large spikes when powered on or off. AE are waveguided from source to sensor by a liquid-cooled copper probe used to position the graphite sample in the plasma stream. Preliminary testing was used to set filters and thresholds on the AE detection system (Physical Acoustics PCI-2) to minimize the impact of considerable operating noise. Testing results show good correlation between AE data and testing environment, which dictates the physics and chemistry of the thermal breakdown of the sample. Current efforts for the project are expanding the dataset and developing statistical analysis tools. This study shows the potential of AE as a powerful tool for analysis of thermal protection material thermal degradations with the unique capability of real-time, in-situ monitoring.

  12. Monitoring of diesel engine combustions based on the acoustic source characterisation of the exhaust system

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gu, F.; Gennish, R.; Moore, D. J.; Harris, G.; Ball, A. D.

    2008-08-01

    Acoustic methods are among the most useful techniques for monitoring the condition of machines. However, the influence of background noise is a major issue in implementing this method. This paper introduces an effective monitoring approach to diesel engine combustion based on acoustic one-port source theory and exhaust acoustic measurements. It has been found that the strength, in terms of pressure, of the engine acoustic source is able to provide a more accurate representation of the engine combustion because it is obtained by minimising the reflection effects in the exhaust system. A multi-load acoustic method was then developed to determine the pressure signal when a four-cylinder diesel engine was tested with faults in the fuel injector and exhaust valve. From the experimental results, it is shown that a two-load acoustic method is sufficient to permit the detection and diagnosis of abnormalities in the pressure signal, caused by the faults. This then provides a novel and yet reliable method to achieve condition monitoring of diesel engines even if they operate in high noise environments such as standby power stations and vessel chambers.

  13. Acoustic wave simulation using an overset grid for the global monitoring system

    NASA Astrophysics Data System (ADS)

    Kushida, N.; Le Bras, R.

    2017-12-01

    The International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been monitoring hydro-acoustic and infrasound waves over the globe. Because of the complex natures of the oceans and the atmosphere, computer simulation can play an important role in understanding the observed signals. In this regard, methods which depend on partial differential equations and require minimum modelling, are preferable. So far, to our best knowledge, acoustic wave propagation simulations based on partial differential equations on such a large scale have not been performed (pp 147 - 161 of ref [1], [2]). The main difficulties in building such simulation codes are: (1) considering the inhomogeneity of medium including background flows, (2) high aspect ratio of computational domain, (3) stability during long time integration. To overcome these difficulties, we employ a two-dimensional finite different (FDM) scheme on spherical coordinates with the Yin-Yang overset grid[3] solving the governing equation of acoustic waves introduces by Ostashev et. al.[4]. The comparison with real recording examples in hydro-acoustic will be presented at the conference. [1] Paul C. Etter: Underwater Acoustic Modeling and Simulation, Fourth Edition, CRC Press, 2013. [2] LIAN WANG et. al.: REVIEW OF UNDERWATER ACOUSTIC PROPAGATION MODELS, NPL Report AC 12, 2014. [3] A. Kageyama and T. Sato: "Yin-Yang grid": An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5, Q09005, 2004. [4] Vladimir E. Ostashev et. al: Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, Acoustical Society of America. DOI: 10.1121/1.1841531, 2005.

  14. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    DOE PAGES

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less

  15. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.

    PubMed

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.

  16. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    PubMed Central

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  17. Acoustic transducer for nuclear reactor monitoring

    DOEpatents

    Ahlgren, Frederic F.; Scott, Paul F.

    1977-01-01

    A transducer to monitor a parameter and produce an acoustic signal from which the monitored parameter can be recovered. The transducer comprises a modified Galton whistle which emits a narrow band acoustic signal having a frequency dependent upon the parameter being monitored, such as the temperature of the cooling media of a nuclear reactor. Multiple locations within a reactor are monitored simultaneously by a remote acoustic receiver by providing a plurality of transducers each designed so that the acoustic signal it emits has a frequency distinct from the frequencies of signals emitted by the other transducers, whereby each signal can be unambiguously related to a particular transducer.

  18. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle

    USDA-ARS?s Scientific Manuscript database

    Methods to estimate intake in grazing livestock include using markers, visual observation, mechanical sensors that respond to jaw movement and acoustic recording. In most of the acoustic monitoring studies, the microphone is inverted on the forehead of the grazing livestock and the skull is utilize...

  19. Acoustic-Emission Weld-Penetration Monitor

    NASA Technical Reports Server (NTRS)

    Maram, J.; Collins, J.

    1986-01-01

    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  20. Acoustic monitoring method and system in laser-induced optical breakdown (LIOB)

    DOEpatents

    O'Donnell, Matthew [Ann Arbor, MI; Ye, Jing Yong [Ann Arbor, MI; Norris, Theodore B [Dexter, MI; Baker, Jr., James R.; Balogh, Lajos P [Ann Arbor, MI; Milas, Susanne M [Ann Arbor, MI; Emelianov, Stanislav Y [Ann Arbor, MI; Hollman, Kyle W [Fenton, MI

    2008-05-06

    An acoustic monitoring method and system in laser-induced optical breakdown (LIOB) provides information which characterize material which is broken down, microbubbles in the material, and/or the microenvironment of the microbubbles. In one embodiment of the invention, femtosecond laser pulses are focused just inside the surface of a volume of aqueous solution which may include dendrimer nanocomposite (DNC) particles. A tightly focused, high frequency, single-element ultrasonic transducer is positioned such that its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a microbubble forms and a shock or pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble may be actively probed with pulse-echo measurements from the same transducer. After the microbubble forms, received pulse-echo signals have an extra pulse, describing the microbubble location and providing a measure of axial microbubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of microbubbles due to optical breakdown. These same plots can also be used to quantify LIOB thresholds.

  1. Acoustically based fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Baker, Donald A.; Zuckerwar, Allan J.

    1991-01-01

    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.

  2. The Development of Advanced Passive Acoustic Monitoring Systems Using microMARS Technology

    DTIC Science & Technology

    2015-09-30

    localization that will be available in a number of configurations for deep and shallow water environments alike. OBJECTIVES The project has two...through two test series, first targeting the GPS synchronized shallow water and then the self-synchronized deep water configurations. The project will...main objectives: 1. Development of all the components of a compact passive acoustic monitoring system suitable both for shallow water moored

  3. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-06-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a Wireless Sensor Network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  4. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-11-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a wireless sensor network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  5. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  6. Preliminary Development of Online Monitoring Acoustic Emission System for the Integrity of Research Reactor Components

    NASA Astrophysics Data System (ADS)

    Bakhri, S.; Sumarno, E.; Himawan, R.; Akbar, T. Y.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    Three research reactors owned by BATAN have been more than 25 years. Aging of (Structure, System and Component) SSC which is mainly related to mechanical causes become the most important issue for the sustainability and safety operation. Acoustic Emission (AE) is one of the appropriate and recommended methods by the IAEA for inspection as well as at the same time for the monitoring of mechanical SSC related. However, the advantages of AE method in detecting the acoustic emission both for the inspection and the online monitoring require a relatively complex measurement system including hardware software system for the signal detection and analysis purposes. Therefore, aim of this work was to develop an AE system based on an embedded system which capable for doing both the online monitoring and inspection of the research reactor’s integrity structure. An embedded system was selected due to the possibility to install the equipment on the field in extreme environmental condition with capability to store, analyses, and send the required information for further maintenance and operation. The research was done by designing the embedded system based on the Field Programmable Gate Array (FPGA) platform, because of their execution speed and system reconfigurable opportunities. The AE embedded system is then tested to identify the AE source location and AE characteristic under tensile material testing. The developed system successfully acquire the AE elastic waveform and determine the parameter-based analysis such as the amplitude, peak, duration, rise time, counts and the average frequency both for the source location test and the tensile test.

  7. Field performance of an acoustic scour-depth monitoring system

    USGS Publications Warehouse

    Mason, Jr., Robert R.; Sheppard, D. Max

    1994-01-01

    The Herbert C. Bonner Bridge over Oregon Inlet serves as the only land link between Bodie and Hatteras Islands, part of the Outer Banks of North Carolina. Periodic soundings over the past 30 years have documented channel migration, local scour, and deposition at several pilings that support the bridge. In September 1992, a data-collection system was installed to permit the off-site monitoring of scour at 16 bridge pilings. The system records channel-bed elevations at 15-minute intervals and transmits the data to a satellite receiver. A cellular phone connection also permits downloading and reviewing of the data as they are being collected. A digitally recording, acoustic fathometer is the main component of the system. In November 1993, current velocity, water-surface elevation, wave characteristics, and water temperature measuring instruments were also deployed at the site. Several performance problems relating to the equipment and to the harsh marine environment have not been resolved, but the system has collected and transmitted reliable scour-depth and water-level data.

  8. Biomechanical monitoring of healing bone based on acoustic emission technology.

    PubMed

    Hirasawa, Yasusuke; Takai, Shinro; Kim, Wook-Cheol; Takenaka, Nobuyuki; Yoshino, Nobuyuki; Watanabe, Yoshinobu

    2002-09-01

    Acoustic emission testing is a well-established method for assessment of the mechanical integrity of general construction projects. The purpose of the current study was to investigate the usefulness of acoustic emission technology in monitoring the yield strength of healing callus during external fixation. Thirty-five patients with 39 long bones treated with external fixation were evaluated for fracture healing by monitoring load for the initiation of acoustic emission signal (yield strength) under axial loading. The major criteria for functional bone union based on acoustic emission testing were (1) no acoustic emission signal on full weightbearing, and (2) a higher estimated strength than body weight. The yield strength monitored by acoustic emission testing increased with the time of healing. The external fixator could be removed safely and successfully in 97% of the patients. Thus, the acoustic emission method has good potential as a reliable method for monitoring the mechanical status of healing bone.

  9. In-situ acoustic signature monitoring in additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  10. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  11. Acoustic emission data assisted process monitoring.

    PubMed

    Yen, Gary G; Lu, Haiming

    2002-07-01

    Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.

  12. Acoustic emission monitoring of polymer composite materials

    NASA Technical Reports Server (NTRS)

    Bardenheier, R.

    1981-01-01

    The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.

  13. Signal processing methodologies for an acoustic fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  14. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira da Cunha, Mauricio

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures upmore » to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including

  15. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H

    1987-12-01

    Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.

  16. Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei

    2016-04-01

    Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.

  17. Cardiorespiratory system monitoring using a developed acoustic sensor.

    PubMed

    Abbasi-Kesbi, Reza; Valipour, Atefeh; Imani, Khadije

    2018-02-01

    This Letter proposes a wireless acoustic sensor for monitoring heartbeat and respiration rate based on phonocardiogram (PCG). The developed sensor comprises a processor, a transceiver which operates at industrial, scientific and medical band and the frequency of 2.54 GHz as well as two capacitor microphones which one for recording the heartbeat and another one for respiration rate. To evaluate the precision of the presented sensor in estimating heartbeat and respiration rate, the sensor is tested on the different volunteers and the obtained results are compared with a gold standard as a reference. The results reveal that root-mean-square error are determined <2.27 beats/min and 0.92 breaths/min for the heartbeat and respiration rate in turn. While the standard deviation of the error is obtained <1.26 and 0.63 for heartbeat and respiration rate, respectively. Also, the sensor estimate sounds of [Formula: see text] to [Formula: see text] obtained PCG signal with sensitivity and specificity 98.1% and 98.3% in turn that make 3% improvement than previous works. The results prove that the sensor can be appropriate candidate for recognising abnormal condition in the cardiorespiratory system.

  18. System for Multiplexing Acoustic Emission (AE) Instrumentation

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)

    2003-01-01

    An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.

  19. HYDROBS: a long-term autonomous mooring for passive acoustic monitoring

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Royer, J. Y.; Yegikyan, M.

    2017-12-01

    Passive acoustics proves an effective way for monitoring the low-level seismic activity of the ocean floor and low-frequency sounds from the ocean (baleen whales, sea-state, icebergs). Networks of synchronized autonomous hydrophones have thus been commonly deployed in the world ocean to monitor large sections of mid-oceanic ridges. HYDROBS is an improved system that meet two requirements: an easy access to the data collected by the instruments together with long-term deployments - up to 4 consecutive years - reducing the need of large vessels capable of yearly mooring operations in open seas. The system has two components: a data logger, up-to-date but similar to previous systems, and three messengers, releasable on demand to collect the data. The mooring line itself is classical, with an expandable weight at the sea-bottom to maintain the mooring, an acoustic release to free the mooring line for recovery, a line adjustable to the seafloor depth, and an immerged buoy, holding the acquisition system, to maintain the sensors at a constant depth and to bring the mooring line to the surface for its recovery. The data logger is based on a low-power microprocessor, an A/D-32bit convertor sampling at 250Hz, a 10-8 real time clock and SD card storage. Lithium batteries provide 3-4 years of autonomy. Acoustic communications with the surface-ship provide control over all functionalities at deployment and a health bulletin on demand. The 3 shuttles, encapsulated in 13" glass spheres, use the same CPU board and clock as the main station. Data transfer from the data logger to the shuttles is wireless (1Mbit/s digital inductive through water). Data are duplicated once per day on shuttles N and N+1 for redundancy. Prior to their release by acoustic command, the shuttles are synchronized with the master clock. At sea-surface, shuttles (as the main unit) look for GPS time and calculate their clock drift. So, the master clock drift can be monitored over time at every shuttle release

  20. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    PubMed

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation.

  1. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea

    PubMed Central

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation. PMID:26789265

  2. An all fiber-optic multi-parameter structure health monitoring system

    DOE PAGES

    Hu, Chennan; Yu, Zhihao; Wang, Anbo

    2016-08-24

    In this article, we present an all fiber-optics based multi-parameter structure health monitoring system, which is able to monitor strain, temperature, crack and thickness of metal structures. This system is composed of two optical fibers, one for laser-acoustic excitation and the other for acoustic detection. A nano-second 1064 nm pulse laser was used for acoustic excitation and a 2 mm fiber Bragg grating was used to detect the acoustic vibration. The feasibility of this system was demonstrated on an aluminum test piece by the monitoring of the temperature, strain and thickness changes, as well as the appearance of an artificialmore » crack. The multiplexing capability of this system was also preliminarily demonstrated.« less

  3. An all fiber-optic multi-parameter structure health monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chennan; Yu, Zhihao; Wang, Anbo

    In this article, we present an all fiber-optics based multi-parameter structure health monitoring system, which is able to monitor strain, temperature, crack and thickness of metal structures. This system is composed of two optical fibers, one for laser-acoustic excitation and the other for acoustic detection. A nano-second 1064 nm pulse laser was used for acoustic excitation and a 2 mm fiber Bragg grating was used to detect the acoustic vibration. The feasibility of this system was demonstrated on an aluminum test piece by the monitoring of the temperature, strain and thickness changes, as well as the appearance of an artificialmore » crack. The multiplexing capability of this system was also preliminarily demonstrated.« less

  4. Assessment of continuous acoustic respiratory rate monitoring as an addition to a pulse oximetry-based patient surveillance system.

    PubMed

    McGrath, Susan P; Pyke, Joshua; Taenzer, Andreas H

    2017-06-01

    Technology advances make it possible to consider continuous acoustic respiratory rate monitoring as an integral component of physiologic surveillance systems. This study explores technical and logistical aspects of augmenting pulse oximetry-based patient surveillance systems with continuous respiratory rate monitoring and offers some insight into the impact on patient deterioration detection that may result. Acoustic respiratory rate sensors were introduced to a general care pulse oximetry-based surveillance system with respiratory rate alarms deactivated. Simulation was used after 4324 patient days to determine appropriate alarm thresholds for respiratory rate, which were then activated. Data were collected for an additional 4382 patient days. Physiologic parameters, alarm data, sensor utilization and patient/staff feedback were collected throughout the study and analyzed. No notable technical or workflow issues were observed. Sensor utilization was 57 %, with patient refusal leading reasons for nonuse (22.7 %). With respiratory rate alarm thresholds set to 6 and 40 breaths/min., the majority of nurse pager clinical notifications were triggered by low oxygen saturation values (43 %), followed by low respiratory rate values (21 %) and low pulse rate values (13 %). Mean respiratory rate collected was 16.6 ± 3.8 breaths/min. The vast majority (82 %) of low oxygen saturation states coincided with normal respiration rates of 12-20 breaths/min. Continuous respiratory rate monitoring can be successfully added to a pulse oximetry-based surveillance system without significant technical, logistical or workflow issues and is moderately well-tolerated by patients. Respiratory rate sensor alarms did not significantly impact overall system alarm burden. Respiratory rate and oxygen saturation distributions suggest adding continuous respiratory rate monitoring to a pulse oximetry-based surveillance system may not significantly improve patient deterioration detection.

  5. Acoustic emission monitoring of steel bridge members : interim report.

    DOT National Transportation Integrated Search

    1995-01-01

    This interim report describes the current status of acoustic emission (AE) monitoring of steel bridge members. The report includes a brief introduction to the theory of acoustic emission and a comprehensive summary of previous efforts to apply AE mon...

  6. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques

    NASA Astrophysics Data System (ADS)

    Delvecchio, S.; Bonfiglio, P.; Pompoli, F.

    2018-01-01

    This paper deals with the state-of-the-art strategies and techniques based on vibro-acoustic signals that can monitor and diagnose malfunctions in Internal Combustion Engines (ICEs) under both test bench and vehicle operating conditions. Over recent years, several authors have summarized what is known in critical reviews mainly focused on reciprocating machines in general or on specific signal processing techniques: no attempts to deal with IC engine condition monitoring have been made. This paper first gives a brief summary of the generation of sound and vibration in ICEs in order to place further discussion on fault vibro-acoustic diagnosis in context. An overview of the monitoring and diagnostic techniques described in literature using both vibration and acoustic signals is also provided. Different faulty conditions are described which affect combustion, mechanics and the aerodynamics of ICEs. The importance of measuring acoustic signals, as opposed to vibration signals, is due since the former seem to be more suitable for implementation on on-board monitoring systems in view of their non-intrusive behaviour, capability in simultaneously capturing signatures from several mechanical components and because of the possibility of detecting faults affecting airborne transmission paths. In view of the recent needs of the industry to (-) optimize component structural durability adopting long-life cycles, (-) verify the engine final status at the end of the assembly line and (-) reduce the maintenance costs monitoring the ICE life during vehicle operations, monitoring and diagnosing system requests are continuously growing up. The present review can be considered a useful guideline for test engineers in understanding which types of fault can be diagnosed by using vibro-acoustic signals in sufficient time in both test bench and operating conditions and which transducer and signal processing technique (of which the essential background theory is here reported) could be

  7. Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring

    DOT National Transportation Integrated Search

    1995-01-01

    Acoustic emission monitoring was performed in a unique way on concrete specimens containing reinforcing steel and the acoustic emission events correlated with the presence of rebar corrosion. Verification of rebar corrosion was done by galvanic curre...

  8. System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2003-01-01

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  9. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  10. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2007-10-16

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  11. Passive Fetal Heart Monitoring System

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Mowrey, Dennis L. (Inventor)

    2003-01-01

    A fetal heart monitoring system and method for detecting and processing acoustic fetal heart signals transmitted by different signal transmission modes. One signal transmission mode, the direct contact mode, occurs in a first frequency band when the fetus is in direct contact with the maternal abdominal wall. Another signal transmission mode, the fluid propagation mode, occurs in a second frequency band when the fetus is in a recessed position with no direct contact with the maternal abdominal wall. The second frequency band is relatively higher than the first frequency band. The fetal heart monitoring system and method detect and process acoustic fetal heart signals that are in the first frequency band and in the second frequency band.

  12. Adverse event detection (AED) system for continuously monitoring and evaluating structural health status

    NASA Astrophysics Data System (ADS)

    Yun, Jinsik; Ha, Dong Sam; Inman, Daniel J.; Owen, Robert B.

    2011-03-01

    Structural damage for spacecraft is mainly due to impacts such as collision of meteorites or space debris. We present a structural health monitoring (SHM) system for space applications, named Adverse Event Detection (AED), which integrates an acoustic sensor, an impedance-based SHM system, and a Lamb wave SHM system. With these three health-monitoring methods in place, we can determine the presence, location, and severity of damage. An acoustic sensor continuously monitors acoustic events, while the impedance-based and Lamb wave SHM systems are in sleep mode. If an acoustic sensor detects an impact, it activates the impedance-based SHM. The impedance-based system determines if the impact incurred damage. When damage is detected, it activates the Lamb wave SHM system to determine the severity and location of the damage. Further, since an acoustic sensor dissipates much less power than the two SHM systems and the two systems are activated only when there is an acoustic event, our system reduces overall power dissipation significantly. Our prototype system demonstrates the feasibility of the proposed concept.

  13. Field-Deployable Acoustic Digital Systems for Noise Measurement

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  14. A guide to processing bat acoustic data for the North American Bat Monitoring Program (NABat)

    USGS Publications Warehouse

    Reichert, Brian; Lausen, Cori; Loeb, Susan; Weller, Ted; Allen, Ryan; Britzke, Eric; Hohoff, Tara; Siemers, Jeremy; Burkholder, Braden; Herzog, Carl; Verant, Michelle

    2018-06-14

    The North American Bat Monitoring Program (NABat) aims to improve the state of conservation science for all species of bats shared by the United States, Canada, and Mexico. To accomplish this goal, NABat offers guidance and standardized protocols for acoustic monitoring of bats. In this document, “A Guide to Processing Bat Acoustic Data for the North American Bat Monitoring Program (NABat),” we provide general recommendations and specific workflows for the process of identifying bat species from acoustic files recorded using the NABat stationary point and mobile transect acoustic monitoring protocols.

  15. Tools for automated acoustic monitoring within the R package monitoR

    USGS Publications Warehouse

    Katz, Jonathan; Hafner, Sasha D.; Donovan, Therese

    2016-01-01

    The R package monitoR contains tools for managing an acoustic-monitoring program including survey metadata, template creation and manipulation, automated detection and results management. These tools are scalable for use with small projects as well as larger long-term projects and those with expansive spatial extents. Here, we describe typical workflow when using the tools in monitoR. Typical workflow utilizes a generic sequence of functions, with the option for either binary point matching or spectrogram cross-correlation detectors.

  16. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location

  17. Acoustical monitoring of fish behavior in a tank

    NASA Astrophysics Data System (ADS)

    Conti, Stephan G.; Maurer, Benjamin D.; Roux, Philippe; Fauvel, Christian; Demer, David A.; Waters, Kendall R.

    2004-10-01

    In recent publications, it has been demonstrated that the total scattering cross section of fish moving in a tank can be estimated from ensembles of reverberation time series. However, the reproducibility of these measurements is influenced by parameters such as the motion or the behavior of the fish. In this work, we propose to observe acoustically the behavior of fish in a tank, and to measure their average speed. The total scattering cross section of live fish (sardines, sea bass and bocaccio) in a tank was measured repeatedly over multiple days. The species used in this study have different behaviors, which are reflected in the acoustical measurements. Depending on the behavior of the fish, such as the average displacement between two acoustic pings or the aggregation type, the total scattering cross section is different. Correlation between the acoustical measurements and the day and night behavior of the fish is demonstrated. Interpretation of such measurements can lead to monitoring acoustically and nonintrusively the behavior of fish in tanks.

  18. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    PubMed

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring.

    PubMed

    Stimpert, Alison K; Au, Whitlow W L; Parks, Susan E; Hurst, Thomas; Wiley, David N

    2011-01-01

    Humpback whales (Megaptera novaeangliae) are one of several baleen whale species in the Northwest Atlantic that coexist with vessel traffic and anthropogenic noise. Passive acoustic monitoring strategies can be used in conservation management, but the first step toward understanding the acoustic behavior of a species is a good description of its acoustic repertoire. Digital acoustic tags (DTAGs) were placed on humpback whales in the Stellwagen Bank National Marine Sanctuary to record and describe the non-song sounds being produced in conjunction with foraging activities. Peak frequencies of sounds were generally less than 1 kHz, but ranged as high as 6 kHz, and sounds were generally less than 1 s in duration. Cluster analysis distilled the dataset into eight groups of sounds with similar acoustic properties. The two most stereotyped and distinctive types ("wops" and "grunts") were also identified aurally as candidates for use in passive acoustic monitoring. This identification of two of the most common sound types will be useful for moving forward conservation efforts on this Northwest Atlantic feeding ground.

  20. Passive acoustic monitoring of bed load for fluvial applications

    USDA-ARS?s Scientific Manuscript database

    The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...

  1. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors.

    PubMed

    Qin, Lei; Ren, Hong-Wei; Dong, Bi-Qin; Xing, Feng

    2014-10-02

    Acoustic emission (AE) is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1-3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  2. Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan

    This presentation includes slides on Project Goals; Heavy Water Production Monitoring: A New Challenge for the IAEA; Noninvasive Measurements in SFAI Cell; Large Scatter in Literature Values; Large Scatter in Literature Values; Highest Precision Sound Speed Data Available: New Standard in H/D; ~400 pts of data; Noninvasive Measurements in SFAI Cell; New funding from NA241 SGTech; Uranium Solution Monitoring: Inspired by IAEA Challenge in Kazakhstan; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; and finally a summary.

  3. Improving the Navys Passive Underwater Acoustic Monitoring of Marine Mammal Populations

    DTIC Science & Technology

    2015-09-30

    DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Improving the Navy’s Passive Underwater Acoustic...mpl.ucsd.edu LONG-TERM GOALS The long-term goals of this research effort are to improve the Navy’s passive underwater acoustic monitoring of marine...research of a graduate student in marine bioacoustics and ocean acoustics at the Scripps Institution of Oceanography. OBJECTIVES The

  4. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  5. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  6. A Volcano Monitoring Seismo-Acoustic Network in the CNMI

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Crippen, S. E.; Hayward, C.; Quick, J. E.

    2011-12-01

    In late spring and early summer of 2011, a seismo-acoustic network was installed in the Commonwealth of the Northern Mariana Islands (CNMI) for volcano monitoring. The network consists of a seismo-acoustic array on Saipan, an acoustic array on Sarigan with one seismometer, and a seismic network on Anatahan. On Saipan the array consists of a central site and 3 embedded triangular arrays with apertures of 100 m, 300 m and 1000 m. Four 50-foot porous hoses in a clover-leaf arrangement are used for spatial filtering at each acoustic site. Broadband seismometers were installed at the central site and the 1000 m sites. The Sarigan Array consists of a central acoustic site with 5 surrounding sites evenly spaced at 50 m radius, and one broadband seismic station. Two hoses were used for each site on Sarigan. Four broadband seismic stations were also installed on Anatahan which last erupted in 2005. Data from each array is sent by radio telemetry to the Emergency Management Office on Saipan, where it is routed to the USGS and SMU. Data will be used for volcano monitoring which will allow the CNMI to resume economic activity in the uninhabited northern islands. Initial data streams show high seismic noise levels as expected for an island installation. The Sarigan acoustic sites are also noisy as a result of being more exposed to wind than the Saipan sites. Many small events have already been observed in the infrasound data. This network was installed through the collaborative efforts of CNMI, USGS and SMU.

  7. Acoustic emission monitoring of degradation of cross ply laminates.

    PubMed

    Aggelis, D G; Barkoula, N M; Matikas, T E; Paipetis, A S

    2010-06-01

    The scope of this study is to relate the acoustic activity of damage in composites to the failure mechanisms associated with these materials. Cross ply fiber reinforced composites were subjected to tensile loading with recording of their acoustic activity. Acoustic emission (AE) parameters were employed to monitor the transition of the damage mechanism from transverse cracking (mode I) to delamination (mode II). Wave propagation measurements in between loading steps revealed an increase in the relative amplitude of the propagated wave, which was attributed to the development of delamination that confined the wave to the top longitudinal plies of the composite.

  8. Acoustic Monitoring of the Arctic Ice Cap

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.

    2012-12-01

    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two

  9. Validation of an acoustic location system to monitor Bornean orangutan (Pongo pygmaeus wurmbii) long calls.

    PubMed

    Spillmann, Brigitte; van Noordwijk, Maria A; Willems, Erik P; Mitra Setia, Tatang; Wipfli, Urs; van Schaik, Carel P

    2015-07-01

    The long call is an important vocal communication signal in the widely dispersed, semi-solitary orangutan. Long calls affect individuals' ranging behavior and mediate social relationships and regulate encounters between dispersed individuals in a dense rainforest. The aim of this study was to test the utility of an Acoustic Location System (ALS) for recording and triangulating the loud calls of free-living primates. We developed and validated a data extraction protocol for an ALS used to record wild orangutan males' long calls at the Tuanan field site (Central Kalimantan). We installed an ALS in a grid of 300 ha, containing 20 SM2+ recorders placed in a regular lattice at 500 m intervals, to monitor the distribution of calling males in the area. The validated system had the following main features: (i) a user-trained software algorithm (Song Scope) that reliably recognized orangutan long calls from sound files at distances up to 700 m from the nearest recorder, resulting in a total area of approximately 900 ha that could be monitored continuously; (ii) acoustic location of calling males up to 200 m outside the microphone grid, which meant that within an area of approximately 450 ha, call locations could be calculated through triangulation. The mean accuracy was 58 m, an error that is modest relative to orangutan mobility and average inter-individual distances. We conclude that an ALS is a highly effective method for detecting long-distance calls of wild primates and triangulating their position. In combination with conventional individual focal follow data, an ALS can greatly improve our knowledge of orangutans' social organization, and is readily adaptable for studying other highly vocal animals. © 2015 Wiley Periodicals, Inc.

  10. Acoustic emission monitoring of CFRP cables for cable-stayed bridges

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Lanza di Scalea, Francesco

    2001-08-01

    The advantages of fiber-reinforced polymer (FRP) composite include excellent corrosion resistance, high specific strength and stiffness, as well as outstanding fatigue behavior. The University of California San Diego's I- 5/Gilman Advanced Technology Bridge Project will help demonstrating the use of such materials in civil infrastructures. This paper presents an acoustic emission (AE) study performed during laboratory proof tests of carbon fiber-reinforced polymer stay-cables of possible use in the I-5/Gilman bridge. Three types of cables, both braided and single strand, were tested to failure at lengths ranging from 5500 mm to 5870 mm. AE allowed to monitor damage initiation and progression in the test pieces more accurately than the conventional load versus displacement curve. All of the cables exhibited acoustic activities revealing some degree of damage well before reaching final collapse, which is expected in FRP's. It was also shown that such cables are excellent acoustic waveguides exhibiting very low acoustic attenuation, which makes them an ideal application for an AE-based health monitoring approach.

  11. Mount Rainier National Park : acoustical monitoring Report 2009

    DOT National Transportation Integrated Search

    2011-09-01

    During the summer (July September 2009), baseline acoustical data were collected for approximately one month at two sites deployed by NPS personnel in Mount Rainier National Park (MORA). The purpose of the monitoring effort was to supplement prio...

  12. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  13. Mechanical systems readiness assessment and performance monitoring study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The problem of mechanical devices which lack the real-time readiness assessment and performance monitoring capability required for future space missions is studied. The results of a test program to establish the feasibility of implementing structure borne acoustics, a nondestructive test technique, are described. The program included the monitoring of operational acoustic signatures of five separate mechanical components, each possessing distinct sound characteristics. Acoustic signatures were established for normal operation of each component. Critical failure modes were then inserted into the test components, and faulted acoustic signatures obtained. Predominant features of the sound signature were related back to operational events occurring within the components both for normal and failure mode operations. All of these steps can be automated. The structure borne acoustics technique lends itself to reducing checkout time, simplifying maintenance procedures, and reducing manual involvement in the checkout, operation, maintenance, and fault diagnosis of mechanical systems.

  14. Monitoring damage growth in titanium matrix composites using acoustic emission

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Prosser, W. H.; Johnson, W. S.

    1993-01-01

    The application of the acoustic emission (AE) technique to locate and monitor damage growth in titanium matrix composites (TMC) was investigated. Damage growth was studied using several optical techniques including a long focal length, high magnification microscope system with image acquisition capabilities. Fracture surface examinations were conducted using a scanning electron microscope (SEM). The AE technique was used to locate damage based on the arrival times of AE events between two sensors. Using model specimens exhibiting a dominant failure mechanism, correlations were established between the observed damage growth mechanisms and the AE results in terms of the events amplitude. These correlations were used to monitor the damage growth process in laminates exhibiting multiple modes of damage. Results revealed that the AE technique is a viable and effective tool to monitor damage growth in TMC.

  15. Improving the Navy’s Passive Underwater Acoustic Monitoring of Marine Mammal Populations

    DTIC Science & Technology

    2013-09-30

    passive acoustic monitoring: Correcting humpback whale call detections for site-specific and time-dependent environmental characteristics ,” JASA Exp...marine mammal species using passive acoustic monitoring, with application to obtaining density estimates of transiting humpback whale populations in...minimize the variance of the density estimates, 3) to apply the numerical modeling methods for humpback whale vocalizations to understand distortions

  16. Real-time, in situ monitoring of nanoporation using electric field-induced acoustic signal

    NASA Astrophysics Data System (ADS)

    Zarafshani, Ali; Faiz, Rowzat; Samant, Pratik; Zheng, Bin; Xiang, Liangzhong

    2018-02-01

    The use of nanoporation in reversible or irreversible electroporation, e.g. cancer ablation, is rapidly growing. This technique uses an ultra-short and intense electric pulse to increase the membrane permeability, allowing non-permeant drugs and genes access to the cytosol via nanopores in the plasma membrane. It is vital to create a real-time in situ monitoring technique to characterize this process and answer the need created by the successful electroporation procedure of cancer treatment. All suggested monitoring techniques for electroporation currently are for pre-and post-stimulation exposure with no real-time monitoring during electric field exposure. This study was aimed at developing an innovative technology for real-time in situ monitoring of electroporation based on the typical cell exposure-induced acoustic emissions. The acoustic signals are the result of the electric field, which itself can be used in realtime to characterize the process of electroporation. We varied electric field distribution by varying the electric pulse from 1μ - 100ns and varying the voltage intensity from 0 - 1.2ܸ݇ to energize two electrodes in a bi-polar set-up. An ultrasound transducer was used for collecting acoustic signals around the subject under test. We determined the relative location of the acoustic signals by varying the position of the electrodes relative to the transducer and varying the electric field distribution between the electrodes to capture a variety of acoustic signals. Therefore, the electric field that is utilized in the nanoporation technique also produces a series of corresponding acoustic signals. This offers a novel imaging technique for the real-time in situ monitoring of electroporation that may directly improve treatment efficiency.

  17. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  18. Acoustic monitoring of first responder's physiology for health and performance surveillance

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2002-08-01

    Acoustic sensors have been used to monitor firefighter and soldier physiology to assess health and performance. The Army Research Laboratory has developed a unique body-contacting acoustic sensor that can monitor the health and performance of firefighters and soldiers while they are doing their mission. A gel-coupled sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. This technology can monitor heartbeats, breaths, blood pressure, motion, voice, and other indicators that can provide vital feedback to the medics and unit commanders. Diverse physiological parameters can be continuously monitored with acoustic sensors and transmitted for remote surveillance of personnel status. Body-worn acoustic sensors located at the neck, breathing mask, and wrist do an excellent job at detecting heartbeats and activity. However, they have difficulty extracting physiology during rigorous exercise or movements due to the motion artifacts sensed. Rigorous activity often indicates that the person is healthy by virtue of being active, and injury often causes the subject to become less active or incapacitated making the detection of physiology easier. One important measure of performance, heart rate variability, is the measure of beat-to-beat timing fluctuations derived from the interval between two adjacent beats. The Lomb periodogram is optimized for non-uniformly sampled data, and can be applied to non-stationary acoustic heart rate features (such as 1st and 2nd heart sounds) to derive heart rate variability and help eliminate errors created by motion artifacts. Simple peak-detection above or below a certain threshold or waveform derivative parameters can produce the timing and amplitude features necessary for the Lomb periodogram and cross-correlation techniques. High-amplitude motion artifacts may contribute to a different

  19. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  20. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  1. Helium gas purity monitor based on low frequency acoustic resonance

    NASA Astrophysics Data System (ADS)

    Kasthurirengan, S.; Jacob, S.; Karunanithi, R.; Karthikeyan, A.

    1996-05-01

    Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type are commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.

  2. Nekton Interaction Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-03-15

    The software provides a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) extracts and archives tracking and backscatter statistics data from a real-time stream of data from a sonar device. NIMS also sends real-time tracking messages over the network that can be used by other systems to generate other metrics or to trigger instruments such as an optical video camera. A web-based user interface provides remote monitoring and control. NIMS currently supports three popular sonarmore » devices: M3 multi-beam sonar (Kongsberg), EK60 split-beam echo-sounder (Simrad) and BlueView acoustic camera (Teledyne).« less

  3. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    PubMed

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-06

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.

  4. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    NASA Astrophysics Data System (ADS)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  5. Remote Acoustic Monitoring of North Atlantic Right Whales (Eubalaena glacialis) Reveals Seasonal and Diel Variations in Acoustic Behavior

    PubMed Central

    Matthews, Leanna P.; McCordic, Jessica A.; Parks, Susan E.

    2014-01-01

    Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis) is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the “gunshot” sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for females or as an agonistic signal toward other males. This study uses remote acoustic monitoring to analyze the presence of gunshots over a two-year period at two sites on the Scotian Shelf to determine if there is evidence that North Atlantic right whales may use these locations for breeding activities. Seasonal analyses at both locations indicate that gunshot sound production is highly seasonal, with an increase in the autumn. One site, Roseway West, had significantly more gunshot sounds overall and exhibited a clear diel trend in production of these signals at night. The other site, Emerald South, also showed a seasonal increase in gunshot production during the autumn, but did not show any significant diel trend. This difference in gunshot signal production at the two sites indicates variation either in the number or the behavior of whales at each location. The timing of the observed seasonal increase in gunshot sound production is consistent with the current understanding of the right whale breeding season, and our results demonstrate that detection of gunshots with remote acoustic monitoring can be a reliable way to track shifts in distribution and changes in acoustic behavior including possible mating activities. PMID:24646524

  6. Remote acoustic monitoring of North Atlantic right whales (Eubalaena glacialis) reveals seasonal and diel variations in acoustic behavior.

    PubMed

    Matthews, Leanna P; McCordic, Jessica A; Parks, Susan E

    2014-01-01

    Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis) is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the "gunshot" sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for females or as an agonistic signal toward other males. This study uses remote acoustic monitoring to analyze the presence of gunshots over a two-year period at two sites on the Scotian Shelf to determine if there is evidence that North Atlantic right whales may use these locations for breeding activities. Seasonal analyses at both locations indicate that gunshot sound production is highly seasonal, with an increase in the autumn. One site, Roseway West, had significantly more gunshot sounds overall and exhibited a clear diel trend in production of these signals at night. The other site, Emerald South, also showed a seasonal increase in gunshot production during the autumn, but did not show any significant diel trend. This difference in gunshot signal production at the two sites indicates variation either in the number or the behavior of whales at each location. The timing of the observed seasonal increase in gunshot sound production is consistent with the current understanding of the right whale breeding season, and our results demonstrate that detection of gunshots with remote acoustic monitoring can be a reliable way to track shifts in distribution and changes in acoustic behavior including possible mating activities.

  7. Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity.

    PubMed

    Buxton, Rachel; McKenna, Megan F; Clapp, Mary; Meyer, Erik; Stabenau, Erik; Angeloni, Lisa M; Crooks, Kevin; Wittemyer, George

    2018-04-20

    Passive acoustic monitoring has the potential to be a powerful approach for assessing biodiversity across large spatial and temporal scales. However, extracting meaningful information from recordings can be prohibitively time consuming. Acoustic indices offer a relatively rapid method for processing acoustic data and are increasingly used to characterize biological communities. We examine the ability of acoustic indices to predict the diversity and abundance of biological sounds within recordings. First we reviewed the acoustic index literature and found that over 60 indices have been applied to a range of objectives with varying success. We then implemented a subset of the most successful indices on acoustic data collected at 43 sites in temperate terrestrial and tropical marine habitats across the continental U.S., developing a predictive model of the diversity of animal sounds observed in recordings. For terrestrial recordings, random forest models using a suite of acoustic indices as covariates predicted Shannon diversity, richness, and total number of biological sounds with high accuracy (R 2 > = 0.94, mean squared error MSE < = 170.2). Among the indices assessed, roughness, acoustic activity, and acoustic richness contributed most to the predictive ability of models. Performance of index models was negatively impacted by insect, weather, and anthropogenic sounds. For marine recordings, random forest models predicted Shannon diversity, richness, and total number of biological sounds with low accuracy (R 2 < = 0.40, MSE > = 195), indicating that alternative methods are necessary in marine habitats. Our results suggest that using a combination of relevant indices in a flexible model can accurately predict the diversity of biological sounds in temperate terrestrial acoustic recordings. Thus, acoustic approaches could be an important contribution to biodiversity monitoring in some habitats in the face of accelerating human-caused ecological change. This article is

  8. R&D for an innovative acoustic positioning system for the KM3NeT neutrino telescope

    NASA Astrophysics Data System (ADS)

    Ameli, F.; Ardid, M.; Bertin, V.; Bonori, M.; Bou-Cabo, M.; Calì, C.; D'Amico, A.; Giovanetti, G.; Imbesi, M.; Keller, P.; Larosa, G.; Llorens, C. D.; Masullo, R.; Randazzo, N.; Riccobene, G.; Speziale, F.; Viola, S.; KM3NeT Consortium

    2011-01-01

    An innovative Acoustic Positioning System for the km3-scale neutrino telescope has been designed and is under realization within the KM3NeT Consortium. Compared to the Acoustic Positioning Systems used for the km3 demonstrators, ANTARES and NEMO Phase 1, this new system is based on the “all data to shore” concept and it will permit the enhancement of detector positioning performances, reduction of costs and its use as real-time monitor of environmental acoustic noise.

  9. Report on Non-invasive acoustic monitoring of D2O concentration Oct 31 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan

    There is an urgent need for real-time monitoring of the hydrogen /deuterium ratio (H/D) for heavy water production monitoring. Based upon published literature, sound speed is sensitive to the deuterium content of heavy water and can be measured using existing acoustic methods to determine the deuterium concentration in heavy water solutions. We plan to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of quantifying H/D ratios in solution. A successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended H/D ratio measurements with a resolution of lessmore » than 0.2% vol.« less

  10. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  11. Acoustic emission monitoring of steel bridge members : final report.

    DOT National Transportation Integrated Search

    1997-01-01

    This report describes the results of a study to characterize the acoustic emission (AE) associated with steel cracking and various sources of noise in a typical bridge environment. It summarizes previous applications ofAE monitoring of steel bridges ...

  12. Acoustic emissions (AE) monitoring of large-scale composite bridge components

    NASA Astrophysics Data System (ADS)

    Velazquez, E.; Klein, D. J.; Robinson, M. J.; Kosmatka, J. B.

    2008-03-01

    Acoustic Emissions (AE) has been successfully used with composite structures to both locate and give a measure of damage accumulation. The current experimental study uses AE to monitor large-scale composite modular bridge components. The components consist of a carbon/epoxy beam structure as well as a composite to metallic bonded/bolted joint. The bonded joints consist of double lap aluminum splice plates bonded and bolted to carbon/epoxy laminates representing the tension rail of a beam. The AE system is used to monitor the bridge component during failure loading to assess the failure progression and using time of arrival to give insight into the origins of the failures. Also, a feature in the AE data called Cumulative Acoustic Emission counts (CAE) is used to give an estimate of the severity and rate of damage accumulation. For the bolted/bonded joints, the AE data is used to interpret the source and location of damage that induced failure in the joint. These results are used to investigate the use of bolts in conjunction with the bonded joint. A description of each of the components (beam and joint) is given with AE results. A summary of lessons learned for AE testing of large composite structures as well as insight into failure progression and location is presented.

  13. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements

    PubMed Central

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-01-01

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface. PMID:28327510

  14. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements.

    PubMed

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-03-22

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.

  15. Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome

    NASA Astrophysics Data System (ADS)

    Jin, Hao; Tao, Xiang; Dong, Shurong; Qin, Yiheng; Yu, Liyang; Luo, Jikui; Deen, M. Jamal

    2017-11-01

    Obstructive sleep apnea syndrome (OSAS) has received much attention in recent years due to its significant harm to human health and high morbidity rate. A respiration monitoring system is needed to detect OSAS, so that the patient can receive treatment in a timely manner. Wired and wireless OSAS monitoring systems have been developed, but they require a wire connection and batteries to operate, and they are bulky, heavy and not user-friendly. In this paper, we propose the use of a flexible surface acoustic wave (SAW) microsensor to detect and monitor OSAS by measuring the humidity change associated with the respiration of a person. SAW sensors on rigid 128° YX LiNbO3 substrate are also characterized for this application. Results show both types of SAW sensors are suitable for OSAS monitoring with good sensitivity, repeatability and reliability, and the response time and recovery time for the flexible SAW sensors are 1.125 and 0.75 s, respectively. Our work demonstrates the potential for an innovative flexible microsensor for the detection and monitoring of OSAS.

  16. A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells.

    PubMed

    Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don

    2005-08-01

    We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments.

  17. Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring.

    PubMed

    Chen, Da; Song, Shuren; Ma, Jilong; Zhang, Zhen; Wang, Peng; Liu, Weihui; Guo, Qiuquan

    2017-05-15

    Monitoring blood coagulation is an important issue in the surgeries and the treatment of cardiovascular diseases. In this work, we reported a novel strategy for the blood coagulation monitoring based on a micro-electromechanical film bulk acoustic resonator. The resonator was excited by a lateral electric field and operated under the shear mode with a frequency of 1.9GHz. According to the apparent step-ladder curves of the frequency response to the change of blood viscoelasticity, the coagulation time (prothrombin time) and the coagulation kinetics were measured with the sample consumption of only 1μl. The procoagulant activity of thromboplastin and the anticoagulant effect of heparin on the blood coagulation process were illustrated exemplarily. The measured prothrombin times showed a good linear correlation with R 2 =0.99969 and a consistency with the coefficient of variation less than 5% compared with the commercial coagulometer. The proposed film bulk acoustic sensor, which has the advantages of small size, light weight, low cost, simple operation and little sample consumption, is a promising device for miniaturized, online and automated analytical system for routine diagnostics of hemostatic status and personal health monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Acoustic building infiltration measurement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muehleisen, Ralph T.; Raman, Ganesh

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  19. Tracking Three-Dimensional Fish Behavior with a New Marine Acoustic Telemetry System

    NASA Technical Reports Server (NTRS)

    Brosnan, Ian G.; McGarry, Louise P.; Greene, Charles H.; Steig, Tracey W.; Johnston, Samuel V.; Ehrenberg, John E.

    2015-01-01

    The persistent monitoring capability provided by acoustic telemetry systems allows us to study behavior, movement, and resource selection of mobile marine animals. Current marine acoustic telemetry systems are challenged by localization errors and limits in the number of animals that can be tracked simultaneously. We designed a new system to provide detection ranges of up to 1 km, to reduce localization errors to less than 1 m, and to increase to 500 the number of unique tags simultaneously tracked. The design builds on HTIs experience of more than a decade developing acoustic telemetry systems for freshwater environments. A field trial of the prototype system was conducted at the University of Washingtons Friday Harbor Marine Laboratory (Friday Harbor, WA). Copper rockfish (Sebastes caurinus) were selected for field trials of this new system because their high site-fidelity and small home ranges provide ample opportunity to track individual fish behavior while testing our ability to characterize the movements of a species of interest to management authorities.

  20. Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.

    PubMed

    André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. Copyright © 2011. Published by Elsevier Ltd.

  1. Saturn systems holddown acoustic efficiency and normalized acoustic power spectrum.

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1972-01-01

    Saturn systems field acoustic data are used to derive mid- and far-field prediction parameters for rocket engine noise. The data were obtained during Saturn vehicle launches at the Kennedy Space Center. The data base is a sorted set of acoustic data measured during the period 1961 through 1971 for Saturn system launches SA-1 through AS-509. The model assumes hemispherical radiation from a simple source located at the intersection of the longitudinal axis of each booster and the engine exit plane. The model parameters are evaluated only during vehicle holddown. The acoustic normalized power spectrum and efficiency for each system are isolated as a composite from the data using linear numerical methods. The specific definitions of each allows separation. The resulting power spectra are nondimensionalized as a function of rocket engine parameters. The nondimensional Saturn system acoustic spectrum and efficiencies are compared as a function of Strouhal number with power spectra from other systems.

  2. Developing a Passive Acoustic Monitoring Network for Harbor Porpoise in California

    NASA Astrophysics Data System (ADS)

    Jacobson, Eiren Kate

    Assessing the abundance of and trends in whale, dolphin, and porpoise (cetacean) populations using traditional visual methods can be challenging due primarily to their limited availability at the surface of the ocean. As a result, researchers are increasingly interested in incorporating non-visual and remote observations to improve cetacean population assessments. Passive acoustic monitoring (PAM) can complement or replace visual surveys for cetaceans that produce echolocation clicks, whistles, and other vocalizations. My doctoral dissertation is focused on developing methods to improve PAM of cetaceans. I used the Monterey Bay population of harbor porpoise (Phocoena phocoena ) as a case study for methods development. In Chapter 2, I used passive acoustic data to document that harbor porpoises avoid bottlenose dolphins (Tursiops truncatus) in nearshore Monterey Bay. In Chapter 3, I investigated whether different passive acoustic instruments could be used to monitor harbor porpoise. I recorded harbor porpoise echolocation clicks simultaneously on two different passive acoustic instruments and compared the number and peak frequency of echolocation signals recorded on the two instruments. I found that the number of echolocation clicks was highly correlated between instruments but that the peak frequency of echolocation clicks was not well-correlated, suggesting that some instruments may not be capable of discriminating harbor porpoise echolocation clicks in regions where multiple species with similar echolocation signals are present. In Chapter 4, I used paired visual and passive acoustic surveys to estimate the effective detection area of the passive acoustic sensors in a Bayesian framework. This approach resulted in a posterior distribution of the effective detection area that was consistent with previously published values. In Chapter 5, I used aerial survey and passive acoustic data in a simulation framework to investigate the statistical power of different

  3. Passive acoustic monitoring of the decline of Mexico's critically endangered vaquita.

    PubMed

    Jaramillo-Legorreta, Armando; Cardenas-Hinojosa, Gustavo; Nieto-Garcia, Edwyna; Rojas-Bracho, Lorenzo; Ver Hoef, Jay; Moore, Jeffrey; Tregenza, Nicholas; Barlow, Jay; Gerrodette, Tim; Thomas, Len; Taylor, Barbara

    2017-02-01

    The vaquita (Phocoena sinus) is the world's most endangered marine mammal with approximately 245 individuals remaining in 2008. This species of porpoise is endemic to the northern Gulf of California, Mexico, and historically the population has declined because of unsustainable bycatch in gillnets. An illegal gillnet fishery for an endangered fish, the totoaba (Totoaba macdonaldi), has recently resurged throughout the vaquita's range. The secretive but lucrative wildlife trade with China for totoaba swim bladders has probably increased vaquita bycatch mortality by an unknown amount. Precise population monitoring by visual surveys is difficult because vaquitas are inherently hard to see and have now become so rare that sighting rates are very low. However, their echolocation clicks can be identified readily on specialized acoustic detectors. Acoustic detections on an array of 46 moored detectors indicated vaquita acoustic activity declined by 80% between 2011 and 2015 in the central part of the species' range. Statistical models estimated an annual rate of decline of 34% (95% Bayesian credible interval -48% to -21%). Based on results from 2011 to 2014, the government of Mexico enacted and is enforcing an emergency 2-year ban on gillnets throughout the species' range to prevent extinction, at a cost of US$74 million to compensate fishers. Developing precise acoustic monitoring methods proved critical to exposing the severity of vaquitas' decline and emphasizes the need for continual monitoring to effectively manage critically endangered species. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  4. Acoustic method respiratory rate monitoring is useful in patients under intravenous anesthesia.

    PubMed

    Ouchi, Kentaro; Fujiwara, Shigeki; Sugiyama, Kazuna

    2017-02-01

    Respiratory depression can occur during intravenous general anesthesia without tracheal intubation. A new acoustic method for respiratory rate monitoring, RRa ® (Masimo Corp., Tokyo, Japan), has been reported to show good reliability in post-anesthesia care and emergency units. The purpose of this study was to investigate the reliability of the acoustic method for measurement of respiratory rate during intravenous general anesthesia, as compared with capnography. Patients with dental anxiety undergoing dental treatment under intravenous anesthesia without tracheal intubation were enrolled in this study. Respiratory rate was recorded every 30 s using the acoustic method and capnography, and detectability of respiratory rate was investigated for both methods. This study used a cohort study design. In 1953 recorded respiratory rate data points, the number of detected points by the acoustic method (1884, 96.5 %) was significantly higher than that by capnography (1682, 86.1 %) (P < 0.0001). In the intraoperative period, there was a significant difference in the LOA (95 % limits of agreement of correlation between difference and average of the two methods)/ULLOA (under the lower limit of agreement) in terms of use or non-use of a dental air turbine (P < 0.0001). In comparison between capnography, the acoustic method is useful for continuous monitoring of respiratory rate in spontaneously breathing subjects undergoing dental procedures under intravenous general anesthesia. However, the acoustic method might not accurately detect in cases in with dental air turbine.

  5. Acoustic localization at large scales: a promising method for grey wolf monitoring.

    PubMed

    Papin, Morgane; Pichenot, Julian; Guérold, François; Germain, Estelle

    2018-01-01

    The grey wolf ( Canis lupus ) is naturally recolonizing its former habitats in Europe where it was extirpated during the previous two centuries. The management of this protected species is often controversial and its monitoring is a challenge for conservation purposes. However, this elusive carnivore can disperse over long distances in various natural contexts, making its monitoring difficult. Moreover, methods used for collecting signs of presence are usually time-consuming and/or costly. Currently, new acoustic recording tools are contributing to the development of passive acoustic methods as alternative approaches for detecting, monitoring, or identifying species that produce sounds in nature, such as the grey wolf. In the present study, we conducted field experiments to investigate the possibility of using a low-density microphone array to localize wolves at a large scale in two contrasting natural environments in north-eastern France. For scientific and social reasons, the experiments were based on a synthetic sound with similar acoustic properties to howls. This sound was broadcast at several sites. Then, localization estimates and the accuracy were calculated. Finally, linear mixed-effects models were used to identify the factors that influenced the localization accuracy. Among 354 nocturnal broadcasts in total, 269 were recorded by at least one autonomous recorder, thereby demonstrating the potential of this tool. Besides, 59 broadcasts were recorded by at least four microphones and used for acoustic localization. The broadcast sites were localized with an overall mean accuracy of 315 ± 617 (standard deviation) m. After setting a threshold for the temporal error value associated with the estimated coordinates, some unreliable values were excluded and the mean accuracy decreased to 167 ± 308 m. The number of broadcasts recorded was higher in the lowland environment, but the localization accuracy was similar in both environments, although it varied

  6. A Device for Fetal Monitoring by Means of Control Over Cardiovascular Parameters Based on Acoustic Data

    NASA Astrophysics Data System (ADS)

    Khokhlova, L. A.; Seleznev, A. I.; Zhdanov, D. S.; Zemlyakov, I. Yu; Kiseleva, E. Yu

    2016-01-01

    The problem of monitoring fetal health is topical at the moment taking into account a reduction in the level of fertile-age women's health and changes in the concept of perinatal medicine with reconsideration of live birth criteria. Fetal heart rate monitoring is a valuable means of assessing fetal health during pregnancy. The routine clinical measurements are usually carried out by the means of ultrasound cardiotocography. Although the cardiotocography monitoring provides valuable information on the fetal health status, the high quality ultrasound devices are expensive, they are not available for home care use. The recommended number of measurement is also limited. The passive and fully non-invasive acoustic recording provides an alternative low-cost measurement method. The article describes a device for fetal and maternal health monitoring by analyzing the frequency and periodicity of heart beats by means of acoustic signal received on the maternal abdomen. Based on the usage of this device a phonocardiographic fetal telemedicine system, which will allow to reduce the antenatal fetal mortality rate significantly due to continuous monitoring over the state of fetus regardless of mother's location, can be built.

  7. Advanced Systems for Monitoring Underwater Sounds

    NASA Technical Reports Server (NTRS)

    Lane, Michael; Van Meter, Steven; Gilmore, Richard Grant; Sommer, Keith

    2007-01-01

    The term "Passive Acoustic Monitoring System" (PAMS) describes a developmental sensing-and-data-acquisition system for recording underwater sounds. The sounds (more precisely, digitized and preprocessed versions from acoustic transducers) are subsequently analyzed by a combination of data processing and interpretation to identify and/or, in some cases, to locate the sources of those sounds. PAMS was originally designed to locate the sources such as fish of species that one knows or seeks to identify. The PAMS unit could also be used to locate other sources, for example, marine life, human divers, and/or vessels. The underlying principles of passive acoustic sensing and analyzing acoustic-signal data in conjunction with temperature and salinity data are not new and not unique to PAMS. Part of the uniqueness of the PAMS design is that it is the first deep-sea instrumentation design to provide a capability for studying soniferous marine animals (especially fish) over the wide depth range described below. The uniqueness of PAMS also lies partly in a synergistic combination of advanced sensing, packaging, and data-processing design features with features adapted from proven marine instrumentation systems. This combination affords a versatility that enables adaptation to a variety of undersea missions using a variety of sensors. The interpretation of acoustic data can include visual inspection of power-spectrum plots for identification of spectral signatures of known biological species or artificial sources. Alternatively or in addition, data analysis could include determination of relative times of arrival of signals at different acoustic sensors arrayed at known locations. From these times of arrival, locations of acoustic sources (and errors in those locations) can be estimated. Estimates of relative locations of sources and sensors can be refined through analysis of the attenuation of sound in the intervening water in combination with water-temperature and salinity

  8. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  9. An Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun

    Fishes and other marine mammals suffer a range of potential effects from intense sound sources generated by anthropogenic underwater processes such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording devices (USR) were built to monitor the acoustic sound pressure waves generated by those anthropogenic underwater activities, so the relevant processing software becomes indispensable for analyzing the audio files recorded by these USRs. However, existing software packages did not meet performance and flexibility requirements. In this paper, we provide a detailed description of a new software package, named Aquatic Acoustic Metrics Interface (AAMI), which is a Graphicalmore » User Interface (GUI) designed for underwater sound monitoring and analysis. In addition to the general functions, such as loading and editing audio files recorded by USRs, the software can compute a series of acoustic metrics in physical units, monitor the sound's influence on fish hearing according to audiograms from different species of fishes and marine mammals, and batch process the sound files. The detailed applications of the software AAMI will be discussed along with several test case scenarios to illustrate its functionality.« less

  10. Apparatus and method for acoustic monitoring of steam quality and flow

    DOEpatents

    Sinha, Dipen N.; Pantea, Cristian

    2016-09-13

    An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.

  11. Operational Performance Analysis of Passive Acoustic Monitoring for Killer Whales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Fu, Tao; Ren, Huiying

    2011-09-30

    For the planned tidal turbine site in Puget Sound, WA, the main concern is to protect Southern Resident Killer Whales (SRKW) due to their Endangered Species Act status. A passive acoustic monitoring system is proposed because the whales emit vocalizations that can be detected by a passive system. The algorithm for detection is implemented in two stages. The first stage is an energy detector designed to detect candidate signals. The second stage is a spectral classifier that is designed to reduce false alarms. The evaluation presented here of the detection algorithm incorporates behavioral models of the species of interest, environmentalmore » models of noise levels and potential false alarm sources to provide a realistic characterization of expected operational performance.« less

  12. Method and apparatus for acoustically monitoring the flow of suspended solid particulate matter

    DOEpatents

    Roach, Paul D.; Raptis, Apostolos C.

    1982-01-01

    A method and apparatus for monitoring char flow in a coal gasifier system cludes flow monitor circuits which measure acoustic attenuation caused by the presence of char in a char line and provide a char flow/no flow indication and an indication of relative char density. The flow monitor circuits compute the ratio of signals in two frequency bands, a first frequency band representative of background noise, and a second higher frequency band in which background noise is attenuated by the presence of char. Since the second frequency band contains higher frequencies, the ratio can be used to provide a flow/no flow indication. The second band can also be selected so that attenuation is monotonically related to particle concentration, providing a quantitative measure of char concentration.

  13. Passive acoustic monitoring of coastally associated Hawaiian spinner dolphins, Stenella longirostris, ground-truthed through visual surveys.

    PubMed

    Heenehan, Heather L; Tyne, Julian A; Bejder, Lars; Van Parijs, Sofie M; Johnston, David W

    2016-07-01

    Effective decision making to protect coastally associated dolphins relies on monitoring the presence of animals in areas that are critical to their survival. Hawaiian spinner dolphins forage at night and rest during the day in shallow bays. Due to their predictable presence, they are targeted by dolphin-tourism. In this study, comparisons of presence were made between passive acoustic monitoring (PAM) and vessel-based visual surveys in Hawaiian spinner dolphin resting bays. DSG-Ocean passive acoustic recording devices were deployed in four bays along the Kona Coast of Hawai'i Island between January 8, 2011 and August 30, 2012. The devices sampled at 80 kHz, making 30-s recordings every four minutes. Overall, dolphins were acoustically detected on 37.1% to 89.6% of recording days depending on the bay. Vessel-based visual surveys overlapped with the PAM surveys on 202 days across the four bays. No significant differences were found between visual and acoustic detections suggesting acoustic surveys can be used as a proxy for visual surveys. Given the need to monitor dolphin presence across sites, PAM is the most suitable and efficient tool for monitoring long-term presence/absence. Concomitant photo-identification surveys are necessary to address changes in abundance over time.

  14. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  15. Acoustic monitoring of coastal dolphins and their response to naval mine neutralization exercises

    PubMed Central

    Howe, Marian; Zang, Eden; McElligott, Megan; Engelhaupt, Amy; Munger, Lisa

    2017-01-01

    To investigate the potential impacts of naval mine neutralization exercises (MINEX) on odontocete cetaceans, a long-term passive acoustic monitoring study was conducted at a US Navy training range near Virginia Beach, USA. Bottom-moored acoustic recorders were deployed in 2012–2016 near the epicentre of MINEX training activity and were refurbished every 2–4 months. Recordings were analysed for the daily presence/absence of dolphins, and dolphin acoustic activity was quantified in detail for the hours and days before and after 31 MINEX training events. Dolphins occurred in the area year-round, but there was clear seasonal variability, with lower presence during winter months. Dolphins exhibited a behavioural response to underwater detonations. Dolphin acoustic activity near the training location was lower during the hours and days following detonations, suggesting that animals left the area and/or reduced their signalling. Concurrent acoustic monitoring farther away from the training area suggested that the radius of response was between 3 and 6 km. A generalized additive model indicated that the predictors that explained the greatest amount of deviance in the data were the day relative to the training event, the hour of the day and circumstances specific to each training event. PMID:29308219

  16. Acoustic monitoring of coastal dolphins and their response to naval mine neutralization exercises.

    PubMed

    Lammers, Marc O; Howe, Marian; Zang, Eden; McElligott, Megan; Engelhaupt, Amy; Munger, Lisa

    2017-12-01

    To investigate the potential impacts of naval mine neutralization exercises (MINEX) on odontocete cetaceans, a long-term passive acoustic monitoring study was conducted at a US Navy training range near Virginia Beach, USA. Bottom-moored acoustic recorders were deployed in 2012-2016 near the epicentre of MINEX training activity and were refurbished every 2-4 months. Recordings were analysed for the daily presence/absence of dolphins, and dolphin acoustic activity was quantified in detail for the hours and days before and after 31 MINEX training events. Dolphins occurred in the area year-round, but there was clear seasonal variability, with lower presence during winter months. Dolphins exhibited a behavioural response to underwater detonations. Dolphin acoustic activity near the training location was lower during the hours and days following detonations, suggesting that animals left the area and/or reduced their signalling. Concurrent acoustic monitoring farther away from the training area suggested that the radius of response was between 3 and 6 km. A generalized additive model indicated that the predictors that explained the greatest amount of deviance in the data were the day relative to the training event, the hour of the day and circumstances specific to each training event.

  17. Microcontroller-based underwater acoustic ECG telemetry system.

    PubMed

    Istepanian, R S; Woodward, B

    1997-06-01

    This paper presents a microcontroller-based underwater acoustic telemetry system for digital transmission of the electrocardiogram (ECG). The system is designed for the real time, through-water transmission of data representing any parameter, and it was used initially for transmitting in multiplexed format the heart rate, breathing rate and depth of a diver using self-contained underwater breathing apparatus (SCUBA). Here, it is used to monitor cardiovascular reflexes during diving and swimming. The programmable capability of the system provides an effective solution to the problem of transmitting data in the presence of multipath interference. An important feature of the paper is a comparative performance analysis of two encoding methods, Pulse Code Modulation (PCM) and Pulse Position Modulation (PPM).

  18. INNOVATIVE CONCEPTS FOR DETECTING AND LOCATING LEAKS IN WASTE IMPOUNDMENT LINER SYSTEMS: ACOUSTIC EMISSION MONITORING AND TIME DOMAIN REFLECTOMETRY

    EPA Science Inventory

    This project is part of a program to investigate the use of innovative techniques for detecting and locating leaks in waste impoundment liners. Laboratory and small scale field studies were undertaken to evaluate the potential of Acoustic Emission Monitoring (AEM) and Time Domain...

  19. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectricmore » actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.« less

  20. FRP/steel composite damage acoustic emission monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Chen, Zhi

    2015-04-01

    FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.

  1. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  2. Thick-film acoustic emission sensors for use in structurally integrated condition-monitoring applications.

    PubMed

    Pickwell, Andrew J; Dorey, Robert A; Mba, David

    2011-09-01

    Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.

  3. Coronado National Monument : acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2014-04-01

    During the summer (September October) of 2010, Volpe Center personnel deployed acoustic measurement system at Fort Bowie National Historic Site (FOBO) for approximately one month. The baseline data collected during this period will help park mana...

  4. Simultaneous Ultrasound Therapy and Monitoring of Microbubble-Seeded Acoustic Cavitation Using a Single-Element Transducer.

    PubMed

    Heymans, Sophie V; Martindale, Christine F; Suler, Andrej; Pouliopoulos, Antonios N; Dickinson, Robert J; Choi, James J

    2017-08-01

    Ultrasound-driven microbubble (MB) activity is used in therapeutic applications such as blood clot dissolution and targeted drug delivery. The safety and performance of these technologies are linked to the type and distribution of MB activities produced within the targeted area, but controlling and monitoring these activities in vivo and in real time has proven to be difficult. As therapeutic pulses are often milliseconds long, MB monitoring currently requires a separate transducer used in a passive reception mode. Here, we present a simple, inexpensive, integrated setup, in which a focused single-element transducer can perform ultrasound therapy and monitoring simultaneously. MBs were made to flow through a vessel-mimicking tube, placed within the transducer's focus, and were sonicated with therapeutic pulses (peak rarefactional pressure: 75-827 kPa, pulse lengths: [Formula: see text] and 20 ms). The MB-seeded acoustic emissions were captured using the same transducer. The received signals were separated from the therapeutic signal with a hybrid coupler and a high-pass filter. We discriminated the MB-generated cavitation signal from the primary acoustic field and characterized MB behavior in real time. The simplicity and versatility of our circuit could make existing single-element therapeutic transducers also act as cavitation detectors, allowing the production of compact therapeutic systems with real time monitoring capabilities.

  5. A Fusion Model of Seismic and Hydro-Acoustic Propagation for Treaty Monitoring

    NASA Astrophysics Data System (ADS)

    Arora, Nimar; Prior, Mark

    2014-05-01

    We present an extension to NET-VISA (Network Processing Vertically Integrated Seismic Analysis), which is a probabilistic generative model of the propagation of seismic waves and their detection on a global scale, to incorporate hydro-acoustic data from the IMS (International Monitoring System) network. The new model includes the coupling of seismic waves into the ocean's SOFAR channel, as well as the propagation of hydro-acoustic waves from underwater explosions. The generative model is described in terms of multiple possible hypotheses -- seismic-to-hydro-acoustic, under-water explosion, other noise sources such as whales singing or icebergs breaking up -- that could lead to signal detections. We decompose each hypothesis into conditional probability distributions that are carefully analyzed and calibrated. These distributions include ones for detection probabilities, blockage in the SOFAR channel (including diffraction, refraction, and reflection around obstacles), energy attenuation, and other features of the resulting waveforms. We present a study of the various features that are extracted from the hydro-acoustic waveforms, and their correlations with each other as well the source of the energy. Additionally, an inference algorithm is presented that concurrently infers the seismic and under-water events, and associates all arrivals (aka triggers), both from seismic and hydro-acoustic stations, to the appropriate event, and labels the path taken by the wave. Finally, our results demonstrate that this fusion of seismic and hydro-acoustic data leads to very good performance. A majority of the under-water events that IDC (International Data Center) analysts built in 2010 are correctly located, and the arrivals that correspond to seismic-to-hydroacoustic coupling, the T phases, are mostly correctly identified. There is no loss in the accuracy of seismic events, in fact, there is a slight overall improvement.

  6. Speaker verification system using acoustic data and non-acoustic data

    DOEpatents

    Gable, Todd J [Walnut Creek, CA; Ng, Lawrence C [Danville, CA; Holzrichter, John F [Berkeley, CA; Burnett, Greg C [Livermore, CA

    2006-03-21

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  7. Assessment of error rates in acoustic monitoring with the R package monitoR

    USGS Publications Warehouse

    Katz, Jonathan; Hafner, Sasha D.; Donovan, Therese

    2016-01-01

    Detecting population-scale reactions to climate change and land-use change may require monitoring many sites for many years, a process that is suited for an automated system. We developed and tested monitoR, an R package for long-term, multi-taxa acoustic monitoring programs. We tested monitoR with two northeastern songbird species: black-throated green warbler (Setophaga virens) and ovenbird (Seiurus aurocapilla). We compared detection results from monitoR in 52 10-minute surveys recorded at 10 sites in Vermont and New York, USA to a subset of songs identified by a human that were of a single song type and had visually identifiable spectrograms (e.g. a signal:noise ratio of at least 10 dB: 166 out of 439 total songs for black-throated green warbler, 502 out of 990 total songs for ovenbird). monitoR’s automated detection process uses a ‘score cutoff’, which is the minimum match needed for an unknown event to be considered a detection and results in a true positive, true negative, false positive or false negative detection. At the chosen score cut-offs, monitoR correctly identified presence for black-throated green warbler and ovenbird in 64% and 72% of the 52 surveys using binary point matching, respectively, and 73% and 72% of the 52 surveys using spectrogram cross-correlation, respectively. Of individual songs, 72% of black-throated green warbler songs and 62% of ovenbird songs were identified by binary point matching. Spectrogram cross-correlation identified 83% of black-throated green warbler songs and 66% of ovenbird songs. False positive rates were  for song event detection.

  8. Heath Monitoring of Thermal Protection Systems - Preliminary Measurements and Design Specifications

    NASA Technical Reports Server (NTRS)

    Scott, D. A.; Price, D. C.

    2007-01-01

    The work reported here is the first stage of a project that aims to develop a health monitoring system for Thermal Protection Systems (TPS) that enables a vehicle to safely re-enter the Earth's atmosphere. The TPS health monitoring system is to be integrated into an existing acoustic emissions-based Concept Demonstrator, developed by CSIRO, which has been previously demonstrated for evaluating impact damage of aerospace systems.

  9. Design and first tests of an acoustic positioning and detection system for KM3NeT

    NASA Astrophysics Data System (ADS)

    Simeone, F.; Ameli, F.; Ardid, M.; Bertin, V.; Bonori, M.; Bou-Cabo, M.; Calì, C.; D'Amico, A.; Giovanetti, G.; Imbesi, M.; Keller, P.; Larosa, G.; Llorens, C. D.; Masullo, R.; Randazzo, N.; Riccobene, G.; Speziale, F.; Viola, S.; KM3NeT Consortium

    2012-01-01

    In a deep-sea neutrino telescope it is mandatory to locate the position of the optical sensors with a precision of about 10 cm. To achieve this requirement, an innovative Acoustic Positioning System (APS) has been designed in the frame work of the KM3NeT neutrino telescope. The system will also be able to provide an acoustic guide during the deployment of the telescope’s components and seafloor infrastructures (junction boxes, cables, etc.). A prototype of the system based on the successful acoustic systems of ANTARES and NEMO is being developed. It will consist of an array of hydrophones and a network of acoustic transceivers forming the Long Baseline. All sensors are connected to the telescope data acquisition system and are in phase and synchronised with the telescope master clock. Data from the acoustic sensors, continuously sampled at 192 kHz, will be sent to shore where signal recognition and analysis will be carried out. The design and first tests of the system elements will be presented. This new APS is expected to have better precision compared to the systems used in ANTARES and NEMO, and can also be used as a real-time monitor of acoustic sources and environmental noise in deep sea.

  10. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  11. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  12. Acoustic signal emission monitoring as a novel method to predict steam pops during radiofrequency ablation: preliminary observations.

    PubMed

    Chik, William W B; Kosobrodov, Roman; Bhaskaran, Abhishek; Barry, Michael Anthony Tony; Nguyen, Doan Trang; Pouliopoulos, Jim; Byth, Karen; Sivagangabalan, Gopal; Thomas, Stuart P; Ross, David L; McEwan, Alistair; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-04-01

    Steam pop is an explosive rupture of cardiac tissue caused by tissue overheating above 100 °C, resulting in steam formation, predisposing to serious complications associated with radiofrequency (RF) ablations. However, there are currently no reliable techniques to predict the occurrence of steam pops. We propose the utility of acoustic signals emitted during RF ablation as a novel method to predict steam pop formation and potentially prevent serious complications. Radiofrequency generator parameters (power, impedance, and temperature) were temporally recorded during ablations performed in an in vitro bovine myocardial model. The acoustic system consisted of HTI-96-min hydrophone, microphone preamplifier, and sound card connected to a laptop computer. The hydrophone has the frequency range of 2 Hz to 30 kHz and nominal sensitivity in the range -240 to -165 dB. The sound was sampled at 96 kHz with 24-bit resolution. Output signal from the hydrophone was fed into the camera audio input to synchronize the video stream. An automated system was developed for the detection and analysis of acoustic events. Nine steam pops were observed. Three distinct sounds were identified as warning signals, each indicating rapid steam formation and its release from tissue. These sounds had a broad frequency range up to 6 kHz with several spectral peaks around 2-3 kHz. Subjectively, these warning signals were perceived as separate loud clicks, a quick succession of clicks, or continuous squeaking noise. Characteristic acoustic signals were identified preceding 80% of pops occurrence. Six cardiologists were able to identify 65% of acoustic signals accurately preceding the pop. An automated system identified the characteristic warning signals in 85% of cases. The mean time from the first acoustic signal to pop occurrence was 46 ± 20 seconds. The automated system had 72.7% sensitivity and 88.9% specificity for predicting pops. Easily identifiable characteristic acoustic emissions

  13. Method and apparatus for acoustically monitoring the flow of suspended solid particulate matter. [Patent application; monitoring char flow in coal gasifier

    DOEpatents

    Roach, P.D.; Raptis, A.C.

    1980-11-24

    A method and apparatus for monitoring char flow in a coal gasifier system includes flow monitor circuits which measure acoustic attenuation caused by the presence of char in a char line and provides a char flow/no flow indication and an indication of relative char density. The flow monitor circuits compute the ratio of signals in two frequency bands, a first frequency band representative of background noise, and a second higher frequency band in which background noise is attenuated by the presence of char. Since the second frequency band contains higher frequencies, the ratio can be used to provide a flow/no flow indication. The second band can also be selected so that attenuation is monotonically related to particle concentration, providing a quantitative measure of char concentration.

  14. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.

    PubMed

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.

  15. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing

    PubMed Central

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs. PMID:22399990

  16. Passive Fetal Heart Monitoring System

    NASA Technical Reports Server (NTRS)

    Bryant, Timothy D. (Inventor); Wynkoop, Mark W. (Inventor); Holloway, Nancy M. H. (Inventor); Zuckerwar, Allan J. (Inventor)

    2004-01-01

    A fetal heart monitoring system preferably comprising a backing plate having a generally concave front surface and a generally convex back surface, and at least one sensor element attached to the concave front surface for acquiring acoustic fetal heart signals produced by a fetus within a body. The sensor element has a shape that conforms to the generally concave back surface of the backing plate. In one embodiment, the at least one sensor element comprises an inner sensor, and a plurality of outer sensors surrounding the inner sensor. The fetal heart monitoring system can further comprise a web belt, and a web belt guide movably attached to the web belt. The web belt guide being is to the convex back surface of the backing plate.

  17. An acoustic sensor for monitoring airflow in pediatric tracheostomy patients.

    PubMed

    Ruscher, Thomas; Wicks Phd, Alexandrina; Muelenaer Md, Andre

    2012-01-01

    Without proper monitoring, patients with artificial airways in the trachea are at high risk for complications or death. Despite routine maintenance of the tube, dislodged or copious mucus can obstruct the airway. Young children ( 3yrs) have difficulty tending to their own tubes and are particularly vulnerable to blockages. They require external respiratory sensors. In a hospital environment, ventilators, end-tidal CO2 monitors, thermistors, and other auxiliary equipment provide sufficient monitoring of respiration. However, outpatient monitoring methods, such as thoracic impedance and pulse oximetry, are indirect and prone to false positives. Desensitization of caregivers to frequent false alarms has been cited in medical literature as a contributing factor in cases of child death. Ultrasonic time-of-flight (TOF) is a technique used in specialized industrial applications to non-invasively measure liquid and gas flow. Two transducers are oriented at a diagonal across a flow channel. Velocity measurement is accomplished by detecting slight variations in transit time of contra-propagating acoustic signals with a directional component parallel to air flow. Due to the symmetry of acoustic pathway between sensors, velocity measurements are immune to partial fouling in the tube from mucus, saliva, and condensation. A first generation proof of concept prototype was constructed to evaluate the ultrasonic TOF technique for medical tracheostomy monitoring. After successful performance, a second generation prototype was designed with a smaller form factor and more advanced electronics. This prototype was tested and found to measure inspired volume with a root-mean-square error < 2% during initial trials.

  18. Signal identification in acoustic emission monitoring of fatigue cracking in steel bridges

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo P.; Ziehl, Paul; Pollock, Adrian

    2012-04-01

    Signal identification including noise filtering and reduction of acquired signals is needed to achieve efficient and accurate data interpretation for remote acoustic emission (AE) monitoring of in-service steel bridges. Noise filtering may ensure that genuine hits from crack growth are involved in the estimation of fatigue damage and remaining fatigue life. Reduction of the data quantity is desirable for the sensing system to conserve energy in the data transmission and processing procedures. Identification and categorization of acquired signals is a promising approach to effectively filter and reduce AE data in the application of bridge monitoring. In this study an investigation on waveform features (time domain and frequency domain) and relevant filters is carried out using the results from AE monitored fatigue tests. It is verified that duration-amplitude (D-A) filters are effective to discriminate against noise for results of steel fatigue tests. The study is helpful to find an appropriate AE data filtering protocol for field implementations.

  19. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  20. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  1. Investigation of an acoustical holography system for real-time imaging

    NASA Astrophysics Data System (ADS)

    Fecht, Barbara A.; Andre, Michael P.; Garlick, George F.; Shelby, Ronald L.; Shelby, Jerod O.; Lehman, Constance D.

    1998-07-01

    A new prototype imaging system based on ultrasound transmission through the object of interest -- acoustical holography -- was developed which incorporates significant improvements in acoustical and optical design. This system is being evaluated for potential clinical application in the musculoskeletal system, interventional radiology, pediatrics, monitoring of tumor ablation, vascular imaging and breast imaging. System limiting resolution was estimated using a line-pair target with decreasing line thickness and equal separation. For a swept frequency beam from 2.6 - 3.0 MHz, the minimum resolution was 0.5 lp/mm. Apatite crystals were suspended in castor oil to approximate breast microcalcifications. Crystals from 0.425 - 1.18 mm in diameter were well resolved in the acoustic zoom mode. Needle visibility was examined with both a 14-gauge biopsy needle and a 0.6 mm needle. The needle tip was clearly visible throughout the dynamic imaging sequence as it was slowly inserted into a RMI tissue-equivalent breast biopsy phantom. A selection of human images was acquired in several volunteers: a 25 year-old female volunteer with normal breast tissue, a lateral view of the elbow joint showing muscle fascia and tendon insertions, and the superficial vessels in the forearm. Real-time video images of these studies will be presented. In all of these studies, conventional sonography was used for comparison. These preliminary investigations with the new prototype acoustical holography system showed favorable results in comparison to state-of-the-art pulse-echo ultrasound and demonstrate it to be suitable for further clinical study. The new patient interfaces will facilitate orthopedic soft tissue evaluation, study of superficial vascular structures and potentially breast imaging.

  2. Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang

    Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).

  3. Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources

    DOEpatents

    Holzrichter, John F [Berkeley, CA; Ng, Lawrence C [Danville, CA

    2007-03-13

    A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  4. Induced Seismicity Monitoring System

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  5. Dual instrument passive acoustic monitoring of belugas in Cook Inlet, Alaska.

    PubMed

    Castellote, Manuel; Small, Robert J; Lammers, Marc O; Jenniges, Justin J; Mondragon, Jeff; Atkinson, Shannon

    2016-05-01

    As part of a long-term research program, Cook Inlet beluga (Delphinapterus leucas) presence was acoustically monitored with two types of acoustic sensors utilized in tandem in moorings deployed year-round: an ecological acoustic recorder (EAR) and a cetacean and porpoise detector (C-POD). The EAR was used primarily to record the calls, whistles, and buzzes produced by belugas and killer whales (Orcinus orca). The C-POD was used to log and classify echolocation clicks from belugas, killer whales, and porpoises. This paper describes mooring packages that maximized the chances of successful long-term data collection in the particularly challenging Cook Inlet environment, and presents an analytical comparison of odontocete detections obtained by the collocated EAR and C-POD instruments from two mooring locations in the upper inlet. Results from this study illustrate a significant improvement in detecting beluga and killer whale presence when the different acoustic signals detected by EARs and C-PODs are considered together. Further, results from concurrent porpoise detections indicating prey competition and feeding interference with beluga, and porpoise displacement due to ice formation are described.

  6. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  7. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    PubMed

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  8. Last call: Passive acoustic monitoring shows continued rapid decline of critically endangered vaquita.

    PubMed

    Thomas, Len; Jaramillo-Legorreta, Armando; Cardenas-Hinojosa, Gustavo; Nieto-Garcia, Edwyna; Rojas-Bracho, Lorenzo; Ver Hoef, Jay M; Moore, Jeffrey; Taylor, Barbara; Barlow, Jay; Tregenza, Nicholas

    2017-11-01

    The vaquita is a critically endangered species of porpoise. It produces echolocation clicks, making it a good candidate for passive acoustic monitoring. A systematic grid of sensors has been deployed for 3 months annually since 2011; results from 2016 are reported here. Statistical models (to compensate for non-uniform data loss) show an overall decline in the acoustic detection rate between 2015 and 2016 of 49% (95% credible interval 82% decline to 8% increase), and total decline between 2011 and 2016 of over 90%. Assuming the acoustic detection rate is proportional to population size, approximately 30 vaquita (95% credible interval 8-96) remained in November 2016.

  9. A fiber optic multi-stress monitoring system for power transformer

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-04-01

    A fiber-optic multi-stress monitoring system which uses 4 FBG sensors and a fiber-optic mandrel acoustic emission sensor is proposed. FBG sensors and a mandrel sensor measure different types of stresses occurring in electrical power transformer, such as temperature and acoustic signals. The sensor system uses single broadband light source to address the outputs of both sensors using single fiber-optic circuitry. An athermal-packaged FBG is used to supply quasi-coherent light for the Sagnac interferometer demodulation which processes the mandrel sensor output. The proposed sensor system could simplify the optical circuit for the multi-stress measurements and enhance the cost-effectiveness of the sensor system.

  10. Quantitative acoustic emission monitoring of fatigue cracks in fracture critical steel bridges.

    DOT National Transportation Integrated Search

    2014-01-01

    The objective of this research is to evaluate the feasibility to employ quantitative acoustic : emission (AE) techniques for monitoring of fatigue crack initiation and propagation in steel : bridge members. Three A36 compact tension steel specimens w...

  11. Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region & West Coast Naval Training Range Demonstration of Glider-based Passive Acoustic Monitoring

    DTIC Science & Technology

    2012-09-30

    generalized power-law detection algorithm for humpback whale vocalizations. J. Acous. Soc. Am. 131(4), 2682-2699. Roch, M. A., H. Klinck, S...Heaney (2012b). Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones. J. Acous. Soc. Am...monitoring: Correcting humpback call detections for site-specific and time-dependent environmental characteristics . JASA Express Letters, submitted October, 2012, 5 pgs plus 3 figs.

  12. Fort Bowie National Historic Site : acoustical monitoring

    DOT National Transportation Integrated Search

    2014-04-01

    During the summer (September October) of 2010, Volpe Center personnel deployed acoustic measurement system at Fort Bowie National Historic Site (FOBO) for approximately one month. The baseline data collected during this period will help park mana...

  13. Accuracy of an acoustic location system for monitoring the position of duetting songbirds in tropical forest

    PubMed Central

    Mennill, Daniel J.; Burt, John M.; Fristrup, Kurt M.; Vehrencamp, Sandra L.

    2008-01-01

    A field test was conducted on the accuracy of an eight-microphone acoustic location system designed to triangulate the position of duetting rufous-and-white wrens (Thryothorus rufalbus) in Costa Rica’s humid evergreen forest. Eight microphones were set up in the breeding territories of twenty pairs of wrens, with an average inter-microphone distance of 75.2±2.6 m. The array of microphones was used to record antiphonal duets broadcast through stereo loudspeakers. The positions of the loudspeakers were then estimated by evaluating the delay with which the eight microphones recorded the broadcast sounds. Position estimates were compared to coordinates surveyed with a global-positioning system (GPS). The acoustic location system estimated the position of loudspeakers with an error of 2.82±0.26 m and calculated the distance between the “male” and “female” loudspeakers with an error of 2.12±0.42 m. Given the large range of distances between duetting birds, this relatively low level of error demonstrates that the acoustic location system is a useful tool for studying avian duets. Location error was influenced partly by the difficulties inherent in collecting high accuracy GPS coordinates of microphone positions underneath a lush tropical canopy, and partly by the complicating influence of irregular topography and thick vegetation on sound transmission. PMID:16708941

  14. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  15. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Karl A.; Candy, Jim V.; Guss, Gabe

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  16. Acoustic methods to monitor sliver linear density and yarn strength

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    Methods and apparatus are provided for monitoring sliver and yarn characteristics. Transverse waves are generated relative to the sliver or yarn. At least one acoustic sensor is in contact with the sliver or yarn for detecting waves coupled to the sliver or yarn and for generating a signal. The generated signal is processed to identify the predefined characteristics including sliver or yarn linear density. The transverse waves can be generated with a high-powered acoustic transmitter spaced relative to the sliver or yarn with large amplitude pulses having a central frequency in a range between 20 KHz and 40 KHz applied to the transmitter. The transverse waves can be generated by mechanically agitating the sliver or yarn with a tapping member.

  17. Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring

    DTIC Science & Technology

    2016-05-02

    individual animals . 15. SUBJECT TERMS Marine mammal; Passive acoustic monitoring ; Localization; Tracking ; Multiple source ; Sparse array 16. SECURITY...al. 2004; Thode 2005; Nosal 2007] to localize animals in situations where straight-line propagation assumptions made by conventional marine mammal...Objective 1: Inveti for sound speed profiles. hydrophone position and hydrophone timing offset in addition to animal position Almost all marine mammal

  18. Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring

    DTIC Science & Technology

    2016-05-02

    separate and associate calls from individual animals . Marine mammal; Passive acoustic monitoring; Localization; Tracking; Multiple source; Sparse array...position and hydrophone timing offset in addition to animal position Almost all marine mammal tracking methods treat animal position as the only unknown...Workshop on Detection, Classification and Localization (DCL) of Marine Mammals). The animals were expected to be relatively close to the surface

  19. Acoustic Monitoring of Adhesive Bond Curing in Wood Laminates.

    NASA Astrophysics Data System (ADS)

    Biernacki, Jacek Marek

    Challenges in manufacturing of wood products, such as glulam, include difficulty in controlling bonding variables and assessing bond quality. This dissertation investigates an ultrasonic method as a means of monitoring of curing and assessing bond quality in wood laminates. The effect of curing on ultrasonic transmission was studied using specimens of clear Douglas-fir, 100 x 200 x 600 mm, with the adhesive bond in the center of the specimen. Monitoring was performed simultaneously at normal and angular (5 ^circ nominal) incidence to the bond plane. Acoustic measurements were supplemented with destructive cure monitoring, standard bond strength measurement, monitoring of bulk viscosity curing, gel time measurement, and microscopic (SEM) examination. Angular incidence gave greater sensitivity to bond quality and curing status than did normal incidence. Analysis of wave propagation showed that displacement for transmission at a small angle (on the order of 5^circ ) was nearly parallel to the bond, which seems to explain greater sensitivity of angular incidence. Experimental results showed that this method was effective in detection of curing phases, such as spread, penetration, and hardening, defective bonds, and the effect of clamping pressure. An "unloading effect", measured as a relative transmission reduction after the clamping load was released, was sensitive to defective bonds, including uncured (kissing), underspread, and uneven spread bonds. Thick bonds (0.5 and 1.0 mm) caused the greatest increase in transmission, since waves at start of curing were highly attenuated. In angular transmission, thick-bond curing curves showed a characteristic inflection, which may be used to identify thick bonds and measure the curing rate. The results of this dissertation could be utilized to develop commercial systems in glulam manufacturing, which could evaluate: (a) phase of and completion of curing (b) bond quality (c) optimum clamping pressure. Similar systems could also

  20. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase.

    PubMed

    Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M; Soares, Alexei S

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals. © 2015 Society for Laboratory Automation and Screening.

  1. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, Daniel L.; Yin, Xingyu; Scalia, Alexander

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were usedmore » to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals.« less

  2. Energy scavenging system by acoustic wave and integrated wireless communication

    NASA Astrophysics Data System (ADS)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  3. Controlled Ultrasound-Induced Blood-Brain Barrier Disruption Using Passive Acoustic Emissions Monitoring

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; Vykhodtseva, Natalia; McDannold, Nathan

    2012-01-01

    The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R2 = 0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology. PMID:23029240

  4. Acoustic Transmitters for Underwater Neutrino Telescopes

    PubMed Central

    Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  5. Department of Cybernetic Acoustics

    NASA Astrophysics Data System (ADS)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  6. Evaluation of acoustic testing techniques for spacecraft systems

    NASA Technical Reports Server (NTRS)

    Cockburn, J. A.

    1971-01-01

    External acoustic environments, structural responses, noise reductions, and the internal acoustic environments have been predicted for a typical shroud/spacecraft system during lift-off and various critical stages of flight. Spacecraft responses caused by energy transmission from the shroud via mechanical and acoustic paths have been compared and the importance of the mechanical path has been evaluated. Theoretical predictions have been compared extensively with available laboratory and in-flight measurements. Equivalent laboratory acoustic fields for simulation of shroud response during the various phases of flight have been derived and compared in detail. Techniques for varying the time-space correlations of laboratory acoustic fields have been examined, together with methods for varying the time and spatial distribution of acoustic amplitudes. Possible acoustic testing configurations for shroud/spacecraft systems have been suggested and trade-off considerations have been reviewed. The problem of simulating the acoustic environments versus simulating the structural responses has been considered and techniques for testing without the shroud installed have been discussed.

  7. Acoustic Emission Monitoring for Assessment of Steel Bridge Details

    NASA Astrophysics Data System (ADS)

    Kosnik, D. E.; Hopwood, T.; Corr, D. J.

    2011-06-01

    Acoustic emission (AE) testing was deployed on details of two large steel Interstate Highway bridges: one cantilever through-truss and one trapezoidal box girder bridge. Quantitative measurements of activity levels at known and suspected crack locations were made by monitoring AE under normal service loads (e.g., live traffic and wind). AE indications were used to direct application of radiography, resulting in identification of a previously unknown flaw, and to inform selection of a retrofit detail.

  8. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  9. Monitoring industrial pharmaceutical crystallization processes using acoustic emission in pure and impure media.

    PubMed

    Gherras, Nesrine; Serris, Eric; Fevotte, Gilles

    2012-12-15

    Acoustic emission (AE) which has been successfully applied for monitoring a rather wide variety of solids elaboration processes was almost never evaluated in the field of industrial pharmaceutical crystallization. Few papers reported that solution crystallization processes give rise to acoustic emission signals that could be related to the development of the basic crystallization phenomena. This study is intended to demonstrate new perspectives opened up by the possible use of acoustic emission (AE) as a non-intrusive and non destructive sensor for monitoring solution crystallization with a particular focus being put on the presence of impurities in real industrial processes. The wealth of acquired AE information is highlighted and it is suggested that such information could allow the design of innovative multipurpose sensing strategies. It is shown notably that AE provides a very early detection of nucleation events, much before the onset of the so-called "nucleation burst". It is also shown that AE brings new insight into the effect of impurities on both the development of the crystallization process and the quality of the crystallized product. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  11. A wireless data acquisition system for acoustic emission testing

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. T.; Lynch, J. P.

    2013-01-01

    As structural health monitoring (SHM) systems have seen increased demand due to lower costs and greater capabilities, wireless technologies have emerged that enable the dense distribution of transducers and the distributed processing of sensor data. In parallel, ultrasonic techniques such as acoustic emission (AE) testing have become increasingly popular in the non-destructive evaluation of materials and structures. These techniques, which involve the analysis of frequency content between 1 kHz and 1 MHz, have proven effective in detecting the onset of cracking and other early-stage failure in active structures such as airplanes in flight. However, these techniques typically involve the use of expensive and bulky monitoring equipment capable of accurately sensing AE signals at sampling rates greater than 1 million samples per second. In this paper, a wireless data acquisition system is presented that is capable of collecting, storing, and processing AE data at rates of up to 20 MHz. Processed results can then be wirelessly transmitted in real-time, creating a system that enables the use of ultrasonic techniques in large-scale SHM systems.

  12. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  13. Underwater Acoustic Beacon Location System

    DTIC Science & Technology

    2016-12-23

    300087 1 of 31 UNDERWATER ACOUSTIC BEACON LOCATION SYSTEM [0001] The present application claims the benefit of United States Provisional...Application Serial Number 62/297,179 filed on February 19, 2016 by the inventor, Steven E. Crocker and entitled “ Underwater Acoustic Beacon...search for and can locate an underwater location beacon. Attorney Docket No. 300087 2 of 31 (2) Description of the Prior Art [0005

  14. Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan

    2017-11-02

    The goals of the project are to leverage laboratory scientific strength in physical acoustics for critical international safeguards applications; create hardware demonstration capability for noninvasive, near real time, and low cost process monitor to capture future technology development programs; and measure physical property data to support method applicability.

  15. Comparison of acoustic recorders and field observers for monitoring tundra bird communities

    USGS Publications Warehouse

    Vold, Skyler T.; Handel, Colleen M.; McNew, Lance B.

    2017-01-01

    Acoustic recorders can be useful for studying bird populations but their efficiency and accuracy should be assessed in pertinent ecological settings before use. We investigated the utility of an acoustic recorder for monitoring abundance of tundra‐breeding birds relative to point‐count surveys in northwestern Alaska, USA, during 2014. Our objectives were to 1) compare numbers of birds and species detected by a field observer with those detected simultaneously by an acoustic recorder; 2) evaluate how detection probabilities for the observer and acoustic recorder varied with distance of birds from the survey point; and 3) evaluate whether avian guild‐specific detection rates differed between field observers and acoustic recorders relative to habitat. Compared with the observer, the acoustic recorder detected fewer species (βMethod = −0.39 ± 0.07) and fewer individuals (βMethod = −0.56 ± 0.05) in total and for 6 avian guilds. Discrepancies were attributed primarily to differences in effective area surveyed (91% missed by device were >100 m), but also to nonvocal birds being missed by the recorder (55% missed <100 m were silent). The observer missed a few individuals and one species detected by the device. Models indicated that relative abundance of various avian guilds was associated primarily with maximum shrub height and less so with shrub cover and visual obstruction. The absence of a significant interaction between survey method (observer vs. acoustic recorder) and any habitat characteristic suggests that traditional point counts and acoustic recorders would yield similar inferences about ecological relationships in tundra ecosystems. Pairing of the 2 methods could increase survey efficiency and allow for validation and archival of survey results.

  16. Filament Breakage Monitoring in Fused Deposition Modeling Using Acoustic Emission Technique

    PubMed Central

    Jin, Li; Yan, Youruiling; Mei, Yiming

    2018-01-01

    Polymers are being used in a wide range of Additive Manufacturing (AM) applications and have been shown to have tremendous potential for producing complex, individually customized parts. In order to improve part quality, it is essential to identify and monitor the process malfunctions of polymer-based AM. The present work endeavored to develop an alternative method for filament breakage identification in the Fused Deposition Modeling (FDM) AM process. The Acoustic Emission (AE) technique was applied due to the fact that it had the capability of detecting bursting and weak signals, especially from complex background noises. The mechanism of filament breakage was depicted thoroughly. The relationship between the process parameters and critical feed rate was obtained. In addition, the framework of filament breakage detection based on the instantaneous skewness and relative similarity of the AE raw waveform was illustrated. Afterwards, we conducted several filament breakage tests to validate their feasibility and effectiveness. Results revealed that the breakage could be successfully identified. Achievements of the present work could be further used to develop a comprehensive in situ FDM monitoring system with moderate cost. PMID:29494559

  17. On the use of temperature for online condition monitoring of geared systems - A review

    NASA Astrophysics Data System (ADS)

    Touret, T.; Changenet, C.; Ville, F.; Lalmi, M.; Becquerelle, S.

    2018-02-01

    Gear unit condition monitoring is a key factor for mechanical system reliability management. When they are subjected to failure, gears and bearings may generate excessive vibration, debris and heat. Vibratory, acoustic or debris analyses are proven approaches to perform condition monitoring. An alternative to those methods is to use temperature as a condition indicator to detect gearbox failure. The review focuses on condition monitoring studies which use this thermal approach. According to the failure type and the measurement method, it exists a distinction whether it is contact (e.g. thermocouple) or non-contact temperature sensor (e.g. thermography). Capabilities and limitations of this approach are discussed. It is shown that the use of temperature for condition monitoring has a clear potential as an alternative to vibratory or acoustic health monitoring.

  18. Streaming and particle motion in acoustically-actuated leaky systems

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Barnkob, Rune; Jun Huang, Tony; Kahler, Christian; Costanzo, Francesco

    2017-11-01

    The integration of acoustics with microfluidics has shown great promise for applications within biology, chemistry, and medicine. A commonly employed system to achieve this integration consists of a fluid-filled, polymer-walled microchannel that is acoustically actuated via standing surface acoustic waves. However, despite significant experimental advancements, the precise physical understanding of such systems remains a work in progress. In this work, we investigate the nature of acoustic fields that are setup inside the microchannel as well as the fundamental driving mechanism governing the fluid and particle motion in these systems. We provide an experimental benchmark using state-of-art 3D measurements of fluid and particle motion and present a Lagrangian velocity based temporal multiscale numerical framework to explain the experimental observations. Following verification and validation, we employ our numerical model to reveal the presence of a pseudo-standing acoustic wave that drives the acoustic streaming and particle motion in these systems.

  19. Doppler Acoustic Vortex Sensing System

    DOT National Transportation Integrated Search

    1978-10-01

    This is the final report on the Doppler Acoustic Vortex Sensing System, (DAVSS) program carried out by Avco Corporation's Systems Division for the U.S. Department of Transportation, Transportation Systems Center. The objective of the program was the ...

  20. Advanced Computing Methods for Knowledge Discovery and Prognosis in Acoustic Emission Monitoring

    ERIC Educational Resources Information Center

    Mejia, Felipe

    2012-01-01

    Structural health monitoring (SHM) has gained significant popularity in the last decade. This growing interest, coupled with new sensing technologies, has resulted in an overwhelming amount of data in need of management and useful interpretation. Acoustic emission (AE) testing has been particularly fraught by the problem of growing data and is…

  1. Acoustic Emission Weld Monitoring in the 2195 Aluminum-Lithium Alloy

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2005-01-01

    Due to its low density, the 2195 aluminum-lithium alloy was developed as a replacement for alloy 2219 in the Space Shuttle External Tank (ET). The external tank is the single largest component of the space shuttle system. It is 154 feet long and 27.6 feet in diameter, and serves as the structural backbone for the shuttle during launch, absorbing most of the 7 million plus pounds of thrust produced. The almost 4% decrease in density between the two materials provides an extra 7500 pounds of payload capacity necessary to put the International Space Station components into orbit. The ET is an all-welded structure; hence, the requirement is for up to five rewelds without hot cracking. Unfortunately, hot cracking during re-welding or repair operations was occurring and had to be dealt with before the new super lightweight tank could be used. Weld metal porosity formation was also of concern because it leads to hot cracking during weld repairs. Accordingly, acoustic emission (AE) nondestructive testing was employed to monitor the formation of porosity and hot cracks in order to select the best filler metal and optimize the weld schedule. The purpose of this work is to determine the feasibility of detecting hot cracking in welded aluminum-lithium (Al-Li) structures through the analysis of acoustic emission data. By acoustically characterizing the effects of reheating during a repair operation, the potential for hidden flaws coalescing and becoming "unstable" as the panel is repaired could be reduced. Identification of regions where microcrack growth is likely to occur and the location of active flaw growth in the repair weld will provide the welder with direct feedback as to the current weld quality enabling adjustments to the repair process be made in the field. An acoustic emission analysis of the source mechanisms present during welding has been conducted with the goals of locating regions in the weld line that are susceptible to damage from a repair operation

  2. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice D.

    2014-01-01

    The liftoff phase induces some of the highest acoustic loading over a broad frequency for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle but there are challenges. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests; i.e. static firings conducted in the 1960's, to generate 1/3 octave band Sound Pressure Level (SPL) spectra. These data sets are used to predict the liftoff acoustic environments for launch vehicles. To facilitate the accuracy and quality of acoustic loading, predictions at liftoff for future launch vehicles such as the Space Launch System (SLS), non-stationary flight data from the Ares I-X were processed in PC-Signal in two forms which included a simulated hold-down phase and the entire launch phase. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semiempirical methods. This consisted, initially, of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares IX flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  3. Gaussian mixture modeling of acoustic emissions for structural health monitoring of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2013-04-01

    Reinforced Concrete (RC) has been widely used in construction of infrastructures for many decades. The cracking behavior in concrete is crucial due to the harmful effects on structural performance such as serviceability and durability requirements. In general, in loading such structures until failure, tensile cracks develop at the initial stages of loading, while shear cracks dominate later. Therefore, monitoring the cracking modes is of paramount importance as it can lead to the prediction of the structural performance. In the past two decades, significant efforts have been made toward the development of automated structural health monitoring (SHM) systems. Among them, a technique that shows promises for monitoring RC structures is the acoustic emission (AE). This paper introduces a novel probabilistic approach based on Gaussian Mixture Modeling (GMM) to classify AE signals related to each crack mode. The system provides an early warning by recognizing nucleation of numerous critical shear cracks. The algorithm is validated through an experimental study on a full-scale reinforced concrete shear wall subjected to a reversed cyclic loading. A modified conventional classification scheme and a new criterion for crack classification are also proposed.

  4. Fundamental and assessment of concrete structure monitoring by using acoustic emission technique testing: A review

    NASA Astrophysics Data System (ADS)

    Desa, M. S. M.; Ibrahim, M. H. W.; Shahidan, S.; Ghadzali, N. S.; Misri, Z.

    2018-04-01

    Acoustic emission (AE) technique is one of the non-destructive (NDT) testing, where it can be used to determine the damage of concrete structures such as crack, corrosion, stability, sensitivity, as structure monitoring and energy formed within cracking opening growth in the concrete structure. This article gives a comprehensive review of the acoustic emission (AE) technique testing due to its application in concrete structure for structural health monitoring (SHM). Assessment of AE technique used for structural are reviewed to give the perception of its structural engineering such as dam, bridge and building, where the previous research has been reviewed based on AE application. The assessment of AE technique focusing on basic fundamental of parametric and signal waveform analysis during analysis process and its capability in structural monitoring. Moreover, the assessment and application of AE due to its function have been summarized and highlighted for future references

  5. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  6. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  7. Performance of a wearable acoustic system for fetal movement discrimination

    PubMed Central

    Lai, Jonathan; Woodward, Richard; Alexandrov, Yuriy; ain Munnee, Qurratul; Lees, Christoph C.

    2018-01-01

    Fetal movements (FM) are a key factor in clinical management of high-risk pregnancies such as fetal growth restriction. While maternal perception of reduced FM can trigger self-referral to obstetric services, maternal sensation is highly subjective. Objective, reliable monitoring of fetal movement patterns outside clinical environs is not currently possible. A wearable and non-transmitting system capable of sensing fetal movements over extended periods of time would be extremely valuable, not only for monitoring individual fetal health, but also for establishing normal levels of movement in the population at large. Wearable monitors based on accelerometers have previously been proposed as a means of tracking FM, but such systems have difficulty separating maternal and fetal activity and have not matured to the level of clinical use. We introduce a new wearable system based on a novel combination of accelerometers and bespoke acoustic sensors as well as an advanced signal processing architecture to identify and discriminate between types of fetal movements. We validate the system with concurrent ultrasound tests on a cohort of 44 pregnant women and demonstrate that the garment is capable of both detecting and discriminating the vigorous, whole-body ‘startle’ movements of a fetus. These results demonstrate the promise of multimodal sensing for the development of a low-cost, non-transmitting wearable monitor for fetal movements. PMID:29734344

  8. Performance of a wearable acoustic system for fetal movement discrimination.

    PubMed

    Lai, Jonathan; Woodward, Richard; Alexandrov, Yuriy; Ain Munnee, Qurratul; Lees, Christoph C; Vaidyanathan, Ravi; Nowlan, Niamh C

    2018-01-01

    Fetal movements (FM) are a key factor in clinical management of high-risk pregnancies such as fetal growth restriction. While maternal perception of reduced FM can trigger self-referral to obstetric services, maternal sensation is highly subjective. Objective, reliable monitoring of fetal movement patterns outside clinical environs is not currently possible. A wearable and non-transmitting system capable of sensing fetal movements over extended periods of time would be extremely valuable, not only for monitoring individual fetal health, but also for establishing normal levels of movement in the population at large. Wearable monitors based on accelerometers have previously been proposed as a means of tracking FM, but such systems have difficulty separating maternal and fetal activity and have not matured to the level of clinical use. We introduce a new wearable system based on a novel combination of accelerometers and bespoke acoustic sensors as well as an advanced signal processing architecture to identify and discriminate between types of fetal movements. We validate the system with concurrent ultrasound tests on a cohort of 44 pregnant women and demonstrate that the garment is capable of both detecting and discriminating the vigorous, whole-body 'startle' movements of a fetus. These results demonstrate the promise of multimodal sensing for the development of a low-cost, non-transmitting wearable monitor for fetal movements.

  9. Optimization of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J.; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  10. Acoustic Emission Monitoring of the DC-XA Composite Liquid Hydrogen Tank During Structural Testing

    NASA Technical Reports Server (NTRS)

    Wilkerson, C.

    1996-01-01

    The results of acoustic emission (AE) monitoring of the DC-XA composite liquid hydrogen tank are presented in this report. The tank was subjected to pressurization, tensile, and compressive loads at ambient temperatures and also while full of liquid nitrogen. The tank was also pressurized with liquid hydrogen. AE was used to monitor the tank for signs of structural defects developing during the test.

  11. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  12. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors

    PubMed Central

    Rescalvo, Francisco J.; Valverde-Palacios, Ignacio; Gallego, Antolino

    2018-01-01

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures. PMID:29673155

  13. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors.

    PubMed

    Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino

    2018-04-17

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  14. Vibro-acoustic modeling and analysis of a coupled acoustic system comprising a partially opened cavity coupled with a flexible plate

    NASA Astrophysics Data System (ADS)

    Shi, Shuangxia; Su, Zhu; Jin, Guoyong; Liu, Zhigang

    2018-01-01

    This paper is concerned with the modeling and solution method of a three-dimensional (3D) coupled acoustic system comprising a partially opened cavity coupled with a flexible plate and an exterior field of semi-infinite size, which is ubiquitously encountered in architectural acoustics and is a reasonable representation of many engineering occasions. A general solution method is presented to predict the dynamic behaviors of the three-dimensional (3D) acoustic coupled system, in which the displacement of the plate and the sound pressure in the cavity are respectively constructed in the form of the two-dimensional and three-dimensional modified Fourier series with several auxiliary functions introduced to ensure the uniform convergence of the solution over the entire solution domain. The effect of the opening is taken into account via the work done by the sound pressure acting at the coupling aperture that is contributed from the vibration of particles on the acoustic coupling interface and on the structural-acoustic coupling interface. Both the acoustic coupling between finite cavity and exterior field and the structural-acoustic coupling between flexible plate and interior acoustic field are considered in the vibro-acoustic modeling of the three-dimensional acoustic coupled acoustic system. The dynamic responses of the coupled structural-acoustic system are obtained using the Rayleigh-Ritz procedure based on the energy expressions for the coupled system. The accuracy and effectiveness of the proposed method are validated through numerical examples and comparison with results obtained by the boundary element analysis. Furthermore, the influence of the opening and the cavity volume on the acoustic behaviors of opened cavity system is studied.

  15. An embedded wireless system for remote monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Harms, T.; Bastianini, F.; Sedigh Sarvestani, S.

    2008-03-01

    This paper describes an autonomous embedded system for remote monitoring of bridges. Salient features of the system include ultra-low power consumption, wireless communication of data and alerts, and incorporation of embedded sensors that monitor various indicators of the structural health of a bridge, while capturing the state of its surrounding environment. Examples include water level, temperature, vibration, and acoustic emissions. Ease of installation, physical robustness, remote maintenance and calibration, and autonomous data communication make the device a self-contained solution for remote monitoring of structural health. The system addresses shortcomings present in centralized structural health monitoring systems, particularly their reliance on a laptop or handheld computer. The system has been field-tested to verify the accuracy of the collected data and dependability of communication. The sheer volume of data collected, and the regularity of its collection can enable accurate and precise assessment of the health of a bridge, guiding maintenance efforts and providing early warning of potentially dangerous events. In this paper, we present a detailed breakdown of the system's power requirements and the results of the initial field test.

  16. Copper vapor laser acoustic thermometry system

    DOEpatents

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  17. Density Can Be Misleading for Low-Density Species: Benefits of Passive Acoustic Monitoring

    PubMed Central

    Rogers, Tracey L.; Ciaglia, Michaela B.; Klinck, Holger; Southwell, Colin

    2013-01-01

    Climate-induced changes may be more substantial within the marine environment, where following ecological change is logistically difficult, and typically expensive. As marine animals tend to produce stereotyped, long-range signals, they are ideal for repeatable surveying. In this study we illustrate the potential for calling rates to be used as a tool for determining habitat quality by using an Antarctic pack-ice seal, the leopard seal, as a model.With an understanding of the vocal behavior of a species, their seasonal and diurnal patterns, sex and age-related differences, an underwater passive-acoustic survey conducted alongside a visual survey in an arc of 4,225 km across the Davis Sea, Eastern Antarctica, showed that while acoustic and visual surveys identified similar regions as having high densities, the acoustic surveys surprisingly identified the opposite regions as being ‘critical’ habitats. Density surveys of species that cannot be differentiated into population classes may be misleading because overall density can be a negative indicator of habitat quality.Under special circumstances acoustics can offer enormous advantage over traditional techniques and open up monitoring to regions that are remote, difficult and expensive to work within, no longer restricting long-term community assessment to resource-wealthy communities. As climatic change affects a broad range of organisms across geographic boundaries we propose that capitalizing on the significant advances in passive acoustic technology, alongside physical acoustics and population modeling, can help in addressing ecological questions more broadly. PMID:23326339

  18. A new strategy toward Internet of Things: structural health monitoring using a combined fiber optic and acoustic emission wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Nguyen, A. D.; Page, C.; Wilson, C. L.

    2016-04-01

    This paper investigates a new low-power structural health monitoring (SHM) strategy where fiber Bragg grating (FBG) rosettes can be used to continuously monitor for changes in a host structure's principal strain direction, suggesting damage and thus enabling the immediate triggering of a higher power acoustic emissions (AE) sensor to provide for better characterization of the damage. Unlike traditional "always on" AE platforms, this strategy has the potential for low power, while the wireless communication between different sensor types supports the Internet of Things (IoT) approach. A combination of fiber-optic sensor rosettes for strain monitoring and a fiber-optic sensor for acoustic emissions monitoring was attached to a sample and used to monitor crack initiation. The results suggest that passive principal strain direction monitoring could be used as a damage initiation trigger for other active sensing elements such as acoustic emissions. In future work, additional AE sensors can be added to provide for damage location; and a strategy where these sensors can be powered on periodically to further establish reliability while preserving an energy efficient scheme can be incorporated.

  19. Automatic detection of unattended changes in room acoustics.

    PubMed

    Frey, Johannes Daniel; Wendt, Mike; Jacobsen, Thomas

    2015-01-01

    Previous research has shown that the human auditory system continuously monitors its acoustic environment, detecting a variety of irregularities (e.g., deviance from prior stimulation regularity in pitch, loudness, duration, and (perceived) sound source location). Detection of irregularities can be inferred from a component of the event-related brain potential (ERP), referred to as the mismatch negativity (MMN), even in conditions in which participants are instructed to ignore the auditory stimulation. The current study extends previous findings by demonstrating that auditory irregularities brought about by a change in room acoustics elicit a MMN in a passive oddball protocol (acoustic stimuli with differing room acoustics, that were otherwise identical, were employed as standard and deviant stimuli), in which participants watched a fiction movie (silent with subtitles). While the majority of participants reported no awareness for any changes in the auditory stimulation, only one out of 14 participants reported to have become aware of changing room acoustics or sound source location. Together, these findings suggest automatic monitoring of room acoustics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Infrared imaging and acoustic sizing of a bubble inside a micro-electro-mechanical system piezo ink channel

    NASA Astrophysics Data System (ADS)

    van der Bos, Arjan; Segers, Tim; Jeurissen, Roger; van den Berg, Marc; Reinten, Hans; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2011-08-01

    Piezo drop-on-demand inkjet printers are used in an increasing number of applications because of their reliable deposition of droplets onto a substrate. Droplets of a few picoliters are ejected from an inkjet nozzle at frequencies of up to 100 kHz. However, the entrapment of an air microbubble in the ink channel can severely impede the productivity and reliability of the printing system. The air bubble disturbs the channel acoustics, resulting in disrupted drop formation or failure of the jetting process. Here we study a micro-electro-mechanical systems-based printhead. By using the actuating piezo transducer in receive mode, the acoustical field inside the channel was monitored, clearly identifying the presence of an air microbubble inside the channel during failure of the jetting process. The infrared visualization technique allowed for the accurate sizing of the bubble, including its dynamics, inside the intact printhead. A model was developed to calculate the mutual interaction between the channel acoustics and the bubble dynamics. The model was validated by simultaneous acoustical and infrared detection of the bubble. The model can predict the presence and size of entrapped air bubbles inside an operating ink channel purely from the acoustic response.

  1. Acoustic Signal Processing in Photorefractive Optical Systems.

    NASA Astrophysics Data System (ADS)

    Zhou, Gan

    This thesis discusses applications of the photorefractive effect in the context of acoustic signal processing. The devices and systems presented here illustrate the ideas and optical principles involved in holographic processing of acoustic information. The interest in optical processing stems from the similarities between holographic optical systems and contemporary models for massively parallel computation, in particular, neural networks. An initial step in acoustic processing is the transformation of acoustic signals into relevant optical forms. A fiber-optic transducer with photorefractive readout transforms acoustic signals into optical images corresponding to their short-time spectrum. The device analyzes complex sound signals and interfaces them with conventional optical correlators. The transducer consists of 130 multimode optical fibers sampling the spectral range of 100 Hz to 5 kHz logarithmically. A physical model of the human cochlea can help us understand some characteristics of human acoustic transduction and signal representation. We construct a life-sized cochlear model using elastic membranes coupled with two fluid-filled chambers, and use a photorefractive novelty filter to investigate its response. The detection sensitivity is determined to be 0.3 angstroms per root Hz at 2 kHz. Qualitative agreement is found between the model response and physiological data. Delay lines map time-domain signals into space -domain and permit holographic processing of temporal information. A parallel optical delay line using dynamic beam coupling in a rotating photorefractive crystal is presented. We experimentally demonstrate a 64 channel device with 0.5 seconds of time-delay and 167 Hz bandwidth. Acoustic signal recognition is described in a photorefractive system implementing the time-delay neural network model. The system consists of a photorefractive optical delay-line and a holographic correlator programmed in a LiNbO_3 crystal. We demonstrate the recognition

  2. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  3. Acoustic communications for cabled seafloor observatories

    NASA Astrophysics Data System (ADS)

    Freitag, L.; Stojanovic, M.

    2003-04-01

    Cabled seafloor observatories will provide scientists with a continuous presence in both deep and shallow water. In the deep ocean, connecting sensors to seafloor nodes for power and data transfer will require cables and a highly-capable ROV, both of which are potentially expensive. For many applications where very high bandwidth is not required, and where a sensor is already designed to operate on battery power, the use of acoustic links should be considered. Acoustic links are particularly useful for large numbers of low-bandwidth sensors scattered over tens of square kilometers. Sensors used to monitor the chemistry and biology of vent fields are one example. Another important use for acoustic communication is monitoring of AUVs performing pre-programmed or adaptive sampling missions. A high data rate acoustic link with an AUV allows the observer on shore to direct the vehicle in real-time, providing for dynamic event response. Thus both fixed and mobile sensors motivate the development of observatory infrastructure that provides power-efficient, high bandwidth acoustic communication. A proposed system design that can provide the wireless infrastructure, and further examples of its use in networks such as NEPTUNE, are presented.

  4. Design, development, and field demonstration of a remotely deployable water quality monitoring system

    NASA Technical Reports Server (NTRS)

    Wallace, J. W.; Lovelady, R. W.; Ferguson, R. L.

    1981-01-01

    A prototype water quality monitoring system is described which offers almost continuous in situ monitoring. The two-man portable system features: (1) a microprocessor controlled central processing unit which allows preprogrammed sampling schedules and reprogramming in situ; (2) a subsurface unit for multiple depth capability and security from vandalism; (3) an acoustic data link for communications between the subsurface unit and the surface control unit; (4) eight water quality parameter sensors; (5) a nonvolatile magnetic bubble memory which prevents data loss in the event of power interruption; (6) a rechargeable power supply sufficient for 2 weeks of unattended operation; (7) a water sampler which can collect samples for laboratory analysis; (8) data output in direct engineering units on printed tape or through a computer compatible link; (9) internal electronic calibration eliminating external sensor adjustment; and (10) acoustic location and recovery systems. Data obtained in Saginaw Bay, Lake Huron are tabulated.

  5. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of

  6. Real-time Monitoring Of Damage Evolution In Aerospace Materials Using Nonlinear Acoustics

    NASA Astrophysics Data System (ADS)

    Matikas, T. E.; Paipetis, A.; Kostopoulos, V.

    2008-06-01

    This work deals with the development of a novel non-destructive technique based on nonlinear acoustics, enabling real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonlinear or an-harmonic solid, the fundamental wave distorts as it propagates, so that the second and higher harmonics of the fundamental frequency are generated. The measurement of the amplitude of these harmonics provides information on the coefficient of the second and higher order terms of the stress-strain relation for a nonlinear solid. It is demonstrated here that the material bulk nonlinear parameter for titanium alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters such as velocity and attenuation. However, the use of bulk ultrasonic waves has serious disadvantages for the health monitoring of aerospace structures since it requires the placement of ultrasonic transducers on two, perfectly parallel, opposite sides of the samples. Such a setup is hardly feasible in real field conditions. For this reason, surface acoustic waves (SAW) were used in this study enabling the in-situ characterization of fatigue damage. The experimental setup for measuring the material nonlinear parameter using SAW was realised and the feasibility of the technique for health monitoring of aerospace structures was evaluated.

  7. A Small Acoustic Goniometer for General Purpose Research

    PubMed Central

    Pook, Michael L.; Loo, Sin Ming

    2016-01-01

    Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed. PMID:27136563

  8. A comparison of force and acoustic emission sensors in monitoring precision cylindrical grinding; Technical Digest

    NASA Astrophysics Data System (ADS)

    Marsh, Eric R.; Couey, Jeremiah A.; Knapp, Byron R.; Vallance, R. R.

    2005-05-01

    Aerostatic spindles are used in precision grinding applications requiring high stiffness and very low error motions (5 to 25 nm). Forces generated during precision grinding are small and present challenges for accurate and reliable process monitoring. These challenges are met by incorporating non-contact displacement sensors into an aerostatic spindle that are calibrated to measure grinding forces from rotor motion. Four experiments compare this force-sensing approach to acoustic emission (AE) in detecting workpiece contact, process monitoring with small depths of cut, detecting workpiece defects, and evaluating abrasive wheel wear/loading. Results indicate that force measurements are preferable to acoustic emission in precision grinding since the force sensor offers improved contact sensitivity, higher resolution, and is capable of detecting events occurring within a single revolution of the grinding wheel.

  9. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    PubMed Central

    Aggelis, Dimitrios. G.; Strantza, Maria; Louis, Olivia; Boulpaep, Frans; Polyzos, Demosthenes; van Hemelrijck, Danny

    2015-01-01

    The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure. PMID:25763648

  10. Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider(TM)

    DTIC Science & Technology

    2012-05-18

    their copepod prey observed from ocean gliders. Limnology and Oceanography 53: 2197–2209. Acoustic Monitoring of Cetaceans Using a Seaglider PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e36128

  11. Acoustic nonreciprocity in Coriolis mean flow systems.

    PubMed

    Naghdi, Masoud; Farzbod, Farhad

    2018-01-01

    One way to break acoustic reciprocity is to have a moving wave propagation medium. If the acoustic wave vector and the moving fluid velocity are collinear, the wave vector shift caused by the fluid flow can be used to break. In this paper, an alternative approach is investigated in which the fluid velocity enters the differential equation of the system as a cross product term with the wave vector. A circular field where the fluid velocity increases radially has a Coriolis acceleration term. In such a system, the acoustic wave enters from the central wall and exits from the perimeter wall. In this paper, the differential equation is solved numerically and the effect of fluid velocity on the nonreciprocity factor is examined.

  12. Accuracy of acoustic respiration rate monitoring in pediatric patients.

    PubMed

    Patino, Mario; Redford, Daniel T; Quigley, Thomas W; Mahmoud, Mohamed; Kurth, C Dean; Szmuk, Peter

    2013-12-01

    Rainbow acoustic monitoring (RRa) utilizes acoustic technology to continuously and noninvasively determine respiratory rate from an adhesive sensor located on the neck. We sought to validate the accuracy of RRa, by comparing it to capnography, impedance pneumography, and to a reference method of counting breaths in postsurgical children. Continuous respiration rate data were recorded from RRa and capnography. In a subset of patients, intermittent respiration rate from thoracic impedance pneumography was also recorded. The reference method, counted respiratory rate by the retrospective analysis of the RRa, and capnographic waveforms while listening to recorded breath sounds were used to compare respiration rate of both capnography and RRa. Bias, precision, and limits of agreement of RRa compared with capnography and RRa and capnography compared with the reference method were calculated. Tolerance and reliability to the acoustic sensor and nasal cannula were also assessed. Thirty-nine of 40 patients (97.5%) demonstrated good tolerance of the acoustic sensor, whereas 25 of 40 patients (62.5%) demonstrated good tolerance of the nasal cannula. Intermittent thoracic impedance produced erroneous respiratory rates (>50 b·min(-1) from the other methods) on 47% of occasions. The bias ± SD and limits of agreement were -0.30 ± 3.5 b·min(-1) and -7.3 to 6.6 b·min(-1) for RRa compared with capnography; -0.1 ± 2.5 b·min(-1) and -5.0 to 5.0 b·min(-1) for RRa compared with the reference method; and 0.2 ± 3.4 b·min(-1) and -6.8 to 6.7 b·min(-1) for capnography compared with the reference method. When compared to nasal capnography, RRa showed good agreement and similar accuracy and precision but was better tolerated in postsurgical pediatric patients. © 2013 John Wiley & Sons Ltd.

  13. In-line and Real-time Monitoring of Resonant Acoustic Mixing by Near-infrared Spectroscopy Combined with Chemometric Technology for Process Analytical Technology Applications in Pharmaceutical Powder Blending Systems.

    PubMed

    Tanaka, Ryoma; Takahashi, Naoyuki; Nakamura, Yasuaki; Hattori, Yusuke; Ashizawa, Kazuhide; Otsuka, Makoto

    2017-01-01

    Resonant acoustic ® mixing (RAM) technology is a system that performs high-speed mixing by vibration through the control of acceleration and frequency. In recent years, real-time process monitoring and prediction has become of increasing interest, and process analytical technology (PAT) systems will be increasingly introduced into actual manufacturing processes. This study examined the application of PAT with the combination of RAM, near-infrared spectroscopy, and chemometric technology as a set of PAT tools for introduction into actual pharmaceutical powder blending processes. Content uniformity was based on a robust partial least squares regression (PLSR) model constructed to manage the RAM configuration parameters and the changing concentration of the components. As a result, real-time monitoring may be possible and could be successfully demonstrated for in-line real-time prediction of active pharmaceutical ingredients and other additives using chemometric technology. This system is expected to be applicable to the RAM method for the risk management of quality.

  14. Acoustic design of the QCSEE propulsion systems

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Smith, E. B.; Sowers, H. D.

    1976-01-01

    Acoustic design features and techniques employed in the Quiet Clean Short-Haul Experimental Engine (QCSEE) Program are described. The role of jet/flap noise in selecting the engine fan pressure ratio for powered lift propulsion systems is discussed. The QCSEE acoustic design features include a hybrid inlet (near-sonic throat velocity with acoustic treatment); low fan and core pressure ratios; low fan tip speeds; gear-driven fans; high and low frequency stacked core noise treatment; multiple-thickness treatment; bulk absorber treatment; and treatment on the stator vanes. The QCSEE designs represent and anticipated acoustic technology improvement of 12 to 16 PNdb relative to the noise levels of the low-noise engines used on current wide-body commercial jet transport aircraft.

  15. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    PubMed Central

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  16. Nano-optomechanical system based on microwave frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tadesse, Semere Ayalew

    Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic

  17. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  18. System for controlled acoustic rotation of objects

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1983-01-01

    A system is described for use with acoustically levitated objects, which enables close control of rotation of the object. One system includes transducers that propagate acoustic waves along the three dimensions (X, Y, Z) of a chamber of rectangular cross section. Each transducers generates one wave which is resonant to a corresponding chamber dimension to acoustically levitate an object, and additional higher frequency resonant wavelengths for controlling rotation of the object. The three chamber dimensions and the corresponding three levitation modes (resonant wavelengths) are all different, to avoid degeneracy, or interference, of waves with one another, that could have an effect on object rotation. Only the higher frequencies, with pairs of them having the same wavelength, are utilized to control rotation, so that rotation is controlled independently of levitation and about any arbitrarily chosen axis.

  19. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  20. Acoustical Detection Of Leakage In A Combustor

    NASA Technical Reports Server (NTRS)

    Puster, Richard L.; Petty, Jeffrey L.

    1993-01-01

    Abnormal combustion excites characteristic standing wave. Acoustical leak-detection system gives early warning of failure, enabling operating personnel to stop combustion process and repair spray bar before leak grows large enough to cause damage. Applicable to engines, gas turbines, furnaces, and other machines in which acoustic emissions at known frequencies signify onset of damage. Bearings in rotating machines monitored for emergence of characteristic frequencies shown in previous tests associated with incipient failure. Also possible to monitor for signs of trouble at multiple frequencies by feeding output of transducer simultaneously to multiple band-pass filters and associated circuitry, including separate trigger circuit set to appropriate level for each frequency.

  1. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: Part 1. Engineering design and instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Deng, Zhiqun; Seim, Thomas A.

    2011-05-26

    The U.S. Army Corps of Engineers-Portland District started development of the Juvenile Salmon Acoustic Telemetry System (JSATS), a nonproprietary technology, in 2001 to meet the needs for monitoring the survival of juvenile salmonids through the 31 federal dams in the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters, and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006 the Pacific Northwest National Laboratory (PNNL) was tasked with development of an acoustic receiver system formore » deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in 2 or 3-dimensions as the fish passed at the facility for determining route of passage. The additional route of passage information, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities and through the FCRPS.« less

  2. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 1. Engineering Design and Instrumentation

    PubMed Central

    Weiland, Mark A.; Deng, Z. Daniel; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Fu, Tao; Carlson, Thomas J.; Thronas, Aaron I.; Eppard, M. Brad

    2011-01-01

    In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS. PMID:22163918

  3. Monitoring fatigue damage in carbon fiber composites using an acoustic impact technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.; Raju, P.K.

    1998-06-01

    The acoustic impact technique (AIT) of nondestructive testing (NDT) has been used to identify the damage that results from the compressive and tension-compression cycle loading around a circular notch of quasiisotropic carbon-fiber composites. This method involves applying a low velocity impact to the test specimen and evaluating the resulting localized acoustic response. Results indicate that AIT can be applied for identification of both compressive and fatigue damage in composite laminates. The gross area of compressive and fatigue damage is detected through an increase in the pulse width, and a decrease in the amplitude, of the force-time signal. The response obtainedmore » in AIT is sensitive to the frequency of the impactor and the amplitude of the impact force and requires careful monitoring of these values to achieve repeatability of results.« less

  4. Improving the Navy’s Passive Underwater Acoustic Monitoring of Marine Mammal Populations

    DTIC Science & Technology

    2014-09-30

    species using passive acoustic monitoring, with application to obtaining density estimates of transiting humpback whale populations in the Southern...of the density estimates, 3) to apply the numerical modeling methods for humpback whale vocalizations to understand distortions caused by...obtained. The specific approach being followed to accomplish objectives 1-4 above is listed below. 1) Detailed numerical modeling of humpback whale

  5. Distributed acoustic sensing technique and its field trial in SAGD well

    NASA Astrophysics Data System (ADS)

    Han, Li; He, Xiangge; Pan, Yong; Liu, Fei; Yi, Duo; Hu, Chengjun; Zhang, Min; Gu, Lijuan

    2017-10-01

    Steam assisted gravity drainage (SAGD) is a very promising way for the development of heavy oil, extra heavy oil and tight oil reservoirs. Proper monitoring of the SAGD operations is essential to avoid operational issues and improve efficiency. Among all the monitoring techniques, micro-seismic monitoring and related interpretation method can give useful information about the steam chamber development and has been extensively studied. Distributed acoustic sensor (DAS) based on Rayleigh backscattering is a newly developed technique that can measure acoustic signal at all points along the sensing fiber. In this paper, we demonstrate a DAS system based on dual-pulse heterodyne demodulation technique and did field trial in SAGD well located in Xinjiang Oilfield, China. The field trail results validated the performance of the DAS system and indicated its applicability in steam-chamber monitoring and hydraulic monitoring.

  6. Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang

    Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack

  7. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.; ,

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  8. Establishing the fundamentals for an elephant early warning and monitoring system.

    PubMed

    Zeppelzauer, Matthias; Stoeger, Angela S

    2015-09-04

    The decline of habitat for elephants due to expanding human activity is a serious conservation problem. This has continuously escalated the human-elephant conflict in Africa and Asia. Elephants make extensive use of powerful infrasonic calls (rumbles) that travel distances of up to several kilometers. This makes elephants well-suited for acoustic monitoring because it enables detecting elephants even if they are out of sight. In sight, their distinct visual appearance makes them a good candidate for visual monitoring. We provide an integrated overview of our interdisciplinary project that established the scientific fundamentals for a future early warning and monitoring system for humans who regularly experience serious conflict with elephants. We first draw the big picture of an early warning and monitoring system, then review the developed solutions for automatic acoustic and visual detection, discuss specific challenges and present open future work necessary to build a robust and reliable early warning and monitoring system that is able to operate in situ. We present a method for the automated detection of elephant rumbles that is robust to the diverse noise sources present in situ. We evaluated the method on an extensive set of audio data recorded under natural field conditions. Results show that the proposed method outperforms existing approaches and accurately detects elephant rumbles. Our visual detection method shows that tracking elephants in wildlife videos (of different sizes and postures) is feasible and particularly robust at near distances. From our project results we draw a number of conclusions that are discussed and summarized. We clearly identified the most critical challenges and necessary improvements of the proposed detection methods and conclude that our findings have the potential to form the basis for a future automated early warning system for elephants. We discuss challenges that need to be solved and summarize open topics in the context of

  9. Size Distribution of Sperm Whales Acoustically Identified during Long Term Deep-Sea Monitoring in the Ionian Sea

    PubMed Central

    Caruso, Francesco; Sciacca, Virginia; Bellia, Giorgio; De Domenico, Emilio; Larosa, Giuseppina; Papale, Elena; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Simeone, Francesco; Speziale, Fabrizio; Viola, Salvatore; Pavan, Gianni

    2015-01-01

    The sperm whale (Physeter macrocephalus) emits a typical short acoustic signal, defined as a “click”, almost continuously while diving. It is produced in different time patterns to acoustically explore the environment and communicate with conspecifics. Each emitted click has a multi-pulse structure, resulting from the production of the sound within the sperm whale’s head. A Stable Inter Pulse Interval (Stable IPI) can be identified among the pulses that compose a single click. Applying specific algorithms, the measurement of this interval provides useful information to assess the total length of the animal recorded. In January 2005, a cabled hydrophone array was deployed at a depth of 2,100 m in the Central Mediterranean Sea, 25 km offshore Catania (Ionian Sea). The acoustic antenna, named OνDE (Ocean noise Detection Experiment), was in operation until November 2006. OνDE provided real time acoustic data used to perform Passive Acoustic Monitoring (PAM) of cetacean sound emissions. In this work, an innovative approach was applied to automatically measure the Stable IPI of the clicks, performing a cepstrum analysis to the energy (square amplitude) of the signals. About 2,100 five-minute recordings were processed to study the size distribution of the sperm whales detected during the OνDE long term deep-sea acoustic monitoring. Stable IPIs were measured in the range between 2.1 ms and 6.4 ms. The equations of Gordon (1991) and of Growcott (2011) were used to convert the IPIs into measures of size. The results revealed that the sperm whales recorded were distributed in length from about 7.5 m to 14 m. The size category most represented was from 9 m to 12 m (adult females or juvenile males) and specimens longer than 14 m (old males) seemed to be absent. PMID:26675588

  10. Marine Animal Alert System -- Task 2.1.5.3: Development of Monitoring Technologies -- FY 2011 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Thomas J.; Deng, Zhiqun; Myers, Joshua R.

    2011-09-30

    The Marine Animal Alert System (MAAS) in development by the Pacific Northwest National Laboratory is focused on providing elements of compliance monitoring to support deployment of marine hydrokinetic energy devices. An initial focus is prototype tidal turbines to be deployed in Puget Sound in Washington State. The MAAS will help manage the risk of injury or mortality to marine animals from blade strike or contact with tidal turbines. In particular, development has focused on detection, classification, and localization of listed Southern Resident killer whales within 200 m of prototype turbines using both active and passive acoustic approaches. At the closemore » of FY 2011, a passive acoustic system consisting of a pair of four-element star arrays and parallel processing of eight channels of acoustic receptions has been designed and built. Field tests of the prototype system are scheduled for the fourth quarter of calendar year 2011. Field deployment and testing of the passive acoustic prototype is scheduled for the first quarter of FY 2012. The design of an active acoustic system that could be built using commercially available off-the-shelf components from active acoustic system vendors is also in the final stages of design and specification.« less

  11. Seafloor monitoring west of Helgoland (German Bight, North Sea) using the acoustic ground discrimination system RoxAnn

    NASA Astrophysics Data System (ADS)

    Hass, H. Christian; Mielck, Finn; Fiorentino, Dario; Papenmeier, Svenja; Holler, Peter; Bartholomä, Alexander

    2017-04-01

    Marine habitats of shelf seas are in constant dynamic change and therefore need regular assessment particularly in areas of special interest. In this study, the single-beam acoustic ground discrimination system RoxAnn served to assess seafloor hardness and roughness, and combine these parameters into one variable expressed as RGB (red green blue) color code followed by k-means fuzzy cluster analysis (FCA). The data were collected at a monitoring site west of the island of Helgoland (German Bight, SE North Sea) in the course of four surveys between September 2011 and November 2014. The study area has complex characteristics varying from outcropping bedrock to sandy and muddy sectors with mostly gradual transitions. RoxAnn data enabled to discriminate all seafloor types that were suggested by ground-truth information (seafloor samples, video). The area appears to be quite stable overall; sediment import (including fluid mud) was detected only from the NW. Although hard substrates (boulders, bedrock) are clearly identified, the signal can be modified by inclination and biocover. Manually, six RoxAnn zones were identified; for the FCA, only three classes are suggested. The latter classification based on `hard' boundaries would suffice for stakeholder issues, but the former classification based on `soft' boundaries is preferred to meet state-of-the-art scientific objectives.

  12. Preliminary characterization of a one-axis acoustic system. [acoustic levitation for space processing

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Reiss, D. A.; Berge, L. H.; Parker, H. W.

    1979-01-01

    The acoustic fields and levitation forces produced along the axis of a single-axis resonance system were measured. The system consisted of a St. Clair generator and a planar reflector. The levitation force was measured for bodies of various sizes and geometries (i.e., spheres, cylinders, and discs). The force was found to be roughly proportional to the volume of the body until the characteristic body radius reaches approximately 2/k (k = wave number). The acoustic pressures along the axis were modeled using Huygens principle and a method of imaging to approximate multiple reflections. The modeled pressures were found to be in reasonable agreement with those measured with a calibrated microphone.

  13. MONITORING OF LARGE INSTABLE AREAS: system reliability and new tools.

    NASA Astrophysics Data System (ADS)

    Leandro, G.; Mucciarelli, M.; Pellicani, R.; Spilotro, G.

    2009-04-01

    The monitoring of unstable or potentially unstable areas is a necessary operation every time you can not remove the conditions of risk and apply to mitigation measures. In Italian Apennine regions there are many urban or extra-urban areas affected by instability, for which it is impracticable to remove hazard conditions, because of size and cost problems. The technological evolution exportable to the field of land instability monitoring is particularly lively and allows the use of warning systems unthinkable just few years ago. However, the monitoring of unstable or potentially unstable areas requires a very great knowledge of the specific problems, without which the reliability of the system may be dangerously overestimated. The movement may arise, indeed, in areas not covered by instrumentation, or covered with vegetation that prevents the acquisition of both reflected signals in the multi-beam laser techniques and radar signals. Environmental conditions (wind, concentrated sources of light, temperature changes, presence of animals) may also invalidate the accuracy of the measures, by introducing modulations or disturbance at a level well above the threshold of alarm signal, leading consequently to raise the values of the warning threshold. The Authors have gained long experience with the observation and monitoring of some large landslides in the Southern Apennine (Aliano, Buoninventre, Calciano, Carlantino, etc.) and unstable areas also at regional scale. One of the most important experiences is about the case of landslides of extensive areas, where unstable and stables zones coexist along transverse and longitudinal axis. In many of these cases you need the accurate control of the movement at selected points to evaluate the trend of displacement velocity, which can be achieved by means of a single-beam laser. The control of these movements, however, does not provide information on stress pattern into the stable areas. Among the sensitive precursors, acoustic

  14. Channel coding for underwater acoustic single-carrier CDMA communication system

    NASA Astrophysics Data System (ADS)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  15. Laser acoustic emission thermal technique (LAETT): a technique for generating acoustic emission in dental composites.

    PubMed

    Duray, S J; Lee, S Y; Menis, D L; Gilbert, J L; Lautenschlager, E P; Greener, E H

    1996-01-01

    This study was designed to investigate a new method for generating interfacial debonding between the resin matrix and filler particles of dental composites. A pilot study was conducted to evaluate laser-induced acoustic emission in dental resins filled with varying quantities of particles. Model systems of 50/50 BisGMA/TEGDMA resin reinforced with 0, 25, and 75 wt% 5-10 micrometers silanated BaSiO(6) were analyzed. The sample size was 3.5 mm diameter x 0.25-0.28 mm thick. A continuous wave CO2 laser (Synrad Infrared Gas Laser Model 48-1) was used to heat the composite samples. Acoustic events were detected, recorded and processed by a model 4610 Smart Acoustic Monitor (SAM) with a 1220A preamp (Physical Acoustic Corp.) as a function of laser power. Initially, the acoustic signal from the model composites produced a burst pattern characteristic of fracturing, about 3.7 watts laser power. Acoustic emission increased with laser power up to about 6 watts. At laser powers above 6 watts, the acoustic emission remained constant. The amount of acoustic emission followed the trend: unfilled resin > composite with 25 wt% BaSiO(6) > composite with 75 wt% BaSiO(6). Acoustic emission generated by laser thermal heating is dependent on the weight percent of filler particles in the composite and the amount of laser power. For this reason, laser thermal acoustic emission might be useful as a nondestructive form of analysis of dental composites.

  16. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2016-08-05

    JPAnalytics LLC CC: DCMA Boston DTIC Director, NRL Progress Report #8 Coupled Research in Ocean Acoustics and Signal Processing for the Next...Generation of Underwater Acoustic Communication Systems Principal Investigator’s Name: Dr. James Preisig Period Covered By Report: 1/20/2016 to 4/19/2016...Technical work this period has spanned two areas. The first of these is VHF Acoustics . During this time period, the Principle Investigator worked with Dr

  17. NEMO-SMO acoustic array: A deep-sea test of a novel acoustic positioning system for a km3-scale underwater neutrino telescope

    NASA Astrophysics Data System (ADS)

    Viola, S.; Ardid, M.; Bertin, V.; Enzenhöfer, A.; Keller, P.; Lahmann, R.; Larosa, G.; Llorens, C. D.; NEMO Collaboration; SMO Collaboration

    2013-10-01

    Within the activities of the NEMO project, the installation of a 8-floors tower (NEMO-Phase II) at a depth of 3500 m is foreseen in 2012. The tower will be installed about 80 km off-shore Capo Passero, in Sicily. On board the NEMO tower, an array of 18 acoustic sensors will be installed, permitting acoustic detection of biological sources, studies for acoustic neutrino detection and primarily acoustic positioning of the underwater structures. For the latter purpose, the sensors register acoustic signals emitted by five acoustic beacons anchored on the sea-floor. The data acquisition system of the acoustic sensors is fully integrated with the detector data transport system and is based on an “all data to shore” philosophy. Signals coming from hydrophones are continuously sampled underwater at 192 kHz/24 bit and transmitted to shore through an electro-optical cable for real-time analysis. A novel technology for underwater GPS time-stamping of data has been implemented and tested. The operation of the acoustic array will permit long-term test of sensors and electronics technologies that are proposed for the acoustic positioning system of KM3NeT.

  18. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO 2 emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO 2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO 2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5more » times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO 2 . The sensor frequency change was around 300ppm for pure CO 2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.« less

  19. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  20. Nondestructive monitoring damage in composites using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Wey, A. C.; Kessler, L. W.; Dos Reis, H. L. M.

    1992-01-01

    Several Nicalon fiber reinforced LAS (lithium alumino-silicate) glass matrix composites were tested to study the relation between the residual strength and the different amounts of damage. The samples were fatigued by four-point cyclic loading at a 5 Hz rate at 500 C for a different number of cycles. 10 MHz scanning laser acoustic microscope (SLAM) images were taken to monitor damage on the samples. Our SLAM results indicate that there were defects already existing throughout the sample before fatigue, and the resultant damage pattern from fatigue could be related to the initial defect distribution in the sample. Finally, the fatigued samples were fractured and the residual strength data could not be explained by the cyclic fatigue alone. Rather, the damage patterns evident in the SLAM images were needed to explain the scatter in the data. The results show that SLAM is useful in nondestructively monitoring damage and estimating residual strength of fatigued ceramic composites.

  1. A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring

    NASA Astrophysics Data System (ADS)

    Chai, Mengyu; Zhang, Zaoxiao; Duan, Quan

    2018-02-01

    An important objective of acoustic emission (AE) non-destructive monitoring is to accurately identify approaching critical damage and to avoid premature failure by means of the evolutions of AE parameters. One major drawback of most parameters such as count and rise time is that they are strongly dependent on the threshold and other settings employed in AE data acquisition system. This may hinder the correct reflection of original waveform generated from AE sources and consequently bring difficulty for the accurate identification of the critical damage and early failure. In this investigation, a new qualitative AE parameter based on Shannon's entropy, i.e. AE entropy is proposed for damage monitoring. Since it derives from the uncertainty of amplitude distribution of each AE waveform, it is independent of the threshold and other time-driven parameters and can characterize the original micro-structural deformations. Fatigue crack growth test on CrMoV steel and three point bending test on a ductile material are conducted to validate the feasibility and effectiveness of the proposed parameter. The results show that the new parameter, compared to AE amplitude, is more effective in discriminating the different damage stages and identifying the critical damage.

  2. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  3. MUG-OBS - Multiparameter Geophysical Ocean Bottom System : a new instrumental approach to monitor earthquakes.

    NASA Astrophysics Data System (ADS)

    hello, yann; Charvis, Philippe; Yegikyan, Manuk; verfaillie, Romain; Rivet, Diane

    2016-04-01

    Real time monitoring of seismic activity is a major issue for early warning of earthquakes and tsunamis. It can be done using regional scale wired nodes, such as Neptune in Canada and in the U.S, or DONET in Japan. Another approach to monitor seismic activity at sea is to deploying repeatedly OBS array like during the amphibious Cascadia Initiative (four time 1-year deployments), the Japanese Pacific Array (broadband OBSs "ocean-bottom broadband dispersion survey" with 2-years autonomy), the Obsismer program in the French Lesser Antilles (eight time 6-months deployments) and the Osisec program in Ecuador (four time 6-months deployments). These autonomous OBSs are self-recovered or recovered using an ROV. These systems are costly including ship time, and require to recover the OBS before to start working on data. Among the most recent alternative we developed a 3/4 years autonomy ocean bottom system with 9 channels (?) allowing the acquisition of different seismic or environmental parameters. MUG-OBS is a free falling instrument rated down to 6000 m. The installation of the sensor is monitored by acoustic commands from the surface and a health bulletin with data checking is recovered by acoustic during the installation. The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a crisis) using one of the 6 data-shuttles released from the surface by acoustic command using a one day fast cruise boat of opportunity. Since sensors stayed at the same location for 3 years, it is a perfect tool to monitor large seismic events, background seismic activity and aftershock distribution. Clock, drift measurement and GPS localization is automatic when the shuttle reaches the surface. For remote areas, shuttles released automatically and a seismic events bulletin is transmitted. Selected data can be recovered by two-way Iridium satellite communication. After a period of 3 years the main station is self-recovered by

  4. Comparing Distribution of Harbour Porpoises (Phocoena phocoena) Derived from Satellite Telemetry and Passive Acoustic Monitoring

    PubMed Central

    Rigét, Frank F.; Kyhn, Line A.; Sveegaard, Signe; Dietz, Rune; Tougaard, Jakob; Carlström, Julia A. K.; Carlén, Ida; Koblitz, Jens C.; Teilmann, Jonas

    2016-01-01

    Cetacean monitoring is essential in determining the status of a population. Different monitoring methods should reflect the real trends in abundance and patterns in distribution, and results should therefore ideally be independent of the selected method. Here, we compare two independent methods of describing harbour porpoise (Phocoena phocoena) relative distribution pattern in the western Baltic Sea. Satellite locations from 13 tagged harbour porpoises were used to build a Maximum Entropy (MaxEnt) model of suitable habitats. The data set was subsampled to one location every second day, which were sufficient to make reliable models over the summer (Jun-Aug) and autumn (Sep-Nov) seasons. The modelled results were compared to harbour porpoise acoustic activity obtained from 36 static acoustic monitoring stations (C-PODs) covering the same area. The C-POD data was expressed as the percentage of porpoise positive days/hours (the number of days/hours per day with porpoise detections) by season. The MaxEnt model and C-POD data showed a significant linear relationship with a strong decline in porpoise occurrence from west to east. This study shows that two very different methods provide comparable information on relative distribution patterns of harbour porpoises even in a low density area. PMID:27463509

  5. Effects of atmospheric variations on acoustic system performance

    NASA Technical Reports Server (NTRS)

    Nation, Robert; Lang, Stephen; Olsen, Robert; Chintawongvanich, Prasan

    1993-01-01

    Acoustic propagation over medium to long ranges in the atmosphere is subject to many complex, interacting effects. Of particular interest at this point is modeling low frequency (less than 500 Hz) propagation for the purpose of predicting ranges and bearing accuracies at which acoustic sources can be detected. A simple means of estimating how much of the received signal power propagated directly from the source to the receiver and how much was received by turbulent scattering was developed. The correlations between the propagation mechanism and detection thresholds, beamformer bearing estimation accuracies, and beamformer processing gain of passive acoustic signal detection systems were explored.

  6. A digital control system for high level acoustic noise generation

    NASA Technical Reports Server (NTRS)

    Lee, John P.; Bosco, Jerry H.

    1986-01-01

    As part of the modernization of the Acoustic Test Facility at Lockheed Missiles and Space Company, Sunnyvale, a digital acoustic control system was designed and built. The requirements imposed by Lockheed on the control system and the degree to which those requirements were met are discussed. Acceptance test results as well as some of the features of the digital control system not found in traditional manual control systems are discussed.

  7. Development of an acoustic measurement protocol to monitor acetabular implant fixation in cementless total hip Arthroplasty: A preliminary study.

    PubMed

    Goossens, Quentin; Leuridan, Steven; Henyš, Petr; Roosen, Jorg; Pastrav, Leonard; Mulier, Michiel; Desmet, Wim; Denis, Kathleen; Vander Sloten, Jos

    2017-11-01

    In cementless total hip arthroplasty (THA), the initial stability is obtained by press-fitting the implant in the bone to allow osseointegration for a long term secondary stability. However, finding the insertion endpoint that corresponds to a proper initial stability is currently based on the tactile and auditory experiences of the orthopedic surgeon, which can be challenging. This study presents a novel real-time method based on acoustic signals to monitor the acetabular implant fixation in cementless total hip arthroplasty. Twelve acoustic in vitro experiments were performed on three types of bone models; a simple bone block model, an artificial pelvic model and a cadaveric model. A custom made beam was screwed onto the implant which functioned as a sound enhancer and insertor. At each insertion step an acoustic measurement was performed. A significant acoustic resonance frequency shift was observed during the insertion process for the different bone models; 250 Hz (35%, second bending mode) to 180 Hz (13%, fourth bending mode) for the artificial bone block models and 120 Hz (11%, eighth bending mode) for the artificial pelvis model. No significant frequency shift was observed during the cadaveric experiment due to a lack of implant fixation in this model. This novel diagnostic method shows the potential of using acoustic signals to monitor the implant seating during insertion. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Effects of acoustic hood on noise, CFC-11, and particulate matter in a recycling system for waste refrigerator cabinet.

    PubMed

    Guo, Jie; Fang, Wenxiong; Yang, Yichen; Xu, Zhenming

    2014-11-01

    The mechanical-physical process was proven to be technologically feasible for waste refrigerator recycling and has been widely used in the typical e-waste recycling factories in China. In this study, effects of the acoustic hood on the reduction of noise level, CFC-11, and heavy metals (Cr, Ni, Cu, Cd, and Pb) in particulate matter (PM) were evaluated. For noise pollution, the noise level inside and outside the acoustic hood was 96.4 and 78.9 dB, respectively. Meanwhile, it had a significant effect on A-weighted sound level with a reduction from 98.3 to 63.6 dB. For CFC-11 exposure, abundant CFC-11 (255 mg/m(3)) was detected in the acoustic hood. However, the mean concentration of CFC-11 at the outline of polyurethane foam collection was obviously diminished to 14 mg/m(3), and no CFC-11 was monitored around the acoustic hood. The concentrations of PM and heavy metals in PM outside the acoustic hood were lower than those inside the acoustic hood due to the physical barriers of the acoustic hood. Based on the risk assessment, only adverse health effect caused by Pb might likely appear. All the results can provide the basic data for pollution control and risk assessment in waste refrigerator recycling system.

  9. Passive acoustic monitoring to detect spawning in large-bodied catostomids

    USGS Publications Warehouse

    Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.

    2014-01-01

    Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.

  10. Acoustic Emission Monitoring of Multicell Reinforced Concrete Box Girders Subjected to Torsion

    PubMed Central

    Bagherifaez, Marya; Behnia, Arash; Majeed, Abeer Aqeel; Hwa Kian, Chai

    2014-01-01

    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis. PMID:25180203

  11. YO-3A acoustics research aircraft systems manual

    NASA Technical Reports Server (NTRS)

    Cross, J. L.

    1984-01-01

    The flight testing techniques, equipment, and procedures employed during air-to-air acoustic testing of helicopters using the NASA YO-3A Acoustic Research Aircraft are discussed. The research aircraft instrumentation system is described as well as hardware installation on the test aircraft and techniques used during the tests. Emphasis is placed on formation flying, position locations, test matrices, and test procedures.

  12. Method and apparatus for non-invasive monitoring of blood glucose

    DOEpatents

    Thomas, Graham H.; Watson, Roger M.; Noell, J. Oakey

    1992-06-09

    A new and improved method and apparatus are provided for non-invasive monitoring of changes in blood glucose concentration in a tissue specimen and particularly in an individual. The method uses acoustic velocity measurements for monitoring the effect of glucose concentration upon the density and adiabatic compressibility of the serum. In a preferred embodiment, the acoustic velocity measurements are made through the earlobe of a subject by means of an acoustic probe or monitor which includes a transducer for transmitting and receiving ultrasonic energy pulses to and from the blood flowing in the subject's earlobe and a reflector for facilitating reflection of the acoustic pulses from the blood. The probe is designed in such a way that when properly affixed to an ear, the transducer is positioned flush against the anterior portion of an earlobe while the reflector is positioned flush against the interior portion of the earlobe. A microthermocouple is provided on the probe for monitoring the internal temperature of the blood being sampled. An electrical system, essentially comprising a frequency generator, a time intervalometer and an oscilloscope, is linked to the glucose monitoring probe. The electrical system analyzes selected ones of the pulses reflected from the blood sample in order to determine therefrom the acoustic velocity of the blood which, in turn, provides a representation of the blood glucose concentration levels at the time of the acoustic velocity measurements.

  13. Use of large-scale acoustic monitoring to assess anthropogenic pressures on Orthoptera communities.

    PubMed

    Penone, Caterina; Le Viol, Isabelle; Pellissier, Vincent; Julien, Jean-François; Bas, Yves; Kerbiriou, Christian

    2013-10-01

    Biodiversity monitoring at large spatial and temporal scales is greatly needed in the context of global changes. Although insects are a species-rich group and are important for ecosystem functioning, they have been largely neglected in conservation studies and policies, mainly due to technical and methodological constraints. Sound detection, a nondestructive method, is easily applied within a citizen-science framework and could be an interesting solution for insect monitoring. However, it has not yet been tested at a large scale. We assessed the value of a citizen-science program in which Orthoptera species (Tettigoniidae) were monitored acoustically along roads. We used Bayesian model-averaging analyses to test whether we could detect widely known patterns of anthropogenic effects on insects, such as the negative effects of urbanization or intensive agriculture on Orthoptera populations and communities. We also examined site-abundance correlations between years and estimated the biases in species detection to evaluate and improve the protocol. Urbanization and intensive agricultural landscapes negatively affected Orthoptera species richness, diversity, and abundance. This finding is consistent with results of previous studies of Orthoptera, vertebrates, carabids, and butterflies. The average mass of communities decreased as urbanization increased. The dispersal ability of communities increased as the percentage of agricultural land and, to a lesser extent, urban area increased. Despite changes in abundances over time, we found significant correlations between yearly abundances. We identified biases linked to the protocol (e.g., car speed or temperature) that can be accounted for ease in analyses. We argue that acoustic monitoring of Orthoptera along roads offers several advantages for assessing Orthoptera biodiversity at large spatial and temporal extents, particularly in a citizen science framework. © 2013 Society for Conservation Biology.

  14. Direct-field acoustic testing of a flight system : logistics, challenges, and results.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit

    2010-10-01

    Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, themore » test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.« less

  15. System and method for sonic wave measurements using an acoustic beam source

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  16. Acoustic Predictions of Manned and Unmanned Rotorcraft Using the Comprehensive Analytical Rotorcraft Model for Acoustics (CARMA) Code System

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Burley, Casey L.; Conner, David A.

    2005-01-01

    The Comprehensive Analytical Rotorcraft Model for Acoustics (CARMA) is being developed under the Quiet Aircraft Technology Project within the NASA Vehicle Systems Program. The purpose of CARMA is to provide analysis tools for the design and evaluation of efficient low-noise rotorcraft, as well as support the development of safe, low-noise flight operations. The baseline prediction system of CARMA is presented and current capabilities are illustrated for a model rotor in a wind tunnel, a rotorcraft in flight and for a notional coaxial rotor configuration; however, a complete validation of the CARMA system capabilities with respect to a variety of measured databases is beyond the scope of this work. For the model rotor illustration, predicted rotor airloads and acoustics for a BO-105 model rotor are compared to test data from HART-II. For the flight illustration, acoustic data from an MD-520N helicopter flight test, which was conducted at Eglin Air Force Base in September 2003, are compared with CARMA full vehicle flight predictions. Predicted acoustic metrics at three microphone locations are compared for limited level flight and descent conditions. Initial acoustic predictions using CARMA for a notional coaxial rotor system are made. The effect of increasing the vertical separation between the rotors on the predicted airloads and acoustic results are shown for both aerodynamically non-interacting and aerodynamically interacting rotors. The sensitivity of including the aerodynamic interaction effects of each rotor on the other, especially when the rotors are in close proximity to one another is initially examined. The predicted coaxial rotor noise is compared to that of a conventional single rotor system of equal thrust, where both are of reasonable size for an unmanned aerial vehicle (UAV).

  17. Acoustic monitoring indicates a correlation between calling and spawning in captive spotted seatrout (Cynoscion nebulosus)

    PubMed Central

    Hoover, Matt; Kehrer, Christopher; Yost, Justin; Brenkert, Karl; O’Donnell, Tim; Denson, Michael R.

    2017-01-01

    Background Fish sound production is widespread throughout many families. Territorial displays and courtship are the most common reasons for fish sound production. Yet, there is still some questions on how acoustic signaling and reproduction are correlated in many sound-producing species. In the present study, our aim was to determine if a quantitative relationship exists between calling and egg deposition in captive spotted seatrout (Cynoscion nebulosus). This type of data is essential if passive acoustics is to be used to identify spawning aggregations over large spatial scales and monitor reproductive activity over annual and decadal timeframes. Methods Acoustic recorders (i.e., DSG-Oceans) were placed in three laboratory tanks to record underwater sound over an entire, simulated reproductive season. We enumerated the number of calls, calculated the received sound pressure level, and counted the number of eggs every morning in each tank. Results Spotted seatrout produced three distinct call types characterized as “drums,” “grunts,” and “staccatos.” Spotted seatrout calling increased as the light cycle shifted from 13.5 to 14.5 h of light, and the temperature increased to 27.7 °C. Calling decreased once the temperature fell below 27.7 °C, and the light cycle shifted to 12 h of light. These temperature and light patterns followed the natural reproductive season observed in wild spotted seatrout in the Southeast United States. Spotted seatrout exhibited daily rhythms in calling. Acoustic signaling began once the lights turned off, and calling reached maximum activity approximately 3 h later. Eggs were released only on evenings in which spotted seatrout were calling. In all tanks, spotted seatrout were more likely to spawn when male fish called more frequently. A positive relationship between SPL and the number of eggs collected was found in Tanks 1 and 3. Discussion Our findings indicate that acoustic metrics can predict spawning potential. These

  18. Acoustic Moorings for Integrated Cetacean-Prey Studies

    DTIC Science & Technology

    2015-09-30

    Acoustic Recording Package ( HARP ), consisting of data logger and battery cases, and a hydrophone for passive acoustic monitoring of cetaceans (Wiggins...Hildebrand 2007). The HARPs will be able to record continuously at high enough bandwidth to monitor the full acoustic repertoire of cetaceans...likely to occur in the area. The HARP will be mounted near the bottom of the mooring at approximately 1,000 m depth. The HARPs are made in-house at the

  19. Active chiral control of GHz acoustic whispering-gallery modes

    NASA Astrophysics Data System (ADS)

    Mezil, Sylvain; Fujita, Kentaro; Otsuka, Paul H.; Tomoda, Motonobu; Clark, Matt; Wright, Oliver B.; Matsuda, Osamu

    2017-10-01

    We selectively generate chiral surface-acoustic whispering-gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making use of an optical pump spatial profile in the form of a semicircular arc, positioned on the sample to break the symmetry of clockwise- and counterclockwise-propagating modes. Spatiotemporal Fourier transforms of the interferometrically monitored two-dimensional acoustic fields measured to micron resolution allow individual chiral modes and their azimuthal mode order, both positive and negative, to be distinguished. In particular, for modes with 15-fold rotational symmetry, we demonstrate ultrafast chiral control of surface acoustic waves in a micro-acoustic system with picosecond temporal resolution. Applications include nondestructive testing and surface acoustic wave devices.

  20. Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.

    PubMed

    Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C

    2018-06-01

    Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.

  1. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean

    2014-01-01

    Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.

  2. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOEpatents

    Moore, Thomas L.; Fisher, Karl A.

    2005-08-09

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  3. A passive acoustic device for real-time monitoring of the efficacy of shockwave lithotripsy treatment.

    PubMed

    Leighton, T G; Fedele, F; Coleman, A J; McCarthy, C; Ryves, S; Hurrell, A M; De Stefano, A; White, P R

    2008-10-01

    Extracorporeal shockwave lithotripsy (ESWL) is the preferred modality for the treatment of renal and ureteric stone disease. Currently X-ray or ultrasound B-scan imaging are used to locate the stone and to check that it remains targeted at the focus of the lithotripter during treatment. Neither imaging modality is particularly effective in allowing the efficacy of treatment to be judged during the treatment session. A new device is described that, when placed on the patient's skin, can passively monitor the acoustic signals that propagate through the body after each lithotripter shock, and which can provide useful information on the effectiveness of targeting. These acoustic time histories are analyzed in real time to extract the two main characteristic peak amplitudes (m(1) and m(2)) and the time between these peaks (t(c)). A set of rules based on the acoustic parameters was developed during a clinical study in which a complete set of acoustic and clinical data was obtained for 30 of the 118 subjects recruited. The rules, which complied with earlier computational fluid dynamics (CFD) modeling and in vitro tests, allow each shock to be classified as "effective" or "ineffective." These clinically-derived rules were then applied in a second clinical study in which complete datasets were obtained for 49 of the 85 subjects recruited. This second clinical study demonstrated almost perfect agreement (kappa = 0.94) between the number of successful treatments, defined as >50% fragmentation as determined by X-ray at the follow-up appointment, and a device-derived global treatment score, TS(0), a figure derived from the total number of effective shocks in any treatment. The acoustic system is shown to provide a test of the success of the treatment that has a sensitivity of 91.7% and a specificity of 100%. In addition to the predictive capability, the device provides valuable real-time feedback to the lithotripter operator by indicating the effectiveness of each shock, plus

  4. Monitoring Anthropogenic Ocean Sound from Shipping Using an Acoustic Sensor Network and a Compressive Sensing Approach.

    PubMed

    Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian

    2016-03-22

    Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches.

  5. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  6. A closed-loop automatic control system for high-intensity acoustic test systems.

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1973-01-01

    Sound at sound pressure levels in the range from 130 to 160 dB is used in the investigation. Random noise is passed through a series of parallel filters, generally 1/3-octave wide. A basic automatic system is investigated because of preadjustment inaccuracies and high costs found in a study of a typical manually controlled acoustic testing system. The unit described has been successfully used in automatic acoustic tests in connection with the spacecraft tests for the Mariner 1971 program.

  7. DESIGN OF THE SEALEVEL SUSPENDED SOLIDS CONCENTRATION MONITORING SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2001-09-17

    The SEAlevel project between Science & Engineering Associates, Inc. (SEA) and the National Energy Technology Laboratory (NETL) in Morgantown, WV (contract DE-AC21-96MC33126) began in direct response to a need expressed by personnel involved with monitoring fluid levels in underground storage tanks at the Hanford Tank Farms. Hanford expressed a desire for an automated monitoring system that could be installed into tanks through liquid observation wells (LOWs). The LOWs are pipes that run from the surface above the tank to the bottom of the tank. The end of the LOW pipe in the tank waste is sealed. Therefore, the LOW providesmore » a clean conduit through which sensors and monitors can be lowered into the tanks. When the SEAlevel project first began, it was understood that the LOWs would be of steel construction, because several existing LOWs at the time were steel pipes and the plans for all future LOW installations were to be with steel pipes. Based on this assumption the SEAlevel monitoring system was to be made using an array of acoustic sensors. However, during the course of the project it was learned that many existing LOWs are of fiberglass construction and that it was the desire of the Tanks Surveillance Group at Hanford to change plans so that all future LOW installations be of fiberglass construction. The Tanks Surveillance Group wanted fiberglass LOWs to allow for a wider range of sensors to be used in the pipes (i.e., sensors that use electromagnetic signals). In response to this, SEA pursued the development of other types of sensors to install in the LOWs in addition to the acoustic sensors that were being developed. It was determined that a capacitance type sensor was well suited for non-metallic LOW pipes. The results of the analysis, testing and design efforts that were undertaken to address the Hanford needs were detailed in a report submitted to the NETL on August 15, 1997, titled, The Sealevel Approach For Monitoring Liquid Levels In DOE Waste

  8. Development of high temperature acoustic emission sensing system using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Pang, Dandan; Sui, Qingmei; Wang, Ming; Guo, Dongmei; Sai, Yaozhang

    2018-03-01

    In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed with a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25 ° to 200 °. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.

  9. A unified acquisition system for acoustic data

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Holmes, H. K.

    1977-01-01

    A multichannel, acoustic AM carrier system was developed for a wide variety of applications, particularly for aircraft noise and sonic boom measurements. Each data acquisition channel consists of a condenser microphone, an acoustic signal converter, and a Zero Drive amplifier, along with peripheral supporting equipment. A control network insures continuous optimal tuning of the converter and permits remote calibration of the condenser microphone. With a 12.70-mm (1/2-in.) condenser microphone, the converter/Zero Drive amplifier combination has a frequency response from 0 Hz to 20 kHz (-3 db), a dynamic range exceeding 70 db, and a minimum noise floor of 50 db ref. 20 micro Pa) in the band 22.4 Hz to 22.4 kHz. The system requires no external impedance matching networks and is insensitive to cable length, at least up to 900 m (3,000 ft). System gain varies only + or - 1 db over the temperature range 4 to 54 C (40 to 130 F). Adapters are available to accommodate 23.77-mm (1-in.) and 6.35-mm (1/4-in.) microphones and to provide 30-db attenuation. A field test to obtain the acoustical time history of a helicopter flyover proved successful.

  10. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation

    PubMed Central

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  11. Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor

    NASA Astrophysics Data System (ADS)

    Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.

    2016-10-01

    Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads to the advancement of structural condition monitoring. The monitored aircraft wings have the capability to give real-time response under critical loading circumstances. The main objective of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to view real-time changes when the structure undergoes some static loadings and dynamic impact. The implementation of matched edge filter FBG interrogation system to convert wavelength variations to strain readings shows that the structure is able to response instantly in real-time when undergoing few loadings and dynamic impact. This smart monitoring system is capable of updating the changes instantly in real-time and shows the weight induced on the composite aircraft wings instantly without any error. It also has a good agreement with acoustic emission (AE) sensor in the dynamic test.

  12. Influence of acoustic impedance of multilayer acoustic systems on the transfer function of ultrasonic airborne transducers.

    PubMed

    Gudra, Tadeusz; Opieliński, Krzysztof J

    2002-05-01

    In different solutions of ultrasonic transducers radiating acoustic energy into the air there occurs the problem of the proper selection of the acoustic impedance of one or more matching layers. The goal of this work was a computer analysis of the influence of acoustic impedance on the transfer function of piezoceramic transducers equipped with matching layers. Cases of resonance and non-resonance matching impedance in relation to the transfer function and the energy transmission coefficient for solid state-air systems were analysed. With stable thickness of matching layers the required shape of the transfer function can be obtained through proper choice of acoustic impedance were built (e.g. maximal flat function). The proper choice of acoustic impedance requires an elaboration of precise methods of synthesis of matching systems. Using the known matching criteria (Chebyshev's, DeSilets', Souquet's), the transfer function characteristics of transducers equipped with one, two, and three matching layers as well as the optimisation methods of the energy transmission coefficient were presented. The influence of the backside load of the transducer on the shape of transfer function was also analysed. The calculation results of this function for different loads of the transducer backside without and with the different matching layers were presented. The proper load selection allows us to obtain the desired shape of the transfer function, which determines the pulse shape generated by the transducer.

  13. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  14. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  15. Effects of different analysis techniques and recording duty cycles on passive acoustic monitoring of killer whales.

    PubMed

    Riera, Amalis; Ford, John K; Ross Chapman, N

    2013-09-01

    Killer whales in British Columbia are at risk, and little is known about their winter distribution. Passive acoustic monitoring of their year-round habitat is a valuable supplemental method to traditional visual and photographic surveys. However, long-term acoustic studies of odontocetes have some limitations, including the generation of large amounts of data that require highly time-consuming processing. There is a need to develop tools and protocols to maximize the efficiency of such studies. Here, two types of analysis, real-time and long term spectral averages, were compared to assess their performance at detecting killer whale calls in long-term acoustic recordings. In addition, two different duty cycles, 1/3 and 2/3, were tested. Both the use of long term spectral averages and a lower duty cycle resulted in a decrease in call detection and positive pod identification, leading to underestimations of the amount of time the whales were present. The impact of these limitations should be considered in future killer whale acoustic surveys. A compromise between a lower resolution data processing method and a higher duty cycle is suggested for maximum methodological efficiency.

  16. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  17. Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late Spring.

    PubMed

    Clark, Christopher W; Clapham, Phillip J

    2004-05-22

    Singing by males is a major feature of the mating system of humpback whales, Megaptera novaeangliae (Borowski). Although a few songs have been opportunistically recorded on the whales' high-latitude feeding grounds, singing in these regions was thought to be only sporadic. We report results from the first continuous acoustic monitoring of a humpback whale feeding ground (off Cape Cod, MA, USA) in spring. Using autonomous sea-floor recording systems, we found singing on a daily basis over the entire 25 day monitoring period, from 14 May to 7 June 2000. For much of the period, song was recorded 24 h per day. These results, combined with evidence for aseasonal conceptions in whaling catch data, suggest that the humpback whale breeding season should no longer be considered as confined to lower-latitude regions in winter. Rather, we suggest breeding extends geographically and temporally onto feeding grounds into at least spring and early summer. Singing at these times represents either low-cost opportunistic advertising by (perhaps relatively few) males to court females that failed to conceive during the winter, and/or possibly an intrasexual display.

  18. Acoustic monitoring of the tide height and slope-water intrusion at the New Jersey Shelf in winter conditions.

    PubMed

    Turgut, Altan; Orr, Marshall; Pasewark, Bruce

    2007-05-01

    Waveguide invariant theory is used to describe the frequency shifts of constant acoustic intensity level curves in broadband signal spectrograms measured at the New Jersey Shelf during the winter of 2003. The broadband signals (270-330 Hz) were transmitted from a fixed source and received at three fixed receivers, located at 10, 20, and 30 km range along a cross-shelf propagation track. The constant acoustic intensity level curves of the received signals indicate regular frequency shifts that can be well predicted by the change in water depth observed through tens of tidal cycles. A second pattern of frequency shifts is observed at only 30 km range where significant variability of slope-water intrusion was measured. An excellent agreement between observed frequency shifts of the constant acoustic intensity levels and those predicted by the change in tide height and slope water elevations suggests the capability of long-term acoustic monitoring of tide and slope water intrusions in winter conditions.

  19. A realization of sound focused personal audio system using acoustic contrast control.

    PubMed

    Chang, Ji-Ho; Lee, Chan-Hui; Park, Jin-Young; Kim, Yang-Hann

    2009-04-01

    A personal audio system that does not use earphone or any wire would have great interest and potential impact on the audio industries. In this study, a line array speaker system is used to localize sound in the listening zone. The contrast control [Choi, J.-W. and Kim, Y.-H. (2002). J. Acoust. Soc. Am. 111, 1695-1700] is applied, which is a method to make acoustically bright zone around the user and acoustically dark zone in other regions by maximizing the ratio of acoustic potential energy density between the bright and the dark zone. This ratio is regarded as acoustic contrast, analogous with what is used for optical devices. For the evaluation of the performance of acoustic contrast control, experiments are performed and the results are compared with those of uncontrolled case and time reversal array.

  20. Acoustic emission monitoring of damage in ceramic matrix composites: Effects of weaves and feature

    NASA Astrophysics Data System (ADS)

    Ojard, Greg; Mordasky, Matt; Kumar, Rajesh

    2018-04-01

    Ceramic matrix composites (CMCs) are a class of high temperature materials with better damage tolerance properties compared to monolithic ceramics. The improved toughness is attributed to weak interface coating between the fiber and the matrix that allows for crack deflection and fiber pull-out. Thus, CMCs have gained consideration over monolithic materials for high temperature applications such as in gas turbines. The current standard fiber architecture for CMCs is a harness satin (HS) balanced weave (5HS and 8HS); however, other architectures such as uni-weave materials (tape layup) are now being considered due to fiber placement control and higher fiber volume fraction in the tensile loading direction. Engineering components require additional features in the CMC laminates, such as holes for attachments. Past work has shown that acoustic emission could differentiate the effect of changing interface conditions due to heat treatment effects. The focus of the present work is to investigate the effects of different weaves and the presence of a feature on damage behavior of CMCs as observed via acoustic emission technique. The results of the tensile testing with acoustic emission monitoring will be presented and discussed.

  1. Acoustic Emission Beamforming for Detection and Localization of Damage

    NASA Astrophysics Data System (ADS)

    Rivey, Joshua Callen

    The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over

  2. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in KEVLAR® 49 Composites

    NASA Astrophysics Data System (ADS)

    Waller, J. M.; Andrade, E.; Saulsberry, R. L.

    2010-02-01

    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar® 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio <1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  3. Forced synchronization and asynchronous quenching in a thermo-acoustic system

    NASA Astrophysics Data System (ADS)

    Mondal, Sirshendu; Pawar, Samadhan A.; Sujith, Raman

    2017-11-01

    Forced synchronization, which has been extensively studied in theory and experiments, occurs through two different mechanisms known as phase locking and asynchronous quenching. The latter indicates the suppression of oscillation amplitude. In most practical combustion systems such as gas turbine engines, the main concern is high amplitude pressure oscillations, known as thermo-acoustic instability. Thermo-acoustic instability is undesirable and needs to be suppressed because of its damaging consequences to an engine. In the present study, a systematic experimental investigation of forced synchronization is performed in a prototypical thermo-acoustic system, a Rijke tube, in its limit cycle operation. Further, we show a qualitatively similar behavior using a reduced order model. In the phase locking region, the simultaneous occurrence of synchronization and resonant amplification leads to high amplitude pressure oscillations. However, a reduction in the amplitude of natural oscillations by about 78% of the unforced amplitude is observed when the forcing frequency is far lower than the natural frequency. This shows the possibility of suppression of the oscillation amplitude through asynchronous quenching in thermo-acoustic systems.

  4. Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Zook, J. David

    1998-07-01

    An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.

  5. An Ethnographic Observational Study to Evaluate and Optimize the Use of Respiratory Acoustic Monitoring in Children Receiving Postoperative Opioid Infusions.

    PubMed

    Görges, Matthias; West, Nicholas C; Christopher, Nancy A; Koch, Jennifer L; Brodie, Sonia M; Lowlaavar, Nasim; Lauder, Gillian R; Ansermino, J Mark

    2016-04-01

    Respiratory depression in children receiving postoperative opioid infusions is a significant risk because of the interindividual variability in analgesic requirement. Detection of respiratory depression (or apnea) in these children may be improved with the introduction of automated acoustic respiratory rate (RR) monitoring. However, early detection of adverse events must be balanced with the risk of alarm fatigue. Our objective was to evaluate the use of acoustic RR monitoring in children receiving opioid infusions on a postsurgical ward and identify the causes of false alarm and optimal alarm thresholds. A video ethnographic study was performed using an observational, mixed methods approach. After surgery, an acoustic RR sensor was placed on the participant's neck and attached to a Rad87 monitor. The monitor was networked with paging for alarms. Vital signs data and paging notification logs were obtained from the central monitoring system. Webcam videos of the participant, infusion pump, and Rad87 monitor were recorded, stored on a secure server, and subsequently analyzed by 2 research nurses to identify the cause of the alarm, response, and effectiveness. Alarms occurring within a 90-second window were grouped into a single-alarm response opportunity. Data from 49 patients (30 females) with median age 14 (range, 4.4-18.8) years were analyzed. The 896 bedside vital sign threshold alarms resulted in 160 alarm response opportunities (44 low RR, 74 high RR, and 42 low SpO2). In 141 periods (88% of total), for which video was available, 65% of alarms were deemed effective (followed by an alarm-related action within 10 minutes). Nurses were the sole responders in 55% of effective alarms and the patient or parent in 20%. Episodes of desaturation (SpO2 < 90%) were observed in 9 patients: At the time of the SpO2 paging trigger, the RR was >10 bpm in 6 of 9 patients. Based on all RR samples observed, the default alarm thresholds, to serve as a starting point for each

  6. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    DOEpatents

    Ziminsky, Willy Steve [Simpsonville, SC; Krull, Anthony Wayne [Anderson, SC; Healy, Timothy Andrew , Yilmaz, Ertan

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  7. Controlling Sample Rotation in Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.

    1985-01-01

    Rotation of acoustically levitated object stopped or controlled according to phase-shift monitoring and control concept. Principle applies to square-cross-section levitation chamber with two perpendicular acoustic drivers operating at same frequency. Phase difference between X and Y acoustic excitation measured at one corner by measuring variation of acoustic amplitude sensed by microphone. Phase of driver adjusted to value that produces no rotation or controlled rotation of levitated object.

  8. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    NASA Technical Reports Server (NTRS)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  9. Charged drop dynamics experiment using an electrostatic-acoustic hybrid system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Chung, S. K.; Trinh, E. H.; Elleman, D. D.

    1987-01-01

    The design and the performance of an electrostatic-acoustic hybrid system and its application to a charge drop rotation experiment are presented. This system can levitate a charged drop electrostatically and induce drop rotation or oscillation by imposing an acoustic torque or an oscillating acoustic pressure. Using this system, the equilibrium shapes and stability of a rotating charged drop were experimentally investigated. A 3 mm size water drop was rotated as a rigid body and its gyrostatic equilibrium shapes were observed. Families of axisymmetric shapes, two-lobed shapes, and eventual fissioning have been observed. With the assumption of 'effective surface tension' in which the surface charge simply modified the surface tension of neutral liquid, the results agree exceptionally well with the Brown and Scriven's (1980) prediction for uncharged drops.

  10. Acoustic emissions monitoring and synchrotron X-ray diffraction analysis of mineral dehydrations at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Guillon, S.; Schubnel, A. J.; Brunet, F.; Lathe, C.; Mueller, H.

    2009-12-01

    We have monitored from in-situ X-ray diffraction coupled to Acoustic Emission (AE) imaging, the behavior of several materials under elevated pressures and temperatures (quartz, kaolinite, serpentinite). The samples were placed in a boron-epoxy assembly with an 8mm edge-length and loaded in the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg). AE were recorded using six piezoceramic transducers (2 MHz eigen frequency) glued on each of the six WC anvils. Full waveforms were acquired using an eight channel digital oscilloscope and a continuous acoustic recorder. Our system was first tested using quartz beads (500μm) aggregates. During cold compression performed on these samples many acoustic events were recorded and located inside the samples. These are obviously related to the fragile fracturing of the quartz due to the porosity loss. During the heating cycles performed on the same samples, the acoustic activity progressively vanishes between 300 and 400°C indicating the transition to the ductile regime towards higher temperatures. Further experiments were performed by mixing 20wt% of kaolinite to the quartz. As a result, the amount of acoustic emissions recorded during cold compression is significantly reduced. This is thought to be a result of the ductile behaviour of kaolinite even at low temperatures. This assumption has been confirmed by performing experiments on pure kaolinite which did not produce acoustic emissions during cold compression nor during heating cycles up to 1000°C (i.e. beyond the kaolinite dehydration temperature). This set of experiments clearly established that no acoustic activity is produced by the assembly and that AEs produced by the samples are accurately located by the software. The behaviour of serpentinite dehydration was then investigated under various pressure conditions (i.e. various volume changes), from ~0.6 to ~40kbars. These experiments were performed under deviatoric stress conditions

  11. Acoustic emissions monitoring and synchrotron X-ray diffraction analysis of mineral dehydrations at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Schubnel, Alexandre; Julien, Gasc; Sophie, Guillon; Fabrice, Brunet; Christian, Lathe; Hans-Joachim, Mueller

    2010-05-01

    We have monitored from in-situ X-ray diffraction coupled to Acoustic Emission (AE) imaging, the behavior of several materials under elevated pressures and temperatures (quartz, kaolinite, serpentinite). The samples were placed in a boron-epoxy assembly with an 8mm edge-length and loaded in the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg). AE were recorded using six piezoceramic transducers (2 MHz eigen frequency) glued on each of the six WC anvils. Full waveforms were acquired using an eight channel digital oscilloscope and a continuous acoustic recorder. Our system was first tested using quartz beads (500μm) aggregates. During cold compression performed on these samples many acoustic events were recorded and located inside the samples. These are obviously related to the fragile fracturing of the quartz due to the porosity loss. During the heating cycles performed on the same samples, the acoustic activity progressively vanishes between 300 and 400°C indicating the transition to the ductile regime towards higher temperatures. Further experiments were performed by mixing 20wt% of kaolinite to the quartz. As a result, the amount of acoustic emissions recorded during cold compression is significantly reduced. This is thought to be a result of the ductile behaviour of kaolinite even at low temperatures. This assumption has been confirmed by performing experiments on pure kaolinite which did not produce acoustic emissions during cold compression nor during heating cycles up to 1000°C (i.e. beyond the kaolinite dehydration temperature). This set of experiments clearly established that no acoustic activity is produced by the assembly and that AEs produced by the samples are accurately located by the software. The behaviour of serpentinite dehydration was then investigated under various pressure conditions (i.e. various volume changes), from ~0.6 to ~40kbars. These experiments were performed under deviatoric stress conditions

  12. Using paired visual and passive acoustic surveys to estimate passive acoustic detection parameters for harbor porpoise abundance estimates.

    PubMed

    Jacobson, Eiren K; Forney, Karin A; Barlow, Jay

    2017-01-01

    Passive acoustic monitoring is a promising approach for monitoring long-term trends in harbor porpoise (Phocoena phocoena) abundance. Before passive acoustic monitoring can be implemented to estimate harbor porpoise abundance, information about the detectability of harbor porpoise is needed to convert recorded numbers of echolocation clicks to harbor porpoise densities. In the present study, paired data from a grid of nine passive acoustic click detectors (C-PODs, Chelonia Ltd., United Kingdom) and three days of simultaneous aerial line-transect visual surveys were collected over a 370 km 2 study area. The focus of the study was estimating the effective detection area of the passive acoustic sensors, which was defined as the product of the sound production rate of individual animals and the area within which those sounds are detected by the passive acoustic sensors. Visually estimated porpoise densities were used as informative priors in a Bayesian model to solve for the effective detection area for individual harbor porpoises. This model-based approach resulted in a posterior distribution of the effective detection area of individual harbor porpoises consistent with previously published values. This technique is a viable alternative for estimating the effective detection area of passive acoustic sensors when other experimental approaches are not feasible.

  13. Time dependent inflow-outflow boundary conditions for 2D acoustic systems

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Myers, Michael K.

    1989-01-01

    An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.

  14. Monitoring Anthropogenic Ocean Sound from Shipping Using an Acoustic Sensor Network and a Compressive Sensing Approach †

    PubMed Central

    Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian

    2016-01-01

    Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches. PMID:27011187

  15. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  16. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    PubMed

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features.

  17. Acoustic valley edge states in a graphene-like resonator system

    NASA Astrophysics Data System (ADS)

    Yang, Yahui; Yang, Zhaoju; Zhang, Baile

    2018-03-01

    The concept of valley physics, as inspired by the recent development in valleytronic materials, has been extended to acoustic crystals for manipulation of air-borne sound. Many valleytronic materials follow the model of a gapped graphene. Yet the previously demonstrated valley acoustic crystal adopted a mirror-symmetry-breaking mechanism, lacking a direct counterpart in condensed matter systems. In this paper, we investigate a two-dimensional (2D) periodic acoustic resonator system with inversion symmetry breaking, as an analogue of a gapped graphene monolayer. It demonstrates the quantum valley Hall topological phase for sound waves. Similar to a gapped graphene, gapless topological valley edge states can be found at a zigzag domain wall separating different domains with opposite valley Chern numbers, while an armchair domain wall hosts no gapless edge states. Our study offers a route to simulate novel valley phenomena predicted in gapped graphene and other 2D materials with classical acoustic waves.

  18. Unified multiphase modeling for evolving, acoustically coupled systems consisting of acoustic, elastic, poroelastic media and septa

    NASA Astrophysics Data System (ADS)

    Lee, Joong Seok; Kang, Yeon June; Kim, Yoon Young

    2012-12-01

    This paper presents a new modeling technique that can represent acoustically coupled systems in a unified manner. The proposed unified multiphase (UMP) modeling technique uses Biot's equations that are originally derived for poroelastic media to represent not only poroelastic media but also non-poroelastic ones ranging from acoustic and elastic media to septa. To recover the original vibro-acoustic behaviors of non-poroelastic media, material parameters of a base poroelastic medium are adjusted depending on the target media. The real virtue of this UMP technique is that interface coupling conditions between any media can be automatically satisfied, so no medium-dependent interface condition needs to be imposed explicitly. Thereby, the proposed technique can effectively model any acoustically coupled system having locally varying medium phases and evolving interfaces. A typical situation can occur in an iterative design process. Because the proposed UMP modeling technique needs theoretical justifications for further development, this work is mainly focused on how the technique recovers the governing equations of non-poroelastic media and expresses their interface conditions. We also address how to describe various boundary conditions of the media in the technique. Some numerical studies are carried out to demonstrate the validity of the proposed modeling technique.

  19. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  20. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers.

    PubMed

    Moore, S A; Le Coz, J; Hurther, D; Paquier, A

    2013-04-01

    Multi-frequency acoustic backscatter profiles recorded with side-looking acoustic Doppler current profilers are used to monitor the concentration and size of sedimentary particles suspended in fluvial environments. Data at 300, 600, and 1200 kHz are presented from the Isère River in France where the dominant particles in suspension are silt and clay sizes. The contribution of suspended sediment to the through-water attenuation was determined for three high concentration (> 100 mg/L) events and compared to theoretical values for spherical particles having size distributions that were measured by laser diffraction in water samples. Agreement was good for the 300 kHz data, but it worsened with increasing frequency. A method for the determination of grain size using multi-frequency attenuation data is presented considering models for spherical and oblate spheroidal particles. When the resulting size estimates are used to convert sediment attenuation to concentration, the spheroidal model provides the best agreement with optical estimates of concentration, but the aspect ratio and grain size that provide the best fit differ between events. The acoustic estimates of size were one-third the values from laser grain sizing. This agreement is encouraging considering optical and acoustical instruments measure different parameters.

  1. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice

    2014-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  2. Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition

    NASA Astrophysics Data System (ADS)

    Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.

    2006-03-01

    As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.

  3. Acoustic Localization with Infrasonic Signals

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  4. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  5. Petroglyph National Monument : acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2013-01-01

    During the summer of 2010 (August September), the Volpe Center collected baseline acoustical data at Petroglyph National Monument (PETR) at two sites deployed for approximately 30 days each. The baseline data collected during this period will hel...

  6. Pulsed Acoustic Vortex Sensing System : Volume 1. Hardware Design

    DOT National Transportation Integrated Search

    1977-06-01

    Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...

  7. Monitoring of temperature fatigue failure mechanism for polyvinyl alcohol fiber concrete using acoustic emission sensors.

    PubMed

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed.

  8. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555

  9. Directional radiation pattern in structural-acoustic coupled system

    NASA Astrophysics Data System (ADS)

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-07-01

    In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm.

  10. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1983-01-01

    The acoustic velocity meter (AVM), also referred to as an ultrasonic flowmeter, has been an operational tool for the measurement of streamflow since 1965. Very little information is available concerning AVM operation, performance, and limitations. The purpose of this report is to consolidate information in such a manner as to provide a better understanding about the application of this instrumentation to streamflow measurement. AVM instrumentation is highly accurate and nonmechanical. Most commercial AVM systems that measure streamflow use the time-of-travel method to determine a velocity between two points. The systems operate on the principle that point-to-point upstream travel-time of sound is longer than the downstream travel-time, and this difference can be monitored and measured accurately by electronics. AVM equipment has no practical upper limit of measurable velocity if sonic transducers are securely placed and adequately protected. AVM systems used in streamflow measurement generally operate with a resolution of ?0.01 meter per second but this is dependent on system frequency, path length, and signal attenuation. In some applications the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Presently used minicomputer systems, although expensive to purchase and maintain, perform well. Increased use of AVM systems probably will be realized as smaller, less expensive, and more conveniently operable microprocessor-based systems become readily available. Available AVM equipment should be capable of flow measurement in a wide variety of situations heretofore untried. New signal-detection techniques and communication linkages can provide additional flexibility to the systems so that operation is possible in more river and estuary situations.

  11. Wupatki National Monument : Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-05-01

    During the summer of 2010 (July - August), the Volpe Center collected baseline acoustical data at Wupatki National Monument (WUPA) at two sites deployed for approximately 30 days at each site. The baseline data collected during this period will help ...

  12. Tuzigoot National Monument: Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-05-01

    During the summer of 2010 (July-August), the Volpe Center collected baseline acoustical data at Tuzigoot National Monument (TUZI) at a site deployed for approximately 30 days. The baseline data collected during this period will help park managers and...

  13. An Efficient Audio Coding Scheme for Quantitative and Qualitative Large Scale Acoustic Monitoring Using the Sensor Grid Approach

    PubMed Central

    Gontier, Félix; Lagrange, Mathieu; Can, Arnaud; Lavandier, Catherine

    2017-01-01

    The spreading of urban areas and the growth of human population worldwide raise societal and environmental concerns. To better address these concerns, the monitoring of the acoustic environment in urban as well as rural or wilderness areas is an important matter. Building on the recent development of low cost hardware acoustic sensors, we propose in this paper to consider a sensor grid approach to tackle this issue. In this kind of approach, the crucial question is the nature of the data that are transmitted from the sensors to the processing and archival servers. To this end, we propose an efficient audio coding scheme based on third octave band spectral representation that allows: (1) the estimation of standard acoustic indicators; and (2) the recognition of acoustic events at state-of-the-art performance rate. The former is useful to provide quantitative information about the acoustic environment, while the latter is useful to gather qualitative information and build perceptually motivated indicators using for example the emergence of a given sound source. The coding scheme is also demonstrated to transmit spectrally encoded data that, reverted to the time domain using state-of-the-art techniques, are not intelligible, thus protecting the privacy of citizens. PMID:29186021

  14. Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Gui; Geng, Zhi-Guo; Zhu, Xue-Feng

    2018-03-01

    Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.

  15. An FBG acoustic emission source locating system based on PHAT and GA

    NASA Astrophysics Data System (ADS)

    Shen, Jing-shi; Zeng, Xiao-dong; Li, Wei; Jiang, Ming-shun

    2017-09-01

    Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipment. In this paper, four fiber Bragg grating (FBG) sensors are used to establish the sensor array to locate the acoustic emission source. Firstly, the nonlinear locating equations are established based on the principle of acoustic emission, and the solution of these equations is transformed into an optimization problem. Secondly, time difference extraction algorithm based on the phase transform (PHAT) weighted generalized cross correlation provides the necessary conditions for the accurate localization. Finally, the genetic algorithm (GA) is used to solve the optimization model. In this paper, twenty points are tested in the marble plate surface, and the results show that the absolute locating error is within the range of 10 mm, which proves the accuracy of this locating method.

  16. Chicago monostatic acoustic vortex sensing system : Vol. IV. wake vortex decay

    DOT National Transportation Integrated Search

    1982-07-01

    A Monostatic Acoustic Vortex Sensing System (MAVSS) was installed at Chicago's O'Hare International Airport to measure the strength and decay of aircraft wake vortices from landing aircraft. The MAVSS consists of an array of acoustic antennas which m...

  17. In-flight fiber optic acoustic emission sensor (FAESense) system for the real time detection, localization, and classification of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    Acoustic emission sensing is a leading structural health monitoring technique use for the early warning detection of structural damage associated with impacts, cracks, fracture, and delaminations in advanced materials. Current AE systems based on electronic PZT transducers suffer from various limitations that prevent its wide dynamic use in practical avionics and aerospace applications where weight, size and power are critical for operation. This paper describes progress towards the development of a wireless in-flight distributed fiber optic acoustic emission monitoring system (FAESense™) suitable for the onboard-unattended detection, localization, and classification of damage in avionics and aerospace structures. Fiber optic AE sensors offer significant advantages over its counterpart electronic AE sensors by using a high-density array of micron-size AE transducers distributed and multiplex over long lengths of a standard single mode optical fiber. Immediate SHM applications are found in commercial and military aircraft, helicopters, spacecraft, wind mil turbine blades, and in next generation weapon systems, as well as in the petrochemical and aerospace industries, civil structures, power utilities, and a wide spectrum of other applications.

  18. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  19. Acoustic Monitoring of Ebullitive Flux from a Mire Ecosystem in Subarctic Sweden

    NASA Astrophysics Data System (ADS)

    Burke, S. A.; Varner, R. K.; Palace, M. W.; Wik, M.; Crill, P. M.; McCalley, C. K.; Amante, J.

    2012-12-01

    Methane (CH4) is a potent green house gas with wetlands being the largest natural source to the atmosphere. Studies in the Stordalen Mire, a dynamic peatland complex 11km east of the Abisko Scientific Research Station (ANS) in northern Sweden, that focused on CH4 transport to the atmosphere from peatlands have shown increased emissions over the past decades. Ebullitive flux (bubbling) is a potentially significant pathway of CH4 from mire/lake ecosystems. Ebullitive fluxes were successfully monitored acoustically in peat and lakes in 2011. This work expands those measurements with installation of sensors in ponds and permafrost thaw margins in 2012. Eighteen acoustic sensors were installed in peat (6), pond (6), and lake (6) sites at Stordalen Mire. Recorders collected acoustic data continuously from each sensor and gas samples were collected from the traps at least once per week beginning 7 July. The CH4 concentration in the gas was measured using gas chromatography and selected samples were also analyzed for 13C-CH4 using a Quantum Cascade Laser (QCL). The acoustic data were evaluated using a MATLAB program for determine the timing and volume of each ebullition event. The CH4 ebullitive flux from the peat was greater in July 2011 than during the same period in 2012. In comparison, the ponds and thaw margins released CH4 at a faster rate in 2012 than was observed in the peat and lake sensors in 2011. Inter-annual differences in ebullitive rates suggest that weather scale differences between years may control CH4 ebullitive flux. 13C-CH4 measured in the pore waters of pond sediment suggests that not all ponds are dominated by the same production processes. However, 13C-CH4 measured in bubbles and sediments are not different, implying little or no oxidation of CH4 during transport to the water surface. Our data suggests that changes in atmospheric pressure and water table height correlated with the ebullitive release in all three sub-ecosystems.

  20. Acoustic resonance in MEMS scale cylindrical tubes with side branches

    NASA Astrophysics Data System (ADS)

    Schill, John F.; Holthoff, Ellen L.; Pellegrino, Paul M.; Marcus, Logan S.

    2014-05-01

    Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace gas detection. This method routinely exhibits detection limits at the parts-per-million (ppm) or parts-per-billion (ppb) level for gaseous samples. PAS also possesses favorable detection characteristics when the system dimensions are scaled to a microelectromechanical system (MEMS) design. One of the central issues related to sensor miniaturization is optimization of the photoacoustic cell geometry, especially in relationship to high acoustical amplification and reduced system noise. Previous work relied on a multiphysics approach to analyze the resonance structures of the MEMS scale photo acoustic cell. This technique was unable to provide an accurate model of the acoustic structure. In this paper we describe a method that relies on techniques developed from musical instrument theory and electronic transmission line matrix methods to describe cylindrical acoustic resonant cells with side branches of various configurations. Experimental results are presented that demonstrate the ease and accuracy of this method. All experimental results were within 2% of those predicted by this theory.

  1. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in Kevlar (R) 49 Composites

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.; Andrade, Eduardo

    2009-01-01

    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar(Registeres TradeMark) 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio < 1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  2. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  3. Dynamic model including piping acoustics of a centrifugal compression system

    NASA Astrophysics Data System (ADS)

    van Helvoirt, Jan; de Jager, Bram

    2007-04-01

    This paper deals with low-frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the presence of acoustic pulsations in the compression system under study. It is argued that these acoustic phenomena are common for full-scale compression systems where pipe system dynamics have a significant influence on the overall system behavior. The main objective of this paper is to extend the basic compressor model in order to include the relevant pipe system dynamics. For this purpose a pipeline model is proposed, based on previous developments for fluid transmission lines. The connection of this model to the lumped parameter model is accomplished via the selection of appropriate boundary conditions. Validation results will be presented, showing a good agreement between simulation and measurement data. The results indicate that the damping of piping transients depends on the nominal, time-varying pressure and flow velocity. Therefore, model parameters are made dependent on the momentary pressure and a switching nonlinearity is introduced into the model to vary the acoustic damping as a function of flow velocity. These modifications have limited success and the results indicate that a more sophisticated model is required to fully describe all (nonlinear) acoustic effects. However, the very good qualitative results show that the model adequately combines compressor and pipe system dynamics. Therefore, the proposed model forms a step forward in the analysis and modeling of surge in full-scale centrifugal compression systems and opens the path for further developments in this field.

  4. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico.

    PubMed

    Hildebrand, John A; Baumann-Pickering, Simone; Frasier, Kaitlin E; Trickey, Jennifer S; Merkens, Karlina P; Wiggins, Sean M; McDonald, Mark A; Garrison, Lance P; Harris, Danielle; Marques, Tiago A; Thomas, Len

    2015-11-12

    Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010-2013). Beaked whale species detected include: Gervais' (Mesoplodon europaeus), Cuvier's (Ziphius cavirostris), Blainville's (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf - BWG). For Gervais' and Cuvier's beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais' beaked whales were present throughout the monitoring period, but Cuvier's beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais' and Cuvier's beaked whales had a high density throughout the monitoring period.

  5. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico

    PubMed Central

    Hildebrand, John A.; Baumann-Pickering, Simone; Frasier, Kaitlin E.; Trickey, Jennifer S.; Merkens, Karlina P.; Wiggins, Sean M.; McDonald, Mark A.; Garrison, Lance P.; Harris, Danielle; Marques, Tiago A.; Thomas, Len

    2015-01-01

    Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010–2013). Beaked whale species detected include: Gervais’ (Mesoplodon europaeus), Cuvier’s (Ziphius cavirostris), Blainville’s (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf — BWG). For Gervais’ and Cuvier’s beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais’ beaked whales were present throughout the monitoring period, but Cuvier’s beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais’ and Cuvier’s beaked whales had a high density throughout the monitoring period. PMID:26559743

  6. Waveform Based Acoustic Emission Detection and Location of Matrix Cracking in Composites

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    1995-01-01

    The operation of damage mechanisms in a material or structure under load produces transient acoustic waves. These acoustic waves are known as acoustic emission (AE). In composites they can be caused by a variety of sources including matrix cracking, fiber breakage, and delamination. AE signals can be detected and analyzed to determine the location of the acoustic source by triangulation. Attempts are also made to analyze the signals to determine the type and severity of the damage mechanism. AE monitoring has been widely used for both laboratory studies of materials, and for testing the integrity of structures in the field. In this work, an advanced, waveform based AE system was used in a study of transverse matrix cracking in cross-ply graphite/epoxy laminates. This AE system featured broad band, high fidelity sensors, and high capture rate digital acquisition and storage of acoustic signals. In addition, analysis techniques based on plate wave propagation models were employed. These features provided superior source location and noise rejection capabilities.

  7. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    range acoustic systems, whether for acoustic surveillance, communication, or remote sensing of the ocean interior . The data from the NPAL network, and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water... Acoustics PI James A. Mercer Applied Physics Laboratory, University of Washington 1013 NE 40th Street Seattle, WA 98105 phone: (206) 543-1361 fax

  8. Acoustic emission monitoring of recycled aggregate concrete under bending

    NASA Astrophysics Data System (ADS)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  9. Acoustical experiment of yogurt fermentation process.

    PubMed

    Ogasawara, H; Mizutani, K; Ohbuchi, T; Nakamura, T

    2006-12-22

    One of the important factors through food manufacturing is hygienic management. Thus, food manufactures prove their hygienic activities by taking certifications like a Hazard Analysis and Critical Control Point (HACCP). This concept also applies to food monitoring. Acoustical measurements have advantage for other measurement in food monitoring because they make it possible to measure with noncontact and nondestructive. We tried to monitor lactic fermentation of yogurt by a probing sensor using a pair of acoustic transducers. Temperature of the solution changes by the reaction heat of fermentation. Consequently the sound velocity propagated through the solution also changes depending on the temperature. At the same time, the solution change its phase from liquid to gel. The transducers usage in the solution indicates the change of the temperature as the change of the phase difference between two transducers. The acoustic method has advantages of nondestructive measurement that reduces contamination of food product by measuring instrument. The sensor was inserted into milk with lactic acid bacterial stain of 19 degrees C and monitored phase retardation of propagated acoustic wave and its temperature with thermocouples in the mild. The monitoring result of fermentation from milk to Caspian Sea yogurt by the acoustic transducers with the frequency of 3.7 MHz started to show gradient change in temperature caused by reaction heat of fermentation but stop the gradient change at the end although the temperature still change. The gradient change stopped its change because of phase change from liquid to gel. The present method will be able to measure indirectly by setting transducers outside of the measuring object. This noncontact sensing method will have great advantage of reduces risk of food contamination from measuring instrument because the measurement probes are set out of fermentation reactor or food containers. Our proposed method will contribute to the

  10. Observation of seafloor crustal movement using the seafloor acoustic ranging on Kumano-nada

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Fujimoto, H.

    2010-12-01

    Along the Nankai Trough, where the Philippine Sea plate subducts under southeastern Japan with a convergence rate of about 65 mm/yr, large interplate thrust earthquakes of magnitude 8 class have occurred repeatedly with recurrence intervals of 100-200 years. About 60 years have passed since the last earthquakes happened in 1944 and 1946. Therefore it is important to monitor the tectonic activities in the Nankai Trough. Since most of the source region of the earthquakes is located beneath the ocean, an observation system is necessary in the offshore source region. We developed a seafloor acoustic ranging system to continuously monitor the seafloor crustal movement. We aim to monitor the activity in the splay faults in the rupture area of the Tonankai earthquake in the Nankai subduction zone. Slips along the active splay faults may be an important mechanism that the elastic strain caused by relative plate motion. We carried out two experiments, a short-term (one day) and a long-term (four month) experiments, to estimate the repeatability of acoustic measurements of this system. We deployed four PXPs (precision acoustic transponders) with about 600 m (M2-S1 baseline) and 920 m (M2-S2 base line) spacing in the long-term experiment. The standard deviation in acoustic measurements was about 1 cm on each baseline. In September 2008 we carried out an observation to monitor an active splay faults on Kumano-Nada prism slope. We deployed three PXPs with about 925 m (M1-S2 baseline) and 725 m (M1-S2 base line) spacing at the depth of some 2880 m. We recovered them in August 2010 to get data of acoustic measurements for 6 month and pressure measurements for 18 month. The round trip travel time shows a variation with peak-to-peak amplitude of about 1msec. We preliminarily collected the time series of round trip travel times using sound speed, which was estimated from measured temperature and pressure, and attitude data. We discuss the result of a variation of distance.

  11. Surface acoustic wave probe implant for predicting epileptic seizures

    DOEpatents

    Gopalsami, Nachappa [Naperville, IL; Kulikov, Stanislav [Sarov, RU; Osorio, Ivan [Leawood, KS; Raptis, Apostolos C [Downers Grove, IL

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  12. A plan for the North American Bat Monitoring Program (NABat)

    USGS Publications Warehouse

    Loeb, Susan C.; Rodhouse, Thomas J.; Ellison, Laura E.; Lausen, Cori L.; Reichard, Jonathan D.; Irvine, Kathryn M.; Ingersoll, Thomas E.; Coleman, Jeremy; Thogmartin, Wayne E.; Sauer, John R.; Francis, Charles M.; Bayless, Mylea L.; Stanley, Thomas R.; Johnson, Douglas H.

    2015-01-01

    The purpose of the North American Bat Monitoring Program (NABat) is to create a continent-wide program to monitor bats at local to rangewide scales that will provide reliable data to promote effective conservation decisionmaking and the long-term viability of bat populations across the continent. This is an international, multiagency program. Four approaches will be used to gather monitoring data to assess changes in bat distributions and abundances: winter hibernaculum counts, maternity colony counts, mobile acoustic surveys along road transects, and acoustic surveys at stationary points. These monitoring approaches are described along with methods for identifying species recorded by acoustic detectors. Other chapters describe the sampling design, the database management system (Bat Population Database), and statistical approaches that can be used to analyze data collected through this program.

  13. Comment on "Acoustical observation of bubble oscillations induced by bubble popping"

    NASA Astrophysics Data System (ADS)

    Blanc, É.; Ollivier, F.; Antkowiak, A.; Wunenburger, R.

    2015-03-01

    We have reproduced the experiment of acoustic monitoring of spontaneous popping of single soap bubbles standing in air reported by Ding et al. [2aa Phys. Rev. E 75, 041601 (2007), 10.1103/PhysRevE.75.041601]. By using a single microphone and two different signal acquisition systems recording in parallel the signal at the microphone output, among them the system used by Ding et al., we have experimentally evidenced that the acoustic precursors of bubble popping events detected by Ding et al. actually result from an acausal artifact of the signal processing performed by their acquisition system which lies outside of its prescribed working frequency range. No acoustic precursor of popping could be evidenced with the microphone used in these experiments, whose sensitivity is 1 V Pa-1 and frequency range is 500 Hz-100 kHz.

  14. Real Time System for Practical Acoustic Monitoring of Global Ocean Temperature. Volume 3

    DTIC Science & Technology

    1994-06-30

    signal processing software to the SSAR. This software performs Doppler correction , circulating sums, matched filtering and pulse compression, estimation...Doppler correction , circulating sums, matched filtering and pulse compression, estimation of multipath arrival angle, and peak- picking. At the... geometrica , sound speed, and focuing region sAles to the acoustic wavelengths Our work on this problem is based on an oceanographic application. To

  15. An investigation of the use of transmission ultrasound to measure acoustic attenuation changes in thermal therapy.

    PubMed

    Parmar, Neeta; Kolios, Michael C

    2006-07-01

    The potential of using a commercial ultrasound transmission imaging system to quantitatively monitor tissue attenuation changes after thermal therapy was investigated. The ultrasound transmission imaging system used, the AcoustoCam (Imperium Inc., MD) allows ultrasonic images to be captured using principles similar to that of a CCD-type camera that collects light. Ultrasound energy is focused onto a piezoelectric array by an acoustic lens system, creating a gray scale acoustic image. In this work, the pixel values from the acoustic images were assigned acoustic attenuation values by imaging polyacrylamide phantoms of varying known attenuation. After the calibration procedure, data from heated polyacrylamide/bovine serum albumin (BSA) based tissue-mimicking (TM) phantoms and porcine livers were acquired. Samples were heated in water at temperatures of 35, 45, 55, 65, and 75 degrees C for 1 h. Regions of interest were chosen in the images and acoustic attenuation values before and after heating were compared. An increase in ultrasound attenuation was found in phantoms containing BSA and in porcine liver. In the presence of BSA, attenuation in the TM phantom increased by a factor of 1.5, while without BSA no significant changes were observed. The attenuation of the porcine liver increased by up to a factor of 2.4, consistent with previously reported studies. The study demonstrates the feasibility of using a quantitative ultrasound transmission imaging system for monitoring thermal therapy.

  16. Acoustic leak-detection system for railroad transportation security

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.

    2007-04-01

    Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.

  17. Strain and ground-motion monitoring at magmatic areas: ultra-long and ultra-dense networks using fibre optic sensing systems

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Reinsch, Thomas; Henninges, Jan; Blanck, Hanna; Ryberg, Trond

    2016-04-01

    The fibre optic distributed acoustic sensing technology (DAS) is a "new" sensing system for exploring earth crustal elastic properties and monitoring both strain and seismic waves with unprecedented acquisition characteristics. The DAS technology principle lies in sending successive and coherent pulses of light in an optical fibre and measuring the back-scattered light issued from elastic scattering at random defaults within the fibre. The read-out unit includes an interferometer, which measures light interference patterns continuously. The changes are related to the distance between such defaults and therefore the strain within the fibre can be detected. Along an optical fibre, DAS can be used to acquire acoustic signals with a high spatial (every meter over kilometres) and high temporal resolution (thousand of Hz). Fibre optic technologies were, up to now, mainly applied in perimeter surveillance applications and pipeline monitoring and in boreholes. Previous experiments in boreholes have shown that the DAS technology is well suited for probing subsurface elastic properties, showing new ways for cheaper VSP investigations of the Earth crust. Here, we demonstrate that a cable deployed at ground surface can also help in exploring subsurface properties at crustal scale and monitor earthquake activity in a volcanic environment. Within the framework of the EC funded project IMAGE, we observed a >15 km-long fibre optic cable at the surface connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fibre optic data to conventional seismic records from a dense seismic network deployed on Reykjanes. We show that we can probe and monitor earth

  18. Bubbles in an acoustic field: an overview.

    PubMed

    Ashokkumar, Muthupandian; Lee, Judy; Kentish, Sandra; Grieser, Franz

    2007-04-01

    Acoustic cavitation is the fundamental process responsible for the initiation of most of the sonochemical reactions in liquids. Acoustic cavitation originates from the interaction between sound waves and bubbles. In an acoustic field, bubbles can undergo growth by rectified diffusion, bubble-bubble coalescence, bubble dissolution or bubble collapse leading to the generation of primary radicals and other secondary chemical reactions. Surface active solutes have been used in association with a number of experimental techniques in order to isolate and understand these activities. A strobe technique has been used for monitoring the growth of a single bubble by rectified diffusion. Multibubble sonoluminescence has been used for monitoring the growth of the bubbles as well as coalescence between bubbles. The extent of bubble coalescence has also been monitored using a newly developed capillary technique. An overview of the various experimental results has been presented in order to highlight the complexities involved in acoustic cavitation processes, which on the other hand arise from a simple, mechanical interaction between sound waves and bubbles.

  19. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods.

    PubMed

    Strantza, Maria; Aggelis, Dimitrios G; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-10-21

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

  20. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  1. Clinical applications of commercially available video recording and monitoring systems: inexpensive, high-quality video recording and monitoring systems for endoscopy and microsurgery.

    PubMed

    Tsunoda, Koichi; Tsunoda, Atsunobu; Ishimoto, ShinnIchi; Kimura, Satoko

    2006-01-01

    The exclusive charge-coupled device (CCD) camera system for the endoscope and electronic fiberscopes are in widespread use. However, both are usually stationary in an office or examination room, and a wheeled cart is needed for mobility. The total costs of the CCD camera system and electronic fiberscopy system are at least US Dollars 10,000 and US Dollars 30,000, respectively. Recently, the performance of audio and visual instruments has improved dramatically, with a concomitant reduction in their cost. Commercially available CCD video cameras with small monitors have become common. They provide excellent image quality and are much smaller and less expensive than previous models. The authors have developed adaptors for the popular mini-digital video (mini-DV) camera. The camera also provides video and acoustic output signals; therefore, the endoscopic images can be viewed on a large monitor simultaneously. The new system (a mini-DV video camera and an adaptor) costs only US Dollars 1,000. Therefore, the system is both cost-effective and useful for the outpatient clinic or casualty setting, or on house calls for the purpose of patient education. In the future, the authors plan to introduce the clinical application of a high-vision camera and an infrared camera as medical instruments for clinical and research situations.

  2. A Mobile Acoustic Subsurface Sensing (MASS) System for Rapid Roadway Assessment

    PubMed Central

    Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J. Gregory; Wang, Ming L.

    2013-01-01

    Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test. PMID:23698266

  3. Estimating suspended sediment using acoustics in a fine-grained riverine system, Kickapoo Creek at Bloomington, Illinois

    USGS Publications Warehouse

    Manaster, Amanda D.; Domanski, Marian M.; Straub, Timothy D.; Boldt, Justin A.

    2016-08-18

    Acoustic technologies have the potential to be used as a surrogate for measuring suspended-sediment concentration (SSC). This potential was examined in a fine-grained (97-100 percent fines) riverine system in central Illinois by way of installation of an acoustic instrument. Acoustic data were collected continuously over the span of 5.5 years. Acoustic parameters were regressed against SSC data to determine the accuracy of using acoustic technology as a surrogate for measuring SSC in a fine-grained riverine system. The resulting regressions for SSC and sediment acoustic parameters had coefficients of determination ranging from 0.75 to 0.97 for various events and configurations. The overall Nash-Sutcliffe model-fit efficiency was 0.95 for the 132 observed and predicted SSC values determined using the sediment acoustic parameter regressions. The study of using acoustic technologies as a surrogate for measuring SSC in fine-grained riverine systems is ongoing. The results at this site are promising in the realm of surrogate technology.

  4. Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion

    NASA Astrophysics Data System (ADS)

    Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.

    2011-04-01

    The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.

  5. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    PubMed Central

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  6. Acoustically Driven Fluid and Particle Motion in Confined and Leaky Systems

    NASA Astrophysics Data System (ADS)

    Barnkob, Rune; Nama, Nitesh; Ren, Liqiang; Huang, Tony Jun; Costanzo, Francesco; Kähler, Christian J.

    2018-01-01

    The acoustic motion of fluids and particles in confined and acoustically leaky systems is receiving increasing attention for its use in medicine and biotechnology. A number of contradicting physical and numerical models currently exist, but their validity is uncertain due to the unavailability of hard-to-access experimental data for validation. We provide experimental benchmarking data by measuring 3D particle trajectories and demonstrate that the particle trajectories can be described numerically without any fitting parameter by a reduced-fluid model with leaky impedance-wall conditions. The results reveal the hitherto unknown existence of a pseudo-standing wave that drives the acoustic streaming as well as the acoustic radiation force on suspended particles.

  7. Examination on the use of acoustic emission for monitoring metal forging process: A study using simulation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, W.M.; Irwin, R.D.; Malas, J.C. III

    The aim of this study is to determine the feasibility of using acoustic emission as a monitoring technique for metal forging operations. From the sensor development paradigm proposed by McClean et al. the most likely approach to determining feasibility for application is through signal recognition. For this reason, signature prediction and analysis was chosen to determine the suitability for forging applications.

  8. Acoustic and Thermal Testing of an Integrated Multilayer Insulation and Broad Area Cooling Shield System

    NASA Technical Reports Server (NTRS)

    Wood, Jessica J.; Foster, Lee W.

    2013-01-01

    A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.

  9. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.

    PubMed

    Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli

    2017-05-01

    A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.

  10. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.

  11. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, A.M.; Osbourn, G.C.

    1998-07-28

    The present invention teaches systems and methods for verifying or recognizing a person`s identity based on measurements of the acoustic response of the individual`s ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications. 5 figs.

  12. Marine bioacoustics and technology: The new world of marine acoustic ecology

    NASA Astrophysics Data System (ADS)

    Hastings, Mardi C.; Au, Whitlow W. L.

    2012-11-01

    Marine animals use sound for communication, navigation, predator avoidance, and prey detection. Thus the rise in acoustic energy associated with increasing human activity in the ocean has potential to impact the lives of marine animals. Thirty years ago marine bioacoustics primarily focused on evaluating effects of human-generated sound on hearing and behavior by testing captive animals and visually observing wild animals. Since that time rapidly changing electronic and computing technologies have yielded three tools that revolutionized how bioacousticians study marine animals. These tools are (1) portable systems for measuring electrophysiological auditory evoked potentials, (2) miniaturized tags equipped with positioning sensors and acoustic recording devices for continuous short-term acoustical observation rather than intermittent visual observation, and (3) passive acoustic monitoring (PAM) systems for remote long-term acoustic observations at specific locations. The beauty of these breakthroughs is their direct applicability to wild animals in natural habitats rather than only to animals held in captivity. Hearing capabilities of many wild species including polar bears, beaked whales, and reef fishes have now been assessed by measuring their auditory evoked potentials. Miniaturized acoustic tags temporarily attached to an animal to record its movements and acoustic environment have revealed the acoustic foraging behavior of sperm and beaked whales. Now tags are being adapted to fishes in effort to understand their behavior in the presence of noise. Moving and static PAM systems automatically detect and characterize biological and physical features of an ocean area without adding any acoustic energy to the environment. PAM is becoming a powerful technique for understanding and managing marine habitats. This paper will review the influence of these transformative tools on the knowledge base of marine bioacoustics and elucidation of relationships between marine

  13. Acoustical Method of Whole-Body Hydration Status Monitoring.

    PubMed

    Sarvazyan, A P; Tsyuryupa, S N; Calhoun, M; Utter, A

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  14. Acoustical method of whole-body hydration status monitoring

    NASA Astrophysics Data System (ADS)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  15. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  16. Acoustic, elastic and poroelastic simulations of CO2 sequestration crosswell monitoring based on spectral-element and adjoint methods

    NASA Astrophysics Data System (ADS)

    Morency, Christina; Luo, Yang; Tromp, Jeroen

    2011-05-01

    The key issues in CO2 sequestration involve accurate monitoring, from the injection stage to the prediction and verification of CO2 movement over time, for environmental considerations. '4-D seismics' is a natural non-intrusive monitoring technique which involves 3-D time-lapse seismic surveys. Successful monitoring of CO2 movement requires a proper description of the physical properties of a porous reservoir. We investigate the importance of poroelasticity by contrasting poroelastic simulations with elastic and acoustic simulations. Discrepancies highlight a poroelastic signature that cannot be captured using an elastic or acoustic theory and that may play a role in accurately imaging and quantifying injected CO2. We focus on time-lapse crosswell imaging and model updating based on Fréchet derivatives, or finite-frequency sensitivity kernels, which define the sensitivity of an observable to the model parameters. We compare results of time-lapse migration imaging using acoustic, elastic (with and without the use of Gassmann's formulae) and poroelastic models. Our approach highlights the influence of using different physical theories for interpreting seismic data, and, more importantly, for extracting the CO2 signature from seismic waveforms. We further investigate the differences between imaging with the direct compressional wave, as is commonly done, versus using both direct compressional (P) and shear (S) waves. We conclude that, unlike direct P-wave traveltimes, a combination of direct P- and S-wave traveltimes constrains most parameters. Adding P- and S-wave amplitude information does not drastically improve parameter sensitivity, but it does improve spatial resolution of the injected CO2 zone. The main advantage of using a poroelastic theory lies in direct sensitivity to fluid properties. Simulations are performed using a spectral-element method, and finite-frequency sensitivity kernels are calculated using an adjoint method.

  17. Quasi-static acoustic tweezing thromboelastometry.

    PubMed

    Holt, R G; Luo, D; Gruver, N; Khismatullin, D B

    2017-07-01

    Essentials Blood coagulation measurement during contact with an artificial surface leads to unreliable data. Acoustic tweezing thromboelastometry is a novel non-contact method for coagulation monitoring. This method detects differences in the blood coagulation state within 10 min. Coagulation data were obtained using a much smaller sample volume (4 μL) than currently used. Background Thromboelastography is widely used as a tool to assess the coagulation status of critical care patients. It allows observation of changes in material properties of whole blood, beginning with early stages of clot formation and ending with clot lysis. However, the contact activation of the coagulation cascade at surfaces of thromboelastographic systems leads to inherent variability and unreliability in predicting bleeding or thrombosis risks. Objectives To develop acoustic tweezing thromboelastometry as a non-contact method for perioperative assessment of blood coagulation. Methods Acoustic tweezing is used to levitate microliter drops of biopolymer and human blood samples. By quasi-statically changing the acoustic pressure we control the sample drop location and deformation. Sample size, deformation and location are determined by digital imaging at each pressure. Results Simple Newtonian liquid solutions maintain a constant, reversible location vs. deformation curve. In contrast, the location/deformation curves for gelatin, alginate, whole blood and blood plasma uniquely change as the samples solidify. Increasing elasticity causes the sample to deform less, leading to steeper stress/strain curves. By extracting a linear regime slope, we show that whole blood or blood plasma exhibits a unique slope profile as it begins to clot. By exposing blood samples to pro- or antithrombotic agents, the slope profile changes, allowing detection of hyper- or hypocoagulable states. Conclusions We demonstrate that quasi-static acoustic tweezing can yield information about clotting onset, maturation

  18. Surface acoustic wave diffraction driven mechanisms in microfluidic systems.

    PubMed

    Fakhfouri, Armaghan; Devendran, Citsabehsan; Albrecht, Thomas; Collins, David J; Winkler, Andreas; Schmidt, Hagen; Neild, Adrian

    2018-06-26

    Acoustic forces arising from high-frequency surface acoustic waves (SAW) underpin an exciting range of promising techniques for non-contact manipulation of fluid and objects at micron scale. Despite increasing significance of SAW-driven technologies in microfluidics, the understanding of a broad range of phenomena occurring within an individual SAW system is limited. Acoustic effects including streaming and radiation force fields are often assumed to result from wave propagation in a simple planar fashion. The propagation patterns of a single SAW emanating from a finite-width source, however, cause a far richer range of physical effects. In this work, we seek a better understanding of the various effects arising from the incidence of a finite-width SAW beam propagating into a quiescent fluid. Through numerical and experimental verification, we present five distinct mechanisms within an individual system. These cause fluid swirling in two orthogonal planes, and particle trapping in two directions, as well as migration of particles in the direction of wave propagation. For a range of IDT aperture and channel dimensions, the relative importance of these mechanisms is evaluated.

  19. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    PubMed Central

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558

  20. Chicago Monostatic Acoustic Vortex Sensing System : Volume I. Data Collection and Reduction.

    DOT National Transportation Integrated Search

    1979-10-01

    A Monostatic Acoustic Vortex Sensing System (MAVSS) was installed at Chicago's O'Hare International Airport to measure the strength and decay of aircraft wake vortices from landing aircraft. The MAVSS consists of an array of acoustic antennas which m...

  1. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd, Shukri; Holford, Karen M.; Pullin, Rhys

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup usingmore » H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.« less

  2. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™.

    PubMed

    Klinck, Holger; Mellinger, David K; Klinck, Karolin; Bogue, Neil M; Luby, James C; Jump, William A; Shilling, Geoffrey B; Litchendorf, Trina; Wood, Angela S; Schorr, Gregory S; Baird, Robin W

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle--a glider--equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  3. Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™

    PubMed Central

    Klinck, Holger; Mellinger, David K.; Klinck, Karolin; Bogue, Neil M.; Luby, James C.; Jump, William A.; Shilling, Geoffrey B.; Litchendorf, Trina; Wood, Angela S.; Schorr, Gregory S.; Baird, Robin W.

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  4. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  5. Acoustic relaxation of the hydro-mechanical system under critical expiration of swirl flow

    NASA Astrophysics Data System (ADS)

    Pozdeeva, I. G.; Mitrofanova, O. V.

    2018-03-01

    The mechanism of generation of acoustic oscillations associated with the formation of stable vortex structures in the moving fluid was considered for the impact swirl flow. Experimental studies were carried out to determine the relationship between large-scale vortex motion and acoustic effects in hydro-mechanical systems. It was shown that a sharp change of the amplitude-frequency characteristic of the acoustic oscillations of hydro-mechanical system corresponds to the maximal flow rate of the swirl flow. The established connection between the generation of sound waves and geometrical and regime parameters of the hydro-mechanical system formed the basis for the developed method of diagnostics of the processes of vortex formation.

  6. Lattice Boltzmann modeling to explain volcano acoustic source.

    PubMed

    Brogi, Federico; Ripepe, Maurizio; Bonadonna, Costanza

    2018-06-22

    Acoustic pressure is largely used to monitor explosive activity at volcanoes and has become one of the most promising technique to monitor volcanoes also at large scale. However, no clear relation between the fluid dynamics of explosive eruptions and the associated acoustic signals has yet been defined. Linear acoustic has been applied to derive source parameters in the case of strong explosive eruptions which are well-known to be driven by large overpressure of the magmatic fluids. Asymmetric acoustic waveforms are generally considered as the evidence for supersonic explosive dynamics also for small explosive regimes. We have used Lattice-Boltzmann modeling of the eruptive fluid dynamics to analyse the acoustic wavefield produced by different flow regimes. We demonstrate that acoustic waveform well reproduces the flow dynamics of a subsonic fluid injection related to discrete explosive events. Different volumetric flow rate, at low-Mach regimes, can explain both the observed symmetric and asymmetric waveform. Hence, asymmetric waveforms are not necessarily related to the shock/supersonic fluid dynamics of the source. As a result, we highlight an ambiguity in the general interpretation of volcano acoustic signals for the retrieval of key eruption source parameters, necessary for a reliable volcanic hazard assessment.

  7. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    NASA Astrophysics Data System (ADS)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  8. Acoustic emission based damage localization in composites structures using Bayesian identification

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Eaton, M. J.; Al-Jumali, S.; Sikdar, S.; Pullin, R.

    2017-05-01

    Acoustic emission based damage detection in composite structures is based on detection of ultra high frequency packets of acoustic waves emitted from damage sources (such as fibre breakage, fatigue fracture, amongst others) with a network of distributed sensors. This non-destructive monitoring scheme requires solving an inverse problem where the measured signals are linked back to the location of the source. This in turn enables rapid deployment of mitigative measures. The presence of significant amount of uncertainty associated with the operating conditions and measurements makes the problem of damage identification quite challenging. The uncertainties stem from the fact that the measured signals are affected by the irregular geometries, manufacturing imprecision, imperfect boundary conditions, existing damages/structural degradation, amongst others. This work aims to tackle these uncertainties within a framework of automated probabilistic damage detection. The method trains a probabilistic model of the parametrized input and output model of the acoustic emission system with experimental data to give probabilistic descriptors of damage locations. A response surface modelling the acoustic emission as a function of parametrized damage signals collected from sensors would be calibrated with a training dataset using Bayesian inference. This is used to deduce damage locations in the online monitoring phase. During online monitoring, the spatially correlated time data is utilized in conjunction with the calibrated acoustic emissions model to infer the probabilistic description of the acoustic emission source within a hierarchical Bayesian inference framework. The methodology is tested on a composite structure consisting of carbon fibre panel with stiffeners and damage source behaviour has been experimentally simulated using standard H-N sources. The methodology presented in this study would be applicable in the current form to structural damage detection under varying

  9. Origin of acoustic emission produced during single point machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R,.; Carpenter, S.H.; Armentrout, D.L.

    1991-01-01

    Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emissionmore » produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent. 21 refs., 19 figs., 4 tabs.« less

  10. Origin of acoustic emission produced during single point machining

    NASA Astrophysics Data System (ADS)

    Heiple, C. R.; Carpenter, S. H.; Armentrout, D. L.

    1991-05-01

    Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emission produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent.

  11. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C [Livermore, CA; Holzrichter, John F [Berkeley, CA; Ng, Lawrence C [Danville, CA

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  12. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  13. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  14. Tumacacori National Historic Park : acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2014-11-01

    During September 2010, Volpe Center personnel deployed two acoustic measurement sites at Tumaccori National Historical Park (TUMA) for approximately 30 days each. The baseline data collected during this period will help park managers and planners e...

  15. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  16. Performance Evaluation of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo-Fuente, Alberto; del Val, Lara; Jiménez, María I.; Villacorta, Juan J.

    2011-01-01

    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications. PMID:22163708

  17. Pecos National Historic Park : acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2013-03-01

    During the summer of 2010 (August September), the Volpe Center collected baseline acoustical data at Pecos National Historical Park (PECO) at four sites deployed for approximately 30 days each. The baseline data collected during this period will ...

  18. Wright Brothers National Memorial : acoustical monitoring 2011

    DOT National Transportation Integrated Search

    2014-11-01

    During the winter of 2011(September - November) baseline acoustical data were collected at Wright Brothers National Memorial (WRBR) at two sites deployed for approximately 30 days each. The baseline data collected during these periods will help park ...

  19. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    PubMed Central

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  20. Testing the effectiveness of automated acoustic sensors for monitoring vocal activity of Marbled Murrelets Brachyramphus marmoratus

    USGS Publications Warehouse

    Cragg, Jenna L.; Burger, Alan E.; Piatt, John F.

    2015-01-01

    Cryptic nest sites and secretive breeding behavior make population estimates and monitoring of Marbled Murrelets Brachyramphus marmoratus difficult and expensive. Standard audio-visual and radar protocols have been refined but require intensive field time by trained personnel. We examined the detection range of automated sound recorders (Song Meters; Wildlife Acoustics Inc.) and the reliability of automated recognition models (“recognizers”) for identifying and quantifying Marbled Murrelet vocalizations during the 2011 and 2012 breeding seasons at Kodiak Island, Alaska. The detection range of murrelet calls by Song Meters was estimated to be 60 m. Recognizers detected 20 632 murrelet calls (keer and keheer) from a sample of 268 h of recordings, yielding 5 870 call series, which compared favorably with human scanning of spectrograms (on average detecting 95% of the number of call series identified by a human observer, but not necessarily the same call series). The false-negative rate (percentage of murrelet call series that the recognizers failed to detect) was 32%, mainly involving weak calls and short call series. False-positives (other sounds included by recognizers as murrelet calls) were primarily due to complex songs of other bird species, wind and rain. False-positives were lower in forest nesting habitat (48%) and highest in shrubby vegetation where calls of other birds were common (97%–99%). Acoustic recorders tracked spatial and seasonal trends in vocal activity, with higher call detections in high-quality forested habitat and during late July/early August. Automated acoustic monitoring of Marbled Murrelet calls could provide cost-effective, valuable information for assessing habitat use and temporal and spatial trends in nesting activity; reliability is dependent on careful placement of sensors to minimize false-positives and on prudent application of digital recognizers with visual checking of spectrograms.

  1. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  2. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    PubMed

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-07

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  3. Seasonal migrations of North Atlantic minke whales: novel insights from large-scale passive acoustic monitoring networks.

    PubMed

    Risch, Denise; Castellote, Manuel; Clark, Christopher W; Davis, Genevieve E; Dugan, Peter J; Hodge, Lynne Ew; Kumar, Anurag; Lucke, Klaus; Mellinger, David K; Nieukirk, Sharon L; Popescu, Cristian Marian; Ramp, Christian; Read, Andrew J; Rice, Aaron N; Silva, Monica A; Siebert, Ursula; Stafford, Kathleen M; Verdaat, Hans; Van Parijs, Sofie M

    2014-01-01

    Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become available to explore migration patterns and identify critical habitats of these species. North Atlantic minke whales (Balaenoptera acutorostrata) perform seasonal migrations between high latitude summer feeding and low latitude winter breeding grounds. While the distribution and abundance of the species has been studied across their summer range, data on migration and winter habitat are virtually missing. Acoustic recordings, from 16 different sites from across the North Atlantic, were analyzed to examine the seasonal and geographic variation in minke whale pulse train occurrence, infer information about migration routes and timing, and to identify possible winter habitats. Acoustic detections show that minke whales leave their winter grounds south of 30° N from March through early April. On their southward migration in autumn, minke whales leave waters north of 40° N from mid-October through early November. In the western North Atlantic spring migrants appear to track the warmer waters of the Gulf Stream along the continental shelf, while whales travel farther offshore in autumn. Abundant detections were found off the southeastern US and the Caribbean during winter. Minke whale pulse trains showed evidence of geographic variation, with longer pulse trains recorded south of 40° N. Very few pulse trains were recorded during summer in any of the datasets. This study highlights the feasibility of using acoustic monitoring networks to explore migration patterns of pelagic marine mammals. Results confirm the presence of minke whales off the southeastern US and the Caribbean during winter months. The absence of pulse train detections during summer suggests either that minke whales switch their vocal behaviour at this time of year, are absent from available

  4. Fort Davis National Historic Site : acoustical monitoring

    DOT National Transportation Integrated Search

    2013-06-01

    During the summer of 2010 (September - October 2010), the Volpe Center collected baseline acoustical data at Fort Davis National Historic Site (FODA)at two sites deployed for approximately 30 days each. The baseline data collected during this period ...

  5. Diversity of acoustic tracheal system and its role for directional hearing in crickets

    PubMed Central

    2013-01-01

    Background Sound localization in small insects can be a challenging task due to physical constraints in deriving sufficiently large interaural intensity differences (IIDs) between both ears. In crickets, sound source localization is achieved by a complex type of pressure difference receiver consisting of four potential sound inputs. Sound acts on the external side of two tympana but additionally reaches the internal tympanal surface via two external sound entrances. Conduction of internal sound is realized by the anatomical arrangement of connecting trachea. A key structure is a trachea coupling both ears which is characterized by an enlarged part in its midline (i.e., the acoustic vesicle) accompanied with a thin membrane (septum). This facilitates directional sensitivity despite an unfavorable relationship between wavelength of sound and body size. Here we studied the morphological differences of the acoustic tracheal system in 40 cricket species (Gryllidae, Mogoplistidae) and species of outgroup taxa (Gryllotalpidae, Rhaphidophoridae, Gryllacrididae) of the suborder Ensifera comprising hearing and non hearing species. Results We found a surprisingly high variation of acoustic tracheal systems and almost all investigated species using intraspecific acoustic communication were characterized by an acoustic vesicle associated with a medial septum. The relative size of the acoustic vesicle - a structure most crucial for deriving high IIDs - implies an important role for sound localization. Most remarkable in this respect was the size difference of the acoustic vesicle between species; those with a more unfavorable ratio of body size to sound wavelength tend to exhibit a larger acoustic vesicle. On the other hand, secondary loss of acoustic signaling was nearly exclusively associated with the absence of both acoustic vesicle and septum. Conclusion The high diversity of acoustic tracheal morphology observed between species might reflect different steps in the evolution

  6. Acoustic system for material transport

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E. H.; Wang, T. G.; Elleman, D. D.; Jacobi, N. (Inventor)

    1983-01-01

    An object within a chamber is acoustically moved by applying wavelengths of different modes to the chamber to move the object between pressure wells formed by the modes. In one system, the object is placed in one end of the chamber while a resonant mode, applied along the length of the chamber, produces a pressure well at the location. The frequency is then switched to a second mode that produces a pressure well at the center of the chamber, to draw the object. When the object reaches the second pressure well and is still traveling towards the second end of the chamber, the acoustic frequency is again shifted to a third mode (which may equal the first model) that has a pressure well in the second end portion of the chamber, to draw the object. A heat source may be located near the second end of the chamber to heat the sample, and after the sample is heated it can be cooled by moving it in a corresponding manner back to the first end of the chamber. The transducers for levitating and moving the object may be all located at the cool first end of the chamber.

  7. Applications of acoustics in insect pest management

    USDA-ARS?s Scientific Manuscript database

    Acoustic technology has been applied for many years in studies of insect communication and in the monitoring of calling-insect population levels, geographic distributions, and diversity, as well as in the detection of cryptic insects in soil, wood, container crops, and stored products. Acoustic devi...

  8. Acoustic containerless experiment system: A non-contact surface tension measurement

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Wang, T. G.; Barmatz, M.

    1988-01-01

    The Acoustic Containerless Experiment System (ACES) was flown on STS 41-B in February 1984 and was scheduled to be reflown in 1986. The primary experiment that was to be conducted with the ACES module was the containerless melting and processing of a fluoride glass sample. A second experiment that was to be conducted was the verification of a non-contact surface tension measurement technique using the molten glass sample. The ACES module consisted of a three-axis acoustic positioning module that was inside an electric furnace capable of heating the system above the melting temperature of the sample. The acoustic module is able to hold the sample with acoustic forces in the center of the chamber and, in addition, has the capability of applying a modulating force on the sample along one axis of the chamber so that the molten sample or liquid drop could be driven into one of its normal oscillation modes. The acoustic module could also be adjusted so that it could place a torque on the molten drop and cause the drop to rotate. In the ACES, a modulating frequency was applied to the drop and swept through a range of frequencies that would include the n = 2 mode. A maximum amplitude of the drop oscillation would indicate when resonance was reached and from that data the surface tension could be calculated. For large viscosity samples, a second technique for measuring surface tension was developed. The results of the ACES experiment and some of the problems encountered during the actual flight of the experiment will be discussed.

  9. Walnut Canyon National Monument : Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-06-01

    During the summer of 2010 (July - August), the Volpe Center collected baseline acoustical data at Walnut Canyon National Monument (WACA) at a site deployed for approximately 30 days. The baseline data collected during this period will help park manag...

  10. Big Bend National Park: Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-06-01

    During the summer of 2010 (September October 2010), the Volpe Center collected baseline acoustical data at Big Bend National Park (BIBE) at four sites deployed for approximately 30 days each. The baseline data collected during this period will he...

  11. Montezuma Castle National Monument : acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2013-03-01

    During the summer of 2010 (July-August), the Volpe Center collected baseline acoustical data at Montezuma Castle National Monument (MOCA) at two sites deployed for approximately 30 days each. The baseline data collected during this period will help p...

  12. MUG-OBS - Multiparameter Geophysical Ocean Bottom System : a new instrumental approach to monitor earthquakes.

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Yegikyan, M.; Charvis, P.; Verfaillie, R.; Philippe, O.

    2015-12-01

    There are several attempts to monitor real time seismic activity, using regional scale wired nodes, such as Neptune in Canada and in the U.S, Antares in France or DONET in Japan.On another hand there are also initiatives in deploying repeatedly OBS array like during the amphibious Cascadia Initiative (four 1-year deployments), the Japanese Pacific Array (broadband OBSs "ocean-bottom broadband dispersion survey" with 2-years autonomy), the Obsismer program in the French Lesser Antilles (eight 6-months deployments) and the Osisec program in Ecuador (four 6-months deployments). These OBSs are autonomous, they are self-recovered or recovered using an ROV. These systems are costly including ship time, and require to recover the OBS before to start working on data.Among the most recent alternative we developed a 3-years autonomy OBS equipped with a Nanometrics Trillium 120 s, a triaxial accelerometer, a differential, an absolute pressure gauge, and a hydrophone. MUG-OBS is a free falling instrument rated down to 6000 m. The installation of the sensor is monitored by acoustic commands from the surface and a health bulletin with data checking is recovered by acoustic during the installation. The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a seismic crisis) utilizing one of the 6 data-shuttles released from the surface by acoustic command using a one day fast cruise boat of opportunity. Since sensors stayed at the same location for 3 years (when an OBS is redeployed on the same site, it will not land in the same place), it is a perfect tool to monitor slow seismic events, background seismic activity and aftershock distribution. Clock, drift measurement and GPS localization is automatic when the shuttle reaches the surface. A new version is being developed; for remote areas, shuttles released automatically and a seismic events bulletin is transmitted. Selected data can be recovered by two- way Iridium

  13. Evaluating iPhone recordings for acoustic voice assessment.

    PubMed

    Lin, Emily; Hornibrook, Jeremy; Ormond, Tika

    2012-01-01

    This study examined the viability of using iPhone recordings for acoustic measurements of voice quality. Acoustic measures were compared between voice signals simultaneously recorded from 11 normal speakers (6 females and 5 males) through an iPhone (model A1303, Apple, USA) and a comparison recording system. Comparisons were also conducted between the pre- and post-operative voices recorded from 10 voice patients (4 females and 6 males) through the iPhone. Participants aged between 27 and 79 years. Measures from iPhone and comparison signals were found to be highly correlated. Findings of the effects of vowel type on the selected measures were consistent between the two recording systems and congruent with previous findings. Analysis of the patient data revealed that a selection of acoustic measures, such as vowel space area and voice perturbation measures, consistently demonstrated a positive change following phonosurgery. The present findings indicated that the iPhone device tested was useful for tracking voice changes for clinical management. Preliminary findings regarding factors such as gender and type of pathology suggest that intra-subject, instead of norm-referenced, comparisons of acoustic measures would be more useful in monitoring the progression of a voice disorder or tracking the treatment effect. Copyright © 2012 S. Karger AG, Basel.

  14. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  15. Acoustic Design of Naval Structures

    DTIC Science & Technology

    2005-12-01

    Ship Signatures Department Research and Development Report NSWCCD-70--TR-2005/149 December 2005 ACOUSTIC DESIGN OF NAVAL STRUCTURES by: S. Nikiforov...NSWCCD-70--TR–2005/149 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Office of Naval Research ...approach, gained through his research experience on the acoustic characteristics of vibration and radiation of ship structures, sources of the main

  16. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  17. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  18. Investigation of methods for successful installation and operation of Juvenile Salmon Acoustic Telemetry System (JSATS) hydrophones in the Willamette River, Oregon, 2012

    USGS Publications Warehouse

    Rutz, Gary L.; Sholtis, Matthew D.; Adams, Noah S.; Beeman, John W.

    2014-01-01

    Acoustic telemetry equipment was installed at three sites in the Willamette River during October 2012 to test the effectiveness of using the Juvenile Salmon Acoustic Telemetry System to monitor the movements of fish in a high-flow, high-velocity riverine environment. Hydrophones installed on concrete blocks were placed on the bottom of the river, and data cables were run from the hydrophones to shore where they were attached to anchor points. Under relatively low-flow conditions (less than approximately 10,000 cubic feet per second) the monitoring system remained in place and could be used to detect tagged fish as they traveled downstream during their seaward migration. At river discharge over approximately 10,000 cubic feet per second, the hydrophones were damaged and cables were lost because of the large volume of woody debris in the river and the increase in water velocity. Damage at two of the sites was sufficient to prevent data collection. A limited amount of data was collected from the equipment at the third site. Site selection and deployment strategies were re-evaluated, and an alternate deployment methodology was designed for implementation in 2013.

  19. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  20. Surface Acoustic Waves to Drive Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-03-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  1. Surface Acoustic Waves to Drive Plant Transpiration.

    PubMed

    Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T

    2017-03-31

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  2. Aircraft IR/acoustic detection evaluation. Volume 2: Development of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.

    1992-01-01

    The design and performance of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft is described and specified. The acoustic detection system performance criteria will subsequently be used to determine target detection ranges for the subject contract. Although the defined system has never been built and demonstrated in the field, the design parameters were chosen on the basis of achievable technology and overall system practicality. Areas where additional information is needed to substantiate the design are identified.

  3. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 2. Three-Dimensional Tracking and Passage Outcomes

    PubMed Central

    Deng, Z. Daniel; Weiland, Mark A.; Fu, Tao; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Carlson, Thomas J.; Eppard, M. Brad

    2011-01-01

    In Part 1 of this paper, we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary sensing technology developed by the U.S. Army Corps of Engineers, Portland District (Oregon, USA) to meet the needs for monitoring the survival of juvenile salmonids through the hydroelectric facilities within the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m upstream from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.02 to 0.22 m, and root mean square errors ranged from 0.07 to 0.56 m at distances up to 100 m. For the 2008 case study at John Day Dam, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more “fish-friendly” hydroelectric facilities. PMID:22163919

  4. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 2. Three-Dimensional Tracking and Passage Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Weiland, Mark A.; Fu, Tao

    2011-05-26

    In Part 1 of this paper [1], we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary technology developed by the U.S. Army Corps of Engineers, Portland District, to meet the needs for monitoring the survival of juvenile salmonids through the 31 dams in the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) positionmore » of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.06 to 0.22 m, and root mean square errors ranged from 0.05 to 0.56 m at distances up to 100 m. For the case study at John Day Dam during 2008, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more “fish-friendly” hydroelectric facilities.« less

  5. DARPA counter-sniper program: Phase 1 Acoustic Systems Demonstration results

    NASA Astrophysics Data System (ADS)

    Carapezza, Edward M.; Law, David B.; Csanadi, Christina J.

    1997-02-01

    During October 1995 through May 1996, the Defense Advanced Research Projects Agency sponsored the development of prototype systems that exploit acoustic muzzle blast and ballistic shock wave signatures to accurately predict the location of gunfire events and associated shooter locations using either single or multiple volumetric arrays. The output of these acoustic systems is an estimate of the shooter location and a classification estimate of the caliber of the shooter's weapon. A portable display and control unit provides both graphical and alphanumeric shooter location related information integrated on a two- dimensional digital map of the defended area. The final Phase I Acoustic Systems Demonstration field tests were completed in May. These these tests were held at USMC Base Camp Pendleton Military Operations Urban Training (MOUT) facility. These tests were structured to provide challenging gunfire related scenarios with significant reverberation and multi-path conditions. Special shot geometries and false alarms were included in these tests to probe potential system vulnerabilities and to determine the performance and robustness of the systems. Five prototypes developed by U.S. companies and one Israeli developed prototype were tested. This analysis quantifies the spatial resolution estimation capability (azimuth, elevation and range) of these prototypes and describes their ability to accurately classify the type of bullet fired in a challenging urban- like setting.

  6. Using Nano-mechanics and Surface Acoustic Wave (SAW) for Disease Monitoring and Diagnostics at a Cellular Level in Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay

    A popular approach to monitoring diseases and their diagnosis is through biological, pathological or immunological characterization. However, at a cellular level progression of certain diseases manifests itself through mechanical effects as well. Here, we present a method which exploits localised flow; surface acoustic wave (SAW) induced acoustic streaming in a 9 μL droplet to characterize the adhesive properties of red blood cells (healthy, gluteraldehyde treated and malaria infected) in approximately 50 seconds. Our results show a 79% difference in cell mobilization between healthy malaria infected RBCs (and a 39% difference between healthy and treated ones), indicating that the method can serve as a platform for rapid clinical diagnosis; where separation of two or more different cell populations in a mixed solution is desirable. It can also act as a key biomarker for monitoring some diseases offering quantitative measures of disease progression and response to therapy.

  7. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  8. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1992-01-01

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them.

  9. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1992-05-26

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes there between. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.

  10. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1988-04-29

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.

  11. Development of an Autonomous Broadband Acoustic Scattering System for Remote Characterization of Zooplankton

    DTIC Science & Technology

    2008-01-01

    backscatter at a single narrowband frequency, and some AUVs carry single-frequency sidescan sonars (and this technology has been adapted for gliders), the...broadband acoustic scattering system by adapting existing technology that has been recently developed at WHOI for a monostatic Doppler sonar module...broadband acoustic backscattering system: 1) Modifications to the monostatic Doppler sonar module, recently developed at WHOI for turbulence studies

  12. Holding Fixture For Making Piezoelectric Acoustic Sensors

    NASA Technical Reports Server (NTRS)

    Hall, E. Thomas, Jr.

    1993-01-01

    Vacuum holding device provides quick and easy method of bonding together two strips of thin film with fast-setting epoxy adhesive. Fixture holds films in place by vacuum while adhesive applied, maintaining uniform bond line between films, providing internal connection port between nickel coats on films for center conductor of coaxial cable, and eliminating need to clean up excessive adhesive. Used to fabricate acoustic sensors for use in ambulatory fetal heart monitors. Potential for other heart-monitoring applications and other applications in which acoustic sensors used.

  13. Calibration of AN Acoustic Sensor (geophone) for Continuous Bedload Monitoring in Mountainous Streams

    NASA Astrophysics Data System (ADS)

    Tsakiris, A. G.; Papanicolaou, T.

    2010-12-01

    Measurement of bedload rates is a crucial component in the study of alluvial processes in mountainous streams. Stream restoration efforts, the validation of morphodynamic models and the calibration empirical transport formulae rely on accurate bedload transport measurements. Bedload measurements using traditional methods (e.g. samplers, traps) are time consuming, resource intensive and not always feasible, especially at higher flow conditions. These limitations could potentially be addressed by acoustic instruments, which may provide unattended, continuous bedload measurements even at higher flow conditions, provided that these instruments are properly calibrated. The objective of this study is to calibrate an acoustic instrument (geophone) for performing bedload measurements in a well-monitored laboratory environment at conditions corresponding to low flow regime in mountainous streams. The geophone was manufactured by ClampOn® and was attached to the bottom of a steel plate with dimensions 0.15x0.15 m. The geophone registers the energy of the acoustic signal produced by the movement of the bedload particles over the steel plate with time resolution of one second. The plate-sensor system was installed in an acrylic housing such that the steel plate top surface was at the same level with the surface of a flat porous bed consisting of unisize spheres with diameter 19.1 mm. Unisize spherical glass particles, 15.9 mm in diameter, were preplaced along a 2 m long section upstream of the sensor, and were entrained over the steel plate. In these experiments, the geophone records spanned the complete experiment duratio. Plan view video of the particle movement over the steel plate was recorded via an overhead camera, and was used to calculate the actual bedload rate over the steel plate. Synchronized analysis of this plan view video and the geophone time series revealed that the geophone detected 62% of the bedload particles passing over the steel plate, which triggered

  14. Methods And Systems For Using Reference Images In Acoustic Image Processing

    DOEpatents

    Moore, Thomas L.; Barter, Robert Henry

    2005-01-04

    A method and system of examining tissue are provided in which a field, including at least a portion of the tissue and one or more registration fiducials, is insonified. Scattered acoustic information, including both transmitted and reflected waves, is received from the field. A representation of the field, including both the tissue and the registration fiducials, is then derived from the received acoustic radiation.

  15. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  16. Remote Acoustic Emission Monitoring of Metal Ware and Welded Joints

    NASA Astrophysics Data System (ADS)

    Kapranov, Boris I.; Sutorikhin, Vladimir A.

    2017-10-01

    An unusual phenomenon was revealed in the metal-ultrasound interaction. Microwave sensor generates surface electric conductivity oscillations from exposure to elastic ultrasonic vibrations on regions of defects embracing micro-defects termed as “crack mouth.” They are known as the region of “acoustic activity,” method of Acoustic Emission (AE) method. It was established that the high phase-modulation coefficient of reflected field generates intentional Doppler radar signal with the following parameters: amplitude-1-5 nm, 6-30 dB adjusted to 70- 180 mm. This phenomenon is termed as “Gorbunov effect,” which is applied as a remote non-destructive testing method replacing ultrasonic flaw detection and acoustic emission methods.

  17. Evaluation of SHM System Produced by Additive Manufacturing via Acoustic Emission and Other NDT Methods

    PubMed Central

    Strantza, Maria; Aggelis, Dimitrios G.; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-01-01

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called “effective structural health monitoring” (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals. PMID:26506349

  18. Developing a structural health monitoring system for nuclear dry cask storage canister

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyi; Lin, Bin; Bao, Jingjing; Giurgiutiu, Victor; Knight, Travis; Lam, Poh-Sang; Yu, Lingyu

    2015-03-01

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health", and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.

  19. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    NASA Astrophysics Data System (ADS)

    Petrut, Teodor; Geay, Thomas; Gervaise, Cédric; Belleudy, Philippe; Zanker, Sebastien

    2018-01-01

    Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  20. [Digital acoustic burglar alarm system using infrared radio remote control].

    PubMed

    Wang, Song-De; Zhao, Yan; Yao, Li-Ping; Zhang, Shuan-Ji

    2009-03-01

    Using butt emission infrared sensors, radio receiving and sending modules, double function integrated circuit with code and code translation, LED etc, a digital acoustic burglar alarm system using infrared radio to realize remote control was designed. It uses infrared ray invisible to eyes, composing area of radio distance. Once people and objects shelter the infrared ray, a testing signal will be output by the tester, and the sender will be triggered to work. The radio coding signal that sender sent is received by the receiver, then processed by a serial circuit. The control signal is output to trigger the sounder to give out an alarm signal, and the operator will be cued to notice this variation. At the same time, the digital display will be lighted and the alarm place will be watched. Digital coding technology is used, and a number of sub alarm circuits can joint the main receiver, so a lot of places can be monitored. The whole system features a module structure, with the property of easy alignment, stable operation, debug free and so on. The system offers an alarm range reaching 1 000 meters in all directions, and can be widely used in family, shop, storehouse, orchard and so on.

  1. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires, light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  2. Prospects and Techniques for Eddy-Resolving Acoustic Tomography in the Eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Caruthers, J. W.; Nechaev, D.; Roman, D. A.; Sidorovskaia, N. A.; Ioup, G. E.; Ioup, J.; Yaremchuk, M.

    2007-05-01

    For several decades monitoring and modeling the dynamics and physical structure of the Gulf of Mexico have been major efforts undertaken by oceanographers of the United States and other American countries. There are very interesting physical oceanographic features in the Gulf, not the least of which are the Gulf Loop Current and the eddies it spawns. Satellite sensing of IR and altimeter imagery has been a major input to modeling those features. Such efforts are very important to the economy and well being of much of the United States and Mexico, including fisheries, mineral economies, hurricane strengths and paths in the summer, and severe snow storms in the eastern US in the winter. A major shortcoming of the present monitoring of the Gulf is the lack of subsurface input to the dynamic models of the Gulf. Acoustic tomography is a viable means of providing that missing input. Several universities have come together to investigate the prospects for establishing a Gulf Eddy Monitoring System (GEMS) for the deep eastern half of the Gulf using acoustic tomography. The group has conducted several acoustics experiments and propagation studies to determine the feasibility of long-range propagation in the eastern Gulf and the mitigation of adverse effects on marine mammal populations in that region under the Office of Naval Research project entitled the Littoral Acoustic Demonstration Center (LADC). The group has also convened an invited session for the 9th World Multiconference on Systemics, Cybernetics and Informatics (WMSCI 2005) Orlando, FL, July 2005. This paper discusses prospects for establishing the GEMS tomographic system, its technical characteristics, and its contributions to advancing the knowledge of the dynamics of the Gulf. This presentation will concentrate on the characteristics of a single-slice tomographic system, called GEMS Phase I, across the approaches to the DeSoto Canyon in the northeastern Gulf and its prospect for monitoring the movements of

  3. Complex monitoring and alert network for electromagnetic, infrasound, acoustic seismotectonic phenomena

    NASA Astrophysics Data System (ADS)

    -Emilian Toader, Victorin; Moldovan, Iren-Adelina; Constantin, Ionescu

    2014-05-01

    The Romanian seismicity recorded in 2013 three important events: the largest seismic "silence", the shortest sequence of two earthquakes greater than 4.8R in less than 14 days after the "Romanian National Institute for Earth Physics" (NIEP) developed a digital network, and a very high crustal activity in Galati area. We analyze the variations of the telluric currents and local magnetic field, variations of the atmospheric electrostatic field, infrasound, temperature, humidity, wind speed and direction, atmospheric pressure, variations in the earth crust with inclinometers and animal behavior. The general effect is the first high seismic energy discontinuity that could be a precursor factor. Since 1977 Romania did not register any important earthquake that would generate a sense of fear among the population. In parallel with the seismic network NIEP developed a magneto-telluric, bioseismic, VLF and acoustic network. A large frequency spectrum is covered for mechanical vibration, magnetic and electric field with ground and air sensors. Special software was designed for acquisition, analysis and real time alert using internet direct connection, web page, email and SMS. Many examples show the sensitivity of telluric current, infrasound, acoustic records (from air-ground), and the effect of tectonic stress on the magnetic field or ground deformation. The next update of the multidisciplinary monitoring network will include measurement of ionization, radon emission, sky color, solar radiation and extension of infrasound and VL/LF equipment. NOAA Space Weather satellites transmit solar activity magnetic field data, X ray flux, electron, and proton flux information useful for complex analysis.

  4. Optimization of real-time acoustical and mechanical monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for high focused ultrasound (HMIFU).

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2013-01-01

    Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95.

  5. Infrasound in the middle stratosphere measured with a free-flying acoustic array

    NASA Astrophysics Data System (ADS)

    Bowman, Daniel C.; Lees, Jonathan M.

    2015-11-01

    Infrasound recorded in the middle stratosphere suggests that the acoustic wavefield above the Earth's surface differs dramatically from the wavefield near the ground. In contrast to nearby surface stations, the balloon-borne infrasound array detected signals from turbulence, nonlinear ocean wave interactions, building ventilation systems, and other sources that have not been identified yet. Infrasound power spectra also bore little resemblance to spectra recorded on the ground at the same time. Thus, sensors on the Earth's surface likely capture a fraction of the true diversity of acoustic waves in the atmosphere. Future studies building upon this experiment may quantify the acoustic energy flux from the surface to the upper atmosphere, extend the capability of the International Monitoring System to detect nuclear explosions, and lay the observational groundwork for a recently proposed mission to detect earthquakes on Venus using free-flying microphones.

  6. Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strantza, Maria; Van Hemelrijck, Danny; Guillaume, Patrick

    We report that additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crackmore » growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. Finally, this is the first time that AE is applied in AM components under fatigue.« less

  7. Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components

    DOE PAGES

    Strantza, Maria; Van Hemelrijck, Danny; Guillaume, Patrick; ...

    2017-05-31

    We report that additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crackmore » growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. Finally, this is the first time that AE is applied in AM components under fatigue.« less

  8. Working Towards Deep-Ocean Temperature Monitoring by Studying the Acoustic Ambient Noise Field in the South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sambell, K.; Evers, L. G.; Snellen, M.

    2017-12-01

    Deriving the deep-ocean temperature is a challenge. In-situ observations and satellite observations are hardly applicable. However, knowledge about changes in the deep ocean temperature is important in relation to climate change. Oceans are filled with low-frequency sound waves created by sources such as underwater volcanoes, earthquakes and seismic surveys. The propagation of these sound waves is temperature dependent and therefore carries valuable information that can be used for temperature monitoring. This phenomenon is investigated by applying interferometry to hydroacoustic data measured in the South Pacific Ocean. The data is measured at hydrophone station H03 which is part of the International Monitoring System (IMS). This network consists of several stations around the world and is in place for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The station consists of two arrays located north and south of Robinson Crusoe Island separated by 50 km. Both arrays consist of three hydrophones with an intersensor distance of 2 km located at a depth of 1200 m. This depth is in range of the SOFAR channel. Hydroacoustic data measured at the south station is cross-correlated for the time period 2014-2017. The results are improved by applying one-bit normalization as a preprocessing step. Furthermore, beamforming is applied to the hydroacoustic data in order to characterize ambient noise sources around the array. This shows the presence of a continuous source at a backazimuth between 180 and 200 degrees throughout the whole time period, which is in agreement with the results obtained by cross-correlation. Studies on source strength show a seasonal dependence. This is an indication that the sound is related to acoustic activity in Antarctica. Results on this are supported by acoustic propagation modeling. The normal mode technique is used to study the sound propagation from possible source locations towards station H03.

  9. A New Intraoperative Real-time Monitoring System for Reconstructive Middle Ear Surgery: An Experimental and Clinical Feasibility Study.

    PubMed

    Zahnert, Thomas; Metasch, Marie-Luise; Seidler, Hannes; Bornitz, Matthias; Lasurashvili, Nicoloz; Neudert, Marcus

    2016-12-01

    Electromagnetical excitation of ossicular vibration is suitable for middle ear transmission measurements in the experimental and clinical setting. Thereby, it can be used as a real-time monitoring system for quality control in ossiculoplasty. Positioning and coupling of middle ear prosthesis are a precondition for good postoperative hearing results, but at the same time completely dependent upon the surgeon's subjective judgment during surgery. We evaluated an electromagnetically driven measurement system that enables for in vitro and in vivo transmission measurements and thus can be used as a real-time monitoring tool in ossicular reconstruction. For electromagnetical excitation a magnet was placed on the umbo of the malleus handle and driven by a magnetic field. The induced stapes displacement was picked up by laser Doppler vibrometry on the footplate. Measurements were performed on the intact ossicular chain in five cadaveric temporal bones and during five cochlear implant surgeries. Additionally, two ossiculoplasties were performed under real-time transmission feedback with the monitoring system. Experimentally, the equivalent sound pressure level of the electromagnetic excitation was about 70 to 80 dB which is 10 to 20 dB less than the acoustic stimulation. In the intraoperative setup the generated stapes displacements were about 5 to 20 dB smaller compared with the temporal bone experiments. Applied as real-time feedback system, an improvement in the middle ear transfer function of 4.5 dB in total and 20 dB in partial ossicular reconstruction were achieved. The electromagnetical excitation and measurement system is comparable to the gold standard with acoustical stimulation in both, the experimental setup in temporal bones as well as in vivo. The technical feasibility of the electromagnetical excitation method has been proven and it is shown that it can be used as a real-time monitoring system for ossiculoplasty in the operation room.

  10. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  11. Mobile acoustic transects miss rare bat species: implications of survey method and spatio-temporal sampling for monitoring bats

    PubMed Central

    Wallrichs, Megan A.; Ober, Holly K.; McCleery, Robert A.

    2017-01-01

    Due to increasing threats facing bats, long-term monitoring protocols are needed to inform conservation strategies. Effective monitoring should be easily repeatable while capturing spatio-temporal variation. Mobile acoustic driving transect surveys (‘mobile transects’) have been touted as a robust, cost-effective method to monitor bats; however, it is not clear how well mobile transects represent dynamic bat communities, especially when used as the sole survey approach. To assist biologists who must select a single survey method due to resource limitations, we assessed the effectiveness of three acoustic survey methods at detecting species richness in a vast protected area (Everglades National Park): (1) mobile transects, (2) stationary surveys that were strategically located by sources of open water and (3) stationary surveys that were replicated spatially across the landscape. We found that mobile transects underrepresented bat species richness compared to stationary surveys across all major vegetation communities and in two distinct seasons (dry/cool and wet/warm). Most critically, mobile transects failed to detect three rare bat species, one of which is federally endangered. Spatially replicated stationary surveys did not estimate higher species richness than strategically located stationary surveys, but increased the rate at which species were detected in one vegetation community. The survey strategy that detected maximum species richness and the highest mean nightly species richness with minimal effort was a strategically located stationary detector in each of two major vegetation communities during the wet/warm season. PMID:29134138

  12. Mobile acoustic transects miss rare bat species: implications of survey method and spatio-temporal sampling for monitoring bats.

    PubMed

    Braun de Torrez, Elizabeth C; Wallrichs, Megan A; Ober, Holly K; McCleery, Robert A

    2017-01-01

    Due to increasing threats facing bats, long-term monitoring protocols are needed to inform conservation strategies. Effective monitoring should be easily repeatable while capturing spatio-temporal variation. Mobile acoustic driving transect surveys ('mobile transects') have been touted as a robust, cost-effective method to monitor bats; however, it is not clear how well mobile transects represent dynamic bat communities, especially when used as the sole survey approach. To assist biologists who must select a single survey method due to resource limitations, we assessed the effectiveness of three acoustic survey methods at detecting species richness in a vast protected area (Everglades National Park): (1) mobile transects, (2) stationary surveys that were strategically located by sources of open water and (3) stationary surveys that were replicated spatially across the landscape. We found that mobile transects underrepresented bat species richness compared to stationary surveys across all major vegetation communities and in two distinct seasons (dry/cool and wet/warm). Most critically, mobile transects failed to detect three rare bat species, one of which is federally endangered. Spatially replicated stationary surveys did not estimate higher species richness than strategically located stationary surveys, but increased the rate at which species were detected in one vegetation community. The survey strategy that detected maximum species richness and the highest mean nightly species richness with minimal effort was a strategically located stationary detector in each of two major vegetation communities during the wet/warm season.

  13. Effects of Systemic Hydration on Vocal Acoustics of 18- to 35-Year-Old Females

    ERIC Educational Resources Information Center

    Franca, Maria Claudia; Simpson, Kenneth O.

    2012-01-01

    The influence of body hydration and vocal acoustics was investigated in this study. Effects of two levels of hydration on objective measures of vocal acoustics were explored. In an attempt to reduce variability in the degree of systemic hydration and to induce a state of systemic dehydration, participants were instructed to refrain from ingestion…

  14. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    NASA Technical Reports Server (NTRS)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  15. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors

    PubMed Central

    Castro, Bruno; Clerice, Guilherme; Ramos, Caio; Andreoli, André; Baptista, Fabricio; Campos, Fernando; Ulson, José

    2016-01-01

    Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique. PMID:27517931

  16. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors.

    PubMed

    Castro, Bruno; Clerice, Guilherme; Ramos, Caio; Andreoli, André; Baptista, Fabricio; Campos, Fernando; Ulson, José

    2016-08-10

    Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique.

  17. Monitoring Cetaceans in the North Pacific: Analysis of Retrospective SOSUS Data and Acoustic Detection on the Northern Edge Range

    DTIC Science & Technology

    2010-12-01

    suggestions for reducing this burden to Department of Defense, Washington Headquarters Services , Directorate for Information Operations and Reports...NEAR THE NORTHERN EDGE RANGE. Recovery LONG-TERM MONITORING OF BLUE AND FIN WHALE ACOUSTIC SIGNALS FROM THE NORTH PACIFIC 1994-2009: COMPARISON OF...to poor weather conditions that precluded deployments near the shelf break. 4 Recovery All three moorings were safely recovered on

  18. Investigation of acoustic emission coupling techniques

    NASA Technical Reports Server (NTRS)

    Jolly, W. D.

    1988-01-01

    A three-phase research program was initiated by NASA in 1983 to investigate the use of acoustic monitoring techniques to detect incipient failure in turbopump bearings. Two prototype acoustic coupler probes were designed and evaluated, and four units of the final probe design were fabricated. Success in this program could lead to development of an on-board monitor which could detect bearing damage in flight and reduce or eliminate the need for disassembly after each flight. This final report reviews the accomplishments of the first two phases and presents the results of fabrication and testing completed in the final phase of the research program.

  19. Considerations for acoustic emission monitoring of spherical Kevlar/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.; Patterson, R. G.

    1977-01-01

    We are continuing to research the applications of acoustic emission testing for predicting burst pressure of filament-wound Kevlar 49/epoxy pressure vessels. This study has focused on three specific areas. The first area involves development of an experimental technique and the proper instrumentation to measure the energy given off by the acoustic emission transducer per acoustic emission burst. The second area concerns the design of a test fixture in which to mount the composite vessel so that the acoustic emission transducers are held against the outer surface of the composite. Included in this study area is the calibration of the entire test setup including couplant, transducer, electronics, and the instrument measuring the energy per burst. In the third and final area of this study, we consider the number, location, and sensitivity of the acoustic emission transducers used for proof testing composite pressure vessels.

  20. Miniature acoustic wave lysis system and uses thereof

    DOEpatents

    Branch, Darren W.; Vreeland, Erika Cooley; Smith, Gennifer Tanabe

    2016-12-06

    The present invention relates to an acoustic lysis system including a disposable cartridge that can be reversibly coupled to a platform having a small, high-frequency piezoelectric transducer array. In particular, the system releases viable DNA, RNA, and proteins from human or bacterial cells, without chemicals or additional processing, to enable high-speed sample preparation for clinical point-of-care medical diagnostics and use with nano/microfluidic cartridges. Also described herein are methods of making and using the system of the invention.

  1. Acoustic design criteria in a general system for structural optimization

    NASA Technical Reports Server (NTRS)

    Brama, Torsten

    1990-01-01

    Passenger comfort is of great importance in most transport vehicles. For instance, in the new generation of regional turboprop aircraft, a low noise level is vital to be competitive on the market. The possibilities to predict noise levels analytically has improved rapidly in recent years. This will make it possible to take acoustic design criteria into account in early project stages. The development of the ASKA FE-system to include also acoustic analysis has been carried out at Saab Aircraft Division and the Aeronautical Research Institute of Sweden in a joint project. New finite elements have been developed to model the free fluid, porous damping materials, and the interaction between the fluid and structural degrees of freedom. The FE approach to the acoustic analysis is best suited for lower frequencies up to a few hundred Hz. For accurate analysis of interior cabin noise, large 3-D FE-models are built, but 2-D models are also considered to be useful for parametric studies and optimization. The interest is here focused on the introduction of an acoustic design criteria in the general structural optimization system OPTSYS available at the Saab Aircraft Division. The first implementation addresses a somewhat limited class of problems. The problems solved are formulated: Minimize the structural weight by modifying the dimensions of the structure while keeping the noise level in the cavity and other structural design criteria within specified limits.

  2. A high-frequency warm shallow water acoustic communications channel model and measurements.

    PubMed

    Chitre, Mandar

    2007-11-01

    Underwater acoustic communication is a core enabling technology with applications in ocean monitoring using remote sensors and autonomous underwater vehicles. One of the more challenging underwater acoustic communication channels is the medium-range very shallow warm-water channel, common in tropical coastal regions. This channel exhibits two key features-extensive time-varying multipath and high levels of non-Gaussian ambient noise due to snapping shrimp-both of which limit the performance of traditional communication techniques. A good understanding of the communications channel is key to the design of communication systems. It aids in the development of signal processing techniques as well as in the testing of the techniques via simulation. In this article, a physics-based channel model for the very shallow warm-water acoustic channel at high frequencies is developed, which are of interest to medium-range communication system developers. The model is based on ray acoustics and includes time-varying statistical effects as well as non-Gaussian ambient noise statistics observed during channel studies. The model is calibrated and its accuracy validated using measurements made at sea.

  3. Nondestructive Evaluation of Concrete Bridge Decks with Automated Acoustic Scanning System and Ground Penetrating Radar.

    PubMed

    Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying

    2018-06-16

    Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.

  4. A case study of real-time monitoring of solid-state phase transformations in acoustically levitated particles using near infrared and Raman spectroscopy.

    PubMed

    Rehder, Sönke; Wu, Jian X; Laackmann, Julian; Moritz, Hans-Ulrich; Rantanen, Jukka; Rades, Thomas; Leopold, Claudia S

    2013-01-23

    The objective of this study was to monitor the amorphous-to-crystalline solid-state phase transformation kinetics of the model drug ibuprofen with spectroscopic methods during acoustic levitation. Chemical and physical information was obtained by real-time near infrared (NIRS) and Raman spectroscopy measurements. The recrystallisation kinetic parameters (overall recrystallisation rate constant β and the time needed to reach 50% of the equilibrated level t(50)), were determined using a multivariate curve resolution approach. The acoustic levitation device coupled with non-invasive spectroscopy enabled monitoring of the recrystallisation process of the difficult-to-handle (adhesive) amorphous sample. The application of multivariate curve resolution enabled isolation of the underlying pure spectra, which corresponded well with the reference spectra of amorphous and crystalline ibuprofen. The recrystallisation kinetic parameters were estimated from the recrystallisation profiles. While the empirical recrystallisation rate constant determined by NIR and Raman spectroscopy were comparable, the lag time for recrystallisation was significantly lower with Raman spectroscopy as compared to NIRS. This observation was explained by the high energy density of the Raman laser beam, which might have led to local heating effects of the sample and thus reduced the recrystallisation onset time. It was concluded that acoustic levitation with NIR and Raman spectroscopy combined with multivariate curve resolution allowed direct determination of the recrystallisation kinetics of amorphous drugs and thus is a promising technique for monitoring solid-state phase transformations of adhesive small-sized samples during the early phase of drug development. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. MEMS-based Optic Fiber Fabry-Perot Sensor for Underwater Acoustic Measurement with A Wavelength-switched System

    NASA Astrophysics Data System (ADS)

    Xia, J.; Y Wang, F.; Luo, H.; Hu, Y. M.; Xiong, S. D.

    2017-12-01

    In this paper, a MEMS-based extrinsic Farby-Perot Interferometric (EFPI) acoustic pressure acoustic sensor is presented. The diaphragm structure is used as the second reflected surface, and the sensitive surface to acoustic pressure. A wavelength-switched phase demodulation system for EFPI sensors is used for acoustic signal recovery. The modified phase demodulation system has been demonstrated to recover the signal to a stable intensity fluctuation level of ±0.5 dB at the test frequency of 2000 Hz. In the test depth of 50cm, the sensor has a resonant frequency of 3.7 kHz, a flat frequency range of 10-800Hz, and a corresponding acoustic pressure sensitivity of -159 dB re. 1/μPa.

  6. Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Honghao; Cartmell, Samuel S.; Wang, Qiang

    2014-01-21

    The Juvenile Salmon Acoustic Telemetry System (JSATS) project supported by the U.S. Army Corps of Engineers, Portland District, has yielded the smallest acoustic fish tag transmitter commercially available to date. In order to study even smaller fish populations and make the transmitter injectable by needles, the JSATS acoustic micro transmitter needs to be further downsized. This study focuses on the optimization of microbattery design based on Li/CFx chemistry. Through appropriate modifications, a steady high-rate pulse current with desirable life time has been achieved while the weight and volume of the battery is largely reduced. The impedance variation in as-designed microbatteriesmore » is systematically compared with that of currently used watch batteries in JSATS with an attempt to understand the intrinsic factors that control the performances of microbatteries under the real testing environments.« less

  7. In-situ monitoring of acoustic linear and nonlinear behavior of titanium alloys during cycling loading

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Matikas, Theodore E.; Na, Jeong K.; Sathish, Shamachary

    1999-02-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. A previous experiment using the f-2f technique on Ti-6Al-4V dog bone specimen fatigued at different stage of fatigue has shown that the material nonlinearity exhibit large change compared to the other ultrasonic parameter. Real-time monitoring of the nonlinearity may be a future tool to characterize early fatigue damage in the material. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. For the first time, a real-time experiment has been performed on a dog-bone specimen from zero fatigue al the way to the final fracture.

  8. Acoustic detection and monitoring for transportation infrastructure security.

    DOT National Transportation Integrated Search

    2009-09-01

    Acoustical methods have been extensively used to locate, identify, and track objects underwater. Some of these applications include detecting and tracking submarines, marine mammal detection and identification, detection of mines and ship wrecks and ...

  9. Passive acoustic monitoring of Cook Inlet beluga whales (Delphinapterus leucas).

    PubMed

    Lammers, Marc O; Castellote, Manuel; Small, Robert J; Atkinson, Shannon; Jenniges, Justin; Rosinski, Anne; Oswald, Julie N; Garner, Chris

    2013-09-01

    The endangered beluga whale (Delphinapterus leucas) population in Cook Inlet, AK faces threats from a variety of anthropogenic factors, including coastal development, oil and gas exploration, vessel traffic, and military activities. To address existing gaps in understanding about the occurrence of belugas in Cook Inlet, a project was developed to use passive acoustic monitoring to document the year-round distribution of belugas, as well as killer whales (Orcinus orca), which prey on belugas. Beginning in June 2009, ten moorings were deployed throughout the Inlet and refurbished every two to eight months. Despite challenging conditions consisting of strong tidal currents carrying debris and seasonal ice cover, 83% of mooring deployments were successfully recovered. Noise from water flow, vessel traffic, and/or industrial activities was present at several sites, potentially masking some signals. However, belugas were successfully detected at multiple locations. Detections were relatively common in the upper inlet and less common or absent at middle and lower inlet locations. Killer whale signals were also recorded. Some seasonal variability in the occurrence of both belugas and killer whales was evident.

  10. The Quasi-Eulerian Hydrophone: A New Approach for Ocean Acoustics

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Dziak, R. P.; Fowler, M. J.; Hammond, S. R.; Meinig, C.

    2005-12-01

    For the last 10 years Oregon State University and NOAA/Pacific Marine Environmental Laboratory have successfully operated and maintained autonomous hydrophone arrays to monitor low frequency acoustic energy of earthquakes and marine mammal calls in remote ocean areas where no historical record existed. These hydrophones are moored at mid-water depth and require a routine servicing cruise to retrieve the stored data. The system is robust, but it is not real-time and it takes up to a year before acoustic events can be identified from the raw acoustic data. As a result, we frequently miss opportunities to observe ocean acoustic events as they occur. A new type of autonomous hydrophone called a Quasi-Eulerian hydrophone (QUEphone) is under development at OSU/PMEL. This instrument allows near-real-time monitoring of a selected study area. It is a tether-free float with a built-in hydrophone monitoring system and a buoyancy controller. It is capable of repeat ascent/descent cycles in up to 2000 m of water. In contrast to the conventional Lagrangean float, the QUEphone float stays in the same area by maintaining negative buoyancy and remaining on the seafloor for most of its life span. While on the seafloor the QUEphone runs an intelligent event detection algorithm, and upon detection of a significant number of events will surface to transmit a small data file to shore. We have conducted brief test deployments of the QUEphone in both a fresh-water lake and marine waters off Oregon coast, and the results of these tests will be discussed and compared with other hydrophone data. Once fully developed the QUEphone is expected to provide near real-time analysis capability of earthquakes that affect seafloor hydrothermal vents and their associated ecosystems. Such fast reaction will allow for a rapid response to seismic events, enabling researchers to examine how changes in hydrothermal activity affect deep-ocean vent ecosystems.

  11. Acoustic Manifestations of Natural versus Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.; Aulich, G. D.; Trueblood, J.

    2010-12-01

    Positive leaders are rarely detected by VHF lightning detection systems; positive leader channels are usually outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped. The goal of this work is to study the types of thunder produced by natural versus triggered lightning and to assess which types of thunder signals have electromagnetic activity detected by the lightning mapping array (LMA). Towards this end we are investigating the lightning detection capabilities of acoustic techniques, and comparing them with the LMA. In a previous study we used array beam forming and time of flight information to locate acoustic sources associated with lightning. Even though there was some mismatch, generally LMA and acoustic techniques saw the same phenomena. To increase the database of acoustic data from lightning, we deployed a network of three infrasound arrays (30 m aperture) during the summer of 2010 (August 3 to present) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered lightning. The arrays were located at a range of distances (60 to 1400 m) surrounding the triggering site, called the Kiva, used by Langmuir Laboratory to launch rockets. We have continuous acoustic measurements of lightning data from July 20 to September 18 of 2009, and from August 3 to September 1 of 2010. So far, lightning activity around the Kiva was higher during the summer of 2009. We will present acoustic data from several interesting lightning flashes including a comparison between a natural and a triggered one.

  12. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy Tows and Implications for Composite Structures

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.; Nichols, Charles T.; Wentzel, Daniel J.

    2010-01-01

    This slide presentation reviews the use of Modal Acoustic Emission to monitor damage progression to carbon fiber/epoxy tows. There is a risk for catastrophic failure of composite overwrapped pressure vessels (COPVs) due to burst-before-leak (BBL) stress rupture (SR) failure of carbon-epoxy (C/Ep) COPVs. A lack of quantitative nondestructive evaluation (NDE) is causing problems in current and future spacecraft designs. It is therefore important to develop and demonstrate critical NDE that can be implemented during stages of the design process since the observed rupture can occur with little of no advanced warning. Therefore a program was required to develop quantitative acoustic emission (AE) procedures specific to C/Ep overwraps, but which also have utility for monitoring damage accumulation in composite structure in general, and to lay the groundwork for establishing critical thresholds for accumulated damage in composite structures, such as COPVs, so that precautionary or preemptive engineering steps can be implemented to minimize of obviate the risk of catastrophic failure. A computed Felicity Ratio (FR) coupled with fast Fourier Transform (FFT) frequency analysis shows promise as an analytical pass/fail criterion. The FR analysis and waveform and FFT analysis are reviewed

  13. Marine Mammal Acoustic Monitoring and Habitat Investigation, Southern California Channel Island Region

    DTIC Science & Technology

    2005-07-01

    1998 . Long - range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. Journal of the Acoustical ...Peninsula. Deep-Sea Research II 51: 2327-2344. Stafford , K.M., C.G. Fox, and D.S. Clark. 1998 . Long - range acoustic detection and localization of blue ...speciation. Phil. Trans. R. Soc. Lond B 357:493-503. Stafford , K. M., Fox, C. G. and Clark, D.S. 1998

  14. Do they stay or do they go? Acoustic monitoring of whale sharks at Ningaloo Marine Park, Western Australia.

    PubMed

    Norman, B M; Whitty, J M; Beatty, S J; Reynolds, S D; Morgan, D L

    2017-12-01

    Whale sharks Rhincodon typus were monitored via acoustic transmitters at the northern end of Western Australia's Ningaloo Marine Park to establish the extent to which the species inhabits the region beyond the whale-shark ecotourism industry season, which usually extends from March to August in each year. Despite the vast majority (c. 98%) of photographic submissions of R. typus from Ningaloo Reef being between March and August, acoustic detections from the tagged R. typus at Ningaloo were recorded in all months of the year, but do not preclude the occurrence of extended absences. It is concluded that as a species, R. typus occurs year round at Ningaloo, where it generally remains in close proximity to the reef edge, but that some individuals move outside of the detection range of the array for extended periods. © 2017 The Fisheries Society of the British Isles.

  15. A Connection Model between the Positioning Mechanism and Ultrasonic Measurement System via a Web Browser to Assess Acoustic Target Strength

    NASA Astrophysics Data System (ADS)

    Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko

    This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.

  16. Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites.

    PubMed

    Puskar, Ljiljana; Tuckermann, Rudolf; Frosch, Torsten; Popp, Jürgen; Ly, Vanalysa; McNaughton, Don; Wood, Bayden R

    2007-09-01

    Methods to probe the molecular structure of living cells are of paramount importance in understanding drug interactions and environmental influences in these complex dynamical systems. The coupling of an acoustic levitation device with a micro-Raman spectrometer provides a direct molecular probe of cellular chemistry in a containerless environment minimizing signal attenuation and eliminating the affects of adhesion to walls and interfaces. We show that the Raman acoustic levitation spectroscopic (RALS) approach can be used to monitor the heme dynamics of a levitated 5 microL suspension of red blood cells and to detect hemozoin in malaria infected cells. The spectra obtained have an excellent signal-to-noise ratio and demonstrate for the first time the utility of the technique as a diagnostic and monitoring tool for minute sample volumes of living animal cells.

  17. Method and means for measuring acoustic emissions

    DOEpatents

    Renken, Jr., Claus J.

    1976-01-06

    The detection of acoustic emissions emanating from an object is achieved with a capacitive transducer coupled to the object. The capacitive transducer is charged and then allowed to discharge with the rate of discharge being monitored. Oscillations in the rate of discharge about the normally exponential discharge curve for the capacitive transducer indicate the presence of acoustic emissions.

  18. Acoustic Emission Analysis Applet (AEAA) Software

    NASA Technical Reports Server (NTRS)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  19. Acoustic Levitator Maintains Resonance

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.

    1986-01-01

    Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.

  20. Petroglyph National Monument : acoustical monitoring 2010 and 2012

    DOT National Transportation Integrated Search

    2014-03-01

    During the summer of 2010 (August September) and winter of 2012 (February April), baseline acoustical data were collected at Petroglyph National Monument (PETR) at two sites deployed for approximately 30 days each. The baseline data collected...

  1. The NRL relocatable ocean/acoustic ensemble forecast system

    NASA Astrophysics Data System (ADS)

    Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.

    2009-04-01

    A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.

  2. Development of an Opto-Acoustic Recanalization System Final Report CRADA No. 1314-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, L. D.; Adam, H. R.

    The objective of the project was to develop an ischemic stroke treatient system that restores blood flow to the brain by removing occlusions using acoustic energy created by fiber optic delivery of laser light, a process called Opto Acoustic Recanalization (OAR). The key tasks of the project were to select a laser system, quantify temperature, pressure and particle size distribution, and develop a prototype device incorporating a feedback mechanism. System parameters were developed to cause emulsification while attempting to minimize particle size and collateral damage. The prototype system was tested in animal models and resulted in no visible collateral damage.

  3. Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong

    2017-04-01

    A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.

  4. Pulsed acoustic vortex sensing system volume III: PAVSS operation and software documentation

    DOT National Transportation Integrated Search

    1977-06-01

    Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...

  5. Pulsed acoustic vortex sensing system volume IV: PAVSS program summary and recommendations

    DOT National Transportation Integrated Search

    1977-06-01

    Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. : This volu...

  6. Kings Mountain National Military Park : acoustical monitoring 2012

    DOT National Transportation Integrated Search

    2014-11-01

    During the winter of 2012(November-December) baseline acoustical data were collected at Kings Mountain National Military Park (KIMO)at two sites deployed for approximately 30 days each. The baseline data collected during these periods will help park ...

  7. Acoustic Telemetry Validates a Citizen Science Approach for Monitoring Sharks on Coral Reefs

    PubMed Central

    Vianna, Gabriel M. S.; Meekan, Mark G.; Bornovski, Tova H.; Meeuwig, Jessica J.

    2014-01-01

    Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations. PMID:24760081

  8. Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs.

    PubMed

    Vianna, Gabriel M S; Meekan, Mark G; Bornovski, Tova H; Meeuwig, Jessica J

    2014-01-01

    Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations.

  9. Quantification of optical absorption coefficient from acoustic spectra in the optical diffusive regime using photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zijian; Favazza, Christopher; Wang, Lihong V.

    2012-02-01

    Photoacoustic (PA) tomography (PAT) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Multi-wavelength PAT can noninvasively monitor hemoglobin oxygen saturation (sO2) with high sensitivity and fine spatial resolution. However, accurate quantification in PAT requires knowledge of the optical fluence distribution, acoustic wave attenuation, and detection system bandwidth. We propose a method to circumvent this requirement using acoustic spectra of PA signals acquired at two optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560 and 575 nm were quantified with errors of ><5%.

  10. A review of underwater acoustic systems and methods for locating objects lost at sea

    NASA Technical Reports Server (NTRS)

    Lovelady, R. W.; Ferguson, R. L.

    1983-01-01

    Information related to the location of objects lost at sea is presented. Acoustic devices attached to an object prior to being transported is recommended as a homing beacon. Minimum requirements and some environmental constraints are defined. Methods and procedures for search and recovery are also discussed. Both an interim system and a more advanced system are outlined. Controlled acoustic emission to enhance security is the theme followed.

  11. Time-resolved acoustic emission tomography in the laboratory: tracking localised damage in rocks

    NASA Astrophysics Data System (ADS)

    Brantut, N.

    2017-12-01

    Over the past three decades, there has been tremendous technological developments of laboratory equipment and studies using acoustic emission and ultrasonic monitoring of rock samples during deformation. Using relatively standard seismological techniques, acoustic emissions can be detected, located in space and time, and source mechanisms can be obtained. In parallel, ultrasonic velocities can be measured routinely using standard pulse-receiver techniques.Despite these major developments, current acoustic emission and ultrasonic monitoring systems are typically used separately, and the poor spatial coverage of acoustic transducers precludes performing active 3D tomography in typical laboratory settings.Here, I present an algorithm and software package that uses both passive acoustic emission data and active ultrasonic measurements to determine acoustic emission locations together with the 3D, anisotropic P-wave structure of rock samples during deformation. The technique is analogous to local earthquake tomography, but tailored to the specificities of small scale laboratory tests. The fast marching method is employed to compute the forward problem. The acoustic emission locations and the anisotropic P-wave field are jointly inverted using the Quasi-Newton method.The method is used to track the propagation of compaction bands in a porous sandstone deformed in the ductile, cataclastic flow regime under triaxial stress conditions. Near the yield point, a compaction front forms at one end of the sample, and slowly progresses towards the other end. The front is illuminated by clusters of Acoustic Emissions, and leaves behind a heavily damaged material where the P-wave speed has dropped by up to 20%.The technique opens new possibilities to track in-situ strain localisation and damage around laboratory faults, and preliminary results on quasi-static rupture in granite will be presented.

  12. Study of Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  13. Sunset Crater Volcano National Monument : Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-05-01

    During the summer of 2010 (July - August), the Volpe Center collected baseline acoustical data at Sunset Crater Volcano National Monument (SUCR) at a site deployed for approximately 30 days. The baseline data collected during this period will help pa...

  14. Tuzigoot National Monument : acoustical monitoring 2010 and 2012

    DOT National Transportation Integrated Search

    2014-03-01

    During the summer of 2010 (July - August) and winter of 2012 (March-April) baseline acoustical data were collected at Tuzigoot National Monument (TUZI) at a site deployed for approximately 30 days during each period. The baseline data collected durin...

  15. Acoustic-sensor-based detection of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Foote, Peter; Martin, Tony; Read, Ian

    2004-03-01

    Acoustic emission detection is a well-established method of locating and monitoring crack development in metal structures. The technique has been adapted to test facilities for non-destructive testing applications. Deployment as an operational or on-line automated damage detection technology in vehicles is posing greater challenges. A clear requirement of potential end-users of such systems is a level of automation capable of delivering low-level diagnosis information. The output from the system is in the form of "go", "no-go" indications of structural integrity or immediate maintenance actions. This level of automation requires significant data reduction and processing. This paper describes recent trials of acoustic emission detection technology for the diagnosis of damage in composite aerospace structures. The technology comprises low profile detection sensors using piezo electric wafers encapsulated in polymer film ad optical sensors. Sensors are bonded to the structure"s surface and enable acoustic events from the loaded structure to be located by triangulation. Instrumentation has been enveloped to capture and parameterise the sensor data in a form suitable for low-bandwidth storage and transmission.

  16. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    NASA Technical Reports Server (NTRS)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  17. Casa Grande Ruins National Monument acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2014-11-01

    During September 2010, The Volpe Center collected baseline acoustical data at Casa Grande National Monument (CAGR), at one site for 28 days. The baseline data collected during this period will help park managers and planners estimate the effects of f...

  18. The Influence of the Density of Coconut Fiber as Stack in Thermo-Acoustics Refrigeration System

    NASA Astrophysics Data System (ADS)

    Hartulistiyoso, E.; Yulianto, M.; Sucahyo, L.

    2018-05-01

    An experimental study of using coconut fiber as stack with varying density in thermo-acoustics refrigeration system has been done. Stack is a device which is described as the “heart” in thermo-acoustics refrigeration system. The length of stack is a fix parameter in this experiment. The performance of the coconut fiber was evaluated from the density of stack (varied from 30%, 50% and 70%), position of stack (varied from 0 to 34 cm from the sound generator), and frequency of sound generator (varied from 150 Hz, 200Hz, 250Hz and 300Hz). The inside, outside, and environment temperatures were collected every second using Data Acquisition (DAQ). The result showed that the increase of stack density will increase the performance of thermo-acoustics refrigeration system. The higher density produced temperature differences in cold side and hot side of 5.4°C. In addition, the position of stack and frequency of sound generator have an important role in the performance of thermo-acoustics refrigeration system for all variations of the density.

  19. Fiber-optic hydrophone array for acoustic surveillance in the littoral

    NASA Astrophysics Data System (ADS)

    Hill, David; Nash, Phillip

    2005-05-01

    We describe a fibre-optic hydrophone array system architecture that can be tailored to meet the underwater acoustic surveillance requirements of the military, counter terrorist and customs authorities in protecting ports and harbours, offshore production facilities or coastal approaches. Physically the fibre-optic hydrophone array is in the form of a lightweight cable, enabling rapid deployment from a small vessel. Based upon an optical architecture of time and wavelength multiplexed interferometric hydrophones, the array is comprised of a series of hydrophone sub-arrays. Using multiple sub-arrays, extended perimeters many tens of kilometres in length can be monitored. Interrogated via a long (~50km) optical fibre data link, the acoustic date is processed using the latest open architecture sonar processing platform, ensuring that acoustic targets below, on and above the surface are detected, tracked and classified. Results obtained from an at sea trial of a 96-channel hydrophone array are given, showing the passive detection and tracking of a diver, small surface craft and big ocean going ships beyond the horizon. Furthermore, we describe how the OptaMarine fibre-optic hydrophone array fits into an integrated multi-layered approach to port and harbour security consisting of active sonar for diver detection and hull imaging, as well as thermal imaging and CCTV for surface monitoring. Finally, we briefly describe a complimentary land perimeter intruder detection system consisting of an array of fibre optic accelerometers.

  20. A hybrid finite element-transfer matrix model for vibroacoustic systems with flat and homogeneous acoustic treatments.

    PubMed

    Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck

    2015-02-01

    Practical vibroacoustic systems involve passive acoustic treatments consisting of highly dissipative media such as poroelastic materials. The numerical modeling of such systems at low to mid frequencies typically relies on substructuring methodologies based on finite element models. Namely, the master subsystems (i.e., structural and acoustic domains) are described by a finite set of uncoupled modes, whereas condensation procedures are typically preferred for the acoustic treatments. However, although accurate, such methodology is computationally expensive when real life applications are considered. A potential reduction of the computational burden could be obtained by approximating the effect of the acoustic treatment on the master subsystems without introducing physical degrees of freedom. To do that, the treatment has to be assumed homogeneous, flat, and of infinite lateral extent. Under these hypotheses, simple analytical tools like the transfer matrix method can be employed. In this paper, a hybrid finite element-transfer matrix methodology is proposed. The impact of the limiting assumptions inherent within the analytical framework are assessed for the case of plate-cavity systems involving flat and homogeneous acoustic treatments. The results prove that the hybrid model can capture the qualitative behavior of the vibroacoustic system while reducing the computational effort.

  1. Real time monitoring of progressive damage during loading of a simplified total hip stem construct using embedded acoustic emission sensors.

    PubMed

    Mavrogordato, Mark; Taylor, Mark; Taylor, Andrew; Browne, Martin

    2011-05-01

    Acoustic emission (AE) is a non-destructive technique that is capable of passively monitoring failure of a construct with excellent temporal resolution. Previous investigations using AE to monitor the integrity of a total hip replacement (THR) have used surface mounted sensors; however, the AE signal attenuates as it travels through materials and across interfaces. This study proposes that directly embedded sensors within the femoral stem of the implant will reduce signal attenuation effects and eliminate potential complications and variability associated with fixing the sensor to the sample. Data was collected during in vitro testing of implanted constructs, and information from both embedded and externally mounted AE sensors was compared and corroborated by micro-Computed Tomography (micro-CT) images taken before and after testing. The results of this study indicate that the embedded sensors gave a closer corroboration to observed damage using micro-CT and were less affected by unwanted noise sources. This has significant implications for the use of AE in assessing the state of THR constructs in vitro and it is hypothesised that directly embedded AE sensors may provide the first steps towards an in vivo, cost effective, user friendly, non-destructive system capable of continuously monitoring the condition of the implanted construct. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Field application of a multi-frequency acoustic instrument to monitor sediment for silt erosion study in Pelton turbine in Himalayan region, India

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Kumar, A.; Hies, T.; Nguyen, H. H.

    2016-11-01

    High sediment load passing through hydropower components erodes the hydraulic components resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance, especially in Himalayan regions. The size and concentration of sediment play a major role in silt erosion. The traditional process of collecting samples manually to analyse in laboratory cannot suffice the need of monitoring temporal variation in sediment properties. In this study, a multi-frequency acoustic instrument was applied at desilting chamber to monitor sediment size and concentration entering the turbine. The sediment size and concentration entering the turbine were also measured with manual samples collected twice daily. The samples collected manually were analysed in laboratory with a laser diffraction instrument for size and concentration apart from analysis by drying and filtering methods for concentration. A conductivity probe was used to calculate total dissolved solids, which was further used in results from drying method to calculate suspended solid content of the samples. The acoustic instrument was found to provide sediment concentration values similar to drying and filtering methods. However, no good match was found between mean grain size from the acoustic method with the current status of development and laser diffraction method in the first field application presented here. The future versions of the software and significant sensitivity improvements of the ultrasonic transducers are expected to increase the accuracy in the obtained results. As the instrument is able to capture the concentration and in the future most likely more accurate mean grain size of the suspended sediments, its application for monitoring silt erosion in hydropower plant shall be highly useful.

  3. Acoustic Probe for Solid-Gas-Liquid Suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavlarides, L.L.; Sangani, Ashok

    The primary objective of the research project during the first funding period was to develop an acoustic probe to measure volume percent solids in solid-liquid slurries in the presence of small amounts of gas bubbles. This problem was addressed because of the great need for a non-invasive, accurate and reliable method for solids monitoring in liquid slurries in the presence of radiolytically generated gases throughout the DOE complex. These measurements are necessary during mobilization of salts and sediments in tanks, transport of these slurries in transfer lines to processing facilities across a site, and, in some instances, during high levelmore » waste processing. Although acoustic probes have been commonly used for monitoring flows in single-phase fluids (McLeod, 1967), their application to monitor two-phase mixtures has not yet fully realized its potential. A number of investigators in recent years have therefore been involved in developing probes for measuring the volume fractions in liquid solid suspensions (Atkinson and Kytomaa, 1993; Greenwood et al., 1993; Martin et al., 1995) and in liquid-liquid suspensions (Bonnet and Tavlarides, 1987; Tavlarides and Bonnet, 1988, Yi and Tavlarides, 1990; Tsouris and Tavlarides, 1993, Tsouris et al., 1995). In particular, Atkinson and Kytomaa (1993) showed that the acoustic technique can be used to determine both the velocity and the volume fraction of solids while Martin et al. (1995) and Spelt et al. (1999) showed that the acoustic probe can also be used to obtain information on the size distribution of the particles. In a recent testing of in-line slurry monitors with radioactive slurries suspended with Pulsair Mixers (Hylton & Bayne, 1999), an acoustic probe did not compare well with other instruments most probably due to presence of entrained gases and improper acoustic frequency range of interrogation. The work of the investigators cited has established the potential of the acoustic probe for characterizing/monitoring

  4. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  5. Acoustic Emission Detection of Impact Damage on Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.

    2004-01-01

    The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.

  6. Acoustic Measurement Of Periodic Motion Of Levitated Object

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Barmatz, Martin B.

    1992-01-01

    Some internal vibrations, oscillations in position, and rotations of acoustically levitated object measured by use of microphone already installed in typical levitation chamber for tuning chamber to resonance and monitoring operation. Levitating acoustic signal modulated by object motion of lower frequency. Amplitude modulation detected and analyzed spectrally to determine amplitudes and frequencies of motions.

  7. Method for using acoustic sounder categories to determine atmospheric stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, J.F.

    1979-01-01

    Capabilities of the diffusion meteorologist have been expanded by the acoustic sounder, an economical tool for monitoring in real time the height of the mixed layer. The acoustic sounder continuously measures the rate of change in the height of the mixed layer which is an important parameter in calculating the transport and diffusion of radioactive and nonradioactive air pollutants. Continuous record of convective cells, gravity waves, inversions, and frontal systems permit analysis of the synoptic (analysis of stability in terms of simultaneous weather information) and complex (analysis of the stability of a single place by the relative frequencies of variousmore » stability types or groups of such types) stabilities of the local area. Sounder data obtained at the Savannah River Plant was compared on an hourly basis to data obtained at the WJBF-TV tower located approximately 20 km northwest of the acoustic sounder site.« less

  8. Acoustic and other factors relating to the use of sound field systems in classrooms

    NASA Astrophysics Data System (ADS)

    Carey, Anne; Shield, Bridget; Dockrell, Julie; Rigby, Kate

    2005-04-01

    A study has been made of thirty-five primary school classrooms which have Sound Field Systems (SFS) installed. Acoustic surveys of the classrooms have been undertaken and detailed observations made of the physical characteristics of each room such as its construction and design, plus any acoustic treatment. The positioning and type, e.g., column or separate speakers, of SFS installed were also noted. Details of the procedures for purchasing, installing, and maintaining the SFS were obtained where possible, together with information concerning training of teachers in their use. Results from these surveys suggest that in many cases SFS are installed in rooms where their performance may be compromised because of inadequate acoustic conditions. Additionally problems may arise due to inappropriate installation, choice of system, poor maintenance, or lack of training. The effectiveness of acoustic treatment such as absorption applied to ceilings and walls has also been investigated in a range of classrooms and its impact on the use of SFS considered.

  9. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Hongxiang; Faculty of Science, Jiangsu University, Zhenjiang 212013; Zhang Shuyi

    2011-04-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coatingmore » on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.« less

  10. Development of a MEMS acoustic emission sensor system

    NASA Astrophysics Data System (ADS)

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first

  11. Review of Combustion-acoustic Instabilities

    NASA Technical Reports Server (NTRS)

    Oyediran, Ayo; Darling, Douglas; Radhakrishnan, Krishnan

    1995-01-01

    Combustion-acoustic instabilities occur when the acoustic energy increase due to the unsteady heat release of the flame is greater than the losses of acoustic energy from the system. The problem of combustion-acoustic instability is a concern in many devices for various reasons, as each device may have a unique mechanism causing unsteady heat release rates and many have unique boundary conditions. To accurately predict and quantify combustion-acoustic stabilities, the unsteady heat release rate and boundary conditions need to be accurately determined. The present review brings together work performed on a variety of practical combustion devices. Many theoretical and experimental investigations of the unsteady heat release rate have been performed, some based on perturbations in the fuel delivery system particularly for rocket instabilities, while others are based on hydrodynamic processes as in ramjet dump combustors. The boundary conditions for rocket engines have been analyzed and measured extensively. However, less work has been done to measure acoustic boundary conditions in many other combustion systems.

  12. Acoustic emission evolution during sliding friction of Hadfield steel single crystal

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.

    2017-12-01

    Friction is a complex dynamic process. Direct observation of processes occurring in the friction zone is impossible due to a small size of a real contact area and, as a consequence, requires various additional methods applicable to monitor a tribological contact state. One of such methods consists in the analysis of acoustic emission data of a tribological contact. The use of acoustic emission entails the problem of interpreting physical sources of signals. In this paper, we analyze the evolution of acoustic emission signal frames in friction of Hadfield steel single crystals. The chosen crystallographic orientation of single crystals enables to identify four stages related to friction development as well as acoustic emission signals inherent in these stages. Acoustic emission signal parameters are studied in more detail by the short-time Fourier transform used to determine the time variation of the median frequency and its power spectrum. The results obtained will facilitate the development of a more precise method to monitor the tribological contact based on the acoustic emission method.

  13. Virtual acoustics displays

    NASA Astrophysics Data System (ADS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-03-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  14. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  15. System and method for investigating sub-surface features of a rock formation using compressional acoustic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt

    A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to themore » borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.« less

  16. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    PubMed

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  17. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems

    PubMed Central

    Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862

  18. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean

  19. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  20. Structural health monitoring and damage evaluation for steel confined reinforced concrete column using the acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Du, Fangzhu; Li, Dongsheng

    2018-03-01

    As a new kind of composite structures, the using of steel confined reinforced concrete column attract increasing attention in civil engineer. During the damage process, this new structure offers highly complex and invisible failure mechanism due to the combination effects of steel tubes, concrete, and steel rebar. Acoustic emission (AE) technique has been extensively studied in nondestructive testing (NDT) and is currently applied in civil engineering for structural health monitoring (SHM) and damage evaluation. In the present study, damage property and failure evolution of steel confined and unconfined reinforced concrete (RC) columns are investigated under quasi-static loading through (AE) signal. Significantly improved loading capacity and excellent energy dissipation characteristic demonstrated the practicality of that proposed structure. AE monitoring results indicated that the progressive deformation of the test specimens occur in three stages representing different damage conditions. Sentry function compares the logarithm ratio between the stored strain energy (Es) and the released acoustic energy (Ea); explicitly disclose the damage growth and failure mechanism of the test specimens. Other extended AE features including index of damage (ID), and relax ratio are calculated to quantitatively evaluate the damage severity and critical point. Complicated temporal evolution of different AE features confirms the potential importance of integrated analysis of two or more parameters. The proposed multi-indicators analysis is capable of revealing the damage growth and failure mechanism for steel confined RC columns, and providing critical warning information for structure failure.