Science.gov

Sample records for acoustic monitoring techniques

  1. Acoustic Techniques for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  2. Monitoring corrosion in prestressed concrete beams using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    ElBatanouny, Mohamed K.; Mangual, Jesé; Vélez, William; Ziehl, Paul H.; Matta, Fabio; González, Miguel

    2012-04-01

    Early detection of corrosion can help reduce the cost of maintenance and extend the service life of structures. Acoustic emission (AE) sensing has proven to be a promising method for early detection of corrosion in reinforced concrete members. A test program is presented composed of four medium-scale prestressed concrete T-beams. Three of the beams have a length of 16 ft. 4 in. (4.98 m), and one is 9 ft. 8 in. (2.95 m). In order to corrode the specimens a 3% NaCl solution was prepared, which is representative of sea salt concentration. The beams were subjected to wet-dry cycles to accelerate the corrosion process. Two of the specimens were pre-cracked prior to conditioning in order to examine the effect of crack presence. AE data was recorded continuously while half-cell potential measurements and corrosion rate by Linear Polarization Resistance (LPR) were measured daily. Corrosion current was also being acquired constantly to monitor any change in the concrete resistivity. Results indicate that the onset of corrosion may be identified using AE features, and were corroborated with measurements obtained from electrochemical techniques. Corroded areas were located using source triangulation. The results indicate that cracked specimens showed corrosion activity prior to un-cracked specimens and experienced higher corrosion rates. The level of corrosion was determined using corrosion rate results. Intensity analysis was used to link the corrosion rate and level to AE data.

  3. Acoustic impedance rhinometry (AIR): a technique for monitoring dynamic changes in nasal congestion.

    PubMed

    Patuzzi, Robert; Cook, Alison

    2014-04-01

    We describe a simple and inexpensive method for monitoring nasal air flow resistance using measurement of the small-signal acoustic input impedance of the nasal passage, similar to the audiological measurement of ear drum compliance with acoustic tympanometry. The method requires generation of a fixed sinusoidal volume-velocity stimulus using ear-bud speakers, and an electret microphone to monitor the resultant pressure fluctuation in the nasal passage. Both are coupled to the nose via high impedance silastic tubing and a small plastic nose insert. The acoustic impedance is monitored in real-time using a laptop soundcard and custom-written software developed in LabView 7.0 (National Instruments). The compact, lightweight equipment and fast time resolution lends the technique to research into the small and rapid reflexive changes in nasal resistance caused by environmental and local neurological influences. The acoustic impedance rhinometry technique has the potential to be developed for use in a clinical setting, where the need exists for a simple and inexpensive objective nasal resistance measurement technique. PMID:24577261

  4. An acoustic-array based structural health monitoring technique for wind turbine blades

    NASA Astrophysics Data System (ADS)

    Aizawa, Kai; Poozesh, Peyman; Niezrecki, Christopher; Baqersad, Javad; Inalpolat, Murat; Heilmann, Gunnar

    2015-04-01

    This paper proposes a non-contact measurement technique for health monitoring of wind turbine blades using acoustic beamforming techniques. The technique works by mounting an audio speaker inside a wind turbine blade and observing the sound radiated from the blade to identify damage within the structure. The main hypothesis for the structural damage detection is that the structural damage (cracks, edge splits, holes etc.) on the surface of a composite wind turbine blade results in changes in the sound radiation characteristics of the structure. Preliminary measurements were carried out on two separate test specimens, namely a composite box and a section of a wind turbine blade to validate the methodology. The rectangular shaped composite box and the turbine blade contained holes with different dimensions and line cracks. An acoustic microphone array with 62 microphones was used to measure the sound radiation from both structures when the speaker was located inside the box and also inside the blade segment. A phased array beamforming technique and CLEAN-based subtraction of point spread function from a reference (CLSPR) were employed to locate the different damage types on both the composite box and the wind turbine blade. The same experiment was repeated by using a commercially available 48-channel acoustic ring array to compare the test results. It was shown that both the acoustic beamforming and the CLSPR techniques can be used to identify the damage in the test structures with sufficiently high fidelity.

  5. Swept frequency acoustic interferometry technique for chemical weapons verification and monitoring

    SciTech Connect

    Sinha, D.N.; Anthony, B.W.; Lizon, D.C.

    1995-03-01

    Nondestructive evaluation (NDE) techniques are important for rapid on-site verification and monitoring of chemical munitions, such as artillery shells and bulk containers. Present NDE techniques provide only limited characterizations of such munitions. This paper describes the development of a novel noninvasive technique, swept-frequency acoustic interferometry (SFAI), that significantly enhances the capability of munitions characterizations. The SFAI technique allows very accurate and simultaneous determination of sound velocity and attenuation of chemical agents over a large frequency range inside artillery shells, in addition to determining agent density. The frequency-dependent sound velocity and attenuation can, in principle, provide molecular relaxation properties of the chemical agent. The same instrument also enables a direct fill-level measurement in bulk containers. Industrial and other applications of this general-purpose technique are also discussed.

  6. Acoustic emission technique for monitoring the pyrolysis of composites for process control.

    PubMed

    Tittmann, B R; Yen, C E

    2008-11-01

    Carbonization is the first step in the heat and pressure treatment (pyrolysis) of composites in preparing carbon-carbon parts. These find many uses, including aircraft brakes, rocket nozzles and medical implants. This paper describes the acoustic emissions (AE) from various stages of the manufacturing process of carbon-carbon composites. This process involves carbonization at a high temperature and this results in both thermal expansion and volume change (due to pyrolysis in which a sacrificial polymer matrix is converted to carbon). Importantly the resultant matrix is porous and has a network of small intra-lamina cracks. The formation of these microcracks produces AE and this paper describes how this observation can be used to monitor (and eventually control) the manufacturing process. The aim is to speed up manufacture, which is currently time-consuming. The first section of the paper describes the design of unimodal waveguides to enable the AE to propagate to a cool environment where a transducer can be located. The second part of the paper describes various experimental observations of AE under a range of process conditions. In particular, this paper presents a technique based on detecting acoustic emissions and (1) uses wire waveguides to monitor parts within the autoclave to 800 degrees C, (2) monitors microcracking during pyrolysis, (3) uses a four-level threshold to distinguish between low- and high-amplitude cracking events, (4) recognizes the occurrence of harmful delaminations, and (5) guides the control of the heating rate for optimum efficiency of the pyrolysis process. In addition, supporting data are presented of in situ measurements of porosity, weight loss, cross-ply shrinkage, and mass spectroscopy of gases emitted. The process evolution is illustrated by the use of interrupted manufacturing cycle micrographs obtained by optical, scanning acoustic (SAM) and scanning electron (SEM) microscopy. The technique promotes in-process monitoring and

  7. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  8. Acoustic techniques in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Sinha, D.N.

    1995-07-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  9. Examination on the use of acoustic emission for monitoring metal forging process: A study using simulation technique

    SciTech Connect

    Mullins, W.M.; Malas, J.C. III; Venugopal, S.

    1997-05-01

    The aim of this study is to determine the feasibility of using acoustic emission as a monitoring technique for metal forging operations. From the sensor development paradigm proposed by McClean et al. the most likely approach to determining feasibility for application is through signal recognition. For this reason, signature prediction and analysis was chosen to determine the suitability for forging applications.

  10. Effects of different analysis techniques and recording duty cycles on passive acoustic monitoring of killer whales.

    PubMed

    Riera, Amalis; Ford, John K; Ross Chapman, N

    2013-09-01

    Killer whales in British Columbia are at risk, and little is known about their winter distribution. Passive acoustic monitoring of their year-round habitat is a valuable supplemental method to traditional visual and photographic surveys. However, long-term acoustic studies of odontocetes have some limitations, including the generation of large amounts of data that require highly time-consuming processing. There is a need to develop tools and protocols to maximize the efficiency of such studies. Here, two types of analysis, real-time and long term spectral averages, were compared to assess their performance at detecting killer whale calls in long-term acoustic recordings. In addition, two different duty cycles, 1/3 and 2/3, were tested. Both the use of long term spectral averages and a lower duty cycle resulted in a decrease in call detection and positive pod identification, leading to underestimations of the amount of time the whales were present. The impact of these limitations should be considered in future killer whale acoustic surveys. A compromise between a lower resolution data processing method and a higher duty cycle is suggested for maximum methodological efficiency. PMID:23968036

  11. Validation and verification of the acoustic emission technique for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Gagar, Daniel Omatsola

    The performance of the Acoustic Emission (AE) technique was investigated to establish its reliability in detecting and locating fatigue crack damage as well as distinguishing between different AE sources in potential SHM applications. Experiments were conducted to monitor the AE signals generated during fatigue crack growth in coupon 2014 T6 aluminium. The influence of stress ratio, stress range, sample geometry and whether or not the load spectrum was of constant or variable amplitude were all investigated. AE signals detected were correlated with values of applied cyclic load throughout the tests. Measurements of time difference of arrival were taken for assessment of errors in location estimates obtained using time of flight algorithms with a 1D location setup. At the onset of crack growth high AE Hit rates were observed for the first few millimetres after which they rapidly declined to minimal values for an extended period of crack growth. Another peak and then decline in AE Hit rates was observed for subsequent crack growth before yet another increase as the sample approached final failure.. AE signals were seen to occur in the lower two-thirds of the maximum load in the first few millimetres of crack growth before occurring at progressively smaller values as the crack length increased. A separate set of AE signals were observed close to the maximum cyclic stress throughout the entire crack growth process. At the failure crack length AE signals were generated across the entire loading range. Novel metrics were developed to statistically characterise variability of AE generation with crack growth and at particular crack lengths across different samples. A novel approach for fatigue crack length estimation was developed based on monitoring applied loads to the sample corresponding with generated AE signals. An acousto-ultrasonic method was used to calibrate the AE wave velocity in a representative wing-box structure which was used to successfully locate the

  12. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  13. Acoustic resonance techniques for quality control

    SciTech Connect

    Sinha, D.N.

    1992-09-01

    Acoustic resonance based nondestructive techniques are described that can be used for both process and quality control in manufacturing. The Acoustic Resonance Spectroscopy (AS) technique is highlighted for its capability in fluid property (flow, density, viscosity, and speed of sound) monitoring. Possible applications of these noninvasive techniques for textile manufacturing are pointed out.

  14. Acoustic resonance techniques for quality control

    SciTech Connect

    Sinha, D.N.

    1992-01-01

    Acoustic resonance based nondestructive techniques are described that can be used for both process and quality control in manufacturing. The Acoustic Resonance Spectroscopy (AS) technique is highlighted for its capability in fluid property (flow, density, viscosity, and speed of sound) monitoring. Possible applications of these noninvasive techniques for textile manufacturing are pointed out.

  15. Using Complementary Acoustic and Optical Techniques for Quantitative Monitoring of Biomolecular Adsorption at Interfaces

    PubMed Central

    Konradi, Rupert; Textor, Marcus; Reimhult, Erik

    2012-01-01

    The great wealth of different surface sensitive techniques used in biosensing, most of which claim to measure adsorbed mass, can at first glance look unnecessary. However, with each technique relying on a different transducer principle there is something to be gained from a comparison. In this tutorial review, different optical and acoustic evanescent techniques are used to illustrate how an understanding of the transducer principle of each technique can be exploited for further interpretation of hydrated and extended polymer and biological films. Some of the most commonly used surface sensitive biosensor techniques (quartz crystal microbalance, optical waveguide spectroscopy and surface plasmon resonance) are briefly described and five case studies are presented to illustrate how different biosensing techniques can and often should be combined. The case studies deal with representative examples of adsorption of protein films, polymer brushes and lipid membranes, and describe e.g., how to deal with strongly vs. weakly hydrated films, large conformational changes and ordered layers of biomolecules. The presented systems and methods are compared to other representative examples from the increasing literature on the subject. PMID:25586027

  16. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  17. A novel technique for acoustic emission monitoring in civil structures with global fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Verstrynge, E.; Pfeiffer, H.; Wevers, M.

    2014-06-01

    The application of acoustic emission (AE)-based damage detection is gaining interest in the field of civil structural health monitoring. Damage progress can be detected and located in real time and the recorded AEs hold information on the fracture process which produced them. One of the drawbacks for on-site application in large-scale concrete and masonry structures is the relatively high attenuation of the ultrasonic signal, which limits the detection range of the AE sensors. Consequently, a large number of point sensors are required to cover a certain area. To tackle this issue, a global damage detection system, based on AE detection with a polarization-modulated, single mode fiber optic sensor (FOS), has been developed. The sensing principle, data acquisition and analysis in time and frequency domain are presented. During experimental investigations, this AE-FOS is applied for the first time as a global sensor for the detection of crack-induced AEs in a full-scale concrete beam. Damage progress is monitored during a cyclic four-point bending test and the AE activity, detected with the FOS, is related to the subsequent stages of damage progress in the concrete element. The results obtained with the AE-FOS are successfully linked to the mechanical behavior of the concrete beam and a qualitative correspondence is found with AE data obtained by a commercial system.

  18. Monitoring of seafloor crustal deformation using GPS/Acoustic technique along the Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Tadokoro, K.; Ikuta, R.; Watanabe, T.; Fujii, C.; Matsuhiro, K.; Sayanagi, K.

    2014-12-01

    Seafloor crustal deformation is crucial for estimating the interplate locking at the shallow subduction zone and has been carried out at subduction margins in Japan, e.g., Japan Trench and Nankai Trough [Sato et al., 2011; Tadokoro et al., 2012]. Iinuma et al. [2012] derived slip distributions during the 2011 Tohoku-Oki earthquake using GPS/Acoustic data and on-land GPS data. The result showed that maximum slip is more than 85 m near the trench axis. The focal area along the Nankai trough extended to the trough axis affected this earthquake by cabinet office, government of Japan.  We monitored seafloor crustal deformation along the Nankai trough, Japan. Observation regions are at the eastern end of Nankai trough (named Suruga trough) and at the central Nankai trough. We established and monitored by two sites across the trough at each region. In the Suruga trough region, we repeatedly observed from 2005 to 2013. We observed 13 and 14 times at a foot wall side (SNE) and at a hanging wall side (SNW), respectively. We estimated the displacement velocities with relative to the Amurian plate from the result of repeated observation. The estimated displacement velocity vectors at SNE and SNW are 42±8 mm/y to N94±3˚W direction and 39±11 mm/y to N84±9˚W direction, respectively. The directions are the same as those measured at the on-land GPS stations. The magnitudes of velocity vector indicate significant shortening by approximately 4 mm/y between SNW and on-land GPS stations at hanging wall side of the Suruga Trough. This result shows that the plate interface at the northernmost Suruga trough is strongly locked. In the central Nankai trough region, we established new two stations across the central Nankai trough (Both stations are about 15km distance from trough) and observed only three times, August 2013, January 2014, and June 2014. We report the results of monitoring performed in this year.

  19. Acoustic emission monitoring of polymer composite materials

    NASA Technical Reports Server (NTRS)

    Bardenheier, R.

    1981-01-01

    The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.

  20. Fatigue-crack monitoring in-flight using acoustic emission - hardware, technique, and testing

    SciTech Connect

    Hutton, P.H.; Skorpik, J.R.; Lemon, D.K.

    1981-07-01

    The three programs described represent a logical evolutionary process toward effective flaw surveillance in aircraft using AE. The Macchi tests showed that an AE system can withstand extended in-flight service and collect meaningful information relative to fatigue crack growth at a single specific location. The MIrage aircraft work seeks to extend the methods demonstrated on the Macchi into a more complex circumstance. We are now attempting to detect and locate crack growth at any of twenty fastener locations in a relatively complex geometry. The DARPA pattern recognition program seeks to develop signal identification capability that would pave the way for general monitoring of aircraft structures using AE to detect fatigue crack growth. It appears that AE technology may be capable of enhancing aircraft safety assurance while reducing inspection requirements with the associated costs.

  1. Investigation of acoustic emission coupling techniques

    NASA Technical Reports Server (NTRS)

    Jolly, W. D.

    1988-01-01

    A three-phase research program was initiated by NASA in 1983 to investigate the use of acoustic monitoring techniques to detect incipient failure in turbopump bearings. Two prototype acoustic coupler probes were designed and evaluated, and four units of the final probe design were fabricated. Success in this program could lead to development of an on-board monitor which could detect bearing damage in flight and reduce or eliminate the need for disassembly after each flight. This final report reviews the accomplishments of the first two phases and presents the results of fabrication and testing completed in the final phase of the research program.

  2. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  3. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  4. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Yack, Tina M.

    California Bight (SCB). The preliminary measurement of the visually validated Baird's beaked whale echolocation signals recorded from the ship-based towed array were used as a basis for identifying Baird's signals in the seafloor-mounted autonomous recorder data. The passive acoustic detection algorithms for beaked whales developed using data from Chapters 2 and 3 were field tested during a three year period to test the reliability of acoustic beaked whale monitoring techniques and to use these methods to describe beaked whale habitat in the SCB. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the SCB and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study (SOCAL-BRS). The final step in this research was to utilize the passive acoustic detection techniques developed herin to predictively model beaked whale habitat use and preferences in the CCE. This chapter uses a multifaceted approach to model beaked whale encounter rates in the CCE. Beaked whale acoustic encounters are utilized to inform Generalized Additive Models (GAMs) of encounter rate for beaked whales in the CCE and compare these to visual based models. Acoustic and visual based models were independently developed for a small beaked whale group and Baird's beaked whales. Two models were evaluated for visual and acoustic encounters, one that also included Beaufort sea state as a predictor variable in addition to those listed and one that did not include Beaufort sea state. (Abstract shortened by UMI.)

  5. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    PubMed Central

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  6. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique.

    PubMed

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  7. A novel closure based approach for fatigue crack length estimation using the acoustic emission technique in structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Gagar, Daniel; Foote, Peter; Irving, Philip

    2014-10-01

    Use of Acoustic Emission (AE) for detecting and locating fatigue cracks in metallic structures is widely reported but studies investigating its potential for fatigue crack length estimation are scarce. Crack growth information enables prediction of the remaining useful life of a component using well established fracture mechanics principles. Hence, the prospects of AE for use in structural health monitoring applications would be significantly improved if it could be demonstrated not only as a means of detecting crack growth but also for estimation of crack lengths. A new method for deducing crack length has been developed based on correlations between AE signals generated during fatigue crack growth and corresponding cyclic loads. A model for crack length calculation was derived empirically using AE data generated during fatigue crack growth tests in 2 mm thick SEN aluminium 2014 T6 specimens subject to a tensile stress range of 52 MPa and an R ratio of 0.1. The model was validated using AE data generated independently in separate tests performed with a stress range of 27 MPa. The results showed that predictions of crack lengths over a range of 10 mm to 80 mm can be obtained with the mean of the normalised absolute errors ranging between 0.28 and 0.4. Predictions were also made using existing AE feature-based methods and the results compared to those obtained with the novel approach developed.

  8. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  9. Acoustic emission monitoring of composite containment systems

    NASA Astrophysics Data System (ADS)

    Maguire, John R.

    2011-07-01

    This paper considers two different types of composite containment system, and two different types of acoustic emission (AE) monitoring approach. The first system is a composite reinforced pressure vessel (CRPV) which is monitored both during construction and in-service using a broadband modal acoustic emission (MAE) technique. The second system is a membrane cargo containment system which is monitored using both a global as well as a local AE technique. For the CRPV, the damage assessment is concerned mainly with the integrity of the composite outer layer at the construction stage, and possible fatigue cracking of the inner steel liner at the in-service stage. For the membrane tank, the damage assessment is concerned with locating and quantifying any abnormal porosities that might develop in-service. By comparing and contrasting the different types of structural system and different monitoring approaches inferences are drawn as to what role AE monitoring could take in the damage assessment of other types of composite containment system. (Detailed technical data have not been included, due to client confidentiality constraints.)

  10. Acoustic transducer for nuclear reactor monitoring

    DOEpatents

    Ahlgren, Frederic F.; Scott, Paul F.

    1977-01-01

    A transducer to monitor a parameter and produce an acoustic signal from which the monitored parameter can be recovered. The transducer comprises a modified Galton whistle which emits a narrow band acoustic signal having a frequency dependent upon the parameter being monitored, such as the temperature of the cooling media of a nuclear reactor. Multiple locations within a reactor are monitored simultaneously by a remote acoustic receiver by providing a plurality of transducers each designed so that the acoustic signal it emits has a frequency distinct from the frequencies of signals emitted by the other transducers, whereby each signal can be unambiguously related to a particular transducer.

  11. Acoustically based fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Baker, Donald A.; Zuckerwar, Allan J.

    1991-01-01

    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.

  12. Air Coupled Acoustic Thermography (acat) Inspection Technique

    NASA Astrophysics Data System (ADS)

    Zalameda, J. N.; Winfree, W. P.; Yost, W. T.

    2008-02-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of +/-6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  13. Air Coupled Acoustic Thermography (ACAT) Inspection Technique

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph; Winfree, William P.; Yost, William T.

    2007-01-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of plus or minus 6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  14. Overview of geometrical room acoustic modeling techniques.

    PubMed

    Savioja, Lauri; Svensson, U Peter

    2015-08-01

    Computerized room acoustics modeling has been practiced for almost 50 years up to date. These modeling techniques play an important role in room acoustic design nowadays, often including auralization, but can also help in the construction of virtual environments for such applications as computer games, cognitive research, and training. This overview describes the main principles, landmarks in the development, and state-of-the-art for techniques that are based on geometrical acoustics principles. A focus is given to their capabilities to model the different aspects of sound propagation: specular vs diffuse reflections, and diffraction. PMID:26328688

  15. Acoustic Location of Lightning Using Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Erives, H.; Arechiga, R. O.; Stock, M.; Lapierre, J. L.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    Acoustic arrays have been used to accurately locate thunder sources in lightning flashes. The acoustic arrays located around the Magdalena mountains of central New Mexico produce locations which compare quite well with source locations provided by the New Mexico Tech Lightning Mapping Array. These arrays utilize 3 outer microphones surrounding a 4th microphone located at the center, The location is computed by band-passing the signal to remove noise, and then computing the cross correlating the outer 3 microphones with respect the center reference microphone. While this method works very well, it works best on signals with high signal to noise ratios; weaker signals are not as well located. Therefore, methods are being explored to improve the location accuracy and detection efficiency of the acoustic location systems. The signal received by acoustic arrays is strikingly similar to th signal received by radio frequency interferometers. Both acoustic location systems and radio frequency interferometers make coherent measurements of a signal arriving at a number of closely spaced antennas. And both acoustic and interferometric systems then correlate these signals between pairs of receivers to determine the direction to the source of the received signal. The primary difference between the two systems is the velocity of propagation of the emission, which is much slower for sound. Therefore, the same frequency based techniques that have been used quite successfully with radio interferometers should be applicable to acoustic based measurements as well. The results presented here are comparisons between the location results obtained with current cross correlation method and techniques developed for radio frequency interferometers applied to acoustic signals. The data were obtained during the summer 2013 storm season using multiple arrays sensitive to both infrasonic frequency and audio frequency acoustic emissions from lightning. Preliminary results show that

  16. Intraoperative neuromonitoring techniques in the surgical management of acoustic neuromas.

    PubMed

    Oh, Taemin; Nagasawa, Daniel T; Fong, Brendan M; Trang, Andy; Gopen, Quinton; Parsa, Andrew T; Yang, Isaac

    2012-09-01

    Unfavorable outcomes such as facial paralysis and deafness were once unfortunate probable complications following resection of acoustic neuromas. However, the implementation of intraoperative neuromonitoring during acoustic neuroma surgery has demonstrated placing more emphasis on quality of life and preserving neurological function. A modern review demonstrates a great degree of recent success in this regard. In facial nerve monitoring, the use of modern electromyography along with improvements in microneurosurgery has significantly improved preservation. Recent studies have evaluated the use of video monitoring as an adjunctive tool to further improve outcomes for patients undergoing surgery. Vestibulocochlear nerve monitoring has also been extensively studied, with the most popular techniques including brainstem auditory evoked potential monitoring, electrocochleography, and direct compound nerve action potential monitoring. Among them, direct recording remains the most promising and preferred monitoring method for functional acoustic preservation. However, when compared with postoperative facial nerve function, the hearing preservation is only maintained at a lower rate. Here, the authors analyze the major intraoperative neuromonitoring techniques available for acoustic neuroma resection. PMID:22937857

  17. Development of hydroacoustical techniques for the monitoring and classification of benthic habitats in Puck Bay: Modeling of acoustic waves scattering by seagrass

    NASA Astrophysics Data System (ADS)

    Raczkowska, A.; Gorska, N.

    2012-12-01

    Puck Bay is an area of high species biodiversity belonging to the Coastal Landscape Park of Baltic Sea Protected Areas (BSPA) and is also included in the list of the World Wide Fund for Nature (WWF) and covered by the protection program "Natura 2000". The underwater meadows of the Puck Bay are important for Europe's natural habitats due to their role in enhancing the productivity of marine ecosystems and providing shelter and optimal feeding conditions for many marine organisms. One of the dominant species comprising the underwater meadows of the Southern Baltic Sea is the seagrass Zostera marina. The spatial extent of underwater seagrass meadows is altered by pollution and eutrophication; therefore, to properly manage the area one must monitor its ecological state. Remote acoustic methods are useful tools for the monitoring of benthic habitats in many marine areas because they are non-invasive and allow researchers to obtain data from a large area in a short period of time. Currently there is a need to apply these methods in the Baltic Sea. Here we present an analysis of the mechanism of scattering of acoustic waves on seagrass in the Southern Baltic Sea based on the numerical modeling of acoustic wave scattering by the biological tissues of plants. The study was conducted by adapting a model developed on the basis of DWBA (Distorted Wave Born Approximation) developed by Stanton and Chu (2005) for fluid-like objects, including the characteristics of the Southern Baltic seagrass. Input data for the model, including the morphometry of seagrass leaves, their angle of inclination and the density plant cover, was obtained through the analysis of biological materials collected in the Puck Bay in the framework of a research project financed by the Polish Government (Development of hydroacoustic methods for studies of underwater meadows of Puck Bay, 6P04E 051 20). On the basis of the developed model, we have analyzed the dependence of the target strength of a single

  18. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  19. Distributed acoustic sensing: towards partial discharge monitoring

    NASA Astrophysics Data System (ADS)

    Rohwetter, Philipp; Eisermann, René; Krebber, Katerina

    2015-09-01

    We report on the successful application of distributed acoustic sensing (DAS) to the detection of partial discharge (PD). A detection limit of about 1 nC discharge magnitude was achieved for PD in a real-scale model of a high voltage termination. Dedicated ultrasonic fibre-optic transducers were interrogated using coherent optical time-domain Rayleigh backscatter reflectometry (C-OTDR). Random quadrature demodulation was employed for retrieving relevant acoustic information from the raw C-OTDR backscatter traces. To our knowledge, our results are a first-time demonstration that quasi-distributed fibre-optic acoustic sensing is a candidate technology for the acoustic partial discharge monitoring of power cable joints and terminations.

  20. Acoustic surface waveguides for acoustic emission monitoring of fiber-reinforced plastic structures

    SciTech Connect

    Chen, H.L.R.; He, Y.; Superfesky, M. . Constructed Facilities Center)

    1994-09-01

    Acoustic surface waveguides are developed to enhance the transmission of acoustic emission (AE) signals in high attenuating fiber-reinforced plastic (FRP) structures. In this paper, the design of the surface waveguide system and the source location technique are described. Experimental results of using a surface waveguide for AE monitoring of a FRP composite pressure pipe are presented to demonstrate the effectiveness of the proposed waveguide system. A metal wire was selected as a waveguide, and pencil breaks and electronic pulses were used as artificial AE signals. The results indicate that the use of the surface waveguide can significantly increase the AE monitoring range. Also, a high transmission efficiency was experimentally determined for the epoxy joints developed to attach the surface waveguide to the FRP pipe. The proposed surface waveguide appears to be a promising technique for AE monitoring on existing FRP pressure vessels and storage tanks.

  1. Nonintrusive Monitoring and Control of Metallurgical Processes by Acoustic Measurements

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ling; Khajavi, Leili Tafaghodi; Barati, Mansoor

    2011-06-01

    The feasibility of developing a new online monitoring technique based on the characteristic acoustic response of gas bubbles in a liquid has been investigated. The method is intended to monitor the chemistry of the liquid through its relation to the bubble sound frequency. A low-temperature model consisting of water and alcohol mixtures was established, and the frequency of bubbles rising under varying concentrations of methanol was measured. It was shown that the frequency of the sound created by bubble pulsation varies with the percentage of alcohol in water. The frequency drops sharply with the increase in methanol content up to 20 wt pct, after which the decreases is gradual. Surface tension seems to be a critical liquid property affecting the sound frequency through its two-fold effects on the bubble size and the pulsation domain. The dependence between the frequency and the liquid composition suggests the feasibility of developing an acoustic-based technique for process control purposes.

  2. Monitoring damage growth in titanium matrix composites using acoustic emission

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Prosser, W. H.; Johnson, W. S.

    1993-01-01

    The application of the acoustic emission (AE) technique to locate and monitor damage growth in titanium matrix composites (TMC) was investigated. Damage growth was studied using several optical techniques including a long focal length, high magnification microscope system with image acquisition capabilities. Fracture surface examinations were conducted using a scanning electron microscope (SEM). The AE technique was used to locate damage based on the arrival times of AE events between two sensors. Using model specimens exhibiting a dominant failure mechanism, correlations were established between the observed damage growth mechanisms and the AE results in terms of the events amplitude. These correlations were used to monitor the damage growth process in laminates exhibiting multiple modes of damage. Results revealed that the AE technique is a viable and effective tool to monitor damage growth in TMC.

  3. Damage Detection and Analysis in CFRPs Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis Laron

    Real time monitoring of damage is an important aspect of life management of critical structures. Acoustic emission (AE) techniques allow for measurement and assessment of damage in real time. Acoustic emission parameters such as signal amplitude and duration were monitored during the loading sequences. Criteria that can indicate the onset of critical damage to the structure were developed. Tracking the damage as it happens gives a better analysis of the failure evolution that will allow for a more accurate determination of structural life. The main challenge is distinguishing between legitimate damage signals and "false positives" which are unrelated to damage growth. Such false positives can be related to electrical noise, friction, or mechanical vibrations. This research focuses on monitoring signals of damage growth in carbon fiber reinforced polymers (CFRPs) and separating the relevant signals from the false ones. In this Dissertation, acoustic emission signals from CFRP specimens were experimentally recorded and analyzed. The objectives of this work are: (1) perform static and fatigue loading of CFRP composite specimens and measure the associated AE signals, (2) accurately determine the AE parameters (energy, frequency, duration, etc.) of signals generated during failure of such specimens, (3) use fiber optic sensors to monitor the strain distribution of the damage zone and relate these changes in strain measurements to AE data.

  4. Acoustic emission monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Van Dam, Jeremy; Bond, Leonard J.

    2015-03-01

    Damage to wind turbine blades can, if left uncorrected, evolve into catastrophic failures resulting in high costs and significant losses for the operator. Detection of damage, especially in real time, has the potential to mitigate the losses associated with such catastrophic failure. To address this need various forms of online monitoring are being investigated, including acoustic emission detection. In this paper, pencil lead breaks are used as a standard reference source and tests are performed on unidirectional glass-fiber-reinforced-polymer plates. The mechanical pencil break is used to simulate an acoustic emission (AE) that generates elastic waves in the plate. Piezoelectric sensors and a data acquisition system are used to detect and record the signals. The expected dispersion curves generated for Lamb waves in plates are calculated, and the Gabor wavelet transform is used to provide dispersion curves based on experimental data. AE sources using an aluminum plate are used as a reference case for the experimental system and data processing validation. The analysis of the composite material provides information concerning the wave speed, modes, and attenuation of the waveform, which can be used to estimate maximum AE event - receiver separation, in a particular geometry and materials combination. The foundational data provided in this paper help to guide improvements in online structural health monitoring of wind turbine blades using acoustic emission.

  5. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    SciTech Connect

    Pantea, Cristian

    2012-05-04

    The projects objectives and purpose are to: (1) development a multipurpose acoustic sensor for downhole fluid monitoring in Enhanced Geothermal Systems (EGS) reservoirs over typical ranges of pressures and temperatures and demonstrate its capabilities and performance for different EGS systems; (2) determine in real-time and in a single sensor package several parameters - temperature, pressure, fluid flow and fluid properties; (3) needed in nearly every phase of an EGS project, including Testing of Injection and Production Wells, Reservoir Validation, Inter-well Connectivity, Reservoir Scale Up and Reservoir Sustainability. (4) Current sensors are limited to operating at lower temperatures, but the need is for logging at high temperatures. The present project deals with the development of a novel acoustic-based sensor that can work at temperatures up to 374 C, in inhospitable environments.

  6. Acoustic Flow Monitor System - User Manual

    USGS Publications Warehouse

    LaHusen, Richard

    2005-01-01

    INTRODUCTION The Acoustic Flow Monitor (AFM) is a portable system that was designed by the U.S. Geological Survey Cascades Volcano Observatory to detect and monitor debris flows associated with volcanoes. It has been successfully used internationally as part of real-time warning systems in valleys threatened by such flows (Brantley, 1990; Marcial and others, 1996; Lavigne and others, 2000). The AFM system has also been proven to be an effective tool for monitoring some non-volcanic debris flows. This manual is intended to serve as a basic guide for the installation, testing, and maintenance of AFM systems. An overview of how the system works, as well as instructions for installation and guidelines for testing, is included. Interpretation of data is not covered in this manual; rather, the user should refer to the references provided for published examples of AFM data.

  7. Active Acoustic Monitoring of Aquatic Life.

    PubMed

    Stein, Peter J; Edson, Patrick

    2016-01-01

    Active acoustic monitoring (AAM) can be used to study the behavioral response of marine life and to mitigate harm during high-danger anthropogenic activities. This has been done in fish studies for many decades, and there are now case studies in which AAM has been used for marine mammal monitoring as well. This includes monitoring where the ranges, AAM frequency of operation, and species are such that the AAM operation is completely outside the hearing range of the animals. However, it also includes AAM operations within the hearing range of marine life, although this does not necessarily that imply AAM is not a suitable tool. It is just not always possible to have a sufficient detection and tracking range and operate at a frequency outside the marine life hearing range. Likely, the best and most important application of AAM is when the anthropogenic activity to be conducted is temporary and presents a clear danger to aquatic life. PMID:26611075

  8. Smart acoustic emission system for wireless monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol

    2008-03-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical

  9. Detection of respiratory compromise by acoustic monitoring, capnography, and brain function monitoring during monitored anesthesia care.

    PubMed

    Tanaka, Pedro P; Tanaka, Maria; Drover, David R

    2014-12-01

    Episodes of apnea in sedated patients represent a risk of respiratory compromise. We hypothesized that acoustic monitoring would be equivalent to capnography for detection of respiratory pauses, with fewer false alarms. In addition, we hypothesized that the patient state index (PSI) would be correlated with the frequency of respiratory pauses and therefore could provide information about the risk of apnea during sedation. Patients undergoing sedation for surgical procedures were monitored for respiration rate using acoustic monitoring and capnography and for depth of sedation using the PSI. A clinician blinded to the acoustic and sedation monitor observed the capnograph and patient to assess sedation and episodes of apnea. Another clinician retrospectively reviewed the capnography and acoustic waveform and sound files to identify true positive and false positive respiratory pauses by each method (reference method). Sensitivity, specificity, and likelihood ratio for detection of respiratory pause was calculated for acoustic monitoring and capnography. The correlation of PSI with respiratory pause events was determined. For the 51 respiratory pauses validated by retrospective analysis, the sensitivity, specificity, and likelihood ratio positive for detection were 16, 96 %, and 3.5 for clinician observation; 88, 7 %, and 1.0 for capnography; and 55, 87 %, and 4.1 for acoustic monitoring. There was no correlation between PSI and respiratory pause events. Acoustic monitoring had the highest likelihood ratio positive for detection of respiratory pause events compared with capnography and clinician observation and, therefore, may provide the best method for respiration rate monitoring during these procedures. PMID:24420342

  10. Acoustic module of the Acquabona (Italy) debris flow monitoring system

    NASA Astrophysics Data System (ADS)

    Galgaro, A.; Tecca, P. R.; Genevois, R.; Deganutti, A. M.

    2005-02-01

    Monitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys).

  11. Acoustic Techniques for Thin Film Thickness Measurement in Semiconductor Processing

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Sanjay

    In modern semiconductor manufacturing, process monitoring and control are important issues limited at the present time by a lack of sensors and instrumentation capable of measuring process parameters like film thickness. In order to address this problem, two novel systems for thin film thickness measurement in semiconductor processing based upon contacting acoustic techniques have been developed. Both of these systems couple acoustic energy into the wafer via a nondestructive Hertzian contact and achieve high resolution by exciting and receiving ultrasonic signals from a ZnO transducer with microwave frequency electronics. The basic physical mechanism for film thickness determination is to analyze reflected waves due to acoustic impedance mismatches between various material layers on a silicon substrate. The first system requires frontside contacting of a sapphire buffer rod to an opaque film deposited on a silicon wafer and involves the use of broadband, high frequency pulse-echo electronics in the 0.5-5 GHz range. With this system, ex-situ measurements of aluminum and gold thin films on a silicon substrate have been done in the 0.25-2.5 mum. range with 3-6% accuracy as compared to surface profilometer measurements. Possible applications for this system include using it as a post -deposition process monitor, generating film thickness contour maps, or examining multilayer structures. The second system requires backside contacting of a sapphire buffer rod to a silicon wafer, which is in a vacuum station, and involves monitoring the changes in phase of CW 1-2 GHz acoustic waves as a function of frontside film growth. Using this technique, in-situ indium and aluminum film thickness monitoring has been done in both evaporator and sputtering environments with a resolution of 40 A. Temperature experiments in an oven have shown a resolution of 0.05 K for the sapphire buffer rod. Finally, multistep processing has been done and a multilayer film structure has been measured

  12. Acoustic emission monitoring of HFIR vessel during hydrostatic testing

    SciTech Connect

    Friesel, M.A.; Dawson, J.F.

    1992-08-01

    This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results.

  13. Acoustic emission monitoring of reinforced and prestressed concrete structures

    NASA Astrophysics Data System (ADS)

    Fowler, Timothy J.; Yepez, Luis O.; Barnes, Charles A.

    1998-03-01

    Acoustic emission is an important global nondestructive test method widely used to evaluate the structural integrity of metals and fiber reinforced plastic structures. However, in concrete, application of the technology is still at the experimental stage. Microcracking and crack growth are the principal sources of emission in concrete. Bond failure, anchor slippage, and crack rubbing are also sources of emission. Tension zone cracking in reinforced concrete is a significant source of emission and has made application of the technique to concrete structures difficult. The paper describes acoustic emission monitoring of full-scale prestressed concrete girders and a reinforced concrete frame during loading. The tests on the prestressed concrete girders showed three sources of emission: shear-induced cracking in the web, flexural cracking at the region of maximum moment, and strand slippage at the anchorage zone. The reinforced concrete frame was monitored with and without concrete shear panels. The research was directed to early detection of the cracks, signature analysis, source location, moment tensor analysis, and development of criteria for acoustic emission inspection of concrete structures. Cracking of concrete in the tension areas of the reinforced concrete sections was an early source of emission. More severe emission was detected as damage levels in the structure increased.

  14. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    PubMed Central

    Aggelis, Dimitrios. G.; Strantza, Maria; Louis, Olivia; Boulpaep, Frans; Polyzos, Demosthenes; van Hemelrijck, Danny

    2015-01-01

    The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure. PMID:25763648

  15. An acoustic sensor for monitoring airflow in pediatric tracheostomy patients.

    PubMed

    Ruscher, Thomas; Wicks Phd, Alexandrina; Muelenaer Md, Andre

    2012-01-01

    Without proper monitoring, patients with artificial airways in the trachea are at high risk for complications or death. Despite routine maintenance of the tube, dislodged or copious mucus can obstruct the airway. Young children ( 3yrs) have difficulty tending to their own tubes and are particularly vulnerable to blockages. They require external respiratory sensors. In a hospital environment, ventilators, end-tidal CO2 monitors, thermistors, and other auxiliary equipment provide sufficient monitoring of respiration. However, outpatient monitoring methods, such as thoracic impedance and pulse oximetry, are indirect and prone to false positives. Desensitization of caregivers to frequent false alarms has been cited in medical literature as a contributing factor in cases of child death. Ultrasonic time-of-flight (TOF) is a technique used in specialized industrial applications to non-invasively measure liquid and gas flow. Two transducers are oriented at a diagonal across a flow channel. Velocity measurement is accomplished by detecting slight variations in transit time of contra-propagating acoustic signals with a directional component parallel to air flow. Due to the symmetry of acoustic pathway between sensors, velocity measurements are immune to partial fouling in the tube from mucus, saliva, and condensation. A first generation proof of concept prototype was constructed to evaluate the ultrasonic TOF technique for medical tracheostomy monitoring. After successful performance, a second generation prototype was designed with a smaller form factor and more advanced electronics. This prototype was tested and found to measure inspired volume with a root-mean-square error < 2% during initial trials. PMID:22846306

  16. Acoustic Monitoring of the Arctic Ice Cap

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.

    2012-12-01

    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two

  17. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location

  18. Tritium monitoring techniques

    SciTech Connect

    DeVore, J.R.; Buckner, M.A.

    1996-05-01

    As part of their operations, the U.S. Navy is required to store or maintain operational nuclear weapons on ships and at shore facilities. Since these weapons contain tritium, there are safety implications relevant to the exposure of personnel to tritium. This is particularly important for shipboard operations since these types of environments can make low-level tritium detection difficult. Some of these ships have closed systems, which can result in exposure to tritium at levels that are below normally acceptable levels but could still cause radiation doses that are higher than necessary or could hamper ship operations. This report describes the state of the art in commercial tritium detection and monitoring and recommends approaches for low-level tritium monitoring in these environments.

  19. Guided wave acoustic monitoring of corrosion in recovery boiler tubing

    SciTech Connect

    Quarry, M J; Chinn, D J

    2004-02-19

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the coldside or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  20. FRP/steel composite damage acoustic emission monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Chen, Zhi

    2015-04-01

    FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.

  1. In-process acoustic emission monitoring of dissimilar metal welding: Final report

    SciTech Connect

    Not Available

    1989-08-01

    A system to provide real-time, in-process acoustic emission monitoring to detect and locate flaws in bimetallic welds has been demonstrated. This system could provide reliable inspection of critical welds in cases where conventional NDE would be costly or impossible to apply. Tests were completed on four sample welds to determine the sensitivity of the system. Artificial flaws were introduced into two test samples and the acoustic emission results were verified by radiography and visual inspection techniques.

  2. Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.

    PubMed

    André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. PMID:21665016

  3. Techniques for Primary Acoustic Thermometry to 800 K

    NASA Astrophysics Data System (ADS)

    Ripple, D. C.; Defibaugh, D. R.; Moldover, M. R.; Strouse, G. F.

    2003-09-01

    The NIST Primary Acoustic Thermometer will measure the difference between the International Temperature Scale of 1990 and the Kelvin Thermodynamic Scale throughout the range 273 K to 800 K with uncertainties of only a few millikelvins. The acoustic thermometer determines the frequencies of the acoustic resonances of pure argon gas contained within a spherical cavity with uncertainties approaching one part in 106. To achieve this small uncertainty at these elevated temperatures we developed new acoustic transducers and new techniques for the maintenance of gas purity and for temperature control. The new electro-acoustic transducers are based on the capacitance between a flexible silicon wafer and a rigid backing plate. Without the damping usually provided by polymers, mechanical vibrations caused unstable, spurious acoustic signals. We describe our techniques for suppression of these vibrations. Our acoustic thermometer allows the argon to be continuously flushed through the resonator, thereby preventing the build up of hydrogen that evolves from the stainless-steel resonator. We describe how the argon pressure is stabilized while flushing. The argon exiting from the resonator is analyzed with a customized gas chromatograph. Because the acoustic resonator was so large—it has an outer diameter of 20 cm—a sophisticated furnace, based on surrounding the resonator with three concentric aluminum shells, was designed to maintain thermal uniformity and stability of the resonator at a level of 1 mK. We describe the design, modeling, and operational characteristics of the furnace.

  4. An evaluation of acoustic seabed classification techniques for marine biotope monitoring over broad-scales (>1 km 2) and meso-scales (10 m 2-1 km 2)

    NASA Astrophysics Data System (ADS)

    van Rein, H.; Brown, C. J.; Quinn, R.; Breen, J.; Schoeman, D.

    2011-07-01

    Acoustic seabed classification is a useful tool for monitoring marine benthic habitats over broad-scales (>1 km 2) and meso-scales (10 m 2-1 km 2). Its utility in this context was evaluated using two approaches: by describing natural changes in the temporal distribution of marine biotopes across the broad-scale (4 km 2), and by attempting to detect specific experimentally-induced changes to kelp-dominated biotopes across the meso-scale (100 m 2). For the first approach, acoustic backscatter mosaics were constructed using sidescan sonar and multibeam echosounder data collected from Church Bay (Rathlin Island, Northern Ireland) in 1999, 2008 and 2009. The mosaics were manually segmented into acoustic facies, which were ground-truthed using a drop-video camera. Biotopes were classified from the video by multivariate exploratory analysis and cross-tabulated with the acoustic facies, showing a positive correlation. These results were integrated with bathymetric data to map the distribution of seven unique biotopes in Church Bay. Kappa analysis showed the biotope distribution was highly similar between the biotope maps, possibly due to the stability of bedforms shaped by the tidal regime around Rathlin Island. The greatest biotope change in this approach was represented by seasonal and annual changes in the growth of the seagrass, Zostera marina. In the second approach, sidescan sonar data were collected before and after the removal of 100 m 2 of kelp from three sites. Comparison of the data revealed no differences between the high-resolution backscatter imagery. It is concluded that acoustic seabed classification can be used to monitor change over broad- and meso-scales but not necessarily for all biotopes; its success depends on the type of acoustic system employed and the biological characteristics of the target biotope.

  5. Passive acoustic monitoring of bed load for fluvial applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...

  6. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function. PMID:26515810

  7. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Lawson, Gareth L.

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  8. Applications of swept-frequency acoustic interferometry technique in chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.; Lizon, D.; Hasse, R.

    1996-09-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range completely noninvasively from outside a container (e.g., pipe, tank, reactor vessel, etc.,). These acoustic parameters, along with their frequency-dependence, can be used to identify various chemicals. This technique can be adapted for a range of chemical diagnostic applications, particularly, in process control where monitoring of acoustic properties of chemicals may provide appropriate feedback information. Both experimental data and theoretical modeling are presented. Examples of several novel applications of the SFAI technique are discussed.

  9. ClampOn acoustic solid fuel monitor

    SciTech Connect

    Vesterhus, T.

    1999-07-01

    The general idea of the project is to develop a ClampOn Solid Fuel Monitor, enabling optimization of the combustion process in pulverized coal fired boilers. The development will be based on adapting existing technology for measuring the content of sand particles in a flow of natural gas. The Norwegian firm ClampOn AS develops equipment for such measurements, and has already a proven track record as a result of its work with major oil companies throughout the world. The industry wants some sort of fuel indicator, e.g. a piece of equipment that enables the operator to measure and control the amounts of the fuel to each individual burner. The best techniques available today--as far as the author knows--can only offer samples of the fuel stream at discrete points of time. To truly optimize the combustion process, it is vital to continuously monitor the mass of fuel to each burner, and optimize the combustion process through continuous and infinitesimal adjustments of the fuel flow. This will minimize the NO{sub x} created by uneven temperature-distribution in the combustion chamber. In this way maximum power generation can be obtained at minimal emission of pollutants for a given amount of coal burned.

  10. Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion

    NASA Astrophysics Data System (ADS)

    Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.

    2011-04-01

    The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.

  11. Damage Source Identification of Reinforced Concrete Structure Using Acoustic Emission Technique

    PubMed Central

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures. PMID:23997681

  12. OPERATING PROCEDURE FOR THE PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-08-29

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor acoustic signals in high-pressure natural gas (NG) transmission lines. Of particular interest are the three acoustic signals associated with a pipeline fracture. The system is portable (less than 30 lbm) and can be used at all line pressures up to 1000 psig. The PAMP requires a shut-off valve equipped 1/2 inch NPT access port in the pipeline. It is fully functional over the typical pressure range found in the natural gas transmission pipelines in the West Virginia, Virginia, Pennsylvania, and Ohio areas. With the use of the PAMP, a full spectrum of acoustic signals can be recorded and defined in terms of acoustic energy in decibels. To detect natural gas pipeline infringements and leaks, the acoustic energy generated inside the line is monitored with a sensitive pressure-equalized microphone and a step function type {Delta}p transducer. The assembly is mounted on a 1000 psig pipe fitting-tree called the PAMP. The electronics required to record, store and analyze the data are described within this report in the format of an operating manual.

  13. Combined Photoacoustic-Acoustic Technique for Crack Imaging

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.; Chigarev, N.; Tournat, V.; Gusev, V.

    2010-01-01

    Nonlinear imaging of a crack by combination of a common photoacoustic imaging technique with additional acoustic loading has been performed. Acoustic signals at two different fundamental frequencies were launched in the sample, one photoacoustically through heating of the sample surface by the intensity-modulated scanning laser beam and another by a piezoelectrical transducer. The acoustic signal at mixed frequencies, generated due to system nonlinearity, has been detected by an accelerometer. Different physical mechanisms of the nonlinearity contributing to the contrast in linear and nonlinear photoacoustic imaging of the crack are discussed.

  14. Microwave de-embedding techniques applied to acoustics.

    PubMed

    Jackson, Charles M

    2005-07-01

    This paper describes the use of the microwave techniques of time domain reflectometry (TDR) and de-embedding in an acoustical application. Two methods of calibrating the reflectometer are presented to evaluate the consistency of the method. Measured and modeled S-parameters of woodwind instruments are presented. The raw measured data is de-embedded to obtain an accurate measurement. The acoustic TDR setup is described. PMID:16212248

  15. Ultrasonic waveguide sensor for acoustic monitoring of nuclear power plants

    SciTech Connect

    Mel'nikov, V.I.; Khokhlov, V.N.; Duntsev, A.V.

    1988-02-01

    Waveguide sensors are being increasingly used for acoustic emission monitoring of equipment in nuclear power plants and in systems for acoustic diagnostics of the coolant. In this paper we examine the construction of a waveguide sensor for acoustic monitoring for the example of an impedance sensor for the steam content of water coolant, intended for use in the active emission-reception mode. The dynamic properties of the sensor are determined by the construction and the dimensions of the transducer, and are usually represented by its amplitude-frequency characteristic, which, as a rule, is of the resonance type. The longitudinal-wave waveguide, made from steel wire 0.8-1.2 mm in diameter, can transmit signals in the band 50-1000 kHz. To increase the reliability and the ease of maintenance of the monitoring system the transducer and the waveguide are connected in a detachable manner.

  16. Improved acoustic viscosimeter technique. [for determining fluid shear viscosity

    NASA Technical Reports Server (NTRS)

    Fisch, M. R.; Moeller, R. P.; Carome, E. F.

    1976-01-01

    An improved technique has been developed for studies of the shear viscosity of fluids. It utilizes an acoustic resonator as a four-terminal electrical device; the resonator's amplitude response may be determined directly and simply related to the fluid's viscosity. The use of this technique is discussed briefly and data obtained in several fluids is presented.

  17. Nonlinear acoustic techniques for landmine detection.

    PubMed

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum. PMID:15658688

  18. Monitoring the Ocean Acoustic Environment: A Model-Based Detection Approach

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    2000-03-13

    A model-based approach is applied in the development of a processor designed to passively monitor an ocean acoustic environment along with its associated variations. The technique employs an adaptive, model-based processor embedded in a sequential likelihood detection scheme. The trade-off between state-based and innovations-based monitor designs is discussed, conceptually. The underlying theory for the innovations-based design is briefly developed and applied to a simulated data set.

  19. SUSPENDED-SEDIMENT MEASUREMENTS IN LABORATORY FLUMES USING ACOUSTIC TECHNIQUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automated measurement of suspended sediments is crucial to the study of sediment transport. The short duration, high-intensity flows that are responsible for a large fraction of sediment movement are best observed by continuous monitoring systems. Acoustic systems are ideal for continuous monitori...

  20. Early corrosion monitoring of prestressed concrete piles using acoustic emission

    NASA Astrophysics Data System (ADS)

    Vélez, William; Matta, Fabio; Ziehl, Paul H.

    2013-04-01

    The depassivation and corrosion of bonded prestressing steel strands in concrete bridge members may lead to major damage or collapse before visual inspections uncover evident signs of damage, and well before the end of the design life. Recognizing corrosion in its early stage is desirable to plan and prioritize remediation strategies. The Acoustic Emission (AE) technique is a rational means to develop structural health monitoring and prognosis systems for the early detection and location of corrosion in concrete. Compelling features are the sensitivity to events related to micro- and macrodamage, non-intrusiveness, and suitability for remote and wireless applications. There is little understanding of the correlation between AE and the morphology and extent of early damage on the steel surface. In this paper, the evidence collected from prestressed concrete (PC) specimens that are exposed to salt water is discussed vis-à-vis AE data from continuous monitoring. The specimens consist of PC strips that are subjected to wet/dry salt water cycles, representing portions of bridge piles that are exposed to tidal action. Evidence collected from the specimens includes: (a) values of half-cell potential and linear polarization resistance to recognize active corrosion in its early stage; and (b) scanning electron microscopy micrographs of steel areas from two specimens that were decommissioned once the electrochemical measurements indicated a high probability of active corrosion. These results are used to evaluate the AE activity resulting from early corrosion.

  1. Feasibility of a phased acoustic array for monitoring acoustic signatures from meshing gear teeth.

    PubMed

    Hood, Adrian A; Pines, Darryll J

    2002-12-01

    This paper investigates the feasibility of sensing damage emanating from rotating drivetrain elements such as bearings, gear teeth, and drive shafts via airborne paths. A planar phased acoustic array is evaluated as a potential fault detection scheme for detecting spatially filtered acoustic signatures radiating from gearbox components. Specifically, the use of beam focusing and steering to monitor individual tooth mesh dynamics is analyzed taking into consideration the constraints of the array/gearbox geometry and the spectral content of typical gear noise. Experimental results for a linear array are presented to illustrate the concepts of adaptive beam steering and spatial acoustic filtering. This feasibility study indicates that the planar array can be used to track the acoustic signatures at higher harmonics of the gear mesh frequency. PMID:12509006

  2. Geo-Acoustic Doppler Spectroscopy: A Novel Acoustic Technique For Surveying The Seabed

    NASA Astrophysics Data System (ADS)

    Buckingham, Michael J.

    2010-09-01

    An acoustic inversion technique, known as Geo-Acoustic Doppler Spectroscopy, has recently been developed for estimating the geo-acoustic parameters of the seabed in shallow water. The technique is unusual in that it utilizes a low-flying, propeller-driven light aircraft as an acoustic source. Both the engine and propeller produce sound and, since they are rotating sources, the acoustic signature of each takes the form of a sequence of narrow-band harmonics. Although the coupling of the harmonics across the air-sea interface is inefficient, due to the large impedance mismatch between air and water, sufficient energy penetrates the sea surface to provide a useable underwater signal at sensors either in the water column or buried in the sediment. The received signals, which are significantly Doppler shifted due to the motion of the aircraft, will have experienced a number of reflections from the seabed and thus they contain information about the sediment. A geo-acoustic inversion of the Doppler-shifted modes associated with each harmonic yields an estimate of the sound speed in the sediment; and, once the sound speed has been determined, the known correlations between it and the remaining geo-acoustic parameters allow all of the latter to be computed. This inversion technique has been applied to aircraft data collected in the shallow water north of Scripps pier, returning values of the sound speed, shear speed, porosity, density and grain size that are consistent with the known properties of the sandy sediment in the channel.

  3. NEW NONLINEAR ACOUSTIC TECHNIQUES FOR NDE

    SciTech Connect

    J. A. TENCATE

    2000-09-01

    Acoustic nonlinearity in a medium may occur as a result of a variety of mechanisms. Some of the more common nonlinear effects may come from: (1) one or several cracks, volumetrically distributed due to age or fatigue or single disbonds or delamination; (2) imperfect grain-to-grain contacts, e.g., materials like concretes that are cemented together and have less than perfect bonds; (3) hard parts in a soft matrix, e.g., extreme duty materials like tungsten/copper alloys; or (4) atomic-scale nonlinearities. Nonlinear effects that arise from the first two mechanisms are considerably larger than the last two; thus, we have focused considerable attention on these. The most pervasive nonlinear measure of damage today is a second harmonic measurement. We show that for many cases of interest to NDE, a second harmonic measurement may not be the best choice. We examine the manifestations of nonlinearity in (nonlinear) materials with cracks and/or imperfect bonds and illustrate their applicability to NDE. For example, nonlinear resonance frequency shifts measured at increasing drive levels correlate strongly with the amount of ASR (alkali-silica reaction) damage of concrete cores. Memory effects (slow dynamics) also seem to correlate with the amount of damage.

  4. An improved acoustic microimaging technique with learning overcomplete representation

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Harvey, David M.; Braden, Derek R.

    2005-12-01

    Advancements in integrated circuit (IC) package technology are increasingly leading to size shrinkage of modern microelectronic packages. This size reduction presents a challenge for the detection and location of the internal features/defects in the packages, which have approached the resolution limit of conventional acoustic microimaging, an important nondestructive inspection technique in the semiconductor industry. In this paper, to meet the challenge the learning overcomplete representation technique is pursued to decompose an ultrasonic A-scan signal into overcomplete representations over a learned overcomplete dictionary. Ultrasonic echo separation and reflectivity function estimation are then performed by exploiting the sparse representability of ultrasonic pulses. An improved acoustic microimaging technique is proposed by integrating these operations into the conventional acoustic microimaging technique. Its performance is quantitatively evaluated by elaborated experiments on ultrasonic A-scan signals using acoustic microimaging (AMI) error criteria. Results obtained both from simulated and measured A-scans are presented to demonstrate the superior axial resolution and robustness of the proposed technique.

  5. An Acoustic Communication Technique of Nanorobot Swarms for Nanomedicine Applications.

    PubMed

    Loscrí, Valeria; Vegni, Anna Maria

    2015-09-01

    In this contribution, we present a communication paradigm among nanodevices, based on acoustic vibrations for medical applications. We consider a swarm of nanorobots able to communicate in a distributed and decentralized fashion, propelled in a biological environment (i.e., the human brain). Each nanorobot is intended to i) recognize a cancer cell, ii) destroy it, and then iii) forward information about the presence of cancer formation to other nanorobots, through acoustic signals. The choice of acoustic waves as communication mean is related to the application context, where it is not advisable either to use indiscriminate chemical substances or electromagnetic waves. The effectiveness of the proposed approach is assessed in terms of achievement of the objective (i.e., to destroy the majority of tumor cells), and the velocity of detection and destruction of cancer cells, through a comparison with other related techniques. PMID:25898028

  6. Acoustic emission monitoring of a fatigue crack

    NASA Astrophysics Data System (ADS)

    Granata, D. M.; Scott, W. R.; Davis, J.; Lee, E. U.; Boodey, J. B.; Kulowitch, P.

    AE monitoring is applied to crack detection in materials containing intermetallic compounds that have very small critical flaw sizes. The tests performed are simpler than structural monitoring since the source location is well defined and extraneous sources are limited. A correlation was found between defect propagation and AE events in the two titanium aluminide alloys studied. Because events that are apparently not crack related can occur, and because the number of events detected is threshold and gain-sensitive, the AE count alone is not an absolute measure of crack length. Parameters denoting the portion of the load cycle where events occur are valuable for identifying AE sources and cracking mechanisms. Pattern recognition algorithms can be developed on the basis of stored waveforms and load level parameters.

  7. In-flight acoustic testing techniques using the YO-3A Acoustic Research Aircraft

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Watts, M. E.

    1984-01-01

    This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This "Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying position locations, and the test matrices will be discussed. Examples of data taken will also be presented.

  8. Leak detection by acoustic emission monitoring. Phase 1: Feasibility study

    NASA Astrophysics Data System (ADS)

    Lichtenstein, Bernard; Winder, A. A.

    1994-05-01

    This investigation was conducted to determine the feasibility of detecting leaks from underground storage tanks or pipelines using acoustic emissions. An extensive technical literature review established that distinguishable acoustic emission signals will be generated when a storage tank is subjected to deformation stresses. A parametric analysis was performed which indicated that leak rates less than 0.1 gallons per hour can be detected for leak sizes less than 1/32 inch with 99% probability if the transient signals were sensed with an array of accelerometers (cemented to the tank or via acoustic waveguides), each having a sensitivity greater than 250 mv/g over a frequency range of 0.1 to 4000 Hz, and processed in a multi-channel Fourier spectrum analyzer with automatic threshold detection. An acoustic transient or energy release processor could conceivably detect the onset of the leak at the moment of fracture of the tank wall. The primary limitations to realizing reliable and robust acoustic emission monitoring of underground fluid leaks are the various masking noise sources prevalent at Air Force bases, which are attributed to aircraft, motor traffic, pump station operation, and ground tremors.

  9. Acoustic monitoring of first responder's physiology for health and performance surveillance

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2002-08-01

    Acoustic sensors have been used to monitor firefighter and soldier physiology to assess health and performance. The Army Research Laboratory has developed a unique body-contacting acoustic sensor that can monitor the health and performance of firefighters and soldiers while they are doing their mission. A gel-coupled sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. This technology can monitor heartbeats, breaths, blood pressure, motion, voice, and other indicators that can provide vital feedback to the medics and unit commanders. Diverse physiological parameters can be continuously monitored with acoustic sensors and transmitted for remote surveillance of personnel status. Body-worn acoustic sensors located at the neck, breathing mask, and wrist do an excellent job at detecting heartbeats and activity. However, they have difficulty extracting physiology during rigorous exercise or movements due to the motion artifacts sensed. Rigorous activity often indicates that the person is healthy by virtue of being active, and injury often causes the subject to become less active or incapacitated making the detection of physiology easier. One important measure of performance, heart rate variability, is the measure of beat-to-beat timing fluctuations derived from the interval between two adjacent beats. The Lomb periodogram is optimized for non-uniformly sampled data, and can be applied to non-stationary acoustic heart rate features (such as 1st and 2nd heart sounds) to derive heart rate variability and help eliminate errors created by motion artifacts. Simple peak-detection above or below a certain threshold or waveform derivative parameters can produce the timing and amplitude features necessary for the Lomb periodogram and cross-correlation techniques. High-amplitude motion artifacts may contribute to a different

  10. Density can be misleading for low-density species: benefits of passive acoustic monitoring.

    PubMed

    Rogers, Tracey L; Ciaglia, Michaela B; Klinck, Holger; Southwell, Colin

    2013-01-01

    Climate-induced changes may be more substantial within the marine environment, where following ecological change is logistically difficult, and typically expensive. As marine animals tend to produce stereotyped, long-range signals, they are ideal for repeatable surveying. In this study we illustrate the potential for calling rates to be used as a tool for determining habitat quality by using an Antarctic pack-ice seal, the leopard seal, as a model.With an understanding of the vocal behavior of a species, their seasonal and diurnal patterns, sex and age-related differences, an underwater passive-acoustic survey conducted alongside a visual survey in an arc of 4,225 km across the Davis Sea, Eastern Antarctica, showed that while acoustic and visual surveys identified similar regions as having high densities, the acoustic surveys surprisingly identified the opposite regions as being 'critical' habitats. Density surveys of species that cannot be differentiated into population classes may be misleading because overall density can be a negative indicator of habitat quality.Under special circumstances acoustics can offer enormous advantage over traditional techniques and open up monitoring to regions that are remote, difficult and expensive to work within, no longer restricting long-term community assessment to resource-wealthy communities. As climatic change affects a broad range of organisms across geographic boundaries we propose that capitalizing on the significant advances in passive acoustic technology, alongside physical acoustics and population modeling, can help in addressing ecological questions more broadly. PMID:23326339

  11. Density Can Be Misleading for Low-Density Species: Benefits of Passive Acoustic Monitoring

    PubMed Central

    Rogers, Tracey L.; Ciaglia, Michaela B.; Klinck, Holger; Southwell, Colin

    2013-01-01

    Climate-induced changes may be more substantial within the marine environment, where following ecological change is logistically difficult, and typically expensive. As marine animals tend to produce stereotyped, long-range signals, they are ideal for repeatable surveying. In this study we illustrate the potential for calling rates to be used as a tool for determining habitat quality by using an Antarctic pack-ice seal, the leopard seal, as a model.With an understanding of the vocal behavior of a species, their seasonal and diurnal patterns, sex and age-related differences, an underwater passive-acoustic survey conducted alongside a visual survey in an arc of 4,225 km across the Davis Sea, Eastern Antarctica, showed that while acoustic and visual surveys identified similar regions as having high densities, the acoustic surveys surprisingly identified the opposite regions as being ‘critical’ habitats. Density surveys of species that cannot be differentiated into population classes may be misleading because overall density can be a negative indicator of habitat quality.Under special circumstances acoustics can offer enormous advantage over traditional techniques and open up monitoring to regions that are remote, difficult and expensive to work within, no longer restricting long-term community assessment to resource-wealthy communities. As climatic change affects a broad range of organisms across geographic boundaries we propose that capitalizing on the significant advances in passive acoustic technology, alongside physical acoustics and population modeling, can help in addressing ecological questions more broadly. PMID:23326339

  12. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, S.; Adams, D. E.; Sohn, H.

    2013-01-01

    As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.

  13. Signal processing methodologies for an acoustic fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  14. Acoustic emission monitoring for assessment of steel bridge details

    SciTech Connect

    Kosnik, D. E.; Corr, D. J.; Hopwood, T.

    2011-06-23

    Acoustic emission (AE) testing was deployed on details of two large steel Interstate Highway bridges: one cantilever through-truss and one trapezoidal box girder bridge. Quantitative measurements of activity levels at known and suspected crack locations were made by monitoring AE under normal service loads (e.g., live traffic and wind). AE indications were used to direct application of radiography, resulting in identification of a previously unknown flaw, and to inform selection of a retrofit detail.

  15. 2-D acoustic VTI full waveform inversion for CCS monitoring

    NASA Astrophysics Data System (ADS)

    KIM, S.; Kim, W. K.; Min, D. J.; Jeong, W.; OH, J. W.

    2014-12-01

    These days many geophysicists have been working not only for oil and gas exploration but also for CO2 monitoring for CCS (Carbon Capture and storage). When CO2 is injected and stored to the target layer, it changes the physical properties of subsurface media like p-wave velocity, density and so on. Seismic method is one of the most widely used geophysical methods for CO2 monitoring, because it can delineate physical properties of subsurface media. To prevent CO2 from leaking out of reservoirs, most target areas require caprocks, and shale often acts as a caprock. However, shale has a strong anisotropic property. Without considering the anisotropic property of subsurface media, interpretations of seismic monitoring data can distort the CO2distribution or movement in the subsurface media. For computational efficiency, seismic data interpretation based on acoustic VTI (Vertical Transversely Isotropic) wave equations has been commonly done although it does not consider the shear waves. To investigate the importance of considering anisotropic properties in acoustic FWI (full waveform inversion) for CO2 monitoring, we compare results obtained by the acoustic VTI FWI with those of the conventional acoustic FWI for isotropic case in the frequency domain. Both methods are based on the node-based finite-element method. Numerical examples show that neglecting anisotropic properties of subsurface media can distort distribution of CO2 and degrade reliability of subsurface image obtained by FWI. Acknowledgements This work was supported by the Human Resources Development program (No. 20134010200510) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry, and Energy and by the "Development of Technology for CO2 Marine Geological Storage" grant funded by the Ministry of Oceans and Fisheries of Korea.

  16. Automated techniques for spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Segnar, H. R.

    1972-01-01

    The feasibility of implementing automated spacecraft monitoring depends on four factors: sufficient computer resources, suitable monitoring function definitions, adequate spacecraft data, and effective and economical test systems. The advantages of automated monitoring lie in the decision-making speed of the computer and the continuous monitoring coverage provided by an automated monitoring program. Use of these advantages introduces a new concept of spacecraft monitoring in which system specialists, ground based or onboard, freed from routine and tedious monitoring, could devote their expertise to unprogrammed or contingency situations.

  17. Experimental source characterization techniques for studying the acoustic properties of perforates under high level acoustic excitation.

    PubMed

    Bodén, Hans

    2011-11-01

    This paper discusses experimental techniques for obtaining the acoustic properties of in-duct samples with non-linear acoustic characteristic. The methods developed are intended both for studies of non-linear energy transfer to higher harmonics for samples only accessible from one side such as wall treatment in aircraft engine ducts or automotive exhaust systems and for samples accessible from both sides such as perforates or other top sheets. When harmonic sound waves are incident on the sample nonlinear energy transfer results in sound generation at higher harmonics at the sample (perforate) surface. The idea is that these sources can be characterized using linear system identification techniques similar to one-port or two-port techniques which are traditionally used for obtaining source data for in-duct sources such as IC-engines or fans. The starting point will be so called polyharmonic distortion modeling which is used for characterization of nonlinear properties of microwave systems. It will be shown how acoustic source data models can be expressed using this theory. Source models of different complexity are developed and experimentally tested. The results of the experimental tests show that these techniques can give results which are useful for understanding non-linear energy transfer to higher harmonics. PMID:22087890

  18. Micro/meso scale fatigue damage accumulation monitoring using nonlinear acoustic vibro-modulation measurements

    NASA Astrophysics Data System (ADS)

    Zagrai, Andrei; Donskoy, Dimitri; Chudnovsky, Alexander; Golovin, Edward; Agarwala, Vinod S.

    2006-03-01

    Monitoring the incipient damage at the earliest possible stage is essential for predicting structural performance and remaining life of structural components. Existing prognostic methodologies incorporate conventional SHM and NDE techniques responsive to cracks and delaminations resulted from the irreversible material fracture and disintegration at the macro-scale. There is an increasing need for technologies that could allow for monitoring material degradation at the micro/meso scale before the onset of the macro-scale fracture. In this contribution, we report results of the real-time monitoring of the material micro/meso scale degradation using the nonlinear acoustic vibro-modulation technique. The technique explores nonlinear acoustic interaction of high frequency ultrasound and low frequency structural vibration at the site of the incipient damage. The indicator of the damage severity, nonlinear acoustic damage index (DI), was measured in real time during the strain-controlled three-point bending fatigue test of aluminum and steel specimens. Nondestructively, degradation of the specimen was revealed through the increase in the DI, which correlated well with the respective decrease in the specimen's stiffness. Destructive SEM examination confirmed sensitivity of the DI to the incipient micro/meso scale damage and advocated for utilizing the vibro-modulation approach for assessment of material degradation before fracture.

  19. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment. PMID:27441427

  20. Combining whistle acoustic parameters to discriminate Mediterranean odontocetes during passive acoustic monitoring.

    PubMed

    Azzolin, Marta; Gannier, Alexandre; Lammers, Marc O; Oswald, Julie N; Papale, Elena; Buscaino, Giuseppa; Buffa, Gaspare; Mazzola, Salvatore; Giacoma, Cristina

    2014-01-01

    Acoustic observation can complement visual observation to more effectively monitor occurrence and distribution of marine mammals. For effective acoustic censuses, calibration methods must be determined by joint visual and acoustic studies. Research is still needed in the field of acoustic species identification, particularly for smaller odontocetes. From 1994 to 2012, whistles of four odontocete species were recorded in different areas of the Mediterranean Sea to determine how reliably these vocalizations can be classified to species. Recordings were attributed to species by simultaneous visual observation. The results of this study highlight that the frequency parameters, which are linked to physical features of animals, show lower variability than modulation parameters, which are likely to be more dependent on complex eco-ethological contexts. For all the studied species, minimum and maximum frequencies were linearly correlated with body size. DFA and Classification Tree Analysis (CART) show that these parameters were the most important for classifying species; however, both statistical methods highlighted the need for combining them with the number of contour minima and contour maxima for correct classification. Generally, DFA and CART results reflected both phylogenetic distance (especially for common and striped dolphins) and the size of the species. PMID:24437790

  1. Acoustic methods to monitor sliver linear density and yarn strength

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    Methods and apparatus are provided for monitoring sliver and yarn characteristics. Transverse waves are generated relative to the sliver or yarn. At least one acoustic sensor is in contact with the sliver or yarn for detecting waves coupled to the sliver or yarn and for generating a signal. The generated signal is processed to identify the predefined characteristics including sliver or yarn linear density. The transverse waves can be generated with a high-powered acoustic transmitter spaced relative to the sliver or yarn with large amplitude pulses having a central frequency in a range between 20 KHz and 40 KHz applied to the transmitter. The transverse waves can be generated by mechanically agitating the sliver or yarn with a tapping member.

  2. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555

  3. Acoustic source identification using a Generalized Weighted Inverse Beamforming technique

    NASA Astrophysics Data System (ADS)

    Presezniak, Flavio; Zavala, Paulo A. G.; Steenackers, Gunther; Janssens, Karl; Arruda, Jose R. F.; Desmet, Wim; Guillaume, Patrick

    2012-10-01

    In the last years, acoustic source identification has gained special attention, mainly due to new environmental norms, urbanization problems and more demanding acoustic comfort expectation of consumers. From the current methods, beamforming techniques are of common use, since normally demands affordable data acquisition effort, while producing clear source identification in most of the applications. In order to improve the source identification quality, this work presents a method, based on the Generalized Inverse Beamforming, that uses a weighted pseudo-inverse approach and an optimization procedure, called Weighted Generalized Inverse Beamforming. To validate this method, a simple case of two compact sources in close vicinity in coherent radiation was investigated by numerical and experimental assessment. Weighted generalized inverse results are compared to the ones obtained by the conventional beamforming, MUltiple Signal Classification, and Generalized Inverse Beamforming. At the end, the advantages of the proposed method are outlined together with the computational effort increase compared to the Generalized Inverse Beamforming.

  4. Acoustical Characteristics of Mastication Sounds: Application of Speech Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Brochetti, Denise

    Food scientists have used acoustical methods to study characteristics of mastication sounds in relation to food texture. However, a model for analysis of the sounds has not been identified, and reliability of the methods has not been reported. Therefore, speech analysis techniques were applied to mastication sounds, and variation in measures of the sounds was examined. To meet these objectives, two experiments were conducted. In the first experiment, a digital sound spectrograph generated waveforms and wideband spectrograms of sounds by 3 adult subjects (1 male, 2 females) for initial chews of food samples differing in hardness and fracturability. Acoustical characteristics were described and compared. For all sounds, formants appeared in the spectrograms, and energy occurred across a 0 to 8000-Hz range of frequencies. Bursts characterized waveforms for peanut, almond, raw carrot, ginger snap, and hard candy. Duration and amplitude of the sounds varied with the subjects. In the second experiment, the spectrograph was used to measure the duration, amplitude, and formants of sounds for the initial 2 chews of cylindrical food samples (raw carrot, teething toast) differing in diameter (1.27, 1.90, 2.54 cm). Six adult subjects (3 males, 3 females) having normal occlusions and temporomandibular joints chewed the samples between the molar teeth and with the mouth open. Ten repetitions per subject were examined for each food sample. Analysis of estimates of variation indicated an inconsistent intrasubject variation in the acoustical measures. Food type and sample diameter also affected the estimates, indicating the variable nature of mastication. Generally, intrasubject variation was greater than intersubject variation. Analysis of ranks of the data indicated that the effect of sample diameter on the acoustical measures was inconsistent and depended on the subject and type of food. If inferences are to be made concerning food texture from acoustical measures of mastication

  5. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Zhang, Shangbin; He, Qingbo; Kong, Fanrang

    2016-01-01

    Wayside acoustic condition monitoring and fault diagnosis for train bearings depend on acquired acoustic signals, which consist of mixed signals from different train bearings with obvious Doppler distortion as well as background noises. This study proposes a novel scheme to overcome the difficulties, especially the multi-source problem in wayside acoustic diagnosis system. In the method, a time-frequency data fusion (TFDF) strategy is applied to weaken the Heisenberg's uncertainty limit for a signal's time-frequency distribution (TFD) of high resolution. Due to the Doppler Effect, the signals from different bearings have different time centers even with the same frequency. A Doppler feature matching search (DFMS) algorithm is then put forward to locate the time centers of different bearings in the TFD spectrogram. With the determined time centers, time-frequency filters (TFF) are designed with thresholds to separate the acoustic signals in the time-frequency domain. Then the inverse STFT (ISTFT) is taken and the signals are recovered and filtered aiming at each sound source. Subsequently, a dynamical resampling method is utilized to remove the Doppler Effect. Finally, accurate diagnosis for train bearing faults can be achieved by applying conventional spectrum analysis techniques to the resampled data. The performance of the proposed method is verified by both simulated and experimental cases. It shows that it is effective to detect and diagnose multiple defective bearings even though they produce multi-source acoustic signals.

  6. Power cepstrum technique with application to model helicopter acoustic data

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Burley, C. L.

    1986-01-01

    The application of the power cepstrum to measured helicopter-rotor acoustic data is investigated. A previously applied correction to the reconstructed spectrum is shown to be incorrect. For an exact echoed signal, the amplitude of the cepstrum echo spike at the delay time is linearly related to the echo relative amplitude in the time domain. If the measured spectrum is not entirely from the source signal, the cepstrum will not yield the desired echo characteristics and a cepstral aliasing may occur because of the effective sample rate in the frequency domain. The spectral analysis bandwidth must be less than one-half the echo ripple frequency or cepstral aliasing can occur. The power cepstrum editing technique is a useful tool for removing some of the contamination because of acoustic reflections from measured rotor acoustic spectra. The cepstrum editing yields an improved estimate of the free field spectrum, but the correction process is limited by the lack of accurate knowledge of the echo transfer function. An alternate procedure, which does not require cepstral editing, is proposed which allows the complete correction of a contaminated spectrum through use of both the transfer function and delay time of the echo process.

  7. Development of acoustic health monitoring for railroad tank cars

    NASA Astrophysics Data System (ADS)

    Gostautas, Richard; Finlayson, Richard; Godinez, Valery; Pollock, Adrian; Penya, Jose

    2005-05-01

    This paper presents the research and development of an Acoustic Health Monitoring (AHM) system that uses Guided Lamb Wave (GLW) technology to determine the thickness of railroad tank car shells for identification of wall loss due to corrosion. In recent regulatory changes, the emphasis has shifted from the traditional hydrotest to more modern methods for assuring tank car integrity. The new generation of maintenance programs will rely heavily on nondestructive testing, and will use damage tolerance concepts and risk analysis to establish inspection frequencies and items to inspect. It is the responsibility of the owners to set up experience-based maintenance programs that are suitable for the working conditions of their own particular fleets. Development of an ideal AHM system for railroad cars would be an instrument that incorporates Acoustic Emission (AE) and GLW technology. The combination of active and passive acoustic technologies integrated into a single system would be a highly efficient means of determining the structural integrity of tank cars. The integration of the GLW technology will allow identification of corrosion wall loss in a zone between two sensors, rather than at a single point (traditional ultrasonic thickness measurements). Thus, a much larger area of the structure can be inspected for approximately the same inspection cost. With a suitable integration of this new technology into the overall inspection and corrosion management program, the fleet can be more efficiently maintained and the risk of accidental release through progressive corrosion damage can be significantly reduced.

  8. Acoustic Techniques for Assessing the Optison Destruction Threshold

    PubMed Central

    Porter, Tyrone M.; Smith, Denise A. B.; Holland, Christy K.

    2007-01-01

    Objective The purpose of this study was to identify the pressure threshold for the destruction of Optison (octafluoropropane contrast agent; Amersham Health, Princeton, NJ) using a laboratory-assembled 3.5-MHz pulsed ultrasound system and a clinical diagnostic ultrasound scanner. Methods A 3.5-MHz focused transducer and a linear array with a center frequency of 6.9 MHz were positioned confocally and at 90° to each other in a tank of deionized water. Suspensions of Optison (5–8 × 104 microbubbles/mL) were insonated with 2-cycle pulses from the 3.5-MHz transducer (peak rarefactional pressure, or Pr, from 0.0, or inactive, to 0.6 MPa) while being interrogated with fundamental B-mode imaging pulses (mechanical index, or MI, = 0.04). Scattering received by the 3.5-MHz transducer or the linear array was quantified as mean backscattered intensity or mean digital intensity, respectively, and fit with exponential decay functions (Ae−kt + N, where A + N was the amplitude at time 0; N, background echogenicity; and k, decay constant). By analyzing the decay constants statistically, a pressure threshold for Optison destruction due to acoustically driven diffusion was identified. Results The decay constants determined from quantified 3.5-MHz radio frequency data and B-mode images were in good agreement. The peak rarefactional pressure threshold for Optison destruction due to acoustically driven diffusion at 3.5 MHz was 0.15 MPa (MI = 0.08). Furthermore, the rate of Optison destruction increased with increasing 3.5-MHz exposure pressure output. Conclusions Optison destruction was quantified with a laboratory-assembled 3.5-MHz ultrasound system and a clinical diagnostic ultrasound scanner. The pressure threshold for acoustically driven diffusion was identified, and 3 distinct mechanisms of ultrasound contrast agent destruction were observed with acoustic techniques. PMID:17121946

  9. Use of acoustic monitoring system for debris flow discharge evaluation

    NASA Astrophysics Data System (ADS)

    Galgaro, A. G.; Tecca, P. R.; Genevois, R.; Deganutti, A. M.

    2003-04-01

    In 1997 an automated system for monitoring of debris flows has been installed in the Acquabona channel Dolomites, Italy. Induction geophones, with a specific frequency of 10 Hz, measure the amplitude of vertical ground vibrations generated by the passage of a flowing mass along the channel. Continuous acoustic logs and ultrasonic hydrograph recorded at the lower-channel measurement station for the debris flow of August 17, 1998, show a striking correspondence. This correspondence, already observed in different flow sites, is represented by the best fit between flow depth and flow sensor amplitude. Average front velocity for surges, calculated from the signal peak time shift and the distance between the sensors along the flow path, range between 2.00 and 7.7 m/s. As the ultrasonic sensor provides a way to measure the variation of the flow section area with the flow depth, the debris flow peak discharge may be estimated; obtained values of debris flow peak discharge range from 4 and 30 m3/s. Volumes were calculated by integrating instantaneous discharges through the hydrograph and by integrating the geophone log (acoustic flux). Volumes of 13700 m3 and 15500 m3 have been respectively obtained. The slight difference between the two values may result from the fact that acoustic records: i) are sensitive to the high frequencies, typical of the debris flow tails; ii) sum up the contributions sent by the whole flowing mass, while the ecometer detect the flow depth at every time at only one section. As a consequence the rising of the whole geophone log gives a higher value at the integration result. This only acoustic system can give a reasonably proxy for discharge and total volumes involved, which are among the most important parameters for debris flow hazard assessment and planning countermeasures. This methodology can be used in other debris flow sites if they are calibrated by the acoustic characterization of debris, obtained by both seismic surveys and SPT tests, and

  10. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase.

    PubMed

    Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M; Soares, Alexei S

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals. PMID:26574563

  11. Monitoring the Ocean Acoustically: A Review and Strategy for the Future

    NASA Astrophysics Data System (ADS)

    Worcester, P. F.; Munk, W. H.; Dushaw, B. D.; Howe, B. M.; Spindel, R. C.

    2001-12-01

    Since ideas for monitoring the oceans acoustically were first voiced in the mid-1970's, ocean acoustic tomography has evolved into an effective tool for remote sensing of the ocean interior on a wide variety of time and space scales. Regional tomographic arrays have been employed at scales of up to about 1000 km for measuring changes in integrated heat content, for observing regions of active convection, for measuring transports through the Strait of Gibraltar, for observing the evolving ocean mesoscale, for measuring barotropic currents, for directly observing oceanic relative vorticity, and for measuring barotropic and baroclinic tidal signals. Basin-scale tomographic arrays have been employed out to ranges of 5000 km for measuring large-scale changes in temperature and heat content in the North Pacific, Mediterranean, and Arctic oceans. At these ranges acoustic methods give integral measurements of large-scale ocean temperature that provide the spatial low-pass filtering needed to observe small, gyre-scale signals in the presence of much larger, mesoscale noise. The acoustic measurements offer a signal-to-noise capability for observing ocean climate variability that is difficult to attain by an ensemble of point measurements. In addition, tomographic methods rely on the measurement of acoustic travel times, which can be made without risk of calibration drift. The remote sensing capability has proven particularly suitable for measurements such as those in the Arctic and in the Strait of Gibraltar, where the application of conventional in situ methods is difficult. The appropriate roles for acoustic tomography in an ocean observing system appear to be (1) to exploit the unique remote sensing capabilities for regional programs otherwise difficult to carry out, (2) to be a component of process-oriented programs in regions where integral or large-scale heat content or transport data are desired, and (3) to move toward deployment on basin to global scales as the

  12. Application of Acoustic Techniques for Characterization of Biological Samples

    NASA Astrophysics Data System (ADS)

    Tittmann, Bernhard R.; Ebert, Anne

    The atomic force microscope (AFM) is emerging as a powerful tool in cell biology. Originally developed for high-resolution imaging purposes, the AFM also has unique capabilities as a nano-indenter to probe the dynamic viscoelastic material properties of living cells in culture. In particular, AFM elastography combines imaging and indentation modalities to map the spatial distribution of cell mechanical properties, which in turn reflect the structure and function of the underlying cytoskeleton. Such measurements have contributed to our understanding of cell mechanics and cell biology and appear to be sensitive to the presence of disease in individual cells. Examples of applications and considerations on the effective capability of ultrasonic AFM techniques on biological samples (both mammalian and plant) are reported in this chapter. Included in the discussion is scanning near-field ultrasound holography an acoustic technique which has been used to image structure and in particular nanoparticles inside cells. For illustration an example that is discussed in some detail is a technique for rapid in vitro single-cell elastography. The technique is based on atomic force acoustic microscopy (AFAM) but (1) requires only a few minutes of scan time, (2) can be used on live cells briefly removed from most of the nutrient fluid, (3) does negligible harm or damage to the cell, (4) provides semi-quantitative information on the distribution of modulus across the cell, and (5) yields data with 1-10 nm resolution. The technique is shown to enable rapid assessment of physical/biochemical signals on the cell modulus and contributes to current understanding of cell mechanics.

  13. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  14. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  15. Tools for automated acoustic monitoring within the R package monitoR

    USGS Publications Warehouse

    Katz, Jonathan; Hafner, Sasha D.; Donovan, Therese

    2016-01-01

    The R package monitoR contains tools for managing an acoustic-monitoring program including survey metadata, template creation and manipulation, automated detection and results management. These tools are scalable for use with small projects as well as larger long-term projects and those with expansive spatial extents. Here, we describe typical workflow when using the tools in monitoR. Typical workflow utilizes a generic sequence of functions, with the option for either binary point matching or spectrogram cross-correlation detectors.

  16. A survey of techniques for corrosion monitoring

    SciTech Connect

    Mickalonis, J.I.

    1992-10-01

    Corrosion monitoring techniques have improved with advances in instrumentation technology and corrosion research. Older techniques, such as coupon immersion, generally provide historical information. The new electrochemical techniques, which have not been used widely at SRS, allow on-line monitoring and correlation with process changes. These techniques could improve the corrosion assessment of the waste tanks to be used for In-Tank Precipitation and Extended Sludge Processing. A task was initiated to place an electrochemical probe into tank 48 for testing the utility of this technique for waste tank applications.

  17. Acoustic emission monitoring of HFIR vessel during hydrostatic testing. Final report

    SciTech Connect

    Friesel, M.A.; Dawson, J.F.

    1992-08-01

    This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results.

  18. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    NASA Astrophysics Data System (ADS)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time

  19. Strategies for rock slope failure early warning using acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Codeglia, D.; Dixon, N.; Fowmes, G. J.; Marcato, G.

    2015-09-01

    Research over the last two decades has led to development of a system for soil slopes monitoring based on the concept of measuring Acoustic Emission (AE). A feature of the system is the use of waveguides installed within unstable soil slopes. It has been demonstrated that the AE measured through this technique are proportional to soil displacement rate. Attention has now been focused on the prospect of using the system within rock materials. The different nature of the slope material to be monitored and its setting means that different acoustic trends are measured, and development of new approaches for their interpretation are required. A total of six sensors have been installed in two pilot sites, firstly in Italy, for monitoring of a stratified limestone slope which can threaten a nationally important road, and secondly in Austria, for monitoring of a conglomerate slope that can endanger a section of the local railway. In this paper an outline of the two trial sites is given and AE data collected are compared with other physical measurements (i.e. rainfall and temperature) and traditional geotechnical instrumentation, to give an overview of recurring AE trends. These include clear AE signatures generated by stress changes linked to increased ground water levels and high energy events generated by freeze-thaw of the rock mass.

  20. The acoustic spectrophonometer: a novel bioanalytical technique based on multifrequency acoustic devices.

    PubMed

    Stevenson, A C; Araya-Kleinsteuber, B; Sethi, R S; Mehta, H M; Lowe, C R

    2003-10-01

    A measurement technique similar to optical absorption spectroscopy but based on evanescent acoustic waves is described in this paper. This format employs a planar spiral coil to vibrate a single crystal of quartz from 6 to 400 MHz, in order to measure multifrequency acoustic spectra. Consistency with the defined Sauerbrey and Kanazawa terms K1 and K2 when applied to multiple frequencies was found for these specific operating conditions in terms of a significant fit between the measured and calculated values: For an IgG surface density of 13.5 ng mm(-2) the measured value of K1 is 22.5 x 10(-6) and the calculated value is 20.4 x 10(-6), whilst for glycerol viscous loadings of 5.131 cP the measured value of K2 is 0.47 and the calculated value is 0.54. Thus for these specific surface loadings the multifrequency data fits to the predictions of the Sauerbrey model to within 10% and to Kanazawa model within 13%. However collective frequency shifts for 5.131 cP solutions of sucrose, dextran and glucose were found to exhibit an unanticipated additional variability (R2 < 0.4) with frequency, but retained a square root of frequency dependency within a factor 2 of the interpolated K2 values. The response to the 5.131 cP dextran solution was found to be significantly below the other isoviscous solutions, with a substantially reduced frequency shift and K2 value than would be expected from its bulk viscosity. In comparison with these viscous solutions, IgG protein films consistently produced linear frequency shifts with little scatter (R2 > 0.96) that were proportional to the operating frequency, and fully consistent with the Sauerbrey model under these specific conditions. A t-test value of 14.52 was calculated from the variance and mean of the two groups, and demonstrates that the acoustic spectrophonometer can be used to distinguish between the acoustic impedance characteristics of two chemical systems that are not clearly differentiable at a single operating frequency. PMID

  1. A multi-channel acoustics monitor for perioperative respiratory monitoring: preliminary data.

    PubMed

    Jafarian, Kamal; Amineslami, Majid; Hassani, Kamran; Navidbakhsh, Mahdi; Lahiji, Mohammad Niakan; Doyle, D John

    2016-02-01

    This study pertains to a six-channel acoustic monitoring system for use in patient monitoring during or after surgery. The base hardware consists of a USB data acquisition system, a custom-built six-channel amplification system, and a series of microphones of various designs. The software is based on the MATLAB platform with data acquisition drivers installed. The displayed information includes: time domain signals, frequency domain signals, and tools to aid in the detection of endobronchial intubation. We hypothesize that the above mentioned arrangement may be helpful to the anesthesiologist in recognizing clinical conditions like wheezing, bronchospasm, endobronchial intubation, and apnea. The study also evaluated various types of microphone designs used to transduce breath sounds. The system also features selectable band-pass filtering using MATLAB algorithms as well as a collection of recordings obtained with the system to establish what respiratory acoustic signals look like under various conditions. PMID:25869899

  2. Acoustic emission monitoring of recycled aggregate concrete under bending

    NASA Astrophysics Data System (ADS)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  3. Operational Performance Analysis of Passive Acoustic Monitoring for Killer Whales

    SciTech Connect

    Matzner, Shari; Fu, Tao; Ren, Huiying; Deng, Zhiqun; Sun, Yannan; Carlson, Thomas J.

    2011-09-30

    For the planned tidal turbine site in Puget Sound, WA, the main concern is to protect Southern Resident Killer Whales (SRKW) due to their Endangered Species Act status. A passive acoustic monitoring system is proposed because the whales emit vocalizations that can be detected by a passive system. The algorithm for detection is implemented in two stages. The first stage is an energy detector designed to detect candidate signals. The second stage is a spectral classifier that is designed to reduce false alarms. The evaluation presented here of the detection algorithm incorporates behavioral models of the species of interest, environmental models of noise levels and potential false alarm sources to provide a realistic characterization of expected operational performance.

  4. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    PubMed

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  5. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation

    PubMed Central

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  6. Modern Techniques in Acoustical Signal and Image Processing

    SciTech Connect

    Candy, J V

    2002-04-04

    Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve this goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.

  7. The acoustic simulation and analysis of complicated reciprocating compressor piping systems, I: Analysis technique and parameter matrices of acoustic elements

    NASA Astrophysics Data System (ADS)

    To, C. W. S.

    1984-09-01

    This paper describes the mathematical formulation, equations, and procedures employed in the development of a comprehensive digital computer program for acoustic simulation and analysis of large and complicated piping systems. The analysis technique used is the transfer matrix method in which the piping system, with or without multiple inputs and outputs, is represented by a combination of discrete acoustic elements interconnected to one another at two stations such that the acoustic pressure and volume velocity at one station are uniquely related to those at the other by a two-by-two parameter matrix. Parameter matrices of 19 acoustic elements are included in this paper. By making use of these parameter matrices and the analysis technique, any complicated practical reciprocating compressor piping system can be modelled or analyzed.

  8. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  9. Computational and experimental techniques for coupled acoustic/structure interactions.

    SciTech Connect

    Sumali, Anton Hartono; Pierson, Kendall Hugh; Walsh, Timothy Francis; Dohner, Jeffrey Lynn; Reese, Garth M.; Day, David Minot

    2004-01-01

    This report documents the results obtained during a one-year Laboratory Directed Research and Development (LDRD) initiative aimed at investigating coupled structural acoustic interactions by means of algorithm development and experiment. Finite element acoustic formulations have been developed based on fluid velocity potential and fluid displacement. Domain decomposition and diagonal scaling preconditioners were investigated for parallel implementation. A formulation that includes fluid viscosity and that can simulate both pressure and shear waves in fluid was developed. An acoustic wave tube was built, tested, and shown to be an effective means of testing acoustic loading on simple test structures. The tube is capable of creating a semi-infinite acoustic field due to nonreflecting acoustic termination at one end. In addition, a micro-torsional disk was created and tested for the purposes of investigating acoustic shear wave damping in microstructures, and the slip boundary conditions that occur along the wet interface when the Knudsen number becomes sufficiently large.

  10. Spectrum monitoring procedures and techniques

    NASA Astrophysics Data System (ADS)

    1990-07-01

    The first step towards operating an emitter on a test range is to contact the local frequency manager to establish a schedule. Since restricted radio frequency bands and operations are different at each test range location, most testing is accomplished by sharing the spectrum available with all range users. The telemetry bands in particular require spectrum activity scheduling. The objective is to resolve scheduling conflicts prior to operations. When two programs or projects request to use the same spectrum, their activity can be separated by quard bands, discrete frequencies, time, or operating locations (terrain masking). Priorities assigned to each program usually dictate which program will be scheduled first; however, use of priorities to schedule activities should be avoided and only considered as a last resort. When a scheduling conflict cannot be resolved using these techniques, it is brought to the attention of the responsible program managers. When scheduling activities involve other federal or nonfederal agencies, it is in the best interest of program managers to be as flexible as possible.

  11. The application of acoustic emission technique to fatigue crack measurement. [in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Crews, J. H., Jr.

    1974-01-01

    The applicability of acoustic emission technique to measure fatigue cracks in aluminum alloy specimens was investigated. There are several variables, such as the metallurgical and the physical treatment of the specimen, that can affect the level of acoustic activity of a fatigue specimen. It is therefore recommended that the acoustic emission technique be supplemented by other nondestructive evaluation methods to obtain quantitative data on crack growth.

  12. Monitoring of stress corrosion cracking in stainless steel weldments by acoustic and electrochemical measurements

    NASA Astrophysics Data System (ADS)

    Yonezu, Akio; Cho, Hideo; Takemoto, Mikio

    2006-09-01

    A new hybrid monitoring technique for chloride stress corrosion cracking (SCC) is proposed. It uses both the acoustic emission (AE) and corrosion potential fluctuation (CPF) techniques. This paper discusses the results of SCC tests on butt-welded Type 304 stainless steel pipes. The weld pipe suffered transgranular (TG)-SCC in a concentrated magnesium chloride solution (40 mass%), but suffered intergranular (IG) attack and falling-off of grains in a heat-affected zone (HAZ) in a dilute chloride solution (35 mass%). SCC initiations in both concentrated and dilute corrodants were successfully monitored using a CPF technique. However, the CPF technique could not monitor the propagation of the SCC. This propagation could be detected using an AE technique. Secondary AE was produced by hydrogen gas evolution and by the cracking of corrosion products, and the primary AE was produced by the falling-off of grains due to the mutual actions of anodic dissolution and the mechanical fracture along a chromium-depleted zone in the grain boundary. The volume of metal loss by the dissolution was predicted from the local anodic current due to the fluctuation of the corrosion potential, and was found to correspond to the volume of the grain boundary attack. The fact that the primary AE was detected just after rapid drop (RD)-type CPF suggested that the grain boundary corrosion caused the falling-off of the grain that produced the primary AE.

  13. Passive acoustic monitoring of human physiology during activity indicates health and performance of soldiers and firefighters

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-04-01

    The Army Research Laboratory has developed a unique gel-coupled acoustic physiological monitoring sensor that has acoustic impedance properties similar to the skin. This facilitates the transmission of body sounds into the sensor pad, yet significantly repels ambient airborne noises due to an impedance mismatch. The sensor's sensitivity and bandwidth produce excellent signatures for detection and spectral analysis of diverse physiological events. Acoustic signal processing detects heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. Comfortable acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Noise-canceling sensor arrays help remove out-of-phase motion noise and enhance covariant physiology by using two acoustic sensors on the front sides of the neck and two additional acoustic sensors on each wrist. Pulse wave transit time between neck and wrist acoustic sensors will indicate systolic blood pressure. Larger torso-sized arrays can be used to acoustically inspect the lungs and heart, or built into beds for sleep monitoring. Acoustics is an excellent input for sensor fusion.

  14. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    NASA Astrophysics Data System (ADS)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  15. Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei

    2016-04-01

    Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.

  16. Ultrasonic techniques for process monitoring and control.

    SciTech Connect

    Chien, H.-T.

    1999-03-24

    Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.

  17. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED THERMAL-ACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    SciTech Connect

    Robert C. Brown; Robert J. Weber; Jeffrey J. Swetelitsch

    2005-01-01

    The objective of this project is to explore microwave-excited thermal-acoustic (META) phenomena for quantitative analysis of granular and powdered materials, with the culmination of the research to be an on-line carbon-in-ash monitor for coal-fired power plants. This technique of analyzing unburned carbon in fly ash could be a less tedious and time consuming method as compared to the traditional LOI manual procedure. Phase 1 of the research focused on off-line single-frequency thermal-acoustic measurements where an off-line fly ash monitor was constructed that could operate as analytical tool to explore instrument and methodology parameters for quantifying the microwave-excited thermal-acoustic effect of carbon in fly ash, and it was determined that the off-line thermal-acoustic technique could predict the carbon content of a random collection of fly ashes with a linear correlation constant of R{sup 2} = 0.778. Much higher correlations are expected for fly ashes generated from a single boiler. Phase 2 of the research developing a methodology to generate microwave spectra of various powders, including fly ash, coal, and inorganic minerals, and to determine if these microwave spectra could be used for chemical analyses. Although different minerals produced different responses, higher resolution microwave spectra would be required to be able to distinguish among minerals. Phase 3 of the research focused on the development of an on-line fly ash monitor that could be adapted to measure either a thermal-acoustic or thermal-elastic response to due microwave excitation of fly ash. The thermal-acoustic response was successfully employed for this purpose but the thermal-elastic response was too weak to yield a useful on-line device.

  18. Acoustic emission (AE) health monitoring of diaphragm type couplings using neural network analysis

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery F.; Shu, Fong; Finlayson, Richard D.; O'Donnell, Bruce

    2005-05-01

    This paper presents the latest results obtained from Acoustic Emission (AE) monitoring and detection of cracks and/or damage in diaphragm couplings, which are used in some aircraft and engine drive systems. Early detection of mechanical failure in aircraft drive train components is a key safety and economical issue with both military and civil sectors of aviation. One of these components is the diaphragm-type coupling, which has been evaluated as the ideal drive coupling for many application requirements such as high speed, high torque, and non-lubrication. Its flexible axial and angular displacement capabilities have made it indispensable for aircraft drive systems. However, diaphragm-type couplings may develop cracks during their operation. The ability to monitor, detect, identify, and isolate coupling cracks on an operational aircraft system is required in order to provide sufficient advance warning to preclude catastrophic failure. It is known that metallic structures generate characteristic Acoustic Emission (AE) during crack growth/propagation cycles. This phenomenon makes AE very attractive among various monitoring techniques for fault detection in diaphragm-type couplings. However, commercially available systems capable of automatic discrimination between signals from crack growth and normal mechanical noise are not readily available. Positive classification of signals requires experienced personnel and post-test data analysis, which tend to be a time-consuming, laborious, and expensive process. With further development of automated classifiers, AE can become a fully autonomous fault detection technique requiring no human intervention after implementation. AE has the potential to be fully integrated with automated query and response mechanisms for system/process monitoring and control.

  19. Measurement of transmission loss characteristics using acoustic intensity techniques at the KU-FRL Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1983-01-01

    The transmission loss characteristics of panels using the acoustic intensity technique is presented. The theoretical formulation, installation of hardware, modifications to the test facility, and development of computer programs and test procedures are described. A listing of all the programs is also provided. The initial test results indicate that the acoustic intensity technique is easily adapted to measure transmission loss characteristics of panels. Use of this method will give average transmission loss values. The fixtures developed to position the microphones along the grid points are very useful in plotting the intensity maps of vibrating panels.

  20. Final Report: Guided Acoustic Wave Monitoring of Corrosion in Recovery Boiler Tubing

    SciTech Connect

    Chinn, D J; Quarry, M J; Rose, J L

    2005-03-31

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the cold side or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  1. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to estimate intake in grazing livestock include using markers, visual observation, mechanical sensors that respond to jaw movement and acoustic recording. In most of the acoustic monitoring studies, the microphone is inverted on the forehead of the grazing livestock and the skull is utilize...

  2. Ultrasonic technique for monitoring of liquid density variations.

    PubMed

    Kazys, R; Rekuviene, R; Sliteris, R; Mazeika, L; Zukauskas, E

    2015-01-01

    A novel ultrasonic measurement technique for density measurements of different liquids in extreme conditions has been developed. The proposed density measurement method is based on transformation of the acoustic impedance of the measured liquid. The higher accuracy of measurements is achieved by means of the λ/4 acoustic matching layer between the load and the ultrasonic waveguide transducer. Introduction of the matching layer enhances sensitivity of the measurement system. Sometimes, the density measurements must be performed in very complex conditions: high temperature (up to 200 °C), pressure (up to 10 MPa), and high chemical activity of the medium under measurement. In this case, the special geometry metal waveguides are proposed to use in order to protect the piezoelectric transducer surface from influence of a high temperature. The experimental set-up of technique was calibrated using the reference liquids with different densities: ethyl ether, ethyl alcohol, distilled water, and different concentration (20%, 40%, and 60%) sugar-water solutions. The uncertainty of measurements is less than 1%. The proposed measurement method was verified in real conditions by monitoring the density of a melted polypropylene during manufacturing process. PMID:25638115

  3. Ultrasonic technique for monitoring of liquid density variations

    NASA Astrophysics Data System (ADS)

    Kazys, R.; Rekuviene, R.; Sliteris, R.; Mazeika, L.; Zukauskas, E.

    2015-01-01

    A novel ultrasonic measurement technique for density measurements of different liquids in extreme conditions has been developed. The proposed density measurement method is based on transformation of the acoustic impedance of the measured liquid. The higher accuracy of measurements is achieved by means of the λ/4 acoustic matching layer between the load and the ultrasonic waveguide transducer. Introduction of the matching layer enhances sensitivity of the measurement system. Sometimes, the density measurements must be performed in very complex conditions: high temperature (up to 200 °C), pressure (up to 10 MPa), and high chemical activity of the medium under measurement. In this case, the special geometry metal waveguides are proposed to use in order to protect the piezoelectric transducer surface from influence of a high temperature. The experimental set-up of technique was calibrated using the reference liquids with different densities: ethyl ether, ethyl alcohol, distilled water, and different concentration (20%, 40%, and 60%) sugar-water solutions. The uncertainty of measurements is less than 1%. The proposed measurement method was verified in real conditions by monitoring the density of a melted polypropylene during manufacturing process.

  4. Acoustical method of whole-body hydration status monitoring

    NASA Astrophysics Data System (ADS)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  5. Passive acoustic monitoring of Cook Inlet beluga whales (Delphinapterus leucas).

    PubMed

    Lammers, Marc O; Castellote, Manuel; Small, Robert J; Atkinson, Shannon; Jenniges, Justin; Rosinski, Anne; Oswald, Julie N; Garner, Chris

    2013-09-01

    The endangered beluga whale (Delphinapterus leucas) population in Cook Inlet, AK faces threats from a variety of anthropogenic factors, including coastal development, oil and gas exploration, vessel traffic, and military activities. To address existing gaps in understanding about the occurrence of belugas in Cook Inlet, a project was developed to use passive acoustic monitoring to document the year-round distribution of belugas, as well as killer whales (Orcinus orca), which prey on belugas. Beginning in June 2009, ten moorings were deployed throughout the Inlet and refurbished every two to eight months. Despite challenging conditions consisting of strong tidal currents carrying debris and seasonal ice cover, 83% of mooring deployments were successfully recovered. Noise from water flow, vessel traffic, and/or industrial activities was present at several sites, potentially masking some signals. However, belugas were successfully detected at multiple locations. Detections were relatively common in the upper inlet and less common or absent at middle and lower inlet locations. Killer whale signals were also recorded. Some seasonal variability in the occurrence of both belugas and killer whales was evident. PMID:23968047

  6. Field performance of an acoustic scour-depth monitoring system

    USGS Publications Warehouse

    Mason, Jr., Robert R.; Sheppard, D. Max

    1994-01-01

    The Herbert C. Bonner Bridge over Oregon Inlet serves as the only land link between Bodie and Hatteras Islands, part of the Outer Banks of North Carolina. Periodic soundings over the past 30 years have documented channel migration, local scour, and deposition at several pilings that support the bridge. In September 1992, a data-collection system was installed to permit the off-site monitoring of scour at 16 bridge pilings. The system records channel-bed elevations at 15-minute intervals and transmits the data to a satellite receiver. A cellular phone connection also permits downloading and reviewing of the data as they are being collected. A digitally recording, acoustic fathometer is the main component of the system. In November 1993, current velocity, water-surface elevation, wave characteristics, and water temperature measuring instruments were also deployed at the site. Several performance problems relating to the equipment and to the harsh marine environment have not been resolved, but the system has collected and transmitted reliable scour-depth and water-level data.

  7. Hydraulic Fracturing of Heterogeneous Rock Monitored by Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Stanchits, Sergey; Burghardt, Jeffrey; Surdi, Aniket

    2015-11-01

    In this paper, the results of laboratory studies of hydraulic fracture in homogeneous sandstone blocks with man-made interfaces and heterogeneous shale blocks with weak natural interfaces are reported. Tests were conducted under similar stress conditions, with fluids of different viscosity and at different injection rates. The measurements and analysis allows the identification of fracture initiation and behavior. Fracturing with high-viscosity fluids resulted in stable fracture propagation initiated before breakdown, while fracturing with low-viscosity fluids resulted in unstable fracture propagation initiated almost simultaneously with breakdown. Analysis also allows us to measure the fluid volume entering the fracture and the fracture volume. Monitoring of acoustic emission hypocenter localizations, indicates the development of created fractured area including the intersection with interfaces, fluid propagation along interfaces, crossing interfaces, and approaching the boundaries of the block. We observe strong differences in hydraulic fracture behavior, fracture geometry and fracture propagation speed, when fracturing with water and high-viscosity fluids. We also observed distinct differences between sandstone blocks and shale blocks, when a certain P-wave velocity ray path is intersected by the hydraulic fracture. The velocity increases in sandstones and decreases in shale.

  8. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    NASA Technical Reports Server (NTRS)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  9. Estimation of Partial Discharge Parameters in GIS Using Acoustic Emission Techniques

    NASA Astrophysics Data System (ADS)

    GUPTA, N.; RAMU, T. S.

    2001-10-01

    Conventional electrical techniques for the monitoring of partial discharge (p.d.) activity in enclosed systems like gas insulated substations (GIS) have certain inherent limitations, which has prompted the exploration of non-electrical techniques. Acoustic detection of p.d. in a GIS is based on the retrieval and analysis of mechanical signals produced on the walls of the metallic enclosure due to electrical discharge activity within. A theoretical modelling of the process by which a discharge produced within the GIS sets up detectable signals on the walls of the enclosure seems to be lacking. The present work consists of the development of a model for the propagation of electrically induced acoustic waves through gaseous medium, and their effect on the walls of the GIS, giving adequate representation to fluid-structure coupling. A numerical simulation of the process is shown to yield important information about the proper type of instrumentation required for such non-invasive tests, and aid in designing robust strategies for locating the source of the discharge.

  10. Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™

    PubMed Central

    Klinck, Holger; Mellinger, David K.; Klinck, Karolin; Bogue, Neil M.; Luby, James C.; Jump, William A.; Shilling, Geoffrey B.; Litchendorf, Trina; Wood, Angela S.; Schorr, Gregory S.; Baird, Robin W.

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  11. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™.

    PubMed

    Klinck, Holger; Mellinger, David K; Klinck, Karolin; Bogue, Neil M; Luby, James C; Jump, William A; Shilling, Geoffrey B; Litchendorf, Trina; Wood, Angela S; Schorr, Gregory S; Baird, Robin W

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle--a glider--equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  12. Acoustic monitoring of gas emissions from the seafloor. Part I: quantifying the volumetric flow of bubbles

    NASA Astrophysics Data System (ADS)

    Leblond, Isabelle; Scalabrin, Carla; Berger, Laurent

    2014-09-01

    Three decades of continuous ocean exploration have led us to identify subsurface fluid related processes as a key phenomenon in marine earth science research. The number of seep areas located on the seafloor has been constantly increasing with the use of multi-scale imagery techniques. Due to recent advances in transducer technology and computer processing, multibeam echosounders are now commonly used to detect submarine gas seeps escaping from the seafloor into the water column. A growing number of en- route surveys shows that sites of gas emissions escaping from the seafloor are much more numerous than previously thought. Estimating the temporal variability of the gas flow rate and volumes escaping from the seafloor has thus become a challenge of relevant interest which could be addressed by sea-floor continuous acoustic monitoring. Here, we investigate the feasibility of estimating the volumetric flow rates of gas emissions from horizontal backscattered acoustic signals. Different models based on the acoustic backscattering theory of bubbles are presented. The forward volume backscattering strength and the inversion volumetric flow rate solutions were validated with acoustic measurements from artificial gas flow rates generated in controlled sea-water tank experiments. A sensitivity analysis was carried out to investigate the behavior of the 120-kHz forward solution with respect to model input parameters (horizontal distance between transducer and bubble stream, bubble size distribution and ascent rate). The most sensitive parameter was found to be the distance of the bubble stream which can affect the volume backscattering strength by 20 dB within the horizontal range of 0-200 m. Results were used to derive the detection probability of a bubble stream for a given volume backscattering strength threshold according to different bubble flow rates and horizontal distance.

  13. Acoustic emission strand burning technique for motor burning rate prediction

    NASA Technical Reports Server (NTRS)

    Christensen, W. N.

    1978-01-01

    An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.

  14. Monitoring accelerated carbonation on standard Portland cement mortar by nonlinear resonance acoustic test

    NASA Astrophysics Data System (ADS)

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Borrachero, M. V.; Payá, J.

    2015-03-01

    Carbonation is an important deleterious process for concrete structures. Carbonation begins when carbon dioxide (CO2) present in the atmosphere reacts with portlandite producing calcium carbonate (CaCO3). In severe carbonation conditions, C-S-H gel is decomposed into silica gel (SiO2.nH2O) and CaCO3. As a result, concrete pore water pH decreases (usually below 10) and eventually steel reinforcing bars become unprotected from corrosion agents. Usually, the carbonation of the cementing matrix reduces the porosity, because CaCO3 crystals (calcite and vaterite) occupy more volume than portlandite. In this study, an accelerated carbonation-ageing process is conducted on Portland cement mortar samples with water to cement ratio of 0.5. The evolution of the carbonation process on mortar is monitored at different levels of ageing until the mortar is almost fully carbonated. A nondestructive technique based on nonlinear acoustic resonance is used to monitor the variation of the constitutive properties upon carbonation. At selected levels of ageing, the compressive strength is obtained. From fractured surfaces the depth of carbonation is determined with phenolphthalein solution. An image analysis of the fractured surfaces is used to quantify the depth of carbonation. The results from resonant acoustic tests revealed a progressive increase of stiffness and a decrease of material nonlinearity.

  15. Laser tattoo removal as an ablation process monitored by acoustical and optical methods

    NASA Astrophysics Data System (ADS)

    Cencič, Boris; Gregorčič, Peter; Možina, Janez; Jezeršek, Matija

    2013-07-01

    Strength of the laser-tissue interaction varies even within a single tattoo because of the inhomogeneous distribution of the tattoo pigment embedded in the skin. A monitoring system is therefore developed for simultaneous monitoring of the laser tattoo removal process based on acoustical and optical techniques. A laser-beam-deflection probe is used for measuring the acoustical signals accompanying the breakdown, and a CCD camera captures the level and the spatial distribution of the plasma radiation. Using these methods we examine the degree of excitation-pulse absorption within the pigment and the degree of the structural changes of the skin. A Nd:YAG laser with a top-hat beam profile, designed for tattoo removal, is used as the excitation source in our experiments. Special attention is given to structural changes in the skin, which depend on the applied fluence. Tattoo removal with multiple pulses is also analyzed. Experiments are made in vitro (skin phantoms) and ex vivo (marking tattoos on the pig skin). The presented results are important for the understanding and optimization of the process used in medical therapies.

  16. C-Coupon Studies of SiC/SiC Composites. Part 1; Acoustic Emission Monitoring

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurwitz, Frances I.; Calomino, Anthony M.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Modal acoustic emission (AE) was used to monitor the acoustic activity during room temperature and elevated temperature c-coupon tests for a variety of SiC/SiC systems including composites containing Sylramic (trademark), ZMI (trademark), or Hi-Nicalon (trademark) fibers with melt-infiltrated or polymer-infiltrated SiC matrices. Modal AE proved excellent at monitoring matrix cracking in the curved portion of the C-coupon specimen with increasing load. This included the load at which the first AE event occurred and the location of AE events during the test that were, presumably, caused by the formation and growth of interlaminar cracks and, at higher loads, transverse cracks. Graphical techniques were employed to estimate the load for first AE. It was determined that for this test with these material systems, the first AE could be estimated within the load range bounded by the load at which initial deviation from linearity of the load-displacement curve occurs and the load where the 98% offset of the linear regression fit intercepted the load-displacement curve. The calculation of interlaminar tensile (ILT) stress from the load for first AE was determined for all the systems. Ultimate ILT strength usually corresponded to ILT stress determined from the ultimate load to failure of the C-coupon test, which was considerably higher than the first cracking stress.

  17. A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells.

    PubMed

    Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don

    2005-08-01

    We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments. PMID:16053309

  18. Contactless optoelectronic technique for monitoring epoxy cure.

    PubMed

    Cusano, A; Buonocore, V; Breglio, G; Calabrò, A; Giordano, M; Cutolo, A; Nicolais, L

    2000-03-01

    We describe a novel noninvasive optical technique to monitor the refractive-index variation in an epoxy-based resin that is due to the polymerization process. This kind of resin is widely used in polymer matrix composites. It is well known that the process of fabricating a thermoset-based composite involves mass and heat transfer coupled with irreversible chemical reactions that induce physical changes. To improve the quality and the reliability of these materials, monitoring the cure and optimization of the manufacturing process are of key importance. We discuss the basic operating principles of an optical system based on angle deflection measurements and present typical cure-monitoring results obtained from optical characterization. The method provides a flexible, high-sensitivity, material-independent, low-cost, noninvasive tool for monitoring real-time refractive-index variation. PMID:18337994

  19. Ocean acoustic field simulations for monitoring large-scale ocean structures

    NASA Astrophysics Data System (ADS)

    Shang, E. C.; Wang, Y. Y.

    1991-04-01

    Substantial numerical simulations of low-frequency acoustic field under different ocean models have been carried out on the CYBER-205 at WPL/NOAA. The purpose of these numerical simulations is to investigate our potential ability to monitor large-scale ocean structures by using modal ocean acoustic tomography (MOAT). For example, the possibility of monitoring El Niño by using MOAT has been illustrated.

  20. Microextraction techniques in therapeutic drug monitoring.

    PubMed

    Farhadi, Khalil; Hatami, Mehdi; Matin, Amir Abbas

    2012-08-01

    Therapeutic drug monitoring (TDM), as part of clinical process of medical treatments, is commonly used to maintain 'therapeutic' drug concentrations. TDM is useful to identify the causes of unwanted or unexpected responses, to prevent unnecessary diagnostic testing, to improve clinical outcomes, and even to save lives. The determination of drug concentration in blood samples requires an excellent sample preparation procedure. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low or no solvent consumption. Microextraction techniques, such as liquid- and solid-phase microextraction, have these advantages over the traditional techniques. This paper reviews the recent developments in microextraction techniques used for drug monitoring in serum, plasma or blood samples. PMID:22767149

  1. Accumulated damage process of thermal sprayed coating under rolling contact by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Xu, Jia; Zhou, Zhen-yu; Piao, Zhong-yu

    2016-07-01

    The accumulated damage process of rolling contact fatigue (RCF) of plasma-sprayed coatings was investigated. The influences of surface roughness, loading condition, and stress cycle frequency on the accumulated damage status of the coatings were discussed. A ball-ondisc machine was employed to conduct RCF experiments. Acoustic emission (AE) technique was introduced to monitor the RCF process of the coatings. AE signal characteristics were investigated to reveal the accumulated damage process. Result showed that the polished coating would resist the asperity contact and remit accumulated damage. The RCF lifetime would then extend. Heavy load would aggravate the accumulated damage status and induce surface fracture. Wear became the main failure mode that reduced the RCF lifetime. Frequent stress cycle would aggravate the accumulated damage status and induce interface fracture. Fatigue then became the main failure mode that also reduced the RCF lifetime.

  2. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  3. Seismic augmentation of acoustic monitoring of mortar fire

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas S.

    2007-10-01

    The US Army Corps of Engineers Research and Development Center participated in a joint ARL-NATO TG-53 field experiment and data collect at Yuma Proving Ground, AZ in early November 2005. Seismic and acoustic signatures from both muzzle blasts and impacts of small arms fire and artillery were recorded using 7 seismic arrays and 3 acoustic arrays. Arrays comprised of 12 seismic and 12 acoustic sensors each were located from 700 m to 18 km from gun positions. Preliminary analysis of signatures attributed to 60mm, 81mm, 120 mm mortars recorded at a seismic-acoustic array 1.1 km from gun position are presented. Seismic and acoustic array f-k analysis is performed to detect and characterize the source signature. Horizontal seismic data are analyzed to determine efficacy of a seismic discriminant for mortar and artillery sources. Rotation of North and East seismic components to radial and transverse components relative to the source-receiver path provide maximum surface wave amplitude on the transverse component. Angles of rotation agree well with f-k analysis of both seismic and acoustic signals. The spectral energy of the rotated transverse surface wave is observable on the all caliber of mortars at a distance of 1.1 km and is a reliable source discriminant for mortar sources at this distance. In a step towards automation, travel time stencils using local seismic and acoustic velocities are applied to seismic data for analysis and determination of source characteristics.

  4. Health Monitoring of Composite Material Structures using a Vibrometry Technique

    NASA Technical Reports Server (NTRS)

    Schulz, Mark J.

    1997-01-01

    Large composite material structures such as aircraft and Reusable Launch Vehicles (RLVS) operate in severe environments comprised of vehicle dynamic loads, aerodynamic loads, engine vibration, foreign object impact, lightning strikes, corrosion, and moisture absorption. These structures are susceptible to damage such as delamination, fiber breaking/pullout, matrix cracking, and hygrothermal strain. To ensure human safety and load-bearing integrity, these structures must be inspected to detect and locate often invisible damage and faults before becoming catastrophic. Moreover, nearly all future structures will need some type of in-service inspection technique to increase their useful life and reduce maintenance and overall costs. Possible techniques for monitoring the health and indicating damage on composite structures include: c-scan, thermography, acoustic emissions using piezoceramic actuators or fiber-optic wires with gratings, laser ultrasound, shearography, holography, x-ray, and others. These techniques have limitations in detecting damage that is beneath the surface of the structure, far away from a sensor location, or during operation of the vehicle. The objective of this project is to develop a more global method for damage detection that is based on structural dynamics principles, and can inspect for damage when the structure is subjected to vibratory loads to expose faults that may not be evident by static inspection. A Transmittance Function Monitoring (TFM) method is being developed in this project for ground-based inspection and operational health monitoring of large composite structures as a RLV. A comparison of the features of existing health monitoring approaches and the proposed TFM method is given.

  5. Remote acoustic monitoring of North Atlantic right whales (Eubalaena glacialis) reveals seasonal and diel variations in acoustic behavior.

    PubMed

    Matthews, Leanna P; McCordic, Jessica A; Parks, Susan E

    2014-01-01

    Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis) is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the "gunshot" sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for females or as an agonistic signal toward other males. This study uses remote acoustic monitoring to analyze the presence of gunshots over a two-year period at two sites on the Scotian Shelf to determine if there is evidence that North Atlantic right whales may use these locations for breeding activities. Seasonal analyses at both locations indicate that gunshot sound production is highly seasonal, with an increase in the autumn. One site, Roseway West, had significantly more gunshot sounds overall and exhibited a clear diel trend in production of these signals at night. The other site, Emerald South, also showed a seasonal increase in gunshot production during the autumn, but did not show any significant diel trend. This difference in gunshot signal production at the two sites indicates variation either in the number or the behavior of whales at each location. The timing of the observed seasonal increase in gunshot sound production is consistent with the current understanding of the right whale breeding season, and our results demonstrate that detection of gunshots with remote acoustic monitoring can be a reliable way to track shifts in distribution and changes in acoustic behavior including possible mating activities. PMID:24646524

  6. Comparison of acoustic and strain gauge techniques for crack closure measurements

    NASA Technical Reports Server (NTRS)

    Buck, O.; Inman, R. V.; Frandsen, J. D.

    1976-01-01

    A quantitative study on the systems performances of the COD gauge and the acoustic transmission techniques to elastic deformation of part-through crack and compact tension specimens has been conducted. It is shown that the two instruments measure two completely different quantities: The COD gauge yields information on the length change of the specimen whereas the acoustic technique is sensitive directly to the amount of contract area between two surfaces, interfering with the acoustic signal. In another series of experiments, compression tests on parts with specifically prepared surfaces were performed so that the surface contact area could be correlated with the transmitted acoustic signal, as well as the acoustic with the COD gauge signal. A linear relation between contact area and COD gauge signal was obtained until full contact had been established.

  7. Innovative techniques for analyzing the three-dimensional behavioral results from acoustically tagged fish

    NASA Astrophysics Data System (ADS)

    Steig, Tracey W.; Timko, Mark A.

    2005-04-01

    Acoustic tags were used to monitor the swimming patterns of downstream migrating salmon smolts approaching various dams on the Columbia River, USA. Downstream migrating yearling chinook (Oncorhynchus tshawytscha), steelhead (Oncorhynchus mykiss), sockeye (Oncorhynchus nerka), and sub-yearling chinook smolts were surgically implanted with acoustic tags. Fish were tracked in three-dimensions as they approached and passed into the turbine intakes, spillways, and surface bypass channel entrances at the dams during the 2004 spring and summer outmigrations. A number of advances in the analysis techniques and software have been made over the past few years. Some of these improvements include the development of various fish density algorithms, stream trace modeling analysis, and advances of three-dimensional animation programs. Three-dimensional tracks of fish approaching the turbine intakes, spillways, and surface bypass channel entrances will be presented. Concentrations of fish passage will be presented as three-dimensional fish densities superimposed over dam structures. Stream trace modeling animation will be presented showing predicted fish passage routes.

  8. Unique gel-coupled acoustic sensor array monitors human voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael

    2002-11-01

    The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. The Army Research Laboratory's gel-coupled acoustic physiological monitoring sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. Acoustic signal processing detects physiological events such as heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. Acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that sometimes obscure meaningful physiology. A noise-canceling sensor array configuration helps remove motion noise by using two acoustic sensors on the front sides of the neck and 2 additional acoustic sensors on each wrist. The motion noise detected on all 4 sensors will be dissimilar and out of phase, yet the physiology on all 4 sensors is covariant. Pulse wave transit time between neck and wrist will indicate systolic blood pressure. Data from a firefighter experiment will be presented.

  9. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-06-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a Wireless Sensor Network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  10. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-11-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a wireless sensor network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  11. Acoustic habitat and shellfish mapping and monitoring in shallow coastal water - Sidescan sonar experiences in The Netherlands

    NASA Astrophysics Data System (ADS)

    van Overmeeren, Ronnie; Craeymeersch, Johan; van Dalfsen, Jan; Fey, Frouke; van Heteren, Sytze; Meesters, Erik

    2009-11-01

    Sidescan sonar has been applied in a number of shallow water environments along the Dutch coast to map and monitor shellfish and seabed habitats. The littoral setting of these surveys may hamper data acquisition flying the towfish in zones of turbulence and waves, but also offers valuable opportunities for understanding, interpreting and validating sidescan sonar images because of the ability to ground-truth during low water periods, enabling easy identification and validation. Acoustical images of some of the mussel banks on the tidal flats of the Wadden Sea, recorded at high tide, show a marked resemblance with optical Google Earth images of the same banks. These sonar images may thus serve as ' acoustic type signatures' for the interpretation of sonar patterns recorded in deeper water where ground-truthing is more difficult and more expensive. Similarly, acoustic type signatures of (Japanese) oyster banks were obtained in the estuaries in the southwest of the Netherlands. Automated acoustic pattern recognition of different habitats and acoustical estimation of faunal cover and density are possible applications of sidescan sonar. Both require that the backscattering observed on the sidescan sonar images is directly caused by the biological component of the seafloor. Filtering offers a simple and effective pre-processing technique to separate the faunal signals from linear trends such as emanating from wave ripples or the central tracks of the towfish. Acoustically estimating the faunal density is approached by in-situ counting peaks in backscattering in unit squares. These counts must be calibrated by ground-truthing. Ground-truthing on littoral mussel banks in the Wadden Sea has been carried out by measuring their cover along lines during low tide. Due to its capacity of yielding full-cover, high resolution images of large surfaces, sidescan sonar proves to be an excellent, cost-effective tool for quantitative time-lapse monitoring of habitats.

  12. Assessment of error rates in acoustic monitoring with the R package monitoR

    USGS Publications Warehouse

    Katz, Jonathan; Hafner, Sasha D.; Donovan, Therese

    2016-01-01

    Detecting population-scale reactions to climate change and land-use change may require monitoring many sites for many years, a process that is suited for an automated system. We developed and tested monitoR, an R package for long-term, multi-taxa acoustic monitoring programs. We tested monitoR with two northeastern songbird species: black-throated green warbler (Setophaga virens) and ovenbird (Seiurus aurocapilla). We compared detection results from monitoR in 52 10-minute surveys recorded at 10 sites in Vermont and New York, USA to a subset of songs identified by a human that were of a single song type and had visually identifiable spectrograms (e.g. a signal:noise ratio of at least 10 dB: 166 out of 439 total songs for black-throated green warbler, 502 out of 990 total songs for ovenbird). monitoR’s automated detection process uses a ‘score cutoff’, which is the minimum match needed for an unknown event to be considered a detection and results in a true positive, true negative, false positive or false negative detection. At the chosen score cut-offs, monitoR correctly identified presence for black-throated green warbler and ovenbird in 64% and 72% of the 52 surveys using binary point matching, respectively, and 73% and 72% of the 52 surveys using spectrogram cross-correlation, respectively. Of individual songs, 72% of black-throated green warbler songs and 62% of ovenbird songs were identified by binary point matching. Spectrogram cross-correlation identified 83% of black-throated green warbler songs and 66% of ovenbird songs. False positive rates were  for song event detection.

  13. Health monitoring techniques using integrated sensors

    NASA Astrophysics Data System (ADS)

    Pfleiderer, Klaus; Stoessel, Rainer; Busse, Gerhard

    2003-08-01

    Advanced high performance materials and components such as CFRP, GFRP and Smart Structures require improved testing techniques. The first part of our contribution deals with nonlinear vibrometry as a defect selective non-destructive testing method. This method uses higher harmonics (which are generated only at defects) to locate the defect by scanning across the surface of the sample with a laser interferometer. For input coupling of the elastic wave both an external (like ultrasound welding converters) or internal (integrated piezo actuators) excitation source can be used. The external detection tools are a microphone or a scanning laser vibrometer. With this technique, we characterized Smart Structures made of aerospace materials and composites with embedded piezoelectric actuators. The next part is about health monitoring techniques and diagnostics where integrated elements are used for excitation and detection. Thus, we monitored the transfer function over a large frequency spectrum and especially its changes caused e.g. by defects. Changes in the properties of structures by fatigue, impacts, and thermoplasticity have been successfully observed. Also the changes in reinforced plastics under tensile stress have been monitored. The results were correlated with destructive measurements. For health monitoring we also present the impedance analysis of embedded piezo ceramic sensors. A defect causes changes in the modal response of the hole structure and that effect can be detected using the phase angle of the electric impedance of the piezo element. Additionally some types of defects cause a non-linear behavior of the structure which was verified by extracting higher harmonics as a reaction to sinusoidal single frequency excitation.

  14. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    PubMed

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-01

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information. PMID:27505037

  15. Volatile organic compound monitoring by photo acoustic radiometry

    SciTech Connect

    Sollid, J.E.; Trujillo, V.L.; Limback, S.P.; Woloshun, K.A.

    1995-12-01

    Two methods for sampling and analyzing volatile organics in subsurface pore gas were developed for use at the Hazardous Waste Disposal Site at Los Alamos National Laboratory. One is Thermal Desorption Gas Chromatography Mass Spectrometry (TDGCMS), the other is Photoacoustic Radiometry (PAR). Presented here are two years worth of experience and lessons learned as both techniques matured. The sampling technique is equally as important as the analysis method. PAR is a nondispersive infrared technique utilizing band pass filters in the region from 1 to 15 {mu}m. A commercial instrument, the Model 1302 Multigas Analyzer, made by Bruel and Kjaer, was adapted for field use. To use the PAR there must be some a priori knowledge of the constellation of analytes to be measured. The TDGCMS method is sensitive to 50 analytes. Hence TDGCMS is used in an initial survey of the site to determine what compounds are present and at what concentration. Once the major constituents of the soil-gas vapor plume are known the PAR can be configured to monitor for the five analytes of most interest. The PAR can analyse a sample in minutes, while in the field. The PAR is also quite precise in controlled situations.

  16. Ductile Deformation of Dehydrating Serpentinite Evidenced by Acoustic Signal Monitoring

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Hilairet, N.; Wang, Y.; Schubnel, A. J.

    2012-12-01

    Serpentinite dehydration is believed to be responsible for triggering earthquakes at intermediate depths (i.e., 60-300 km) in subduction zones. Based on experimental results, some authors have proposed mechanisms that explain how brittle deformation can occur despite high pressure and temperature conditions [1]. However, reproducing microseismicity in the laboratory associated with the deformation of dehydrating serpentinite remains challenging. A recent study showed that, even for fast dehydration kinetics, ductile deformation could take place rather than brittle faulting in the sample [2]. This latter study was conducted in a multi-anvil apparatus without the ability to control differential stress during dehydration. We have since conducted controlled deformation experiments in the deformation-DIA (D-DIA) on natural serpentinite samples at sector 13 (GSECARS) of the APS. Monochromatic radiation was used with both a 2D MAR-CCD detector and a CCD camera to determine the stress and the strain of the sample during the deformation process [3]. In addition, an Acoustic Emission (AE) recording setup was used to monitor the microseismicity from the sample, using piezo-ceramic transducers glued on the basal truncation of the anvils. The use of six independent transducers allows locating the AEs and calculating the corresponding focal mechanisms. The samples were deformed at strain rates of 10-5-10-4 s-1 under confining pressures of 3-5 GPa. Dehydration was triggered during the deformation by heating the samples at rates ranging from 5 to 60 K/min. Before the onset of the dehydration, X-ray diffraction data showed that the serpentinite sustained ~1 GPa of stress which plummeted when dehydration occurred. Although AEs were recorded during the compression and decompression stages, no AEs ever accompanied this stress drop, suggesting ductile deformation of the samples. Hence, unlike many previous studies, no evidence for fluid embrittlement and anticrack generation was found

  17. A survey on acoustic signature recognition and classification techniques for persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Alkilani, Amjad

    2012-06-01

    Application of acoustic sensors in Persistent Surveillance Systems (PSS) has received considerable attention over the last two decades because they can be rapidly deployed and have low cost. Conventional utilization of acoustic sensors in PSS spans a wide range of applications including: vehicle classification, target tracking, activity understanding, speech recognition, shooter detection, etc. This paper presents a current survey of physics-based acoustic signature classification techniques for outdoor sounds recognition and understanding. Particularly, this paper focuses on taxonomy and ontology of acoustic signatures resulted from group activities. The taxonomy and supportive ontology considered include: humanvehicle, human-objects, and human-human interactions. This paper, in particular, exploits applicability of several spectral analysis techniques as a means to maximize likelihood of correct acoustic source detection, recognition, and discrimination. Spectral analysis techniques based on Fast Fourier Transform, Discrete Wavelet Transform, and Short Time Fourier Transform are considered for extraction of features from acoustic sources. In addition, comprehensive overviews of most current research activities related to scope of this work are presented with their applications. Furthermore, future potential direction of research in this area is discussed for improvement of acoustic signature recognition and classification technology suitable for PSS applications.

  18. A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft

    NASA Astrophysics Data System (ADS)

    Jayachandran, V.; Bonilha, M. W.

    2003-03-01

    This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.

  19. Acoustic emission source location in complex structures using full automatic delta T mapping technique

    NASA Astrophysics Data System (ADS)

    Al-Jumaili, Safaa Kh.; Pearson, Matthew R.; Holford, Karen M.; Eaton, Mark J.; Pullin, Rhys

    2016-05-01

    An easy to use, fast to apply, cost-effective, and very accurate non-destructive testing (NDT) technique for damage localisation in complex structures is key for the uptake of structural health monitoring systems (SHM). Acoustic emission (AE) is a viable technique that can be used for SHM and one of the most attractive features is the ability to locate AE sources. The time of arrival (TOA) technique is traditionally used to locate AE sources, and relies on the assumption of constant wave speed within the material and uninterrupted propagation path between the source and the sensor. In complex structural geometries and complex materials such as composites, this assumption is no longer valid. Delta T mapping was developed in Cardiff in order to overcome these limitations; this technique uses artificial sources on an area of interest to create training maps. These are used to locate subsequent AE sources. However operator expertise is required to select the best data from the training maps and to choose the correct parameter to locate the sources, which can be a time consuming process. This paper presents a new and improved fully automatic delta T mapping technique where a clustering algorithm is used to automatically identify and select the highly correlated events at each grid point whilst the "Minimum Difference" approach is used to determine the source location. This removes the requirement for operator expertise, saving time and preventing human errors. A thorough assessment is conducted to evaluate the performance and the robustness of the new technique. In the initial test, the results showed excellent reduction in running time as well as improved accuracy of locating AE sources, as a result of the automatic selection of the training data. Furthermore, because the process is performed automatically, this is now a very simple and reliable technique due to the prevention of the potential source of error related to manual manipulation.

  20. Monitoring beach changes using GPS surveying techniques

    USGS Publications Warehouse

    Morton, Robert; Leach, Mark P.; Paine, Jeffrey G.; Cardoza, Michael A.

    1993-01-01

    The adaptation of Global Positioning System (GPS) surveying techniques to beach monitoring activities is a promising response to this challenge. An experiment that employed both GPS and conventional beach surveying was conducted, and a new beach monitoring method employing kinematic GPS surveys was devised. This new method involves the collection of precise shore-parallel and shore-normal GPS positions from a moving vehicle so that an accurate two-dimensional beach surface can be generated. Results show that the GPS measurements agree with conventional shore-normal surveys at the 1 cm level, and repeated GPS measurements employing the moving vehicle demonstrate a precision of better than 1 cm. In addition, the nearly continuous sampling and increased resolution provided by the GPS surveying technique reveals alongshore changes in beach morphology that are undetected by conventional shore-normal profiles. The application of GPS surveying techniques combined with the refinement of appropriate methods for data collection and analysis provides a better understanding of beach changes, sediment transport, and storm impacts.

  1. Acoustic waveguide technique for sensing incipient faults in underground power-transmission cables: including acousto-optic techniques. Final report

    SciTech Connect

    Harrold, R.T.

    1981-09-01

    The feasibility of using acoustic waveguide techniques for sensing incipient faults in underground power transmission cables was determined. Theoretical and practical studies were made of both the acoustic emission spectrum signatures associated with cable incipient faults, and the attenuation of acoustic waves in waterfilled metal tubes used as waveguides. Based on critical data, it can be estimated that in favorable circumstances, the acoustic waveguide system would only be useful for sensing incipient faults in underground cables of approx. 800 meters (approx. 0.5 miles) or less in length. As underground power transmission cables are often several kilometers in length, it was clear at this stage of the study, that simple acoustic waveguide sensing techniques would not be adequate, and some modification would be needed. With DOE approval it was decided to investigate acousto-optic sensing techniques in order to extend the detection range. In particular, a system in which acoustic emissions from cable incipient faults impinge on a fiber-optic lightguide and locally change its refractive indes, and as a consequence, modulate laser light transmitted along the light guide. Experiments based on this concept were successful, and it has been demonstrated that it is possible to sense acoustic emissions with energy levels below one micro-joule. A practical test of this system in the laboratory using a section of compressed gas-insulated cable with an internal flashover was successfully carried out. Long distance fault sensing with this technique should be feasible as laser light can be transmitted several kilometers in fiber optic lightguides. It is believed that laser-acousto-optic fault sensing is a viable technique which, with development, could be applied for fault sensing in power cables and other apparatus.

  2. Gaussian mixture modeling of acoustic emissions for structural health monitoring of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2013-04-01

    Reinforced Concrete (RC) has been widely used in construction of infrastructures for many decades. The cracking behavior in concrete is crucial due to the harmful effects on structural performance such as serviceability and durability requirements. In general, in loading such structures until failure, tensile cracks develop at the initial stages of loading, while shear cracks dominate later. Therefore, monitoring the cracking modes is of paramount importance as it can lead to the prediction of the structural performance. In the past two decades, significant efforts have been made toward the development of automated structural health monitoring (SHM) systems. Among them, a technique that shows promises for monitoring RC structures is the acoustic emission (AE). This paper introduces a novel probabilistic approach based on Gaussian Mixture Modeling (GMM) to classify AE signals related to each crack mode. The system provides an early warning by recognizing nucleation of numerous critical shear cracks. The algorithm is validated through an experimental study on a full-scale reinforced concrete shear wall subjected to a reversed cyclic loading. A modified conventional classification scheme and a new criterion for crack classification are also proposed.

  3. Lidar techniques for environmental and ecological monitoring

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2015-04-01

    An overview of optical probing of the atmosphere will be given, where mostly active remote- sensing techniques of the laser-radar type will be covered, but also some passive techniques employing ambient radiation. Atmospheric objects of quite varying sizes can be studied. Mercury is the only pollutant in atomic form in the atmosphere, while other pollutants are either molecular or in particle form. Light detection and ranging (Lidar) techniques allow three-dimensional mapping of such constituents, and examples from atmospheric lidar work in Lund and in Guangzhou will be given. Recently, much larger lidar targets have been studied. Monitoring of flying insects and birds is of considerable ecological interest, and several projects have been pursued in collaboration with biologists. Mostly, elastic backscattering and fluorescence techniques are employed. Some references to recent activities by the author and his colleagues are given below. [1] Z.G. Guan, L. Mei, P. Lundin, G. Somesfalean, and S. Svanberg, Vertical Lidar Sounding of Air Pollutants in a Major Chinese City, Appl. Phys. B 101, 465 (2010) [2] L. Mei, G.Y. Zhou and S. Svanberg, Differential Absorption Lidar System Employed for Background Atomic Mercury Vertical Profiling in South China, Lasers Opt. Eng. 55, 128 (2013) [3] Z.G. Guan, M. Brydegaard, P. Lundin, M. Wellenreuther, E. Svensson, and S. Svanberg, Insect Monitoring with Fluorescence LIDAR techniques - Field experiments, Appl. Optics 48, 5668 (2010) [4] A. Runemark, M. Wellereuther, H. Jayaweera, S. Svanberg and M. Brydegaard, Rare Events in Remote Dark Field Spectroscopy: An Ecological Case study of Insects, IEEE JSTQE 18, 1573 (2011) [5] L. Mei, Z.G. Guan, H.J. Zhou, J. Lv, Z.R. Zhu, J.A. Cheng, F.J. Chen, C. Löfstedt, S. Svanberg, and G. Somesfalean, Agricultural Pest Monitoring using Fluorescence Lidar Techniques, Applied Physics B 106, 733 (2011) [6] P. Lundin, P. Samuelsson, S. Svanberg, A. Runemark, S. Åkesson, and M. Brydegaard, Remote

  4. Acoustic vector sensor beamforming reduces masking from underwater industrial noise during passive monitoring.

    PubMed

    Thode, Aaron M; Kim, Katherine H; Norman, Robert G; Blackwell, Susanna B; Greene, Charles R

    2016-04-01

    Masking from industrial noise can hamper the ability to detect marine mammal sounds near industrial operations, whenever conventional (pressure sensor) hydrophones are used for passive acoustic monitoring. Using data collected from an autonomous recorder with directional capabilities (Directional Autonomous Seafloor Acoustic Recorder), deployed 4.1 km from an arctic drilling site in 2012, the authors demonstrate how conventional beamforming on an acoustic vector sensor can be used to suppress noise arriving from a narrow sector of geographic azimuths. Improvements in signal-to-noise ratio of up to 15 dB are demonstrated on bowhead whale calls, which were otherwise undetectable using conventional hydrophones. PMID:27106345

  5. Acoustic holography: Problems associated with construction and reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    The implications of the difference between the inspecting and interrogating radiations are discussed. For real-time, distortionless, sound viewing, it is recommended that infrared radiation of wavelength comparable to the inspecting sound waves be used. The infrared images can be viewed with (IR visible) converter phosphors. The real-time display of the visible image of the acoustically-inspected object at low sound levels such as are used in medical diagnosis is evaluated. In this connection attention is drawn to the need for a phosphor screen which is such that its optical transmission at any point is directly related to the incident electron beam intensity at that point. Such a screen, coupled with an acoustical camera, can enable instantaneous sound wave reconstruction.

  6. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  7. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  8. Diagnostic reasoning techniques for selective monitoring

    NASA Technical Reports Server (NTRS)

    Homem-De-mello, L. S.; Doyle, R. J.

    1991-01-01

    An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.

  9. Acoustic temperature profile measurement technique for large combustion chambers

    SciTech Connect

    Venkateshan, S. P.; Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1989-05-01

    Measurement of times of flight of sound waves can be used to determinetemperatures in a gas. This paper describes a system, based on this principle,that is capable of giving the temperature profile in a nonisothermal gasvolume, for example, prevalent in a large furnace. The apparatus is simple,rugged, accurate, and capable of being automated for process controlapplications. It is basically an acoustic waveguide where the outsidetemperature profile is tranferred to a chosen gas contained inside theguide.

  10. Acoustic temperature profile measurement technique for large combustion chambers

    NASA Technical Reports Server (NTRS)

    Venkateshan, S. P.; Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1989-01-01

    Measurement of times of flight of sound waves can be used to determine temperatures in a gas. This paper describes a system, based on this principle, that is capable of giving the temperature profile in a nonisothermal gas volume, for example, prevalent in a large furnace. The apparatus is simple, rugged, accurate, and capable of being automated for process control applications. It is basically an acoustic waveguide where the outside temperature profile is transferred to a chosen gas contained inside the guide.

  11. A novel sensor for monitoring acoustic cavitation. Part I: Concept, theory, and prototype development.

    PubMed

    Zeqiri, Bajram; Gélat, Pierre N; Hodnett, Mark; Lee, Nigel D

    2003-10-01

    This paper describes a new concept for an ultrasonic cavitation sensor designed specifically for monitoring acoustic emissions generated by small microbubbles when driven by an applied acoustic field. Its novel features include a hollow, open-ended, cylindrical shape, with the sensor being a right circular cylinder of height 32 mm and external diameter 38 mm. The internal diameter of the sensor is 30 mm; its inner surface is fabricated from a 110-microm layer of piezoelectrically active film whose measurement bandwidth is sufficient to enable acoustic emissions up to and beyond 10 MHz to be monitored. When in use, the sensor is immersed within the liquid test medium and high frequency (megahertz) acoustic emissions occurring within the hollow body of the sensor are monitored. In order to shield the sensor response from events occurring outside the cylinder, the outer surface of the sensor cylinder is encapsulated within a special 4-mm thick polyurethane-based cavitation shield with acoustic properties specifically developed to be minimally perturbing to the 40 kHz applied acoustic field but attenuating to ultrasound generated at megahertz frequencies (plane-wave transmission loss > 30 dB at 1 MHz). This paper introduces the rationale behind the new sensor, describing details of its construction and the materials formulation program undertaken to develop the cavitation shield. PMID:14609074

  12. Autonomous Acoustic Receiver Deployment and Mooring Techniques for Use in Large Rivers and Estuaries

    SciTech Connect

    Titzler, P. Scott; McMichael, Geoffrey A.; Carter, Jessica A.

    2010-08-01

    Autonomous acoustic receivers are often deployed across a range of aquatic habitats to study aquatic species. The Juvenile Salmon Telemetry System autonomous acoustic receiver packages we deployed in the Columbia River and its estuary were comprised of an acoustic receiver, acoustic release, and mooring line sections and were deployed directly on the river bottom. Detection ranges and reception data from past optimization deployments helped determine acoustic receiver spacing in order to achieve acceptable detection probabilities for juvenile salmon survival estimation. Methods used in 2005, which resulted in a high equipment loss rate, were modified and used between 2006 and 2008 to increase crew safety and optimize receiver deployment and recovery operations in a large river system. By eliminating surface buoys and taglines (for anchor recovery), we experienced a recovery success rate greater than previous acoustic receiver deployment techniques used in the Columbia River and elsewhere. This autonomous acoustic receiver system has optimized deployment, recovery, and servicing efficiency to successfully detect acoustic-tagged salmonids in a variety of river environments.

  13. ANALYSIS OF EMERGING NDE TECHNIQUES: METHODS FOR EVALUATING AND IMPLEMENTING CONTINUOUS ONLINE MONITORING

    SciTech Connect

    Cumblidge, Stephen E.; Doctor, Steven R.; Bond, Leonard J.; Taylor, Theodore T.; Lupold, Timothy R.; Hull, Amy; Malik, Shah

    2009-08-05

    One of the goals of the program for the proactive management of materials degradation (PMMD) is to manage proactively the in-service degradation of metallic components in aging NPPs. As some forms of degradation, such as stress corrosion cracking, are characterized by a long initiation time followed by a rapid growth phase, new inspection or monitoring technologies may be required. New nondestructive evaluation (NDE) techniques that may be needed include techniques to find stress corrosion cracking (SCC) precursors, on-line monitoring techniques to detect cracks as they initiate and grow, as well as advances in NDE technologies. This paper reports on the first part of the development of a methodology to determine the effectiveness of these emerging NDE techniques for managing metallic degradation. This methodology will draw from experience derived from evaluating techniques that have "emerged" in the past. The methodology will follow five stages: a definition of inspection parameters, a technical evaluation, laboratory testing, round robin testing, and the design of a performance demonstration program. This methodology will formalize the path taken for previous techniques and set a predictable course for future NDE techniques. This paper then applies the expert review section of the methodology to the acoustic emission technique to evaluate the use of acoustic emission in performing continuous online monitoring of reactor components.

  14. Hydraulic Fracture Propagation through Preexisting Discontinuity Monitored by Acoustic Emission and Ultrasonic Transmission

    NASA Astrophysics Data System (ADS)

    Stanchits, S.; Lund, J.; Surdi, A.; Edelman, E.; Whitney, N.; Eldredge, R.; Suarez-Rivera, R.

    2011-12-01

    Hydraulic fracturing is critical to enhance hydrocarbon production from ultra-low permeability unconventional reservoirs, and is the common completion methodology for tight formations around the world. Unfortunately, these reservoirs are often highly heterogeneous and their heterogeneity imparts a degree of geometrical complexity in hydraulic fractures that is poorly understood. Fracture complexity (e.g. branching) results in higher surface area and could be beneficial to production provided it remains conductive. Understanding the sources and consequences of fracture complexity is thus of high importance to completion and production operations. In this study we postulate that textural complexity in tight heterogeneous formations induces fracture complexity, and that the main sources of textural complexity are associated with veins, bed boundaries, lithologic contacts, and geologic interfaces. We thus study the effect of interfaces on hydraulic fracture propagation under laboratory conditions by Acoustic Emission (AE) and Ultrasonic Transmission (UT) monitoring techniques. The experiments were conducted on low permeability sandstone blocks of 279 x 279 x 381 mm length with saw cut discontinuities oriented orthogonally to the expected direction of fracture propagation. The rock is loaded in a poly-axial test frame to representative effective in-situ stress conditions of normal and deviatoric stress. Hydraulic fracturing was initiated by injection of silicon oil into a borehole drilled off center from the block. Acoustic emission (AE) events were continuously monitored during testing using nineteen P-wave sensors. Additional sensors were installed to periodically monitor ultrasonic transmission (UT) along various directions oblique and perpendicular to the fracture and the interface. The AE and UT data were recorded using a Vallen AMSY-6 system, with 16-bit amplitude resolution and 5 MHz sampling rate. Detailed analysis of AE localizations allowed us to identify

  15. Optical and acoustical measuring techniques. [for Doppler measurement of flow velocities

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.

    1977-01-01

    The paper reviews the techniques of laser and acoustic Doppler measurement of fluid velocities in confined and free flows. The main mathematical relations are presented, and some systems are studied. Resolution properties of coaxial, bistatic, and pulsed CO2 laser Doppler velocimeter systems are compared. Schematics for pulsed and continuous wave acoustic Doppler systems are discussed. Both of these types of systems benefit from using a bistatic configuration instead of a coaxial system. The pulsed systems avoid contamination of source noise by not sampling until after the source noise has passed the receiver. Comparison of wind velocity measured with a pulsed acoustic Doppler and with a boundary layer profile is made.

  16. Considerations for acoustic emission monitoring of spherical Kevlar/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.; Patterson, R. G.

    1977-01-01

    We are continuing to research the applications of acoustic emission testing for predicting burst pressure of filament-wound Kevlar 49/epoxy pressure vessels. This study has focused on three specific areas. The first area involves development of an experimental technique and the proper instrumentation to measure the energy given off by the acoustic emission transducer per acoustic emission burst. The second area concerns the design of a test fixture in which to mount the composite vessel so that the acoustic emission transducers are held against the outer surface of the composite. Included in this study area is the calibration of the entire test setup including couplant, transducer, electronics, and the instrument measuring the energy per burst. In the third and final area of this study, we consider the number, location, and sensitivity of the acoustic emission transducers used for proof testing composite pressure vessels.

  17. Detection of stress corrosion cracking of high-strength steel used in prestressed concrete structures by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Ramadan, S.; Gaillet, L.; Tessier, C.; Idrissi, H.

    2008-02-01

    The stress corrosion cracking (SCC) of high-strength steel used in prestressed concrete structures was studied by acoustic emission technique (AE). A simulated concrete pore (SCP) solution at high-alkaline (pH ≈ 12) contaminated by sulphate, chloride, and thiocyanate ions was used. The evolution of the acoustic activity recorded during the tests shows the presence of several stages related respectively to cracks initiation due to the local corrosion imposed by corrosives species, cracks propagation and steel failure. Microscopic examinations pointed out that the wires exhibited a brittle fracture mode. The cracking was found to propagate in the transgranular mode. The role of corrosives species and hydrogen in the rupture mechanism of high-strength steel was also investigated. This study shows promising results for an potential use in situ of AE for real-time health monitoring of eutectoid steel cables used in prestressed concrete structures.

  18. Acoustic levitation as an IR spectroscopy sampling technique

    SciTech Connect

    Cronin, J. T.; Brill, T. B.

    1989-02-01

    Acoustic levitation of liquid droplets (/lt/4 mm diameter), bubbles,and solid particles is described as an unusual sampling techniquefor obtaining the infrared spectrum of samples that might be incompatiblewith conventional sample support methods, and for studies of materialsunder extreme conditions. Excellent FT-IR spectra were recorded ofbubbles of a concentrated aqueous nitrate solution, of mineral oil,and of an aqueous surfactant solution. Polymethacrylic acidpacking foam also produced a high-quality spectrum. Large aqueousdroplets and dense solids gave unsatisfactory spectra. The designof the levitator and various spectroscopic considerations are discussed.

  19. DEVELOPMENT OF AN ACOUSTIC SUSPENDED SEDIMENT MONITORING SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Suspended sediments represent a serious worldwide pollutant which need to be monitored and ultimately controlled. Significant entrainment and transport of these sediments occur during adverse weather conditions and during relatively short time spans which make manual sampling and monitoring cumberso...

  20. Between-hole acoustic surveying and monitoring of a granitic rock mass

    SciTech Connect

    Paulsson, B.N.P.; King, M.S.

    1980-02-01

    The purpose of this technical note is to present preliminary results of an acoustic monitoring study performed as part of a comprehensive rock mechanic and geophysics research program (Ref.20) associated with large-scale heater tests in an abandoned iron-ore mine in central Sweden. The investigation was performed in a fractured granitic rock mass at a sub-surface depth of 340 m, in a drift adjacent to the original iron-ore mine workings. Acoustic monitoring took place between four empty, dry, vertical boreholes of 10 m depth spaced in the vicinity of a vertical heater borehole in the floor of a drift.

  1. The acoustic cough monitoring and manometric profile of cough and throat clearing.

    PubMed

    Xiao, Y; Carson, D; Boris, L; Mabary, J; Lin, Z; Nicodème, F; Cuttica, M; Kahrilas, P J; Pandolfino, J E

    2014-01-01

    Cough and throat clearing might be difficult to differentiate when trying to detect them acoustically or manometrically. The aim of this study was to assess the accuracy of acoustic monitoring for detecting cough and throat clearing, and to also determine whether these two symptoms present with different manometric profiles on esophageal pressure topography. Ten asymptomatic volunteers (seven females, mean age 31.1) were trained to simulate cough and throat clearing in a randomized order every 6 minutes during simultaneous acoustic monitoring and high-resolution manometry. The accuracy of automated acoustic analysis and two blinded reviewers were compared. The pattern of the events and the duration of the pressure changes were assessed using the 30 mmHg isobaric contour. There were 50 cough and 50 throat-clearing events according to the protocol. The sensitivity and specificity of automated acoustic analysis was 84% and 50% for cough, while the blinded analysis using sound revealed a sensitivity and specificity of 94% and 92%. The manometric profile of both cough and throat clearing was similar in terms of qualitative findings; however, cough was associated with a greater number of repetitive pressurizations and a more vigorous upper esophageal sphincter contraction compared with throat clearing. The acoustic analysis software has a moderate sensitivity and poor specificity to detect cough. The profile of cough and throat clearing in pressure topography revealed a similar qualitative pattern of pressurization with more vigorous pressure changes and a greater rate of repetitive pressurizations in cough. PMID:23442178

  2. Refinement and application of acoustic impulse technique to study nozzle transmission characteristics

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.

    1983-01-01

    An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.

  3. Investigation of pulmonary acoustic simulation: comparing airway model generation techniques

    NASA Astrophysics Data System (ADS)

    Henry, Brian; Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas

    2014-03-01

    Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable spectral, spatial and/or temporal changes in lung sound production and transmission. These changes, if properly quantified, might provide additional information about the etiology, severity and location of trauma, injury, or pathology. With this in mind, the authors are developing a comprehensive computer simulation model of pulmonary acoustics, known as The Audible Human Project™. Its purpose is to improve our understanding of pulmonary acoustics and to aid in interpreting measurements of sound and vibration in the lungs generated by airway insonification, natural breath sounds, and external stimuli on the chest surface, such as that used in elastography. As a part of this development process, finite element (FE) models were constructed of an excised pig lung that also underwent experimental studies. Within these models, the complex airway structure was created via two methods: x-ray CT image segmentation and through an algorithmic means called Constrained Constructive Optimization (CCO). CCO was implemented to expedite the segmentation process, as airway segments can be grown digitally. These two approaches were used in FE simulations of the surface motion on the lung as a result of sound input into the trachea. Simulation results were compared to experimental measurements. By testing how close these models are to experimental measurements, we are evaluating whether CCO can be used as a means to efficiently construct physiologically relevant airway trees.

  4. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  5. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    SciTech Connect

    Agarwal, Vivek; Smith, James A.; Jewell, James Keith

    2015-02-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  6. Comparison of PAM Systems for Acoustic Monitoring and Further Risk Mitigation Application.

    PubMed

    Ludwig, Stefan; Kreimeyer, Roman; Knoll, Michaela

    2016-01-01

    We present results of the SIRENA 2011 research cruises conducted by the NATO Undersea Research Centre (NURC) and joined by the Research Department for Underwater Acoustics and Geophysics (FWG), Bundeswehr Technical Centre (WTD 71) and the Universities of Kiel and Pavia. The cruises were carried out in the Ligurian Sea. The main aim of the FWG was to test and evaluate the newly developed towed hydrophone array as a passive acoustic monitoring (PAM) tool for risk mitigation applications. The system was compared with the PAM equipment used by the other participating institutions. Recorded sounds were used to improve an automatic acoustic classifier for marine mammals, and validated acoustic detections by observers were compared with the results of the classifier. PMID:26611016

  7. Ultrasonic acoustic health monitoring of ball bearings using neural network pattern classification of power spectral density

    NASA Astrophysics Data System (ADS)

    Kirchner, William; Southward, Steve; Ahmadian, Mehdi

    2010-03-01

    This paper presents a generic passive non-contact based approach using ultrasonic acoustic emissions (UAE) to facilitate the neural network classification of bearing health, and more specifically the bearing operating condition. The acoustic emission signals used in this study are in the ultrasonic range (20-120 kHz). A direct benefit of microphones capable of measurements in this frequency range is their inherent directionality. Using selected bands from the UAE power spectrum signature, it is possible to pose the health monitoring problem as a multi-class classification problem, and make use of a single neural network to classify the ultrasonic acoustic emission signatures. Artificial training data, based on statistical properties of a significantly smaller experimental data set is used to train the neural network. This specific approach is generic enough to suggest that it is applicable to a variety of systems and components where periodic acoustic emissions exist.

  8. Ambient Noise Surface Wave Tomography for Geotechnical Monitoring Using "Large N" Distributed Acoustic Sensing

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Martin, E. R.; Wagner, A. M.; Robertson, M.; Bjella, K.; Gelvin, A.; Ulrich, C.; Wu, Y.; Freifeld, B. M.; Daley, T. M.; Dou, S.

    2015-12-01

    Surface wave tomography using ambient noise sources has found broad application at the regional scale but has not been adopted fully for geotechnical applications despite the abundance of noise sources in this context. The recent development of Distributed Acoustic Sensing (DAS) provides a clear path for inexpensively recording high spatial resolution (< 1m sampling) surface wave data in the context of infrastructure monitoring over significant spatial domains (10s of km). Infrastructure monitoring is particularly crucial in the context of high-latitude installations where a changing global climate can trigger reductions in soil strength due to permafrost thaw. DAS surface wave monitoring systems, particularly those installed in/near transport corridors and coupled to ambient noise inversion algorithms, could be a critical "early warning" system to detect zones of decreased shear strength before failure. We present preliminary ambient noise tomography results from a 1.3 km continuously recording subsurface DAS array used to record traffic noise next to an active road in Fairbanks, AK. The array, depolyed at the Farmer's Loop Permafrost Test Station, was designed as a narrow 2D array and installed via trenching at ~30 cm. We develop a pre-processing and QC approach to analyze the large resulting volume of data, equivalent to a 1300 geophone array sampled at 1 khz. We utilize automated dispersion analysis and a quasi-2D MC inversion to generate a shear wave velocity profile underneath the road in a region of discontinuous permafrost. The results are validated against a high-resolution ERT survey as well as direct-push data on ice content. We also compare vintages of ambient noise DAS data to evaluate the short-term repeatability of the technique in the face of changing noise environments. The resulting dataset demonstrates the utility of using DAS for real-time shear-modulus monitoring in support of critical infrastructure.

  9. Identification of vibration excitations from acoustic measurements using near field acoustic holography and the force analysis technique

    NASA Astrophysics Data System (ADS)

    Pézerat, C.; Leclère, Q.; Totaro, N.; Pachebat, M.

    2009-10-01

    This study presents a method of using acoustic holography and the force analysis technique to identify vibration sources from radiated noise measurements. The structure studied is a plate excited by a shaker on which three measurements were performed: the first is a reference measurement of plate velocity obtained by scanning laser vibrometry, the second is based on sound pressure measurements in the near field of the structure, and the third is the measurement of normal acoustic velocities by using a p-U probe recently developed by Microflown Technologies. This was followed by the application of classical NAH, known as pressure-to-velocity holography and velocity-to-velocity holography to predict the plate velocity field from acoustic measurements at distances of 1 and 5 cm. Afterwards, the force analysis technique, also known as the RIFF technique, is applied with these five data sets. The principle is to inject the displacement field of the structure into its equation of motion and extract the resulting force distribution. This technique requires regularization done by a low-pass filter in the wavenumber domain. Apart from pressure-to-velocity holography at 5 cm, the reconstructed force distribution allows localizing the excitation point in the measurement area. FAT regularization is also shown to improve results as its cutoff wavenumber is optimized with the natural wavenumber of the plate. Lastly, quantitative force values are extracted from force distributions at all frequencies of the band 0-4 kHz studied and compared with the force spectrum measured directly by a piezoelectric sensor.

  10. An acoustic levitation technique for the study of nonlinear oscillations of gas bubbles in liquids

    NASA Astrophysics Data System (ADS)

    Young, D. A.; Crum, L. A.

    1983-08-01

    A technique of acoustic levitation was developed for the study of individual gas bubbles in a liquid. Isopropyl alcohol and a mixture of glycerine and water (33-1/3% glycerine by volume) were the two liquids used in this research. Bubbles were levitated near the acoustic pressure antinode of an acoustic wave in the range of 20-22 kHz. Measurements were made of the levitation number as a function of the normalized radius of the bubbles. The levitation number is the ratio of the hydrostatic pressure gradient to the acoustic pressure gradient. These values were then compared to a nonlinear theory. Results were very much in agreement except for the region near the n=2 harmonic. An explanation for the discrepancy between theory and experiment appears to lie in the polytropic exponent associated with the gas in the interior of the bubble.

  11. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  12. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    PubMed

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. PMID:24491527

  13. Identification of the fragmentation of brittle particles during compaction process by the acoustic emission technique.

    PubMed

    Favretto-Cristini, Nathalie; Hégron, Lise; Sornay, Philippe

    2016-04-01

    Some nuclear fuels are currently manufactured by a powder metallurgy process that consists of three main steps, namely preparation of the powders, powder compaction, and sintering of the compact. An optimum between size, shape and cohesion of the particles of the nuclear fuels must be sought in order to obtain a compact with a sufficient mechanical strength, and to facilitate the release of helium and fission gases during irradiation through pores connected to the outside of the pellet after sintering. Being simple to adapt to nuclear-oriented purposes, the Acoustic Emission (AE) technique is used to control the microstructure of the compact by monitoring the compaction of brittle Uranium Dioxide (UO2) particles of a few hundred micrometers. The objective is to identify in situ the mechanisms that occur during the UO2 compaction, and more specifically the particle fragmentation that is linked to the open porosity of the nuclear matter. Three zones of acoustic activity, strongly related to the applied stress, can be clearly defined from analysis of the continuous signals recorded during the compaction process. They correspond to particle rearrangement and/or fragmentation. The end of the noteworthy fragmentation process is clearly defined as the end of the significant process that increases the compactness of the material. Despite the fact that the wave propagation strongly evolves during the compaction process, the acoustic signature of the fragmentation of a single UO2 particle and a bed of UO2 particles under compaction is well identified. The waveform, with a short rise time and an exponential-like decay of the signal envelope, is the most reliable descriptor. The impact of the particle size and cohesion on the AE activity, and then on the fragmentation domain, is analyzed through the discrete AE signals. The maximum amplitude of the burst signals, as well as the mean stress corresponding to the end of the recorded AE, increase with increasing mean diameter of

  14. Acoustic emission monitoring of cement-based structures immobilising radioactive waste

    SciTech Connect

    Spasova, L.M.; Ojovan, M.I.; Hayes, M.; Godfrey, H.

    2007-07-01

    The long term performance of cementitious structures immobilising radioactive waste can be affected by physical and chemical processes within the encapsulating materials such as formation of new phases (e.g., vaterite, brucite), degradation of cement phases (e.g., CSH gel, portlandite), degradation of some waste components (e.g., organics), corrosion of metallic constituents (aluminium, magnesium), gas emission, further hydration etc. The corrosion of metals in the high pH cementitious environment is of especial concern as it can potentially cause wasteform cracking. One of the perspective non-destructive methods used to monitor and assess the mechanical properties of materials and structures is based on an acoustic emission (AE) technique. In this study an AE non-destructive technique was used to evaluate the mechanical performance of cementitious structures with encapsulated metallic waste such as aluminium. AE signals generated as a result of aluminium corrosion in a small-size blast furnace slag (BFS)/ordinary Portland cement (OPC) sample were detected, recorded and analysed. A procedure for AE data analysis including conventional parameter-based AE approach and signal-based analysis was applied and demonstrated to provide information on the aluminium corrosion process and its impact on the mechanical performance of the encapsulating cement matrix. (authors)

  15. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  16. The acoustic cough monitoring and manometric profile of cough and throat clearing

    PubMed Central

    Xiao, Yinglian; Carlson, Dustin; Boris, Lubomyr; Mabary, Jerry; Lin, Zhiyue; Nicodème, Frédéric; Cuttica, Michael; Kahrilas, Peter J.; Pandolfino, John E.

    2015-01-01

    Background Cough may coexist with throat clearing and it is possible that these two entities may be difficult to differentiate on acoustic monitoring and ambulatory manometry. The aim of this study was to assess the accuracy of acoustic monitoring for detecting cough and throat clearing and to also determine whether these two symptoms present with different manometric profiles on esophageal pressure topography. Methods Ten asymptomatic volunteers (7 females, mean age 31.1) were trained to simulate cough and throat clearing in a randomized order every 6 minutes during simultaneous acoustic monitoring and high resolution manometry. The accuracy of automated acoustic analysis and a blinded reviewer were compared against the scripted protocol. The pattern of the events and the duration of the pressure changes were assessed using the 30 mmHg isobaric contour to determine whether distinct patterns could be identified. Results In total, there were 50 cough and 50 throat clearing events according to the protocol. The sensitivity and specificity of acoustic cough monitoring was 84% and 50% for cough; while the blinded analysis based on sound alone revealed a sensitivity and specificity of 94% and 90%. The pressure topography manometric profile of both cough and throat clearing began with a decrease in esophageal pressure, followed by a distal excursion of the esophagogastric junction high-pressure zone and an increase in EGJ and UES contractile pressure that was followed immediately by a simultaneous abrupt increase in gastric and esophageal pressure. Cough was associated with a greater number of repetitive pressurizations, a more pronounced EGJ shift and a more vigorous augmentation of the UES pressure compared with throat clearing. Conclusions The automated acoustic analysis software has a moderate sensitivity and specificity to detect cough. The profile of cough and throat clearing in pressure topography revealed a similar qualitative pattern of pressurization with more

  17. Advanced Computing Methods for Knowledge Discovery and Prognosis in Acoustic Emission Monitoring

    ERIC Educational Resources Information Center

    Mejia, Felipe

    2012-01-01

    Structural health monitoring (SHM) has gained significant popularity in the last decade. This growing interest, coupled with new sensing technologies, has resulted in an overwhelming amount of data in need of management and useful interpretation. Acoustic emission (AE) testing has been particularly fraught by the problem of growing data and is…

  18. Nondestructive Evaluation of Adhesively Bonded Joints by Acousto-Ultrasonic Technique and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    Reliable applications of adhesively bonded joints require an effective nondestructive evaluation technique for their bond strength prediction. To properly evaluate factors affecting bond strength, effects of defects such as voids and disbonds on stress distribution in the overlap region must be understood. At the same time, in order to use acousto-ultrasonic (AU) technique to evaluate bond quality, the effect of these defects on dynamic response of single lap joints must be clear. The stress distribution in a single lap joint with and without defects (void or disbond) is analyzed. A bar-Theta parameter which contains adherend and adhesive thickness and properties is introduced. It is shown for bonded joints with bar-Theta greater than 10, that a symmetric void or disbond in the middle of overlap up to the 70 percent of overlap length has negligible effect on bond strength. In contrast frequency response analyses by a finite element technique showed that the dynamic response is affected significantly by the presence of voids or disbonds. These results have direct implication in the interpretations of AU results. Through transmission attenuation and a number of AU parameters for various specimens with and without defects are evaluated. It is found that although void and disbond have similar effects on bond strength (stress distribution), they have completely different effects on wave propagation characteristics. For steel-adhesive-steel specimens with voids, the attenuation changes are related to the bond strength. However, the attenuation changes for specimens with disbond are fairly constant over a disbond range. In order to incorporate the location of defects in AU parameters, a weighting function is introduced. Using an immersion system with focused transducers, a number of AU parameters are evaluated. It is found that by incorporating weighting functions in these parameters better sensitivities (AU parameters vs. bond strength) are achieved. Acoustic emission

  19. Acoustic technique for determining timing of velopharyngeal closure in swallowing.

    PubMed

    Smith, D; Hamlet, S; Jones, L

    1990-01-01

    A pure tone sound source was introduced at a nostril and monitored by a miniature accelerometer on the throat. During velopharyngeal closure in a swallow, the pure tone component in the accelerometer signal was attenuated. Throat accelerometer recordings were made simultaneously with videofluoroscopy of a modified barium swallow in adults with normal velopharyngeal mechanisms. It was verified that the period of sound attenuation corresponded to the period of velar closure. This noninvasive method of monitoring otherwise silent velopharyngeal closure holds promise for normative studies on swallowing function, as an adjunct method in longitudinal assessment, and as a training aid. PMID:2249490

  20. Flood detection/monitoring using adjustable histogram equalization technique.

    PubMed

    Nazir, Fakhera; Riaz, Muhammad Mohsin; Ghafoor, Abdul; Arif, Fahim

    2014-01-01

    Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332

  1. Flood Detection/Monitoring Using Adjustable Histogram Equalization Technique

    PubMed Central

    Riaz, Muhammad Mohsin; Ghafoor, Abdul

    2014-01-01

    Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332

  2. Acoustic Emission and Guided Wave Monitoring of Fatigue Crack Growth on a Full Pipe Specimen

    SciTech Connect

    Meyer, Ryan M.; Cumblidge, Stephen E.; Ramuhalli, Pradeep; Watson, Bruce E.; Doctor, Steven R.; Bond, Leonard J.

    2011-05-06

    Continuous on-line monitoring of active and passive systems, structures and components in nuclear power plants will be critical to extending the lifetimes of nuclear power plants in the US beyond 60 years. Acoustic emission and guided ultrasonic waves are two tools for continuously monitoring passive systems, structures and components within nuclear power plants and are the focus of this study. These tools are used to monitor fatigue damage induced in a SA 312 TP304 stainless steel pipe specimen. The results of acoustic emission monitoring indicate that crack propagation signals were not directly detected. However, acoustic emission monitoring exposed crack formation prior to visual confirmation through the detection of signals caused by crack closure friction. The results of guided ultrasonic wave monitoring indicate that this technology is sensitive to the presence and size of cracks. The sensitivity and complexity of GUW signals is observed to vary with respect to signal frequency and path traveled by the guided ultrasonic wave relative to the crack orientation.

  3. Remote Sensing Techniques for Monitoring Aquatic Vegetation

    NASA Astrophysics Data System (ADS)

    Blanco, Alfonso

    Hydrilla is an important submerged aquatic vegetation because it has a large capacity to absorb pollutants and it is an indicator of the eutrophic status of a waterbody. Monitoring and restoration of submerged aquatic vegetation is key for the preservation and restoration of the Chesapeake Bay. Remote sensing techniques have been used for assessing wetlands and non-invasive aquatic species, but there is limited studies of hydrilla monitoring combined with space-borne, airborne and in-situ remote sensing measurements for detecting and mapping hydrilla infestation. The first objective of this research was to establish a database of hydrilla spectral signatures from an experimental tank and from a field setting using a handheld spectrometer. The spectral signatures collected will be used to identify the optimal spectral and spatial characteristics that are required to identify and classify the distribution of hydrilla canopies in water bodies. The second objective is to process and analyze two hyperspectral images from a space-borne (Hyperion) and airborne (AISA) sensors with ENVI for detecting and mapping the infestation of hydrilla vertillicata in a coastal estuary in Chesapeake Bay. The third objective was to validate the satellite and airborne hyperspectral images with the spectral signatures collected with the in-situ field measurements. In addition, the Hyperion and AISA imaging results were compared with ground surveys and aerial photos collected by the Maryland Department of Natural Resources and the Virginia Institute of Marine Sciences for verifying the extent and the location of the hydrilla canopies. The hyperspectral analysis of both sensors provided for a dual results, one is the identification and classification of hydrilla from hyperspectral imaging sensors and secondly the identification of algae blooms in very productive waters. A hydrilla spectral signature database was established and housed in GMU's EastFIRE Lab of Environmental Science and

  4. Application of finite element techniques in predicting the acoustic properties of turbofan inlets

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Sigman, R. K.; Zinn, B. T.

    1978-01-01

    An analytical technique was developed for predicting the acoustic performance of turbofan inlets carrying a subsonic axisymmetric steady flow. The finite element method combined with the method of weighted residuals is used in predicting the acoustic properties of variable area, annular ducts with or without acoustic treatments along their walls. An approximate solution for the steady inviscid flow field is obtained using an integral method for calculating the incompressible potential flow field in the inlet with a correction to account for compressibility effects. The accuracy of the finite element technique was assessed by comparison with available analytical solutions for the problems of plane and spinning wave propagation through a hard walled annular cylinder with a constant mean flow.

  5. Detection and Prediction of Creep-Damage of Copper Using Nonlinear Acoustic Techniques

    NASA Astrophysics Data System (ADS)

    Narayana, V. J. S.; Balasubramaniam, K.; Prakash, R. V.

    2010-02-01

    This paper describes the use of nonlinear acoustic techniques for the characterization of material damage gradient in 99.98% pure copper due to high temperature creep. Creep damage progression was monitored by conducting continuous and interrupted modes of creep tests. In case of continuous loading, nonlinear ultrasonic (NLU) measurements were conducted, after fracture at different locations along the gage length of the sample. For interrupted tests, the NLU measurements were conducted at different creep life fractions, through periodic interruption of creep test. The third harmonic was more sensitive to creep damage compared to second and static component nonlinearity. All samples show one peak in the nonlinear response at 25-45% of creep life. Finally, we presented the results of nonlinear response working at low power levels, since the interesting effect of accumulated dislocations. Using that effect we applied to creep damage detection. In this the NLU amplitude vs. input amplitude was observed to correlate well with the micro-void concentrations caused by creep conditions.

  6. Noncontact technique for determining the thermal diffusivity coefficient on acoustically levitated liquid drops

    NASA Astrophysics Data System (ADS)

    Ohsaka, K.; Rednikov, A.; Sadhal, S. S.

    2003-02-01

    We present a technique that can be used to determine the thermal diffusivity coefficient of undercooled liquids, which exist at temperatures below their freezing points. The technique involves levitation of a small amount of liquid in a flattened drop shape using an acoustic levitator and heating it with a laser beam. The heated drop is then subjected to natural cooling by heat loss from the surface. Due to acoustic streaming, the heat loss mainly occurs through the equator section of the drop. The measured cooling rate in combination with a radial heat conduction model allows us to calculate the thermal diffusivity coefficient of the drop. We demonstrate the feasibility of the technique using glycerin drops as a model liquid. The technique is well suited if the thermal diffusivity coefficient of the liquid in the normal state (i.e., above the freezing point) is known or can be measured by conventional techniques.

  7. Numerical techniques in linear duct acoustics - A status report

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1980-01-01

    A review is presented covering both finite difference and finite element analysis of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turbojet engine duct, muffer, or industrial ventilation system. Both 'steady' state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.

  8. Resonant-type MEMS transducers excited by two acoustic emission simulation techniques

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2004-07-01

    Acoustic emission testing is a passive nondestructive testing technique used to identify the onset and characteristics of damage through the detection and analysis of transient stress waves. Successful detection and implementation of acoustic emission requires good coupling, high transducer sensitivity and ability to discriminate noise from real signals. We report here detection of simulated acoustic emission signals using a MEMS chip fabricated in the multi-user polysilicon surface micromachining (MUMPs) process. The chip includes 18 different transducers with 10 different resonant frequencies in the range of 100 kHz to 1 MHz. It was excited by two different source simulation techniques; pencil lead break and impact loading. The former simulation was accomplished by breaking 0.5 mm lead on the ceramic package. Four transducer outputs were collected simultaneously using a multi-channel oscilloscope. The impact loading was repeated for five different diameter ball bearings. Traditional acoustic emission waveform analysis methods were applied to both data sets to illustrate the identification of different source mechanisms. In addition, a sliding window Fourier transform was performed to differentiate frequencies in time-frequency-amplitude domain. The arrival and energy contents of each resonant frequency were investigated in time-magnitude plots. The advantages of the simultaneous excitation of resonant transducers on one chip are discussed and compared with broadband acoustic emission transducers.

  9. FEASIBILITY OF ACOUSTIC METHODS FOR IMPURITY GAS MONITORING IN DRY STORAGE SYSTEMS

    SciTech Connect

    Meyer, Ryan M.; Cuta, Judith M.; Jones, Anthony M.; Denslow, Kayte M.; Ramuhalli, Pradeep; Adkins, Harold E.; Hanson, Brady D.

    2015-05-01

    This paper explores the feasibility of monitoring impurities in dry storage containers (DSCs) for spent nuclear fuel using non-invasive acoustic sensing. The conceived implementation considers measurements based on changes in acoustic velocity at successive measurement intervals. Uncertainty contributions from the measurement system and temperature variability are estimated. Sources of temperature variability considered include changes in the decay heat source over time and ambient temperature variation. The results show that performance of a system which does not incorporate temperature compensation will be dependent upon geographic location and the decay heat source strength. The results also indicate that an annual measurement interval is optimal.

  10. Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques

    NASA Astrophysics Data System (ADS)

    Giorli, Giacomo

    Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an

  11. Acoustic emission of offshore structures, attenuation - noise - crack monitoring

    SciTech Connect

    Lovaas, S.

    1985-01-01

    No NDT crack detection methods have up to now proved to be the method which can overrule the others. We shall probably in the future in the offshore industry see a combination of various structure monitoring systems, remotely operated vehicles (ROV) with NDT-equipment and also the use of divers. The author believes that in some 5 - 10 years ROVs will perform much of the routine inspection, and mobile monitoring instrumentation will be concentrated to some hot spot areas, already detected defects or any repairs. The main areas for AE are monitoring of pressure vessels and fibre reinforced plastics. For application on offshore structures some fullscale trials have been performed (with practical problems) as well as some laboratory studies. Norwegian institutions seem to have a leading role today in the research of offshore applications. Norsk Hydro participated in a signature analysis project at Sintef/Veritas some years ago.

  12. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    SciTech Connect

    Mohd, Shukri; Holford, Karen M.; Pullin, Rhys

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  13. Numerical techniques in linear duct acoustics, 1980-81 update

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1981-01-01

    A review is presented covering finite element and finite difference analysis of small amplitude (linear) sound propagation in straight and variable area ducts. This review stresses the new work performed during the 1980-1981 time frame, although a brief discussion of earlier work is also included. Emphasis is placed on the latest state of the art in numerical techniques.

  14. Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition

    NASA Astrophysics Data System (ADS)

    Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.

    2006-03-01

    As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.

  15. Acoustic Emission Monitoring of Multicell Reinforced Concrete Box Girders Subjected to Torsion

    PubMed Central

    Bagherifaez, Marya; Behnia, Arash; Majeed, Abeer Aqeel; Hwa Kian, Chai

    2014-01-01

    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis. PMID:25180203

  16. A Catheter-Based Acoustic Interrogation Device for Monitoring Motility Dynamics of the Lower Esophageal Sphincter

    PubMed Central

    Lu, Qian; Yadid-Pecht, Orly; Sadowski, Daniel C.; Mintchev, Martin P.

    2014-01-01

    This paper presents novel minimally-invasive, catheter-based acoustic interrogation device for monitoring motility dynamics of the lower esophageal sphincter (LES). A micro-oscillator actively emitting sound wave at 16 kHz is located at one side of the LES, and a miniature microphone is located at the other side of the sphincter to capture the sound generated from the oscillator. Thus, the dynamics of the opening and closing of the LES can be quantitatively assessed. In this paper, experiments are conducted utilizing an LES motility dynamics simulator. The sound strength is captured by the microphone and is correlated to the level of LES opening and closing controlled by the simulator. Measurements from the simulator model show statistically significant (p < 0.05) Pearson correlation coefficients (0.905 on the average in quiet environment and 0.736 on the average in noisy environment, D.O.F. = 9). Measuring the level of LES opening and closing has the potential to become a valuable diagnostic technique for understanding LES dysfunction and the disorders associated with it. PMID:25120160

  17. Acoustic emission monitoring of low velocity impact damage in graphite/epoxy laminates during tensile loading

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    1992-01-01

    An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.

  18. Acoustic emission monitoring of hot functional testing: Watts Bar Unit 1 Nuclear Reactor

    SciTech Connect

    Hutton, P.H.; Dawson, J.F.; Friesel, M.A.; Harris, J.C.; Pappas, R.A.

    1984-06-01

    Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Power Plant during hot functional preservice testing is described in this report. The report deals with background, methodology, and results. The work discussed here is a major milestone in a program supported by NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing toward AE monitoring during reactor operation.

  19. Distributed feedback fiber laser acoustic emission sensor for concrete structure health monitoring

    NASA Astrophysics Data System (ADS)

    Hao, Gengjie; Huang, Wenzhu; Zhang, Wentao; Sun, Baochen; Li, Fang

    2014-05-01

    This paper introduces a highly-sensitive fiber optical acoustic emission (AE) sensor and a parameter analysis method aiming at concrete structure health monitoring. Distributed feedback fiber-laser (DFB-FL), which is encapsulated to have a high acoustic sensitivity, is used for sensor unit of the AE sensor. The AE signal of concrete beam in different work stages, based on the four-point bending experiment of the concrete beam, is picked up, and the relationship between the concrete beam work stages and the AE parameter is found. The results indicate that DFB-FLAES can be used as sensitive transducers for recording acoustic events and forecasting the imminent failure of the concrete beam.

  20. Acoustic monitoring of carbon film formation by laser-induced chemical vapor deposition

    SciTech Connect

    Iida, Y.; Yeung, E.S. )

    1993-04-01

    Acoustic signals generated by the deposition of carbon thin films were monitored in situ by a microphone. Photolysis of benzene or adamantane vapor in the presence of helium buffer gas of 5 to 100 Torr by an ArF excimer laser formed several kinds of carbon films (e.g., polymeric, amorphous, and graphitic films), depending on the optical configuration, the ambient pressure, the laser fluence, and the reagent pressure. Analysis of the acoustic signal offers some insight into the mechanism of the deposition processes, which include the graphitization of the deposited films and the role of energetic particles, such as vibrationally excited benzene, in the deposition of amorphous hydrogenated carbon film. Also, the acoustic signal clearly showed the presence of surface-related processes in the course of film deposition. 26 refs., 6 figs., 1 tab.

  1. Classifying multi-frequency fisheries acoustic data using a robust probabilistic classification technique.

    PubMed

    Anderson, C I H; Horne, J K; Boyle, J

    2007-06-01

    A robust probabilistic classification technique, using expectation maximization of finite mixture models, is used to analyze multi-frequency fisheries acoustic data. The number of clusters is chosen using the Bayesian Information Criterion. Probabilities of membership to clusters are used to classify each sample. The utility of the technique is demonstrated using two examples: the Gulf of Alaska representing a low-diversity, well-known system; and the Mid-Atlantic Ridge, a species-rich, relatively unknown system. PMID:17552574

  2. New graphical techniques for studying acoustic ray stability

    NASA Astrophysics Data System (ADS)

    Bódai, T.; Fenwick, A. J.; Wiercigroch, M.

    2009-07-01

    Alternatives to the standard Poincaré section are proposed to cater for some conditions arising in the study of chaotic ray propagation where the usual method of dimension reduction by the Poincaré section is inadequate because the driving is not periodic. There are three alternatives proposed which all use the same surface of intersection, but which differ in their use of the values of the dependent variables at the intersections of the rays with the surface. The new reduction techniques are used to examine ray behaviour in a harmonically perturbed Munk profile which supports ray chaos. It is found that all three techniques provide a graphical means of distinguishing between regular and irregular motions, and that the space of the mapping associated with one of them is partitioned into nonintersecting regular and chaotic regions as with the Poincaré section. A further model with quasiperiodic time dependence of the Hamiltonian is examined, and it turns out that the quasiperiodic nature of the motion is revealed as Lissajous curves by one technique.

  3. Acoustic Emission and Guided Ultrasonic Waves for Detection and Continuous Monitoring of Cracks in Light Water Reactor Components

    SciTech Connect

    Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep; Watson, Bruce E.; Cumblidge, Stephen E.; Doctor, Steven R.; Bond, Leonard J.

    2012-06-28

    Acoustic emission (AE) and guided ultrasonic waves (GUW) are considered for continuous monitoring and detection of cracks in Light Water Reactor (LWR) components. In this effort, both techniques are applied to the detection and monitoring of fatigue crack growth in a full scale pipe component. AE results indicated crack initiation and rapid growth in the pipe, and significant GUW responses were observed in response to the growth of the fatigue crack. After initiation, the crack growth was detectable with AE for approximately 20,000 cycles. Signals associated with initiation and rapid growth where distinguished based on total rate of activity and differences observed in the centroid frequency of hits. An intermediate stage between initiation and rapid growth was associated with significant energy emissions, though few hits. GUW exhibit a nearly monotonic trend with crack length with an exception of measurements obtained at 41 mm and 46 mm.

  4. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk that is not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. Multiparameter monitoring networks are deployed on many active volcanoes to record signs of magmatic processes and help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of many processes hiding in recorded signals is still poor. As a direct consequence, a solid interpretation of the state of a volcano is still a challenge. In an attempt to bridge this gap, we combined volcanic monitoring and experimental volcanology. We performed 15 well-monitored, field-based, experiments and fragmented natural rock samples from Colima volcano (Mexico) by rapid decompression. We used cylindrical samples of 60 mm height and 25 mm and 60 mm diameter, respectively, and 25 and 35 vol.% open porosity. The applied pressure range was from 4 to 18 MPa. Using different experimental set-ups, the pressurised volume above the samples ranged from 60 - 170 cm3. The experiments were performed at ambient conditions and at controlled sample porosity and size, confinement geometry, and applied pressure. The experiments have been thoroughly monitored with 1) Doppler Radar (DR), 2) high-speed and high-definition cameras, 3) acoustic and infrasound sensors, 4) pressure transducers, and 5) electrically conducting wires. Our aim was to check for common results achieved by the different approaches and, if so, calibrate state-of-the-art monitoring tools. We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast

  5. Acoustic emission monitoring of CFRP cables for cable-stayed bridges

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Lanza di Scalea, Francesco

    2001-08-01

    The advantages of fiber-reinforced polymer (FRP) composite include excellent corrosion resistance, high specific strength and stiffness, as well as outstanding fatigue behavior. The University of California San Diego's I- 5/Gilman Advanced Technology Bridge Project will help demonstrating the use of such materials in civil infrastructures. This paper presents an acoustic emission (AE) study performed during laboratory proof tests of carbon fiber-reinforced polymer stay-cables of possible use in the I-5/Gilman bridge. Three types of cables, both braided and single strand, were tested to failure at lengths ranging from 5500 mm to 5870 mm. AE allowed to monitor damage initiation and progression in the test pieces more accurately than the conventional load versus displacement curve. All of the cables exhibited acoustic activities revealing some degree of damage well before reaching final collapse, which is expected in FRP's. It was also shown that such cables are excellent acoustic waveguides exhibiting very low acoustic attenuation, which makes them an ideal application for an AE-based health monitoring approach.

  6. Wireless surface acoustic wave sensors for displacement and crack monitoring in concrete structures

    NASA Astrophysics Data System (ADS)

    Perry, M.; McKeeman, I.; Saafi, M.; Niewczas, P.

    2016-03-01

    In this work, we demonstrate that wireless surface acoustic wave devices can be used to monitor millimetre displacements in crack opening during the cyclic and static loading of reinforced concrete structures. Sensors were packaged to extend their gauge length and to protect them against brittle fracture, before being surface-mounted onto the tensioned surface of a concrete beam. The accuracy of measurements was verified using computational methods and optical-fibre strain sensors. After packaging, the displacement and temperature resolutions of the surface acoustic wave sensors were 10 μ {{m}} and 2 °C respectively. With some further work, these devices could be retrofitted to existing concrete structures to facilitate wireless structural health monitoring.

  7. BIOSEPARATION AND BIOANALYTICAL TECHNIQUES IN ENVIRONMENTAL MONITORING

    EPA Science Inventory

    The growing use of antibody-based separation methods has paralleled the expansion of immunochemical detection methods in moving beyond the clinical diagnostic field to applications in environmental monitoring. In recent years high-performance immunoaffinity chromatography, which ...

  8. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500–2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  9. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    SciTech Connect

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  10. Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines

    NASA Astrophysics Data System (ADS)

    Wu, Weiliang; Lin, Tian Ran; Tan, Andy C. C.

    2015-12-01

    A signal processing technique is presented in this paper to normalize and separate the source of non-linear acoustic emission (AE) signals of a multi-cylinder diesel engine for condition monitoring applications and fault detection. The normalization technique presented in the paper overcomes the long-existing non-linearity problem of AE sensors so that responses measured by different AE sensors can be quantitatively analysed and compared. A source separation algorithm is also developed in the paper to separate the mixture of the normalized AE signals produced by a multi-cylinder diesel engine by utilising the system parameters (i.e., wave attenuation constant and the arrival time delay) of AE wave propagation determined by a standard pencil lead break test on the engine cylinder head. It is shown that the source separation algorithm is able to separate the signal interference of adjacent cylinders from the monitored cylinder once the wave attenuation constant and the arrival time delay along the propagation path are known. The algorithm is particularly useful in the application of AE technique for condition monitoring of small-size diesel engines where signal interference from the neighbouring cylinders is strong.

  11. Online acoustic emission monitoring of combustion turbines for compressor stator vane crack detection

    NASA Astrophysics Data System (ADS)

    Momeni, Sepandarmaz; Koduru, Jaya P.; Gonzalez, Miguel; Zarate, Boris; Godinez, Valery

    2013-03-01

    Combustion turbine components operate under extreme environmental conditions and are susceptible to failure. Turbine blades are the most susceptible components and need to be regularly inspected to assure their integrity. Undetected cracks on these blades may grow quickly due to the high fatigue loading to which they are subjected and eventually fail causing extensive damage to the turbine. Cracks in turbine blades can originate from manufacturing errors, impact damages or the due to corrosion from the aggressive environment in which they operate. The component most susceptible to failure in a combustion turbine is the mid-compressor blades. In this region, the blades experience the highest gradients in temperature and pressure. Cracks in the rotator blades can be detected by vibration monitoring; while, the stator vanes or blades cracking can only be monitored by Acoustic Emission (AE) method. The stator vanes are in contact with the external casing of the turbine and therefore, any acoustic emission activity from the blades can be captured non-intrusively by placing sensors on the turbine casing. The acoustic emission activity from cracks that are under fatigue loading is significantly higher than the background noise and hence can be captured and located accurately by a group of AE sensors. Using a total of twelve AE sensors per turbine, the crack generation and propagation in the stator vanes of the mid-compressor section is monitored continuously. The cracks appearing in the stator vanes is clearly identified and located by the AE sensors.

  12. An Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    SciTech Connect

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun; Carlson, Thomas J.

    2012-05-31

    Fishes and other marine mammals suffer a range of potential effects from intense sound sources generated by anthropogenic underwater processes such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording devices (USR) were built to monitor the acoustic sound pressure waves generated by those anthropogenic underwater activities, so the relevant processing software becomes indispensable for analyzing the audio files recorded by these USRs. However, existing software packages did not meet performance and flexibility requirements. In this paper, we provide a detailed description of a new software package, named Aquatic Acoustic Metrics Interface (AAMI), which is a Graphical User Interface (GUI) designed for underwater sound monitoring and analysis. In addition to the general functions, such as loading and editing audio files recorded by USRs, the software can compute a series of acoustic metrics in physical units, monitor the sound's influence on fish hearing according to audiograms from different species of fishes and marine mammals, and batch process the sound files. The detailed applications of the software AAMI will be discussed along with several test case scenarios to illustrate its functionality.

  13. A Fusion Model of Seismic and Hydro-Acoustic Propagation for Treaty Monitoring

    NASA Astrophysics Data System (ADS)

    Arora, Nimar; Prior, Mark

    2014-05-01

    We present an extension to NET-VISA (Network Processing Vertically Integrated Seismic Analysis), which is a probabilistic generative model of the propagation of seismic waves and their detection on a global scale, to incorporate hydro-acoustic data from the IMS (International Monitoring System) network. The new model includes the coupling of seismic waves into the ocean's SOFAR channel, as well as the propagation of hydro-acoustic waves from underwater explosions. The generative model is described in terms of multiple possible hypotheses -- seismic-to-hydro-acoustic, under-water explosion, other noise sources such as whales singing or icebergs breaking up -- that could lead to signal detections. We decompose each hypothesis into conditional probability distributions that are carefully analyzed and calibrated. These distributions include ones for detection probabilities, blockage in the SOFAR channel (including diffraction, refraction, and reflection around obstacles), energy attenuation, and other features of the resulting waveforms. We present a study of the various features that are extracted from the hydro-acoustic waveforms, and their correlations with each other as well the source of the energy. Additionally, an inference algorithm is presented that concurrently infers the seismic and under-water events, and associates all arrivals (aka triggers), both from seismic and hydro-acoustic stations, to the appropriate event, and labels the path taken by the wave. Finally, our results demonstrate that this fusion of seismic and hydro-acoustic data leads to very good performance. A majority of the under-water events that IDC (International Data Center) analysts built in 2010 are correctly located, and the arrivals that correspond to seismic-to-hydroacoustic coupling, the T phases, are mostly correctly identified. There is no loss in the accuracy of seismic events, in fact, there is a slight overall improvement.

  14. Field trials of a tactile acoustic monitor for the profoundly deaf.

    PubMed

    Summers, I R; Peake, M A; Martin, M C

    1981-08-01

    Profoundly deaf subjects were given information about sound level in their environment by means of a body-worn unit coupled to a small vibrator worn on the finger. Results of trials on 19 adults are discussed. The Tactile Acoustic Monitor was found to be useful for identifying domestic sounds by means of their distinctive timing patterns. No significant overall improvement in subject's control of voice level was observed, although some subjects found that having a voice level monitor gave them greater confidence to join conversations. Various design improvements were suggested by the trials. Modifications which have been incorporated into an improved unit are described. PMID:7296098

  15. Monitoring Stress Changes in a Concrete Bridge with Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Stähler, S.; Sens-Schönfelder, C.; Niederleithinger, E.; Pirskawetz, S.

    2009-12-01

    The sensitivity of coda waves for material changes has been demonstrated in various environments ranging form laboratory scale to regional seismology. Here we present a test for monitoring stress induced velocity variations in a concrete construction. The construction is a bridge made of reinforced concrete in Germany that is build in incremental launching method (Taktschiebe-Mode). This means that construction takes place at one end of the bridge from which the bridge is successively pushed over the pillars as the constructions continues. During the movement of the construction over the pillars the stress in the girder and the deck slab undergoes changes between 0 and 14 MPa in horizontal direction. We used seismic equipment to induce elastic waves in the deck slab of the bridge at different position of the array relative to the supporting pillars. Comparing reverberating waves in slab recorded at different stress states we can infer changes in the propagation velocity. The observed velocity change is compared to modeled stress variations in the slab. Comparison is difficult due to imprecise positioning of the array and the spatially periodic stress variations. But we can show that the observed velocity variation is in agreement with the predictions from the stress model. Samples of the concrete used in the bridge are tested under different loads in the laboratory to infer the stress-velocity relation. The experiments show that the acousto-elastic effect in the specific concrete can account for the observed velocity variations.

  16. A Device for Fetal Monitoring by Means of Control Over Cardiovascular Parameters Based on Acoustic Data

    NASA Astrophysics Data System (ADS)

    Khokhlova, L. A.; Seleznev, A. I.; Zhdanov, D. S.; Zemlyakov, I. Yu; Kiseleva, E. Yu

    2016-01-01

    The problem of monitoring fetal health is topical at the moment taking into account a reduction in the level of fertile-age women's health and changes in the concept of perinatal medicine with reconsideration of live birth criteria. Fetal heart rate monitoring is a valuable means of assessing fetal health during pregnancy. The routine clinical measurements are usually carried out by the means of ultrasound cardiotocography. Although the cardiotocography monitoring provides valuable information on the fetal health status, the high quality ultrasound devices are expensive, they are not available for home care use. The recommended number of measurement is also limited. The passive and fully non-invasive acoustic recording provides an alternative low-cost measurement method. The article describes a device for fetal and maternal health monitoring by analyzing the frequency and periodicity of heart beats by means of acoustic signal received on the maternal abdomen. Based on the usage of this device a phonocardiographic fetal telemedicine system, which will allow to reduce the antenatal fetal mortality rate significantly due to continuous monitoring over the state of fetus regardless of mother's location, can be built.

  17. Monitoring Thermal Fatigue Damage In Nuclear Power Plant Materials Using Acoustic Emission

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Watson, Bruce E.; Pitman, Stan G.; Roosendaal, Timothy J.; Bond, Leonard J.

    2012-04-26

    Proactive aging management of nuclear power plant passive components requires technologies to enable monitoring and accurate quantification of material condition at early stages of degradation (i.e., pre-macrocrack). Acoustic emission (AE) is well-suited to continuous monitoring of component degradation and is proposed as a method to monitor degradation during accelerated thermal fatigue tests. A key consideration is the ability to separate degradation responses from external sources such as water spray induced during thermal fatigue testing. Water spray provides a significant background of acoustic signals, which can overwhelm AE signals caused by degradation. Analysis of AE signal frequency and energy is proposed in this work as a means for separating degradation signals from background sources. Encouraging results were obtained by applying both frequency and energy filters to preliminary data. The analysis of signals filtered using frequency and energy provides signatures exhibiting several characteristics that are consistent with degradation accumulation in materials. Future work is planned to enable verification of the efficacy of AE for thermal fatigue crack initiation detection. While the emphasis has been placed on the use of AE for crack initiation detection during accelerated aging tests, this work also has implications with respect to the use of AE as a primary tool for early degradation monitoring in nuclear power plant materials. The development of NDE tools for characterization of aging in materials can also benefit from the use of a technology such as AE which can continuously monitor and detect crack initiation during accelerated aging tests.

  18. On measurement of the acoustic nonlinearity parameter using the finite amplitude insertion substitution (FAIS) technique

    NASA Astrophysics Data System (ADS)

    Zeqiri, Bajram; Cook, Ashley; Rétat, Lise; Civale, John; ter Haar, Gail

    2015-04-01

    The acoustic nonlinearity parameter, B/A, is an important parameter which defines the way a propagating finite amplitude acoustic wave progressively distorts when travelling through any medium. One measurement technique used to determine its value is the finite amplitude insertion substitution (FAIS) method which has been applied to a range of liquid, tissue and tissue-like media. Importantly, in terms of the achievable measurement uncertainties, it is a relative technique. This paper presents a detailed study of the method, employing a number of novel features. The first of these is the use of a large area membrane hydrophone (30 mm aperture) which is used to record the plane-wave component of the acoustic field. This reduces the influence of diffraction on measurements, enabling studies to be carried out within the transducer near-field, with the interrogating transducer, test cell and detector positioned close to one another, an attribute which assists in controlling errors arising from nonlinear distortion in any intervening water path. The second feature is the development of a model which estimates the influence of finite-amplitude distortion as the acoustic wave travels from the rear surface of the test cell to the detector. It is demonstrated that this can lead to a significant systematic error in B/A measurement whose magnitude and direction depends on the acoustic property contrast between the test material and the water-filled equivalent cell. Good qualitative agreement between the model and experiment is reported. B/A measurements are reported undertaken at (20 ± 0.5) °C for two fluids commonly employed as reference materials within the technical literature: Corn Oil and Ethylene Glycol. Samples of an IEC standardised agar-based tissue-mimicking material were also measured. A systematic assessment of measurement uncertainties is presented giving expanded uncertainties in the range ±7% to ±14%, expressed at a confidence level close to 95

  19. Theoretical detection threshold of the proton-acoustic range verification technique

    SciTech Connect

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei; Xiang, Liangzhong

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic

  20. Bulk microstructure and local elastic properties of carbon nanocomposites studied by impulse acoustic microscopy technique

    NASA Astrophysics Data System (ADS)

    Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.

    2016-05-01

    Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.

  1. A functional technique based on the Euclidean algorithm with applications to 2-D acoustic diffractal diffusers

    NASA Astrophysics Data System (ADS)

    Cortés-Vega, Luis

    2015-09-01

    We built, based on the Euclidean algorithm, a functional technique, which allows to discover a direct proof of Chinese Remainder Theorem. Afterwards, by using this functional approach, we present some applications to 2-D acoustic diffractal diffusers. The novelty of the method is their functional algorithmic character, which improves ideas, as well as, other results of the author and his collaborators in a previous work.

  2. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.

    PubMed

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  3. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    DOE PAGESBeta

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less

  4. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    PubMed Central

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  5. Dual instrument passive acoustic monitoring of belugas in Cook Inlet, Alaska.

    PubMed

    Castellote, Manuel; Small, Robert J; Lammers, Marc O; Jenniges, Justin J; Mondragon, Jeff; Atkinson, Shannon

    2016-05-01

    As part of a long-term research program, Cook Inlet beluga (Delphinapterus leucas) presence was acoustically monitored with two types of acoustic sensors utilized in tandem in moorings deployed year-round: an ecological acoustic recorder (EAR) and a cetacean and porpoise detector (C-POD). The EAR was used primarily to record the calls, whistles, and buzzes produced by belugas and killer whales (Orcinus orca). The C-POD was used to log and classify echolocation clicks from belugas, killer whales, and porpoises. This paper describes mooring packages that maximized the chances of successful long-term data collection in the particularly challenging Cook Inlet environment, and presents an analytical comparison of odontocete detections obtained by the collocated EAR and C-POD instruments from two mooring locations in the upper inlet. Results from this study illustrate a significant improvement in detecting beluga and killer whale presence when the different acoustic signals detected by EARs and C-PODs are considered together. Further, results from concurrent porpoise detections indicating prey competition and feeding interference with beluga, and porpoise displacement due to ice formation are described. PMID:27250163

  6. Ambient and Unobtrusive Cardiorespiratory Monitoring Techniques.

    PubMed

    Bruser, Christoph; Antink, Christoph Hoog; Wartzek, Tobias; Walter, Marian; Leonhardt, Steffen

    2015-01-01

    Monitoring vital signs through unobtrusive means is a goal which has attracted a lot of attention in the past decade. This review provides a systematic and comprehensive review over the current state of the field of ambient and unobtrusive cardiorespiratory monitoring. To this end, nine different sensing modalities which have been in the focus of current research activities are covered: capacitive electrocardiography, seismo- and ballistocardiography, reflective photoplethysmography (PPG) and PPG imaging, thermography, methods relying on laser or radar for distance-based measurements, video motion analysis, as well as methods using high-frequency electromagnetic fields. Current trends in these subfields are reviewed. Moreover, we systematically analyze similarities and differences between these methods with respect to the physiological and physical effects they sense as well as the resulting implications. Finally, future research trends for the field as a whole are identified. PMID:25794396

  7. Water quality monitoring using remote sensing technique

    NASA Astrophysics Data System (ADS)

    Adsavakulchai, Suwannee; Panichayapichet, Paweena

    2003-03-01

    There has been a rapid growth of shrimp farm around Kung Krabaen Bay in the past decade. This has caused enormous rise in generation of domestic and industrial wastes. Most of these wastes are disposed in the Kung Krabaen Bay. There is a serious need to retain this glory by better water quality management of this river. Conventional methods of monitoring of water quality have limitations in collecting information about water quality parameters for a large region in detailed manner due to high cost and time. Satellite based technologies have offered an alternate approach for many environmental monitoring needs. In this study, the high-resolution satellite data (LANDSAT TM) was utilized to develop mathematical models for monitoring of chlorophyll-a. Comparison between empirical relationship of spectral reflectance with chl-a and band ratio between the near infrared (NIR) and red was suggested to detect chlorophyll in water. This concept has been successfully employed for marine zones and big lakes but not for narrow rivers due to constraints of spatial resolution of satellite data. This information will be very useful in locating point and non-point sources of pollution and will help in designing and implementing controlling structures.

  8. Monitoring Anthropogenic Ocean Sound from Shipping Using an Acoustic Sensor Network and a Compressive Sensing Approach.

    PubMed

    Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian

    2016-01-01

    Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches. PMID:27011187

  9. Acoustic Measurements in Opera Houses: Comparison Between Different Techniques and Equipment

    NASA Astrophysics Data System (ADS)

    FAUSTI, P.; FARINA, A.

    2000-04-01

    In room acoustics, many objective parameters to quantify subjective impressions have been introduced. These quantities can be measured by using a wide variety of powerful tools and equipment. The results can be influenced by the measurement techniques and instruments used. Furthermore, the results also depend on the measurement positions and on the condition of the hall (full, empty, etc.). The aim of this work is to define a tightly standardized measurement procedure for the collection of a complete objective description of an opera house's acoustics. In this paper some of the results obtained by the authors after measurements made in three different halls are presented. Comparisons were made both between different hardware and software tools (real-time analyzer, DAT, PC-board, source, microphones, post-processing software) and between different measurement methods (interrupted stationary noise, true-impulse, pseudo-random white noise with impulse-response doconvolution, sine sweep) as well as between different positions in the halls, with and without the presence of musicians and audience. The results have shown that the differences obtained when using different measurement techniques and equipment are not of significant importance. The only effective differences were found regarding the recording techniques, as the monaural measurements give appreciably different results from the average of left and right channel of binaural measurements. Slightly different results were alsofound between true impulsive sources (pistol shots, balloons) and omni-directional (dodecahedral) loudspeakers. Attention must be paid to the signal-to-noise ratio, as this can influence the correct calculation of some acoustical parameters. Some differences, not as great as expected, were found in the results with and without the musicians in the orchestra shell and with and without the audience in the hall. This is probably due to the high sound absorption that is typical in Italian opera

  10. Deep-water riser fatigue monitoring systems based on acoustic telemetry

    NASA Astrophysics Data System (ADS)

    Li, Baojun; Wang, Haiyan; Shen, Xiaohong; Yan, Yongsheng; Yang, Fuzhou; Hua, Fei

    2014-12-01

    Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and production. VIV will result in high rates of structural failure of marine riser due to fatigue damage accumulation and diminishes the riser fatigue life. In-service monitoring or full scale testing is essential to improve our understanding of VIV response and enhance our ability to predict fatigue damage. One marine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed to monitor deep and ultra-deep water risers' fatigue and failure that can diminish the riser fatigue life and lead to economic losses and eco-catastrophe. Many breakthroughs and innovation have been achieved in the process of developing an engineering prototype machine. Sea trials were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea. The inclination monitoring results show that the marine riser fatigue acoustic telemetry scheme is feasible and reliable and the engineering prototype machine meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained in the sea trial which provide much technical support for optimization in the engineering prototype machine in the future.

  11. Usefulness of Acoustic Monitoring of Respiratory Rate in Patients Undergoing Endoscopic Submucosal Dissection

    PubMed Central

    Tsuda, Shingo; Nakae, Hirohiko; Imai, Jin; Sawamoto, Kana; Kijima, Maiko; Tsukune, Yoko; Uchida, Tetsufumi; Igarashi, Muneki; Koike, Jun; Matsushima, Masashi; Suzuki, Toshiyasu; Mine, Tetsuya

    2016-01-01

    Aim. The study assessed the usefulness of a recently developed method for respiratory rate (RR) monitoring in patients undergoing endoscopic submucosal dissection (ESD) under deep sedation. Methods. Study subjects comprised 182 consecutive patients with esophageal cancer or gastric cancer undergoing ESD. The usefulness of acoustic RR monitoring was assessed by retrospectively reviewing the patients' records for age, gender, height, weight, past history, serum creatinine, RR before ESD, and total dose of sedative. Results. Respiratory suppression was present in 37.9% of (69/182) patients. Continuous monitoring of RR led to detection of respiratory suppression in all these patients. RR alone was decreased in 24 patients, whereas both RR and blood oxygen saturation were decreased in 45 patients. Univariate analysis showed female gender, height, weight, and RR before treatment to be significantly associated with respiratory suppression. Multivariate analysis showed RR before treatment to be the only significant independent predictor [odds ratio (OR) 0.83, 95% confidence interval (CI) 0.73–0.95, and P = 0.006] of respiratory suppression. Conclusion. In this study, the difference in RR before treatment between patients with and without respiratory suppression was subtle. Therefore, we suggest that acoustic RR monitoring should be considered in patients undergoing ESD under sedation to prevent serious respiratory complications. PMID:26858748

  12. Log-ratio technique for beam position monitor systems

    SciTech Connect

    Roberto Aiello, G.; Mills, M.R. )

    1992-07-10

    Recent progress in the development of a beam position monitor system (BPM), based on the log-ratio technique, is described in this paper. A complete electronic analysis is presented, showing linearity, dynamic range, noise, RF burst response, and temperature dependence. A calibration technique has been developed, which corrects the errors due to mismatched channels and electronics drift. This technique is particularly effective because of the log-ratio property for beam position monitoring. This circuit is the most likely candidate for beam position monitor electronics at the SSC.

  13. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  14. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.

    PubMed

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878

  15. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    PubMed Central

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878

  16. FRP debonding monitoring using OTDR techniques

    NASA Astrophysics Data System (ADS)

    Hou, Shuang; Cai, C. S. Steve; Ou, Jinping

    2009-07-01

    Debonding failure has been reported as the dominant failure mode for FRP strengthening in flexure. This paper explores a novel debonding monitoring method for FRP strengthened structures by means of OTDR-based fiber optic technology. Interface slip as a key factor in debonding failures will be measured through sensing optic fibers, which is instrumented in the interface between FRP and concrete in the direction perpendicular to the FRP filaments. Slip in the interface will induce power losses in the optic fiber signals at the intersection point of the FRP strip and the sensing optic fiber and the signal change will be detected through OTDR device. The FRP double shear tests and three-point bending tests were conducted to verify the effectiveness of the proposed monitoring method. It is found that the early bebonding can be detected before it causes the interface failure. The sensing optic fiber shows signal changes in the slip value at about 36~156 micrometer which is beyond sensing capacity of the conventional sensors. The tests results show that the proposed method is feasible in slip measurement with high sensitivity, and would be cost effective because of the low price of sensors used, which shows its potential of large-scale applications in civil infrastructures, especially for bridges.

  17. Prospects and Techniques for Eddy-Resolving Acoustic Tomography in the Eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Caruthers, J. W.; Nechaev, D.; Roman, D. A.; Sidorovskaia, N. A.; Ioup, G. E.; Ioup, J.; Yaremchuk, M.

    2007-05-01

    For several decades monitoring and modeling the dynamics and physical structure of the Gulf of Mexico have been major efforts undertaken by oceanographers of the United States and other American countries. There are very interesting physical oceanographic features in the Gulf, not the least of which are the Gulf Loop Current and the eddies it spawns. Satellite sensing of IR and altimeter imagery has been a major input to modeling those features. Such efforts are very important to the economy and well being of much of the United States and Mexico, including fisheries, mineral economies, hurricane strengths and paths in the summer, and severe snow storms in the eastern US in the winter. A major shortcoming of the present monitoring of the Gulf is the lack of subsurface input to the dynamic models of the Gulf. Acoustic tomography is a viable means of providing that missing input. Several universities have come together to investigate the prospects for establishing a Gulf Eddy Monitoring System (GEMS) for the deep eastern half of the Gulf using acoustic tomography. The group has conducted several acoustics experiments and propagation studies to determine the feasibility of long-range propagation in the eastern Gulf and the mitigation of adverse effects on marine mammal populations in that region under the Office of Naval Research project entitled the Littoral Acoustic Demonstration Center (LADC). The group has also convened an invited session for the 9th World Multiconference on Systemics, Cybernetics and Informatics (WMSCI 2005) Orlando, FL, July 2005. This paper discusses prospects for establishing the GEMS tomographic system, its technical characteristics, and its contributions to advancing the knowledge of the dynamics of the Gulf. This presentation will concentrate on the characteristics of a single-slice tomographic system, called GEMS Phase I, across the approaches to the DeSoto Canyon in the northeastern Gulf and its prospect for monitoring the movements of

  18. Acoustic levitation technique for containerless processing at high temperatures in space

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.; Danley, Thomas J.

    1988-01-01

    High temperature processing of a small specimen without a container has been demonstrated in a set of experiments using an acoustic levitation furnace in the microgravity of space. This processing technique includes the positioning, heating, melting, cooling, and solidification of a material supported without physical contact with container or other surface. The specimen is supported in a potential energy well, created by an acoustic field, which is sufficiently strong to position the specimen in the microgravity environment of space. This containerless processing apparatus has been successfully tested on the Space Shuttle during the STS-61A mission. In that experiment, three samples wer successfully levitated and processed at temperatures from 600 to 1500 C. Experiment data and results are presented.

  19. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  20. Identification of a reflection boundary coefficient in an acoustic wave equation by optimal control techniques

    SciTech Connect

    Lenhart, S. |; Protopopescu, V.; Yong, J.

    1997-12-31

    The authors apply optimal control techniques to find approximate solutions to an inverse problem for the acoustic wave equation. The inverse problem (assumed here to have a solution) is to determine the boundary reflection coefficient from partial measurements of the acoustic signal. The sought reflection coefficient is treated as a control and the goal--quantified by an approximate functional--is to drive the model solution close to the experimental data by adjusting this coefficient. The problem is solved by finding the optimal control that minimizes the approximate functional. Then by driving the cost of the control to zero one proves that the corresponding sequence of optimal controls represents a converging sequence of estimates for the solution of the inverse problem. Compared to classical regularization methods (e.g., Tikhonov coupled with optimization schemes), their approach yields: (1) a systematic procedure to solve inverse problems of identification type and (ii) an explicit expression for the approximations of the solution.

  1. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  2. Method and apparatus for acoustically monitoring the flow of suspended solid particulate matter

    DOEpatents

    Roach, Paul D.; Raptis, Apostolos C.

    1982-01-01

    A method and apparatus for monitoring char flow in a coal gasifier system cludes flow monitor circuits which measure acoustic attenuation caused by the presence of char in a char line and provide a char flow/no flow indication and an indication of relative char density. The flow monitor circuits compute the ratio of signals in two frequency bands, a first frequency band representative of background noise, and a second higher frequency band in which background noise is attenuated by the presence of char. Since the second frequency band contains higher frequencies, the ratio can be used to provide a flow/no flow indication. The second band can also be selected so that attenuation is monotonically related to particle concentration, providing a quantitative measure of char concentration.

  3. Video and acoustic camera techniques for studying fish under ice: a review and comparison

    SciTech Connect

    Mueller, Robert P.; Brown, Richard S.; Hop, Haakon H.; Moulton, Larry

    2006-09-05

    Researchers attempting to study the presence, abundance, size, and behavior of fish species in northern and arctic climates during winter face many challenges, including the presence of thick ice cover, snow cover, and, sometimes, extremely low temperatures. This paper describes and compares the use of video and acoustic cameras for determining fish presence and behavior in lakes, rivers, and streams with ice cover. Methods are provided for determining fish density and size, identifying species, and measuring swimming speed and successful applications of previous surveys of fish under the ice are described. These include drilling ice holes, selecting batteries and generators, deploying pan and tilt cameras, and using paired colored lasers to determine fish size and habitat associations. We also discuss use of infrared and white light to enhance image-capturing capabilities, deployment of digital recording systems and time-lapse techniques, and the use of imaging software. Data are presented from initial surveys with video and acoustic cameras in the Sagavanirktok River Delta, Alaska, during late winter 2004. These surveys represent the first known successful application of a dual-frequency identification sonar (DIDSON) acoustic camera under the ice that achieved fish detection and sizing at camera ranges up to 16 m. Feasibility tests of video and acoustic cameras for determining fish size and density at various turbidity levels are also presented. Comparisons are made of the different techniques in terms of suitability for achieving various fisheries research objectives. This information is intended to assist researchers in choosing the equipment that best meets their study needs.

  4. Comparing Distribution of Harbour Porpoises (Phocoena phocoena) Derived from Satellite Telemetry and Passive Acoustic Monitoring

    PubMed Central

    Rigét, Frank F.; Kyhn, Line A.; Sveegaard, Signe; Dietz, Rune; Tougaard, Jakob; Carlström, Julia A. K.; Carlén, Ida; Koblitz, Jens C.; Teilmann, Jonas

    2016-01-01

    Cetacean monitoring is essential in determining the status of a population. Different monitoring methods should reflect the real trends in abundance and patterns in distribution, and results should therefore ideally be independent of the selected method. Here, we compare two independent methods of describing harbour porpoise (Phocoena phocoena) relative distribution pattern in the western Baltic Sea. Satellite locations from 13 tagged harbour porpoises were used to build a Maximum Entropy (MaxEnt) model of suitable habitats. The data set was subsampled to one location every second day, which were sufficient to make reliable models over the summer (Jun-Aug) and autumn (Sep-Nov) seasons. The modelled results were compared to harbour porpoise acoustic activity obtained from 36 static acoustic monitoring stations (C-PODs) covering the same area. The C-POD data was expressed as the percentage of porpoise positive days/hours (the number of days/hours per day with porpoise detections) by season. The MaxEnt model and C-POD data showed a significant linear relationship with a strong decline in porpoise occurrence from west to east. This study shows that two very different methods provide comparable information on relative distribution patterns of harbour porpoises even in a low density area. PMID:27463509

  5. Acoustic Monitor for Liquid-Solid Slurries Measurements at Low Weight Fractions

    SciTech Connect

    Tavlarides, Lawrence L.

    2005-06-01

    Our effort in this project is to develop an acoustic monitor for accurate, real-time characterization of the size and weight fractions of solids in slurries for process monitoring and to determine the optimal timing for slurry transfers. This capability will be valuable in the Savannah River Site accelerated clean-up program. Our scientific work during the first research period developed a theory, supported by experiments, to describe sound attenuation of solids in suspensions in the presence of bubbles, which permits us to determine the solid-liquid weight percent. Engineering developments during the second research period led to the design, construction, and demonstration, in our laboratories, of the Syracuse Acoustic Monitor (SAM) system that measures weight percent solids accurately in slurries of 0.5 to 8.0 weight percent on-line and in real-time. Also, we had shown the potential for these measurements in solid-gas-liquid slurries by removing the interference due to the presence of gas bubbles.

  6. Comparing Distribution of Harbour Porpoises (Phocoena phocoena) Derived from Satellite Telemetry and Passive Acoustic Monitoring.

    PubMed

    Mikkelsen, Lonnie; Rigét, Frank F; Kyhn, Line A; Sveegaard, Signe; Dietz, Rune; Tougaard, Jakob; Carlström, Julia A K; Carlén, Ida; Koblitz, Jens C; Teilmann, Jonas

    2016-01-01

    Cetacean monitoring is essential in determining the status of a population. Different monitoring methods should reflect the real trends in abundance and patterns in distribution, and results should therefore ideally be independent of the selected method. Here, we compare two independent methods of describing harbour porpoise (Phocoena phocoena) relative distribution pattern in the western Baltic Sea. Satellite locations from 13 tagged harbour porpoises were used to build a Maximum Entropy (MaxEnt) model of suitable habitats. The data set was subsampled to one location every second day, which were sufficient to make reliable models over the summer (Jun-Aug) and autumn (Sep-Nov) seasons. The modelled results were compared to harbour porpoise acoustic activity obtained from 36 static acoustic monitoring stations (C-PODs) covering the same area. The C-POD data was expressed as the percentage of porpoise positive days/hours (the number of days/hours per day with porpoise detections) by season. The MaxEnt model and C-POD data showed a significant linear relationship with a strong decline in porpoise occurrence from west to east. This study shows that two very different methods provide comparable information on relative distribution patterns of harbour porpoises even in a low density area. PMID:27463509

  7. Monitoring of Concrete Structures Using Ofdr Technique

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  8. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    PubMed Central

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  9. Effective beam pattern of the Blainville's beaked whale (Mesoplodon densirostris) and implications for passive acoustic monitoring.

    PubMed

    Shaffer, Jessica Ward; Moretti, David; Jarvis, Susan; Tyack, Peter; Johnson, Mark

    2013-03-01

    The presence of beaked whales in mass-strandings coincident with navy maneuvers has prompted the development of methods to detect these cryptic animals. Blainville's beaked whales, Mesoplodon densirostris, produce distinctive echolocation clicks during long foraging dives making passive acoustic detection a possibility. However, performance of passive acoustic monitoring depends upon the source level, beam pattern, and clicking behavior of the whales. In this study, clicks recorded from Digital acoustic Tags (DTags) attached to four M. densirostris were linked to simultaneous recordings from an 82-hydrophone bottom-mounted array to derive the source level and beam pattern of the clicks, as steps towards estimating their detectability. The mean estimated on-axis apparent source level for the four whales was 201 dBrms97. The mean 3 dB beamwidth and directivity index, estimated from sequences of clicks directed towards the far-field hydrophones, were 13° and 23 dB, respectively. While searching for prey, Blainville's beaked whales scan their heads horizontally at a mean rate of 3.6°/s over an angular range of some +/-10°. Thus, while the DI indicates a narrow beam, the area of ensonification over a complete foraging dive is large given the combined effects of body and head movements associated with foraging. PMID:23464046

  10. Laser ablation of absorbing liquids under transparent cover: acoustical and optical monitoring

    NASA Astrophysics Data System (ADS)

    Samokhin, A. A.; Il'ichev, N. N.; Pivovarov, P. A.; Sidorin, A. V.

    2016-06-01

    Phase transition induced with infrared (λ = 2920 nm and λ = 2940 nm) nanosecond laser pulses in strongly absorbing liquids (water, ethanol) under transparent solid cover is investigated with the help of acoustical and optical monitoring. LiNbO3 transducer is used for registration of pressure pulses generated in irradiated liquids. Optical signals due to scattering and specular reflection of probing optical beams are explored with the schemes involving total internal reflection and interference effects. Combination of these two optical diagnostic methods permits for the first time to show that irradiation of covered liquids leads to vapor cavity formation which is divided from the cover with thin (submicron) liquid film despite the fact that radiation intensity maximum is located just at the liquid-plate boundary. The cavity formation is due to explosive boiling which occurs when the superheated liquid reaches its superheating limit in near critical region. After the first acoustical signal, the second signal is observed with several hundreds microseconds time delay which is caused by the vapor cavity collapse. Some results of optical and acoustical diagnostics in the case of free liquid surface are also presented.

  11. Impact-acoustics-based health monitoring of tile-wall bonding integrity using principal component analysis

    NASA Astrophysics Data System (ADS)

    Tong, F.; Tso, S. K.; Hung, M. Y. Y.

    2006-06-01

    The use of the acoustic features extracted from the impact sounds for bonding integrity assessment has been extensively investigated. Nonetheless, considering the practical implementation of tile-wall non-destructive evaluation (NDE), the traditional defects classification method based directly on frequency-domain features has been of limited application because of the overlapping feature patterns corresponding to different classes whenever there is physical surface irregularity. The purpose of this paper is to explore the clustering and classification ability of principal component analysis (PCA) as applied to the impact-acoustics signature in tile-wall inspection with a view to mitigating the adverse influence of surface non-uniformity. A clustering analysis with signature acquired on sample slabs shows that impact-acoustics signatures of different bonding quality and different surface roughness are well separated into different clusters when using the first two principal components obtained. By adopting as inputs the feature vectors extracted with PCA applied, a multilayer back-propagation artificial neural network (ANN) classifier is developed for automatic health monitoring and defects classification of tile-walls. The inspection results obtained experimentally on the prepared sample slabs are presented and discussed, confirming the utility of the proposed method, particularly in dealing with tile surface irregularity.

  12. Acoustic monitoring method and system in laser-induced optical breakdown (LIOB)

    DOEpatents

    O'Donnell, Matthew; Ye, Jing Yong; Norris, Theodore B.; Baker, Jr., James R.; Balogh, Lajos P.; Milas, Susanne M.; Emelianov, Stanislav Y.; Hollman, Kyle W.

    2008-05-06

    An acoustic monitoring method and system in laser-induced optical breakdown (LIOB) provides information which characterize material which is broken down, microbubbles in the material, and/or the microenvironment of the microbubbles. In one embodiment of the invention, femtosecond laser pulses are focused just inside the surface of a volume of aqueous solution which may include dendrimer nanocomposite (DNC) particles. A tightly focused, high frequency, single-element ultrasonic transducer is positioned such that its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a microbubble forms and a shock or pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble may be actively probed with pulse-echo measurements from the same transducer. After the microbubble forms, received pulse-echo signals have an extra pulse, describing the microbubble location and providing a measure of axial microbubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of microbubbles due to optical breakdown. These same plots can also be used to quantify LIOB thresholds.

  13. Coupling of acoustic emission and electrochemical noise measurement techniques in slurry erosion-corrosion studies

    SciTech Connect

    Oltra, R.; Chapey, B.; Huet, F.; Renaud, L.

    1996-12-31

    This study deals with the measurement and the subsequent signal analysis of acoustic emission and current noise recorded during continuous slurry erosion of a metallic target in a corrosive environment. According to a phenomenologic model, the localized corrosion results from the repetitive damage caused by particle impacts. The fluctuations of the acoustic signal and of the electrochemical signal both can be modeled as a shot-noise-like process. The main purpose of this work is to compare two processing techniques for the fluctuating signals: time analysis (mean value) and spectral analysis (power spectral density [PSD] spectrum) to determine the more suitable signal treatment. Another purpose is also to quantify the balance between the mechanical wear and the corrosive damage of the abraded metallic target. It will be shown that the mean value of the RMS acoustic signal, A(t), and also the PSD of A(t), are related to the mechanical wear of the target and allow real-time measurement of the actual mechanical perturbation in terms of the mass of the ablated material.

  14. Techniques to assess acoustic-structure interaction in liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Davis, R. Benjamin

    Acoustoelasticity is the study of the dynamic interaction between elastic structures and acoustic enclosures. In this dissertation, acoustoelasticity is considered in the context of liquid rocket engine design. The techniques presented here can be used to determine which forcing frequencies are important in acoustoelastic systems. With a knowledge of these frequencies, an analyst can either find ways to attenuate the excitation at these frequencies or alter the system in such a way that the prescribed excitations do result in a resonant condition. The end result is a structural component that is less susceptible to failure. The research scope is divided into three parts. In the first part, the dynamics of cylindrical shells submerged in liquid hydrogen (LH2) and liquid oxygen (LOX) are considered. The shells are bounded by rigid outer cylinders. This configuration gives rise to two fluid-filled cavities---an inner cylindrical cavity and an outer annular cavity. Such geometries are common in rocket engine design. The natural frequencies and modes of the fluid-structure system are computed by combining the rigid wall acoustic cavity modes and the in vacuo structural modes into a system of coupled ordinary differential equations. Eigenvalue veering is observed near the intersections of the curves representing natural frequencies of the rigid wall acoustic and the in vacuo structural modes. In the case of a shell submerged in LH2, system frequencies near these intersections are as much as 30% lower than the corresponding in vacuo structural frequencies. Due to its high density, the frequency reductions in the presence of LOX are even more dramatic. The forced responses of a shell submerged in LH2 and LOX while subject to a harmonic point excitation are also presented. The responses in the presence of fluid are found to be quite distinct from those of the structure in vacuo. In the second part, coupled mode theory is used to explore the fundamental features of

  15. Acoustic monitoring of laboratory faults: locating the origin of unstable slip events

    NASA Astrophysics Data System (ADS)

    Korkolis, Evangelos; Niemeijer, André; Spiers, Christopher

    2015-04-01

    Over the past several decades, much work has been done on studying the frictional properties of fault gouges at earthquake nucleation velocities. In addition, post-experiment microstructural analyses have been performed in an attempt to link microphysical mechanisms to the observed mechanical data. However, all observations are necessarily post-mortem and it is thus difficult to directly link transients to microstructural characteristics. We are developing an acoustic monitoring system to be used in sliding experiments using a ring shear apparatus. The goal is to locate acoustic emission sources in sheared granular assemblages and link them to processes that act on microstructures responsible for the frictional stability of the simulated fault gouge. The results will be used to develop and constrain microphysical models that explain the relation of these processes to empirical friction laws, such as rate- and state-dependent friction. The acoustic monitoring setup is comprised of an array of 16 piezo-electric sensors installed on the top and bottom sides of an annular sample, at 45 degree intervals. Acoustic emissions associated with slip events can be recorded at sampling rates of up to 50 MHz, in triggered mode. Initial experiments on 0.1 to 0.2 mm and 0.4 to 0.5 mm diameter glass beads, at 1 to 5 MPa normal stress and 1 to 30 um/s load point velocity, have been conducted to estimate the sensitivity of the sensor array. Preliminary results reveal that the intensity of the audible signal is not necessarily proportional to the magnitude of the associated stress drop for constant loading conditions, and that acoustic emissions precede slip events by a small amount of time, in the order of a few milliseconds. Currently, our efforts are focused on developing a suitable source location algorithm with the aim to identify differences in the mode of (unstable) sliding for different types of materials. This will help to identify the micromechanical mechanisms operating

  16. Feasibility study of acoustic emission monitoring of pinch welding tritium reservoir fill stems at the Savannah River Site

    SciTech Connect

    Clark, E.A.

    1990-01-01

    A study was conducted to determine whether acoustic emission monitoring would be feasible in monitoring the solid-state resistance pinch weld used to seal tritium reservoirs at the Savannah River Site. Experiments were performed using a commercially available acoustic emission detection system, with a transducer mounted on a flat milled onto one of the pinch weld electrodes. Welds were made using a wide range of weld power, from very cold, with no metallurgical bond, to hot, with local fusion and excessive material injection into the tube bore. The tubes were drawn type 316L stainless steel. The welds were confined (anvils prevented material flow outward from the sides of the tube not being forced inward by the electrodes) and all were made using the same electrode force. The total number of ringdown counts for each weld was more correlated with weld power and bond length than total energy counts or total number of hits. The onset of large acoustic emission at higher weld power coincides with the injection of material into the tube bore, termed extrusion if arising from a solid state weld or spitting if arising from a weld with local fusion. Since large extrusions and spits, identified by radiography, cause rejection of production welds, a useful function of acoustic emission monitoring of pinch welding might be to detect the onset of extrusion or spitting. The low level of acoustic emission at production weld power levels (and below), the variability of acoustic emission at power levels causing extrusion and spitting, and the inability of acoustic emission to distinguish welds made with oxidized stems indicates that acoustic emission monitoring would not be a useful nondestructive evaluation of reservoir pinch welding at the Savannah River Site. 3 refs., 3 figs.

  17. Noninvasive Measurement of Acoustic Properties of Fluids Using Ultrasonic Interferometry Technique

    SciTech Connect

    Han, W.; Sinha, D.N.; Springer, K.N.; Lizon, D.C.

    1997-06-15

    A swept-frequency ultrasonic interferometry technique is used for noninvasively determining acoustic properties of fluids inside containers. Measurements over a frequency range 1-15 MHz on six liquid chemicals are presented. Measurements were made with the liquid inside standard rectangular optical glass cells and stainless steel cylindrical shells. A theoretical model based on one-dimensional planar acoustic wave propagation through multi-layered media is employed for the interpretation of the observed resonance (interference) spectrum. Two analytical methods, derived from the transmission model are used for determination of sound speed, sound attenuation coefficient, and density of liquids from the relative amplitude and half-power peak width of the observed resonance peaks. Effects of the container material and geometrical properties, path-length, wall thickness are also studied. This study shows that the interferometry technique and the experimental method developed are capable of accurate determination of sound speed, sound attenuation, and density in fluids completely noninvasively. It is a capable and versatile fluid characterization technique and has many potential NDE applications.

  18. Study of fracture mechanisms of short fiber reinforced AS composite by acoustic emission technique

    SciTech Connect

    Kida, Sotoaki; Suzuki, Megumu

    1995-11-01

    The fracture mechanisms of short fiber reinforced AS composites are studied by acoustic emission technique for examining the effects of fiber contents. The loads P{sub b} and P{sub c} which the damage mechanisms change are obtained at the inflection points of the total AE energy curve the energy gradient method. The damages are generated by fiber breaking at the load point of P{sub b} and P{sub c} in B material, and by the fiber breaking and the debonding between resin and fiber at the load points of P{sub b} and P{sub c} in C material.

  19. Comparison of Acoustic Impedance Eduction Techniques for Locally-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Parrott, T. L.; Watson, W. R.

    2003-01-01

    Typical acoustic liners used in current aircraft inlets and aft-fan ducts consist of some type of perforated facesheet bonded to a honeycomb core. A number of techniques for determining the acoustic impedance of these locallyreacting liners have been developed over the last five decades. In addition, a number of models have been developed to predict the acoustic impedance of locallyreacting liners in the presence of grazing flow, and to use that information together with aeroacoustic propagation codes to assess the noise absorption provided by these liners. These prediction models have incorporated the results from databases acquired with specific impedance eduction techniques. Thus, while these prediction models are acceptable for liners that are similar to those tested in these databases, their application to new liner configurations must be viewed with caution. The primary purpose of this paper is to provide a comparison of impedance eduction techniques that have been implemented at various aerospace research laboratories in the United States (NASA Langley Research Center, General Electric Aircraft Engines, B. F. Goodrich and Boeing). A secondary purpose is to provide data for liner configurations that extend the porosity range beyond that which has been previously used in common aircraft engine nacelles. Two sets of liners were designed to study the effects of three parameters: perforate hole diameter, facesheet thickness and porosity. These two sets of liners were constructed for testing in each of the laboratories listed above. The first set of liners was designed to fit into the NASA Langley and Boeing test facilities. The second set was designed to fit into the General Electric Aircraft Engines and B. F. Goodrich test facilities. By using the same parent material, both sets of liners were identical to within the limits of material and fabrication variability. Baseline data were obtained in the normal incidence impedance tubes at NASA Langley and B. F

  20. Efficient Fast Stereo Acoustic Echo Cancellation Based on Pairwise Optimal Weight Realization Technique

    NASA Astrophysics Data System (ADS)

    Yukawa, Masahiro; Murakoshi, Noriaki; Yamada, Isao

    2006-12-01

    In stereophonic acoustic echo cancellation (SAEC) problem, fast and accurate tracking of echo path is strongly required for stable echo cancellation. In this paper, we propose a class of efficient fast SAEC schemes with linear computational complexity (with respect to filter length). The proposed schemes are based on pairwise optimal weight realization (POWER) technique, thus realizing a "best" strategy (in the sense of pairwise and worst-case optimization) to use multiple-state information obtained by preprocessing. Numerical examples demonstrate that the proposed schemes significantly improve the convergence behavior compared with conventional methods in terms of system mismatch as well as echo return loss enhancement (ERLE).

  1. Pitting corrosion monitoring with an improved electrochemical noise technique

    SciTech Connect

    Chen, J.F.; Shadley, J.; Rybicki, E.F.

    1999-11-01

    The electrochemical emission spectroscopy (EES) technique is a newly developed on-line corrosion monitoring technique, which is capable of detecting localized corrosion as well as measuring uniform corrosion. The main difference between this technique and the traditional electrochemical noise technique is the use of an inert microelectrode to sense the current signal from a working electrode instead of using two identical working electrodes to generate the current signal. In this paper, the ability of the EES technique is evaluated for pitting corrosion monitoring. Pitting corrosion is generated on three systems: stainless steel types 304 and 316 in aerated 3% NaCl solution at 50 C and stainless steel type 304 in 6% FeCl{sub 3} solution at room temperature. In all cases, the on-set of pitting corrosion is clearly indicated in both potential and current spectrums. A parameter called the corrosion admittance, which is defined in the EES technique, is capable of indicating instantaneous localized corrosion activities.

  2. Damage characterization in engineering materials using a combination of optical, acoustic, and thermal techniques

    NASA Astrophysics Data System (ADS)

    Tragazikis, I. K.; Exarchos, D. A.; Dalla, P. T.; Matikas, T. E.

    2016-04-01

    This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.

  3. Use of an ultrasonic-acoustic technique for nondestructive evaluation of fiber composite strength

    NASA Technical Reports Server (NTRS)

    Vary, A.; Bowles, K. J.

    1978-01-01

    This report describes the ultrasonic-acoustic technique used to measure a 'Stress Wave Factor'. In a prior study this factor was found effective in evaluating the interlaminar shear strength of fiber-reinforced composites. Details of the method used to measure the stress wave factor are described. In addition, frequency spectra of the stress waves are analyzed in order to clarify the nature of the wave phenomena involved. The stress wave factor can be measured with simple contact probes requiring only one-side access to a part. This is beneficial in nondestructive evaluations because the waves can run parallel to fiber directions and thus measure material properties in directions assumed by actual loads. Moreover, the technique can be applied where conventional through transmission techniques are impractical or where more quantitative data are required. The stress wave factor was measured for a series of graphite/polyimide composite panels and results obtained are compared with through transmission immersion ultrasonic scans.

  4. A case study of real-time monitoring of solid-state phase transformations in acoustically levitated particles using near infrared and Raman spectroscopy.

    PubMed

    Rehder, Sönke; Wu, Jian X; Laackmann, Julian; Moritz, Hans-Ulrich; Rantanen, Jukka; Rades, Thomas; Leopold, Claudia S

    2013-01-23

    The objective of this study was to monitor the amorphous-to-crystalline solid-state phase transformation kinetics of the model drug ibuprofen with spectroscopic methods during acoustic levitation. Chemical and physical information was obtained by real-time near infrared (NIRS) and Raman spectroscopy measurements. The recrystallisation kinetic parameters (overall recrystallisation rate constant β and the time needed to reach 50% of the equilibrated level t(50)), were determined using a multivariate curve resolution approach. The acoustic levitation device coupled with non-invasive spectroscopy enabled monitoring of the recrystallisation process of the difficult-to-handle (adhesive) amorphous sample. The application of multivariate curve resolution enabled isolation of the underlying pure spectra, which corresponded well with the reference spectra of amorphous and crystalline ibuprofen. The recrystallisation kinetic parameters were estimated from the recrystallisation profiles. While the empirical recrystallisation rate constant determined by NIR and Raman spectroscopy were comparable, the lag time for recrystallisation was significantly lower with Raman spectroscopy as compared to NIRS. This observation was explained by the high energy density of the Raman laser beam, which might have led to local heating effects of the sample and thus reduced the recrystallisation onset time. It was concluded that acoustic levitation with NIR and Raman spectroscopy combined with multivariate curve resolution allowed direct determination of the recrystallisation kinetics of amorphous drugs and thus is a promising technique for monitoring solid-state phase transformations of adhesive small-sized samples during the early phase of drug development. PMID:23069619

  5. Leak detection by acoustic emissions monitoring: An experimental investigation of the acoustic properties of leaks and the attenuation characteristics of soil

    NASA Astrophysics Data System (ADS)

    Kilpatrick, James F.; March, Patrick A.

    1994-05-01

    This study experimentally explored the conditions, equipment, and methodology necessary for the acoustic detection of small leaks of jet fuel (JP4) from underground storage tank (UST) systems. The study indicates that acoustic leak detection of very small leaks is feasible. In general, significant JP4 fuel leaks which occur across a 5 PSI (pounds per square inch) or greater pressure drop are acoustically active and can be detected with proper sensors and proper placement of sensors. The primary source of leak noise is turbulent flow through the leak orifice. At lower pressures, the leak flow becomes laminar, and the leak becomes virtually silent. With direct transducer contact on the pipe or tank wall and sufficient system pressure, leaks smaller than 0.1 GPH (gallons per hour) can be detected. Larger leaks can be detected through short distances in soil. However, sand, which is the most commonly used fill material for UST systems, provides significant acoustic attenuation. Consequently, waveguides must be used when monitoring distances exceeding about 1 foot of travel through sand. Sand acts to reduce background noise levels, providing an ideal environment for acoustic leak detection using sensors mounted directly on the pipe or tank wall.

  6. Acoustic mapping velocimetry

    NASA Astrophysics Data System (ADS)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  7. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  8. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect

    Worthington, Monty

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the

  9. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in Kevlar (R) 49 Composites

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.; Andrade, Eduardo

    2009-01-01

    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar(Registeres TradeMark) 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio < 1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  10. Acoustic emission-based condition monitoring methods: Review and application for low speed slew bearing

    NASA Astrophysics Data System (ADS)

    Caesarendra, Wahyu; Kosasih, Buyung; Tieu, Anh Kiet; Zhu, Hongtao; Moodie, Craig A. S.; Zhu, Qiang

    2016-05-01

    This paper presents an acoustic emission-based method for the condition monitoring of low speed reversible slew bearings. Several acoustic emission (AE) hit parameters as the monitoring parameters for the detection of impending failure of slew bearings are reviewed first. The review focuses on: (1) the application of AE in typical rolling element bearings running at different speed classifications, i.e. high speed (>600 rpm), low speed (10-600 rpm) and very low speed (<10 rpm); (2) the commonly used AE hit parameters in rolling element bearings and (3) AE signal processing, feature extraction and pattern recognition methods. In the experiment, impending failure of the slew bearing was detected by the AE hit parameters after the new bearing had run continuously for approximately 15 months. The slew bearing was then dismantled and the evidence of the early defect was analysed. Based on the result, we propose a feature extraction method of the AE waveform signal using the largest Lyapunov exponent (LLE) algorithm and demonstrate that the LLE feature can detect the sign of failure earlier than the AE hit parameters with improved prediction of the progressive trend of the defect.

  11. Acoustic emission monitoring of a wind turbine blade during a fatigue test

    SciTech Connect

    Beattie, A.G.

    1997-01-01

    A fatigue test of a wind turbine blade was conducted at the National Renewable Energy Laboratory in the fall of 1994. Acoustic emission monitoring of the test was performed, starting with the second loading level. The acoustic emission data indicated that this load exceeded the strength of the blade. From the first cycle at the new load, an oil can type of deformation occurred in two areas of the upper skin of the blade. One of these was near the blade root and the other was about the middle of the tested portion of the blade. The emission monitoring indicated that no damage was taking place in the area near the root, but in the deforming area near the middle of the blade, damage occurred from the first cycles at the higher load. The test was stopped after approximately one day and the blade was declared destroyed, although no gross damage had occurred. Several weeks later the test was resumed, to be continued until gross damage occurred. The upper skin tore approximately one half hour after the cycling was restarted.

  12. Optimal Suturing Technique and Number of Sutures for Surgical Implantation of Acoustic Transmitters in Juvenile Salmonids

    SciTech Connect

    Deters, Katherine A.; Brown, Richard S.; Boyd, James W.; Eppard, M. B.; Seaburg, Adam

    2012-01-02

    The size reduction of acoustic transmitters has led to a reduction in the length of incision needed to implant a transmitter. Smaller suture knot profiles and fewer sutures may be adequate for closing an incision used to surgically implant an acoustic microtransmitter. As a result, faster surgery times and reduced tissue trauma could lead to increased survival and decreased infection for implanted fish. The objective of this study was to assess the effects of five suturing techniques on mortality, tag and suture retention, incision openness, ulceration, and redness in juvenile Chinook salmon Oncorhynchus tshawytscha implanted with acoustic microtransmitters. Suturing was performed by three surgeons, and study fish were held at two water temperatures (12°C and 17°C). Mortality was low and tag retention was high for all treatments on all examination days (7, 14, 21, and 28 days post-surgery). Because there was surgeon variation in suture retention among treatments, further analyses included only the one surgeon who received feedback training in all suturing techniques. Incision openness and tissue redness did not differ among treatments. The only difference observed among treatments was in tissue ulceration. Incisions closed with a horizontal mattress pattern had more ulceration than other treatments among fish held for 28 days at 17°C. Results from this study suggest that one simple interrupted 1 × 1 × 1 × 1 suture is adequate for closing incisions on fish under most circumstances. However, in dynamic environments, two simple interrupted 1 × 1 × 1 × 1 sutures should provide adequate incision closure. Reducing bias in survival and behavior tagging studies is important when making comparisons to the migrating salmon population. Therefore, by minimizing the effects of tagging on juvenile salmon (reduced tissue trauma and reduced surgery time), researchers can more accurately estimate survival and behavior.

  13. Passive acoustic monitoring of coastally associated Hawaiian spinner dolphins, Stenella longirostris, ground-truthed through visual surveys.

    PubMed

    Heenehan, Heather L; Tyne, Julian A; Bejder, Lars; Van Parijs, Sofie M; Johnston, David W

    2016-07-01

    Effective decision making to protect coastally associated dolphins relies on monitoring the presence of animals in areas that are critical to their survival. Hawaiian spinner dolphins forage at night and rest during the day in shallow bays. Due to their predictable presence, they are targeted by dolphin-tourism. In this study, comparisons of presence were made between passive acoustic monitoring (PAM) and vessel-based visual surveys in Hawaiian spinner dolphin resting bays. DSG-Ocean passive acoustic recording devices were deployed in four bays along the Kona Coast of Hawai'i Island between January 8, 2011 and August 30, 2012. The devices sampled at 80 kHz, making 30-s recordings every four minutes. Overall, dolphins were acoustically detected on 37.1% to 89.6% of recording days depending on the bay. Vessel-based visual surveys overlapped with the PAM surveys on 202 days across the four bays. No significant differences were found between visual and acoustic detections suggesting acoustic surveys can be used as a proxy for visual surveys. Given the need to monitor dolphin presence across sites, PAM is the most suitable and efficient tool for monitoring long-term presence/absence. Concomitant photo-identification surveys are necessary to address changes in abundance over time. PMID:27475147

  14. Acoustic puncture assist device versus loss of resistance technique for epidural space identification

    PubMed Central

    Mittal, Amit Kumar; Goel, Nitesh; Chowdhury, Itee; Shah, Shagun Bhatia; Singh, Brijesh Pratap; Jakhar, Pradeep

    2016-01-01

    Background and Aims: The conventional techniques of epidural space (EDS) identification based on loss of resistance (LOR) have a higher chance of complications, patchy analgesia and epidural failure, which can be minimised by objective confirmation of space before catheter placement. Acoustic puncture assist device (APAD) technique objectively confirms EDS, thus enhancing success, with lesser complications. This study was planned with the objective to evaluate the APAD technique and compare it to LOR technique for EDS identification and its correlation with ultrasound guided EDS depth. Methods: In this prospective study, the lumbar vertebral spaces were scanned by the ultrasound for measuring depth of the EDS and later correlated with procedural depth measured by either of the technique (APAD or LOR). The data were subjected to descriptive statistics; the concordance correlation coefficient and Bland-Altman analysis with 95% confidence limits. Results: Acoustic dip in pitch and descent in pressure tracing on EDS localisation was observed among the patients of APAD group. Analysis of concordance correlation between the ultrasonography (USG) depth and APAD or LOR depth was significant (r ≥ 0.97 in both groups). Bland-Altman analysis revealed a mean difference of 0.171cm in group APAD and 0.154 cm in group LOR. The 95% limits of agreement for the difference between the two measurements were − 0.569 and 0.226 cm in APAD and − 0.530 to 0.222 cm in LOR group. Conclusion: We found APAD to be a precise tool for objective localisation of the EDS, co-relating well with the pre-procedural USG depth of EDS. PMID:27212720

  15. Analysis of monitoring techniques for prestressed concrete cylinder pipe

    SciTech Connect

    Hall, S.C.

    1994-12-31

    Concrete pressure pipe (CPP) is used in water and waste water systems that serve virtually every city in North America. Various techniques are used to evaluate the corrosion state of a buried pipeline. The two most commonly used are the pipe-to-soil (P/S) and cell-to-cell potential techniques. However, only a few references exist relating to the use of these monitoring procedures for CPP. Various corrosion engineering firms have confidence in one or the other technique without being able to provide the rationale for their preference. Both techniques have recently been challenged as being insufficiently reliable for CPP. This project consisted of setting up simulated corrosion cells on a 48-inch (1.22 m) diameter prestressed concrete cylinder pipe (PCCP) line and allowing five corrosion engineering firms the opportunity to use their monitoring techniques to locate corroding sites. This project evaluated existing corrosion monitoring techniques based on measuring electrical potentials on PCCP. It was found that bonded and unbonded prestressed concrete cylinder pipe can be monitored for corrosion depending on the intensity of corrosion and the location of the corrosion site on the pipe circumference.

  16. Expansion Techniques of Embedding Audio Watermark Data Rate for Constructing Ubiquitous Acoustic Spaces

    NASA Astrophysics Data System (ADS)

    Modegi, Toshio

    We are proposing “Ubiquitous Acoustic Spaces”, where each sound source can emit some address information with audio signals and make us automatically access to its related cyber space, using handheld devices such as cellphones. In order to realize this concept, we have considered three types of extraction methods, which were an acoustic modulation, an audio fingerprint, and an audio watermark technique. Then we have proposed a novel audio watermarking technique, which enables contactless asynchronous detection of embedded audio watermarks through speaker and microphone devices. However its embedding data rate was around 10 [bps], which was not sufficient for embedding generally used URL address texts. Therefore, we have extended the embedding frequency range and proposed a duplicated embedding algorithm, which uses both previously proposed frequency division method and temporal division method together. By these improvements, possible embedding data rate could be extended to 61.5 [bps], and we could extract watermarks through public telephone networks, even from a cell phone sound source. In this paper, we describe abstracts of our improved watermark embedding and extracting algorithms, and experimental results of watermark extraction precision on several audio signal capturing conditions.

  17. Seismic and Acoustic Array Monitoring of Signal from Tungurahua Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Terbush, B. R.; Anthony, R. E.; Johnson, J. B.; Ruiz, M. C.

    2012-12-01

    Tungurahua Volcano is an active stratovolcano located in Ecuador's eastern Cordillera. Since its most recent cycle of eruptive activity, beginning in 1999, it has produced both strombolian-to-vulcanian eruptions, and regular vapor emissions. Tungurahua is located above the city of Baños, so volcanic activity is well-monitored by Ecuador's Instituto Geofisico Nacional with a seismic and infrasound network, and other surveillance tools. Toward better understanding of the complex seismic and acoustic signals associated with low-level Tungurahua activity, and which are often low in signal-to-noise, we deployed temporary seismo-acoustic arrays between June 9th and 20th in 2012. This deployment was part of a Field Volcano Geophysics class, a collaboration between New Mexico Institute of Mining and Technology and the Escuela Politecnica Nacional's Instituto Geofísico in Ecuador. Two six-element arrays were deployed on the flank of the volcano. A seismo-acoustic array, which consisted of combined broadband seismic and infrasound sensors, possessed 100-meter spacing, and was deployed five kilometers north of the vent in an open field at 2700 m. The second array had only acoustic sensors with 30-meter spacing, and was deployed approximately six kilometers northwest of the vent, on an old pyroclastic flow deposit. The arrays picked up signals from four distinct explosion events, a number of diverse tremor signals, local volcano tectonic and long period earthquakes, and a regional tectonic event of magnitude 4.9. Coherency of both seismic and acoustic array data was quantified using Fisher Statistics, which was effective for identifying myriad signals. For most signals Fisher Statistics were particularly high in low frequency bands, between 0.5 and 2 Hz. Array analyses helped to filter out noise induced by cultural sources and livestock signals, which were particularly pronounced in the deployment site. Volcan Tungurahua sources were considered plane wave signals and could

  18. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of

  19. Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    WenQin, Han; Ying, Luo; AiJun, Gu; Yuan, Fuh-Gwo

    2016-04-01

    Discrimination of acoustic emission (AE) signals related to different damage modes is of great importance in carbon fiber-reinforced plastic (CFRP) composite materials. To gain a deeper understanding of the initiation, growth and evolution of the different types of damage, four types of specimens for different lay-ups and orientations and three types of specimens for interlaminar toughness tests are subjected to tensile test along with acoustic emission monitoring. AE signals have been collected and post-processed, the statistical results show that the peak frequency of AE signal can distinguish various damage modes effectively. After a AE signal were decomposed by Empirical Mode Decomposition (EMD) method, it may separate and extract all damage modes included in this AE signal apart from damage mode corresponding to the peak frequency. Hilbert-Huang Transform (HHT) of AE signals can clearly illustrate the frequency distribution of Intrinsic Mode Functions (IMF) components in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition to help understanding the damage process.

  20. Comparison of two underwater acoustic communications techniques for multi-user access

    NASA Astrophysics Data System (ADS)

    Hursky, Paul; Siderius, T. Martin; Kauaiex Group

    2001-05-01

    Frequency hopped frequency shift keying (FHFSK) and code division multiple access (CDMA) are two different modulation techniques for multiple users to communicate with a single receiver simultaneously. In July 2003, these two techniques were tested alongside each other in a shallow water coastal environment off the coast of Kauai. A variety of instruments were used to measure the prevailing oceanography, enabling detailed modeling of the channel. The channel was acoustically probed using LFM waveforms and m-sequences as well. We will present the results of demodulating the FHFSK and CDMA waveforms and discuss modeling the channel for the purpose of predicting multi-user communications performance. a)Michael B. Porter, Paul Hursky, Martin Siderius (SAIC), Mohsen Badiey (UD), Jerald Caruthers (USM), William S. Hodgkiss, Kaustubha Raghukumar (SIO), Dan Rouseff, Warren Fox (APL-UW), Christian de Moustier, Brian Calder, Barbara J. Kraft (UNH), Keyko McDonald (SPAWARSSC), Peter Stein, James K. Lewis, and Subramaniam Rajan (SSI).

  1. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber. PMID:26479631

  2. Techniques for the generation and monitoring of vapors

    SciTech Connect

    Nelson, G.O.

    1981-02-06

    Controlled test atmospheres can be produced using a variety of techniques. Gases are usually generated by using flow dilution methods while vapors are produced by using solvent injection and vaporization, saturation, permeation and diffusion techniques. The resulting gas mixtures can be monitored and measured using flame ionization, photoionization, electrochemical and infrared analytical systems. An ideal system for the production of controlled test atmospheres would not only be able to generate controlled test atmospheres, but also monitor all pertinent environmental parameters, such as temperature, humidity, and air flow.

  3. A multi path, weather independent avalanche monitoring tool using distributed acoustic fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Prokop, Alexander; Wirbel, Anna

    2013-04-01

    Information on avalanche activity is a paramount parameter in avalanche forecasting. When avalanches are released spontaneously, the risk of avalanches is very high. Triggering avalanches by artificial means, such as explosives launched from helicopter or avalanche towers, can also give information on the stability of the snow pack. Hence, monitoring of avalanches released naturally or artificially, is an important quantity in avalanche forecasting. This information is also needed when deciding whether to close or not endangered ski runs, roads or railway lines. So far monitoring systems lack certain benefits. Either they monitor only large avalanches, can only be used for single avalanche tracks or are weather/sight dependant. Therefore a new tool for avalanche- monitoring, a distributed fiber optic system, is for the first time installed and adapted for the purpose of monitoring snow avalanche activity. The method is based on an optical time domain reflectometer (OTDR) system, which dates back to the 1970`s and detects seismic vibrations and acoustic signals on a fiber optic cable that can have a length of up to 30 km. An appropriate test slope for this configuration has been found in the ski area of "Lech am Arlberg". In this work a detailed description of the theoretical background, the system implementation, the field installation, realization of tests and an investigation of the recorded data is presented. We conducted 100 tests and triggered 41 avalanches so far with a runout distances ranging from a few meters to approximately 250 meters, all of which were detected by the system, as well as the 59 not successful attempts of artificial triggering. Moreover we measured properly if critical infrastructure (in our case a ski run) was reached by the avalanches or not. The spatial distributed sensing approach allowed us to relate the amplitude and spectral content of the signals to avalanche size, avalanche speed and snow properties of the avalanches. In

  4. Acoustic emission and guided ultrasonic waves for detection and continuous monitoring of cracks in light water reactor components

    SciTech Connect

    Meyer, R. M.; Coble, J.; Ramuhalli, P.; Watson, B.; Cumblidge, S. E.; Doctor, S. R.; Bond, L. J.

    2012-07-01

    Acoustic emission (AE) and guided ultrasonic waves (GUW) are considered for continuous monitoring and detection of cracks in Light Water Reactor (LWR) components. In this effort, both techniques are applied to the detection and monitoring of fatigue crack growth in a full scale pipe component. AE results indicated crack initiation and rapid growth in the pipe, and significant GUW responses were observed in response to the growth of the fatigue crack. After initiation, the crack growth was detectable with AE for approximately 20,000 cycles. Signals associated with initiation and rapid growth were distinguished based on total rate of activity and differences observed in the centroid frequency of hits. An intermediate stage between initiation and rapid growth was associated with significant energy emissions, though few hits. GUW exhibit a nearly monotonic trend with crack length with an exception of measurements obtained at crack lengths of 41 mm and 46 mm. Coupling variability and shadowing by the electro-discharge machining (EDM) starter notch set the lower limit of detectability. (authors)

  5. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A.; Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    Development of satisfactory techniques for detecting change in coastal zone environments is required before operational monitoring procedures can be established. In an effort to meet this need a study was directed toward developing and evaluating different types of change detection techniques, based upon computer aided analysis of LANDSAT multispectral scanner (MSS) data, to monitor these environments. The Matagorda Bay estuarine system along the Texas coast was selected as the study area. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. Each of the four techniques was used to analyze a LANDSAT MSS temporal data set to detect areas of change of the Matagorda Bay region.

  6. Validating a Noninvasive Technique for Monitoring Embryo Movement In Ovo.

    PubMed

    Pollard, A S; Pitsillides, A A; Portugal, S J

    2016-01-01

    Avian embryos are a commonly used model system for developmental studies, but monitoring of physiological parameters such as heart rate (HR) and movement in ovo poses a challenge to researchers. These are also increasingly common research objectives for ecological and embryo behavior studies in oviparous species. We therefore explored the validity of a new digital egg-monitoring system for the noninvasive monitoring of these parameters. We tested the relationship between frequency-of-movement values gathered by digital monitoring and those gathered by the current standard method, which is comparatively invasive and requires egg windowing, and demonstrated that the digital monitoring method effectively distinguishes individual movements but cannot reliably monitor HR in actively motile embryos. We therefore provide recommendations for the appropriate use of this technique for avian physiologists. We also applied the digital monitoring method to reveal how frequency of movement varies throughout prenatal ontogeny in the chicken and showed that commonly used protocols in developmental studies can themselves alter motility; egg windowing and application of light modulate frequency of movement. Recent work has revealed the importance of embryo motility in regulating gene expression and cellular activity during developmental processes. Together with our data, this highlights the value of noninvasive monitoring methods and the importance of controlling for altered embryo motility/behavior in developmental studies. PMID:27327183

  7. Optimization of real-time acoustical and mechanical monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for high focused ultrasound (HMIFU).

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2013-01-01

    Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95. PMID:24111176

  8. Assessment of ground-based monitoring techniques applied to landslide investigations

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J.

    2016-01-01

    A landslide complex in the Whitby Mudstone Formation at Hollin Hill, North Yorkshire, UK is periodically re-activated in response to rainfall-induced pore-water pressure fluctuations. This paper compares long-term measurements (i.e., 2009-2014) obtained from a combination of monitoring techniques that have been employed together for the first time on an active landslide. The results highlight the relative performance of the different techniques, and can provide guidance for researchers and practitioners for selecting and installing appropriate monitoring techniques to assess unstable slopes. Particular attention is given to the spatial and temporal resolutions offered by the different approaches that include: Real Time Kinematic-GPS (RTK-GPS) monitoring of a ground surface marker array, conventional inclinometers, Shape Acceleration Arrays (SAA), tilt meters, active waveguides with Acoustic Emission (AE) monitoring, and piezometers. High spatial resolution information has allowed locating areas of stability and instability across a large slope. This has enabled identification of areas where further monitoring efforts should be focused. High temporal resolution information allowed the capture of 'S'-shaped slope displacement-time behaviour (i.e. phases of slope acceleration, deceleration and stability) in response to elevations in pore-water pressures. This study shows that a well-balanced suite of monitoring techniques that provides high temporal and spatial resolutions on both measurement and slope scale is necessary to fully understand failure and movement mechanisms of slopes. In the case of the Hollin Hill landslide it enabled detailed interpretation of the geomorphological processes governing landslide activity. It highlights the benefit of regularly surveying a network of GPS markers to determine areas for installation of movement monitoring techniques that offer higher resolution both temporally and spatially. The small sensitivity of tilt meter measurements

  9. Experimental evaluation on the effectiveness of acoustic-laser technique towards the FRP-bonded concrete system

    NASA Astrophysics Data System (ADS)

    Qiu, Qiwen; Lau, Denvid

    2015-04-01

    Nondestructive evaluation (NDE) is essential for the detection of defects in the externally bonded fiber reinforced polymer (FRP) concrete, especially such bonded system can be readily found in strengthened and retrofitted structures nowadays. Among all the current NDE methods, acoustic-laser technique is a non-contact methodology with a high applicability to detect near-surface defect in composite structures, which is very suitable to be used for detecting defect in FRP retrofitted and strengthened concrete structures. The methodology is based on the acoustic excitation on the target surface and the measurement of its vibration using laser beam. To our best knowledge, no comprehensive study has been conducted to examine how the acoustic location and other related parameters affect the measurement sensitivity. In fact, several operational parameters affecting the performance of the test system are discussed here including (i) distance between the acoustic source and the object, (ii) sound pressure level (SPL), (iii) angle of the laser beam incidence and (iv) angle of the acoustic incidence. Here, we perform a series of parametric studies against these four operational parameters. Based on our experimental measurements, all parameters show significant effects on the measurement sensitivity of the acoustic-laser technique. Recommendations on an optimal range of each concerned parameter are provided.

  10. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  11. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  12. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    SciTech Connect

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  13. Monitoring and failure analysis of corroded bridge cables under fatigue loading using acoustic emission sensors.

    PubMed

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  14. Acoustic source location in the secondary mixing region of a jet-blown flap using a cross-correlation technique

    NASA Technical Reports Server (NTRS)

    Becker, R. S.; Maus, J. R.

    1977-01-01

    An experimental investigation of the acoustic sources in the secondary mixing region of a laboratory-scale jet-flap was made using a causality correlation technique. The processed signal of a hot-film anemometer probe was cross correlated with the output signal of a far-field microphone. Axial acoustic source strength distributions were measured for three far-field microphone locations: plus or minus 45 deg in the flyover plane and 45 deg in the sideline plane. These measurements showed that the acoustic sources in the secondary mixing region are highly directional, radiating much more effectively to the -45 deg-microphone, located below the plane of the flap surface. A relative maximum in the acoustic source strength measured for the microphones in the flyover plane occurred very near the flap trailing edge, which may be due to an edge amplification effect predicted by the theoretical work of Ffowcs Williams and Hall.

  15. Acoustic emission monitoring for inspection of seam-welded hot reheat piping in fossil power plants

    NASA Astrophysics Data System (ADS)

    Rodgers, John M.; Morgan, Bryan C.; Tilley, Richard M.

    1996-11-01

    Although failure of the seam weld on reheat steam piping has been an infrequent occurrence, such failure is still a major safety concern for fossil plant operations. EPRI has provided guidelines for a piping management program base don periodic inspection. More recently, EPRI has also sponsored research to develop inspection techniques to both improve the quality and reduce the cost of piping inspections. Foremost in this research has been the use of acoustic emission (AE) techniques to detect crack damage in seam welds. AE has the substantial cost advantages of both allowing inspection without full removal of the thermal insulation on the reheat piping and making short-re- inspection intervals practical. This paper reviews the EPRI guidelines for performing an AE inspection on seam-welded hot reheat piping.

  16. INTERIM REPORT ON CONCRETE DEGRADATION MECHANISMS AND ONLINE MONITORING TECHNIQUES

    SciTech Connect

    Mahadevan, Sankaran; Agarwal, Vivek; Neal, Kyle; Kosson, David; Adams, Douglas

    2014-09-01

    The existing fleets of nuclear power plants in the United States have initial operating licenses of 40 years, though most these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The online monitoring of concrete structure conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, the structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University proposes to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  17. Development of an acoustic levitation technique to obtain foam material properties

    NASA Astrophysics Data System (ADS)

    Liu, Li

    2003-10-01

    Aqueous foam is an impermanent form of matter in which a kind of gas, often air, is dispersed as an agglomeration of bubbles that are separated from each other by films of liquid. Foams are of tremendous economical importance in industry. Foam material properties are sensitive functions of the void fraction. A ``wet foam'' is a bubbly liquid that cannot support shearing motion; inside the wet foam the individual bubbles are free to move around. A ``transitional'' or ``critical foam'' is composed of bubbles whose dynamics are strongly interacting and whose surfaces may be in mechanical contact with each other. Finally, a ``dry foam'' is composed of bubbles who have a fixed position in a lattice for low to moderate straining rates. An acoustic levitation technique is developed which provides a noncontact means of estimating the properties of the foam by acoustically levitating aqueous foam drops and exciting their spheroidal modes oscillation. Assuming linear oscillation of foam drops, experimental data for frequency and damping show good agreement with a bubble dynamics-based theoretical model. Thesis advisor: R. Glynn Holt Copies of this thesis may be obtained by contacting the advisor, Glynn Holt, Dept. of Aerospace and Mechanical Engineering, Boston University, 110 Cummington St., Boston, MA 02215. E-mail address: rgholt@bu.edu

  18. D-InSAR Technique for Land Subsidence Monitoring

    NASA Astrophysics Data System (ADS)

    Guoqing, Yao; Jingqin, Mu

    The land subsidence has been a global disastrous problem, and the conventional geodetic technique is highly incompetent in the large-scale and serious land deformation monitoring. The D-InSAR technique has been widely applied and deeply researched in the field of the land deformation monitoring. This article first puts forward one of the methods known as time series radar interferometry based on permanent scatterers technique, and then, applies the time series analysis method into D-InSAR. This paper takes the phase difference of two nearer permanent scatterers in an interferogram as research object; therefore, the atmospheric delay impact can be eliminated. In the research, there are several steps including preprocessing radar images, selecting the PS points, combination of PS points, computing the variance of the phase difference for two PS points, integer least-squares adjustment, obtaining land subsidence velocity and so forth. The land subsidence data and the distribution map obtained in this paper by adapting this method to the experiment of Tianjin area subsidence monitoring have been proved to be satisfactory. The method for eliminating the atmospheric delay impact accurately has been realized by combining the time seriesmethod with PS technique. At the same time, it was confirmed that the time series for InSAR is a feasible and effective method for monitoring land deformation. Moreover, it can be concluded from the result obtained in the paper that the selection of PS points is so important that it is worthy studying further on.

  19. Improved techniques of parallel gap welding and monitoring

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Gillanders, M. S.

    1984-01-01

    Welding programs which show that parallel gas welding is a reliable process are discussed. When monitoring controls and nondestructive tests are incorporated into the process, parallel gap welding becomes more reliable and cost effective. The panel fabrication techniques and the HAC thermal cycling test indicate reliable product integrity. The design and building of automated tooling and fixturing for welding are discussed.

  20. MONITORING WELL INSTALLATION, PURGING, AND SAMPLING TECHNIQUES. PART 1. CONCEPTUALIZATIONS

    EPA Science Inventory

    Commonly employed techniques for the installation, purging, and sampling of monitoring wells are examined. The degree to which hollow-stem augering disturbs the near-borehole environment, and how this may result in the movement of contaminated solids or fluids from one stratum to...

  1. Acoustic Emission Weld Monitoring in the 2195 Aluminum-Lithium Alloy

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2005-01-01

    Due to its low density, the 2195 aluminum-lithium alloy was developed as a replacement for alloy 2219 in the Space Shuttle External Tank (ET). The external tank is the single largest component of the space shuttle system. It is 154 feet long and 27.6 feet in diameter, and serves as the structural backbone for the shuttle during launch, absorbing most of the 7 million plus pounds of thrust produced. The almost 4% decrease in density between the two materials provides an extra 7500 pounds of payload capacity necessary to put the International Space Station components into orbit. The ET is an all-welded structure; hence, the requirement is for up to five rewelds without hot cracking. Unfortunately, hot cracking during re-welding or repair operations was occurring and had to be dealt with before the new super lightweight tank could be used. Weld metal porosity formation was also of concern because it leads to hot cracking during weld repairs. Accordingly, acoustic emission (AE) nondestructive testing was employed to monitor the formation of porosity and hot cracks in order to select the best filler metal and optimize the weld schedule. The purpose of this work is to determine the feasibility of detecting hot cracking in welded aluminum-lithium (Al-Li) structures through the analysis of acoustic emission data. By acoustically characterizing the effects of reheating during a repair operation, the potential for hidden flaws coalescing and becoming "unstable" as the panel is repaired could be reduced. Identification of regions where microcrack growth is likely to occur and the location of active flaw growth in the repair weld will provide the welder with direct feedback as to the current weld quality enabling adjustments to the repair process be made in the field. An acoustic emission analysis of the source mechanisms present during welding has been conducted with the goals of locating regions in the weld line that are susceptible to damage from a repair operation

  2. Acoustic Monitoring of Ebullitive Flux from a Mire Ecosystem in Subarctic Sweden

    NASA Astrophysics Data System (ADS)

    Burke, S. A.; Varner, R. K.; Palace, M. W.; Wik, M.; Crill, P. M.; McCalley, C. K.; Amante, J.

    2012-12-01

    Methane (CH4) is a potent green house gas with wetlands being the largest natural source to the atmosphere. Studies in the Stordalen Mire, a dynamic peatland complex 11km east of the Abisko Scientific Research Station (ANS) in northern Sweden, that focused on CH4 transport to the atmosphere from peatlands have shown increased emissions over the past decades. Ebullitive flux (bubbling) is a potentially significant pathway of CH4 from mire/lake ecosystems. Ebullitive fluxes were successfully monitored acoustically in peat and lakes in 2011. This work expands those measurements with installation of sensors in ponds and permafrost thaw margins in 2012. Eighteen acoustic sensors were installed in peat (6), pond (6), and lake (6) sites at Stordalen Mire. Recorders collected acoustic data continuously from each sensor and gas samples were collected from the traps at least once per week beginning 7 July. The CH4 concentration in the gas was measured using gas chromatography and selected samples were also analyzed for 13C-CH4 using a Quantum Cascade Laser (QCL). The acoustic data were evaluated using a MATLAB program for determine the timing and volume of each ebullition event. The CH4 ebullitive flux from the peat was greater in July 2011 than during the same period in 2012. In comparison, the ponds and thaw margins released CH4 at a faster rate in 2012 than was observed in the peat and lake sensors in 2011. Inter-annual differences in ebullitive rates suggest that weather scale differences between years may control CH4 ebullitive flux. 13C-CH4 measured in the pore waters of pond sediment suggests that not all ponds are dominated by the same production processes. However, 13C-CH4 measured in bubbles and sediments are not different, implying little or no oxidation of CH4 during transport to the water surface. Our data suggests that changes in atmospheric pressure and water table height correlated with the ebullitive release in all three sub-ecosystems.

  3. Process tool monitoring and matching using interferometry technique

    NASA Astrophysics Data System (ADS)

    Anberg, Doug; Owen, David M.; Mileham, Jeffrey; Lee, Byoung-Ho; Bouche, Eric

    2016-03-01

    The semiconductor industry makes dramatic device technology changes over short time periods. As the semiconductor industry advances towards to the 10 nm device node, more precise management and control of processing tools has become a significant manufacturing challenge. Some processes require multiple tool sets and some tools have multiple chambers for mass production. Tool and chamber matching has become a critical consideration for meeting today's manufacturing requirements. Additionally, process tools and chamber conditions have to be monitored to ensure uniform process performance across the tool and chamber fleet. There are many parameters for managing and monitoring tools and chambers. Particle defect monitoring is a well-known and established example where defect inspection tools can directly detect particles on the wafer surface. However, leading edge processes are driving the need to also monitor invisible defects, i.e. stress, contamination, etc., because some device failures cannot be directly correlated with traditional visualized defect maps or other known sources. Some failure maps show the same signatures as stress or contamination maps, which implies correlation to device performance or yield. In this paper we present process tool monitoring and matching using an interferometry technique. There are many types of interferometry techniques used for various process monitoring applications. We use a Coherent Gradient Sensing (CGS) interferometer which is self-referencing and enables high throughput measurements. Using this technique, we can quickly measure the topography of an entire wafer surface and obtain stress and displacement data from the topography measurement. For improved tool and chamber matching and reduced device failure, wafer stress measurements can be implemented as a regular tool or chamber monitoring test for either unpatterned or patterned wafers as a good criteria for improved process stability.

  4. Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs.

    PubMed

    Vianna, Gabriel M S; Meekan, Mark G; Bornovski, Tova H; Meeuwig, Jessica J

    2014-01-01

    Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations. PMID:24760081

  5. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico

    PubMed Central

    Hildebrand, John A.; Baumann-Pickering, Simone; Frasier, Kaitlin E.; Trickey, Jennifer S.; Merkens, Karlina P.; Wiggins, Sean M.; McDonald, Mark A.; Garrison, Lance P.; Harris, Danielle; Marques, Tiago A.; Thomas, Len

    2015-01-01

    Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010–2013). Beaked whale species detected include: Gervais’ (Mesoplodon europaeus), Cuvier’s (Ziphius cavirostris), Blainville’s (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf — BWG). For Gervais’ and Cuvier’s beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais’ beaked whales were present throughout the monitoring period, but Cuvier’s beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais’ and Cuvier’s beaked whales had a high density throughout the monitoring period. PMID:26559743

  6. Acoustic Telemetry Validates a Citizen Science Approach for Monitoring Sharks on Coral Reefs

    PubMed Central

    Vianna, Gabriel M. S.; Meekan, Mark G.; Bornovski, Tova H.; Meeuwig, Jessica J.

    2014-01-01

    Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations. PMID:24760081

  7. Validation of an acoustic location system to monitor Bornean orangutan (Pongo pygmaeus wurmbii) long calls.

    PubMed

    Spillmann, Brigitte; van Noordwijk, Maria A; Willems, Erik P; Mitra Setia, Tatang; Wipfli, Urs; van Schaik, Carel P

    2015-07-01

    The long call is an important vocal communication signal in the widely dispersed, semi-solitary orangutan. Long calls affect individuals' ranging behavior and mediate social relationships and regulate encounters between dispersed individuals in a dense rainforest. The aim of this study was to test the utility of an Acoustic Location System (ALS) for recording and triangulating the loud calls of free-living primates. We developed and validated a data extraction protocol for an ALS used to record wild orangutan males' long calls at the Tuanan field site (Central Kalimantan). We installed an ALS in a grid of 300 ha, containing 20 SM2+ recorders placed in a regular lattice at 500 m intervals, to monitor the distribution of calling males in the area. The validated system had the following main features: (i) a user-trained software algorithm (Song Scope) that reliably recognized orangutan long calls from sound files at distances up to 700 m from the nearest recorder, resulting in a total area of approximately 900 ha that could be monitored continuously; (ii) acoustic location of calling males up to 200 m outside the microphone grid, which meant that within an area of approximately 450 ha, call locations could be calculated through triangulation. The mean accuracy was 58 m, an error that is modest relative to orangutan mobility and average inter-individual distances. We conclude that an ALS is a highly effective method for detecting long-distance calls of wild primates and triangulating their position. In combination with conventional individual focal follow data, an ALS can greatly improve our knowledge of orangutans' social organization, and is readily adaptable for studying other highly vocal animals. PMID:25773926

  8. New techniques of low level environmental radiation monitoring at JLab

    SciTech Connect

    P. Degtiarenko, V. Popov

    2010-07-01

    We present the first long-term environmental radiation monitoring results obtained using the technique of pulse mode readout for the industry-standard Reuter-Stokes RSS-1013 argon-filled high pressure ionization chambers (HPIC). With novel designs for the front-end electronics readout and customized signal processing algorithms, we are capable of detecting individual events of gas ionization in the HPIC, caused by interactions of gammas and charged particles in the gas. The technique provides enough spectroscopic information to distinguish between several different types of environmental and man-made radiation. The technique also achieves a high degree of sensitivity and stability of the data, allowing long-term environmental radiation monitoring with unprecedented precision.

  9. Monitoring asphalt pavement damages using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Christofe, Andreas; Pilakoutas, Kypros; Hadjimitsis, Diofantos

    2015-06-01

    One of the main issues in the maintenance plans of road agencies or governmental organizations is the early detection of damaged asphalt pavements. The development of a smart and non-destructive systematic technique for monitoring damaged asphalt pavements is considered a main priority to fill this gap. During the 1970's, remote sensing was used to map road surface distress, while during the last decade, remote sensing became more advanced, thereby assisting in the evolution of the identification and mapping of roads. Various techniques were used in order to explore condition, age, weaknesses and imperfections of asphalted pavements. These methods were fairly successful in the classification of asphalted surfaces and in the detection of some of their characteristics. This paper explores the state of the art of using remote sensing techniques for monitoring damaged pavements and some typical spectral profiles of various asphalt pavements in Cyprus area acquired using the SVC1024 field spectroradiometer.

  10. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    SciTech Connect

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  11. Artificial Neural Network Based Algorithm for Acoustic Impact Based Nondestructive Process Monitoring of Composite Products

    NASA Astrophysics Data System (ADS)

    Srivatsan, V.; Balasubramaniam, Krishnan; Nair, N. V.

    2003-03-01

    Damages like cracks, delaminations, etc., in composite parts have traditionally been evaluated using manual methods like acoustic impact (using measurements in the audio frequencies). This technique is currently used during manufacturing for product quality testing and later for maintenance and assurance of structural integrity. The automation of this technique will significantly improve the reliability of inspection. The signals obtained from the composites are analyzed using signal-processing techniques in the time-frequency domain to build a robust algorithm for detection and identification of defects. A feature vector is constructed using these techniques and then applied to a neural network for defect identification. Comparative studies are conducted to search for the best and most comprehensive feature vector. Results using different signal processing techniques are presented. Similarly comparative results are presented between two different kinds of neural networks (namely Radial Basis functions and MLP) and various architectures in each kind. A low cost data acquisition system has also been developed for acquiring audio signals using the sound card and the microphone in a multi-media PC.

  12. Stellar acoustic radii, mean densities, and ages from seismic inversion techniques

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Reese, D. R.; Dupret, M. A.; Samadi, R.

    2015-01-01

    Context. Determining stellar characteristics such as the radius, mass or age is crucial when studying stellar evolution or exoplanetary systems, or when characterising stellar populations in the Galaxy. Asteroseismology is the golden path to accurately obtain these characteristics. In this context, a key question is how to make these methods less model-dependent. Aims: Building on the previous work of Daniel Reese, we wish to extend the Substractive Optimally Localized Averages (SOLA) inversion technique to new stellar global characteristics beyond the mean density. The goal is to provide a general framework in which to estimate these characteristics as accurately as possible in low-mass main-sequence stars. Methods: First, we describe our framework and discuss the reliability of the inversion technique and possible sources of error. We then apply this methodology to the acoustic radius, an age indicator based on the sound speed derivative and the mean density, and compare it to estimates based on the average large and small frequency separations. These inversions are carried out for several test cases including various metallicities, different mixing-lengths, non-adiabatic effects, and turbulent pressure. Results: We observe that the SOLA method yields accurate results in all test cases whereas results based on the large and small frequency separations are less accurate and more sensitive to surface effects and structural differences in the models. If we include the surface corrections of Kjeldsen et al. (2008, ApJ, 683, L175), we obtain results of comparable accuracy for the mean density. Overall, the mean density and acoustic radius inversions are more robust than the inversions for the age indicator. Moreover, the current approach is limited to relatively young stars with radiative cores. Increasing the number of observed frequencies improves the reliability and accuracy of the method. Appendices are available in electronic form at http://www.aanda.org

  13. Characterization of acoustic effects on flame structures by beam deflection technique

    SciTech Connect

    Bedat, B.; Kostiuk, L.W.; Cheng, R.K.

    1993-10-01

    This work shows that the acoustic effects are the causes of the small amplitude flame wrinkling and movements seen in all the different gravitational conditions. The comparison between the acoustic velocity and beam deflection spectra for the two conditions studied (glass beads and fiber glass) demonstrates clearly this flame/acoustic coupling. This acoustic study shows that the burner behaves like a Helmholtz resonator. The estimated resonance frequency corresponds well to the experimental measurements. The fiber glass damps the level of the resonance frequency and the flame motion. The changes shown in normalized beam deflection spectra give further support of this damping. This work demonstrates that the acoustics has a direct influence on flame structure in the laminar case and the preliminary results in turbulent case also show a strong coupling. The nature of this flame/acoustic coupling are still not well understood. Further investigation should include determining the frequency limits and the sensitivity of the flame to acoustic perturbations.

  14. Data-driven nonlinear technique for condition monitoring

    SciTech Connect

    Hively, L.M.

    1997-04-01

    This paper describes a sensitive technique for distinguishing changes in a nonlinear process. The method obtains a phase-space (PS) representation of the process, which in turn is converted into a probability density function (PDF). Condition change is monitored by comparing two PS-PDFs via a {chi}{sup 2} statistical measure. One example application involves monitoring of brain waves to distinguish various states in an epileptic patient. A second example distinguishes different drilling conditions from spindle motor current data. A third example distinguishes balanced and unbalanced pumping conditions from power data.

  15. Rate effect on mechanical properties of hydraulic concrete flexural-tensile specimens under low loading rates using acoustic emission technique.

    PubMed

    Su, Huaizhi; Hu, Jiang; Tong, Jianjie; Wen, Zhiping

    2012-09-01

    Acoustic emission (AE) waveform is generated by dislocation, microcracking and other irreversible changes in a concrete material. Based on the AE technique (AET), this paper focuses on strain rate effect on physical mechanisms of hydraulic concrete specimens during the entire fracture process of three point bending (TPB) flexural tests at quasi-static levels. More emphasis is placed on the influence of strain rate on AE hit rate and AE source location around peak stress. Under low strain rates, namely 0.77×10(-7)s(-1), 1×10(-7)s(-1) to 1×10(-6)s(-1) respectively, the results show that the tensile strength increases as the strain rate increases while the peak AE hit rate decreases. Meanwhile, the specimen under a relatively higher strain rate shows a relatively wider intrinsic process zone in a more diffuser manner, lots of distributed microcracks relatively decrease stress intensity, thus delay both microcracking localization and macrocrack propagation. These phenomena can be attributed to Stéfan effect. In addition, further tests, namely the combination of AE monitoring and strain measuring systems was designed to understand the correlation between AE event activity and microfracture (i.e., microcracking and microcracking localization). The relative variation trend of cumulative AE events accords well with that of the load-deformation curve. PMID:22534061

  16. A simulation technique for 3D MR-guided acoustic radiation force imaging

    PubMed Central

    Payne, Allison; de Bever, Josh; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  17. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  18. Acoustic waveguide technique for sensing incipient faults in underground power-transmission cables: Including acousto-optic techniques

    NASA Astrophysics Data System (ADS)

    Harrold, R. T.

    1981-09-01

    Theoretical and practical studies were made of both the acoustic emission, spectrum signatures associated with underground cable incipient faults, and the attenuation of acoustic waves in waterfilled metal tubes used as waveguided. Based on critical data, it can be estimated that in favorable circumstances, the acoustic waveguide system would only be useful for sensing incipient faults in underground cables of approx. 800 meters of less in length. A system were investigated which acoustic emissions from cable incipient faults impinge on a fiber-optic lightguide and locally change its refractive index and modulate laser light transmitted along the light guide. Experiments based on this concept show that is is possible t sense acoustic emissions with energy levels below on micro-joule. A test of this system using a section of compressed gas-insulated cable with an internal flashover was successfully carried out.

  19. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    PubMed

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features. PMID:24181982

  20. Failure monitoring of E-glass/vinylester composites using fiber grating acoustic sensor

    NASA Astrophysics Data System (ADS)

    Azmi, A. I.; Raju; Peng, G. D.

    2013-06-01

    This paper reports an application of an optical fiber sensor in a continuous and in situ failure testing of an E-glass/vinylester top hat stiffener (THS). The sensor head was constructed from a compact phase-shifted fiber Bragg grating (PS-FBG). The narrow transmission channel of the PS-FBG is highly sensitive to small perturbation, hence suitable to be used in acoustic emission (AE) assessment technique. The progressive failure of THS was tested under transverse loading to experimentally simulate the actual loading in practice. Our experimental tests have demonstrated, in good agreement with the commercial piezoelectric sensors, that the important failures information of the THS was successfully recorded by the simple intensity-type PS-FBG sensor.

  1. Clinical Studies of Real-Time Monitoring of Lithotripter Performance Using Passive Acoustic Sensors

    NASA Astrophysics Data System (ADS)

    Leighton, T. G.; Fedele, F.; Coleman, A. J.; McCarthy, C.; Ryves, S.; Hurrell, A. M.; De Stefano, A.; White, P. R.

    2008-09-01

    This paper describes the development and clinical testing of a passive device which monitors the passive acoustic emissions generated within the patient's body during Extracorporeal Shock Wave Lithotripsy (ESWL). Designed and clinically tested so that it can be operated by a nurse, the device analyses the echoes generated in the body in response to each ESWL shock, and so gives real time shock-by-shock feedback on whether the stone was at the focus of the lithotripter, and if so whether the previous shock contributed to stone fragmentation when that shock reached the focus. A shock is defined as being `effective' if these two conditions are satisfied. Not only can the device provide real-time feedback to the operator, but the trends in shock `effectiveness' can inform treatment. In particular, at any time during the treatment (once a statistically significant number of shocks have been delivered), the percentage of shocks which were `effective' provides a treatment score TS(t) which reflects the effectiveness of the treatment up to that point. The TS(t) figure is automatically delivered by the device without user intervention. Two clinical studies of the device were conducted, the ethics guidelines permitting only use of the value of TS(t) obtained at the end of treatment (this value is termed the treatment score TS0). The acoustically-derived treatment score was compared with the treatment score CTS2 given by the consultant urologist at the three-week patient's follow-up appointment. In the first clinical study (phase 1), records could be compared for 30 out of the 118 patients originally recruited, and the results of phase 1 were used to refine the parameter values (the `rules') with which the acoustic device provides its treatment score. These rules were tested in phase 2, for which records were compared for 49 of the 85 patients recruited. Considering just the phase 2 results (since the phase 1 data were used to draw up the `rules' under which phase 2 operated

  2. Conformational Changes of Calmodulin on Calcium and Peptide Binding Monitored by Film Bulk Acoustic Resonators

    PubMed Central

    Nirschl, Martin; Ottl, Johannes; Vörös, Janos

    2011-01-01

    Film bulk acoustic resonators (FBAR) are mass sensitive, label-free biosensors that allow monitoring of the interaction between biomolecules. In this paper we use the FBAR to measure the binding of calcium and the CaMKII peptide to calmodulin. Because the mass of the calcium is too small to be detected, the conformational change caused by the binding process is measured by monitoring the resonant frequency and the motional resistance of the FBAR. The resonant frequency is a measure for the amount of mass coupled to the sensor while the motional resistance is influenced by the viscoelastic properties of the adsorbent. The measured frequency shift during the calcium adsorptions was found to be strongly dependent on the surface concentration of the immobilized calmodulin, which indicates that the measured signal is significantly influenced by the amount of water inside the calmodulin layer. By plotting the measured motional resistance against the frequency shift, a mass adsorption can be distinguished from processes involving measurable conformational changes. With this method three serial processes were identified during the peptide binding. The results show that the FBAR is a promising technology for the label-free measurement of conformational changes. PMID:25585566

  3. Environmental Influences on the Spatial Ecology of Juvenile Smalltooth Sawfish (Pristis pectinata): Results from Acoustic Monitoring

    PubMed Central

    Simpfendorfer, Colin A.; Yeiser, Beau G.; Wiley, Tonya R.; Poulakis, Gregg R.; Stevens, Philip W.; Heupel, Michelle R.

    2011-01-01

    To aid recovery efforts of smalltooth sawfish (Pristis pectinata) populations in U.S. waters a research project was developed to assess how changes in environmental conditions within estuarine areas affected the presence, movements, and activity space of this endangered species. Forty juvenile P. pectinata were fitted with acoustic tags and monitored within the lower 27 km of the Caloosahatchee River estuary, Florida, between 2005 and 2007. Sawfish were monitored within the study site from 1 to 473 days, and the number of consecutive days present ranged from 1 to 125. Residency index values for individuals varied considerably, with annual means highest in 2005 (0.95) and lowest in 2007 (0.73) when several P. pectinata moved upriver beyond detection range during drier conditions. Mean daily activity space was 1.42 km of river distance. The distance between 30-minute centers of activity was typically <0.1 km, suggesting limited movement over short time scales. Salinity electivity analysis demonstrated an affinity for salinities between 18 and at least 24 psu, suggesting movements are likely made in part, to remain within this range. Thus, freshwater flow from Lake Okeechobee (and its effect on salinity) affects the location of individuals within the estuary, although it remains unclear whether or not these movements are threatening recovery. PMID:21347294

  4. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  5. Acoustic monitoring in the Ross Sea, Antarctica, using hydrophone of the Ocean Bottom Seismometer

    NASA Astrophysics Data System (ADS)

    Yun, Sukyoung; Lee, Won Sang; Kuk Hong, Jong; Yoo, Hyun Jae; Park, Yongcheol; Schmidt-Aursch, Mechita; Geissler, Wolfram H.

    2016-04-01

    Although a number of active source seismic experiments have been conducted over the last few decades to investigate the crustal structure in the Ross Sea, Antarctica, long-term observation to monitor underwater tectonic activities and changes in the cryospheric environment still remains challenging due to existence of sea ice in the study region. Korea Polar Research Institute has accomplished successful deployment of ocean bottom seismometers (OBS) in the Ross Sea collaborating with Alfred Wegener Institute during the period of 2011-2012 and 2014 by Korean icebreaker RV Araon. The OBS system manufactured by K.U.M. contains a hydrophone sensor that allow us to monitor underwater acoustics generated by tectonic and ice-related events. We present spectrograms of the continuous hydroacoustic data and various types of signals, e.g. seismic T-waves, iceequakes, and tremors. There are periodic and harmonic tremors that might be related with tidal modulation, and the seasonal variation of the background noise seems to be related with sea ice concentration.

  6. Challenge of Using Passive Acoustic Monitoring in High-Energy Environments: UK Tidal Environments and Other Case Studies.

    PubMed

    Booth, Cormac G

    2016-01-01

    The use of passive acoustic monitoring (PAM) around marine developments is commonplace. A buffer-based PAM system (e.g., C-POD) is a cost-effective method for assessing cetacean acoustic presence. Devices have been deployed by Sea Mammal Research Unit (SMRU) Marine around the United Kingdom, allowing an examination of the performance of C-PODs with respect to background noise, tilt angle, and environmental factors. C-PODs were found to often only monitor for a few seconds of each minute, resulting in significant loss of monitoring time. Issues were likely driven by environmental and deployment factors. The practical limitations of buffer-based PAM systems in high-energy/noisy environments are indicated here. PMID:26610949

  7. Systolic arterial pressure determination by a new pulse monitor technique.

    PubMed

    Wong, D T; Volgyesi, G A; Bissonnette, B

    1992-07-01

    The Doppler ultrasound (DUS) technique is a widely accepted non-invasive technique to estimate systolic blood pressure (SBP) accurately in paediatric patients. The DUS has a number of limitations. A new pulse monitor, Mr Pulse (MP), operating on the principle of a finger plethysmograph, was developed to offer an alternative technique to estimate SBP. From 104 paired SBP measurements taken in 16 paediatric patients undergoing general anaesthesia, SBP determined by the MP technique correlated closely with that by the standard DUS technique (r2 = 0.98). Analysis of degree of agreement performed indicated that there was good agreement between SBP obtained by the MP and the DUS techniques. The mean +/- standard deviation of differences in paired SBP values between the two measurement techniques was 0.55 +/- 3.59 mmHg. Mr Pulse is as accurate as the DUS technique in estimating SBP and has the advantage of less critical sensor positioning as it is not subject to electrical interference. It has no electrical hazard. PMID:1643685

  8. Advance techniques for monitoring human tolerance to positive Gz accelerations

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1973-01-01

    Tolerance to positive g accelerations was measured in ten normal male subjects using both standard and advanced techniques. In addition to routine electrocardiogram, heart rate, respiratory rate, and infrared television, monitoring techniques during acceleration exposure included measurement of peripheral vision loss, noninvasive temporal, brachial, and/or radial arterial blood flow, and automatic measurement of indirect systolic and diastolic blood pressure at 60-sec intervals. Although brachial and radial arterial flow measurements reflected significant cardiovascular changes during and after acceleration, they were inconsistent indices of the onset of grayout or blackout. Temporal arterial blood flow, however, showed a high correlation with subjective peripheral light loss.

  9. Laser speckle technique for monitoring of blood and lymph flow

    NASA Astrophysics Data System (ADS)

    Fedosov, Ivan V.; Tuchin, Valery V.

    2004-07-01

    Laser speckle technique developed for monitoring of micro scale blood and lymph flows is described and discussed. It is based on the space-time correlation properties of dynamic speckle field formed by coherent light scattered by capillary flow of blood or lymph. As it was proved experimentally, the estimating of cross-correlation of speckle-field intensity fluctuations recorded in two different point allows for measurement of flow velocity and flow direction discrimination. Developed technique was applied for investigation of push-pull dynamics of lymph flow in rat mesentery. The results of experiments with models of bioflows and in vivo measurements are presented.

  10. A study of aluminum-lithium alloy solidification using acoustic emission techniques

    SciTech Connect

    Henkel, D.P.

    1991-01-01

    Physical phenomena associated with the solidification of an aluminum-lithium alloy, an aluminum-copper alloy, and ultra-pure aluminum have been characterized using acoustic emission (AE) techniques. This study has shown that repeatable patterns of AE activity may be correlated to microstructural changes that occur during solidification. The influence of the experimental system on generated signals has been examined in detail. Time and frequency domain analysis of the response of a boron nitride waveguide materials and three transducers has been performed. The analysis has been used to show how an AE signal from a solidifying metal is changed by each component of the detection system to produce a complex waveform. Acoustic emission during solidification has been studied using two methods: conventional and individual waveform analysis. Conventional analysis has shown that a period of high AE activity occurs in ultra-pure aluminum, an Al-Cu alloy and an Al-Li alloy as the last fraction of solid forms. A model is presented which attributes this activity to internal stresses caused by grain boundary formation. Another period of AE activity occurs in the two alloys as the first fraction of solid forms. This activity was not observed in the non-porous ultra-pure aluminum. A model is presented which attributes this activity to interdendritic porosity. A mixture of low and high intensity signals occurred during each period but specific trends in waveform characteristics were not identified. The waveform is dominated by resonant effects from the waveguide or, if high-pass filtering is used, the transfer function of the transducer controls the waveshape.

  11. Complex monitoring and alert network for electromagnetic, infrasound, acoustic seismotectonic phenomena

    NASA Astrophysics Data System (ADS)

    -Emilian Toader, Victorin; Moldovan, Iren-Adelina; Constantin, Ionescu

    2014-05-01

    The Romanian seismicity recorded in 2013 three important events: the largest seismic "silence", the shortest sequence of two earthquakes greater than 4.8R in less than 14 days after the "Romanian National Institute for Earth Physics" (NIEP) developed a digital network, and a very high crustal activity in Galati area. We analyze the variations of the telluric currents and local magnetic field, variations of the atmospheric electrostatic field, infrasound, temperature, humidity, wind speed and direction, atmospheric pressure, variations in the earth crust with inclinometers and animal behavior. The general effect is the first high seismic energy discontinuity that could be a precursor factor. Since 1977 Romania did not register any important earthquake that would generate a sense of fear among the population. In parallel with the seismic network NIEP developed a magneto-telluric, bioseismic, VLF and acoustic network. A large frequency spectrum is covered for mechanical vibration, magnetic and electric field with ground and air sensors. Special software was designed for acquisition, analysis and real time alert using internet direct connection, web page, email and SMS. Many examples show the sensitivity of telluric current, infrasound, acoustic records (from air-ground), and the effect of tectonic stress on the magnetic field or ground deformation. The next update of the multidisciplinary monitoring network will include measurement of ionization, radon emission, sky color, solar radiation and extension of infrasound and VL/LF equipment. NOAA Space Weather satellites transmit solar activity magnetic field data, X ray flux, electron, and proton flux information useful for complex analysis.

  12. Mechanical Weakening during Fluid Injection in Critically Stressed Sandstones with Acoustic Monitoring

    NASA Astrophysics Data System (ADS)

    David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.

    2014-12-01

    Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was

  13. Advance techniques for monitoring human tolerance to +Gz accelerations.

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1972-01-01

    Standard techniques for monitoring the acceleration-stressed human subject have been augmented by measuring (1) temporal, brachial and/or radial arterial blood flow, and (2) indirect systolic and diastolic blood pressure at 60-sec intervals. Results show that the response of blood pressure to positive accelerations is complex and dependent on an interplay of hydrostatic forces, diminishing venous return, redistribution of blood, and other poorly defined compensatory reflexes.

  14. Investigation of contact acoustic nonlinearities on metal and composite airframe structures via intensity based health monitoring.

    PubMed

    Romano, P Q; Conlon, S C; Smith, E C

    2013-01-01

    Nonlinear structural intensity (NSI) and nonlinear structural surface intensity (NSSI) based damage detection techniques were improved and extended to metal and composite airframe structures. In this study, the measurement of NSI maps at sub-harmonic frequencies was completed to provide enhanced understanding of the energy flow characteristics associated with the damage induced contact acoustic nonlinearity mechanism. Important results include NSI source localization visualization at ultra-subharmonic (nf/2) frequencies, and damage detection results utilizing structural surface intensity in the nonlinear domain. A detection metric relying on modulated wave spectroscopy was developed and implemented using the NSSI feature. The data fusion of the intensity formulation provided a distinct advantage, as both the single interrogation frequency NSSI and its modulated wave extension (NSSI-MW) exhibited considerably higher sensitivities to damage than using single-sensor (strain or acceleration) nonlinear detection metrics. The active intensity based techniques were also extended to composite materials, and results show both NSSI and NSSI-MW can be used to detect damage in the bond line of an integrally stiffened composite plate structure with high sensitivity. Initial damage detection measurements made on an OH-58 tailboom (Penn State Applied Research Laboratory, State College, PA) indicate the techniques can be transitioned to complex airframe structures achieving high detection sensitivities with minimal sensors and actuators. PMID:23297894

  15. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  16. Use of acoustic velocity methodology and remote sensing techniques to measure unsteady flow on the lower Yazoo River in Mississippi

    USGS Publications Warehouse

    Turnipseed, D. Phil; Cooper, Lance M.; Davis, Angela A.

    1998-01-01

    Methodologies have been developed for computing continuous discharge during varied, non-uniform low and medium flows on the Yazoo River at the U.S. Geological Survey streamgage below Steele Bayou near Long Lake, Mississippi, using acoustic signal processing and conventional streamgaging techniques. Procedures were also developed to compute locations of discharges during future high flow events when the stream reach is subject to hi-directional and reverse flow caused by rising stages on the Mississippi River using a combination of acoustic equipment and remote sensing technology. A description of the study area is presented. Selected results of these methods are presented for the period from March through September 1997.

  17. Size Distribution of Sperm Whales Acoustically Identified during Long Term Deep-Sea Monitoring in the Ionian Sea.

    PubMed

    Caruso, Francesco; Sciacca, Virginia; Bellia, Giorgio; De Domenico, Emilio; Larosa, Giuseppina; Papale, Elena; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Simeone, Francesco; Speziale, Fabrizio; Viola, Salvatore; Pavan, Gianni

    2015-01-01

    The sperm whale (Physeter macrocephalus) emits a typical short acoustic signal, defined as a "click", almost continuously while diving. It is produced in different time patterns to acoustically explore the environment and communicate with conspecifics. Each emitted click has a multi-pulse structure, resulting from the production of the sound within the sperm whale's head. A Stable Inter Pulse Interval (Stable IPI) can be identified among the pulses that compose a single click. Applying specific algorithms, the measurement of this interval provides useful information to assess the total length of the animal recorded. In January 2005, a cabled hydrophone array was deployed at a depth of 2,100 m in the Central Mediterranean Sea, 25 km offshore Catania (Ionian Sea). The acoustic antenna, named OνDE (Ocean noise Detection Experiment), was in operation until November 2006. OνDE provided real time acoustic data used to perform Passive Acoustic Monitoring (PAM) of cetacean sound emissions. In this work, an innovative approach was applied to automatically measure the Stable IPI of the clicks, performing a cepstrum analysis to the energy (square amplitude) of the signals. About 2,100 five-minute recordings were processed to study the size distribution of the sperm whales detected during the OνDE long term deep-sea acoustic monitoring. Stable IPIs were measured in the range between 2.1 ms and 6.4 ms. The equations of Gordon (1991) and of Growcott (2011) were used to convert the IPIs into measures of size. The results revealed that the sperm whales recorded were distributed in length from about 7.5 m to 14 m. The size category most represented was from 9 m to 12 m (adult females or juvenile males) and specimens longer than 14 m (old males) seemed to be absent. PMID:26675588

  18. Size Distribution of Sperm Whales Acoustically Identified during Long Term Deep-Sea Monitoring in the Ionian Sea

    PubMed Central

    Caruso, Francesco; Sciacca, Virginia; Bellia, Giorgio; De Domenico, Emilio; Larosa, Giuseppina; Papale, Elena; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Simeone, Francesco; Speziale, Fabrizio; Viola, Salvatore; Pavan, Gianni

    2015-01-01

    The sperm whale (Physeter macrocephalus) emits a typical short acoustic signal, defined as a “click”, almost continuously while diving. It is produced in different time patterns to acoustically explore the environment and communicate with conspecifics. Each emitted click has a multi-pulse structure, resulting from the production of the sound within the sperm whale’s head. A Stable Inter Pulse Interval (Stable IPI) can be identified among the pulses that compose a single click. Applying specific algorithms, the measurement of this interval provides useful information to assess the total length of the animal recorded. In January 2005, a cabled hydrophone array was deployed at a depth of 2,100 m in the Central Mediterranean Sea, 25 km offshore Catania (Ionian Sea). The acoustic antenna, named OνDE (Ocean noise Detection Experiment), was in operation until November 2006. OνDE provided real time acoustic data used to perform Passive Acoustic Monitoring (PAM) of cetacean sound emissions. In this work, an innovative approach was applied to automatically measure the Stable IPI of the clicks, performing a cepstrum analysis to the energy (square amplitude) of the signals. About 2,100 five-minute recordings were processed to study the size distribution of the sperm whales detected during the OνDE long term deep-sea acoustic monitoring. Stable IPIs were measured in the range between 2.1 ms and 6.4 ms. The equations of Gordon (1991) and of Growcott (2011) were used to convert the IPIs into measures of size. The results revealed that the sperm whales recorded were distributed in length from about 7.5 m to 14 m. The size category most represented was from 9 m to 12 m (adult females or juvenile males) and specimens longer than 14 m (old males) seemed to be absent. PMID:26675588

  19. Atmospheric trace gases monitoring by UV-vis spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Xie, Pinhua; Li, Ang; Wu, Fengcheng; Qin, Min; Hu, Rezhi; Xu, Jin; Si, Fuqi; Liu, Jianguo; Liu, Wenqing

    2016-04-01

    Due to rapidly economic development, air pollution has become an important issue in China. Phenomena such as regional haze in winter and high O3 concentration in summer are strongly related to increasing trace species. For better understanding the air pollution formation, it is necessary to know spatial and temporal distribution of trace species in the atmosphere. UV-vis spectroscopic techniques are of great advantages for trace species monitoring to meet several requirements, e.g. versatility, high sensitivity, good temporal resolution and field applicability. We have studied and developed various trace gases monitoring techniques and instruments based on UV-vis spectroscopic technique for in-situ measurements and remote sensing, e.g. LP-DOAS, IBBCEAS, CRDS, MAX-DOAS and mobile DOAS for NO2, SO2, HCHO, HONO, NO3, and N2O5 etc. The principle, instrumentation and inversion algorithm are presented. As typical applications of these techniques, investigation of the evolution of HONO and NO3 radicals over Beijing area, measurements of regional pollution in NCP and YRD are discussed in the aspects of HONO and nocturnal NO3 radical characteristics, trace gases (NO2, SO2 etc.) temporal and spatial distribution, pollution transport pathway, emission sources.

  20. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  1. Monitoring of Refractory wall recession using radar technique

    SciTech Connect

    University of missouri

    2003-12-30

    Furnaces are the most crucial components in the glass and metallurgical industry. Like any other components in an industry, furnaces require periodic maintenance and repair. Today, furnaces are being operated at higher temperatures and for longer periods of time thus increasing the rate of wear and tear on the furnace refractory lining. As a result of the competitive market facing these industries, longer furnace lifetime with shorter maintenance downtime are increasingly required. Higher fuel consumption, low production and safety are issues that accompany delayed maintenance. Consequently, there is a need to know the state of a refractory wall to prevent premature or unnecessary maintenance shutdowns. For many years the observation skills of an experienced operator has been the primary source of evaluating the wear associated with a refractory wall. The rate of regression of a refractory lining depends on the type of the refractory lining, the materials Monitoring of Refractory Wall Recession Using Frequency-Modulated Continuous-Wave (FM-CW) Radar Techniques: A Proof-of-Concept Study, Final Report, Submitted to the Department of Energy (DOE), September 2003. being melted, seepage, mechanical stresses, and temperature. Moreover, the regression of a refractory lining is also not uniform throughout a furnace and it is more prominent at the metal line along the sidewalls as this region is exposed to hot gaseous byproducts and flowing molten material. Hence, more accurate measurement techniques are required to determine the local residual thickness of a refractory lining so as to utilize the refractory lining to the maximum extent possible. The use of isotope radiators, thermocouples and endoscopes has also been investigated for monitoring regression. These techniques are capable of providing scanned thermal images showing the profile of the refractory wall. However, these techniques can only provide relative profile information and cannot provide absolute thickness

  2. Autonomous hydrophone array for long-term acoustic monitoring in the open ocean

    NASA Astrophysics Data System (ADS)

    D'Eu, J.-F.; Brachet, C.; Goslin, J.; Royer, J.-Y.; Ammann, J.

    2009-04-01

    We are developing an array of new autonomous hydrophones, benefiting from a long-lasting collaboration with the Pacific Marine Environmental Laboratory (NOAA and Oregon state University). The hydrophones are deployed on a mooring line anchored to the seafloor by an expendable anchor weight. The length of the line is adjusted so that the sensor (and buoy) lies in the middle of the SOFAR channel at about 1000m depth for mid-latitudes (depending on the speed-of-sound profile). The buoy at depth keeps the line under tension and prevents wave-motion noise from the sensor. The instrument continuously samples and records the acoustic signals at 240Hz for seismic studies, or 480Hz (or more) for marine mammal studies. The SOFAR channel acts as an acoustic wave-guide in the ocean so that acoustic waves can propagate with little attenuation over long distances. Autonomous hydrophones allow the detection and localization of the low-magnitude (Mw>2.5) seismic activity along oceanic ridges and in deformed intraplate areas, which remains generally undetected or poorly localized by land-based seismic networks. An array of hydrophones can monitor a much wider area (more than 1000 km across) than ocean-bottom seismometers, which suffer from the rapid attenuation of seismic waves in the crust and upper mantle. Arrays of autonomous hydrophones thus succeed in detecting and locating 30 to 50 times more earthquakes than those listed in the catalogs from land-based seismograph stations. Data are buffered on flash cards and then regularly stored on hard disks or on solid-state drives (e.g. 20Gb of data per year at 240Hz sampling rate). We use 24-bit sigma-delta converters with programmable gain amplifiers. As timing is a key issue for an accurate localisation of the seismic events, instruments are synchronized with GPS time and have a low-power, highly stable calibrated clock (10-8 drift). All electronics and batteries (Li or alcaline) are placed in titanium pressure cases for long

  3. Reflection of no equilibrium two Phase Processes of Filtration in heterogeneous Media in the active seism acoustic borehole monitoring Data

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Dryagin, Veniamin; Igolkina, Galina; Khachay, Oleg

    2013-04-01

    It is provided a comparison of no equilibrium effects by independent hydro dynamical and seism acoustic influence on an oil layer. It is known, that by drainage and steeps the hysteresis effect on curves of the relative phase permeability in dependence from porous medium water saturation by some cycles of influence: drainage-steep-drainage is observed. In earlier papers the analysis of the seism acoustic monitoring data in regimes of phone radiation, response on the first influence of given frequency and on the second influence is developed. For the analysis of seism acoustic response in time on fixed intervals along the borehole an algorithm of phase diagrams of the state of many phase medium is suggested In that paper on the base of developed algorithm a new algorithm of analyze of space, but integral in time for equal observation periods changing by the method of phase diagram state of many phase medium in the oil layer is developed. The paper was supported by the Program of Presidium UB RAS 2012-2014. Key words: Oil and gas deposits, seism acoustic borehole monitoring data, new method of processing, reflection of no equilibrium two phase processes, heterogeneous media.

  4. Acoustic emissions generated in aged dental composites using a laser thermoacoustic technique.

    PubMed

    Lee, S Y; Lin, C T; Dong, D R; Huang, H M; Shih, Y H

    2000-09-01

    The heating up of dental composites by laser will produce acoustic emissions (AEs) that may be related to fracture mechanisms in the composites. It has been proved that the mechanical properties of dental composites are affected by storage in food simulating liquids, i.e. 75% ethanol, which has a solubility parameter approximating to that of bisphenol glycidyl dimethacrylate (BisGMA) resin. A new method was innovated to evaluate the laser-induced AEs in dental composites aged by 75% ethanol solution. Model systems (50/50 BisGMA/TEGDMA resin filled with 0% and 75 wt.% 5-10 microm silanized BaSiO6) as well as three commercial composites (Marathon One, Z100 and Herculite XRV) were used in this study. Nine samples acting as the control group were tested to establish the correlation of AEs to laser power. The effect of ageing by immersion in 75% ethanol on AEs and diametral tensile strength (DTS) was then evaluated. A quasi-continuous wave CO2 laser was used to heat up the composites. AEs of frequency 100-200 kHz were collected, filtered, recorded and processed using a 4610 Smart Acoustic Monitor. Burst patterns, which formally were assumed to be correlated to fracture mechanisms, were also identified from the data obtained at laser power > or = 5 W for commercial composites and > or = 4 W for model systems. Higher laser powers cause the AE to increase for all composites except unfilled model resin. AEs as a function of power for all aged systems were flat (< 100 events) below 4 W. Emissions then rose sharply to > 1000 events at 7.1 W. Statistically significant differences were found between the AEs obtained at 5 W (commercial composites) and those at 4.3 W (model systems) for material systems and storage times. Marathon One was less affected by the laser and an abrupt change in AE was found between days 0 and 7 of storage for all commercial composites. The AE value from the unfilled model resin was found to be significantly different from that of the model composites

  5. Time domain reflectometry as a rock mass monitoring technique

    SciTech Connect

    Francke, J.L.; Terrill, L.J.; Allen, W.W.

    1996-06-01

    This paper describes the practices and methods used in a study of Time Domain Reflectometry (TDR) as an inexpensive deformation monitoring tool in underground excavations at the Waste Isolation Pilot Plant (WIPP). The WIPP is being developed near Carlsbad, New Mexico, for the disposal of transuranic nuclear wastes in bedded salt 655 m (2150 ft) below the surface. Data collected from WIPP geomechanical monitoring are used to characterize conditions, confirm design assumptions, and understand and predict the performance of the deep salt excavation. The geomechanical monitoring techniques ranging from inspection of observation boreholes to advanced radar surveys. In 1989 TDR was introduced as a monitoring tool with the installation of 12.7 mm (0.5 in) diameter TDR cables in the underground excavations. In 1993, a new TDR system was installed in a separate location. Based on experience with the previous installation, enhancements were implemented into the new TDR system that: (1) extended the period of performance by increasing cable diameter to 22. 2 mm (0.875 in), (2) increased accuracy in locating areas of deformation by aligning cables with nearby observation boreholes, and (3) improved data acquisition and analyses using a standard laptop computer, eliminating the chart recorder previously used. In summary, the results of a correlation between the TDR signatures to nearby observation boreholes and geomechanical instrumentation will be presented.

  6. Influence of geometry on the fracturing behavior of textile reinforced cement monitored by acoustic emission

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Blom, J.; El Kadi, M.; Wastiels, J.

    2014-03-01

    In this work the flexural behavior of textile reinforced cement (TRC) laminate is examined using acoustic emission (AE). The TRC composite is a combination of inorganic phosphate cement (IPC) with randomly distributed glass fibres. IPC has been developed at the "Vrije Universiteit Brussel" and shows a neutral pH meaning that glass fibers are hardly attacked. During bending, stresses lead to the activation of damage mechanisms like matrix cracking, delaminations and fiber pull-out being in succession or overlapping in time. AE records the responses of the damage propagation events and allows the monitoring of the fracture behavior from the onset to the final stage. The effect of the span in three-point bending tests, which is varied to create different stress fields, is targeted. Parameters like duration and frequency reveal information about the mode of the damage sources in relation to the span. Results show that as the span decreases, the dominant damage mode shifts away from bending and acquires more shear characteristics by increasing the interlaminar shearing events.

  7. Automatic Detection of Swallowing Events by Acoustical Means for Applications of Monitoring of Ingestive Behavior

    PubMed Central

    Sazonov, Edward S.; Makeyev, Oleksandr; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Edward L.; Neuman, Michael R.

    2010-01-01

    Our understanding of etiology of obesity and overweight is incomplete due to lack of objective and accurate methods for Monitoring of Ingestive Behavior (MIB) in the free living population. Our research has shown that frequency of swallowing may serve as a predictor for detecting food intake, differentiating liquids and solids, and estimating ingested mass. This paper proposes and compares two methods of acoustical swallowing detection from sounds contaminated by motion artifacts, speech and external noise. Methods based on mel-scale Fourier spectrum, wavelet packets, and support vector machines are studied considering the effects of epoch size, level of decomposition and lagging on classification accuracy. The methodology was tested on a large dataset (64.5 hours with a total of 9,966 swallows) collected from 20 human subjects with various degrees of adiposity. Average weighted epoch recognition accuracy for intra-visit individual models was 96.8% which resulted in 84.7% average weighted accuracy in detection of swallowing events. These results suggest high efficiency of the proposed methodology in separation of swallowing sounds from artifacts that originate from respiration, intrinsic speech, head movements, food ingestion, and ambient noise. The recognition accuracy was not related to body mass index, suggesting that the methodology is suitable for obese individuals. PMID:19789095

  8. Analysis of ultrasonic techniques for monitoring milk coagulation during cheesemaking

    NASA Astrophysics Data System (ADS)

    Budelli, E.; Pérez, N.; Lema, P.; Negreira, C.

    2012-12-01

    Experimental determination of time of flight and attenuation has been proposed in the literature as alternatives to monitoring the evolution of milk coagulation during cheese manufacturing. However, only laboratory scale procedures have been described. In this work, the use of ultrasonic time of flight and attenuation to determine cutting time and its feasibility to be applied at industrial scale were analyzed. Limitations to implement these techniques at industrial scale are shown experimentally. The main limitation of the use of time of flight is its strong dependence with temperature. Attenuation monitoring is affected by a thin layer of milk skin covering the transducer, which modifies the signal in a non-repetitive way. The results of this work can be used to develop alternative ultrasonic systems suitable for application in the dairy industry.

  9. Vibration Monitoring Techniques Applied to Detect Damage in Rotating Disks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Sawicki, Jerzy T.

    2002-01-01

    Rotor health monitoring and online damage detection are increasingly gaining the interest of the manufacturers of aircraft engines. This is primarily due to the need for improved safety during operation as well as the need for lower maintenance costs. Applied techniques for detecting damage in and monitoring the health of rotors are essential for engine safety, reliability, and life prediction. The goals of engine safety are addressed within the NASA-sponsored Aviation Safety Program (AvSP). AvSP provides research and technology products needed to help the Federal Aviation Administration and the aerospace industry improve aviation safety. The Nondestructive Evaluation Group at the NASA Glenn Research Center is addressing propulsion health management and the development of propulsion-system-specific technologies intended to detect potential failures prior to catastrophe.

  10. Detection of bond failure in the anchorage zone of reinforced concrete beams via acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Abouhussien, Ahmed A.; Hassan, Assem A. A.

    2016-07-01

    In this study, acoustic emission (AE) monitoring was utilised to identify the onset of bond failure in reinforced concrete beams. Beam anchorage specimens were designed and tested to fail in bond in the anchorage zone. The specimens included four 250 × 250 × 1500 mm beams with four variable bonded lengths (100, 200, 300, and 400 mm). Meanwhile, an additional 250 × 250 × 2440 mm beam, with 200 mm bonded length, was tested to investigate the influence of sensor location on the identification of bond damage. All beams were tested under four-point loading setup and continuously monitored using three distributed AE sensors. These attached sensors were exploited to record AE signals resulting from both cracking and bond deterioration until failure. The variations in the number of AE hits and cumulative signal strength (CSS) versus test time were evaluated to achieve early detection of crack growth and bar slippage. In addition, AE intensity analysis was performed on signal strength of collected AE signals to develop two additional parameters: historic index (H (t)) and severity (S r). The analysis of these AE parameters enabled an early detection of both first cracks (at almost the mid-span of the beam) and bar slip in either of the anchorage zones at the beams’ end before their visual observation, regardless of sensor location. The results also demonstrated a clear correlation between the damage level in terms of crack development/measured free end bar slip and AE parameters (number of hits, CSS, H(t), and S r).

  11. Acoustic Monitoring System for Frog Population Estimation Using In-Situ Progressive Learning

    NASA Astrophysics Data System (ADS)

    Aboudan, Adam

    Frog populations are considered excellent bio-indicators and hence the ability to monitor changes in their populations can be very useful for ecological research and environmental monitoring. This thesis presents a new population estimation approach based on the recognition of individual frogs of the same species, namely the Pseudacris Regilla (Pacific Chorus Frog), which does not rely on the availability of prior training data. An in-situ progressive learning algorithm is developed to determine whether an incoming call belongs to a previously detected individual frog or a newly encountered individual frog. A temporal call overlap detector is also presented as a pre-processing tool to eliminate overlapping calls. This is done to prevent the degrading of the learning process. The approach uses Mel-frequency cepstral coefficients (MFCCs) and multivariate Gaussian models to achieve individual frog recognition. In the first part of this thesis, the MFCC as well as the related linear predictive cepstral coefficients (LPCC) acoustic feature extraction processes are reviewed. The Gaussian mixture models (GMM) are also reviewed as an extension to the classical Gaussian modeling used in the proposed approach. In the second part of this thesis, the proposed frog population estimation system is presented and discussed in detail. The proposed system involves several different components including call segmentation, feature extraction, overlap detection, and the in-situ progressive learning process. In the third part of the thesis, data description and system performance results are provided. The process of synthetically generating test sequences of real frog calls, which are applied to the proposed system for performance analysis, is described. Also, the results of the system performance are presented which show that the system is successful in distinguishing individual frogs, hence capable of providing reasonable estimates of the frog population. The system can readily be

  12. Fatigue crack growth monitoring of idealized gearbox spline component using acoustic emission

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Ozevin, Didem; Hardman, William; Kessler, Seth; Timmons, Alan

    2016-04-01

    The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. The acoustic emission (AE) method is a direct way of detecting active flaws; however, the method suffers from the influence of background noise and location/sensor based pattern recognition method. It is important to identify the source mechanism and adapt it to different test conditions and sensors. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method in a laboratory environment. The test sample has the major details of the spline component on a flattened geometry. The AE data is continuously collected together with strain gauges strategically positions on the structure. The fatigue test characteristics are 4 Hz frequency and 0.1 as the ratio of minimum to maximum loading in tensile regime. It is observed that there are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The frequency spectra of continuous emissions and burst emissions are compared to understand the difference of sudden crack growth and gradual crack growth. The predicted crack growth rate is compared with the AE data using the cumulative AE events at the notch tip. The source mechanism of sudden crack growth is obtained solving the inverse mathematical problem from output signal to input signal. The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method The AE data is continuously collected together with strain gauges. There are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The source mechanism of

  13. Receiver autonomous integrity monitoring (RAIM) - Techniques, performance and potential

    NASA Technical Reports Server (NTRS)

    Farrell, James L.; Van Graas, Frank

    1991-01-01

    The goal of receiver autonomous integrity monitoring (RAIM) for the Global Positioning System (GPS) is to provide a sufficient level of navigation integrity for all phases of flight based on the signals transmitted by the GPS satellites only. Integrity requirements for airborne use of GPS are reviewed. This is followed by the description of a baseline fault detection algorithm which is shown to be capable of satisfying tentative integrity requirements. The related issue of testing the fault detection algorithm is also briefly addressed. Preliminary performance results for the baseline fault detection algorithm are presented, along with the potential of RAIM techniques for achieving GPS integrity.

  14. An integrated sensing technique for smart monitoring of water pipelines

    NASA Astrophysics Data System (ADS)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  15. In-line-focus monitoring technique using lens aberration effect

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tomohiko; Sawano, Toshio; Yao, Teruyoshi; Kobayashi, Katsuyoshi; Asai, Satoru

    2005-05-01

    Process windows have become narrower as nano-processing technology has advanced. The semiconductor industry, faced with this situation, has had to impose extremely severe tool controls. Above all, with the advent of 90-nm device production, demand has arisen for strict levels of control that exceed the machine specifications of ArF exposure systems. Consequently, high-accuracy focus control and focus monitoring techniques for production wafers will be necessary in order for this to be achieved for practical use. Focus monitoring techniques that measure pattern placement errors and resist features using special reticle and mark have recently been proposed. Unfortunately, these techniques have several disadvantages. They are unable to identify the direction of a focus error, and there are limits on the illumination conditions. Furthermore, they require the use of a reticle that is more expensive than normal and they suffer from a low level of measurement accuracy. To solve these problems, the authors examined methods of focus control and focus error measurement for production wafers that utilize the lens aberration of the exposure tool system. The authors call this method FMLA (focus monitoring using lens aberration). In general, astigmatism causes a difference in the optimum focal point between the horizontal and vertical patterns in the same image plane. If a focus error occurs, regardless of the reason, a critical dimension (CD) difference arises between the sparse horizontal and vertical lines. In addition, this CD difference decreases or increases monotonously with the defocus value. That is to say, it is possible to estimate the focus errors to measure the vertical and horizontal line CD formed by exposure tool with astigmatism. In this paper, the authors examined the FMLA technique using astigmatism. First, focus monitoring accuracy was investigated. Using normal scholar type simulation, FMLA was able to detect a 32.3-nm focus error when 10-mλ astigmatism was

  16. Real-time temperature estimation and monitoring of HIFU ablation through a combined modeling and passive acoustic mapping approach

    NASA Astrophysics Data System (ADS)

    Jensen, C. R.; Cleveland, R. O.; Coussios, C. C.

    2013-09-01

    Passive acoustic mapping (PAM) has been recently demonstrated as a method of monitoring focused ultrasound therapy by reconstructing the emissions created by inertially cavitating bubbles (Jensen et al 2012 Radiology 262 252-61). The published method sums energy emitted by cavitation from the focal region within the tissue and uses a threshold to determine when sufficient energy has been delivered for ablation. The present work builds on this approach to provide a high-intensity focused ultrasound (HIFU) treatment monitoring software that displays both real-time temperature maps and a prediction of the ablated tissue region. This is achieved by determining heat deposition from two sources: (i) acoustic absorption of the primary HIFU beam which is calculated via a nonlinear model, and (ii) absorption of energy from bubble acoustic emissions which is estimated from measurements. The two sources of heat are used as inputs to the bioheat equation that gives an estimate of the temperature of the tissue as well as estimates of tissue ablation. The method has been applied to ex vivo ox liver samples and the estimated temperature is compared to the measured temperature and shows good agreement, capturing the effect of cavitation-enhanced heating on temperature evolution. In conclusion, it is demonstrated that by using PAM and predictions of heating it is possible to produce an evolving estimate of cell death during exposure in order to guide treatment for monitoring ablative HIFU therapy. Portions presented at the 13th International Symposium on Therapeutic Ultrasound, Heidelberg, Germany (2012).

  17. Monitoring of Lactic Fermentation Process by Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Alouache, B.; Touat, A.; Boutkedjirt, T.; Bennamane, A.

    The non-destructive control by using ultrasound techniques has become of great importance in food industry. In this work, Ultrasound has been used for quality control and monitoring the fermentation stages of yogurt, which is a highly consumed product. On the contrary to the physico-chemical methods, where the measurement instruments are directly introduced in the sample, ultrasound techniques have the advantage of being non-destructive and contactless, thus reducing the risk of contamination. Results obtained in this study by using ultrasound seem to be in good agreement with those obtained by physico-chemical methods such as acidity measurement by using a PH-meter instrument. This lets us to conclude that ultrasound method may be an alternative for a healthy control of yoghurt fermentation process.

  18. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake: Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  19. ACOUSTIC MONITOR FOR LIQUID-SOLID SLURRIES MEASUREMENTS AT LOW WEIGHT FRACTIONS

    EPA Science Inventory

    The principal objective of the project is to develop an acoustic probe for determining the weight fraction of particles in a flowing suspension. The suspension can be solid-liquid (S-L) or solid-gas-liquid (S-G-L). The work will include testing the theory of acoustic wave propaga...

  20. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    SciTech Connect

    Ziminsky, Willy Steve; Krull, Anthony Wayne; Healy, Timothy Andrew , Yilmaz, Ertan

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  1. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    SciTech Connect

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  2. Development of structural health monitoring techniques using dynamics testing

    SciTech Connect

    James, G.H. III

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  3. Monitoring a quarry using high resolution data and GIS techniques

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Tsombos, P. I.; Vaiopoulos, A. D.

    2010-10-01

    Active quarries near to urban centers are at the same time a necessity but also a source of pollution. Necessity as they supply to the construction companies the necessary aggregates and source of pollution as they affect biodiversity, vegetation cover and threaten water resources. The objective of this work is to indicate a monitoring methodology in order to survey the present state of the quarry sites and their evolution in time, which are the basic data needed to implement an adequate land reclamation project. The land monitoring has been realised both by using remote sensing techniques, supported by a Geographic Information System of the studied area, and by in situ surveying. The in situ surveying was able to assess the capability of the remote sensing model to describe the state of each site. High resolution satellite data from different sensors were used for the monitoring of an active quarry. More especially, Ikonos Quickbird, and Worldiew data were orthorectified and inserted in a GIS database in order to quantify the changes.

  4. Wetland assessment, monitoring and management in India using geospatial techniques.

    PubMed

    Garg, J K

    2015-01-15

    Satellite remote sensing and GIS have emerged as the most powerful tools for inventorying, monitoring and management of natural resources and environment. In the special context of wetland ecosystems, remotely sensed data from orbital platforms have been extensively used in India for the inventory, monitoring and preparation of action plans for conservation and management. First scientific inventory of wetlands in India was carried out in 1998 by Space Applications Centre (ISRO), Ahmedabad using indigenous IRS (Indian Remote Sensing Satellite) data of 1992-93 timeframe, which stimulated extensive use of geospatial techniques for wetland conservation and management. Subsequently, with advances in GIS, studies were carried out for development of Wetland Information System for a state (West Bengal) and for Loktak lake wetland (a Ramsar site) as a prelude to National Wetland Information System. Research has also been carried out for preparation of action plans especially for Ramsar sites in the country. In a novel research, use of the geospatial technology has also been demonstrated for biodiversity conservation using landscape ecological metrics. A country-wide estimate of emission of methane, a Green House Gas, from wetlands has also been made using MODIS data. Present article critically reviews the work carried out in India for wetland conservation and management using geospatial techniques. PMID:24486190

  5. A noninvasive multimodal technique to monitor brain tumor vascularization

    NASA Astrophysics Data System (ADS)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E.

    2007-09-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present.

  6. Electrical Resistance Technique to Monitor SiC Composite Detection

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. The effect of matrix cracking on electrical resistivity for several composite systems will be presented and some initial measurements performed at elevated temperatures under stress-rupture conditions. The implications towards electrical resistance as a technique applied to composite processing, damage detection (health monitoring), and life-modeling will be discussed.

  7. Acoustic emission monitoring of a fatigue test of an F/A-18 bulkhead

    NASA Astrophysics Data System (ADS)

    Scala, C. M.; McCardle, J. F.; Bowles, S. J.

    This paper describes the application of acoustic emission (AE) to identify cracking in several fatigue-critical regions on the port and starboard sides of an l/A-18 aircraft bulkhead undergoing fatigue testing. AE data acquisition was carried out using an array of three sensors on each side of the bulkhead. AE features stored by each array included relative arrival times of AE events at the three sensors, event rise time at the first-hit sensor, and the load level and the position on the load cycle of event occurrence. AE data processing involved a comparison between the features of those AE events stored during the fatigue testing and predicted features for cracking in the complex-shaped bulkhead. Feature prediction was based on wave propagation characteristics obtained by Pentel-lead calibration, and the known load cycle dependence of crack-related AE events. The AE processing was completed following failure of the bulkhead, and gave the correct locations of all cracks, greater than about 1 mm in depth, present in the bulkhead during the fatigue testing. The study shows that AE associated with cracking can be distinguished, even when many extraneous sources are present, and demonstrates that AE is a promising technique for nondestructive evaluation of a complex structure such as the F/A-18 bulkhead.

  8. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  9. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers.

    PubMed

    Moore, S A; Le Coz, J; Hurther, D; Paquier, A

    2013-04-01

    Multi-frequency acoustic backscatter profiles recorded with side-looking acoustic Doppler current profilers are used to monitor the concentration and size of sedimentary particles suspended in fluvial environments. Data at 300, 600, and 1200 kHz are presented from the Isère River in France where the dominant particles in suspension are silt and clay sizes. The contribution of suspended sediment to the through-water attenuation was determined for three high concentration (> 100 mg/L) events and compared to theoretical values for spherical particles having size distributions that were measured by laser diffraction in water samples. Agreement was good for the 300 kHz data, but it worsened with increasing frequency. A method for the determination of grain size using multi-frequency attenuation data is presented considering models for spherical and oblate spheroidal particles. When the resulting size estimates are used to convert sediment attenuation to concentration, the spheroidal model provides the best agreement with optical estimates of concentration, but the aspect ratio and grain size that provide the best fit differ between events. The acoustic estimates of size were one-third the values from laser grain sizing. This agreement is encouraging considering optical and acoustical instruments measure different parameters. PMID:23556566

  10. Effect of monitoring technique on quality of conservation science.

    PubMed

    Jewell, Zoe

    2013-06-01

    Monitoring free-ranging animals in their natural habitat is a keystone of ecosystem conservation and increasingly important in the context of current rates of loss of biological diversity. Data collected from individuals of endangered species inform conservation policies. Conservation professionals assume that these data are reliable-that the animals from whom data are collected are representative of the species in their physiology, ecology, and behavior and of the populations from which they are drawn. In the last few decades, there has been an enthusiastic adoption of invasive techniques for gathering ecological and conservation data. Although these can provide impressive quantities of data, and apparent insights into animal ranges and distributions, there is increasing evidence that these techniques can result in animal welfare problems, through the wide-ranging physiological effects of acute and chronic stress and through direct or indirect injuries or compromised movement. Much less commonly, however, do conservation scientists consider the issue of how these effects may alter the behavior of individuals to the extent that the data they collect could be unreliable. The emerging literature on the immediate and longer-term effects of capture and handling indicate it can no longer be assumed that a wild animal's survival of the process implies the safety of the procedure, that the procedure is ethical, or the scientific validity of the resulting data. I argue that conservation professionals should routinely assess study populations for negative effects of their monitoring techniques and adopt noninvasive approaches for best outcomes not only for the animals, but also for conservation science. PMID:23692018

  11. Surface acoustic wave technique for the characterization of porous properties of microporous silicate thin films

    NASA Astrophysics Data System (ADS)

    Hietala, Susan Leslie

    1997-12-01

    Features of gas adsorption onto sol-gel derived microporous silicate thin films, for characterization of porous properties, are detailed using a surface acoustic wave (SAW) technique. Mass uptake and film effective modulus changes calculated from the SAW data are investigated in detail. The effects of stress and surface tension on the SAW sensor are calculated and found to be negligible in these experiments. Transient behavior recorded during nitrogen adsorption at 77 K is discussed in the context of mass uptake and effective modulus contributions. The time constant associated with the effective modulus calculation is consistent with that of diffusivity of nitrogen into a 5A zeolite. Further calculations indicate that the transient behavior is not due to thermal effects. A unique dual sensor SAW experiment to decouple the mass and effective modulus contributions to the frequency response was performed in conjunction with a Silicon beam-bending experiment. The beam-bending experiment results in a calculation of stress induced during adsorption of methanol on a microporous silicate thin film. The decoupled mass and effective modulus calculated from the SAW data have similar shaped isotherms, and are quite different from that of the stress developed in the Silicon beam. The total effective modulus change calculated from the SAW data is consistent with that calculated using Gassmann's equation. The SAW system developed for this work included unique electronics and customized hardware which is suitable for work under vacuum and at temperatures from 77K to 473K. This unique setup is suitable for running thin film samples on a Micromeritics ASAP 2000 Gas Adsorption unit in automatic mode. This setup is also general enough to be compatible with a custom gas adsorption unit and the beam bending apparatus, both using standard vacuum assemblies.

  12. Acoustic Emission Monitoring of the Syracuse Athena Temple: Scale Invariance in the Timing of Ruptures

    SciTech Connect

    Niccolini, G.; Carpinteri, A.; Lacidogna, G.; Manuello, A.

    2011-03-11

    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activity.

  13. Geophysical Techniques for Monitoring CO2 Movement During Sequestration

    SciTech Connect

    Erika Gasperikova; G. Michael Hoversten

    2005-11-15

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  14. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    SciTech Connect

    Charlton, William S

    1999-09-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels.

  15. Development of sensing techniques for weaponry health monitoring

    NASA Astrophysics Data System (ADS)

    Edwards, Eugene; Ruffin, Paul B.; Walker, Ebonee A.; Brantley, Christina L.

    2013-04-01

    Due to the costliness of destructive evaluation methods for assessing the aging and shelf-life of missile and rocket components, the identification of nondestructive evaluation methods has become increasingly important to the Army. Verifying that there is a sufficient concentration of stabilizer is a dependable indicator that the missile's double-based solid propellant is viable. The research outlined in this paper summarizes the Army Aviation and Missile Research, Development, and Engineering Center's (AMRDEC's) comparative use of nanoporous membranes, carbon nanotubes, and optical spectroscopic configured sensing techniques for detecting degradation in rocket motor propellant. The first sensing technique utilizes a gas collecting chamber consisting of nanoporous structures that trap the smaller solid propellant particles for measurement by a gas analysis device. In collaboration with NASA-Ames, sensing methods are developed that utilize functionalized single-walled carbon nanotubes as the key sensing element. The optical spectroscopic sensing method is based on a unique light collecting optical fiber system designed to detect the concentration of the propellant stabilizer. Experimental setups, laboratory results, and overall effectiveness of each technique are presented in this paper. Expectations are for the three sensing mechanisms to provide nondestructive evaluation methods that will offer cost-savings and improved weaponry health monitoring.

  16. Monitoring Anthropogenic Ocean Sound from Shipping Using an Acoustic Sensor Network and a Compressive Sensing Approach †

    PubMed Central

    Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian

    2016-01-01

    Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches. PMID:27011187

  17. Acoustic Techniques for Measuring Surface Sealing and Crusting of Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Hickey, C. J.; Leary, D.; Dicarlo, D. A.

    2004-12-01

    The microtopography of soils is an important surface characteristic that effects water ponding, infiltration, and consequently soil erosion. During a rainstorm event the surface microtopography and soil matrix evolve, thereby altering the erosion and runoff dynamics. The impact of raindrops cause the breakdown of soil aggregates into smaller particles, which can then be deposited into the smaller depressions. The redistribution of soil particles on the surface during rainfall produce a thin surface layer often referred to as surface sealing or crusting. For the purpose of this presentation, surface sealing will be used to describe a reduction in the ability of fluid to flow across the surface. Surface crusting will be associated with the formation of a thin layer of higher stiffness or larger mechanical strength. The sensitivity of acoustics to the effects of sealing and crusting was examined by measuring the acoustic-to seismic (A/S) transfer function and acoustic reflectivity on two different soils in a dry, wetted and rained-on state. The A/S transfer function measurement involves the use of a suspended loud speaker to impinge acoustic energy from the air onto the sample and a laser Doppler vibrometer (LDV) is used to measure the induced surface particle velocity. Therefore, the A/S transfer function is a measure of the seismic energy that has been transferred into the soil from the airborne wave. The acoustic surface reflectivity is a measurement of the amount of acoustic energy reflected from the surface and requires the use of a microphone suspended above the surface. Results suggests that the seismic energy transferred (A/S transfer function) is sensitive to crust formation but is not as sensitive to sealing. The amount of reflected acoustic energy appears to be more sensitive to sealing than crusting.

  18. Speed of sound and acoustic attenuation of compounds affected during optoacoustic monitoring of thermal therapies measured in the temperature range from 5°C to 60°C

    NASA Astrophysics Data System (ADS)

    Oruganti, Tanmayi; Petrova, Elena; Oraevsky, Alexander A.; Ermilov, Sergey A.

    2015-03-01

    Optoacoustic (photoacoustic) imaging is being adopted for monitoring tissue temperature during hypothermic and hyperthermic cancer treatments. The technique's accuracy benefits from the knowledge of speed of sound (SoS) and acoustic coefficient of attenuation (AcA) as they change with temperature in biological tissues, blood, and acoustic lens of an ultrasound probe. In these studies we measured SoS and AcA of different ex vivo tissues and blood components (plasma and erythrocyte concentrates) in the temperature range from 5°C to 60°C. We used the technique based on measurements of time-delay and spectral amplitude of pressure pulses generated by wideband planar acoustic waves propagating through the interrogated medium. Water was used as a reference medium with known acoustic properties. In order to validate our experimental technique, we measured the temperature dependence of SoS and AcA for aqueous NaCl solution of known concentration and obtained the results in agreement with published data. Similar to NaCl solution and pure water, SoS in blood and plasma was monotonously increasing with temperature. However, SoS of erythrocyte concentrates displayed abnormalities at temperatures above 45°C, suggesting potential effects from hemoglobin denaturation and/or hemolysis of erythrocytes. On the contrary to aqueous solutions, the SoS in polyvinyl-chloride (plastisol) - a material frequently used for mimicking optical and acoustic properties of tissues - decreased with temperature. We also measured SoS and AcA in silicon material of an acoustic lens and did not observe temperature-related changes of SoS.

  19. Comparison of acoustic and conventional flow measurement techniques at the Raccoon Mountain Pumped-Storage Plant: Final report

    SciTech Connect

    March, P.A.; Missimer, J.R.; Voss, A.; Pearson, H.S.

    1987-08-01

    The Electric Power Research Institute (EPRI) initiated a research project to evaluate the technical and economic feasibility of using the acoustic method of flow measurement in hydroelectric power plant efficiency tests. As a portion of this program, the Tennessee Valley Authority's (TVA) Raccoon Mountain Pumped-Storage Plant was chosen as one of the sites to be tested. The primary objective of the TVA test was to compare the measurements of the Ocean Research Engineering (ORE), acoustic flowmeter installed on Unit 1 to the Volumetric and Winter-Kennedy Techniques for flow measurement. The Winter-Kennedy Technique is the standard flow measurement technique used in the plant. The Volumetric Technique consisted of accurate measurement of the upper reservoir volume over specified time increments. For calibration, the upper reservoir was initially drained and as it was being filled, aerial photographs were taken to obtain contour lines which were correlated with simultaneous stage measurements. The photographs were used to compute the differential volume of the reservoir associated with a change in stage. Six performance tests were conducted on Unit 1. During the tests no other units were operated. Five tests were conducted in the generating mode and one test was conducted in the pumping mode. The uncertainty in the measurements using the Volumetric Technique is of the order of 0.5 percent for changes of stage elevation in excess of two feet. The flowrate measured by the ORE acoustic flowmeter was consistently of the order of 1.5 percent lower than the flowrate determined from the Volumetric Technique in both the generating and pumping modes. 3 refs., 32 figs., 14 tabs.

  20. Application of the mechanical perturbation produced by traffic as a new approach of nonlinear acoustic technique for detecting microcracks in the concrete: A laboratory simulation

    NASA Astrophysics Data System (ADS)

    Moradi-Marani, F.; Kodjo, S. A.; Rivard, P.; Lamarche, C. P.

    2012-05-01

    Very few nonlinear acoustics techniques are currently applied on real structures because their large scale implementation is difficult. Recently, a new method based on nonlinear acoustics has been proposed at the Université de Sherbrooke for the characterization of the damage associated with Alkali-Silica Reaction (ASR). This method consists in quantifying the influence of an external mechanical disturbance on the propagation of a continual ultrasonic wave that probes the material. In this method, the mechanical perturbation produced by an impact causes sudden opening of microcracks and, consequently, the velocity of the probe ultrasonic wave is suddenly reduced. Then it slowly and gradually returns to its initial level as the microcracks are closing. The objective of this study is: using waves generated by traffics in infrastructures in order to monitor microdefects due to damage mechanisms like ASR. This type of mechanical disturbance (by traffic loadings) is used as a source of low frequency-high amplitude waves for opening/closing of the microdefects in the bulk of concrete. This paper presents a laboratory set-up made of three large deep concrete slabs used to study the nonlinear behavior of concrete using the disturbance caused by simulated traffic. The traffic is simulated with a controlled high accuracy jack to produce a wave similar to that produced by traffic. Results obtained from this study will be used in the future to design an in-situ protocol for assessing ASR-affected structures.

  1. Acoustic Emission Signal Processing Technique to Characterize Reactor In-Pile Phenomena

    SciTech Connect

    Vivek Agarwal; Magdy Samy Tawfik; James A Smith

    2014-07-01

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In this paper, empirical mode decomposition technique is proposed to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal corresponds to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  2. Acoustic emission signal processing technique to characterize reactor in-pile phenomena

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.; Smith, James A.

    2015-03-31

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  3. Monitoring Microbe-Induced Sulfide Precipitation Under Dynamic Flow Conditions Using Multiple Geophysical Techniques

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Hubbard, S.; Ntarlagiannis, D.; Banfield, J.

    2004-05-01

    A laboratory study was undertaken to investigate the feasibility of using minimally invasive geophysical techniques to monitor microbe-induced sulfide precipitation in saturated sand-packed columns under dynamic flow conditions. Specifically, the effect of zinc and iron sulfide precipitation on geophysical signatures was evaluated during stimulated sulfate-reduction by Desulfovibrio vulgaris. Four inoculated columns and one non-inoculated control were operated under a continuous upward flow velocity of 50cm/day with the following measurements made: multi-port fluid sampling, cross-column acoustic wave propagation, induced polarization, time domain reflectometry and saturated hydraulic conductivity. Over a period of seven weeks, the onset and progression of sulfate reduction within the columns was confirmed through decreasing substrate and aqueous metals concentrations, increased biomass, and visible regions of sulfide accumulation. Decreases in initial lactate and sulfate concentrations (2.8mM and 4.0mM, respectively) followed predicted stoichiometric relationships and soluble Zn(II) and Fe(II) concentrations (0.31mM and 0.36mM, respectively) were reduced to levels below detection through sequestration as insoluble sulfide phases. The areas where sulfide precipitation and accumulation occurred resulted in significant changes in two of the three geophysical measurements. High frequency (400-600kHz) acoustic wave amplitudes were reduced by nearly an order of magnitude over the course of the experiment with no significant accompanying change in wave velocity. Neither the wave amplitudes nor the velocities changed significantly in the downgradient portions of the column where microbial activity and sulfide precipitation were depressed due to depleted substrate and metals concentrations. The frequency content of the transmitted waves remained unchanged throughout the course of the experiment. Over the frequency range of the induced polarization measurements (0.1-1000Hz

  4. Acoustic emission non-destructive testing of structures using source location techniques.

    SciTech Connect

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  5. Method and apparatus for acoustically monitoring the flow of suspended solid particulate matter. [Patent application; monitoring char flow in coal gasifier

    DOEpatents

    Roach, P.D.; Raptis, A.C.

    1980-11-24

    A method and apparatus for monitoring char flow in a coal gasifier system includes flow monitor circuits which measure acoustic attenuation caused by the presence of char in a char line and provides a char flow/no flow indication and an indication of relative char density. The flow monitor circuits compute the ratio of signals in two frequency bands, a first frequency band representative of background noise, and a second higher frequency band in which background noise is attenuated by the presence of char. Since the second frequency band contains higher frequencies, the ratio can be used to provide a flow/no flow indication. The second band can also be selected so that attenuation is monotonically related to particle concentration, providing a quantitative measure of char concentration.

  6. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow

    PubMed Central

    Sou, In Mei; Layman, Christopher N.; Ray, Chittaranjan

    2013-01-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  7. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow.

    PubMed

    Sou, In Mei; Allen, John S; Layman, Christopher N; Ray, Chittaranjan

    2011-11-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  8. In situ sensor techniques in modern bioprocess monitoring.

    PubMed

    Beutel, Sascha; Henkel, Steffen

    2011-09-01

    New reactor concepts as multi-parallel screening systems or disposable bioreactor systems for decentralized and reproducible production increase the need for new and easy applicable sensor technologies to access data for process control. These sophisticated reactor systems require sensors to work with the lowest sampling volumes or, even better, to measure directly in situ, but in situ sensors are directly incorporated into a reactor or fermenter within the sterility barrier and have therefore to stand the sterilization procedures. Consequently, these in situ sensor technologies should enable the measurement of multi-analytes simultaneously online and in real-time at a low price for the robust sensing element. Current research therefore focuses on the implementation of noninvasive spectroscopic and optical technologies, and tries to employ them through fiber optics attached to disposable sensing connectors. Spectroscopic methods reach from ultraviolet to infrared and further comprising fluorescence and Raman spectroscopy. Also, optic techniques like microscopy are adapted for the direct use in bioreactor systems (Ulber et al. in Anal Bioanal Chem 376:342-348, 2003) as well as various electrochemical methods (Joo and Brown in Chem Rev 108:638-651, 2008). This review shows the variety of modern in situ sensing principles in bioprocess monitoring with emphasis on spectroscopic and optical techniques and the progress in the adaption to latest reactor concepts. PMID:21785932

  9. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques

    NASA Astrophysics Data System (ADS)

    Brown, Craig J.; Smith, Stephen J.; Lawton, Peter; Anderson, John T.

    2011-05-01

    This review examines the various strategies and methods used to produce benthic habitat maps using acoustic remote sensing techniques, coupled with in situ sampling. The applications of three acoustic survey techniques are examined in detail: single-beam acoustic ground discrimination systems, sidescan sonar systems, and multi-beam echo sounders. Over the past decade we have witnessed the nascence of the field of benthic habitat mapping and, on the evidence of the literature reviewed in this paper, have seen a rapid evolution in the level of sophistication in our ability to image and thus map seafloor habitats. As acoustic survey tools have become ever more complex, new methods have been tested to segment, classify and combine these data with biological ground truth sample data. Although the specific methods used to derive habitat maps vary considerably, the review indicates that studies can generally be categorized into one of three over-arching strategies; 1) Abiotic surrogate mapping; 2) Assemble first, predict later (unsupervised classification); 3) Predict first, assemble later (supervised classification). Whilst there is still no widely accepted agreement on the best way to produce benthic habitat maps, all three strategies provide valuable map resources to support management objectives. Whilst there is still considerable work to be done before we can answer many of the outstanding technological, methodological, ecological and theoretical questions that have been raised here, the review concludes that the advent of spatial ecological studies founded on high-resolution environmental data sets will undoubtedly help us to examine patterns in community and species distributions. This is a vital first step in unraveling ecological complexities and thus providing improved spatial information for management of marine systems.

  10. Health Monitoring of Composite Material Structures Using a Vibrometry Technique

    NASA Technical Reports Server (NTRS)

    Schulz, Mark J.

    1998-01-01

    Non-destructive evaluation (NDE) methods for quantifying and locating damage are essential for inspecting structures to ensure safety and reliability. Transmittance function monitoring is a potentially new NDE technique being tested as a tool to detect, quantify, and locate damage on flexible structures. The technique has a large spatial range that is practical for detecting damage on large composite material structures such as a reusable launch vehicle. The Transmittance Function (TF) theory is based on structural dynamics principles that define how vibration at one point in a structure is related to a force at another point. This relationship is called the Frequency Response Function (FRF). A Transmittance Function (TF) is derived as the ratio of FRFs, and can detect damage because the FRFs change due to damage. If one excitation is used for the testing, the force does not need to be measured to compute the TF. In the damage detection procedure, the structure is subjected to wide-band vibration and TFs are computed between different accelerometers to detect changes in the structure, presumably due to damage. In the first year of the project the TF method was tested on a bolted panel, a curved panel, and beams, all made of fiberglass. It was shown that damage could be detected using low frequency vibration, 250 to 1,250 Hz. The technique is sensitive to damage, but it requires storage of historical or pre-damage TFs for the healthy structure. This would become a large data storage requirement for large structures. Thus one objective for the second year of the project was to eliminate the need to store historical data. The second year report gives details of how storage of historical data was eliminated. Further results of testing panel structures are also given.

  11. Estimating steatosis and fibrosis: Comparison of acoustic structure quantification with established techniques

    PubMed Central

    Karlas, Thomas; Berger, Joachim; Garnov, Nikita; Lindner, Franziska; Busse, Harald; Linder, Nicolas; Schaudinn, Alexander; Relke, Bettina; Chakaroun, Rima; Tröltzsch, Michael; Wiegand, Johannes; Keim, Volker

    2015-01-01

    AIM: To compare ultrasound-based acoustic structure quantification (ASQ) with established non-invasive techniques for grading and staging fatty liver disease. METHODS: Type 2 diabetic patients at risk of non-alcoholic fatty liver disease (n = 50) and healthy volunteers (n = 20) were evaluated using laboratory analysis and anthropometric measurements, transient elastography (TE), controlled attenuation parameter (CAP), proton magnetic resonance spectroscopy (1H-MRS; only available for the diabetic cohort), and ASQ. ASQ parameters mode, average and focal disturbance (FD) ratio were compared with: (1) the extent of liver fibrosis estimated from TE and non-alcoholic fatty liver disease (NAFLD) fibrosis scores; and (2) the amount of steatosis, which was classified according to CAP values. RESULTS: Forty-seven diabetic patients (age 67.0 ± 8.6 years; body mass index 29.4 ± 4.5 kg/m²) with reliable CAP measurements and all controls (age 26.5 ± 3.2 years; body mass index 22.0 ± 2.7 kg/m²) were included in the analysis. All ASQ parameters showed differences between healthy controls and diabetic patients (P < 0.001, respectively). The ASQ FD ratio (logarithmic) correlated with the CAP (r = -0.81, P < 0.001) and 1H-MRS (r = -0.43, P = 0.004) results. The FD ratio [CAP < 250 dB/m: 107 (102-109), CAP between 250 and 300 dB/m: 106 (102-114); CAP between 300 and 350 dB/m: 105 (100-112), CAP ≥ 350 dB/m: 102 (99-108)] as well as mode and average parameters, were reduced in cases with advanced steatosis (ANOVA P < 0.05). However, none of the ASQ parameters showed a significant difference in patients with advanced fibrosis, as determined by TE and the NAFLD fibrosis score (P > 0.08, respectively). CONCLUSION: ASQ parameters correlate with steatosis, but not with fibrosis in fatty liver disease. Steatosis estimation with ASQ should be further evaluated in biopsy-controlled studies. PMID:25945002

  12. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    SciTech Connect

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie; Santos-Villalobos, Hector J

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  13. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    SciTech Connect

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie; Santos-Villalobos, Hector J

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  14. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    NASA Astrophysics Data System (ADS)

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  15. A new setup for studying thermal microcracking through acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Baud, Patrick; Schmittbuhl, Jean

    2016-04-01

    Thermal stressing is common in geothermal environments and has been shown in the laboratory to induce changes in the physical and mechanical properties of rocks. These changes are generally considered to be a consequence of the generation of thermal microcracks and debilitating chemical reactions. Thermal microcracks form as a result of the build-up of internal stresses due to: (1) the thermal expansion mismatch between the different phases present in the material, (2) thermal expansion anisotropy within individual minerals, and (3) thermal gradients. The generation of cracks during thermal stressing has been monitored in previous studies using the output of acoustic emissions (AE), a common proxy for microcrack damage, and through microstructural observations. Here we present a new experimental setup which is optimised to record AE from a rock sample at high temperatures and under a servo-controlled uniaxial stress. The design is such that the AE transducer is embedded in the top of the piston, which acts as a continuous wave guide to the sample. In this way, we simplify the ray path geometry whilst minimising the number of interfaces between the microcrack and the transducer, maximising the quality of the signal. This allows for an in-depth study of waveform attributes such as energy, amplitude, counts and duration. Furthermore, the capability of this device to apply a servo-controlled load on the sample, whilst measuring strain in real time, leads to a spectrum of possible tests combining mechanical and thermal stress. It is also an essential feature to eliminate the build-up of stresses through thermal expansion of the pistons and the sample. We plan a systematic experimental study of the AE of thermally stressed rock during heating and cooling cycles. We present results from pilot tests performed on Darley Dale sandstone and Westerly granite. Understanding the effects of thermal stressing in rock is of particular interest at a geothermal site, where

  16. A passive acoustic monitoring method applied to observation and group size estimation of finless porpoises.

    PubMed

    Wang, Kexiong; Wang, Ding; Akamatsu, Tomonari; Li, Songhai; Xiao, Jianqiang

    2005-08-01

    The present study aimed at determining the detection capabilities of an acoustic observation system to recognize porpoises under local riverine conditions and compare the results with sighting observations. Arrays of three to five acoustic data loggers were stationed across the main channel of the Tian-e-zhou Oxbow of China's Yangtze River at intervals of 100-150 m to record sonar signals of free-ranging finless porpoises (Neophocaena phocaenoides). Acoustic observations, concurrent with visual observations, were conducted at two occasions on 20-22 October 2003 and 17-19 October 2004. During a total of 42 h of observation, 316 finless porpoises were sighted and 7041 sonar signals were recorded by loggers. The acoustic data loggers recorded ultrasonic signals of porpoises clearly, and detected the presence of porpoises with a correct detection level of 77.6% and a false alarm level of 5.8% within an effective distance of 150 m. Results indicated that the stationed passive acoustic observation method was effective in detecting the presence of porpoises and showed potential in estimating the group size. A positive linear correlation between the number of recorded signals and the group size of sighted porpoises was indicated, although it is faced with some uncertainty and requires further investigation. PMID:16158672

  17. A passive acoustic monitoring method applied to observation and group size estimation of finless porpoises

    NASA Astrophysics Data System (ADS)

    Wang, Kexiong; Wang, Ding; Akamatsu, Tomonari; Li, Songhai; Xiao, Jianqiang

    2005-08-01

    The present study aimed at determining the detection capabilities of an acoustic observation system to recognize porpoises under local riverine conditions and compare the results with sighting observations. Arrays of three to five acoustic data loggers were stationed across the main channel of the Tian-e-zhou Oxbow of China's Yangtze River at intervals of 100-150 m to record sonar signals of free-ranging finless porpoises (Neophocaena phocaenoides). Acoustic observations, concurrent with visual observations, were conducted at two occasions on 20-22 October 2003 and 17-19 October 2004. During a total of 42 h of observation, 316 finless porpoises were sighted and 7041 sonar signals were recorded by loggers. The acoustic data loggers recorded ultrasonic signals of porpoises clearly, and detected the presence of porpoises with a correct detection level of 77.6% and a false alarm level of 5.8% within an effective distance of 150 m. Results indicated that the stationed passive acoustic observation method was effective in detecting the presence of porpoises and showed potential in estimating the group size. A positive linear correlation between the number of recorded signals and the group size of sighted porpoises was indicated, although it is faced with some uncertainty and requires further investigation.

  18. Mechanical impedance and acoustic mobility measurement techniques of specifying vibration environments

    NASA Technical Reports Server (NTRS)

    Kao, G. C.

    1973-01-01

    Method has been developed for predicting interaction between components and corresponding support structures subjected to acoustic excitations. Force environments determined in spectral form are called force spectra. Force-spectra equation is determined based on one-dimensional structural impedance model.

  19. ACOUSTIC TECHNIQUES FOR THE MAPPING OF THE DISTRIBUTION OF CONTAMINATED SEDIMENTS

    EPA Science Inventory

    An overview of the last 30 years of analytical research into the acoustic properties of harbor marine sediments has allowed the extension of the original work of Hamilton (1970) into a production system for classifying the density and bulk physical properties of standard marine s...

  20. Passive Acoustic Monitoring of the Environmental Impact of Oil Exploration on Marine Mammals in the Gulf of Mexico.

    PubMed

    Sidorovskaia, Natalia A; Ackleh, Azmy S; Tiemann, Christopher O; Ma, Baoling; Ioup, Juliette W; Ioup, George E

    2016-01-01

    The Gulf of Mexico is a region densely populated by marine mammals that must adapt to living in a highly active industrial environment. This paper presents a new approach to quantifying the anthropogenic impact on the marine mammal population. The results for sperm and beaked whales of a case study of regional population dynamics trends after the Deepwater Horizon oil spill, derived from passive acoustic-monitoring data gathered before and after the spill in the vicinity of the accident, are presented. PMID:26611062

  1. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea

    PubMed Central

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation. PMID:26789265

  2. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    PubMed

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation. PMID:26789265

  3. Investigation of Various Condition Monitoring Techniques Based on a Damaged Wind Turbine Gearbox

    SciTech Connect

    Sheng, S.

    2011-10-01

    This paper is a continuation of a 2009 paper presented at the 7th International Workshop on Structural Health Monitoring that described various wind turbine condition-monitoring techniques. This paper presents the results obtained by various condition- monitoring techniques from a damaged Gearbox Reliability Collaborative test gearbox.

  4. Prediction of ultrasound-mediated disruption of cell membranes using machine learning techniques and statistical analysis of acoustic spectra.

    PubMed

    Lee, Eva K; Gallagher, Richard J; Campbell, Ann Melissa; Prausnitz, Mark R

    2004-01-01

    Although biological effects of ultrasound must be avoided for safe diagnostic applications, ultrasound's ability to disrupt cell membranes has attracted interest as a method to facilitate drug and gene delivery. This paper seeks to develop "prediction rules" for predicting the degree of cell membrane disruption based on specified ultrasound parameters and measured acoustic signals. Three techniques for generating prediction rules (regression analysis, classification trees and discriminant analysis) are applied to data obtained from a sequence of experiments on bovine red blood cells. For each experiment, the data consist of four ultrasound parameters, acoustic measurements at 400 frequencies, and a measure of cell membrane disruption. To avoid over-training, various combinations of the 404 predictor variables are used when applying the rule generation methods. The results indicate that the variable combination consisting of ultrasound exposure time and acoustic signals measured at the driving frequency and its higher harmonics yields the best rule for all three rule generation methods. The methods used for deriving the prediction rules are broadly applicable, and could be used to develop prediciton rules in other scenarios involving different cell types or tissues. These rules and the methods used to derive them could be used for real-time feedback about ultrasound's biological effects. PMID:14723497

  5. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Sathish, Shamachary; Na, Jeong K.

    2000-05-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. Real-time monitoring of the material nonlinearity has been performed on dog-bone specimens from zero fatigue all the way to the final fracture under low-cycle fatigue test condition (LCF) and high-cycle test condition (HCF). Real-time health monitoring of the material can greatly contribute to the understanding of material behavior under cyclic loading. Interpretation of the results show that correlation exist between the slope of the curve described by the material nonlinearity and the life of the component. This new methodology was developed with an objective to predict the initiation of fatigue microcracks, and to detect, in-situ fatigue crack initiation as well as to quantify early stages of fatigue damage.

  6. Acoustic monitoring of gas emissions from the seafloor. Part II: a case study from the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Bayrakci, Gaye; Scalabrin, Carla; Dupré, Stéphanie; Leblond, Isabelle; Tary, Jean-Baptiste; Lanteri, Nadine; Augustin, Jean-Marie; Berger, Laurent; Cros, Estelle; Ogor, André; Tsabaris, Christos; Lescanne, Marc; Géli, Louis

    2014-09-01

    A rotating, acoustic gas bubble detector, BOB (Bubble OBservatory) module was deployed during two surveys, conducted in 2009 and 2011 respectively, to study the temporal variations of gas emissions from the Marmara seafloor, along the North Anatolian Fault zone. The echosounder mounted on the instrument insonifies an angular sector of 7° during a given duration (of about 1 h). Then it rotates to the next, near-by angular sector and so forth. When the full angular domain is insonified, the "pan and tilt system" rotates back to its initial position, in order to start a new cycle (of about 1 day). The acoustic data reveal that gas emission is not a steady process, with observed temporal variations ranging between a few minutes and 24 h (from one cycle to the other). Echo-integration and inversion performed on the acoustic data as described in the companion paper of Leblond et al. (Mar Geophys Res, 2014), also indicate important variations in, respectively, the target strength and the volumetric flow rates of individual sources. However, the observed temporal variations may not be related to the properties of the gas source only, but reflect possible variations in sea-bottom currents, which could deviate the bubble train towards the neighboring sector. During the 2011 survey, a 4-component ocean bottom seismometer (OBS) was co-located at the seafloor, 59 m away from the BOB module. The acoustic data from our rotating, monitoring system support, but do not provide undisputable evidence to confirm, the hypothesis formulated by Tary et al. (2012), that the short-duration, non-seismic micro-events recorded by the OBS are likely produced by gas-related processes within the near seabed sediments. Hence, the use of a multibeam echosounder, or of several split beam echosounders should be preferred to rotating systems, for future experiments.

  7. MONITORING TECHNIQUES FOR CARBON FIBER EMISSIONS: EVALUATION B

    EPA Science Inventory

    An evaluation of available measurement methods for continously monitoring the number and mass of carbon fibers emitted from source operations was conducted. A total of eleven candidate monitoring methods were identified based on contact (electrical), locally sensing (optical, mic...

  8. Once Established, What Techniques Work Best for Monitoring the District?

    ERIC Educational Resources Information Center

    Triverio, Louis E.

    Monitoring school budget expenditures is as important as budgeting. School boards should decide which broad financial policies will provide control of expenditures, what financial tools to use in monitoring expenditures, and what areas outside of the budget should be monitored. A board's financial policy ought to deal with the line item transfers,…

  9. The determination of acoustic reflection coefficients by using cepstral techniques, I: Experimental procedures and measurements of polyurethane foam

    NASA Astrophysics Data System (ADS)

    Bolton, J. S.; Gold, E.

    1986-10-01

    The authors have previously outlined a transient free field technique, based on cepstral analysis, for the measurement of acoustic reflection coefficients. In this paper are described laboratory acoustical measurements of the normal incidence reflection coefficient of an absorbent material: emphasis is placed on practical aspects of the technique. Specifically, the origin of extraction noise, which distorts the reflector impulse response as it appears in the power cepstrum, is discussed and means of reducing it are described and implemented. Secondly, a means of identifying and removing the time delay introduced when the reflector impulse response is copied from the cepstrum is described; this procedure eliminates the need for highly accurate measurements of path length difference. The absorbent material tested was a commercial partially reticulated polyurethane foam. Bonded to one side of the foam was an impermeable polyurethane membrane, and the foam was measured in two configurations: first with its film covered face uppermost, then with its uncovered face uppermost. The broad frequency range of the measurements made possible by the cepstral technique has given a good picture of the properties of this material. These results will be considered in detail in a subsequent publication.

  10. Signal recovery technique based on a physical method of underwater acoustics

    NASA Astrophysics Data System (ADS)

    Guo, Xinyi; Wu, Guoqing; Ma, Li

    2010-09-01

    In the underwater sound channel we often use an array to receive signals from distant sources. The received signals are often mixed with environmental interference. In the complex acoustic environment, received signals are distorted greatly and elongated in time. In many practical applications such as sound communications, sound remote sensing and active sonar signals, we hope to obtain the original signal's waveform. In general theory, the received signals are the convolution of emission signals and Green's function of environment. In unknown Green's function of environment, simply relying on the array to record the information to determine the sound source signal wave propagation features and the environment is not enough. However, in certain circumstances, based on a physics method of underwater acoustics, the spread of recovery technology is successful.

  11. Acoustic Monitor for Liquid-Solid Slurries Measurements at Low Weight Fractions

    SciTech Connect

    Dr. L.L. Tavlarides; Dr. A.S. Sangan

    2004-12-08

    The principle objective of the project was to develop an acoustic probe for determining the weight fraction of particles in a flowing suspension. The suspension can be solid-liquid (S-L) or solid-gas-liquid (S-G-L). The work accomplished during the first three years of DOE funding was devoted to the development of a rigorous theory for acoustic wave propagation through solid-liquid (S-L) and solid-gas-liquid (S-G-L). In the first funding period we developed an acoustic probe for S-G-L suspensions that has resulted in a theory, supported by our experiments, to describe small amplitude acoustic wave propagations in dilute suspensions (Norato, 1999; Spelter al., 1999, 2001: Norato et al. 2002). The theory agrees well with experimental data of sound attenuation over a wide range of particle sizes, frequencies, and weight percent solids. We have also completed theoretical and experimental investigation on the effect of entrained gas bubbles on the attenuation. This analysis permits us to determine the S-L weight percent in the presence of bubbles.

  12. High resolution geodetic techniques for monitoring fluid levels over time

    NASA Astrophysics Data System (ADS)

    Hare, Jennifer Thompson

    1998-11-01

    In the first study, a novel surveillance technique is developed in which surface gravity observations are used to monitor the progress of a gas cap waterflood in the 8200 ft (2500 m) deep Prudhoe Bay reservoir, Alaska. This cost-effective method requires that high-precision gravity surveys be repeated every 3 to 5 years. Differences in the gravity field with time reflect changes in the reservoir fluid density distribution. A preliminary field test at Prudhoe Bay indicates survey accuracy of 5 to 10 mu Gal can be achieved for gravity data using a modified Lacoste & Romberg "G" type meter or Scintrex CG-3M combined with Global Positioning System (GPS) positioning. Forward gravity modeling of a suite of reservoir simulations of the proposed waterflood predicts variation in surface measurements of 100 mu Gal after 5 years of injection, and 180 to 250 mu Gal after 15 years. A constrained, least-squares method is used to invert synthetic gravity data for subsurface density distributions. The modeling procedure has been formulated to allow testing of the models for sensitivity to gravity sampling patterns, noise characteristics, and various constraints on model parameters such as density range, total mass, and model moment of inertia. Horizontal feature resolution of the waterflood is about 5000 ft (1520 m) for constrained inverse models from synthetic gravity with 5 mu Gal standard deviation noise. Results of the modeling indicate that inversion of time-lapse gravity data is a viable and promising technique for monitoring reservoir gas cap waterfloods. In the second study, the problem of how to estimate ancient lake levels from the geomorphology of remnant shoreline terraces is investigated. High resolution, GPS controlled, topographic data from around the highstand shoreline of Pleistocene Lake Lahontan in western Nevada provide the means for isolating coherent terrace features which are related to the paleoshoreline level. Determination of an unambiguous point or

  13. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  14. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... COMMISSION Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants AGENCY: Nuclear... Techniques for Electric Cables Used in Nuclear Power Plants.'' This guide describes techniques that the staff of the NRC considers acceptable for condition monitoring of electric cables for nuclear power...

  15. Passive acoustic monitoring to detect spawning in large-bodied catostomids

    USGS Publications Warehouse

    Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.

    2014-01-01

    Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.

  16. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy Tows and Implications for Composite Structures

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.; Nichols, Charles T.; Wentzel, Daniel J.

    2010-01-01

    This slide presentation reviews the use of Modal Acoustic Emission to monitor damage progression to carbon fiber/epoxy tows. There is a risk for catastrophic failure of composite overwrapped pressure vessels (COPVs) due to burst-before-leak (BBL) stress rupture (SR) failure of carbon-epoxy (C/Ep) COPVs. A lack of quantitative nondestructive evaluation (NDE) is causing problems in current and future spacecraft designs. It is therefore important to develop and demonstrate critical NDE that can be implemented during stages of the design process since the observed rupture can occur with little of no advanced warning. Therefore a program was required to develop quantitative acoustic emission (AE) procedures specific to C/Ep overwraps, but which also have utility for monitoring damage accumulation in composite structure in general, and to lay the groundwork for establishing critical thresholds for accumulated damage in composite structures, such as COPVs, so that precautionary or preemptive engineering steps can be implemented to minimize of obviate the risk of catastrophic failure. A computed Felicity Ratio (FR) coupled with fast Fourier Transform (FFT) frequency analysis shows promise as an analytical pass/fail criterion. The FR analysis and waveform and FFT analysis are reviewed

  17. Acoustic monitoring of earthquakes along the Blanco Transform Fault zone and Gorda Plate and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Dziak, Robert Paul

    Hydroacoustic tertiary (T-) waves are seismically generated acoustic waves that propagate over great distances in the ocean sound channel with little loss in signal strength. Hydrophone recorded T-waves can provide a lower earthquake detection threshold and an improved epicenter location accuracy for oceanic earthquakes than land-based seismic networks. Thus detection and location of NE Pacific ocean earthquakes along the Blanco Transform Fault (BTFZ) and Gorda plate using the U.S. Navy's SOSUS (SOund SUrveillance System) hydrophone arrays afford greater insight into the current state of stress and crustal deformation mechanics than previously available. Acoustic earthquake information combined with bathymetry, submersible observations, earthquake source- parameter estimates, petrologic samples, and water-column chemistry renders a new tectonic view of the southern Juan de Fuca plate boundaries. Chapter 2 discusses development of seismo-acoustic analysis techniques using the well-documented April 1992 Cape Mendocino earthquake sequence. Findings include a hydrophone detection threshold estimate (M ~ 2.4), and T-wave propagation path modeling to approximate earthquake acoustic source energy. Empirical analyses indicate that acoustic energy provides a reasonable magnitude and seismic moment estimate of oceanic earthquakes not detected by seismic networks. Chapters 3 documents a probable volcanogenic T-wave event swarm along a pull-apart basin within the western BTFZ during January 1994. Response efforts yielded evidence of anomalous water-column 3He concentrations, pillow- lava volcanism, and the first discovery of active hydrothermal vents along an oceanic fracture zone. Chapter 4 discusses the detection of a NE-SW trending microearthquake band along the mid-Gorda plate which was active from initiation of SOSUS recording in August 1991 through July 1992, then abruptly ceased. It is proposed that eventual termination of the Gorda plate seismicity band is due to

  18. Acoustic emission monitoring of tensile testing of corroded and un-corroded clad aluminum 2024-T3 and characterization of effects of corrosion on AE source events and material tensile properties

    NASA Astrophysics Data System (ADS)

    Okafor, A. Chukwujekwu; Natarajan, Shridhar

    2014-02-01

    Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.

  19. Integration of remote sensing and geophysical techniques for coastal monitoring

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Carone, M. T.; Loperte, A.; Satriani, A.; Imbrenda, V.; D'Emilio, M.; Guariglia, A.

    2009-04-01

    Coastal areas are of great environmental, economic, social, cultural and recreational relevance; therefore, the implementation of suitable monitoring and protection actions is fundamental for their preservation and for assuring future use of this resource. Such actions have to be based on an ecosystem perspective for preserving coastal environment integrity and functioning and for planning sustainable resource management of both the marine and terrestrial components (ICZM-EU initiative). We implemented an integrated study based on remote sensing and geophysical techniques for monitoring a coastal area located along the Ionian side of Basilicata region (Southern Italy). This area, between the Bradano and Basento river mouths, is mainly characterized by a narrow shore (10-30 m) of fine sandy formations and by a pine forest planted in the first decade of 50's in order to preserve the coast and the inland cultivated areas. Due to drought and fire events and saltwater intrusion phenomena, such a forest is affected by a strong decline with consequent environmental problems. Multispectral satellite data were adopted for evaluating the spatio-temporal features of coastal vegetation and the structure of forested patterns. The increase or decrease in vegetation activity was analyzed from trends estimated on a time series of NDVI (Normalized Difference Vegetation Index) maps. The fragmentation/connection levels of vegetated patterns was assessed form a set of landscape ecology metrics elaborated at different structure scales (patch, class and landscape) on satellite cover classifications. Information on shoreline changes were derived form a multi-source data set (satellite data, field-GPS surveys and Aerial Laser Scanner acquisitions) by taking also into account tidal effects. Geophysical campaigns were performed for characterizing soil features and limits of salty water infiltrations. Form vertical resistivity soundings (VES), soil resistivity maps at different a deeps (0

  20. Application of a Lamb waves based technique for structural health monitoring of GFRP undercyclic loading

    NASA Astrophysics Data System (ADS)

    Eremin, A.; Byakov, A.; Panin, S.; Burkov, M.; Lyubutin, P.; Sunder, R.

    2016-04-01

    A Lamb wave based ultrasonic technique as well as optical image characterization was utilized to estimate a current mechanical state of glass fiber reinforced polymers (GFRP) under cyclic tension. The ultrasonic acoustic method was applied in a 'pitch-catch' mode using piezoelectric transducers adhesively bonded onto a specimen surface. Numerical evaluation of acoustic data was performed by calculating two informative parameters: maximum of amplitude of the received signal and variance of signal envelopes. Optical images were registered and then analysed by calculating Shannon entropy that makes it possible to characterize changing of GFRP specimen translucency. The obtained results were treated in order to find out the relation between the current mechanical state of a specimen and informative parameter values being computed from the acoustic and optical signals.

  1. A quality monitor and monitoring technique employing optically stimulated electron emission

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Welch, Christopher S. (Inventor); Joe, Edmond J. (Inventor); Hefner, Bill Bryan, Jr. (Inventor)

    1995-01-01

    A light source directs ultraviolet light onto a test surface and a detector detects a current of photoelectrons generated by the light. The detector includes a collector which is positively biased with respect to the test surface. Quality is indicated based on the photoelectron current. The collector is then negatively biased to replace charges removed by the measurement of a nonconducting substrate to permit subsequent measurements. Also, the intensity of the ultraviolet light at a particular wavelength is monitored and the voltage of the light source varied to maintain the light a constant desired intensity. The light source is also cooled via a gas circulation system. If the test surface is an insulator, the surface is bombarded with ultraviolet light in the presence of an electron field to remove the majority of negative charges from the surface. The test surface is then exposed to an ion field until it possesses no net charge. The technique described above is then performed to assess quality.

  2. Application of Condition-Based Monitoring Techniques for Remote Monitoring of a Simulated Gas Centrifuge Enrichment Plant

    SciTech Connect

    Hooper, David A; Henkel, James J; Whitaker, Michael

    2012-01-01

    This paper presents research into the adaptation of monitoring techniques from maintainability and reliability (M&R) engineering for remote unattended monitoring of gas centrifuge enrichment plants (GCEPs) for international safeguards. Two categories of techniques are discussed: the sequential probability ratio test (SPRT) for diagnostic monitoring, and sequential Monte Carlo (SMC or, more commonly, particle filtering ) for prognostic monitoring. Development and testing of the application of condition-based monitoring (CBM) techniques was performed on the Oak Ridge Mock Feed and Withdrawal (F&W) facility as a proof of principle. CBM techniques have been extensively developed for M&R assessment of physical processes, such as manufacturing and power plants. These techniques are normally used to locate and diagnose the effects of mechanical degradation of equipment to aid in planning of maintenance and repair cycles. In a safeguards environment, however, the goal is not to identify mechanical deterioration, but to detect and diagnose (and potentially predict) attempts to circumvent normal, declared facility operations, such as through protracted diversion of enriched material. The CBM techniques are first explained from the traditional perspective of maintenance and reliability engineering. The adaptation of CBM techniques to inspector monitoring is then discussed, focusing on the unique challenges of decision-based effects rather than equipment degradation effects. These techniques are then applied to the Oak Ridge Mock F&W facility a water-based physical simulation of a material feed and withdrawal process used at enrichment plants that is used to develop and test online monitoring techniques for fully information-driven safeguards of GCEPs. Advantages and limitations of the CBM approach to online monitoring are discussed, as well as the potential challenges of adapting CBM concepts to safeguards applications.

  3. Localization of quenches and mechanical disturbances in the Mu2e transport solenoid prototype using acoustic emission technique

    DOE PAGESBeta

    Marchevsky, M.; Ambrosio, G.; Lamm, M.; Tartaglia, M. A.; Lopes, M. L.

    2016-02-12

    Acoustic emission (AE) detection is a noninvasive technique allowing the localization of the mechanical events and quenches in superconducting magnets. Application of the AE technique is especially advantageous in situations where magnet integrity can be jeopardized by the use of voltage taps or inductive pickup coils. As the prototype module of the transport solenoid (TS) for the Mu2e experiment at Fermilab represents such a special case, we have developed a dedicated six-channel AE detection system and accompanying software aimed at localizing mechanical events during the coil cold testing. The AE sensors based on transversely polarized piezoceramic washers combined with cryogenicmore » preamplifiers were mounted at the outer surface of the solenoid aluminum shell, with a 60° angular step around the circumference. Acoustic signals were simultaneously acquired at a rate of 500 kS/s, prefiltered and sorted based on their arrival time. Next, based on the arrival timing, angular and axial coordinates of the AE sources within the magnet structure were calculated. Furthermore, we present AE measurement results obtained during cooldown, spot heater firing, and spontaneous quenching of the Mu2e TS module prototype and discuss their relevance for mechanical stability assessment and quench localization.« less

  4. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    NASA Astrophysics Data System (ADS)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  5. A novel imaging technique based on the spatial coherence of backscattered waves: demonstration in the presence of acoustical clutter

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Pinton, Gianmarco F.; Lediju, Muyinatu; Trahey, Gregg E.

    2011-03-01

    In the last 20 years, the number of suboptimal and inadequate ultrasound exams has increased. This trend has been linked to the increasing population of overweight and obese individuals. The primary causes of image degradation in these individuals are often attributed to phase aberration and clutter. Phase aberration degrades image quality by distorting the transmitted and received pressure waves, while clutter degrades image quality by introducing incoherent acoustical interference into the received pressure wavefront. Although significant research efforts have pursued the correction of image degradation due to phase aberration, few efforts have characterized or corrected image degradation due to clutter. We have developed a novel imaging technique that is capable of differentiating ultrasonic signals corrupted by acoustical interference. The technique, named short-lag spatial coherence (SLSC) imaging, is based on the spatial coherence of the received ultrasonic wavefront at small spatial distances across the transducer aperture. We demonstrate comparative B-mode and SLSC images using full-wave simulations that include the effects of clutter and show that SLSC imaging generates contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) that are significantly better than B-mode imaging under noise-free conditions. In the presence of noise, SLSC imaging significantly outperforms conventional B-mode imaging in all image quality metrics. We demonstrate the use of SLSC imaging in vivo and compare B-mode and SLSC images of human thyroid and liver.

  6. Dislodgement and removal of dust-particles from a surface by a technique combining acoustic standing wave and airflow.

    PubMed

    Chen, Di; Wu, Junru

    2010-01-01

    It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size. PMID:20058949

  7. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing

    PubMed Central

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs. PMID:22399990

  8. An electro-acoustical technique for the detection of knee joint noise.

    PubMed

    Chu, M L; Gradisar, I A; Railey, M R; Bowling, G F

    1976-01-01

    Distinguishing acoustical signatures of sound emitted by normal and pathological knee joints are picked up using a double microphone-differential amplifier setup. Extraneous background noise is minimized using the principle of "noise cancellation". Two identical sensitive condenser microphones and an F.M. recorder with flat responses in the audio range were used. Preliminary studies covering normal and diseased knee joints showed that their respective waveforms and spectral patterns are unique and proved to be a promising nondestructive diagnostic tool for early detection of knee joint cartilage damage. PMID:957922

  9. Acoustic-tomographical sounding technique in near-surface atmospheric layers - applicability and limitations

    NASA Astrophysics Data System (ADS)

    Ziemann, A.; Arnold, K.; Raabe, A.

    2003-04-01

    Acoustic tomography of the atmosphere is proposed as a ground-based remote sensing and imaging scheme that uses the sound propagation through the turbulent atmosphere. Measured travel-time values of sound signals between different fixed transmitters and receivers are used as initial line-integrated values to derive spatially averaged temperature and wind fields inside the atmospheric surface layer. Because each single measurement includes information on the properties of the atmospheric layer through which the sound propagates, a tomographic inversion algorithm is able to provide a spatial mapping of meteorological data derived from the measured acoustic parameters. To evaluate the certainty and the spatial resolution of the tomographically derived data, the data accuracy as well as the validity of applied simplifications have to be investigated. Thereby, the determination of the sound path under different atmospheric conditions plays an important role. For this purpose a ray-tracing model based on a generalized version of Snells law corresponding to the coupled influence of temperature and wind vector gradients on the sound-ray refraction is used. The simulated acoustic travel-time values will be compared with theoretical values of a straight-line sound propagation to estimate the validity of this approximation for the tomographically inverse algorithm. To investigate the possible spatial resolution and the reached certainty of the reconstructed meteorological fields, the geometrical properties of the measuring field and the measurement accuracy itself are essential. Generalized results of such investigations for different measurement geometries will be presented. The resulting spatially averaged meteorological quantities can be used for the evaluation of micrometeorological test sites. The application of acoustic tomography provides information on the temperature and wind field over surfaces with different land uses. First results from measuring campaigns within

  10. Program for Continued Development and Use of Ocean Acoustic/GPS Geodetic Techniques

    NASA Technical Reports Server (NTRS)

    Spiess, Fred N.

    1997-01-01

    Under prior NASA grants our group, with collaboration from scientists at the CalTech Jet Propulsion Lab (JPL), visualized and carried out the initial development of a combined GPS and underwater acoustic (GPS/A) method for determining the location of points on the deep sea floor with accuracy relevant to studies of crustal deformation. Under an immediately preceding grant we built, installed and surveyed a set of the necessary seafloor marker precision transponders just seaward of the Cascadia Subduction Zone off British Columbia. The JPL group carried out processing of the GPS data.

  11. Integration of acoustic emission systems within Integri-TechTM analysis system for structural health monitoring of pressurised engineering plant

    NASA Astrophysics Data System (ADS)

    Ghouri, A. A.; Rafferty, Steven; Pickwell, Andy; Galbraith, Walter; Pierce, S. Gareth; Gachagan, Anthony

    2015-07-01

    The aim of this Acoustic Emission (AE) based Structural Health Monitoring project is to enable accurate location of AE sources in pressurised engineering plant and to use AE source location data to establish defect locations for use within Integri-TechTM; a finite element based analysis, monitoring and fitness for service assessment system. Integri-TechTM is a windows based system which carries out combined analysis and assessment providing fatigue life and remnant life calculations and inspection priorities presenting the results in an accessible web portal format. The software uses finite element stress models created in the companion software Model Wizard. The AE monitoring system that has been developed can be used with an array of up to four AE broad band sensor channels with associated signal processing. Using a flexible approach in MATLAB, the authors have developed algorithms which were used for analysing the received AE signals to extract information about the nature and location of the source. The ability to carry out source location and possibly perform real time monitoring (detecting cracking as it occurs) is attractive feature of the AE system developed for this project. The time of arrival (TOA) data was used by Integri-TechTM software to calculate source location using its own built-in algorithm, and this was verified independently using a MATLAB approach.

  12. Monitoring microbe-induced physical property changes using high-frequency acoustic waveform data: Toward the development of a microbial megascope

    NASA Astrophysics Data System (ADS)

    Williams, K. H.

    2002-05-01

    A laboratory investigation was undertaken to determine the effect of microbe generated gas bubbles in controlled, saturated sediment columns utilizing a novel technique involving acoustic wave propagation. Specifically, the effect of denitrifying bacteria on saturated flow conditions was evaluated in light of the stimulated production of N2 gas and the resulting plugging of the pore throats. The propagation of high frequency acoustic waves through the sediment columns was used to locate those regions in the column where gas accumulation occurred. Over a period of six weeks, regions of gas accumulation resulted in the attenuation of acoustic wave energies with the decreases in amplitude typically greater than one order of magnitude.

  13. Monitoring microbe-induced physical property changes using high-frequency acoustic waveform data: Toward the development of a microbial megascope

    SciTech Connect

    Williams, Kenneth Hurst

    2002-05-20

    A laboratory investigation was undertaken to determine the effect of microbe generated gas bubbles in controlled, saturated sediment columns utilizing a novel technique involving acoustic wave propagation. Specifically, the effect of denitrifying bacteria on saturated flow conditions was evaluated in light of the stimulated production of N{sub 2} gas and the resulting plugging of the pore throats. The propagation of high frequency acoustic waves through the sediment columns was used to locate those regions in the column where gas accumulation occurred. Over a period of six weeks, regions of gas accumulation resulted in the attenuation of acoustic wave energies with the decreases in amplitude typically greater than one order of magnitude.

  14. Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations

    SciTech Connect

    Lewis, J P; Rock, D R; Shaeffer, D L; Warshaw, S I

    1999-10-07

    The Black Thunder Coal Mine (BTCM) near Gillette, Wyoming was used as a test bed to determine the feasibility of detecting explosion-induced geomagnetic disturbances with ground-based induction magnetometers. Two magnetic observatories were fielded at distances of 50 km and 64 km geomagnetically north from the northernmost edge of BTCM. Each observatory consisted of three separate but mutually orthogonal magnetometers, Global Positioning System (GPS) timing, battery and solar power, a data acquisition and storage system, and a three-axis seismometer. Explosions with yields of 1 to 3 kT of TNT equivalent occur approximately every three weeks at BTCM. We hypothesize that explosion-induced acoustic waves propagate upward and interact collisionally with the ionosphere to produce ionospheric electron density (and concomitant current density) perturbations which act as sources for geomagnetic disturbances. These disturbances propagate through an ionospheric Alfven waveguide that we postulate to be leaky (due to the imperfectly conducting lower ionospheric boundary). Consequently, wave energy may be observed on the ground. We observed transient pulses, known as Q-bursts, with pulse widths about 0.5 s and with spectral energy dominated by the Schumann resonances. These resonances appear to be excited in the earth-ionosphere cavity by Alfven solitons that may have been generated by the explosion-induced acoustic waves reaching the ionospheric E and F regions and that subsequently propagate down through the ionosphere to the atmosphere. In addition, we observe late time (> 800 s) ultra low frequency (ULF) geomagnetic perturbations that appear to originate in the upper F region ({approximately}300 km) and appear to be caused by the explosion-induced acoustic wave interacting with that part of the ionosphere. We suggest that explosion-induced Q-bursts may be discriminated from naturally occurring Q-bursts by association of the former with the late time explosion-induced ULF

  15. Debonding damage analysis in composite-masonry strengthening systems with polymer- and mortar-based matrix by means of the acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Verstrynge, E.; Wevers, M.; Ghiassi, B.; Lourenço, P. B.

    2016-01-01

    Different types of strengthening systems, based on fiber reinforced materials, are under investigation for external strengthening of historic masonry structures. A full characterization of the bond behavior and of the short- and long-term failure mechanisms is crucial to ensure effective design, compatibility with the historic substrate and durability of the strengthening solution. Therein, non-destructive techniques are essential for bond characterization, durability assessment and on-site condition monitoring. In this paper, the acoustic emission (AE) technique is evaluated for debonding characterization and localization on fiber reinforced polymer (FRP) and steel reinforced grout-strengthened clay bricks. Both types of strengthening systems are subjected to accelerated ageing tests under thermal cycles and to single-lap shear bond tests. During the reported experimental campaign, AE data from the accelerated ageing tests demonstrated the thermal incompatibility between brick and epoxy-bonded FRP composites, and debonding damage was successfully detected, characterized and located. In addition, a qualitative comparison is made with digital image correlation and infrared thermography, in view of efficient on-site debonding detection.

  16. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  17. Holographic and acoustic emission evaluation of pressure vessels

    SciTech Connect

    Boyd, D.M.

    1980-03-05

    Optical holographic interfereometry and acoustic emission monitoring were simultaneously used to evaluate two small, high pressure vessels during pressurization. The techniques provide pressure vessel designers with both quantitative information such as displacement/strain measurements and qualitative information such as flaw detection. The data from the holographic interferograms were analyzed for strain profiles. The acoustic emission signals were monitored for crack growth and vessel quality.

  18. CONTINUOUS PERFORMANCE MONITORING TECHNIQUES FOR HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    The report describes a study to determine the feasibility of utilizing realtime continuous exhaust measurements of combustion intermediates as a way to monitor incinerator performance. The key issue was to determine if a direct correlation exists between destruction efficiency (D...

  19. Remote Sensing Techniques as a Tool for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Faisal, K.; AlAhmad, M.; Shaker, A.

    2012-07-01

    The disposal of the solid wastes in landfill sites should be properly monitored by analyzing samples from soil, water, and landfill gases within the landfill site. Nevertheless, ground monitoring systems require intensive efforts and cost. Furthermore, ground monitoring may be difficult to be achieved in large geographic extent. Remote sensing technology has been introduced for waste disposal management and monitoring effects of the landfill sites on the environment. In this paper, two case studies are presented in the Trail Road landfill, Ottawa, Canada and the Al-Jleeb landfill, Al-Farwanyah, Kuwait to evaluate the use of multi-temporal remote sensing images to monitor the landfill sites. The work objectives are: 1) to study the usability of multi-temporal Landsat images for landfill site monitoring by studying the land surface temperature (LST) in the Trail Road landfill, 2) to investigate the relationship between the LST and the amount of the landfill gas emitted in the Trail Road landfill, and 3) to use the multi-temporal LST images to detect the suspicious dumping areas within the Al-Jleeb landfill site. Free archive of multi-temporal Landsat images are obtained from the USGS EarthExplorer. The Landsat images are then atmospherically corrected and the LST images are derived from the thermal band of the corrected Landsat images. In the Trail Road landfill, the results reveal that the LST of the landfill site is always higher than the air temperature by 10°C in average as well as the surroundings. A correlation is also observed between the recorded emitted methane (CH4) from the ground monitoring stations and the LST derived from the Landsat images. Based on the findings in the Al-Jleeb landfill, five locations are identified as suspicious dumping areas by overlaying the highest LST contours generated from the multi-temporal LST images. The study demonstrates that the use of multi-temporal remote sensing images can provide supplementary information for

  20. Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques (Presentation)

    SciTech Connect

    Sheng, S.

    2011-08-01

    This presentation was given at the 2011 Wind Turbine Reliability Workshop sponsored by Sandia National Laboratories in Albuquerque, NM on August 2-3, 2011. It discusses work for the Gearbox Reliability Collaborative including downtime caused by turbine subsystems, annual failure frequency of turbine subsystems, cost benefits of condition monitoring (CM), the Gearbox Reliability Collaborative's condition monitoring approach and rationale, test setup, and results and observations.

  1. In situ monitoring the pulse CO 2 laser interaction with 316-L stainless steel using acoustical signals and plasma analysis

    NASA Astrophysics Data System (ADS)

    Khosroshahi, M. E.; pour, F. Anoosheh; Hadavi, M.; Mahmoodi, M.

    2010-10-01

    In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO 2 laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case ≈830 J cm -2) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., dt ≫ α-1) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.

  2. Passive acoustic monitoring using a towed hydrophone array results in identification of a previously unknown beaked whale habitat.

    PubMed

    Yack, Tina M; Barlow, Jay; Calambokidis, John; Southall, Brandon; Coates, Shannon

    2013-09-01

    Beaked whales are diverse and species rich taxa. They spend the vast majority of their time submerged, regularly diving to depths of hundreds to thousands of meters, typically occur in small groups, and behave inconspicuously at the surface. These factors make them extremely difficult to detect using standard visual survey methods. However, recent advancements in acoustic detection capabilities have made passive acoustic monitoring (PAM) a viable alternative. Beaked whales can be discriminated from other odontocetes by the unique characteristics of their echolocation clicks. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the Southern California Bight (SCB) and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study. The three year field effort has resulted in (1) the successful classification and tracking of Cuvier's (Ziphius cavirostris), Baird's (Berardius bairdii), and unidentified Mesoplodon beaked whale species and (2) the identification of areas of previously unknown beaked whale habitat use. Identification of habitat use areas will contribute to a better understanding of the complex relationship between beaked whale distribution, occurrence, and preferred habitat characteristics on a relatively small spatial scale. These findings will also provide information that can be used to promote more effective management and conservation of beaked whales in the SCB, a heavily used Naval operation and training region. PMID:23968056

  3. Coupling creep and damage in concrete under high sustained loading: Experimental investigation on bending beams and application of Acoustic Emission technique

    NASA Astrophysics Data System (ADS)

    Saliba, J.; Loukili, A.; Grondin, F.

    2010-06-01

    effect on concrete, probably because of the consolidation of the hardened cement paste. The influence of creep on fracture energy, fracture toughness, and characteristic length of concrete is also studied. The fracture energy and the characteristic length of concrete increases slightly when creep occurs prior to failure and the size of the fracture process zone increases too. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases with beams subjected to creep. Relatively more ductile fracture behavior was observed with beams subjected to creep. The contribution of non-destructive and instrumental investigation methods is currently exploited to check and measure the evolution of some negative structural phenomena, such as micro-and macro-cracking, finally resulting in a creep-like behaviour. Among these methods, the non-destructive technique based on acoustic Emission proves to be very effective, especially to check and measure micro-cracking that takes place inside a structure under mechanical loading. Thus as a part of the investigation quantitative acoustic emission techniques were applied to investigate microcracking and damage localization in concrete beams. The AE signals were captured with the AE WIN software and further analyzed with Noesis software analysis of acoustic emission data. AE waveforms were generated as elastic waves in concrete due to crack nucleation. And a multichannel data acquisition system was used to record the AE waveforms. During the three point bending tests, quantitative acoustic emission (AE) techniques were used to monitor crack growth and to deduce micro fracture mechanics in concrete beams before and after creep. Several specimens are experimented in order to match each cluster with corresponding damage mechanism of the material under loading. At the same time acoustic emission was used to

  4. Acoustic source location in a jet-blown flap using a cross-correlation technique

    NASA Technical Reports Server (NTRS)

    Becker, R. S.; Maus, J. R.

    1977-01-01

    The acoustic source strength distribution in a turbulent flow field was measured for two far field microphones at 45 deg above and below the plane of the flap surface. A processed signal from an inclined hot-film anemometry probe was cross correlated with the signal from the appropriate far field microphone. The contribution made by the sources associated with the fluctuating pressure on the flap surface to the sound received at far field microphone was estimated by cross correlating the processed signals of microphones which were embedded in the flap surface with the far field microphone signals. In addition, detailed fluid dynamic measurements were made in the flow field of the jet flap using dual sensor hot-film anemometry probes.

  5. Elastic Properties of Clay Minerals Determined by Atomic Force Acoustic Microscopy Technique

    NASA Astrophysics Data System (ADS)

    Kopycinska-Müller, M.; Prasad, M.; Rabe, U.; Arnold, W.

    Seismic wave propagation in geological formations is altered by the presence of clay minerals. Knowledge about the elastic properties of clay is therefore essential for the interpretation and modeling of the seismic response of clay-bearing formations. However, due to the layered structure of clay, it is very difficult to investigate its elastic properties. We measured elastic properties of clay using atomic force acoustic microscopy (AFAM). The forces applied during the experiments were not higher than 50 nN. The adhesion forces were measured from the pull-off forces and included into our calculations by means of the Derjaguin-Mueller-Toporov model for contact mechanics. The obtained values of the elastic modulus for clay varied from 10 to 17 GPa depending on various parameters that describe the dynamics of a vibrating beam

  6. Localization of acoustic emission sources in tensile and ct specimens using a broadband acquisition technique.

    PubMed

    Fleischmann, P; Rouby, D; Malaprade, G; Lanchon, I

    1981-11-01

    The acoustic emission sources in a conventional cylindrical tensile test sample of short transversely-cut carbon manganese steel are localized. There is not always a good correlation between the localization of the first signals and the zone which eventually fractures. During the Lüder's plateau, the ae signals are emitted in the deformation band and, in the hardening range, there is no significant ae in the gauge length of the sample. In ct samples precracked by fatigue, the signals are due to the growth of the plastic zone around the crack tip, and the plastic zone size, measured by source localization, agrees with those provided by models derived from fracture mechanics. PMID:7292774

  7. A Bayesian view on acoustic model-based techniques for robust speech recognition

    NASA Astrophysics Data System (ADS)

    Maas, Roland; Huemmer, Christian; Sehr, Armin; Kellermann, Walter

    2015-12-01

    This article provides a unifying Bayesian view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By identifying and converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules. We thus summarize the various approaches as approximations or modifications of the same Bayesian decoding rule leading to a unified view on known derivations as well as to new formulations for certain approaches.

  8. The application of finite element techniques to acoustic transmission in lined ducts with flow

    NASA Technical Reports Server (NTRS)

    Astley, R. J.; Eversman, W.

    1979-01-01

    The finite element method (FEM) is used to analyze the propagation of sound in two-dimensional nonuniform ducts carrying a compressible subsonic mean flow. Galerkin and residual least squares (RLS) methods with natural and forced boundary conditions are considered. The accuracy of FEM results for the eigenvalue and transmission problems is assessed by comparison with alternative numerical schemes for nonuniform ducts. The results presented and those from associated investigations indicate that modal coupling is a significant feature of the acoustic field, especially at high Mach numbers. A multimodal model therefore appears to be essential if any reliable conclusions are to be drawn in the context of turbofan inlet regions. Improvements to the eigenvalue scheme following the implementation of higher-order Hermitian elements indicate a similar modification for the transmission problem.

  9. Study of acoustic fingerprinting of nitromethane and some triazole derivatives using UV 266 nm pulsed photoacoustic pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Rao, K. S.; Chaudhary, A. K.; Yehya, F.; Kumar, A. Sudheer

    2015-08-01

    We report a comparative study of acoustic fingerprints of nitromethane, nitrobenzene and some nitro rich triazole derivatives using pulsed photoacoustic technique. UV 266 nm wavelength i.e. Fourth harmonic of Q-switched Nd: YAG laser having pulse duration 7 ns and 10 Hz repetition rate is employed to record the time resolved PA spectrum. The PA fingerprint is produced due to absorption of incident UV light by molecule itself and photo dissociation of nitromethane and nitrobenzene at room temperature while in case of triazole it is attributed to the combination of thermal and photo-dissociation process. The entire dissociation process follows the root of cleavage of C-NO2 bond to produce free NO, NO2 and other by product gases due to π∗ ← n excitation. In addition, we have studied the thermal stability criteria of nitro rich triazoles based on the quality factor of acoustic resonance frequencies of the PA cavity. We have also studied the effect of data acquisition time to ascertain the decay behavior of HEMs samples.

  10. Assessment of the application of acoustic emission technology for monitoring the presence of sand under multiphase flow condition

    SciTech Connect

    El-Alej, M. Mba, D. Yeung, H.

    2014-04-11

    The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)

  11. Acoustic transmitters for underwater neutrino telescopes.

    PubMed

    Ardid, Miguel; Martínez-Mora, Juan A; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  12. Acoustic Transmitters for Underwater Neutrino Telescopes

    PubMed Central

    Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  13. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    PubMed Central

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  14. Comparison of optical and acoustical monitoring during a crack propagation, implication for slow earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Lengliné, Olivier; Schmittbuhl, Jean; Elkhoury, Jean; Toussaint, Renaud; Daniel, Guillaume; Maloy, Knut Jurgen

    2010-05-01

    Observations of aseismic transients in several tectonic context suggest that they might be linked to seismicity. However a clear observation and description of these phenomena and their interaction is lacking. This owes to the difficulty of characterizing with a sufficient resolution processes taking place at depth. Here we aim to study these interactions between aseismic and seismic slip taking advantage of an unique experimental setup. We conducted a series of mode I crack propagation experiments on transparent materials (PMMA). The crack advance is trapped in a weakness plane which is the interface between two previously sandblasted and annealed plexiglass plates. A fast video camera taking up to 500 frames per second ensures the tracking of the front rupture. The acoustic system is composed of a maximum of 44 channels continuously recording at 5 MHz for a few tens of seconds. Piezo-electric sensors are composed of a 32 elements linear array and individual sensors surrounding the crack front. An automatic detection and localization procedure allows us to obtain the position of acoustic emission (A.E.) that occurred during the crack advance. Crack front image processing reveals an intermittent opening which might be linked to the time and space clustering of the AE. An analogy between the mode I (opening) and the mode III (antiplane slip) allows us to interpret our results in term of slip on faults. Our experiment thus helps to reveal the interplay between seismic and aseismic slip on faults.

  15. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A. (Principal Investigator); Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    The author has identified the following significant results. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. The post classification comparison technique reliably identified areas of change and was used as the standard for qualitatively evaluating the other three techniques. The layered spectral/temporal change classification and the delta data change detection results generally agreed with the post classification comparison technique results; however, many small areas of change were not identified. Major discrepancies existed between the post classification comparison and spectral/temporal change detection results.

  16. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  17. Monitoring co- and pre-seismic motion by geodetic techniques

    NASA Astrophysics Data System (ADS)

    Groten, E.

    1992-02-01

    A recently built extensometer, which is based on a highly stable capacitance transducer, as well as a liquid bubble Hughes tiltmeter are discussed in view of