Science.gov

Sample records for acoustic noise produced

  1. Acoustical analysis and modeling of reciprocating compressors, noise produced by gas pulsation, using four-pole method. II

    NASA Astrophysics Data System (ADS)

    Herfat, Ali T.; Seel, Robert V.

    2003-04-01

    Presented in Paper II is the noise analysis of reciprocating compressors (such as air conditioning and refrigeration reciprocating compressors) using the four-pole method. The gas pulsation noise inside compressor head cavities, mufflers, and through-valves can be analyzed by applying the FPM. This method formulates the characteristics of acoustic elements by establishing a relationship between their input and output gas pressures and volume flow rates. When the acoustic elements in the system (compressor) are connected at points between them, the FPM allows an easy assembly of element equations to obtain system acoustical model.

  2. Cabin acoustical noise

    NASA Astrophysics Data System (ADS)

    Homick, J. L.

    1981-12-01

    Using a hand-held sound pressure level meter the crew made one octave band and A-weight sound level measurements at four locations in the Orbiter on Mission Day 1. The data were voice recorded and transmitted to the ground prior to the first inflight sleep period. The data obtained are summarized. From a physiological point of view the noise levels measured on STS-1 were not hazardous to the crewmens' hearing.

  3. Acoustical scale modeling of roadway traffic noise

    SciTech Connect

    Anderson, G.S.

    1980-03-01

    During the planning and design of any federally assisted highway project, noise levels must be predicted for the highway in its operational mode. The use of an acoustical scale modeling technique to predict roadway traffic noise is described. Literature pertaining to acoustical scale modeling of outdoor noise propagation, particularly roadway noise, is reviewed. Field and laboratory measurements validated the predictions of the acoustical scale modeling technique. (1 photo)

  4. Acoustically swept rotor. [helicopter noise reduction

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Boxwell, D. A.; Vause, R. (Inventor)

    1979-01-01

    Impulsive noise reduction is provided in a rotor blade by acoustically sweeping the chord line from root to tip so that the acoustic radiation resulting from the summation of potential singularities used to model the flow about the blade tend to cancel for all times at an observation point in the acoustic far field.

  5. Loud noise exposure and acoustic neuroma.

    PubMed

    Fisher, James L; Pettersson, David; Palmisano, Sadie; Schwartzbaum, Judith A; Edwards, Colin G; Mathiesen, Tiit; Prochazka, Michaela; Bergenheim, Tommy; Florentzson, Rut; Harder, Henrik; Nyberg, Gunnar; Siesjö, Peter; Feychting, Maria

    2014-07-01

    The results from studies of loud noise exposure and acoustic neuroma are conflicting. A population-based case-control study of 451 acoustic neuroma patients and 710 age-, sex-, and region-matched controls was conducted in Sweden between 2002 and 2007. Occupational exposure was based on historical measurements of occupational noise (321 job titles summarized by a job exposure matrix) and compared with self-reported occupational noise exposure. We also evaluated self-reported noise exposure during leisure activity. Conditional logistic regression was used to estimate odds ratios. There was no statistically significant association between acoustic neuroma and persistent occupational noise exposure, either with or without hearing protection. Exposure to loud noise from leisure activity without hearing protection was more common among acoustic neuroma cases (odds ratio = 1.47, 95% confidence interval: 1.06, 2.03). Statistically significant odds ratios were found for specific leisure activities including attending concerts/clubs/sporting events (odds ratio = 1.82, 95% confidence interval: 1.09, 3.04) and participating in workouts accompanied by loud music (odds ratio = 2.84, 95% confidence interval: 1.37, 5.89). Our findings do not support an association between occupational exposure to loud noise and acoustic neuroma. Although we report statistically significant associations between leisure-time exposures to loud noise without hearing protection and acoustic neuroma, especially among women, we cannot rule out recall bias as an alternative explanation. PMID:24786799

  6. Ambient noise analysis of underwater acoustic data

    NASA Astrophysics Data System (ADS)

    Snyder, Mark A.; Orlin, Pete; Schulte, Annette; Newcomb, Joal

    2003-04-01

    The Littoral Acoustic Demonstration Center (LADC) deployed three Environmental Acoustic Recording System (EARS) buoys in the northern Gulf of Mexico during the summers of 2001 and 2002. The buoys recorded frequencies up to 5859 Hz continuously for 36 days in 2001 and for 72 days in 2002. The acoustic signals recorded include sperm whale vocalizations, seismic airguns, and shipping traffic. The variability of the ambient noise is analyzed using spectrograms, time series, and statistical measurements. Variations in ambient noise before, during, and after tropical storm/hurricane passage are also investigated.

  7. Acoustic Communication in Fishes and Potential Effects of Noise.

    PubMed

    Mann, David A

    2016-01-01

    Many soniferous fishes such as cods and groupers are commercially important. Sounds are produced during courtship and spawning, and there is the potential for aquatic noise to interfere with critical behaviors and affect populations. There are few data on the response of wild populations of sound-producing fishes to acoustic noise. New motion and sound exposure fish tags could be used to assess the behavioral responses of large numbers of fish to noise exposure. Many factors, such as fishing mortality and environmental variability in prey supply, could also affect populations and potentially interact with the behavioral responses to noise. PMID:26611018

  8. Cardiorespiratory Responses to Acoustic Noise in Belugas.

    PubMed

    Lyamin, Oleg I; Korneva, Svetlana M; Rozhnov, Viatcheslav V; Mukhametov, Lev M

    2016-01-01

    To date, most research on the adverse effects of anthropogenic noise on marine mammals has focused on auditory and behavioral responses. Other responses have received little attention and are often ignored. In this study, the effect of acoustic noise on heart rate was examined in captive belugas. The data suggest that (1) heart rate can be used as a measure of physiological response (including stress) to noise in belugas and other cetaceans, (2) cardiac response is influenced by parameters of noise and adaptation to repeated exposure, and (3) cetacean calves are more vulnerable to the adverse effect of noise than adults. PMID:26611017

  9. Acoustics of Jet Surface Interaction - Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity to the structure or embedded in the airframe. While such integrated systems are intended to shield noise from the community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Green's function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Green's function decreases with increasing source frequency and/or jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Green's function in the absence of the surface, and flight effects are also investigated

  10. Producing undistorted acoustic sine waves.

    PubMed

    Boutin, Henri; Smith, John; Wolfe, Joe

    2014-04-01

    A simple digital method is described that can produce an undistorted acoustic sine wave using an amplifier and loudspeaker having considerable intrinsic distortion, a common situation at low frequencies and high power. The method involves, first, using a pure sine wave as the input and measuring the distortion products. An iterative procedure then progressively adds harmonics with appropriate amplitude and phase to cancel any distortion products. The method is illustrated by producing a pure 52 Hz sine wave at 107 dB sound pressure level with harmonic distortion reduced over the audible range to >65 dB below the fundamental. PMID:25234964

  11. Program in acoustics. [aeroacoustics, aircraft noise, and noise suppression

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Relevant research projects conducted by faculty and graduate students in the general area of aeroacoustics to further the understanding of noise generation by aircraft and to aid in the development of practical methods for noise suppression are listed. Special activities summarized relate to the nonlinear acoustic wave theory and its application to several cases including that of the acoustic source located at the throat of a near-sonic duct, a computer program developed to compute the nonlinear wave theory, and a parabolic approximation for propagation of sounding in moving stratified media.

  12. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  13. Airframe Noise Prediction by Acoustic Analogy: Revisited

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Casper, Jay H.; Tinetti, A.; Dunn, M. H.

    2006-01-01

    The present work follows a recent survey of airframe noise prediction methodologies. In that survey, Lighthill s acoustic analogy was identified as the most prominent analytical basis for current approaches to airframe noise research. Within this approach, a problem is typically modeled with the Ffowcs Williams and Hawkings (FW-H) equation, for which a geometry-independent solution is obtained by means of the use of the free-space Green function (FSGF). Nonetheless, the aeroacoustic literature would suggest some interest in the use of tailored or exact Green s function (EGF) for aerodynamic noise problems involving solid boundaries, in particular, for trailing edge (TE) noise. A study of possible applications of EGF for prediction of broadband noise from turbulent flow over an airfoil surface and the TE is, therefore, the primary topic of the present work. Typically, the applications of EGF in the literature have been limited to TE noise prediction at low Mach numbers assuming that the normal derivative of the pressure vanishes on the airfoil surface. To extend the application of EGF to higher Mach numbers, the uniqueness of the solution of the wave equation when either the Dirichlet or the Neumann boundary condition (BC) is specified on a deformable surface in motion. The solution of Lighthill s equation with either the Dirichlet or the Neumann BC is given for such a surface using EGFs. These solutions involve both surface and volume integrals just like the solution of FW-H equation using FSGF. Insight drawn from this analysis is evoked to discuss the potential application of EGF to broadband noise prediction. It appears that the use of a EGF offers distinct advantages for predicting TE noise of an airfoil when the normal pressure gradient vanishes on the airfoil surface. It is argued that such an approach may also apply to an airfoil in motion. However, for the prediction of broadband noise not directly associated with a trailing edge, the use of EGF does not

  14. Aircraft acoustics. I - Exterior noise of subsonic passenger aircraft and helicopters

    NASA Astrophysics Data System (ADS)

    Munin, Anatolii Grigor'evich

    Problems related to the effect of the exterior noise produced by subsonic aircraft and helicopters on the environment and man are examined. The principal sources of noise produced by aircraft and helicopters are identified, and the physical pattern of noise generation is examined. Various method of reducing the noise of aircraft and helicopters are discussed, and methods are presented for predicting the acoustic environment at airports with allowance for the size of the aircraft park and the dynamics of flight operations.

  15. Modeling and adaptive control of acoustic noise

    NASA Astrophysics Data System (ADS)

    Venugopal, Ravinder

    Active noise control is a problem that receives significant attention in many areas including aerospace and manufacturing. The advent of inexpensive high performance processors has made it possible to implement real-time control algorithms to effect active noise control. Both fixed-gain and adaptive methods may be used to design controllers for this problem. For fixed-gain methods, it is necessary to obtain a mathematical model of the system to design controllers. In addition, models help us gain phenomenological insights into the dynamics of the system. Models are also necessary to perform numerical simulations. However, models are often inadequate for the purpose of controller design because they involve parameters that are difficult to determine and also because there are always unmodeled effects. This fact motivates the use of adaptive algorithms for control since adaptive methods usually require significantly less model information than fixed-gain methods. The first part of this dissertation deals with derivation of a state space model of a one-dimensional acoustic duct. Two types of actuation, namely, a side-mounted speaker (interior control) and an end-mounted speaker (boundary control) are considered. The techniques used to derive the model of the acoustic duct are extended to the problem of fluid surface wave control. A state space model of small amplitude surfaces waves of a fluid in a rectangular container is derived and two types of control methods, namely, surface pressure control and map actuator based control are proposed and analyzed. The second part of this dissertation deals with the development of an adaptive disturbance rejection algorithm that is applied to the problem of active noise control. ARMARKOV models which have the same structure as predictor models are used for system representation. The algorithm requires knowledge of only one path of the system, from control to performance, and does not require a measurement of the disturbance nor

  16. Prediction of Acoustic Noise in Switched Reluctance Motor Drives

    SciTech Connect

    Lin, CJ; Fahimi, B

    2014-03-01

    Prediction of acoustic noise distribution generated by electric machines has become an integral part of design and control in noise sensitive applications. This paper presents a fast and precise acoustic noise imaging technique for switched reluctance machines (SRMs). This method is based on distribution of radial vibration in the stator frame of the SRM. Radial vibration of the stator frame, at a network of probing points, is computed using input phase current and phase voltage waveforms. Sequentially, the acceleration of the probing network will be expanded to predict full acceleration on the stator frame surface, using which acoustic noise emission caused by the stator can be calculated using the boundary element method.

  17. Identifying Potential Noise Sources within Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Holcomb, Victoria; Lewalle, Jacques

    2013-11-01

    We test a new algorithm for its ability to detect sources of noise within random background. The goal of these tests is to better understand how to identify sources within acoustic signals while simultaneously determining the strengths and weaknesses of the algorithm in question. Unlike previously published algorithms, the antenna method does not pinpoint events by looking for the most energetic portions of a signal. The algorithm searches for the ideal lag combinations between three signals by taking excerpts of possible events. The excerpt with the lowest calculated minimum distance between possible events is how the algorithm identifies sources. At the minimum distance, the events are close in time and frequency. This method can be compared to the cross correlation and denoising methods to better understand its effectiveness. This work is supported in part by Spectral Energies LLC, under an SBIR grant from AFRL, as well as the Syracuse University MAE department.

  18. Separating underwater ambient noise from flow noise recorded on stereo acoustic tags attached to marine mammals.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Samarra, Filipa I P; Beerens, S Peter; Miller, Patrick J O

    2016-08-01

    Sound-recording acoustic tags attached to marine animals are commonly used in behavioural studies. Measuring ambient noise is of interest to efforts to understand responses of marine mammals to anthropogenic underwater sound, or to assess their communication space. Noise of water flowing around the tag reflects the speed of the animal, but hinders ambient noise measurement. Here, we describe a correlation-based method for stereo acoustic tags to separate the relative contributions of flow and ambient noise. The uncorrelated part of the noise measured in digital acoustic recording tag (DTAG) recordings related well to swim speed of a humpback whale (Megaptera novaeangliae), thus providing a robust measure of flow noise over a wide frequency bandwidth. By removing measurements affected by flow noise, consistent ambient noise estimates were made for two killer whales (Orcinus orca) with DTAGs attached simultaneously. The method is applicable to any multi-channel acoustic tag, enabling application to a wide range of marine species. PMID:27229472

  19. Acoustical measurement separates core noise and jet noise

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.

    1980-01-01

    Measuring technique discriminates between jet noise and core noise of jet engine. Results of experimentation confirmed that core noise and jet noise can be separated by examining cross-correlation of far-field microphone signals and that crossover point between core noise and jet noise moves toward higher velocities at higher angles with respect to jet axis.

  20. Airframe noise measurements by acoustic imaging

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.

    1977-01-01

    Studies of the noise produced by flow past wind tunnel models are presented. The central objective of these is to find the specific locations within a flow which are noisy, and to identify the fluid dynamic processes responsible, with the expectation that noise reduction principles will be discovered. The models tested are mostly simple shapes which result in types of flow that are similar to those occurring on, for example, aircraft landing gear and wheel cavities. A model landing gear and a flap were also tested. Turbulence has been intentionally induced as appropriate in order to simulate full-scale effects more closely. The principal technique involves use of a highly directional microphone system which is scanned about the flow field to be analyzed. The data so acquired are presented as a pictorial image of the noise source distribution. An important finding is that the noise production is highly variable within a flow field and that sources can be attributed to various fluid dynamic features of the flow. Flow separation was not noisy, but separation closure usually was.

  1. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  2. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  3. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  4. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  5. Objective approach for analysis of noise source characteristics and acoustic conditions in noisy computerized embroidery workrooms.

    PubMed

    Aliabadi, Mohsen; Golmohammadi, Rostam; Mansoorizadeh, Muharram

    2014-03-01

    It is highly important to analyze the acoustic properties of workrooms in order to identify best noise control measures from the standpoint of noise exposure limits. Due to the fact that sound pressure is dependent upon environments, it cannot be a suitable parameter for determining the share of workroom acoustic characteristics in producing noise pollution. This paper aims to empirically analyze noise source characteristics and acoustic properties of noisy embroidery workrooms based on special parameters. In this regard, reverberation time as the special room acoustic parameter in 30 workrooms was measured based on ISO 3382-2. Sound power quantity of embroidery machines was also determined based on ISO 9614-3. Multiple linear regression was employed for predicting reverberation time based on acoustic features of the workrooms using MATLAB software. The results showed that the measured reverberation times in most of the workrooms were approximately within the ranges recommended by ISO 11690-1. Similarity between reverberation time values calculated by the Sabine formula and measured values was relatively poor (R (2) = 0.39). This can be due to the inaccurate estimation of the acoustic influence of furniture and formula preconditions. Therefore, this value cannot be considered representative of an actual acoustic room. However, the prediction performance of the regression method with root mean square error (RMSE) = 0.23 s and R (2) = 0.69 is relatively acceptable. Because the sound power of the embroidery machines was relatively high, these sources get the highest priority when it comes to applying noise controls. Finally, an objective approach for the determination of the share of workroom acoustic characteristics in producing noise could facilitate the identification of cost-effective noise controls. PMID:24214295

  6. Acoustic analysis of explosions in high noise environment

    NASA Astrophysics Data System (ADS)

    Man, Hong; Desai, Sachi

    2008-04-01

    Explosion detection and recognition is a critical capability to provide situational awareness to the war-fighters in battlefield. Acoustic sensors are frequently deployed to detect such events and to trigger more expensive sensing/sensor modalities (i.e. radar, laser spectroscope, IR etc.). Acoustic analysis of explosions has been intensively studied to reliably discriminate mortars, artillery, round variations, and type of blast (i.e. chemical/biological or high-explosive). One of the major challenges is high level of noise, which may include non-coherent noise generated from the environmental background and coherent noise induced by possible mobile acoustic sensor platform. In this work, we introduce a new acoustic scene analysis method to effectively enhance explosion classification reliability and reduce the false alarm rate at low SNR and with high coherent noise. The proposed method is based on acoustic signature modeling using Hidden Markov Models (HMMs). Special frequency domain acoustic features characterizing explosions as well as coherent noise are extracted from each signal segment, which forms an observation vector for HMM training and test. Classification is based on a unique model similarity measure between the HMM estimated from the test observations and the trained HMMs. Experimental tests are based on the acoustic explosion dataset from US ARMY ARDEC, and experimental results have demonstrated the effectiveness of the proposed method.

  7. Acoustic noise from volcanoes - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Woulff, G.; Mcgetchin, T. R.

    1976-01-01

    The paper discusses some theoretical aspects of acoustic investigation of volcanoes and describes a field experiment involving the recording, analysis, and interpretation of acoustic radiation from energetic fumaroles at Volcan Acatenango, Guatemala, during mid-January 1973. Particular attention is given to deriving information about the flow velocity of the erupting medium from acoustics as a means to study eruption dynamics. Theoretical considerations suggest that acoustic power radiated during gaseous volcanic eruptions may be related to gas exit velocity according to appropriate power laws. Eruption acoustics proves useful as a means of quantitative monitoring of volcanic activity.

  8. The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1987-01-01

    This paper is theoretical in nature and addresses applications of the acoustic analogy in helicopter rotor noise prediction. It is argued that in many instances the acoustic analogy has not been used with care in rotor noise studies. By this it is meant that approximate or inappropriate formulations have been used. By considering various mechanisms of noise generation, such abuses are identified and the remedy is suggested. The mechanisms discussed are thickness, loading, quadrupole, and blade-vortex interaction noise. The quadrupole term of the Ffowcs Williams-Hawkings equation is written in a new form which separates the contributions of regions of high gradients such as shock surfaces. It is shown by order of magnitude studies that such regions are capable of producing noise with the same directivity as the thickness noise. The inclusion of this part of quadrupole sources in current acoustic codes is quite practical. Some of the difficulties with the use of loading noise formulations of the first author in predictions of blade-vortex interaction noise are discussed. It appears that there is a need for development of new theoretical results based on the acoustic analogy in this area. Because of the impulsive character of the blade surface pressure, a time scale of integration different from that used in loading and thickness computations must he used in a computer code for prediction of blade-vortex interaction noise.

  9. Non-linear generation of acoustic noise in the IAR spacecraft

    NASA Technical Reports Server (NTRS)

    Westley, R.; Nguyen, K.; Westley, M. S.

    1990-01-01

    The requirement to produce high level acoustic noise fields with increasing accuracy in environmental test facilities dictates that a more precise understanding is required of the factors controlling nonlinear noise generation. Details are given of various nonlinear effects found in acoustic performance data taken from the IAR Spacecraft Acoustic Chamber. This type of data has enabled the IAR to test large spacecraft to relatively tight acoustic tolerances over a wide frequency range using manually set controls. An analog random noise automatic control system was available and modified to provide automatic selection of the chamber's spectral sound pressure levels. The automatic control system when used to complete a typical qualification test appeared to equal the accuracy of the manual system and had the added advantage that parallel spectra could be easily achieved during preset tests.

  10. Investigation of the acoustic parameters that influence traffic noise

    NASA Astrophysics Data System (ADS)

    Armas, Alejandro A.; Iasi, Federico M.

    2002-11-01

    Here, we analyze the behavior of the acoustic parameters Leq, L1, L10, L50, L90, L99, Lmin, and Lmax of vehicular noise, which were measured in controlled laboratory conditions, for various traffic noise simulations. For that, sound recordings were created of equal duration but different composition, based on real recordings of the passage of different types of vehicles (cars, motorbikes, trucks, and buses) and using pink noise as background noise. This study is based on the necessity of finding the most appropriate parameters for the characterization of the traffic noise in the cities. The study began with the test of a measurement methodology that uses the equivalent continuous sound level, the main acoustical parameter applied in the city of La Plata, Argentina. However, Leq was shown insufficient and inadequate in certain situations, especially those that didn't exhibit intense traffic noise, as found in certain residential areas. (To be presented in Spanish.)

  11. Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.

    2002-01-01

    Several methods for the prediction of jet noise are described. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy, whereas the other is the jet noise generation model recently proposed by Tam and Auriault. In all of the approaches, some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier-Stokes equation using a kappa-sigma turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach, but instead is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. In conclusion, a proposal is presented for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms, as is a discussion of noise prediction issues that remain to be resolved.

  12. The Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.; Morris, Philip J.

    2002-01-01

    This paper describes several methods for the prediction of jet noise. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while the other is the jet noise generation model recently proposed by Tam and Auriault. In all the approaches some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a k-epsilon turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach: but, is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. The paper concludes with a proposal for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms and a discussion of noise prediction issues that remain to be resolved.

  13. The Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.

    2002-01-01

    This paper describes several methods for the prediction of jet noise. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while the other is the jet noise generation model recently proposed by Tam and Auriault. In all the approaches some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a k - epsilon turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach: but, is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. The paper concludes with a proposal for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms and a discussion of noise prediction issues that remain to be resolved.

  14. Acoustics of Jet Surface Interaction-Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the structure or embedded in the airframe. While such integrated systems are intended to shield noise from community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Greens function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Greens function decreases with increasing source frequency andor jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Greens function in the absence of the surface, and flight effect are also investigated.

  15. Environmental noise-a challenge for an acoustical engineer

    NASA Astrophysics Data System (ADS)

    Genuit, Klaus

    2003-10-01

    People live in a landscape full of noises which are composed of both natural environmental noises and technically created sounds. Regarding environmental noise, more and more people feel heavily annoyed by noises. Noise is defined as an audible sound which either disturbs the silence or an intentional sound listening or leads to annoyance. Thus, it is clearly defined that the assignment of noise cannot be reduced to simple determining objective parameters such as the A-weighted sound pressure level or the equivalent continuous sound pressure level. The question of whether a sound is judged as noise can only be made after the transformation from the sound event into an auditory event has been accomplished. The evaluation of noise depends on the physical characteristics of the sound event, on the psycho-acoustical features of the human ear, as well as on the psychological aspects of man. For the acoustical design of environmental noise and in order to create a better soundscape the acoustical engineer has to consider these aspects. That means a specific challenge for the sound engineering.

  16. Fdtd Calculation of Linear Acoustic Phenomena and Its Application to Architectural Acoustics and Environmental Noise Prediction

    NASA Astrophysics Data System (ADS)

    Sakamoto, S.

    The finite difference time domain (FDTD) method is widely used as an effective and powerful tool for analyzing acoustic problems. In architectural acoustics, impulse response is the most important quantity and therefore the FDTD method, by which the physical quantities are obtained in time domain, is more advantageous than other wave-based analysis methods, by many of which the calculation is performed in frequency domain. This paper reports application of the FDTD method to room acoustics and outdoor noise assessment.

  17. Publications in acoustic and noise control from NASA Langley Research Center during 1940-1979. [bibliographies

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1980-01-01

    Reference lists of approximately 900 published Langley Research Center reports in various areas of acoustics and noise control for the period 1940-1979 are presented. Specific topic areas covered include: duct acoustics; propagation and operations; rotating blade noise; jet noise; sonic boom; flow surface interaction noise; structural response/interior noise; human response; and noise prediction.

  18. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  19. The uses and abuses of the acoustic analogy in helicopter rotor noise prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1987-01-01

    The generation of noise by helicopter rotor blades is considered theoretically, reviewing recent analyses based on the acoustic analogy (where the effect of fluid motion is replaced by fictitious sources in an undisturbed fluid). The fundamental principles of the acoustic approach are explained and illustrated with diagrams; the governing Ffowcs-Williams/Hawkings equations are written with a reformulated quadrupole term; and the directivity of noise produced (1) by regions with steep gradients (such as shock surfaces) and (2) by boundary-layer quadrupoles (tip-vortex and blade wakes) is shown to be the same as that of thickness noise. The need to include both (1) and (2) in acoustic-analogy computations is indicated.

  20. Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study

    ERIC Educational Resources Information Center

    Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.

    2012-01-01

    Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…

  1. Acoustics, Noise, and Buildings. Revised Edition 1969.

    ERIC Educational Resources Information Center

    Parkin, P. H.; Humphreys, H. R.

    The fundamental physical concepts needed in any appreciation of acoustical problems are discussed by a scientist and an architect. The major areas of interest are--(1) the nature of sound, (2) the behavior of sound in rooms, (3) the design of rooms for speech, (4) the design of rooms for music, (5) the design of studios, (6) the design of high…

  2. Perceptual Learning of Acoustic Noise by Individuals with Dyslexia

    ERIC Educational Resources Information Center

    Agus, Trevor R.; Carrión-Castillo, Amaia; Pressnitzer, Daniel; Ramus, Franck

    2014-01-01

    Purpose: A phonological deficit is thought to affect most individuals with developmental dyslexia. The present study addresses whether the phonological deficit is caused by difficulties with perceptual learning of fine acoustic details. Method: A demanding test of nonverbal auditory memory, "noise learning," was administered to both…

  3. Development of an acoustic actuator for launch vehicle noise reduction.

    PubMed

    Henderson, Benjamin K; Lane, Steven A; Gussy, Joel; Griffin, Steve; Farinholt, Kevin M

    2002-01-01

    In many active noise control applications, it is necessary that acoustic actuators be mounted in small enclosures due to volume constraints and in order to remain unobtrusive. However, the air spring of the enclosure is detrimental to the low-frequency performance of the actuator. For launch vehicle noise control applications, mass and volume constraints are very limiting, but the low-frequency performance of the actuator is critical. This work presents a novel approach that uses a nonlinear buckling suspension system and partial evacuation of the air within the enclosure to yield a compact, sealed acoustic driver that exhibits a very low natural frequency. Linear models of the device are presented and numerical simulations are given to illustrate the advantages of this design concept. An experimental prototype was built and measurements indicate that this design can significantly improve the low-frequency response of compact acoustic actuators. PMID:11831792

  4. Field-Deployable Acoustic Digital Systems for Noise Measurement

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  5. Near-field acoustical holography of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Wall, Alan T.; Gee, Kent L.; Neilsen, Tracianne; Krueger, David W.; Sommerfeldt, Scott D.; James, Michael M.

    2010-10-01

    Noise radiated from high-performance military jet aircraft poses a hearing-loss risk to personnel. Accurate characterization of jet noise can assist in noise prediction and noise reduction techniques. In this work, sound pressure measurements were made in the near field of an F-22 Raptor. With more than 6000 measurement points, this is the most extensive near-field measurement of a high-performance jet to date. A technique called near-field acoustical holography has been used to propagate the complex pressure from a two- dimensional plane to a three-dimensional region in the jet vicinity. Results will be shown and what they reveal about jet noise characteristics will be discussed.

  6. Oceanic ambient noise as a background to acoustic neutrino detection

    SciTech Connect

    Kurahashi, Naoko; Gratta, Giorgio

    2008-11-01

    Ambient noise measured in the deep ocean is studied in the context of a search for signals from ultrahigh-energy cosmic ray neutrinos. The spectral shape of the noise at the relevant high frequencies is found to be very stable for an extensive data set collected over several months from 49 hydrophones mounted near the bottom of the ocean at {approx}1600 m depth. The slopes of the ambient noise spectra above 15 kHz are found to roll off faster than the -6 dB/octave seen in Knudsen spectra. A model attributing the source to a uniform distribution of surface noise that includes frequency-dependent absorption at large depth is found to fit the data well up to 25 kHz. This depth-dependent model should therefore be used in analysis methods of acoustic neutrino pulse detection that require the expected noise spectra.

  7. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  8. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  9. Generation of broadband electrostatic noise by electron acoustic solitons

    SciTech Connect

    Dubouloz, N.; Pottelette, R.; Malingre, M. ); Treumann, R.A. )

    1991-02-01

    Broadband electrostatic noise (BEN) bursts whose amplitude sometimes reaches about 100 mV m{sup {minus}1} have been observed by the Viking satellite in the dayside auroral zone. These emissions have been shown to be greatly influenced by nonlinear effects and to occur simultaneously with the observation of particle distributions favouring the destabilization of the electron acoustic mode. It is shown that electron acoustic solitons passing by the satellite would generate spectra that can explain the high-frequency part of BEN, above the electron plasma frequency.

  10. Origin of acoustic emission produced during single point machining

    SciTech Connect

    Heiple, C.R,.; Carpenter, S.H.; Armentrout, D.L.

    1991-01-01

    Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emission produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent. 21 refs., 19 figs., 4 tabs.

  11. Cylindrical acoustical holography applied to full-scale jet noise.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M

    2014-09-01

    Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated. PMID:25190387

  12. Trailing Edge Noise Prediction Based on a New Acoustic Formulation

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.

    2002-01-01

    A new analytic result in acoustics called 'Formulation 1B,' proposed by Farassat, is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experiment. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, using both analytical and experimental data on the airfoil surface. The results are compared to analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.

  13. Producing Metallic Glasses With Acoustic Leviation

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Feng, I. A.

    1983-01-01

    Acoustic fields support and cool liquid particles. Levitated by sound energy, liquid drop in acoustic standing-wave field surrounded by acousticically-induced jet streams. Streaming gas cools drow below its freezing point in small fraction of second. Allows new amorphous alloys including "metallic glass" to be formed.

  14. Acoustic tests of duct-burning turbofan jet noise simulation

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Stringas, E. J.; Brausch, J. F.; Staid, P. S.; Heck, P. H.; Latham, D.

    1978-01-01

    The results of a static acoustic and aerodynamic performance, model-scale test program on coannular unsuppressed and multielement fan suppressed nozzle configurations are summarized. The results of the static acoustic tests show a very beneficial interaction effect. When the measured noise levels were compared with the predicted noise levels of two independent but equivalent conical nozzle flow streams, noise reductions for the unsuppressed coannular nozzles were of the order of 10 PNdB; high levels of suppression (8 PNdB) were still maintained even when only a small amount of core stream flow was used. The multielement fan suppressed coannular nozzle tests showed 15 PNdB noise reductions and up to 18 PNdB noise reductions when a treated ejector was added. The static aerodynamic performance tests showed that the unsuppressed coannular plug nozzles obtained gross thrust coefficients of 0.972, with 1.2 to 1.7 percent lower levels for the multielement fan-suppressed coannular flow nozzles. For the first time anywhere, laser velocimeter velocity profile measurements were made on these types of nozzle configurations and with supersonic heated flow conditions. Measurements showed that a very rapid decay in the mean velocity occurs for the nozzle tested.

  15. Acoustic noise improves visual perception and modulates occipital oscillatory states.

    PubMed

    Gleiss, Stephanie; Kayser, Christoph

    2014-04-01

    Perception is a multisensory process, and previous work has shown that multisensory interactions occur not only for object-related stimuli but also for simplistic and apparently unrelated inputs to the different senses. We here compare the facilitation of visual perception induced by transient (target-synchronized) sounds to the facilitation provided by continuous background noise like sounds. Specifically, we show that continuous acoustic noise improves visual contrast detection by systematically shifting psychometric curves in an amplitude-dependent manner. This multisensory benefit was found to be both qualitatively and quantitatively similar to that induced by a transient and target synchronized sound in the same paradigm. Studying the underlying neural mechanisms using electric neuroimaging (EEG), we found that acoustic noise alters occipital alpha (8-12 Hz) power and decreases beta-band (14-20 Hz) coupling of occipital and temporal sites. Task-irrelevant and continuous sounds thereby have an amplitude-dependent effect on cortical mechanisms implicated in shaping visual cortical excitability. The same oscillatory mechanisms also mediate visual facilitation by transient sounds, and our results suggest that task-related sounds and task-irrelevant background noises could induce perceptually and mechanistically similar enhancement of visual perception. Given the omnipresence of sounds and noises in our environment, such multisensory interactions may affect perception in many everyday scenarios. PMID:24236698

  16. Subwavelength acoustic metamaterial panels for underwater noise isolation.

    PubMed

    Hicks, Ashley J; Haberman, Michael R; Wilson, Preston S

    2015-09-01

    Acoustically thin metamaterial underwater noise isolation panels have been developed that provide as much as 16 dB of noise isolation for a panel with a thickness just 160th of the wavelength in the host medium (fresh water) at 2.5 kHz. The panels are composed of thin layers of neoprene rubber and polyoxymethylene containing air-filled voids. The level of isolation provided by the panels is shown to correlate positively with the volume fraction of air voids within the panel. PMID:26428822

  17. Minimizing vehicle noise and weight using panel acoustic contribution analysis

    NASA Astrophysics Data System (ADS)

    Brown, Gordon M.

    1998-05-01

    Panel acoustic contribution analysis (PACA) is an advanced engineering tool to improve noise, vibration, and harshness quality and minimize weight of vehicles. It is a technique to categorize areas of vehicle body panels as positive (sound level increases as vibration amplitude increases), negative or neutral according to their contribution to the total sound. PACA is a hybrid of computer aided engineering and experimental methods. Computer aided holometry, scanning laser velocimetry, or an accelerometer net is used to experimentally measure structure vibration complex velocities. These velocities are the boundary conditions for a boundary element model of the acoustic cavity. Boundary element analysis is then used to predict the vehicle interior sound and calculate panel acoustic contributions. Experimental results for a welded steel box (validation) and vehicle application are presented.

  18. Acoustical Testing Laboratory Developed to Support the Low-Noise Design of Microgravity Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2001-01-01

    The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.

  19. An Overview of Virtual Acoustic Simulation of Aircraft Flyover Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2013-01-01

    Methods for testing human subject response to aircraft flyover noise have greatly advanced in recent years as a result of advances in simulation technology. Capabilities have been developed which now allow subjects to be immersed both visually and aurally in a three-dimensional, virtual environment. While suitable for displaying recorded aircraft noise, the true potential is found when synthesizing aircraft flyover noise because it allows the flexibility and freedom to study sounds from aircraft not yet flown. A virtual acoustic simulation method is described which is built upon prediction-based source noise synthesis, engineering-based propagation modeling, and empirically-based receiver modeling. This source-path-receiver paradigm allows complete control over all aspects of flyover auralization. With this capability, it is now possible to assess human response to flyover noise by systematically evaluating source noise reductions within the context of a system level simulation. Examples of auralized flyover noise and movie clips representative of an immersive aircraft flyover environment are made in the presentation.

  20. The Prediction of Jet Noise Ground Effects Using an Acoustic Analogy and a Tailored Green's Function

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    An assessment of an acoustic analogy for the mixing noise component of jet noise in the presence of an infinite surface is presented. The reflection of jet noise by the ground changes the distribution of acoustic energy and is characterized by constructive and destructive interference patterns. The equivalent sources are modeled based on the two-point cross- correlation of the turbulent velocity fluctuations and a steady Reynolds-Averaged Navier-Stokes (RANS) solution. Propagation effects, due to reflection by the surface and refaction by the jet shear layer, are taken into account by calculating the vector Green's function of the linearized Euler equations (LEE). The vector Green's function of the LEE is written in relation to Lilley's equation; that is, approximated with matched asymptotic solutions and the Green's function of the convective Helmholtz equation. The Green's function of the convective Helmholtz equation for an infinite flat plane with impedance is the Weyl-van der Pol equation. Predictions are compared with an unheated Mach 0.95 jet produced by a nozzle with an exit diameter of 0.3302 meters. Microphones are placed at various heights and distances from the nozzle exit in the peak jet noise direction above an acoustically hard and an asphalt surface. The predictions are shown to accurately capture jet noise ground effects that are characterized by constructive and destructive interference patterns in the mid- and far-field and capture overall trends in the near-field.

  1. Noise correction of turbulent spectra obtained from Acoustic Doppler Velocimeters

    SciTech Connect

    Durgesh, Vibhav; Thomson, Jim; Richmond, Marshall C.; Polagye, Brian

    2014-03-02

    Accurately estimated auto-spectral density functions are essential for characterization of turbulent flows, and they also have applications in computational fluid dynamics modeling, site and inflow characterization for hydrokinetic turbines, and inflow turbulence generation. The Acoustic Doppler Velocimeter (ADV) provides single-point temporally resolved data, that are used to characterize turbulent flows in rivers, seas, and oceans. However, ADV data are susceptible to contamination from various sources, including instrument noise, which is the intrinsic limit to the accuracy of acoustic velocity measurements. Due to the presence of instrument noise, the spectra obtained are altered at high frequencies. The focus of this study is to develop a robust and effective method for accurately estimating auto-spectral density functions from ADV data by reducing or removing the spectral contribution derived from instrument noise. For this purpose, the “Noise Auto-Correlation” (NAC) approach was developed, which exploits the correlation properties of instrument noise to identify and remove its contribution from spectra. The spectra estimated using the NAC approach exhibit increased fidelity and a slope of -5/3 in the inertial range, which is typically observed for turbulent flows. Finally, this study also compares the effectiveness of low-pass Gaussian filters in removing instrument noise with that of the NAC approach. For the data used in this study, both the NAC and Gaussian filter approaches are observed to be capable of removing instrument noise at higher frequencies from the spectra. However, the NAC results are closer to the expected frequency power of -5/3 in the inertial sub-range.

  2. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    NASA Astrophysics Data System (ADS)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs

  3. Structural Acoustic Prediction and Interior Noise Control Technology

    NASA Technical Reports Server (NTRS)

    Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)

    2001-01-01

    This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.

  4. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, D.S.; Scott, D.D.

    1993-12-28

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  5. Structure borne noise analysis using Helmholtz equation least squares based forced vibro acoustic components

    NASA Astrophysics Data System (ADS)

    Natarajan, Logesh Kumar

    This dissertation presents a structure-borne noise analysis technology that is focused on providing a cost-effective noise reduction strategy. Structure-borne sound is generated or transmitted through structural vibration; however, only a small portion of the vibration can effectively produce sound and radiate it to the far-field. Therefore, cost-effective noise reduction is reliant on identifying and suppressing the critical vibration components that are directly responsible for an undesired sound. However, current technologies cannot successfully identify these critical vibration components from the point of view of direct contribution to sound radiation and hence cannot guarantee the best cost-effective noise reduction. The technology developed here provides a strategy towards identifying the critical vibration components and methodically suppressing them to achieve a cost-effective noise reduction. The core of this technology is Helmholtz equation least squares (HELS) based nearfield acoustic holography method. In this study, the HELS formulations derived in spherical co-ordinates using spherical wave expansion functions utilize the input data of acoustic pressures measured in the nearfield of a vibrating object to reconstruct the vibro-acoustic responses on the source surface and acoustic quantities in the far field. Using these formulations, three steps were taken to achieve the goal. First, hybrid regularization techniques were developed to improve the reconstruction accuracy of normal surface velocity of the original HELS method. Second, correlations between the surface vibro-acoustic responses and acoustic radiation were factorized using singular value decomposition to obtain orthogonal basis known here as the forced vibro-acoustic components (F-VACs). The F-VACs enables one to identify the critical vibration components for sound radiation in a similar manner that modal decomposition identifies the critical natural modes in a structural vibration. Finally

  6. Efficiency of a Noise Barrier on the Ground with AN Acoustically Soft Cylindrical Edge

    NASA Astrophysics Data System (ADS)

    Okubo, T.; Fujiwara, K.

    1998-10-01

    It is well known that an absorptive obstacle installed on the edge of a noise barrier improves sound shielding efficiency without increasing the height of the barrier. This paper examines the sound shielding efficiency of a noise barrier with an acoustically “soft” cylindrical edge. “Soft” indicates that the sound pressure at the surface is zero; however, it is difficult to produce a soft surface using traditional materials. The authors previously reported that the “Waterwheel cylinder,” which consists of acoustic tubes arranged radially, approximates a soft surface cylinder. In the present study, a noise barrier with a Waterwheel cylinder installed on the edge of the barrier is investigated. Results of numerical simulations indicated that the Waterwheel cylinder improves the sound shielding efficiency of a noise barrier. The improvement is strongly frequency dependent; it exceeds 10 dB in a certain frequency range of an octave, but the Waterwheel decreases the noise shielding efficiency in another frequency range. The frequency characteristics of the waterwheel's effects are related to its self cross-sectional shape. The Waterwheel improves the efficiency much better in the effective frequency range of an octave as compared with an absorbing cylinder. All numerical calculations were carried out assuming an unrealistic two-dimensional sound field, but results of scale model experiments indicate that the calculations predict very accurately the efficiency of noise barriers in a three-dimensional sound field.

  7. Nonlinear Transport and Noise Properties of Acoustic Phonons

    NASA Astrophysics Data System (ADS)

    Walczak, Kamil

    We examine heat transport carried by acoustic phonons in molecular junctions composed of organic molecules coupled to two thermal baths of different temperatures. The phononic heat flux and its dynamical noise properties are analyzed within the scattering (Landauer) formalism with transmission probability function for acoustic phonons calculated within the method of atomistic Green's functions (AGF technique). The perturbative computational scheme is used to determine nonlinear corrections to phononic heat flux and its noise power spectral density with up to the second order terms with respect to temperature difference. Our results show the limited applicability of ballistic Fourier's law and fluctuation-dissipation theorem to heat transport in quantum systems. We also derive several noise-signal relations applicable to nanoscale heat flow carried by phonons, but valid for electrons as well. We also discuss the extension of the perturbative transport theory to higher order terms in order to address a huge variety of problems related to nonlinear thermal effects which may occur at nanoscale and at strongly non-equilibrium conditions with high-intensity heat fluxes. This work was supported by Pace University Start-up Grant.

  8. Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Dahl, Milo D.

    2012-01-01

    In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed.

  9. Propagation of high frequency jet noise using geometric acoustics

    NASA Technical Reports Server (NTRS)

    Khavaran, A.; Krejsa, E. A.

    1993-01-01

    Spherical directivity of noise radiated from a convecting quadrupole source embedded in an arbitrary spreading jet is obtained by ray-tracing methods of geometrical acoustics. The six propagation equations are solved in their general form in a rectangular coordinate system. The noise directivity in the far field is calculated by applying an iteration scheme that finds the required radiation angles at the source resulting in propagation through a given observer point. Factors influencing the zone of silence are investigated. The caustics of geometrical acoustics and the exact locations where it forms is demonstrated by studying the variation in ray tube area obtained from transport equation. For a ring source convecting along the center-axis of an axisymmetric jet, the polar directivity of the radiated noise is obtained by an integration with respect to azimuthal directivity of compact quadrupole sources distributed on the ring. The Doppler factor is shown to vary slightly from point to point on the ring. Finally the scaling of the directivity pattern with power -3 of Doppler factor is investigated and compared with experimental data.

  10. Considerations on the acoustic energy radiated by toothed gears. [model for calculating noise intensity

    NASA Technical Reports Server (NTRS)

    Popinceanu, N. G.; Kremmer, I.

    1974-01-01

    A mechano-acoustic model is reported for calculating acoustic energy radiated by a working gear. According to this model, a gear is an acoustic coublet formed of the two wheels. The wheel teeth generate cylindrical acoustic waves while the front surfaces of the teeth behave like vibrating pistons. Theoretical results are checked experimentally and good agreement is obtained with open gears. The experiments show that the air noise effect is negligible as compared with the structural noise transmitted to the gear box.

  11. Computational Aero-acoustics As a Tool For Turbo-machinery Noise Reduction

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2003-01-01

    This talk will provide an overview of the field of computational aero-acoustics and its use in fan noise prediction. After a brief history of computational fluid dynamics, some of the recent developments in computational aero-acoustics will be explored. Computational issues concerning sound wave production, propagation, and reflection in practical turbo-machinery applications will be discussed including: (a) High order/High Resolution Numerical Techniques. (b) High Resolution Boundary Conditions. [c] MIMD Parallel Computing. [d] Form of Governing Equations Useful for Simulations. In addition, the basic design of our Broadband Analysis Stator Simulator (BASS) code and its application to a 2 D rotor wake-stator interaction will be shown. An example of the noise produced by the wakes from a rotor impinging upon a stator cascade will be shown.

  12. Effects of long-chord acoustically treated stator vanes on fan noise. 2: Effect of acoustical treatment

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Scott, J. N.; Leonard, B. R.; Stakolich, E. G.

    1976-01-01

    A set of long chord stator vanes was designed to replace the vanes in an existing fan stage. The long chord stator vanes consisted of a turning section and axial extension pieces, all of which incorporated acoustic damping material. The long chord stator vanes were tested in two lengths, with the long version giving more noise reduction than the short, primarily because of the additional lining material. The noise reduction achieved with the acoustically treated long chord stator vanes was compared with the reduction achieved by an acoustically treated exhaust splitter. The long chord stator was at least as good as the splitter as a method for incorporating acoustic lining material. In addition, comparing an acoustic three ring inlet and an acoustic wall-only inlet discloses that the wall-only inlet could be used in an engine where the noise reduction requirements are not too stringent.

  13. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  14. Noise produced by the interaction of a rotor wake with a swept stator blade

    NASA Astrophysics Data System (ADS)

    Envia, E.; Kerschen, E. J.

    1984-10-01

    An analysis is developed for the noise generated by the interaction of rotor viscous wakes and a single swept stator vane. The stator vane spans a channel with infinite parallel walls which contains a uniform subsonic mean flow. High frequency wakes, for which the noise generation is concentrated at the vane leading edge, are considered. The general wake pattern is expanded in spanwise modes and solutions for each mode are derived using the Wiener-Hopf technique applied to the equations in the nonorthogonal coordinates. Closed form expressions for the acoustic farfield are obtained. The results of the analysis are used in parametric calculations of rotor viscous wake-stator vane interactions in order to study the effectiveness of sweep as a noise reduction mechanism. For the cases studied, moderate stator sweep angles produce sizeable reductions in the level of the farfield noise. The presence of rotor wake circumferential lean actually increases the noise reduction produced by moderate stator sweep angles.

  15. Acoustic confort at home: Noise emitted by house installations. Recommendations in order to avoid such noise

    NASA Astrophysics Data System (ADS)

    Jimenez, Santiago

    2002-11-01

    The present survey consists of the analysis and the study of the solutions used at present in the installations of water supply and elevators. It has been carried out from the acoustic point of view. In order to achieve a thorough study a pilot plant was built in the Laboratory of Acoustics of the School of Industrial Engineering of Terrassa. This pilot plant reproduced different kinds of installations of the water supply in houses. And it has allowed us to systematize the measures and also to determine the optimum solutions from the acoustic perspective. In accordance with the objectives and the process of the survey, the solutions regularly employed in the facilities of water supply and elevators in houses have been analyzed, and levels of noise associated to these facilities have been also presented. A summary of the results obtained in the plant has been included, according to diverse variables. Both the conclusions of the analysis of the data obtained in the laboratory and those of the installations of the houses have been also compared, which has allowed us to describe a series of suggestions with the purpose of reducing the acoustic emission of this type of installations, and increase the acoustic comfort at home. (To be presented in Spanish.)

  16. Publications in acoustics and noise control from the NASA Langley Research Center during 1940-1976

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1977-01-01

    Reference lists are presented of published research papers in various areas of acoustics and noise control for the period 1940-1976. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics; (2) propagation and operations; (3) rotating blade noise; (4) jet noise; (5) sonic boom; (6) flow-surface interaction noise; (7) human response; (8) structural response; (9) prediction; and (10) miscellaneous.

  17. Development of a Transient Acoustic Boundary Element Method to Predict the Noise Signature of Swimming Fish

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2015-11-01

    Animals have evolved flexible wings and fins to efficiently and quietly propel themselves through the air and water. The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates three essential features: the fluid mechanics, the elastic structural response, and the noise generation. This study focuses on the development, validation, and demonstration of a transient, two-dimensional acoustic boundary element solver accelerated by a fast multipole algorithm. The resulting acoustic solver is used to characterize the acoustic signature produced by a vortex street advecting over a NACA 0012 airfoil, which is representative of vortex-body interactions that occur in schools of swimming fish. Both 2S and 2P canonical vortex streets generated by fish are investigated over the range of Strouhal number 0 . 2 < St < 0 . 4 , and the acoustic signature of the airfoil is quantified. This study provides the first estimate of the noise signature of a school of swimming fish. Lehigh University CORE Grant.

  18. Effects of Classroom Acoustics and Self-Reported Noise Exposure on Teachers' Well-Being

    ERIC Educational Resources Information Center

    Kristiansen, Jesper; Persson, Roger; Lund, Soren Peter; Shibuya, Hitomi; Nielsen, Per Moberg

    2013-01-01

    Beyond noise annoyance and voice problems, little is known about the effects that noise and poor classroom acoustics have on teachers' health and well-being. The aim of this field study was therefore to investigate the effects of perceived noise exposure and classroom reverberation on measures of well-being. Data on self-reported noise exposure,…

  19. Spin noise spectroscopy from acoustic to GHz frequencies

    NASA Astrophysics Data System (ADS)

    Hübner, Jens

    2010-03-01

    Performing perturbation free measurements on semiconductor quantum systems has long been banished to textbooks on quantum mechanics. The emergent technique of spin noise spectroscopy is challenging this restriction. Empowered only by the ever present intrinsic spin fluctuation dynamics in thermal equilibrium, spin noise spectroscopy is capable to directly deduce several physical properties of carriers spins in semiconductors from these fluctuations. Originating from spin noise measurements on alkali metal vapors in quantum optics [1] the method has become a powerful technique to unravel the intrinsic spin dynamics in semiconductors [2]. In this talk I will present the recent progress of spin noise spectroscopy and how it is used to monitor the spin dynamic in semiconductor quantum wells at thermal equilibrium and as a consequence thereof directly detect the spatial dynamics of the carriers being marked with their own spin on a microscopic scale [3]. Further I will present measurements of how the non-perturbative nature of spin noise spectroscopy gives valuable insight into the delicate dependence of the spin relaxation time of electrons on doping density and temperature in semiconductors n-doped in the vicinity of the metal-insulator transition where hyperfine and intra-band depolarization compete [4]. Also the measurement bandwidth can be extended to GHz frequencies by ultrafast optical probing [5] yielding in conjunction with depth resolved spin noise measurements insights into the origin of inhomogeneous spin dephasing effects at high magnetic fields [5]. Additionally I will present how spin noise spectroscopy can be employed to spatially depth resolve doping profiles with optical resolution [6] and give a summary on easy to implement techniques of spin noise spectroscopy at acoustic frequencies in alkali metal vapors. [4pt] [1] E. Aleksandrov and V. Zapassky, Zh. Eksp. Teor. Fiz. 81, 132 (1981); S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. L. Smith

  20. Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum.

    PubMed

    Lugli, M; Yan, H Y; Fine, M L

    2003-04-01

    Two freshwater gobies Padogobius martensii and Gobius nigricans live in shallow (5-70 cm) stony streams, and males of both species produce courtship sounds. A previous study demonstrated high noise levels near waterfalls, a quiet window in the noise around 100 Hz at noisy locations, and extremely short-range propagation of noise and goby signals. To investigate the relationship of this acoustic environment to communication, we determined audiograms for both species and measured parameters of courtship sounds produced in the streams. We also deflated the swimbladder in P. martensii to determine its effect on frequency utilization in sound production and hearing. Both species are maximally sensitive at 100 Hz and produce low-frequency sounds with main energy from 70 to 100-150 Hz. Swimbladder deflation does not affect auditory threshold or dominant frequency of courtship sounds and has no or minor effects on sound amplitude. Therefore, both species utilize frequencies for hearing and sound production that fall within the low-frequency quiet region, and the equivalent relationship between auditory sensitivity and maximum ambient noise levels in both species further suggests that ambient noise shapes hearing sensitivity. PMID:12665991

  1. Computational AeroAcoustics for Fan Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Ed; Hixon, Ray; Dyson, Rodger; Huff, Dennis (Technical Monitor)

    2002-01-01

    An overview of the current state-of-the-art in computational aeroacoustics as applied to fan noise prediction at NASA Glenn is presented. Results from recent modeling efforts using three dimensional inviscid formulations in both frequency and time domains are summarized. In particular, the application of a frequency domain method, called LINFLUX, to the computation of rotor-stator interaction tone noise is reviewed and the influence of the background inviscid flow on the acoustic results is analyzed. It has been shown that the noise levels are very sensitive to the gradients of the mean flow near the surface and that the correct computation of these gradients for highly loaded airfoils is especially problematic using an inviscid formulation. The ongoing development of a finite difference time marching code that is based on a sixth order compact scheme is also reviewed. Preliminary results from the nonlinear computation of a gust-airfoil interaction model problem demonstrate the fidelity and accuracy of this approach. Spatial and temporal features of the code as well as its multi-block nature are discussed. Finally, latest results from an ongoing effort in the area of arbitrarily high order methods are reviewed and technical challenges associated with implementing correct high order boundary conditions are discussed and possible strategies for addressing these challenges ore outlined.

  2. Acoustic and electromagnetic noise from lighting in classrooms

    NASA Astrophysics Data System (ADS)

    Laszlo, Charles A.; Lashin, Jonathan; Hodgson, Murray R.

    2005-04-01

    Following complaints by hard-of-hearing students using assistive-listening devices, and their teachers, the hum-like noise generated by fluorescent lighting was investigated in classrooms and the school library in a typical school. This hum is caused by vibrations in the core of the magnetic ballasts. Measurements were made in several rooms without students present. Noise levels increased between 7 and 15 dB when fixtures using magnetic ballasts were switched on. Spectral analysis showed the presence of 30, 60, 120, and 240 Hz components. In rooms where electronic ballasts were installed, there was no increase in noise level when the lights were switched on. Since hearing aids and assistive-listening devices worn by students may also be influenced by magnetic fields, these were also surveyed in these classrooms. The magnetic fields generated by the lights were not significant, but near some wiring and electrical panels the interference was strong. In rooms with electronic ballasts some infrared assistive-listening devices picked up strong high-frequency hum. It is recommended that the effect of lighting fixtures and the electrical-distribution system be taken into account in the acoustical and communication design of classrooms.

  3. Estimates of acoustic noise generated by supply vessels working with oil-drilling platforms

    NASA Astrophysics Data System (ADS)

    Rutenko, A. N.; Ushchipovskii, V. G.

    2015-09-01

    The paper presents results on spatial measurements of acoustic noise generated by two types of tugs during their movement near the Molikpaq platform and in a dynamic positioning mode during operation with the PA-B platform. Based on the results of these measurements with the aid of simulation and preliminary research of the loss function conducted on acoustic profiles spanning from the platforms to the nearshore Piltun gray whale summer—fall feeding area, the spectra of equivalent point sources are constructed, which make it possible to construct the 1/3-octave spectra of anthropogenic noise at any point of the western profile and estimate the value of their level in a given frequency band with an accuracy of up to 2 dB. Field measurements have shown that in the dynamic positioning mode, the tugs generate 10 dB more noise than during movement; in fact, a diesel electric tug in both modes produced approximately 5 dB less noise than a diesel tug.

  4. Acoustic Array Development for Wind Turbine Noise Characterization

    SciTech Connect

    Buck, S.; Roadman, J.; Moriarty, P.; Palo, S.

    2013-11-01

    This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team from the University of Colorado Boulder. This design process is a continuation of the elliptical array design work done by Simley. A description of the array system design process is presented, including array shape design, mechanical design, design of electronics and the data acquisition system, and development of post-processing software. System testing and calibration methods are detailed. Results from the initial data acquisition campaign are offered and discussed. Issues faced during this initial deployment of the array are presented and potential remedies discussed.

  5. Acoustical and perceptual assessment of water sounds and their use over road traffic noise.

    PubMed

    Galbrun, Laurent; Ali, Tahrir T

    2013-01-01

    This paper examines physical and perceptual properties of water sounds generated by small to medium sized water features that have applications for road traffic noise masking. A large variety of water sounds were produced in the laboratory by varying design parameters. Analysis showed that estimations can be made on how these parameters affect sound pressure levels, frequency content, and psychoacoustic properties. Comparisons with road traffic noise showed that there is a mismatch between the frequency responses of traffic noise and water sounds, with the exception of waterfalls with high flow rates, which can generate large low frequency levels comparable to traffic noise. Perceptual assessments were carried out in the context of peacefulness and relaxation, where both water sounds and noise from dense road traffic were audible. Results showed that water sounds should be similar or not less than 3 dB below the road traffic noise level (confirming previous research), and that stream sounds tend to be preferred to fountain sounds, which are in turn preferred to waterfall sounds. Analysis made on groups of sounds also indicated that low sharpness and large temporal variations were preferred on average, although no acoustical or psychoacoustical parameter correlated well with the individual sound preferences. PMID:23297897

  6. Observation of the fundamental Nyquist noise limit in an ultra-high Q-factor cryogenic bulk acoustic wave cavity

    SciTech Connect

    Goryachev, Maxim Ivanov, Eugene N.; Tobar, Michael E.; Kann, Frank van; Galliou, Serge

    2014-10-13

    Thermal Nyquist noise fluctuations of high-Q bulk acoustic wave cavities have been observed at cryogenic temperatures with a DC superconducting quantum interference device amplifier. High Q modes with bandwidths of few tens of milliHz produce thermal fluctuations with a signal-to-noise ratio of up to 23 dB. The estimated effective temperature from the Nyquist noise is in good agreement with the physical temperature of the device, confirming the validity of the equivalent circuit model and the non-existence of any excess resonator self-noise. The measurements also confirm that the quality factor remains extremely high (Q > 10{sup 8} at low order overtones) for very weak (thermal) system motion at low temperatures, when compared to values measured with relatively strong external excitation. This result represents an enabling step towards operating such a high-Q acoustic device at the standard quantum limit.

  7. Weather observations through oceanic acoustic noise recorded by gliders

    NASA Astrophysics Data System (ADS)

    Cauchy, Pierre; Testor, Pierre; Guinet, Christophe; Gervaise, Cedric; Di Oro, Lucia; Ioana, Cornel; Mortier, Laurent; Bouin, Marie-Noelle; Beguery, Laurent; Klein, Patrice

    2013-04-01

    Offshore estimates of the meteorological parameters are unfortunately spurious when considering in-situ observtions only due to obvious observational limitations while their use would allow to calibrate satellite observations and to have better weather forecasts, if assimilated in numerical weather forecasting systems. The WOTAN (Weather Observations through Acoustic Noise) approach may be used to fill these gaps if coupled to the Global Ocean Observing Sytem which has now a global coverage thanks to many autonomous observing platforms. In this study we show first results from acoustic records collected by gliders deployed in the northwestern Mediterranean Sea in the framework of MOOSE. We show that using 3 descriptors at 5kHz, 8kHz, and 20kHz allows to extract the intensity of the wind and the precipitation when the glider is at depth. This approach based on the method presented by Barry & Nuysten (2004) is compared with meterological data from coastal weather stations and the offshore meteorological buoys from Meteo-France. We also show that there is a vane effect with the tail of the glider while at surface which allows to estimate the direction of the wind every so often. These observations coupled with the in-situ profiles on temperature and salinity profiles can allow to better study air-sea interactions.

  8. Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload

    NASA Technical Reports Server (NTRS)

    Welsh, David; Smith, Holly; Wang, Shuo

    2010-01-01

    Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.

  9. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  10. Prediction of acoustic scattering in the time domain and its applications to rotorcraft noise

    NASA Astrophysics Data System (ADS)

    Lee, Seongkyu

    . The predictions are found to be in excellent agreement with the exact solutions. The effect of the computational parameters including the number of surface mesh points, the number of equivalent sources, and the position of equivalent sources, etc, on the prediction is investigated and optimum parameters are presented. Acoustic scattering of sound from a moving source by a stationary body is studied to demonstrate scattering of an aperiodic signal. Acoustic scattering of sound produced by a moving source by a moving body is analyzed and the effect of the moving body on the scattered field is shown. The numerical method is used to predict acoustic scattering of Bo105 helicopter rotor noise in the time domain. The time-domain code results of SPL are validated against the results obtained by the FSC. The effect of the geometry of the scattering body on the scattering of rotor noise is presented. Acoustic scattering of an impulsive noise is investigated to simulate main rotor BVI noise and its significance is addressed. From the computation of a range of frequencies in a single computation, computational time saving was achieved by a factor of about 200 compared to the frequency-domain approach.

  11. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  12. Acoustic and Perceptual Characteristics of Vowels Produced during Simultaneous Communication

    ERIC Educational Resources Information Center

    Schiavetti, Nicholas; Metz, Dale Evan; Whitehead, Robert L.; Brown, Shannon; Borges, Janie; Rivera, Sara; Schultz, Christine

    2004-01-01

    This study investigated the acoustical and perceptual characteristics of vowels in speech produced during simultaneous communication (SC). Twelve normal hearing, experienced sign language users were recorded under SC and speech alone (SA) conditions speaking a set of sentences containing monosyllabic words designed for measurement of vowel…

  13. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    SciTech Connect

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  14. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements.

    PubMed

    Hugo, Ronald J; Nowlin, Scott R; Hahn, Ila L; Eaton, Frank D; McCrae, Kim A

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence. PMID:12558258

  15. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations

    PubMed Central

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J.

    2015-01-01

    Speakers adjust their vocal effort when communicating in different room acoustic and noise conditions and when instructed to speak at different volumes. The present paper reports on the effects of voice style, noise level, and acoustic feedback on vocal effort, evaluated as sound pressure level, and self-reported vocal fatigue, comfort, and control. Speakers increased their level in the presence of babble and when instructed to talk in a loud style, and lowered it when acoustic feedback was increased and when talking in a soft style. Self-reported responses indicated a preference for the normal style without babble noise. PMID:26723357

  16. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements

    NASA Astrophysics Data System (ADS)

    Hugo, Ronald J.; Nowlin, Scott R.; Hahn, Ila L.; Eaton, Frank D.; McCrae, Kim A.

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence.

  17. Automated acoustic intensity measurements and the effect of gear tooth profile on noise

    NASA Technical Reports Server (NTRS)

    Atherton, William J.; Pintz, Adam; Lewicki, David G.

    1987-01-01

    Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.

  18. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations.

    PubMed

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J

    2015-12-01

    Speakers adjust their vocal effort when communicating in different room acoustic and noise conditions and when instructed to speak at different volumes. The present paper reports on the effects of voice style, noise level, and acoustic feedback on vocal effort, evaluated as sound pressure level, and self-reported vocal fatigue, comfort, and control. Speakers increased their level in the presence of babble and when instructed to talk in a loud style, and lowered it when acoustic feedback was increased and when talking in a soft style. Self-reported responses indicated a preference for the normal style without babble noise. PMID:26723357

  19. Acoustic vector sensor beamforming reduces masking from underwater industrial noise during passive monitoring.

    PubMed

    Thode, Aaron M; Kim, Katherine H; Norman, Robert G; Blackwell, Susanna B; Greene, Charles R

    2016-04-01

    Masking from industrial noise can hamper the ability to detect marine mammal sounds near industrial operations, whenever conventional (pressure sensor) hydrophones are used for passive acoustic monitoring. Using data collected from an autonomous recorder with directional capabilities (Directional Autonomous Seafloor Acoustic Recorder), deployed 4.1 km from an arctic drilling site in 2012, the authors demonstrate how conventional beamforming on an acoustic vector sensor can be used to suppress noise arriving from a narrow sector of geographic azimuths. Improvements in signal-to-noise ratio of up to 15 dB are demonstrated on bowhead whale calls, which were otherwise undetectable using conventional hydrophones. PMID:27106345

  20. Measurement resolution of noise directivity patterns from acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Conner, David A.

    1989-01-01

    The measurement resolution of noise directivity patterns from acoustic flight tests was investigated. Directivity angle resolution is affected by the data reduction parameters, the aircraft velocity and flyover altitude, and by deviations of the aircraft from the desired flight path. Equations are developed which determine bounds for the lateral and longitudinal directivity angle resolution as a function of the nominal directivity angle. The equations are applied to a flight test data base and the effects of several flight conditions and data reduction parameters on the directivity angle resolution are presented. The maximum directivity angle resolution typically occurs when the aircraft is at or near the overhead position. In general, directivity angle resolution improves with decreasing velocity, increasing altitude, increasing sampling rate, decreasing block size, and decreasing block averages. Deviations from the desired ideal flight path will increase the resolution. For the flight experiment considered in this study, an average of two flyovers were required at each test condition to obtain an acceptable flight path. The ability of the pilot to maintain the flight track improved with decreasing altitude, decreasing velocity, and practice. Due to the prevailing wind conditions, yaw angles of as much as 20 deg were required to maintain the desired flight path.

  1. Distortion-rotor interaction noise produced by a drooped inlet

    NASA Technical Reports Server (NTRS)

    Smith, E. B.; Moore, M. T.; Gliebe, P. R.

    1980-01-01

    The 'drooped' inlet used on most wing mounted engines produces a wall static pressure distortion at the fan face of about plus or minus 2%. The interaction of the fan rotor with this fixed distortion pattern produces blade passing frequency and harmonic tone levels in flight which contribute to forward radiated engine noise spectra. Data from a wind tunnel test, using both a drooped inlet and an inlet with no droop, show large changes in forward radiated noise levels over a limited fan speed range. An analytical model of this fan noise mechanism is developed and is used to account for the major features of the measured results.

  2. Distortion-rotor interaction noise produced by a drooped inlet

    NASA Astrophysics Data System (ADS)

    Smith, E. B.; Moore, M. T.; Gliebe, P. R.

    1980-06-01

    The 'drooped' inlet used on most wing mounted engines produces a wall static pressure distortion at the fan face of about plus or minus 2%. The interaction of the fan rotor with this fixed distortion pattern produces blade passing frequency and harmonic tone levels in flight which contribute to forward radiated engine noise spectra. Data from a wind tunnel test, using both a drooped inlet and an inlet with no droop, show large changes in forward radiated noise levels over a limited fan speed range. An analytical model of this fan noise mechanism is developed and is used to account for the major features of the measured results.

  3. Publications in acoustics and noise control from the NASA Langley Research Center during 1940 - 1974

    NASA Technical Reports Server (NTRS)

    Smith, G. C. (Compiler); Laneave, J. N. (Compiler)

    1975-01-01

    This document contains reference lists of published Langley Research Center papers in various areas of acoustics and noise control for the period 1940-1974. The research work was performed either in-house by the center staff or by other personnel supported entirely or in part by grants or contracts. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics, (2) Propagation and operations, (3) Rotating blade noise, (4) Jet noise, (5) Sonic boom, (6) Flow-surface interaction noise, (7) Human response, and (8) Structural response.

  4. Directional acoustic measurements by laser Doppler velocimeters. [for jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Overbey, R. L.; Testerman, M. K.

    1976-01-01

    Laser Doppler velocimeters (LDVs) were used as velocity microphones to measure sound pressure level in the range of 90-130 db, spectral components, and two-point cross correlation functions for acoustic noise source identification. Close agreement between LDV and microphone data is observed. It was concluded that directional sensitivity and the ability to measure remotely make LDVs useful tools for acoustic measurement where placement of any physical probe is difficult or undesirable, as in the diagnosis of jet aircraft noise.

  5. Flight Acoustic Testing and Data Acquisition For the Rotor Noise Model (RNM)

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Burley, Casey L.; Smith, Charles D.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the Acoustics Week flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  6. Flight Acoustic Testing and For the Rotorcraft Noise Data Acquisition Model (RNM)

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Smith, Charles D.; Conner, David A.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the "Acoustics Week" flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  7. Aircraft interior noise prediction using a structural-acoustic analogy in NASTRAN modal synthesis

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Marulo, Francesco

    1988-01-01

    The noise induced inside a cylindrical fuselage model by shaker excitation is investigated theoretically and experimentally. The NASTRAN modal-synthesis program is used in the theoretical analysis, and the predictions are compared with experimental measurements in extensive graphs. Good general agreement is obtained, but the need for further refinements to account for acoustic-cavity damping and structural-acoustic interaction is indicated.

  8. Parallel feedback active noise control of MRI acoustic noise with signal decomposition using hybrid RLS-NLMS adaptive algorithms.

    PubMed

    Ganguly, Anshuman; Krishna Vemuri, Sri Hari; Panahi, Issa

    2014-01-01

    This paper presents a cost-effective adaptive feedback Active Noise Control (FANC) method for controlling functional Magnetic Resonance Imaging (fMRI) acoustic noise by decomposing it into dominant periodic components and residual random components. Periodicity of fMRI acoustic noise is exploited by using linear prediction (LP) filtering to achieve signal decomposition. A hybrid combination of adaptive filters-Recursive Least Squares (RLS) and Normalized Least Mean Squares (NLMS) are then used to effectively control each component separately. Performance of the proposed FANC system is analyzed and Noise attenuation levels (NAL) up to 32.27 dB obtained by simulation are presented which confirm the effectiveness of the proposed FANC method. PMID:25570676

  9. Acoustical and Perceptual Comparison of Noise Reduction and Compression in Hearing Aids

    ERIC Educational Resources Information Center

    Brons, Inge; Houben, Rolph; Dreschler, Wouter A.

    2015-01-01

    Purpose: Noise reduction and dynamic-range compression are generally applied together in hearing aids but may have opposite effects on amplification. This study evaluated the acoustical and perceptual effects of separate and combined processing of noise reduction and compression. Design: Recordings of the output of 4 hearing aids for speech in…

  10. An objective method and measuring equipment for noise control and acoustic diagnostics of motorcars. [acoustic diagnostics on automobile engines

    NASA Technical Reports Server (NTRS)

    Kacprowski, J.; Motylewski, J.; Miazga, J.

    1974-01-01

    An objective method and apparatus for noise control and acoustic diagnostics of motorcar engines are reported. The method and apparatus let us know whether the noisiness of the vehicle under test exceeds the admissible threshold levels given by appropriate standards and if so what is the main source of the excessive noise. The method consists in measuring both the overall noise level and the sound pressure levels in definite frequency bands while the engine speed is controlled as well and may be fixed at prescribed values. Whenever the individually adjusted threshold level has been exceeded in any frequency band, a self-sustaining control signal is sent.

  11. Passive acoustic observations of tide height in the Iroise Sea using ambient noise.

    PubMed

    Kinda, G Bazile; Bonnel, Julien

    2015-09-01

    Considering a broadband motionless source in a waveguide with a depth that varies with time, the time-frequency representation of the acoustic intensity shows a striation pattern than can be explained using the depth-frequency waveguide invariant. This phenomenon is used here to describe acoustic data recorded in the Iroise Sea, where intense tides occur. The originality of this study is that the acoustic data consist of only ambient noise. The best hypothesis is that these striations are created by distant marine traffic in the Bay of Brest, and the results suggest that tide height can be monitored using long-term passive acoustics. PMID:26428830

  12. A First Look at the DGEN380 Engine Acoustic Data from a Core-Noise Perspective

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2015-01-01

    This work is a first look at acoustic data acquired in the NASA Glenn Research Center Aero-Acoustic Propulsion Laboratory using the Price Induction DGEN380 small turbofan engine, with particular emphasis on broadband combustor (core) noise. Combustor noise is detected by using a two-signal source separation technique employing one engine-internal sensor and one semi-far-field microphone. Combustor noise is an important core-noise component and is likely to become a more prominent contributor to overall airport community noise due to turbofan design trends, expected aircraft configuration changes, and advances in fan-noise-mitigation techniques. This work was carried out under the NASA Fundamental Aeronautics Program, Fixed Wing Project, Quiet Performance Subproject

  13. Quantitative Measures of Anthropogenic Noise on Harbor Porpoises: Testing the Reliability of Acoustic Tag Recordings.

    PubMed

    Wisniewska, Danuta M; Teilmann, Jonas; Hermannsen, Line; Johnson, Mark; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-01-01

    In recent years, several sound and movement recording tags have been developed to sample the acoustic field experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal's orientation in the sound field affect the reliability of on-animal recordings as proxies for actual exposure. Here, we quantify sound exposure levels recorded with a DTAG-3 tag on a captive harbor porpoise exposed to vessel noise in a controlled acoustic environment. Results show that flow noise is limiting onboard noise recordings, whereas no evidence of body shading has been found for frequencies of 2-20 kHz. PMID:26611092

  14. Noise control using a plate radiator and an acoustic resonator

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor)

    1996-01-01

    An active noise control subassembly for reducing noise caused by a source (such as an aircraft engine) independent of the subassembly. A noise radiating panel is bendably vibratable to generate a panel noise canceling at least a portion of the source noise. A piezoceramic actuator plate is connected to the panel. A front plate is spaced apart from the panel and the first plate, is positioned generally between the source noise and the panel, and has a sound exit port. A first pair of spaced-apart side walls each generally abut the panel and the front plate so as to generally enclose a front cavity to define a resonator.

  15. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  16. Acoustical analysis of Spanish vowels produced by laryngectomized subjects.

    PubMed

    Cervera, T; Miralles, J L; González-Alvarez, J

    2001-10-01

    The purpose of this study was to describe the acoustic characteristics of Spanish vowels in subjects who had undergone a total laryngectomy and to compare the results with those obtained in a control group of subjects who spoke normally. Our results are discussed in relation to those obtained in previous studies with English-speaking laryngectomized patients. The comparison between English and Spanish, which diFfer widely in the size of their vowel inventories, will help us to determine specific or universal vowel production characteristics in these patients. Our second objective was to relate the acoustic properties of these vowels to the perceptual data obtained in our previous work (J. L. Miralles & T. Cervera, 1995). In that study, results indicated that vowels produced by alaryngeal speakers were well perceived in word context. Vowels were produced in CVCV word context by two groups of patients who had undergone laryngectomy: tracheoesophageal speakers (TES) and esophageal speakers. In addition a control group of normal talkers was included. Audio recordings of 24 Spanish words produced by each speaker were analyzed using CSL (Kay Elemetrics). Results showed that F1, F2, and vowel duration of alaryngeal speakers differ significantly from normal values. In general, laryngectomized patients produce vowels with higher formant frequencies and longer durations than the group of laryngeal subjects. Thus, the data indicate modifications either in the frequency or temporal domain, following the same tendency found in previous studies with English-speaking laryngectomized speakers. PMID:11708538

  17. Single stage, low noise advanced technology fan. Volume 3: Acoustic design

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Mishler, R. B.

    1976-01-01

    The acoustic design for a half-scale fan vehicle, which would have application on an advanced transport aircraft, is described. The single stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec). The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise is accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. Predicted unsuppressed and suppressed fore and aft maximum perceived noise levels indicate that the cutback condition is the most critical with respect to the goal, which is probably unattainable for that condition. This is also true for aft radiated noise in the approach condition.

  18. Advantages from bilateral hearing in speech perception in noise with simulated cochlear implants and residual acoustic hearing.

    PubMed

    Schoof, Tim; Green, Tim; Faulkner, Andrew; Rosen, Stuart

    2013-02-01

    Acoustic simulations were used to study the contributions of spatial hearing that may arise from combining a cochlear implant with either a second implant or contralateral residual low-frequency acoustic hearing. Speech reception thresholds (SRTs) were measured in twenty-talker babble. Spatial separation of speech and noise was simulated using a spherical head model. While low-frequency acoustic information contralateral to the implant simulation produced substantially better SRTs there was no effect of spatial cues on SRT, even when interaural differences were artificially enhanced. Simulated bilateral implants showed a significant head shadow effect, but no binaural unmasking based on interaural time differences, and weak, inconsistent overall spatial release from masking. There was also a small but significant non-spatial summation effect. It appears that typical cochlear implant speech processing strategies may substantially reduce the utility of spatial cues, even in the absence of degraded neural processing arising from auditory deprivation. PMID:23363118

  19. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  20. Acoustical Specification of New Equipment with Respect to Noise Policy

    NASA Astrophysics Data System (ADS)

    Rusko, Miroslav; Biľová, Monika; Lumnitzer, Ervin

    2011-01-01

    Increasingly, the Slovakian and European occupational health and safety legislation requires designers, manufacturers and suppliers of industrial plants and equipment to minimise hazards, such as excessive noise associated with their products, and to provide information about potential hazards. Even so, noise is still often overlooked with the result that the working environment is needlessly noisy. The purpose of this paper is to: - provide guidelines for the preparation of noise specifications; - show how to calculate the maximum acceptable noise level for new equipment; - show how to interpret noise information provided by suppliers.

  1. Experimental study of coaxial nozzle exhaust noise. [acoustic measurements

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.; Stone, J. R.

    1979-01-01

    Experimental results are presented for static acoustic model tests of various geometrical configurations of coaxial nozzles operating over a range of flow conditions. The geometrical configurations consisted of nozzles with coplanar and non-coplanar exit planes and various exhaust area ratios. Primary and secondary nozzle flows were varied independently over a range of nozzle pressure ratios from 1.4 to 3.0 and gas temperatures from 280 to 1100 K. Acoustic data are presented for the conventional mode of coaxial nozzle operation as well as for the inverted velocity profile mode. Comparisons are presented to show the effect of configuration and flow changes on the acoustic characteristics of the nozzles.

  2. Beaked whale (Mesoplodon densirostris) passive acoustic detection in increasing ambient noise.

    PubMed

    Ward, Jessica; Jarvis, Susan; Moretti, David; Morrissey, Ronald; Dimarzio, Nancy; Johnson, Mark; Tyack, Peter; Thomas, Len; Marques, Tiago

    2011-02-01

    Passive acoustic detection is being increasingly used to monitor visually cryptic cetaceans such as Blainville's beaked whales (Mesoplodon densirostris) that may be especially sensitive to underwater sound. The efficacy of passive acoustic detection is traditionally characterized by the probability of detecting the animal's sound emissions as a function of signal-to-noise ratio. The probability of detection can be predicted using accepted, but not necessarily accurate, models of the underwater acoustic environment. Recent field studies combining far-field hydrophone arrays with on-animal acoustic recording tags have yielded the location and time of each sound emission from tagged animals, enabling in-situ measurements of the probability of detection. However, tagging studies can only take place in calm seas and so do not reflect the full range of ambient noise conditions under which passive acoustic detection may be used. Increased surface-generated noise from wind and wave interaction degrades the signal-to-noise ratio of animal sound receptions at a given distance leading to a reduction in probability of detection. This paper presents a case study simulating the effect of increasing ambient noise on detection of M. densirostris foraging clicks recorded from a tagged whale swimming in the vicinity of a deep-water, bottom-mounted hydrophone array. PMID:21361425

  3. The Acoustic Analogy and the Prediction of the Noise of Rotating Blades

    NASA Astrophysics Data System (ADS)

    Farassat, F.; Brentner, Kenneth S.

    The acoustic analogy was introduced into acoustics by Lighthill in 1952 to understand and predict the noise generated by the jet of an aircraft turbojet engine. The idea behind the acoustic analogy is simple but powerful. The entire noise generation process is mathematically reduced to the study of wave propagation in a quiescent medium with the effect of flow replaced by quadrupole sources. In jet noise theory, Lighthill was able to obtain significant and useful qualitative results from the acoustic analogy. The acoustic analogy has influenced the theoretical and experimental research on jet noise since the early 1950s. This paper, however, focuses on another area in which the acoustic analogy has had a significant impact, namely, the prediction of the noise of rotating machinery. The governing equation for this problem was derived by Ffowcs Williams and Hawkings in 1969. This equation is a wave equation for perturbation density with three source terms, which have become known as thickness, loading, and the quadrupole source terms, respectively. The Ffowcs Williams-Hawkings (FW-H) equation has been used for the successful prediction of the noise of helicopter rotors, propellers, and fans. Several reasons account for the success and popularity of the acoustic analogy. First, the problems of acoustics and aerodynamics are separated. Second, because the FW-H equation is linear, powerful analytical methods from linear operator theory can be used to obtain closed-form solutions. Third, advances in digital computers and computational fluid dynamics algorithms have resulted in high-resolution near-field aerodynamic calculations that are suitable for noise prediction. We present some of the mathematical results for noise prediction based on the FW-H equation, including examples for helicopter rotors. In particular, we discuss the prediction of blade-vortex interaction noise and high-speed impulsive noise of helicopter rotors. For high-speed propellers, we briefly discuss

  4. Noise produced by turbulent flow into a rotor: Users manual for noise calculation

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.; Egolf, C. G.; Simonich, J. C.

    1989-01-01

    A users manual for a computer program for the calculation of noise produced by turbulent flow into a helicopter rotor is presented. These inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. Descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables are included. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program.

  5. Acoustical model and theory for predicting effects of environmental noise on people.

    PubMed

    Kryter, Karl D

    2009-06-01

    The Schultz [(1978). J. Acoust. Soc. Am. 64, 377-405]; Fidell et al. [(1991). J. Acoust. Soc. Am. 89, 221-233] and Finegold et al. [(1994). Noise Control Eng. 42, 25-30] curves present misleading research information regarding DENL/DENL levels of environmental noises from transportation vehicles and the impact of annoyance and associated adverse effects on people living in residential areas. The reasons are shown to be jointly due to (a) interpretations of early research data, (b) plotting of annoyance data for noise exposure from different types of transportation vehicles on a single set of coordinates, and (c) the assumption that the effective, as heard, levels of noise from different sources are proportional to day, night level (DNL)/day, evening night level (DENL) levels measured at a common-point outdoors. The subtraction of on-site attenuations from the measured outdoor levels of environmental noises used in the calculation of DNL/DENL provides new metrics, labeled EDNL/EDENL, for the calculation of the effective exposure levels of noises perceived as equaling annoying. Predictions of judged annoyance in residential areas from the noises of transportation vehicles are made with predicted errors of <1 dB EDNL/EDENL, compared to errors ranging from approximately 6 to approximately 14 dB by DNL/DENL. A joint neurological, physiological, and psychological theory, and an effective acoustical model for the prediction of public annoyance and related effects from exposures to environment noises are presented. PMID:19507953

  6. Experimental validation of numerical simulations for an acoustic liner in grazing flow: Self-noise and added drag

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Pastouchenko, Nikolai N.; Jones, Michael G.; Watson, Willie R.

    2014-06-01

    A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a rectangular flow duct with a 2 in. by 2.5 in. cross section. Spatial distribution of sound pressure levels and relative phases are measured on the wall opposite the liner in the presence of a Mach 0.3 grazing flow. The computer code is validated by comparing computed results with experimental measurements. Good agreements are found. The numerical simulation code is then used to investigate the physical properties of the acoustic liner. It is shown that an acoustic liner can produce self-noise in the presence of a grazing flow and that a feedback acoustic resonance mechanism is responsible for the generation of this liner self-noise. In addition, the same mechanism also creates additional liner drag. An estimate, based on numerical simulation data, indicates that for a resonant liner with a 10 percent open area ratio, the drag increase would be about 4 percent of the turbulent boundary layer drag over a flat wall.

  7. Acoustic and vibration response of a structure with added noise control treatment under various excitations.

    PubMed

    Rhazi, Dilal; Atalla, Noureddine

    2014-02-01

    The evaluation of the acoustic performance of noise control treatments is of great importance in many engineering applications, e.g., aircraft, automotive, and building acoustics applications. Numerical methods such as finite- and boundary elements allow for the study of complex structures with added noise control treatment. However, these methods are computationally expensive when used for complex structures. At an early stage of the acoustic trim design process, many industries look for simple and easy to use tools that provide sufficient physical insight that can help to formulate design criteria. The paper presents a simple and tractable approach for the acoustic design of noise control treatments. It presents and compares two transfer matrix-based methods to investigate the vibroacoustic behavior of noise control treatments. The first is based on a modal approach, while the second is based on wave-number space decomposition. In addition to the classical rain-on-the-roof and diffuse acoustic field excitations, the paper also addresses turbulent boundary layer and point source (monopole) excitations. Various examples are presented and compared to a finite element calculation to validate the methodology and to confirm its relevance along with its limitations. PMID:25234878

  8. Neural underpinnings of background acoustic noise in normal aging and mild cognitive impairment.

    PubMed

    Sinanaj, Indrit; Montandon, Marie-Louise; Rodriguez, Cristelle; Herrmann, François; Santini, Francesco; Haller, Sven; Giannakopoulos, Panteleimon

    2015-12-01

    Previous contributions in younger cohorts have revealed that reallocation of cerebral resources, a crucial mechanism for working memory (WM), may be disrupted by parallel demands of background acoustic noise suppression. To date, no study has explored the impact of such disruption on brain activation in elderly individuals with or without subtle cognitive deficits. We performed a functional Magnetic Resonance Imaging (fMRI) study in 23 cases (mean age=75.7 y.o., 16 men) with mild cognitive impairment (MCI) and 16 elderly healthy controls (HC, mean age=70.1 y.o., three men) using a 2-back WM task, under two distinct MRI background acoustic noise conditions (louder vs. lower noise echo-planar imaging). General linear models were used to assess brain activation as a function of group and noise. In both groups, lower background noise is associated with increased activation of the working memory network (WMN). A decrease of the normally observed deactivation of the default mode network (DMN) is found under louder noise in both groups. Unlike HC, MCI cases also show decreased deactivation of the DMN under both louder and lower background noise. Under louder noise, this decrease is observed in anterior parts of the DMN in HC, and in the posterior cingulate cortex in MCI cases. Our results suggest that background acoustic noise has a differential impact on WMN activation in normal aging as a function of the cognitive status. Only louder noise has a disruptive effect on the usually observed DMN deactivation during WM task performance in HC. In contrast, MCI cases show altered DMN reactivity even in the presence of lower noise. PMID:26391923

  9. Acoustic Noise Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect

    Roadman, J.; Huskey, A.

    2013-07-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the Viryd CS8 is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and binning by wind speed instead of regression analysis.

  10. Acoustic Noise Test Report for the SWIFT Wind Turbine in Boulder, CO

    SciTech Connect

    Roadman, J.; Huskey, A.

    2013-04-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the SWIFT is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and utilized binning by wind speed instead of regression analysis.

  11. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  12. Arousal from sleep by noises from aircraft with and without acoustically treated nacelles

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Peeler, D. J.; Dobbs, M. E.

    1973-01-01

    The electroencephalographic and behavioral responses during sleep of four subjects, aged 46 to 58 years, to three types of noises were tested over 14 consecutive nights. The stimuli were two DC-8 jet landing noises (each 30 seconds in duration and coming from DC-8 aircraft with and without acoustical treatment on the engine nacelles) and a 4-second burst of pink noise. Each of the noises was tested at nominal intensities of 61 and 79 dBA. Other physical descriptors of the noises were measured or computed. The results indicate that for an equivalent degree of sleep disruption, noise form the jet aircraft with untreated nacelles must be about 6 dBA less intense than the jet with acoustically treated nacelles. Predictions of the effects of noise on sleep appear, tentatively, to attain the highest accuracy when the physical descriptor of noise intensity includes information about the impulsive characteristics of that noise as well as its long-term spectral content.

  13. Frequency-space prediction filtering for acoustic clutter and random noise attenuation in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Shin, Junseob; Huang, Lianjie

    2016-04-01

    Frequency-space prediction filtering (FXPF), also known as FX deconvolution, is a technique originally developed for random noise attenuation in seismic imaging. FXPF attempts to reduce random noise in seismic data by modeling only real signals that appear as linear or quasilinear events in the aperture domain. In medical ultrasound imaging, channel radio frequency (RF) signals from the main lobe appear as horizontal events after receive delays are applied while acoustic clutter signals from off-axis scatterers and electronic noise do not. Therefore, FXPF is suitable for preserving only the main-lobe signals and attenuating the unwanted contributions from clutter and random noise in medical ultrasound imaging. We adapt FXPF to ultrasound imaging, and evaluate its performance using simulated data sets from a point target and an anechoic cyst. Our simulation results show that using only 5 iterations of FXPF achieves contrast-to-noise ratio (CNR) improvements of 67 % in a simulated noise-free anechoic cyst and 228 % in a simulated anechoic cyst contaminated with random noise of 15 dB signal-to-noise ratio (SNR). Our findings suggest that ultrasound imaging with FXPF attenuates contributions from both acoustic clutter and random noise and therefore, FXPF has great potential to improve ultrasound image contrast for better visualization of important anatomical structures and detection of diseased conditions.

  14. Towards a Comprehensive Model of Jet Noise Using an Acoustic Analogy and Steady RANS Solutions

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    An acoustic analogy is developed to predict the noise from jet flows. It contains two source models that independently predict the noise from turbulence and shock wave shear layer interactions. The acoustic analogy is based on the Euler equations and separates the sources from propagation. Propagation effects are taken into account by calculating the vector Green's function of the linearized Euler equations. The sources are modeled following the work of Tam and Auriault, Morris and Boluriaan, and Morris and Miller. A statistical model of the two-point cross-correlation of the velocity fluctuations is used to describe the turbulence. The acoustic analogy attempts to take into account the correct scaling of the sources for a wide range of nozzle pressure and temperature ratios. It does not make assumptions regarding fine- or large-scale turbulent noise sources, self- or shear-noise, or convective amplification. The acoustic analogy is partially informed by three-dimensional steady Reynolds-Averaged Navier-Stokes solutions that include the nozzle geometry. The predictions are compared with experiments of jets operating subsonically through supersonically and at unheated and heated temperatures. Predictions generally capture the scaling of both mixing noise and BBSAN for the conditions examined, but some discrepancies remain that are due to the accuracy of the steady RANS turbulence model closure, the equivalent sources, and the use of a simplified vector Green's function solver of the linearized Euler equations.

  15. Acoustic-optic spectrometer. 1: Noise contributions and system consideration

    NASA Technical Reports Server (NTRS)

    Chin, G.

    1984-01-01

    An acousto-optic spectrometer (AOS) used as an IF spectrometer to a heterodyne receiver is modeled as a total power multi-channel integrating receiver. Systematic noise contributions common to all total power, time integrating receivers, as well as noise terms unique to the use of optical elements and photo-detectors in an AOS are identified and discussed. In addition, degradation of signal-to-noise ratio of an unbalanced Dicke receiver compared to a balanced Dicke receiver is found to be due to gain calibration processing and is not an instrumental effect.

  16. The electrical properties of a planar coil electromagnetic acoustic transducer and their implications for noise performance

    NASA Astrophysics Data System (ADS)

    Seher, Matthias; Challis, Richard

    2016-02-01

    This paper is concerned with the electrical properties of an electromagnetic acoustic transducer (EMAT) formed of a flat spiral coil coupled to steel sheet components and operating over a narrow band of frequencies around 50 kHz, well below significant resonances. The electromagnetic skin effect is a significant contributor to the terminal impedance of the EMAT and hence to signal sensitivity, Johnson noise generation and the achievable signal-to-noise ratios (SNR). A transformer model is developed to simulate these effects and to assist in the optimization of the SNR. In this analysis Johnson noise in the system is compared to the unknown emf generated in the eddy current path by an incident acoustic wave to yield a fundamental SNR. The attainable SNR of the whole system is normalized to this in the form of a noise figure.

  17. Active Structural Acoustic Control of Interior Noise on a Raytheon 1900D

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran; Sullivan, Brenda; Cline, John

    2000-01-01

    An active structural acoustic control system has been demonstrated on a Raytheon Aircraft Company 1900D turboprop airliner. Both single frequency and multi-frequency control of the blade passage frequency and its harmonics was accomplished. The control algorithm was a variant of the popular filtered-x LMS implemented in the principal component domain. The control system consisted of 21 inertial actuators and 32 microphones. The actuators were mounted to the aircraft's ring frames. The microphones were distributed uniformly throughout the interior at head height, both seated and standing. Actuator locations were selected using a combinatorial search optimization algorithm. The control system achieved a 14 dB noise reduction of the blade passage frequency during single frequency tests. Multi-frequency control of the first 1st, 2nd and 3rd harmonics resulted in 10.2 dB, 3.3 dB and 1.6 dB noise reductions respectively. These results fall short of the predictions which were produced by the optimization algorithm (13.5 dB, 8.6 dB and 6.3 dB). The optimization was based on actuator transfer functions taken on the ground and it is postulated that cabin pressurization at flight altitude was a factor in this discrepancy.

  18. Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.

    2008-01-01

    This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.

  19. Background noise cancellation for improved acoustic detection of manatee vocalizations.

    PubMed

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O

    2005-06-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. PMID:16018460

  20. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. Practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrowband signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat.

  1. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-06-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. .

  2. Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops

    NASA Astrophysics Data System (ADS)

    Jones, Lloyd E.; Sandberg, Richard D.

    2011-12-01

    In this study the role of acoustic feedback instabilities in the tonal airfoil self-noise phenomenon is investigated. First, direct numerical simulations are conducted of the flow around a NACA-0012 airfoil at Re=1×105 and four angles of attack. At the two lowest angles of attack considered the airfoil self-noise exhibits a clear tonal contribution, whereas at the two higher angles of attack the tonal contribution becomes less significant in comparison to the broadband noise. Classical linear stability analysis of time-averaged boundary layer profiles shows that the tonal noise occurs at a frequency significantly lower than that of the most convectively amplified instability wave. Two-dimensional linear stability analysis of the time-averaged flowfield is then performed, illustrating the presence of an acoustic feedback loop involving the airfoil trailing edge. The feedback loop is found to be unstable only for the cases where tonal self-noise is prominent, and is found to self-select a frequency almost identical to that of the tonal self-noise. The constituent mechanisms of the acoustic feedback loop are considered, which appear to explain why the preferred frequency is lower than that of the most convectively amplified instability wave.

  3. An Application of the Acoustic Similarity Law to the Numerical Analysis of Centrifugal Fan Noise

    NASA Astrophysics Data System (ADS)

    Jeon, Wan-Ho; Lee, Duck-Joo; Rhee, Huinam

    Centrifugal fans, which are frequently used in our daily lives and various industries, usually make severe noise problems. Generally, the centrifugal fan noise consists of tones at the blade passing frequency and its higher harmonics. These tonal sounds come from the interaction between the flow discharged from the impeller and the cutoff in the casing. Prediction of the noise from a centrifugal fan becomes more necessary to optimize the design to meet both the performance and noise criteria. However, only some limited studies on noise prediction method exist because there are difficulties in obtaining detailed information about the flow field and casing effect on noise radiation. This paper aims to investigate the noise generation mechanism of a centrifugal fan and to develop a prediction method for the unsteady flow and acoustic pressure fields. In order to do this, a numerical analysis method using acoustic similarity law is proposed, and it is verified that the method can predict the noise generation mechanism very well by comparing the predicted results with available experimental results.

  4. Relationships between non-acoustic factors and subjective reactions to floor impact noise in apartment buildings.

    PubMed

    Park, Sang Hee; Lee, Pyoung Jik; Yang, Kwan Seop; Kim, Kyoung Woo

    2016-03-01

    The aim of this study was to provide an understanding of how residents in apartment buildings perceive and react to impact sounds coming from the upstairs neighbours' dwellings. Based on existing theoretical and empirical studies on environmental noise, a conceptual model was developed to explain relationships among noise annoyance and non-acoustic factors. The model was then tested using structural equation modelling with survey data from residents living in apartment buildings (N = 487). The findings showed that the conceptual model was consistent with other models developed for environmental noises. The results indicated that annoyance induced by floor impact noise was associated with perceived disturbance, coping, and self-reported health complaints. Noise sensitivity had a direct impact on perceived disturbance and an indirect impact on annoyance, and moderating variables affected the non-acoustic factors. Exposure to footstep noises increased the impact size of noise sensitivity to disturbance. Predictability, marital status, and house ownership were found to influence the relationship between attitudes towards authorities and coping. In addition, a negative attitude towards neighbours (i.e., the noise source) moderated the positive relationship between annoyance and coping. PMID:27036252

  5. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    PubMed

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy. PMID:26233001

  6. Passive localization of noise-producing targets using a compact volumetric array.

    PubMed

    Gebbie, John; Siderius, Martin; Nielsen, Peter L; Miller, James

    2014-07-01

    A technique is presented for passively localizing multiple noise-producing targets by cross-correlating the elevation beams of a compact volumetric array on separate bearings. A target's multipath structure inherently contains information about its range; however, unknown, random noise waveforms make time separation of individual arrivals difficult. Ocean ambient noise has previously been used to measure multipath delays to the seabed by cross-correlating the beams of a vertical line array [Siderius, Song, Gerstoft, Hodgkiss, Hursky, and Harrison, J. Acoust. Soc. Am. 127, 2193-2200 (2010)], but this methodology has not been applied to distant noise sources having non-vertical arrivals. The technique presented in this paper uses a compact volumetric array mounted to an autonomous underwater vehicle to measure the three-dimensional directionality and time delays of multipath arrivals, while adaptively rejecting clutter and multi-target interference. This is validated with experimental results in a shallow ocean environment in which a small workboat maneuvered in the vicinity. Short ranges could be estimated reliably using straight ray paths, but longer ranges required accounting for ray refraction. PMID:24993197

  7. Flap Side-Edge Noise: Acoustic Analysis of Sen's Model

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.; Martin, James E.

    1996-01-01

    The two-dimensional flap side-edge flow model developed by Sen is analyzed to reveal the noise production potential of the proposed mechanism. The model assumes that a vortex will form at the equilibrium position off the side edge of the flap. The vortex is then perturbed away from the equilibrium position by incoming turbulence causing it to oscillate and thus radiate sound. The noise field is calculated three-dimensionally by taking the flap to have a finite chord. Spectra and directivity of the farfield sound are presented. In addition, the effect of retarded time differences is evaluated. The parameters in the model are related to typical aircraft parameters and noise reduction possibilities are proposed.

  8. A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft

    NASA Astrophysics Data System (ADS)

    Jayachandran, V.; Bonilha, M. W.

    2003-03-01

    This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.

  9. Determination of acoustic attenuation in the Hudson River Estuary by means of ship noise observations.

    PubMed

    Roh, Heui-Seol; Sutin, Alexander; Bunin, Barry

    2008-06-01

    Analysis of sound propagation in a complex urban estuary has application to underwater threat detection systems, underwater communication, and acoustic tomography. One of the most important acoustic parameters, sound attenuation, was analyzed in the Hudson River near Manhattan using measurements of acoustic noise generated by passing ships and recorded by a fixed hydrophone. Analysis of the ship noise level for varying distances allowed estimation of the sound attenuation in the frequency band of 10-80 kHz. The effective attenuation coefficient representing the attenuation loss above cylindrical spreading loss had only slight frequency dependence and can be estimated by the frequency independent value of 0.058 dBm. PMID:18537300

  10. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine C

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor was evaluated. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penality. The NASA core suppressor without the spltter suppressed most of the core noise without any engine performance penalty.

  11. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine 'C'

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The purpose of the experimental program reported herein was to evaluate and compare the relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor, designed and built subsequently. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penalty. The NASA core suppressor without the splitter suppressed most of the core noise without any engine performance penalty.

  12. Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.

    PubMed

    André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. PMID:21665016

  13. Effects of noise and acoustics in schools on vocal health in teachers.

    PubMed

    Cutiva, Lady Catherine Cantor; Burdorf, Alex

    2015-01-01

    Previous studies on the influence of noise and acoustics in the classroom on voice symptoms among teachers have exclusively relied on self-reports. Since self-reported physical conditions may be biased, it is important to determine the role of objective measurements of noise and acoustics in the presence of voice symptoms. To assess the association between objectively measured and self-reported physical conditions at school with the presence of voice symptoms among teachers. In 12 public schools in Bogotα, we conducted a cross-sectional study among 682 Colombian school workers at 377 workplaces. After signed the informed consent, participants filled out a questionnaire on individual and work-related conditions and the nature and severity of voice symptoms in the past month. Short-term environmental measurements of sound levels, temperature, humidity, and reverberation time were conducted during visits at the workplaces, such as classrooms and offices. Logistic regression analysis was used to determine associations between work-related factors and voice symptoms. High noise levels outside schools (odds ratio [OR] = 1.83; 95% confidence interval [CI]: 1.12-2.99) and self-reported poor acoustics at the workplace (OR = 2.44; 95% CI: 1.88-3.53) were associated with voice symptoms. We found poor agreement between the objective measurements and self-reports of physical conditions at the workplace. This study indicates that noise and acoustics may play a role in the occurrence of voice symptoms among teachers. The poor agreement between objective measurements and self-reports of physical conditions indicate that these are different entities, which argue for inclusion of physical measurements of the working environment in studies on the influence of noise and acoustics on vocal health. PMID:25599754

  14. Effects of noise and acoustics in schools on vocal health in teachers

    PubMed Central

    Cutiva, Lady Catherine Cantor; Burdorf, Alex

    2015-01-01

    Previous studies on the influence of noise and acoustics in the classroom on voice symptoms among teachers have exclusively relied on self-reports. Since self-reported physical conditions may be biased, it is important to determine the role of objective measurements of noise and acoustics in the presence of voice symptoms. To assess the association between objectively measured and self-reported physical conditions at school with the presence of voice symptoms among teachers. In 12 public schools in Bogotá, we conducted a cross-sectional study among 682 Colombian school workers at 377 workplaces. After signed the informed consent, participants filled out a questionnaire on individual and work-related conditions and the nature and severity of voice symptoms in the past month. Short-term environmental measurements of sound levels, temperature, humidity, and reverberation time were conducted during visits at the workplaces, such as classrooms and offices. Logistic regression analysis was used to determine associations between work-related factors and voice symptoms. High noise levels outside schools (odds ratio [OR] = 1.83; 95% confidence interval [CI]: 1.12–2.99) and self-reported poor acoustics at the workplace (OR = 2.44; 95% CI: 1.88–3.53) were associated with voice symptoms. We found poor agreement between the objective measurements and self-reports of physical conditions at the workplace. This study indicates that noise and acoustics may play a role in the occurrence of voice symptoms among teachers. The poor agreement between objective measurements and self-reports of physical conditions indicate that these are different entities, which argue for inclusion of physical measurements of the working environment in studies on the influence of noise and acoustics on vocal health. PMID:25599754

  15. An investigation of acoustic noise requirements for the Space Station centrifuge facility

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy

    1994-01-01

    Acoustic noise emissions from the Space Station Freedom (SSF) centrifuge facility hardware represent a potential technical and programmatic risk to the project. The SSF program requires that no payload exceed a Noise Criterion 40 (NC-40) noise contour in any octave band between 63 Hz and 8 kHz as measured 2 feet from the equipment item. Past experience with life science experiment hardware indicates that this requirement will be difficult to meet. The crew has found noise levels on Spacelab flights to be unacceptably high. Many past Ames Spacelab life science payloads have required waivers because of excessive noise. The objectives of this study were (1) to develop an understanding of acoustic measurement theory, instruments, and technique, and (2) to characterize the noise emission of analogous Facility components and previously flown flight hardware. Test results from existing hardware were reviewed and analyzed. Measurements of the spectral and intensity characteristics of fans and other rotating machinery were performed. The literature was reviewed and contacts were made with NASA and industry organizations concerned with or performing research on noise control.

  16. Characterizing noise in nonhuman vocalizations: Acoustic analysis and human perception of barks by coyotes and dogs

    NASA Astrophysics Data System (ADS)

    Riede, Tobias; Mitchell, Brian R.; Tokuda, Isao; Owren, Michael J.

    2005-07-01

    Measuring noise as a component of mammalian vocalizations is of interest because of its potential relevance to the communicative function. However, methods for characterizing and quantifying noise are less well established than methods applicable to harmonically structured aspects of signals. Using barks of coyotes and domestic dogs, we compared six acoustic measures and studied how they are related to human perception of noisiness. Measures of harmonic-to-noise-ratio (HNR), percent voicing, and shimmer were found to be the best predictors of perceptual rating by human listeners. Both acoustics and perception indicated that noisiness was similar across coyote and dog barks, but within each species there was significant variation among the individual vocalizers. The advantages and disadvantages of the various measures are discussed.

  17. Reduction of gradient acoustic noise in MRI using SENSE-EPI.

    PubMed

    de Zwart, Jacco A; van Gelderen, Peter; Kellman, Peter; Duyn, Jeff H

    2002-08-01

    A new approach to reduce gradient acoustic noise levels in EPI experiments is presented. Using multichannel RF receive coils, combined with SENSE data acquisition and reconstruction, gradient slew-rates in single-shot EPI were reduced fourfold for rate-2 and ninefold for rate-3 SENSE. Multislice EPI experiments were performed on three different scanner platforms. With 3.4 mm in-plane resolution, measuring 6 slices per second (12 slices with 2000 ms TR), this resulted in average sound pressure level reductions of 11.3 dB(A) and 16.5 dB(A) for rate-2 and rate-3 SENSE, respectively. BOLD fMRI experiments, using visually paced finger-tapping paradigms, showed no detrimental effect of the acoustic noise reduction strategy on temporal noise levels and t scores. PMID:12202101

  18. Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators.

    PubMed

    Siemers, Björn M; Schaub, Andrea

    2011-06-01

    Noise pollution from human traffic networks and industrial activity impacts vast areas of our planet. While anthropogenic noise effects on animal communication are well documented, we have very limited understanding of noise impact on more complex ecosystem processes, such as predator-prey interactions, albeit urgently needed to devise mitigation measures. Here, we show that traffic noise decreases the foraging efficiency of an acoustic predator, the greater mouse-eared bat (Myotis myotis). These bats feed on large, ground-running arthropods that they find by listening to their faint rustling sounds. We measured the bats' foraging performance on a continuous scale of acoustically simulated highway distances in a behavioural experiment, designed to rule out confounding factors such as general noise avoidance. Successful foraging bouts decreased and search time drastically increased with proximity to the highway. At 7.5 m to the road, search time was increased by a factor of five. From this increase, we predict a 25-fold decrease in surveyed ground area and thus in foraging efficiency for a wild bat. As most of the bats' prey are predators themselves, the noise impact on the bats' foraging performance will have complex effects on the food web and ultimately on the ecosystem stability. Similar scenarios apply to other ecologically important and highly protected acoustic predators, e.g. owls. Our study provides the empirical basis for quantitative predictions of anthropogenic noise impacts on ecosystem processes. It highlights that an understanding of the effects of noise emissions and other forms of 'sensory pollution' are crucially important for the assessment of environmental impact of human activities. PMID:21084347

  19. Transient cavitation and acoustic emission produced by different laser lithotripters.

    PubMed

    Zhong, P; Tong, H L; Cocks, F H; Pearle, M S; Preminger, G M

    1998-08-01

    Transient cavitation and shockwave generation produced by pulsed-dye and holmium:YAG laser lithotripters were studied using high-speed photography and acoustic emission measurements. In addition, stone phantoms were used to compare the fragmentation efficiency of various laser and electrohydraulic lithotripters. The pulsed-dye laser, with a wavelength (504 nm) strongly absorbed by most stone materials but not by water, and a short pulse duration of approximately 1 microsec, induces plasma formation on the surface of the target calculi. Subsequently, the rapid expansion of the plasma forms a cavitation bubble, which expands spherically to a maximum size and then collapses violently, leading to strong shockwave generation and microjet impingement, which comprises the primary mechanism for stone fragmentation with short-pulse lasers. In contrast, the holmium laser, with a wavelength (2100 nm) most strongly absorbed by water as well as by all stone materials and a long pulse duration of 250 to 350 microsec, produces an elongated, pear-shaped cavitation bubble at the tip of the optical fiber that forms a vapor channel to conduct the ensuing laser energy to the target stone (Moss effect). The expansion and subsequent collapse of the elongated bubble is asymmetric, resulting in weak shockwave generation and microjet impingement. Thus, stone fragmentation in holmium laser lithotripsy is caused primarily by thermal ablation (drilling effect). PMID:9726407

  20. Noise reduction of a composite cylinder subjected to random acoustic excitation

    NASA Astrophysics Data System (ADS)

    Grosveld, Ferdinand W.; Beyer, T.

    1989-04-01

    Interior and exterior noise measurements were conducted on a stiffened composite floor-equipped cylinder, with and without an interior trim installed. Noise reduction was obtained for the case of random acoustic excitation in a diffuse field; the frequency range of interest was 100-800-Hz one-third octave bands. The measured data were compared with noise reduction predictions from the Propeller Aircraft Interior Noise (PAIN) program and from a statistical energy analysis. Structural model parameters were not predicted well by the PAIN program for the given input parameters; this resulted in incorrect noise reduction predictions for the lower one-third octave bands where the power flow into the interior of the cylinder was predicted on a mode-per-mode basis.

  1. Noise reduction of a composite cylinder subjected to random acoustic excitation

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Beyer, T.

    1989-01-01

    Interior and exterior noise measurements were conducted on a stiffened composite floor-equipped cylinder, with and without an interior trim installed. Noise reduction was obtained for the case of random acoustic excitation in a diffuse field; the frequency range of interest was 100-800-Hz one-third octave bands. The measured data were compared with noise reduction predictions from the Propeller Aircraft Interior Noise (PAIN) program and from a statistical energy analysis. Structural model parameters were not predicted well by the PAIN program for the given input parameters; this resulted in incorrect noise reduction predictions for the lower one-third octave bands where the power flow into the interior of the cylinder was predicted on a mode-per-mode basis.

  2. Simulation of Acoustic Noise Generated by an Airbreathing, Beam-Powered Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Kennedy, W. C.; Van Laak, P.; Scarton, H. A.; Myrabo, L. N.

    2005-04-01

    A simple acoustic model is developed for predicting the noise signature vs. power level for advanced laser-propelled lightcraft — capable of single-stage flights into low Earth orbit. This model predicts the noise levels generated by a pulsed detonation engine (PDE) during the initial lift-off and acceleration phase, for two representative `tractor-beam' lightcraft designs: a 1-place `Mercury' vehicle (2.5-m diameter, 900-kg); and a larger 5-place `Apollo' vehicle (5-m diameter, 5555-kg) — both the subject of an earlier study. The use of digital techniques to simulate the expected PDE noise signature is discussed, and three examples of fly-by noise signatures are presented. The reduction, or complete elimination of perceptible noise from such engines, can be accomplished by shifting the pulse frequency into the supra-audible or sub-audible range.

  3. Acoustic theory of axisymmetric multisectioned ducts. [reduction of turbofan engine noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1974-01-01

    Equations are developed for the acoustic field in a duct system which is made up of a number of connected circular and annular ducts. These equations are suitable for finding the acoustic field inside of and radiated from an aircraft turbofan engine. Acoustic modes are used as generalized coordinates in order to develop a set of matrix equations for the acoustic field. Equations for these modes are given for circular and annular ducts with uniform flow. Modal source equations are derived for point acoustic sources. General equations for mode transmission and reflection are developed and detailed equations are derived for ducts with multiple sections of acoustic treatment and for ducts with circumferential splitter rings. The general theory is applied to the special case of a uniform area circular duct with multisection liners and it is shown that the mode reflection effects are proportional to differences of the acoustic admittances of adjacent liners. A numerical example is given which shows that multisection liners may provide greater noise suppression than uniform liners.

  4. Acoustic lens for marine seismic data multiple reflection noise reduction

    SciTech Connect

    Clark, W.H.

    1986-11-25

    This patent describes an apparatus for use in gathering seismic data in an area covered by a body of water having a surface, comprising: a seismic vessel; a seismic source towed by the seismic vessel for generating in the body of water an acoustic wave which will penetrate to and be reflected from at least one reflective horizon located below the body of water; a streamer towed by the seismic vessel in the body of water below its surface, including at least one hydrophone for detecting the acoustic wave reflected from at least one reflective horizon; a first gas dispensing tube and a second gas dispensing tube disposed in the water adjacent the vessel, the tubes each having a side wall and a plurality of perforations through the side wall for permitting gas bubbles to escape into the water; a first paravane attached to the first tube; a second paravane attached to the second tube; and control means connected to the first paravane and to the second paravane for controlling the position of the paravanes relative to the streamer.

  5. Aero acoustic analysis and community noise. HSCT climb to cruise noise assessment

    NASA Technical Reports Server (NTRS)

    Mortlock, Alan K.

    1992-01-01

    The widely accepted industry High Speed Civil Transport (HSCT) design goal for exterior noise is to achieve Federal Aviation Regulation (FAR) Part 36 Stage 3 noise limits currently required for new subsonic aircraft. The three phases of the concern are as follows: (1) airport noise abatement at communities close to the airport, (2) climb power opening-up procedures, and (3) the climb to cruise phase affecting communities far from the airport.

  6. Aero acoustic analysis and community noise. HSCT climb to cruise noise assessment

    NASA Astrophysics Data System (ADS)

    Mortlock, Alan K.

    1992-04-01

    The widely accepted industry High Speed Civil Transport (HSCT) design goal for exterior noise is to achieve Federal Aviation Regulation (FAR) Part 36 Stage 3 noise limits currently required for new subsonic aircraft. The three phases of the concern are as follows: (1) airport noise abatement at communities close to the airport, (2) climb power opening-up procedures, and (3) the climb to cruise phase affecting communities far from the airport.

  7. A measure of acoustic noise generated from transcranial magnetic stimulation coils.

    PubMed

    Dhamne, Sameer C; Kothare, Raveena S; Yu, Camilla; Hsieh, Tsung-Hsun; Anastasio, Elana M; Oberman, Lindsay; Pascual-Leone, Alvaro; Rotenberg, Alexander

    2014-01-01

    The intensity of sound emanating from the discharge of magnetic coils used in repetitive transcranial magnetic stimulation (rTMS) can potentially cause acoustic trauma. Per Occupational Safety and Health Administration (OSHA) standards for safety of noise exposure, hearing protection is recommended beyond restricted levels of noise and time limits. We measured the sound pressure levels (SPLs) from four rTMS coils with the goal of assessing if the acoustic artifact levels are of sufficient amplitude to warrant protection from acoustic trauma per OSHA standards. We studied the SPLs at two frequencies (5 and 10 Hz), three machine outputs (MO) (60, 80 and 100%), and two distances from the coil (5 and 10 cm). We found that the SPLs were louder at closer proximity from the coil and directly dependent on the MO. We also found that in all studied conditions, SPLs were lower than the OSHA permissible thresholds for short (<15 min) acoustic exposure, but at extremes of use, may generate sufficient noise to warrant ear protection with prolonged (>8 h) exposure. PMID:24582370

  8. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers

    SciTech Connect

    Arenas, Celia; Leiva, Carlos; Vilches, Luis F.

    2013-11-15

    Highlights: • The particle size of bottom ash influenced the acoustic behavior of the barrier. • The best sound absorption coefficients were measured for larger particle sizes. • The maximum noise absorption is displaced to lower frequencies for higher thickness. • A noise barrier was designed with better properties than commercial products. • Recycling products from bottom ash no present leaching and radioactivity problems. - Abstract: The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectively recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk.

  9. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations. PMID:12880062

  10. The ecological and evolutionary consequences of noise-induced acoustic habitat loss

    NASA Astrophysics Data System (ADS)

    Tennessen, Jennifer Beissinger

    Anthropogenic threats are facilitating rapid environmental change and exerting novel pressures on the integrity of ecological patterns and processes. Currently, habitat loss is the leading factor contributing to global biodiversity loss. Noise created by human activities is nearly ubiquitous in terrestrial and marine systems, and causes acoustic habitat loss by interfering with species' abilities to freely send and receive critical acoustic biological information. My dissertation investigates how novel sounds from human activities affect ecological and evolutionary processes in space and time in marine and terrestrial systems, and how species may cope with this emerging novel pressure. Using species from both marine and terrestrial systems, I present results from a theoretical investigation, and four acoustic playback experiments combining laboratory studies and field trials, that reveal a range of eco-evolutionary consequences of noiseinduced acoustic habitat loss. First, I use sound propagation modeling to assess how marine shipping noise reduces communication space between mother-calf pairs of North Atlantic right whales (Eubalaena glacialis ), an important unit of an endangered species. I show that shipping noise poses significant challenges for mother-calf pairs, but that vocal compensation strategies can substantially improve communication space. Next, in a series of acoustic playback experiments I show that road traffic noise impairs breeding migration behavior and physiology of wood frogs (Lithobates sylvaticus ). This work reveals the first evidence that traffic noise elicits a physiological stress response and suppresses production of antimicrobial peptides (a component of the innate immune response) in anurans. Further, wood frogs from populations with a history of inhabiting noisy sites mounted reduced physiological stress responses to continuous traffic noise exposure. This research using wood frogs suggests that chronic traffic noise exposure has

  11. The effect of mineralogy and grain breakage on shear-induced noise and auto-acoustic compaction

    NASA Astrophysics Data System (ADS)

    Taylor, S.; Brodsky, E. E.

    2014-12-01

    The behavior of granular flows is strongly dependent on shear rate. At relatively slow shear velocities, a granular flow will support stresses elastically through force chains in the quasi-static regime. At relatively high shear velocities, it will support stresses by transferring momentum in higher velocity grain collisions in the grain-inertial regime, which results in dilation of the flow. Experiments conducted using a commercial torsional rheometer (TA AR-2000ex) found that at intermediate shear velocities, force chain collapse in angular sand samples produces sound waves capable of vibrating the shear zone enough to cause compaction. Sound produced by spherical glass beads during shearing was of lower amplitude and no compaction effect was observed. In order to characterize both the source of acoustic energy produced during shearing of angular grains and its associated compaction effect, we used the same experimental set up to observe how volumetric and acoustic response to shear stress changes with mineralogy, specifically varying grain hardness and shear modulus. A comparison of angular quartz beach sand (Mohs hardness of 7 and shear modulus of 31.14 GPa) with angular aluminum oxide grit of the same size (Mohs hardness of 9 and shear modulus of 124 GPa) shows markedly different behavior, with the aluminum oxide mixture producing lower noise amplitudes during shearing and showing no compaction at intermediate shear rates. Combined with grain size and shape analysis, the implication is that shear-induced noise is the result of grain fracture rather than shear interactions and is dependent on the relative strength of individual grains. Combined with recent and ongoing work characterizing the effect of mean grain size and polydispersity on shear-induced volumetric and acoustic response, we are moving towards a more complete incorporation of field-observable variables into predictions of natural granular mixtures.

  12. Ocean acoustic remote sensing using ambient noise: results from the Florida Straits

    NASA Astrophysics Data System (ADS)

    Brown, M. G.; Godin, O. A.; Zang, X.; Ball, J. S.; Zabotin, N. A.; Zabotina, L. Y.; Williams, N. J.

    2016-07-01

    Noise interferometry is the process by which approximations to acoustic Green's functions, which describe sound propagation between two locations, are estimated by cross-correlating time series of ambient noise measured at those locations. Noise-interferometry-based approximations to Green's functions can be used as the basis for a variety of inversion algorithms, thereby providing a purely passive alternative to active-source ocean acoustic remote sensing. In this paper we give an overview of results from noise interferometry experiments conducted in the Florida Straits at 100 m depth in December 2012, and at 600 m depth in September/October 2013. Under good conditions for noise interferometry, estimates of cross-correlation functions are shown to allow one to perform advanced phase-coherent signal processing techniques to perform waveform inversions, estimate currents by exploiting non-reciprocity, perform time-reversal/back-propagation calculations and investigate modal dispersion using time-warping techniques. Conditions which are favourable for noise interferometry are identified and discussed.

  13. Preliminary Analysis of Acoustic Measurements from the NASA-Gulfstream Airframe Noise Flight Test

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Lockhard, David D.; Humphreys, Willliam M.; Choudhari, Meelan M.; Van De Ven, Thomas

    2008-01-01

    The NASA-Gulfstream joint Airframe Noise Flight Test program was conducted at the NASA Wallops Flight Facility during October, 2006. The primary objective of the AFN flight test was to acquire baseline airframe noise data on a regional jet class of transport in order to determine noise source strengths and distributions for model validation. To accomplish this task, two measuring systems were used: a ground-based microphone array and individual microphones. Acoustic data for a Gulfstream G550 aircraft were acquired over the course of ten days. Over twenty-four test conditions were flown. The test matrix was designed to provide an acoustic characterization of both the full aircraft and individual airframe components and included cruise to landing configurations. Noise sources were isolated by selectively deploying individual components (flaps, main landing gear, nose gear, spoilers, etc.) and altering the airspeed, glide path, and engine settings. The AFN flight test program confirmed that the airframe is a major contributor to the noise from regional jets during landing operations. Sound pressure levels from the individual microphones on the ground revealed the flap system to be the dominant airframe noise source for the G550 aircraft. The corresponding array beamform maps showed that most of the radiated sound from the flaps originates from the side edges. Using velocity to the sixth power and Strouhal scaling of the sound pressure spectra obtained at different speeds failed to collapse the data into a single spectrum. The best data collapse was obtained when the frequencies were left unscaled.

  14. Copula filtration of spoken language signals on the background of acoustic noise

    NASA Astrophysics Data System (ADS)

    Kolchenko, Lilia V.; Sinitsyn, Rustem B.

    2010-09-01

    This paper is devoted to the filtration of acoustic signals on the background of acoustic noise. Signal filtering is done with the help of a nonlinear analogue of a correlation function - a copula. The copula is estimated with the help of kernel estimates of the cumulative distribution function. At the second stage we suggest a new procedure of adaptive filtering. The silence and sound intervals are detected before the filtration with the help of nonparametric algorithm. The results are confirmed by experimental processing of spoken language signals.

  15. Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation

    PubMed Central

    Siegert, M. E.; Römer, H.; Hartbauer, M.

    2014-01-01

    SUMMARY We examined acoustic masking in a chirping katydid species of the Mecopoda elongata complex due to interference with a sympatric Mecopoda species where males produce continuous trills at high amplitudes. Frequency spectra of both calling songs range from 1 to 80 kHz; the chirper species has more energy in a narrow frequency band at 2 kHz and above 40 kHz. Behaviourally, chirper males successfully phase-locked their chirps to playbacks of conspecific chirps under masking conditions at signal-to-noise ratios (SNRs) of −8 dB. After the 2 kHz band in the chirp had been equalised to the level in the masking trill, the breakdown of phase-locked synchrony occurred at a SNR of +7 dB. The remarkable receiver performance is partially mirrored in the selective response of a first-order auditory interneuron (TN1) to conspecific chirps under these masking conditions. However, the selective response is only maintained for a stimulus including the 2 kHz component, although this frequency band has no influence on the unmasked TN1 response. Remarkably, the addition of masking noise at 65 dB sound pressure level (SPL) to threshold response levels of TN1 for pure tones of 2 kHz enhanced the sensitivity of the response by 10 dB. Thus, the spectral dissimilarity between masker and signal at a rather low frequency appears to be of crucial importance for the ability of the chirping species to communicate under strong masking by the trilling species. We discuss the possible properties underlying the cellular/synaptic mechanisms of the ‘novelty detector’. PMID:24307713

  16. Noise produced by turbulent flow into a rotor: Theory manual for noise calculation

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.

    1989-01-01

    An analysis is presented for the calculation of noise produced by turbulent flow into a helicopter rotor. The method is based on the analysis of Amiet for the sound produced by an airfoil moving in rectilinear motion through a turbulent flow field. The rectilinear motion results are used in a quasi-steady manner to calculate the instantaneous spectrum of the rotor noise at any given rotor position; the overall spectrum is then found by averaging the instantaneous spectrum over all rotor azimuth angles. Account is taken of the fact that the rotor spends different amounts of retarded time at different rotor positions. Blade to blade correlation is included in the analysis, leading to harmonics of blade passing frequency. The spectrum of the turbulence entering the rotor is calculated by applying rapid distortion theory to an isotropic turbulence spectrum, assuming that the turbulence is stretched as it is pulled into the rotor. The inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. The analytical basis is provided for a module which was incorporated in NASA's ROTONET helicopter noise prediction program.

  17. Acoustic background noise variation in Air Force platforms and its effect on noise removal algorithms

    NASA Astrophysics Data System (ADS)

    Lafollette, Philip A.

    1991-06-01

    In this study of short-term noise variation in Air Force platforms, we followed two avenues of investigation. First, we applied quantitative measures of variation to individual noise recordings, and compared the results across various aircraft. Some measures used were simple descriptive statistics, but we also measured attenuation obtained by spectral restoration (spectral subtraction), applied to the noise signal alone. The noise attenuation obtained for real aircraft environments was in most cases about the same as predicted theoretically for white Gaussian noise, but in some instances was considerably higher, especially in the presence of propeller noise. Second, we applied the nonparametric Mann-Whitney statistic to test the stationarity of power spectrum estimates on time scales of 200 to 800 ms. There was little or no evidence of nonstationarity in large jet or turboprop aircraft. In fighter aircraft and helicopters, there was some evidence of nonstationarity confined to more or less narrow frequency ranges. The nonstationarity found did not appear to limit the performance of special restoration algorithms. The noise recordings used were taken from the RADC/EEV database of field recordings made in the E-3A, E-4B, EC-135, E-130, P-3C, F-15, F-16, F-4, A-10, HH-53 and Tornado aircraft.

  18. Noise affects the shape of female preference functions for acoustic signals.

    PubMed

    Reichert, Michael S; Ronacher, Bernhard

    2015-02-01

    The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise. PMID:25546134

  19. The Acoustic Analogy: A Powerful Tool in Aeroacoustics with Emphasis on Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Doty, Michael J.; Hunter, Craig A.

    2004-01-01

    The acoustic analogy introduced by Lighthill to study jet noise is now over 50 years old. In the present paper, Lighthill s Acoustic Analogy is revisited together with a brief evaluation of the state-of-the-art of the subject and an exploration of the possibility of further improvements in jet noise prediction from analytical methods, computational fluid dynamics (CFD) predictions, and measurement techniques. Experimental Particle Image Velocimetry (PIV) data is used both to evaluate turbulent statistics from Reynolds-averaged Navier-Stokes (RANS) CFD and to propose correlation models for the Lighthill stress tensor. The NASA Langley Jet3D code is used to study the effect of these models on jet noise prediction. From the analytical investigation, a retarded time correction is shown that improves, by approximately 8 dB, the over-prediction of aft-arc jet noise by Jet3D. In experimental investigation, the PIV data agree well with the CFD mean flow predictions, with room for improvement in Reynolds stress predictions. Initial modifications, suggested by the PIV data, to the form of the Jet3D correlation model showed no noticeable improvements in jet noise prediction.

  20. An electro-acoustical technique for the detection of knee joint noise.

    PubMed

    Chu, M L; Gradisar, I A; Railey, M R; Bowling, G F

    1976-01-01

    Distinguishing acoustical signatures of sound emitted by normal and pathological knee joints are picked up using a double microphone-differential amplifier setup. Extraneous background noise is minimized using the principle of "noise cancellation". Two identical sensitive condenser microphones and an F.M. recorder with flat responses in the audio range were used. Preliminary studies covering normal and diseased knee joints showed that their respective waveforms and spectral patterns are unique and proved to be a promising nondestructive diagnostic tool for early detection of knee joint cartilage damage. PMID:957922

  1. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  2. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  3. Two stage low noise advanced technology fan. 1: Aerodynamic, structural, and acoustic design

    NASA Technical Reports Server (NTRS)

    Messenger, H. E.; Ruschak, J. T.; Sofrin, T. G.

    1974-01-01

    A two-stage fan was designed to reduce noise 20 db below current requirements. The first-stage rotor has a design tip speed of 365.8 m/sec and a hub/tip ratio of 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiency of 85.3 percent at a specific inlet corrected flow of 209.2kg/sec/sq m. Noise reduction devices include acoustically treated casing walls, a flowpath exit acoustic splitter, a translating centerbody sonic inlet device, widely spaced blade rows, and the proper ratio of blades and vanes. Multiple-circular-arc rotor airfoils, resettable stators, split outer casings, and capability to go to close blade-row spacing are also included.

  4. Robust Distributed Noise Reduction in Hearing Aids with External Acoustic Sensor Nodes

    NASA Astrophysics Data System (ADS)

    Bertrand, Alexander; Moonen, Marc

    2009-12-01

    The benefit of using external acoustic sensor nodes for noise reduction in hearing aids is demonstrated in a simulated acoustic scenario with multiple sound sources. A distributed adaptive node-specific signal estimation (DANSE) algorithm, that has a reduced communication bandwidth and computational load, is evaluated. Batch-mode simulations compare the noise reduction performance of a centralized multi-channel Wiener filter (MWF) with DANSE. In the simulated scenario, DANSE is observed not to be able to achieve the same performance as its centralized MWF equivalent, although in theory both should generate the same set of filters. A modification to DANSE is proposed to increase its robustness, yielding smaller discrepancy between the performance of DANSE and the centralized MWF. Furthermore, the influence of several parameters such as the DFT size used for frequency domain processing and possible delays in the communication link between nodes is investigated.

  5. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Kazuyoshi Mori,; Hanako Ogasawara,; Toshiaki Nakamura,; Takenobu Tsuchiya,; Nobuyuki Endoh,

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object’s reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel’s color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  6. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object's reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel's color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  7. The design and commissioning of an acoustic liner for propeller noise testing in the ARA transonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Wood, M. E.; Neuman, D. A.

    1991-12-01

    An acoustic liner was designed and manufactured for use in a transonic wind tunnel to provide an acoustically acceptable environment for propeller noise testing up to high subsonic Mach number. Details of the aerodynamic design and development are presented and calibration of the liner with propeller model support systems is included. It is shown how the design of the acoustic treatment was aided by the use of a theoretical model for the tunnel reverberant field. An acoustic development program was undertaken involving horn tests to improve the quality of the liner. The success of this is demonstrated by propeller noise results. These results also provided the basis for definition of the practical acoustic regime of a lined tunnel suitable for the accurate measurement of propeller noise.

  8. Acoustical, sensory, and psychological research data and procedures for their use in predicting effects of environmental noises.

    PubMed

    Kryter, Karl D

    2007-11-01

    A demonstration field-research study reveals that aircraft noise measured at two one-story houses is approximately 9 dB less attenuated from measured outdoor levels than is street traffic noise, and, found in other studies, approximately 14 dB less than railway noise. Comparable differences are found between these noises from the application of basic acoustical formulas for quantifying attenuations that occur on site of one- and two-story houses. Reasonably consistent with those findings are results from attitude surveys showing that daily exposure levels of aircraft must be approximately 8 dB less than levels of street traffic noise, and approximately 13 dB less than levels of railway noise to be perceived as an equal cause of annoyance and related adverse effects. However, USA government guidelines recommend that equal exposure levels of noise measured outdoors from vehicles of transportation should be considered as being equally annoying. Changes in present USA noise-measurement procedures and noise-control guidelines are proposed that provide more accurate predictions of annoyance, related adverse effects, and criteria for setting "tolerable" limits of noise exposure in residential areas. Key acoustical and psycho-acoustical principles and data pertaining to predicting correlations between dosages of environmental noises and its effects on people and land noise zoning in residential communities are examined. PMID:18189552

  9. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearinga

    PubMed Central

    Carroll, Jeff; Tiaden, Stephanie; Zeng, Fan-Gang

    2011-01-01

    Cochlear implant (CI) users have been shown to benefit from residual low-frequency hearing, specifically in pitch related tasks. It remains unclear whether this benefit is dependent on fundamental frequency (F0) or other acoustic cues. Three experiments were conducted to determine the role of F0, as well as its frequency modulated (FM) and amplitude modulated (AM) components, in speech recognition with a competing voice. In simulated CI listeners, the signal-to-noise ratio was varied to estimate the 50% correct response. Simulation results showed that the F0 cue contributes to a significant proportion of the benefit seen with combined acoustic and electric hearing, and additionally that this benefit is due to the FM rather than the AM component. In actual CI users, sentence recognition scores were collected with either the full F0 cue containing both the FM and AM components or the 500-Hz low-pass speech cue containing the F0 and additional harmonics. The F0 cue provided a benefit similar to the low-pass cue for speech in noise, but not in quiet. Poorer CI users benefited more from the F0 cue than better users. These findings suggest that F0 is critical to improving speech perception in noise in combined acoustic and electric hearing. PMID:21973360

  10. An active structural acoustic control approach for the reduction of the structure-borne road noise

    NASA Astrophysics Data System (ADS)

    Douville, Hugo; Berry, Alain; Masson, Patrice

    2002-11-01

    The reduction of the structure-borne road noise generated inside the cabin of an automobile is investigated using an Active Structural Acoustic Control (ASAC) approach. First, a laboratory test bench consisting of a wheel/suspension/lower suspension A-arm assembly has been developed in order to identify the vibroacoustic transfer paths (up to 250 Hz) for realistic road noise excitation of the wheel. Frequency Response Function (FRF) measurements between the excitation/control actuators and each suspension/chassis linkage are used to characterize the different transfer paths that transmit energy through the chassis of the car. Second, a FE/BE model (Finite/Boundary Elements) was developed to simulate the acoustic field of an automobile cab interior. This model is used to predict the acoustic field inside the cabin as a response to the measured forces applied on the suspension/chassis linkages. Finally, an experimental implementation of ASAC is presented. The control approach relies on the use of inertial actuators to modify the vibration behavior of the suspension and the automotive chassis such that its noise radiation efficiency is decreased. The implemented algorithm consists of a MIMO (Multiple-Input-Multiple-Output) feedforward configuration with a filtered-X LMS algorithm using an advanced reference signal (width FIR filters) using the Simulink/Dspace environment for control prototyping.

  11. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  12. On Acoustic Source Specification for Rotor-Stator Interaction Noise Prediction

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Caesy L.

    2010-01-01

    This paper describes the use of measured source data to assess the effects of acoustic source specification on rotor-stator interaction noise predictions. Specifically, the acoustic propagation and radiation portions of a recently developed coupled computational approach are used to predict tonal rotor-stator interaction noise from a benchmark configuration. In addition to the use of full measured data, randomization of source mode relative phases is also considered for specification of the acoustic source within the computational approach. Comparisons with sideline noise measurements are performed to investigate the effects of various source descriptions on both inlet and exhaust predictions. The inclusion of additional modal source content is shown to have a much greater influence on the inlet results. Reasonable agreement between predicted and measured levels is achieved for the inlet, as well as the exhaust when shear layer effects are taken into account. For the number of trials considered, phase randomized predictions follow statistical distributions similar to those found in previous statistical source investigations. The shape of the predicted directivity pattern relative to measurements also improved with phase randomization, having predicted levels generally within one standard deviation of the measured levels.

  13. Quasi-static acoustic mapping of helicopter blade vortex interaction noise

    NASA Astrophysics Data System (ADS)

    Gopalan, Gaurav

    This research extends the applicability of storage-based noise prediction techniques to slowly maneuvering flight. The quasi-static equivalence between longitudinal decelerating flight and steady-state longitudinal descent flight, and its application to the estimation of BVI noise radiation under slow longitudinal maneuvering flight conditions, is investigated through various orders of flight dynamics modeling. The entire operating state of the helicopter is shown to be similar during equivalent flight conditions at the same flight velocity. This equivalence is also applied to the prediction of control requirements during longitudinal maneuvers. Inverse simulation based flight dynamics models of lower order are seen to capture many important trends associated with slow maneuvers, when compared with higher order modeling. The lower order flight dynamics model is used to design controlled maneuvers that may be practically flown during descent operations or as part of research flight testing. A version of a storage-based acoustic mapping technique, extended to slowly maneuvering longitudinal flight, is implemented for helicopter main rotor Blade-Vortex Interaction (BVI) noise. Various approach trajectories are formulated and analytical estimates of the BVI noise radiation characteristics associated with a full-scale two-bladed rotor are mapped to the ground using this quasi-static mapping approach. Multi-segment decelerating descent approaches are shown to be effective in ground noise abatement. The effects of steady longitudinal winds are investigated on radiated and ground noise. Piloting trim choices are seen to dominate the noise radiation under these flight conditions.

  14. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  15. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC) Brain Potential Changes

    PubMed Central

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed. PMID:25264675

  16. Acoustic noise and pneumatic wave vortices energy harvesting on highways

    NASA Astrophysics Data System (ADS)

    Pogacian, S.; Bot, A.; Zotoiu, D.

    2012-02-01

    This paper is aimed to present the structure and the principle of a energy harvesting system that uses the air movement emanated from passing traffic to produce and accumulate electrical energy. Each of the system's elements consists of a inertial mass panel which oscillate when driving cars pass. The panel is attached to a linear electromagnetic mini generator (or/and some piezo electric micro generators) and at the time of passing, it produces energy which is store it in a supercapacitor or in a rechargeable battery. The concept can be applied to busy roads, and to high-frequented rail networks and it can work with street and road lighting, information panels and monitoring devices.

  17. Characterization of the Acoustic Field in Marine Environments with Anthropogenic Noise

    NASA Astrophysics Data System (ADS)

    Guan, Shane

    Most animals inhabit the aquatic environment are acoustical-oriented, due to the physical characteristics of water that favors sound transmission. Many aquatic animals depend on underwater sound to navigate, communicate, find prey, and avoid predators. The degradation of underwater acoustic environment due to human activities is expected to affected these animals' well-being and survival at the population level. This dissertation presents three original studies on the characteristics and behavior of underwater sound fields in three unique marine environments with anthropogenic noises. The first study examines the soundscape of the Chinese white dolphin habitat in Taiwan. Acoustic recordings were made at two coastal shallow water locations, Yunlin and Waisanding, in 2012. Results show that croaker choruses are dominant sound sources in the 1.2--2.4 kHz frequency band for both locations at night, and noises from container ships in the 150--300 Hz frequency band define the relative higher broadband sound levels at Yunlin. Results also illustrate interrelationships among different biotic, abiotic, and anthropogenic elements that shape the fine-scale soundscape in a coastal environment. The second study investigates the inter-pulse sound field during an open-water seismic survey in coastal shallow waters of the Arctic. The research uses continuous acoustic recordings collected from one bottom-mounted hydrophone deployed in the Beaufort Sea in summer 2012. Two quantitative methods were developed to examine the inter-pulse sound field characteristics and its dependence on source distances. Results show that inter-pulse sound field could raise the ambient noise floor by as much as 9 dB, depending on ambient condition and source distance. The third study examines the inter-ping sound field of simulated mid-frequency active sonar in deep waters off southern California in 2013 and 2014. The study used drifting acoustic recorder buoys to collect acoustic data during sonar

  18. Acoustic flight tests of rotorcraft noise-abatement approaches using local differential GPS guidance

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Hindson, William S.; Mueller, Arnold W.

    1995-01-01

    This paper presents the test design, instrumentation set-up, data acquisition, and the results of an acoustic flight experiment to study how noise due to blade-vortex interaction (BVI) may be alleviated. The flight experiment was conducted using the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) research helicopter. A Local Differential Global Positioning System (LDGPS) was used for precision navigation and cockpit display guidance. A laser-based rotor state measurement system on board the aircraft was used to measure the main rotor tip-path-plane angle-of-attack. Tests were performed at Crows Landing Airfield in northern California with an array of microphones similar to that used in the standard ICAO/FAA noise certification test. The methodology used in the design of a RASCAL-specific, multi-segment, decelerating approach profile for BVI noise abatement is described, and the flight data pertaining to the flight technical errors and the acoustic data for assessing the noise reduction effectiveness are reported.

  19. Study of thermal and acoustic noise interferences in low stiffness atomic force microscope cantilevers and characterization of their dynamic properties

    SciTech Connect

    Boudaoud, Mokrane; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe

    2012-01-15

    The atomic force microscope (AFM) is a powerful tool for the measurement of forces at the micro/nano scale when calibrated cantilevers are used. Besides many existing calibration techniques, the thermal calibration is one of the simplest and fastest methods for the dynamic characterization of an AFM cantilever. This method is efficient provided that the Brownian motion (thermal noise) is the most important source of excitation during the calibration process. Otherwise, the value of spring constant is underestimated. This paper investigates noise interference ranges in low stiffness AFM cantilevers taking into account thermal fluctuations and acoustic pressures as two main sources of noise. As a result, a preliminary knowledge about the conditions in which thermal fluctuations and acoustic pressures have closely the same effect on the AFM cantilever (noise interference) is provided with both theoretical and experimental arguments. Consequently, beyond the noise interference range, commercial low stiffness AFM cantilevers are calibrated in two ways: using the thermal noise (in a wide temperature range) and acoustic pressures generated by a loudspeaker. We then demonstrate that acoustic noises can also be used for an efficient characterization and calibration of low stiffness AFM cantilevers. The accuracy of the acoustic characterization is evaluated by comparison with results from the thermal calibration.

  20. Acoustic noise reduction. January 1970-November 1988 (Citations from the US Patent data base). Report for January 1970-November 1988

    SciTech Connect

    Not Available

    1988-12-01

    This bibliography contains citations of selected patents concerning methods, devices, and materials for acoustic-noise reduction. Included are noise-reduction techniques for engines, turbines, machinery, motor vehicles, pumps, aircraft cabins, and compressors. (Contains 189 citations fully indexed and including a title list.)

  1. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    PubMed

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz. PMID:24116520

  2. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. The investigation relies on highly detailed numerical simulations of the unsteady flowfield inside a modern high-pressure turbine (HPT). The simulations are developed using TURBO, which is an unsteady Reynolds-averaged Navier-Stokes (URANS) code capable of multi-stage simulations. The purpose of this study is twofold. First, to determine an estimate of the relative importance of the contributions to the coherent part of the acoustic signature of a turbine from the three potential sources of turbine noise generation, namely, blade-row viscous interaction, potential field interaction, and entropic source associated with the interaction of the blade rows with the temperature nonuniformities caused by the incomplete mixing of the hot fluid and the cooling flow. Second, to develop an understanding of the turbine acoustic transmission characteristics and to assess the applicability of existing empirical and analytical transmission loss models to realistic geometries and flow conditions for modern turbine designs. The investigation so far has concentrated on two simulations: (1) a single-stage HPT and (2) a two-stage HPT and the associated inter-turbine duct/strut segment. The simulations are designed to resolve up to the second harmonic of the blade passing frequency tone in accordance with accepted rules for second order solvers like TURBO. The calculations include blade and vane cooling flows and a radial profile of pressure and temperature at the turbine inlet. The calculation can be modified later to include the combustor pattern factor at the

  3. Acoustic noise generation by the DOE/NASA MOD-1 wind turbine

    NASA Technical Reports Server (NTRS)

    Kelley, N. D.

    1981-01-01

    The results of a series of measurements taken over the past year of the acoustic emissions from the DOE/NASA MOD-1 Wind Turbine show the maximum acoustic energy is concentrated in the low frequency range, often below 100 Hz. The temporal as well as the frequency characteristics of the turbine sounds have been shown to be important since the MOD-1 is capable of radiating both coherent and incoherent noise. The coherent sounds are usually impulsive and are manifested in an averaged frequency domain plot as large numbers of discrete energy bands extending from the blade passage frequency to beyond 50 Hz on occasion. It is these impulsive sounds which are identified as the principal source of the annoyance to a dozen families living within 3 km of the turbine. The source of the coherent noise appears to be the rapid, unsteady blade loads encountered as the blade passes through the wake of the tower structure. Annoying levels are occasionally reached at nearby homes due to the interaction of the low frequency, high energy peaks in the acoustic impulses and the structural modes of the homes as well as by direct radiation outdoors. The peak levels of these impulses can be enhanced or subdued through complete propagation.

  4. Coupling of acoustic emission and electrochemical noise measurement techniques in slurry erosion-corrosion studies

    SciTech Connect

    Oltra, R.; Chapey, B.; Huet, F.; Renaud, L.

    1996-12-31

    This study deals with the measurement and the subsequent signal analysis of acoustic emission and current noise recorded during continuous slurry erosion of a metallic target in a corrosive environment. According to a phenomenologic model, the localized corrosion results from the repetitive damage caused by particle impacts. The fluctuations of the acoustic signal and of the electrochemical signal both can be modeled as a shot-noise-like process. The main purpose of this work is to compare two processing techniques for the fluctuating signals: time analysis (mean value) and spectral analysis (power spectral density [PSD] spectrum) to determine the more suitable signal treatment. Another purpose is also to quantify the balance between the mechanical wear and the corrosive damage of the abraded metallic target. It will be shown that the mean value of the RMS acoustic signal, A(t), and also the PSD of A(t), are related to the mechanical wear of the target and allow real-time measurement of the actual mechanical perturbation in terms of the mass of the ablated material.

  5. Lobed Mixer Design for Noise Suppression: Plume, Aerodynamic and Acoustic Data. Volume 2

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Baker, V. David; Dalton, William N.; Bridges, James (Technical Monitor)

    2002-01-01

    A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft per s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASE's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude and also noise in the reference frame of the nozzle. This volume is divided into three parts: in the first two parts, we collate the plume survey data in graphical form (line, contour and surface plots) and analyze it; in part 3, we tabulate the aerodynamic data for the acoustics tests and the acoustic data in one-third octave band levels.

  6. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    NASA Astrophysics Data System (ADS)

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system

  7. Controlling Technically Produced Noise to Reduce Psychological Stress

    ERIC Educational Resources Information Center

    Carlestam, Gosta

    1973-01-01

    Discusses the causes and problems associated with increasing levels of noise pollution in urban societies. Particular attention is given to noise emanating from aircraft and to possible means of reducing this problem and its resulting psychological stress and social strain. (JR)

  8. Flight test of a pure-tone acoustic source. [aircraft noise

    NASA Technical Reports Server (NTRS)

    Mueller, A. W.; Preisser, J. S.

    1981-01-01

    Static and flight testing of a pure-tone acoustic source were conducted in order to: (1) determine if a 4-KHz tone radiated by a source in flight and mixed with broadband aircraft flyover noise could be measured on the ground with a high degree of statistical confidence; (2) determine how well a comparison could be made of flight-to-static tone radiation pattern and a static radiation pattern; and (3) determine if there were any installation effects on the radiation pattern due to the flight vehicle. Narrow-band acoustic data were measured and averaged over eight microphones to obtain a high statistical confidence. The flight data were adjusted to an equivalent static condition by applying corrections for retarded time, spherical spreading, atmospheric absorption, ground impedance, instrumentation constraints, convective amplification, and the Doppler shift. The flight-to-static results are in excellent agreement with the measured static data. No installation effects were observed on the radiation pattern.

  9. JAPE 91: Influence of terrain masking of the acoustic propagation of helicopter noise

    NASA Technical Reports Server (NTRS)

    Naz, P.

    1993-01-01

    The acoustic propagation in the case of a noise source masked by a small element of terrain has been investigated experimentally. These data have been measured during the 'terrain masking' experiment of the NATO JAPE 91 experimental campaign. The main objective of that experiment was to study the acoustic detection of a helicopter masked by a small hill. Microphones have been placed at different locations on the shadow zone of the hill to study the effect of the terrain obstruction on sound propagation. The results presented come from data measured by Atlas Elektronik and by ISL, and have been processed together. The terrain obstruction causes an excess attenuation of the SPL (Sound Pressure Level) for all the frequencies, but this attenuation is more effective for the high frequencies than for the low frequencies. Results typical of diffraction phenomena have been observed; the SPL is minimal at the foot of the hill and is relatively constant beyond it.

  10. Ambient Noise Surface Wave Tomography for Geotechnical Monitoring Using "Large N" Distributed Acoustic Sensing

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Martin, E. R.; Wagner, A. M.; Robertson, M.; Bjella, K.; Gelvin, A.; Ulrich, C.; Wu, Y.; Freifeld, B. M.; Daley, T. M.; Dou, S.

    2015-12-01

    Surface wave tomography using ambient noise sources has found broad application at the regional scale but has not been adopted fully for geotechnical applications despite the abundance of noise sources in this context. The recent development of Distributed Acoustic Sensing (DAS) provides a clear path for inexpensively recording high spatial resolution (< 1m sampling) surface wave data in the context of infrastructure monitoring over significant spatial domains (10s of km). Infrastructure monitoring is particularly crucial in the context of high-latitude installations where a changing global climate can trigger reductions in soil strength due to permafrost thaw. DAS surface wave monitoring systems, particularly those installed in/near transport corridors and coupled to ambient noise inversion algorithms, could be a critical "early warning" system to detect zones of decreased shear strength before failure. We present preliminary ambient noise tomography results from a 1.3 km continuously recording subsurface DAS array used to record traffic noise next to an active road in Fairbanks, AK. The array, depolyed at the Farmer's Loop Permafrost Test Station, was designed as a narrow 2D array and installed via trenching at ~30 cm. We develop a pre-processing and QC approach to analyze the large resulting volume of data, equivalent to a 1300 geophone array sampled at 1 khz. We utilize automated dispersion analysis and a quasi-2D MC inversion to generate a shear wave velocity profile underneath the road in a region of discontinuous permafrost. The results are validated against a high-resolution ERT survey as well as direct-push data on ice content. We also compare vintages of ambient noise DAS data to evaluate the short-term repeatability of the technique in the face of changing noise environments. The resulting dataset demonstrates the utility of using DAS for real-time shear-modulus monitoring in support of critical infrastructure.

  11. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  12. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers.

    PubMed

    Arenas, Celia; Leiva, Carlos; Vilches, Luis F; Cifuentes, Héctor

    2013-11-01

    The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectively recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk. PMID:23916843

  13. Method of representation of acoustic spectra and reflection corrections applied to externally blown flap noise

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1975-01-01

    A computer method for obtaining a rational function representation of an acoustic spectrum and for correcting reflection effects is introduced. The functional representation provides a means of compact storage of data and the nucleus of the data analysis method. The method is applied to noise from a full-scale externally blown flap system with a quiet 6:1 bypass ratio turbofan engine and a three-flap wing section designed to simulate the take-off condition of a conceptual STOL aircraft.

  14. Heterodyne signal-to-noise ratios in acoustic mode scattering experiments

    NASA Technical Reports Server (NTRS)

    Cochran, W. R.

    1980-01-01

    The relation between the signal to noise ratio (SNR) obtained in heterodyne detection of radiation scattered from acoustic modes in crystalline solids and the scattered spectral density function is studied. It is shown that in addition to the information provided by the measured frequency shifts and line widths, measurement of the SNR provides a determination of the absolute elasto-optical (Pockel's) constants. Examples are given for cubic crystals, and acceptable SNR values are obtained for scattering from thermally excited phonons at 10.6 microns, with no external perturbation of the sample necessary. The results indicate the special advantages of the method for the study of semiconductors.

  15. Experimental Study of the Acoustic Navigation of a Helicopter by Its Noise Radiation

    NASA Astrophysics Data System (ADS)

    Antonov, V. P.; Kuz'menko, A. K.; Svet, V. D.; Spitsyn, E. I.

    2000-11-01

    Results of experimental measurements of the coordinates and trajectories of an MI-8 helicopter flight are presented for various types of maneuvers and the landing approach. The current coordinates are measured in real time by acoustic differential navigation methods using the noise radiation of a helicopter. It is shown that, when a measuring base with a microphone spacing of 2 m or less is used, the spatial correlation coefficient for the signals in the frequency band from 200 to 5000 Hz approaches unity. This makes it possible to estimate the position of the helicopter with rms errors less than 0.4 m at all stages of flight and at the landing approach.

  16. Effects of acoustic hood on noise, CFC-11, and particulate matter in a recycling system for waste refrigerator cabinet.

    PubMed

    Guo, Jie; Fang, Wenxiong; Yang, Yichen; Xu, Zhenming

    2014-11-01

    The mechanical-physical process was proven to be technologically feasible for waste refrigerator recycling and has been widely used in the typical e-waste recycling factories in China. In this study, effects of the acoustic hood on the reduction of noise level, CFC-11, and heavy metals (Cr, Ni, Cu, Cd, and Pb) in particulate matter (PM) were evaluated. For noise pollution, the noise level inside and outside the acoustic hood was 96.4 and 78.9 dB, respectively. Meanwhile, it had a significant effect on A-weighted sound level with a reduction from 98.3 to 63.6 dB. For CFC-11 exposure, abundant CFC-11 (255 mg/m(3)) was detected in the acoustic hood. However, the mean concentration of CFC-11 at the outline of polyurethane foam collection was obviously diminished to 14 mg/m(3), and no CFC-11 was monitored around the acoustic hood. The concentrations of PM and heavy metals in PM outside the acoustic hood were lower than those inside the acoustic hood due to the physical barriers of the acoustic hood. Based on the risk assessment, only adverse health effect caused by Pb might likely appear. All the results can provide the basic data for pollution control and risk assessment in waste refrigerator recycling system. PMID:24965005

  17. Signal-to-noise ratio for acoustic detection in the deep ocean

    NASA Technical Reports Server (NTRS)

    Bowen, T.

    1979-01-01

    A simple method is presented for studying the thermoacoustic wave generated by a heat pulse. The signal-to-noise ratio (S/N) is then calculated for a typical hadronic-electromagnetic cascade in the deep ocean where low frequencies are masked by surface noise. It is found that a maximum useful range of about 16 km is found for typical conditions at 5 km depth. It is shown that in order to obtain useful signals with S/N greater than 100 at distances of 1 to 16 km, the cascade energy must be 10 to the 16th to 10 to the 18th eV. Finally, attention is given to further refinements of the theory of acoustic detection which remain to be investigated.

  18. Acoustic isolation vessel for measurement of the background noise in microphones

    NASA Technical Reports Server (NTRS)

    Ngo, Kim C. T.; Zuckerwar, Allan J.

    1993-01-01

    An acoustic isolation vessel has been developed to measure the background noise in microphones. The test microphone is installed in an inner vessel, which is suspended within an outer vessel, and the intervening air space is evacuated to a high vacuum. An analytical expression for the transmission coefficient is derived, based on a five-media model, and compared to experiment. At an isolation vacuum of 5 x 10 exp -6 Torr the experimental transmission coefficient was found to be lower than -155 dB at frequencies ranging from 40 to 1200 Hz. Measurements of the A-weighted noise levels of commercial condenser microphones of four different sizes show good agreement with published values.

  19. Simulation of a hot coaxial jet: Direct noise prediction and flow-acoustics correlations

    NASA Astrophysics Data System (ADS)

    Bogey, Christophe; Barré, Sébastien; Juvé, Daniel; Bailly, Christophe

    2009-03-01

    A coaxial jet originating from parallel coplanar pipe nozzles is computed by a compressible large eddy simulation (LES) using low-dissipation and low-dispersion schemes in order to determine its acoustic field and to study noise generation mechanisms. The jet streams are at high velocities, the primary stream is heated, and the Reynolds number based on the primary velocity and the secondary diameter is around 106. High levels of turbulence intensity are also specified at the nozzle exit. The jet aerodynamic field and the near-pressure field are both obtained directly from the LES. The far-field noise is calculated by solving the linear acoustic equations, from the unsteady LES data on a cylindrical surface surrounding the jet. A good agreement is observed in terms of directivity, levels, and narrow-band spectra with noise measurements carried out during the EU project CoJeN for a coaxial jet displaying same stream velocities and temperatures, coplanar nozzle outlets with identical area ratio, and a high Reynolds number. However, certainly due to differences in the properties of the nozzle-exit boundary layers with respect to the experiment, some unexpected peaks are noticed in the simulation spectra. They are attributed to the development of a Von Kármán street in the inner mixing layer and to vortex pairings in the outer shear layer. High correlation levels are also calculated between the pressure waves radiated in the downstream direction and flow quantities such as axial velocity, vorticity norm, density, and temperature, taken around the end of the primary and secondary potential cores. Noise generation in the coaxial jet therefore appears significant around the end of the two potential cores. These flow regions are characterized by intermittency, a dominant Strouhal number, and variations in the convection velocity as similarly found in single jets. The use of density or temperature to compute flow-noise correlations finally seems appropriate for a heated

  20. Vessel Noise Affects Beaked Whale Behavior: Results of a Dedicated Acoustic Response Study

    PubMed Central

    Pirotta, Enrico; Milor, Rachael; Quick, Nicola; Moretti, David; Di Marzio, Nancy; Tyack, Peter; Boyd, Ian; Hastie, Gordon

    2012-01-01

    Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville’s beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement. PMID:22880022

  1. Vessel noise affects beaked whale behavior: results of a dedicated acoustic response study.

    PubMed

    Pirotta, Enrico; Milor, Rachael; Quick, Nicola; Moretti, David; Di Marzio, Nancy; Tyack, Peter; Boyd, Ian; Hastie, Gordon

    2012-01-01

    Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville's beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement. PMID:22880022

  2. A multi-band spectral subtraction-based algorithm for real-time noise cancellation applied to gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2013-06-01

    Acoustical sniper positioning is based on the detection and direction-of-arrival estimation of the shockwave and the muzzle blast acoustical signals. In real-life situations, the detection and direction-of-arrival estimation processes is usually performed under the influence of background noise sources, e.g., vehicles noise, and might result in non-negligible inaccuracies than can affect the system performance and reliability negatively, specially when detecting the muzzle sound under long range distance and absorbing terrains. This paper introduces a multi-band spectral subtraction based algorithm for real-time noise reduction, applied to gunshot acoustical signals. The ballistic shockwave and the muzzle blast signals exhibit distinct frequency contents that are affected differently by additive noise. In most real situations, the noise component is colored and a multi-band spectral subtraction approach for noise reduction contributes to reducing the presence of artifacts in denoised signals. The proposed algorithm is tested using a dataset generated by combining signals from real gunshots and real vehicle noise. The noise component was generated using a steel tracked military tank running on asphalt and includes, therefore, the sound from the vehicle engine, which varies slightly in frequency over time according to the engine's rpm, and the sound from the steel tracks as the vehicle moves.

  3. Lobed Mixer Design for Noise Suppression Acoustic and Aerodynamic Test Data Analysis

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Dalton, William N.; Boyd, Kathleen (Technical Monitor); Bridges, James (Technical Monitor)

    2002-01-01

    A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft/s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASK's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude. Sound in the nozzle reference frame was analyzed to understand the source characteristics. Several new concepts, mechanisms and methods are reported for such lobed mixers, such as, "boomerang" scallops, "tongue" mixer, detection of "excess" internal noise sources, and extrapolation of flyover noise data from one flight speed to different flight speeds. Noise reduction of as much as 3 EPNdB was found with a deeply scalloped mixer compared to annular nozzle at net thrust levels of 9500 lb for a 29 in. diameter nozzle after optimizing the nozzle length.

  4. Acoustic emission produced during burst tests of filament-wound bottles.

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.; Chiao, T. T.

    1973-01-01

    Acoustic emission was recorded during burst tests of filament-wound, composite pressure vessels. Organic and graphite fibers were tested, and two different epoxy resin systems were used: one with a low and another with a relatively high cure temperature. Acoustic emission was studied for the effects of different winding patterns, artificial flaws, winding-induced fiber fraying, different resins, and different fibers. Small effects produced in the vessels by changes in these variables were greatly magnified when they appeared as changes in acoustic emission. They would, in fact, be difficult or impossible to detect by other test means.

  5. Long-term measurements of acoustic background noise in very deep sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.; NEMO Collaboration

    2009-06-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration installed, 25 km E offshore the port of Catania (Sicily) at 2000 m depth, an underwater laboratory to perform long-term tests of prototypes and new technologies for an underwater high energy neutrino km-scale detector in the Mediterranean Sea. In this framework the Collaboration deployed and successfully operated for about two years, starting from January 2005, an experimental apparatus for on-line monitoring of deep-sea noise. The station was equipped with four hydrophones and it is operational in the range 30 Hz-43 kHz. This interval of frequencies matches the range suitable for the proposed acoustic detection technique of high energy neutrinos. Hydrophone signals were digitized underwater at 96 kHz sampling frequency and 24 bits resolution. The stored data library, consisting of more than 2000 h of recordings, is a unique tool to model underwater acoustic noise at large depth, to characterize its variations as a function of environmental parameters, biological sources and human activities (ship traffic, etc.), and to determine the presence of cetaceans in the area.

  6. Validation of the Small Hot Jet Acoustic Rig for Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Bridges, James; Brown, Clifford A.

    2005-01-01

    The development and acoustic validation of the Small Hot Jet Aeroacoustic Rig (SHJAR) is documented. Originally conceived to support fundamental research in jet noise, the rig has been designed and developed using the best practices of the industry. While validating the rig for acoustic work, a method of characterizing all extraneous rig noise was developed. With this in hand, the researcher can know when the jet data being measured is being contaminated and design the experiment around this limitation. Also considered is the question of uncertainty, where it is shown that there is a fundamental uncertainty of 0.5dB or so to the best experiments, confirmed by repeatability studies. One area not generally accounted for in the uncertainty analysis is the variation which can result from differences in initial condition of the nozzle shear layer. This initial condition was modified and the differences in both flow and sound were documented. The bottom line is that extreme caution must be applied when working on small jet rigs, but that highly accurate results can be made independent of scale.

  7. Vibration modes and acoustic noise in a 4-phase switched reluctance motor

    SciTech Connect

    Colby, R.S.; Mottier, F.; Miller, T.J.E.

    1995-12-31

    Acoustic noise in the switched reluctance motor is caused primarily by the deformation of the stator lamination stack. Acoustic noise is most severe when the periodic excitation of the SRM phases excites a natural vibration mode of the stack. The natural vibration modes and frequencies of a 4-phase, 8/6 switched reluctance motor are examined. Structural finite element analysis is used to compute the natural modes and frequencies. Impulse tests on the stator stack verify the calculations and show which modes are excited. Heuristic arguments are developed to predict the operating conditions that will excite the natural modes. Measurement of vibration while the machine is under load shows which operating conditions excite the natural modes and verifies the predictions. An approximate formula is derived to predict the frequency of the fundamental vibration mode in terms of lamination dimensions and material properties. The formula is validated by comparison with finite element calculations for several laminations, and hence is shown to be useful in design trade-off studies.

  8. Measurements of noise produced by flow past lifting surfaces

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.

    1978-01-01

    Wind tunnel studies have been conducted to determine the specific locations of aerodynamic noise production within the flow field about various lifting-surface configurations. The models tested included low aspect ratio shapes intended to represent aircraft flaps, a finite aspect ratio NACA 0012 wing, and a multi-element wing section consisting of a main section, a leading edge flap, and dual trailing edge flaps. Turbulence was induced on the models by surface roughness. Lift and drag were measured for the flap models. Hot-wire anemometry was used for study of the flap-model vortex roll-up. Apparent noise source distributions were measured by use of a directional microphone system, located outside the tunnel, which was scanned about the flow region to be analyzed under computer control. These distributions exhibited a diversity of pattern, suggesting that several flow processes are important to lifting-surface noise production. Speculation concerning these processes is offered.

  9. Experimental validation of a method for the prediction of the acoustic field produced by an acoustic source and the reflected field produced by a solid interface

    NASA Astrophysics Data System (ADS)

    Diaz, Sandra; Chopra, Rajiv; Pichardo, Samuel

    2012-11-01

    In this work we present a model to calculate the acoustic pressure generated by the interaction of forward and reflected waves in the vicinity of a solid interface and compare it to experimental data. An experimental setup was designed to measure the forward and the combined forward-reflected acoustic fields produced by a solid interface. A 0.785mm-needle hydrophone was used to characterize the acoustic field produced by a 7.29MHz-ultrasound transducer focused at 6cm. The hydrophone was positioned perpendicularly to the sound propagation direction and moved between the transducer and a 9mm-thick acrylic sample using a robotic arm. Simulations were carried out using a modified Rayleigh-Sommerfeld integral that calculates the particle displacement over a reflecting surface. This particle displacement at the boundary of the interface is then used as an acoustic source to obtain the reflected particle displacement. The complex sum of the forward and reflected fields was compared to the experimental measurements. The measurements showed an interference pattern that increased the pressure amplitude in average 10.4% with peaks of up to 25.8%. The proposed model is able to represent the interference pattern produced by the reflected wave with an average absolute error of 3.4+/-0.54% and a maximal error of 5.6%. The comparison between the experimental measurements and the simulations indicates that the presented model predicts with good accuracy the acoustic field generated by ultrasound transducers facing a solid interface. This model can be used to foresee the outcome of therapeutic applications where the devices are used in proximity to a bone interface.

  10. Acoustic measurements from a rotor blade-vortex interaction noise experiment in the German-Dutch Wind Tunnel (DNW)

    NASA Technical Reports Server (NTRS)

    Martin, Ruth M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.

    1988-01-01

    Acoustic data are presented from a 40 percent scale model of the 4-bladed BO-105 helicopter main rotor, measured in the large European aeroacoustic wind tunnel, the DNW. Rotor blade-vortex interaction (BVI) noise data in the low speed flight range were acquired using a traversing in-flow microphone array. The experimental apparatus, testing procedures, calibration results, and experimental objectives are fully described. A large representative set of averaged acoustic signals is presented.

  11. Clinical characteristics of acoustic trauma caused by gunshot noise in mass rifle drills without ear protection.

    PubMed

    Moon, In Seok; Park, Sang-Yong; Park, Hyun Jin; Yang, Hoon-Shik; Hong, Sung-Jong; Lee, Won-Sang

    2011-10-01

    One of the major occupational hazards of working in military service is being subjected to intense impulse noise. We analyzed the clinical presentation of acoustic traumas, induced by mass rifle gunshot noise during military training, in unprotected patients. We evaluated 189 soldiers who had otologic symptoms after rifle shooting exercises without using any hearing protection. All soldiers had been training on the K2 rifle. We took medical histories; conducted physical examinations and hearing evaluations (pure-tone audiometry, speech audiometry, and impedence audiometry); and distributed the Newmann's Tinnitus Handicap Inventory (THI) survey. In addition, we evaluated a normal control group of 64 subjects of similar age who had never fired a rifle. In the patient group, the most common and irritating reported symptom was tinnitus (94.2%), and the average THI score in the patient group was 39.51 ± 14.87, which was significantly higher than the control group score (0.56 ± 3.94) (p < 0.001). Average outcomes of post-exposure air conduction thresholds were 21.33 ± 13.25 dB HL in the affected ears. These levels also were significantly higher than those of the control group (9.16 ± 4.07dB HL) (p < 0.001). Hearing loss was most prominent at high frequencies. An asymmetry of hearing loss related to head position during shooting was not observed. Acoustic trauma induced by gunshot noise can cause permanent tinnitus and hearing loss. Hearing protection (bilateral earplugs) and environmental reform are necessary. PMID:21936701

  12. Duct wall impedance control as an advanced concept for acoustic suppression enhancement. [engine noise reduction

    NASA Technical Reports Server (NTRS)

    Dean, P. D.

    1978-01-01

    A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.

  13. A prediction of helicopter rotor discrete frequency noise for three scale models using a new acoustics program

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1987-01-01

    A new computer program which uses Farassat's most advanced subsonic time domain formulation has been written to predict helicopter rotor discrete frequency noise. A brief description of the program, WOPWOP, is followed by a comparison of predicted and experimentally measured acoustic pressure and spectra for a 1/4 scale UH-1 model rotor blade and a 1/7 scale OLS (AH-1G) model rotor blade. The C81 computer program was used to predict the spanwise loading on the rotor for aerodynamic input into the acoustic prediction. Comparisons are made for different flight conditions and microphone locations with good results. In general the acoustic pressure is underpredicted. The acoustic predictions for a tapered rotor blade and predictions for microphones well below the tip path plane show less underprediction. Finally, in-plane motion of the rotor blade is shown to significantly affect the peak-to-peak amplitude of the acoustic pressure for high advancing tip Mach numbers.

  14. Prediction of interior noise due to random acoustic or turbulent boundary layer excitation using statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1990-01-01

    The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.

  15. Acoustic Emission Signals in Thin Plates Produced by Impact Damage

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Humes, Donald H.

    1999-01-01

    Acoustic emission (AE) signals created by impact sources in thin aluminum and graphite/epoxy composite plates were analyzed. Two different impact velocity regimes were studied. Low-velocity (less than 0.21 km/s) impacts were created with an airgun firing spherical steel projectiles (4.5 mm diameter). High-velocity (1.8 to 7 km/s) impacts were generated with a two-stage light-gas gun firing small cylindrical nylon projectiles (1.5 mm diameter). Both the impact velocity and impact angle were varied. The impacts did not penetrate the aluminum plates at either low or high velocities. For high-velocity impacts in composites, there were both impacts that fully penetrated the plate as well as impacts that did not. All impacts generated very large amplitude AE signals (1-5 V at the sensor), which propagated as plate (extensional and/or flexural) modes. In the low-velocity impact studies, the signal was dominated by a large flexural mode with only a small extensional mode component detected. As the impact velocity was increased within the low velocity regime, the overall amplitudes of both the extensional and flexural modes increased. In addition, a relative increase in the amplitude of high-frequency components of the flexural mode was also observed. Signals caused by high-velocity impacts that did not penetrate the plate contained both a large extensional and flexural mode component of comparable amplitudes. The signals also contained components of much higher frequency and were easily differentiated from those caused by low-velocity impacts. An interesting phenomenon was observed in that the large flexural mode component, seen in every other case, was absent from the signal when the impact particle fully penetrated through the composite plates.

  16. Impulse noise and acute acoustic trauma in Finnish conscripts. Number of shots fired and safe distances.

    PubMed

    Savolainen, S; Lehtomäki, K M

    1997-01-01

    This prospective study of acute acoustic trauma (AAT) from exposure to impulse noise during compulsory military service focused on three issues the number of shot or explosion impulses that the conscript was exposed to at the time of AAT, distance of injured ear from causal firearm, and the circumstances under which AAT occurred protected ears. The series includes 449 consecutive, verified cases of AAT seen at the Central Military Hospital in Helsinki, Finland, in the period 1989-1993. AAT usually occurred during combat training (87%) as a result of exposure to impulses from small arms (83%). In 41%. AAT was caused by a single shot or detonation impulse. As many as 92% of all AATs occurred within 2 m of the causal firearm. Fourteen percent were wearing hearing protectors when the accident took place, but every third had badly fitting protectors or had neglected safety regulations and used insufficient protection. Of all AATs caused by one noise impulse in protected ears. 83% were attributable to heavy arms and only 14% to small arms. The results of the study suggest that combined use of earmuffs and earplugs in association with a safe distance of over 5 m from the noise source gives adequate protection against AAT. However, for conscripts using certain heavy arms e.g. hazooka. more effective hearing protection should be developed. PMID:9187006

  17. Theoretical study of the effects of refraction on the noise produced by turbulence in jets

    NASA Technical Reports Server (NTRS)

    Graham, E. W.; Graham, B. B.

    1974-01-01

    The production of noise by turbulence in jets is an extremely complex problem. One aspect of that problem, the transmission of acoustic disturbances from the interior of the jet through the mean velocity profile and into the far field is studied. The jet (two-dimensional or circular cylindrical) is assumed infinitely long with mean velocity profile independent of streamwise location. The noise generator is a sequence of transient sources drifting with the surrounding fluid and confined to a short length of the jet.

  18. Customization of the acoustic field produced by a piezoelectric array through interelement delays

    PubMed Central

    Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.

    2008-01-01

    A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369

  19. Acoustical and noise redesign considerations when trying to increase patient privacy while ensuring comfort

    NASA Astrophysics Data System (ADS)

    Klavetter, Eric

    2005-09-01

    An internal assessment was undertaken to understand the flow of patients to ensure comfort and privacy during their health care experience at Mayo Clinic. A number of different prototypes, work flows, and methodologies were utilized and assessed to determine the ``best experience for our patients.'' A number of prototypes ranging from self-check in to personal pagers were assessed along with creating environments that introduced ``passive distractions'' for acoustical and noise management, which can range from fireplaces, to coffee shops to playgrounds to ``tech corridors.'' While a number of these designs are currently being piloted, the over-reaching goal is to make the patient experience ``like no other'' when receiving their care at Mayo Clinic.

  20. Measurements of the horizontal directionality of the ambient acoustic noise in Monterey Bay, California

    NASA Astrophysics Data System (ADS)

    Gagliardi, M. J.

    1982-03-01

    Measurements of some of the horizontal characteristics of acoustic ambient noise were carried out in the south-eastern parts of Monterey Bay, California, at a limited number of stations and for a limited number of ambient conditions. Directional hydrophones on buoys located at ranges of two to four miles from shore were used which have a steerable, cardioid-shaped pattern. The beam was successively aimed along the four cardinal directions and the frequency spectrum of the output was obtained. The frequency range of the system response was from 10 to 2500 Hz. Results are presented in the form of differences between the spectral energy bins in each direction and the average over all directions. Experimental difficulties with sonobuoy reliability prevented collection of extensive data. Some tentative conclusions are drawn from the results.

  1. Structural Acoustic Characteristics of Aircraft and Active Control of Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1998-01-01

    The reduction of aircraft cabin sound levels to acceptable values still remains a topic of much research. The use of conventional passive approaches has been extensively studied and implemented. However performance limits of these techniques have been reached. In this project, new techniques for understanding the structural acoustic behavior of aircraft fuselages and the use of this knowledge in developing advanced new control approaches are investigated. A central feature of the project is the Aircraft Fuselage Test Facility at Va Tech which is based around a full scale Cessna Citation III fuselage. The work is divided into two main parts; the first part investigates the use of an inverse technique for identifying dominant fuselage vibrations. The second part studies the development and implementation of active and active-passive techniques for controlling aircraft interior noise.

  2. Acoustic noise reduction for vehicle engines. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-06-01

    The bibliography contains citations of selected patents concerning methods, devices, and materials to reduce acoustic noise in vehicle engines. Vehicles covered include automobiles, railway locomotives, agricultural tractors, and aircraft. Internal combustion, diesel, and gas turbine engines are covered. (Contains a minimum of 188 citations and includes a subject term index and title list.)

  3. EVIDENCE FOR THE INVOLVEMENT OF ASSOCIATIVE CONDITIONING IN REFLEX MODIFICATION OF THE ACOUSTIC STARTLE RESPONSE WITH GAPS IN BACKGROUND NOISE

    EPA Science Inventory

    The experiments reported here were designed to determine the role of associative conditioning in reflex modification of the acoustic startle response using gaps in background noise. xperiments were conducted with independent, naive groups of adult Long Evans hooded rats tested us...

  4. EFFECT OF AGE AND EXPERIENCE ON INHIBITION OF THE ACOUSTIC STARTLE RESPONSE BY GAPS IN BACKGROUND NOISE

    EPA Science Inventory

    The acoustic startle response (ASR) is inhibited when the eliciting stimulus is preceded by a brief gap in background noise. he present study bed the ontogeny of ASR gap inhibition in the rat and the role of experience on its development. ndependent groups of Long-Evans rats were...

  5. What's All the Noise? Differentiating Dimensions of Acoustic Stress and the Limits to Meta-Analysis: Reply to Smith (2012)

    ERIC Educational Resources Information Center

    Szalma, J. L.; Hancock, P. A.

    2012-01-01

    Smith (2012) has provided pertinent observations on our recently published meta-analytic review (Szalma & Hancock, 2011) of the effects of acoustic noise on performance. His main points are as follows: (a) our review excluded some areas of research; (b) there were conceptual problems with our moderator analyses; and (c) limitations to…

  6. Baseline acoustic levels of the NASA Active Noise Control Fan rig

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Heidelberg, Laurence J.; Elliott, David M.; Nallasamy, M.

    1996-01-01

    Extensive measurements of the spinning acoustic mode structure in the NASA 48 inch Active Noise Control Fan (ANCF) test rig have been taken. A continuously rotating microphone rake system with a least-squares data reduction technique was employed to measure these modes in the inlet and exhaust. Farfield directivity patterns in an anechoic environment were also measured at matched corrected rotor speeds. Several vane counts and spacings were tested over a range of rotor speeds. The Eversman finite element radiation code was run with the measured in-duct modes as input and the computed farfield results were compared to the experimentally measured directivity pattern. The experimental data show that inlet spinning mode measurements can be made very accurately. Exhaust mode measurements may have wake interference, but the least-squares reduction does a good job of rejecting the non-acoustic pressure. The Eversman radiation code accurately extrapolates the farfield levels and directivity pattern when all in-duct modes are included.

  7. Site effect determination using seismic noise from Tungurahua volcano (Ecuador): implications for seismo-acoustic analysis

    NASA Astrophysics Data System (ADS)

    Palacios, Pablo; Kendall, J.-Michael; Mader, Heidy

    2015-05-01

    Scattering and refractions that occur in the heterogenous near-surface beneath seismic stations can strongly affect the relative amplitudes recorded by three-component seismometers. Using data from Tungurahua volcano we have developed a procedure to correct these `site effects'. We show that seismic noise signals store site information, and then use their normalized spectral amplitudes as site frequency response functions. The process does not require a reference station (as per the S-wave and coda methods) or assume that the vertical amplitude is constant (the H/V component ratio method). Correcting the site effects has three consequences on data analysis: (1) improvement of the seismic source location and its energy estimation; (2) identification of a strong influence on the volcanic acoustic seismic ratio (VASR) and (3) decoupling the air wave impact on the ground caused by explosions or eruption jets. We show how site effect corrections improve the analysis of an eruption jet on 2006 July 14-15, appearing two periods of strong acoustic energy release and a progressive increase of the seismic energy, reaching the maximum before finishing the eruption.

  8. Acoustic trauma caused by lightning.

    PubMed

    Mora-Magaña, I; Collado-Corona, M A; Toral-Martiñòn, R; Cano, A

    1996-03-01

    Lesions produced by exposure to noise are frequent in everyday life. Injuries may be found in all systems of the human body, from the digestive to the endocrine, from the cardiovascular to the nervous system. Many organs may be damaged, the ear being one of them. It is known that noise produced by factories, airports, musical instruments and even toys can cause auditory loss. Noises in nature can also cause acoustic trauma. This report is the case history of acoustic trauma caused by lightning. The patient was studied with CAT scan, electroencephalogram, and brain mapping, impedance audiometry with tympanogram and acoustic reflex, audiometry and evoked otoacoustics emissions: distortion products and transients. PMID:8882110

  9. Acoustic vibrations contribute to the diffuse scatter produced by ribosome crystals.

    PubMed

    Polikanov, Yury S; Moore, Peter B

    2015-10-01

    The diffuse scattering pattern produced by frozen crystals of the 70S ribosome from Thermus thermophilus is as highly structured as it would be if it resulted entirely from domain-scale motions within these particles. However, the qualitative properties of the scattering pattern suggest that acoustic displacements of the crystal lattice make a major contribution to it. PMID:26457426

  10. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  11. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  12. Assessment of Impulse Noise Level and Acoustic Trauma in Military Personnel

    PubMed Central

    Rezaee, Maryam; Mojtahed, Mohammad; Ghasemi, Mohammad; Saedi, Babak

    2012-01-01

    Background: Military personnel are usually exposed to high levels of impulse noise (IN) which can lead to hearing loss. Objectives: The purpose of this study was to assess the effects of relatively low level exposure of impulse noise (IN) during shooting practice on hearing using pure tone audiometry (PTA) and transiently evoked otoacoustic emission (TEOAE) in military personnel. Materials and Methods: Forty male soldiers (mean age 20.08 years) were recruited for the study. Prior to their first shooting practice, PTA and TEOAE were recorded. After 15 minutes and one week post- practice PTA and TEOAE were compared. Results: Immediately after shooting practice significant differences in PTA at 500, 1000, and 4000 Hz were observed for the right ear and no significant difference at any frequency for the left ear. There was a significant difference in the amplitude of TEOAE 15 minutes after shooting practice at 500, 1000, 2000, 3000, and 4000 Hz in the right ear, while for the left ear the difference was significant at 1000 and 2000 Hz. One week after exposure a significant difference at 500 and 4000 Hz was found only in the right ear and a significant difference in the amplitude of TEOAE was observed at 500, 1000, 2000, 3000, and 4000 Hz. Conclusions: Even exposure lower than permissible levels may lead to acoustic trauma. TEOAE is more sensitive than PTA in detecting early hearing loss after military shooting exercises. Hearing protection equipment and appropriate surveillance programs are recommended. PMID:24749098

  13. Extraction of Stoneley and acoustic Rayleigh waves from ambient noise on ocean bottom observations

    NASA Astrophysics Data System (ADS)

    Tonegawa, T.; Fukao, Y.; Takahashi, T.; Obana, K.; Kodaira, S.; Kaneda, Y.

    2013-12-01

    In the interferometry, the wavefield propagating between two positions can be retrieved by correlating ambient noise recorded on the two positions. This approach is useful for applying to various kinds of wavefield, such as ultrasonic, acoustic (ocean acoustic), and also seismology. Off the Kii Peninsula, Japan, more than 150 short-period (4.5 Hz) seismometers, in which hydrophone is also cosited, had been deployed for ~2 months on 2012 by Japan Agency for Marine-Earth Science and Technology (JAMSTEC) as a part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. In this study, correlating ambient noise recorded on the sensors and hydrophones, we attempt to investigate characteristics of wavefield relative to the ocean, sediment, and solid-fluid boundary. The observation period is from Sep. 2012 to Dec. 2012. Station spacing is around 5 km. For 5 lines off the Kii Peninsula, the 30-40 seismometers are distributed at each line. Sampling interval is 200 Hz for both seismometer and hydrophone. The vertical component is just used in this study for correlation analysis. The instruments are located at 100-4800 m in water depth. In the processing for the both records, we applied a bandpass filter of 1-3 Hz, replaced the amplitude to zero if it exceeds a value that was set in this study, and took one-bit normalization. We calculated cross-correlation function (CCF) by using continuous records with a time length of 600 s, stacked the CCFs over the whole observation period. As a result of the analysis for hydrophone, a strong peak can be seen in the CCF for pairs of stations where the separation distance is ~5 km. Although the peak emerges in the CCFs for the separation distance up to 10 km, it disappears in the case that two stations are greater than 15 km separated. As a next approach, along a line off the Kii Peninsula, we aligned CCFs for two stations with

  14. Acoustic plane waves normally incident on a clamped panel in a rectangular duct. [to explain noise reduction curves for reducing interior noise in aircraft

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1979-01-01

    The theory of acoustic plane wave normally incident on a clamped panel in a rectangular duct is developed. The coupling theory between the elastic vibrations of the panel (plate) and the acoustic wave propagation in infinite space and in the rectangular duct is considered. The partial differential equation which governs the vibration of the panel (plate) is modified by adding to its stiffness (spring) forces and damping forces, and the fundamental resonance frequency and the attenuation factor are discussed. The noise reduction expression based on the theory is found to agree well with the corresponding experimental data of a sample aluminum panel in the mass controlled region, the damping controlled region, and the stiffness controlled region. All the frequency positions of the upward and downward resonance spikes in the sample experimental data are identified theoretically as resulting from four cross interacting major resonance phenomena: the cavity resonance, the acoustic resonance, the plate resonance, and the wooden back panel resonance.

  15. Signal Analysis of Helicopter Blade-Vortex-Interaction Acoustic Noise Data

    NASA Technical Reports Server (NTRS)

    Rogers, James C.; Dai, Renshou

    1998-01-01

    Blade-Vortex-Interaction (BVI) produces annoying high-intensity impulsive noise. NASA Ames collected several sets of BVI noise data during in-flight and wind tunnel tests. The goal of this work is to extract the essential features of the BVI signals from the in-flight data and examine the feasibility of extracting those features from BVI noise recorded inside a large wind tunnel. BVI noise generating mechanisms and BVI radiation patterns an are considered and a simple mathematical-physical model is presented. It allows the construction of simple synthetic BVI events that are comparable to free flight data. The boundary effects of the wind tunnel floor and ceiling are identified and more complex synthetic BVI events are constructed to account for features observed in the wind tunnel data. It is demonstrated that improved recording of BVI events can be attained by changing the geometry of the rotor hub, floor, ceiling and microphone. The Euclidean distance measure is used to align BVI events from each blade and improved BVI signals are obtained by time-domain averaging the aligned data. The differences between BVI events for individual blades are then apparent. Removal of wind tunnel background noise by optimal Wiener-filtering is shown to be effective provided representative noise-only data have been recorded. Elimination of wind tunnel reflections by cepstral and optimal filtering deconvolution is examined. It is seen that the cepstral method is not applicable but that a pragmatic optimal filtering approach gives encouraging results. Recommendations for further work include: altering measurement geometry, real-time data observation and evaluation, examining reflection signals (particularly those from the ceiling) and performing further analysis of expected BVI signals for flight conditions of interest so that microphone placement can be optimized for each condition.

  16. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    NASA Astrophysics Data System (ADS)

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  17. Comparing the effects of reverberation and of noise on speech recognition in simulated electric-acoustic listening

    PubMed Central

    Helms Tillery, Kate; Brown, Christopher A.; Bacon, Sid P.

    2012-01-01

    Cochlear implant users report difficulty understanding speech in both noisy and reverberant environments. Electric-acoustic stimulation (EAS) is known to improve speech intelligibility in noise. However, little is known about the potential benefits of EAS in reverberation, or about how such benefits relate to those observed in noise. The present study used EAS simulations to examine these questions. Sentences were convolved with impulse responses from a model of a room whose estimated reverberation times were varied from 0 to 1 sec. These reverberated stimuli were then vocoded to simulate electric stimulation, or presented as a combination of vocoder plus low-pass filtered speech to simulate EAS. Monaural sentence recognition scores were measured in two conditions: reverberated speech and speech in a reverberated noise. The long-term spectrum and amplitude modulations of the noise were equated to the reverberant energy, allowing a comparison of the effects of the interferer (speech vs noise). Results indicate that, at least in simulation, (1) EAS provides significant benefit in reverberation; (2) the benefits of EAS in reverberation may be underestimated by those in a comparable noise; and (3) the EAS benefit in reverberation likely arises from partially preserved cues in this background accessible via the low-frequency acoustic component. PMID:22280603

  18. Health-based audible noise guidelines account for infrasound and low-frequency noise produced by wind turbines.

    PubMed

    Berger, Robert G; Ashtiani, Payam; Ollson, Christopher A; Whitfield Aslund, Melissa; McCallum, Lindsay C; Leventhall, Geoff; Knopper, Loren D

    2015-01-01

    Setbacks for wind turbines have been established in many jurisdictions to address potential health concerns associated with audible noise. However, in recent years, it has been suggested that infrasound (IS) and low-frequency noise (LFN) could be responsible for the onset of adverse health effects self-reported by some individuals living in proximity to wind turbines, even when audible noise limits are met. The purpose of this paper was to investigate whether current audible noise-based guidelines for wind turbines account for the protection of human health, given the levels of IS and LFN typically produced by wind turbines. New field measurements of indoor IS and outdoor LFN at locations between 400 and 900 m from the nearest turbine, which were previously underrepresented in the scientific literature, are reported and put into context with existing published works. Our analysis showed that indoor IS levels were below auditory threshold levels while LFN levels at distances >500 m were similar to background LFN levels. A clear contribution to LFN due to wind turbine operation (i.e., measured with turbines on in comparison to with turbines off) was noted at a distance of 480 m. However, this corresponded to an increase in overall audible sound measures as reported in dB(A), supporting the hypothesis that controlling audible sound produced by normally operating wind turbines will also control for LFN. Overall, the available data from this and other studies suggest that health-based audible noise wind turbine siting guidelines provide an effective means to evaluate, monitor, and protect potential receptors from audible noise as well as IS and LFN. PMID:25759808

  19. Health-Based Audible Noise Guidelines Account for Infrasound and Low-Frequency Noise Produced by Wind Turbines

    PubMed Central

    Berger, Robert G.; Ashtiani, Payam; Ollson, Christopher A.; Whitfield Aslund, Melissa; McCallum, Lindsay C.; Leventhall, Geoff; Knopper, Loren D.

    2015-01-01

    Setbacks for wind turbines have been established in many jurisdictions to address potential health concerns associated with audible noise. However, in recent years, it has been suggested that infrasound (IS) and low-frequency noise (LFN) could be responsible for the onset of adverse health effects self-reported by some individuals living in proximity to wind turbines, even when audible noise limits are met. The purpose of this paper was to investigate whether current audible noise-based guidelines for wind turbines account for the protection of human health, given the levels of IS and LFN typically produced by wind turbines. New field measurements of indoor IS and outdoor LFN at locations between 400 and 900 m from the nearest turbine, which were previously underrepresented in the scientific literature, are reported and put into context with existing published works. Our analysis showed that indoor IS levels were below auditory threshold levels while LFN levels at distances >500 m were similar to background LFN levels. A clear contribution to LFN due to wind turbine operation (i.e., measured with turbines on in comparison to with turbines off) was noted at a distance of 480 m. However, this corresponded to an increase in overall audible sound measures as reported in dB(A), supporting the hypothesis that controlling audible sound produced by normally operating wind turbines will also control for LFN. Overall, the available data from this and other studies suggest that health-based audible noise wind turbine siting guidelines provide an effective means to evaluate, monitor, and protect potential receptors from audible noise as well as IS and LFN. PMID:25759808

  20. Acoustic properties of naturally produced clear speech at normal speaking rates

    NASA Astrophysics Data System (ADS)

    Krause, Jean C.; Braida, Louis D.

    2004-01-01

    Sentences spoken ``clearly'' are significantly more intelligible than those spoken ``conversationally'' for hearing-impaired listeners in a variety of backgrounds [Picheny et al., J. Speech Hear. Res. 28, 96-103 (1985); Uchanski et al., ibid. 39, 494-509 (1996); Payton et al., J. Acoust. Soc. Am. 95, 1581-1592 (1994)]. While producing clear speech, however, talkers often reduce their speaking rate significantly [Picheny et al., J. Speech Hear. Res. 29, 434-446 (1986); Uchanski et al., ibid. 39, 494-509 (1996)]. Yet speaking slowly is not solely responsible for the intelligibility benefit of clear speech (over conversational speech), since a recent study [Krause and Braida, J. Acoust. Soc. Am. 112, 2165-2172 (2002)] showed that talkers can produce clear speech at normal rates with training. This finding suggests that clear speech has inherent acoustic properties, independent of rate, that contribute to improved intelligibility. Identifying these acoustic properties could lead to improved signal processing schemes for hearing aids. To gain insight into these acoustical properties, conversational and clear speech produced at normal speaking rates were analyzed at three levels of detail (global, phonological, and phonetic). Although results suggest that talkers may have employed different strategies to achieve clear speech at normal rates, two global-level properties were identified that appear likely to be linked to the improvements in intelligibility provided by clear/normal speech: increased energy in the 1000-3000-Hz range of long-term spectra and increased modulation depth of low frequency modulations of the intensity envelope. Other phonological and phonetic differences associated with clear/normal speech include changes in (1) frequency of stop burst releases, (2) VOT of word-initial voiceless stop consonants, and (3) short-term vowel spectra.

  1. Cold-flow acoustic evaluation of a small scale, divergent, lobed nozzle for supersonic jet noise suppression

    NASA Technical Reports Server (NTRS)

    Huff, R. G.; Groesbeck, D. E.

    1975-01-01

    A supersonic jet noise suppressor was tested with cold flow for acoustic and thrust characteristics at nozzle- to atmospheric-pressure ratios of 1.5 to 4.0. Jet noise suppression and spectral characteristics of the divergent, lobed, suppressor (DLS) nozzle with and without an ejector are presented. Suppression was obtained at nozzle pressure ratios of 2.5 to 4.0. The largest, maximum-lobe, sound pressure level suppression with a hard-wall ejector was 14.6 decibels at a nozzle pressure ratio of 3.5. The thrust loss was 2 percent. In general, low-frequency jet noise was suppressed, leaving higher frequencies essentially unchanged. Without the ejector the nozzle showed a thrust loss of 11 percent together with slightly poorer noise suppression.

  2. Comments on "Effects of Noise on Speech Production: Acoustic and Perceptual Analyses" [J. Acoust. Soc. Am. 84, 917-928 (1988)].

    PubMed

    Fitch, H

    1989-11-01

    The effect of background noise on speech production is an important issue, both from the practical standpoint of developing speech recognition algorithms and from the theoretical standpoint of understanding how speech is tuned to the environment in which it is spoken. Summers et al. [J. Acoust. Soc. Am. 84, 917-928 (1988]) address this issue by experimentally manipulating the level of noise delivered through headphones to two talkers and making several kinds of acoustic measurements on the resulting speech. They indicate that they have replicated effects on amplitude, duration, and pitch and have found effects on spectral tilt and first-formant frequency (F1). The authors regard these acoustic changes as effects in themselves rather than as consequences of a change in vocal effort, and thus treat equally the change in spectral tilt and the change in F1. In fact, the change in spectral tilt is a well-documented and understood consequence of the change in the glottal waveform, which is known to occur with increased effort. The situation with F1 is less clear and is made difficult by measurement problems. The bias in linear predictive coding (LPC) techniques related to two of the other changes-fundamental frequency and spectral tilt-is discussed. PMID:2808931

  3. Problems in Assessment of Wind Energy Potential and Acoustic Noise Distribution when Designing Wind Power Plants

    NASA Astrophysics Data System (ADS)

    Bezrukovs, Valerijs; Bezrukovs, Vladislavs; Levins, Nikolajs

    2011-01-01

    Interest in the use of renewable energy in Latvia is increasing every year. Government support and availability of large unpopulated areas on the coast makes the use of these lands for the placement of large wind power plants (WPP) attractive. The key factors that determine the choice of the location of WPP are reliable information about distribution of the resource of wind energy in this area and the influence of wind turbines on the environment. The paper presents the results of years-long observations on the density fluctuations of wind energy at heights of 10 to 60 m in the area in the Baltic Sea coast in Ventspils and Ainaži. The velocity observations since 2007 have been gathered by measurements complex of the LOGGER 9200 Symphonie type. The results are presented in the form of tables, bar charts and graphs. Extrapolation results of wind velocity and density mean values on heights up to 150 m for the two areas with different terrain types were shown. The distribution of acoustic noise in the vicinity of the WPP was studied and an assessment of its impact on the environment in accordance with the Latvian government requirements was conducted.

  4. Observation of the Kibble-Zurek Mechanism in Microscopic Acoustic Crackling Noises.

    PubMed

    Ghaffari, H O; Griffth, W A; Benson, P M; Xia, K; Young, R P

    2016-01-01

    Characterizing the fast evolution of microstructural defects is key to understanding "crackling" phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks, and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM. PMID:26876156

  5. Observation of the Kibble–Zurek Mechanism in Microscopic Acoustic Crackling Noises

    PubMed Central

    Ghaffari, H. O.; Griffth, W. A.; Benson, P.M.; Xia, K.; Young, R. P.

    2016-01-01

    Characterizing the fast evolution of microstructural defects is key to understanding “crackling” phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks, and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM. PMID:26876156

  6. Potential efficacy of early treatment of acute acoustic trauma with steroids and piracetam after gunshot noise.

    PubMed

    Psillas, George; Pavlidis, Pavlos; Karvelis, Ioannis; Kekes, George; Vital, Victor; Constantinidis, John

    2008-12-01

    The purpose of this randomized study was to evaluate the early effect of the treatment of acute acoustic trauma (AAT) with steroids and piracetam in a sample of 52 young soldiers who were exposed to intense gunfire noise (G3 rifle). These patients were divided into three groups: (1) group A (20 patients) in which the treatment began within the first hour after the AAT, (2) group B (17 patients) in which the treatment started more than 1 h later and less than 16 h after the AAT and (3) group C (15 patients) in which the treatment began after 24 h or more. One month after the treatment onset, 36 (69%) patients of all the groups showed hearing improvement (complete-partial recovery) in the pure tone audiometry. The greater number of patients who showed complete recovery after AAT was noted in group A (65%) compared to group B (23.5%) and C (13.3%). Moreover, in group A, in the final audiogram, the averaged hearing threshold was statistically better (P < 0.001) than that of groups B and C. In spite of the lack of control group, our data demonstrated the possible effectiveness of the immediate onset of treatment of AAT. PMID:18463885

  7. On the precise implications of acoustic analogies for aerodynamic noise at low Mach numbers

    NASA Astrophysics Data System (ADS)

    Spalart, Philippe R.

    2013-05-01

    We seek a clear statement of the scaling which may be expected with rigour for transportation or other noise at low Mach numbers M, based on Lighthill's and Curle's theories of 1952 and 1955. In the presence of compact solid bodies, the leading term in the acoustic intensity is of order M6. Contrary to the belief held since that time that it is of order M8, the contribution of quadrupoles, in the presence of dipoles, is of order only M7. Retarded-time-difference effects are also of order M7. Curle's widely used approximation based on unsteady forces neglects both effects. Its order of accuracy is thus lower than was thought, and the common estimates of the value of M below which it applies appear precarious. The M6 leading term is modified by powers up to the fourth of (1-Mr), where Mr is the relative Mach number between source and observer; at speeds of interest the effect is several dB. However, this is only one of the corrections of order M7, which makes its value debatable. The same applies to the difference between emission distance and reception distance. The scaling with M6 is theoretically correct to leading order, but this prediction may be so convincing, like the M8 scaling for jet noise, that some authors rush to confirm it when their measurements are in conflict with it. We survey experimental studies of landing-gear noise, and argue that the observed power of M is often well below 6. We also object to comparisons across Mach numbers at fixed frequency; they should be made at fixed Strouhal number St instead. Finally, the compact-source argument does not only require M≪1; it requires MSt≪1. This is more restrictive if the relevant St is well above 1, a situation which can be caused by interference with a boundary or by wake impingement, among other effects. The best length scales to define St for this purpose are discussed.

  8. A simplified approach for the calculation of acoustic emission in the case of friction-induced noise and vibration

    NASA Astrophysics Data System (ADS)

    Soobbarayen, K.; Besset, S.; Sinou, J.-. J.

    2015-01-01

    The acoustic response associated with squeal noise radiations is a hard issue due to the need to consider non-linearities of contact and friction, to solve the associated nonlinear dynamic problem and to calculate the noise emissions due to self-excited vibrations. In this work, the focus is on the calculation of the sound pressure in free space generated during squeal events. The calculation of the sound pressure can be performed by the Boundary Element Method (BEM). The inputs of this method are a boundary element model, a field of normal velocity characterized by a unique frequency. However, the field of velocity associated with friction-induced vibrations is composed of several harmonic components. So, the BEM equation has to be solved for each frequency and in most cases, the number of harmonic components is significant. Therefore, the computation time can be prohibitive. The reduction of the number of harmonic component is a key point for the quick estimation of the squeal noise. The proposed approach is based on the detection and the selection of the predominant harmonic components in the mean square velocity. It is applied on two cases of squeal and allows us to consider only few frequencies. In this study, a new method will be proposed in order to quickly well estimate the noise emission in free space. This approach will be based on an approximated acoustic power of brake system which is assumed to be a punctual source, an interpolated directivity and the decrease of the acoustic power levels. This method is applied on two classical cases of squeal with one and two unstable modes. It allows us to well reconstruct the acoustic power levels map. Several error estimators are introduced and show that the reconstructed field is close to the reference calculated with a complete BEM.

  9. Noise prevention

    NASA Astrophysics Data System (ADS)

    Methods for noise abatement are discussed. Noise nuisance, types of noise (continuous, fluctuating, intermittent, pulsed), and types of noise abatement (absorption, vibration damping, isolation) are defined. Rockwool panels, industrial ceiling panels, baffles, acoustic foam panels, vibration dampers, acoustic mats, sandwich panels, isolating cabins and walls, ear protectors, and curtains are presented.

  10. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Contra-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, Dave; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  11. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, David; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  12. An acoustical study of English word stress produced by Americans and Koreans

    NASA Astrophysics Data System (ADS)

    Yang, Byunggon

    2002-05-01

    Acoustical correlates of stress can be divided into duration, intensity, and fundamental frequency. This study examined the acoustical difference in the first two syllables of stressed English words produced by ten American and Korean speakers. The Korean subjects scored very high in TOEFL. They read, at a normal speed, a fable from which the acoustical parameters of eight words were analyzed. In order to make the data comparison meaningful, each parameter was collected at 100 dynamic time points proportional to the total duration of the two syllables. Then, the ratio of the parameter sum of the first rime to that of the second rime was calculated to determine the relative prominence of the syllables. Results showed that the durations of the first two syllables were almost comparable between the Americans and Koreans. However, statistically significant differences showed up in the diphthong pronunciations and in the words with the second syllable stressed. Also, remarkably high r-squared values were found between pairs of the three acoustical parameters, which suggests that either one or a combination of two or more parameters may account for the prominence of a syllable within a word. [Work supported by Korea Science Foundation R01-1999-00229.

  13. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper.

  14. Temporal and acoustic characteristics of Greek vowels produced by adults with cerebral palsy

    NASA Astrophysics Data System (ADS)

    Botinis, Antonis; Orfanidou, Ioanna; Fourakis, Marios; Fourakis, Marios

    2005-09-01

    The present investigation examined the temporal and spectral characteristics of Greek vowels as produced by speakers with intact (NO) versus cerebral palsy affected (CP) neuromuscular systems. Six NO and six CP native speakers of Greek produced the Greek vowels [i, e, a, o, u] in the first syllable of CVCV nonsense words in a short carrier phrase. Stress could be on either the first or second syllable. There were three female and three male speakers in each group. In terms of temporal characteristics, the results showed that: vowels produced by CP speakers were longer than vowels produced by NO speakers; stressed vowels were longer than unstressed vowels; vowels produced by female speakers were longer than vowels produced by male speakers. In terms of spectral characteristics the results showed that the vowel space of the CP speakers was smaller than that of the NO speakers. This is similar to the results recently reported by Liu et al. [J. Acoust. Soc. Am. 117, 3879-3889 (2005)] for CP speakers of Mandarin. There was also a reduction of the acoustic vowel space defined by unstressed vowels, but this reduction was much more pronounced in the vowel productions of CP speakers than NO speakers.

  15. NASA/AHS rotorcraft noise reduction program - NASA Langley Acoustics Division contributions

    NASA Technical Reports Server (NTRS)

    Martin, Ruth M.

    1989-01-01

    An account is given of the contributions made by NASA-Langley's rotorcraft noise research programs over the last five years. Attention has been given to the broadband and blade-vortex interaction noise sources; both analytical and empirical noise-prediction codes have been developed and validated for several rotor noise sources, and the 'Rotonet' comprehensive system-noise prediction capability has been instituted. Among the technologies explored for helicopter noise reduction have been higher harmonic control and active vibration-suppression.

  16. NASA/AHS rotorcraft noise reduction program - NASA Langley Acoustics Division contributions

    NASA Astrophysics Data System (ADS)

    Martin, Ruth M.

    1989-06-01

    An account is given of the contributions made by NASA-Langley's rotorcraft noise research programs over the last five years. Attention has been given to the broadband and blade-vortex interaction noise sources; both analytical and empirical noise-prediction codes have been developed and validated for several rotor noise sources, and the 'Rotonet' comprehensive system-noise prediction capability has been instituted. Among the technologies explored for helicopter noise reduction have been higher harmonic control and active vibration-suppression.

  17. Active Control of Fan Noise-Feasibility Study. Volume 2: Canceling Noise Source-Design of an Acoustic Plate Radiator Using Piezoceramic Actuators

    NASA Technical Reports Server (NTRS)

    Pla, F. G.; Rajiyah, H.

    1995-01-01

    The feasibility of using acoustic plate radiators powered by piezoceramic thin sheets as canceling sources for active control of aircraft engine fan noise is demonstrated. Analytical and numerical models of actuated beams and plates are developed and validated. An optimization study is performed to identify the optimum combination of design parameters that maximizes the plate volume velocity for a given resonance frequency. Fifteen plates with various plate and actuator sizes, thicknesses, and bonding layers were fabricated and tested using results from the optimization study. A maximum equivalent piston displacement of 0.39 mm was achieved with the optimized plate samples tested with only one actuator powered, corresponding to a plate deflection at the center of over 1 millimeter. This is very close to the deflection required for a full size engine application and represents a 160-fold improvement over previous work. Experimental results further show that performance is limited by the critical stress of the piezoceramic actuator and bonding layer rather than by the maximum moment available from the actuator. Design enhancements are described in detail that will lead to a flight-worthy acoustic plate radiator by minimizing actuator tensile stresses and reducing nonlinear effects. Finally, several adaptive tuning methods designed to increase the bandwidth of acoustic plate radiators are analyzed including passive, active, and semi-active approaches. The back chamber pressurization and volume variation methods are investigated experimentally and shown to be simple and effective ways to obtain substantial control over the resonance frequency of a plate radiator. This study shows that piezoceramic-based plate radiators can be a viable acoustic source for active control of aircraft engine fan noise.

  18. Acoustic comparisons of Japanese and English vowels produced by native speakers of Japanese

    NASA Astrophysics Data System (ADS)

    Nishi, Kanae; Akahane-Yamada, Reiko; Kubo, Rieko; Strange, Winifred

    2003-10-01

    This study explored acoustic similarities/differences between Japanese (J) and American English (AE) vowels produced by native J speakers and compared production patterns to their perceptual assimilation of AE vowels [Strange et al., J. Phonetics 26, 311-344 (1998)]. Eight male native J speakers who had served as listeners in Strange et al. produced 18 Japanese (J) vowels (5 long-short pairs, 2 double vowels, and 3 long-short palatalized pairs) and 11 American English (AE) vowels in /hVbopena/ disyllables embedded in a carrier sentence. Acoustical parameters included formant frequencies at syllable midpoint (F1/F2/F3), formant change from 25% to 75% points in syllable (formant change), and vocalic duration. Results of linear discriminant analyses showed rather poor acoustic differentiation of J vowel categories when F1/F2/F3 served as input variables (60% correct classification), which greatly improved when duration and formant change were added. In contrast, correct classification of J speakers' AE vowels using F1/F2/F3 was very poor (66%) and did not improve much when duration and dynamic information were added. J speakers used duration to differentiate long/short AE vowel contrasts except for mid-to-low back vowels; these vowels were perceptually assimilated to a single Japanese vowel, and are very difficult for Japanese listeners to identify.

  19. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  20. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Astrophysics Data System (ADS)

    Huff, R. G.

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  1. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Astrophysics Data System (ADS)

    Huff, R. G.

    1984-10-01

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  2. Acoustic testing of a 1.5 pressure ratio low tip speed fan with a serrated rotor (QEP fan B scale model). [reduction of engine noise

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Paas, J. E.; Minzner, W. R.

    1973-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a serrated rotor leading edge to determine its effects on noise generation. The serrated rotor was produced by cutting teeth into the leading edge of the nominal rotor blades. The effects of speed and exhaust nozzle area on the scale models noise characteristics were investigated with both the nominal rotor and serrated rotor. Acoustic results indicate the serrations reduced front quadrant PNL's at takeoff power. In particular, the 200 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdb at 40 deg for nominal and large nozzle operation. However, the rear quadrant maximum sideline PNL's were increased 1.5 to 3 PNdb at approach thust and up to 2 PNdb at takeoff thust with these serrated rotor blades. The configuration with the serrated rotor produced the lowest maximum 200 foot (61.0 m) sideline PNL for any given thust when the large nozzle (116% of design area) was employed.

  3. Measurement of Noise Produced by a Plasma Contactor Operating in Ground Based Facilities

    NASA Technical Reports Server (NTRS)

    Snyder, Steve

    1996-01-01

    Methods to measure electric field fluctuations accurately in a plasma with an active monopole antenna are described. It is shown that the conductive surfaces of the antenna must be adequately isolated from the ambient plasma and that the monopole must be sufficiently short to avoid antenna amplifier saturation. Experimental results illustrate that the noise produced by plasma contactor operation and sensed by the antenna is due to plasma phenomena and is not induced by laboratory power supplies. A good correlation is shown between the current fluctuations in the contactor electrical circuit and the noise detected by the antenna. A large body of experimental data support the conclusion that the majority of noise sensed by the antenna at frequencies less than 1 MHz is due to current fluctuations (electrostatic waves) in the plasma adjacent to the antenna and not to electromagnetic wave radiation. Caution is suggested when comparing antenna noise measurements to conventional specifications for radiated emissions.

  4. [Assessment and analysis of the acoustic environment of soldiers exposed to impulse noise].

    PubMed

    Konopka, Wiesław; Pawlaczyk-Łuszczyńska, Małgorzata; Zalewski, Piotr; Miłoński, Jarosław

    2002-01-01

    The aim of the study was to assess the acoustic environment of soldiers attending a one year basic military service. The study material comprised 13 types of weapons used by this group of soldiers. During the target practice, the following parameters were measured separately for the right ear and the left ear: equivalent sound pressure level A (LA eq, Te); maximum sound pressure level A (LA F max) and peak sound pressure level C (LC peak). The measurements covered several single shots or a shot series. In addition, a spectroanalysis in 1/3-octave band frequency of 40-50,000 Hz, was conducted. There were following values of measurements in the direct vicinity of the ears: LA eq, Te fell within the range of 106.2-119.5 dB (mean, 112.2 dB) for the right ear and 104.2 dB-118.4 dB (mean, 113.2 dB) for the left ear; LA F max within the range of 124.5-132.3 dB (mean, 128.3 dB) for the right ear and 116.3-135.1 dB (mean, 128.1 dB) for the left ear; LC pcak within the range of 151.8-156.5 dB (mean, 154.8 dB/155 dB) for the right ear and 151.9-156.2 dB (mean, 155.4 dB) for the left ear. In the noise spectrum, components of audible frequencies predominated, 160-300 Hz (mainly for high caliber weapon); 1600-6300 Hz for the right ear and 2500-4000 Hz for the left peak (small caliber weapons); 6300-16,000 and ultrasonic 25,000-50,000 Hz. No significant differences were found in the measurements of the right ear and the left ear. PMID:12577807

  5. Acoustic characteristics of English lexical stress produced by native Mandarin speakers

    PubMed Central

    Zhang, Yanhong; Nissen, Shawn L.; Francis, Alexander L.

    2008-01-01

    Native speakers of Mandarin Chinese have difficulty producing native-like English stress contrasts. Acoustically, English lexical stress is multidimensional, involving manipulation of fundamental frequency (F0), duration, intensity and vowel quality. Errors in any or all of these correlates could interfere with perception of the stress contrast, but it is unknown which correlates are most problematic for Mandarin speakers. This study compares the use of these correlates in the production of lexical stress contrasts by 10 Mandarin and 10 native English speakers. Results showed that Mandarin speakers produced significantly less native-like stress patterns, although they did use all four acoustic correlates to distinguish stressed from unstressed syllables. Mandarin and English speakers’ use of amplitude and duration were comparable for both stressed and unstressed syllables, but Mandarin speakers produced stressed syllables with a higher F0 than English speakers. There were also significant differences in formant patterns across groups, such that Mandarin speakers produced English-like vowel reduction in certain unstressed syllables, but not in others. Results suggest that Mandarin speakers’ production of lexical stress contrasts in English is influenced partly by native-language experience with Mandarin lexical tones, and partly by similarities and differences between Mandarin and English vowel inventories. PMID:18537399

  6. Acoustic Database for Turbofan Engine Core-Noise Sources. I; Volume

    NASA Technical Reports Server (NTRS)

    Gordon, Grant

    2015-01-01

    were processed using software that accounts for the effects of convective and conductive heat transfer. The software was developed under previous NASA sponsored programs. Compensated temperature spectra and compensated time histories corresponding to the dynamic temperature of the gas stream were generated. Auto-spectral and cross-spectral analyses of the data were performed to investigate spectral features, acoustic circumferential mode content, signal coherence, and time delays. The dynamic temperature data exhibit a wideband and fairly flat spectral content. The temperature spectra do not change substantially with operating speed. The pressure spectra in the combustor and ITD exhibit generally similar shapes and amplitudes, making it difficult to identify any features that suggest the presence of indirect combustion noise. Cross-spectral analysis reveal a strong correlation between pressure and temperature fluctuations in the ITD, but little correlation between temperature fluctuations at the entrance of the HPT and pressure fluctuations downstream of it. Temperature fluctuations at the entrance of the low pressure turbine were an order of magnitude smaller than those at the entrance to the high pressure turbine. Time delay analysis of the temperature fluctuations in the combustor was inconclusive, perhaps due to the substantial mixing that occurs between the upstream and downstream locations. Time delay analysis of the temperature fluctuations in the ITD indicate that they convect at the mean flow speed. Analysis of the data did not reveal any convincing indications of the presence of indirect combustion noise. However, this analysis has been preliminary and additional exploration of the data is recommended including the use of more sophisticated signal processing to explore subtle issues that have been revealed but which are not yet fully understood or explained.

  7. Studies of the effects of experimentally produced noise associated with oil and gas exploration and development on sea otters in California. Final report

    SciTech Connect

    Riedman, M.L.

    1983-11-15

    During the winter 1983 tape-recorded industrial noises associated with offshore oil and gas operations were projected underwater at Soberanes Point, California. Seismic-exploration sounds were produced using a multiple air gun array (4000 cu. in) and a single air gun (100 cu. in) along a 10-15 km transect paralleling the coastline from Rocky Point to Yankee Point. The behavior, density, and distribution of sea otters (Enhydra lutris) within the vicinity of the sound projection area were not affected by the acoustic experiments. Foraging and diving behaviors of sea otters were normal and undisturbed. There were no movements of otters away from the sound source or out of the sound projection vicinity during either the winter or spring acoustic experiments.

  8. Psycho-acoustic evaluation of the indoor noise in cabins of a naval vessel using a back-propagation neural network algorithm

    NASA Astrophysics Data System (ADS)

    Han, Hyung-Suk

    2012-12-01

    The indoor noise of a ship is usually determined using the A-weighted sound pressure level. However, in order to better understand this phenomenon, evaluation parameters that more accurately reflect the human sense of hearing are required. To find the level of the satisfaction index of the noise inside a naval vessel such as "Loudness" and "Annoyance", psycho-acoustic evaluation of various sound recordings from the naval vessel was performed in a laboratory. The objective of this paper is to develop a single index of "Loudness" and "Annoyance" for noise inside a naval vessel according to a psycho-acoustic evaluation by using psychological responses such as Noise Rating (NR), Noise Criterion (NC), Room Criterion (RC), Preferred Speech Interference Level (PSIL) and loudness level. Additionally, in order to determine a single index of satisfaction for noise such as "Loudness" and "Annoyance", with respect to a human's sense of hearing, a back-propagation neural network is applied.

  9. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2002-01-01

    Low power EM waves are used to detect motions of vocal tract tissues of the human speech system before, during, and after voiced speech. A voiced excitation function is derived. The excitation function provides speech production information to enhance speech characterization and to enable noise removal from human speech.

  10. Overlapping frequency coverage and simulated spatial cue effects on bimodal (electrical and acoustical) sentence recognition in noise.

    PubMed

    Green, Tim; Faulkner, Andrew; Rosen, Stuart

    2014-02-01

    Sentence recognition in 20-talker babble was measured in eight Nucleus cochlear implant (CI) users with contralateral residual acoustic hearing. Speech reception thresholds (SRTs) were measured both in standard configurations, with some frequency regions presented both acoustically and electrically, and in configurations with no spectral overlap. In both cases a continuous interleaved sampling strategy was used. Mean SRTs were around 3 dB better with bimodal presentation than with CI alone in overlap configurations. A spherical head model was used to simulate azimuthal separation of speech and noise and provided no evidence of a contribution of spatial cues to bimodal benefit. There was no effect on bimodal performance of whether spectral overlap was present or was eliminated by switching off electrodes assigned to frequencies below the upper limit of acoustic hearing. In a subsequent experiment the CI was acutely re-mapped so that all available electrodes were used to cover frequencies not presented acoustically. This gave increased spectral resolution via the CI as assessed by formant frequency discrimination, but no improvement in bimodal performance compared to the configuration with overlap. PMID:25234893

  11. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  12. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with "sound visualization," acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-reverberation methods, both essentialfor visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, "Can we see two birds singing or one bird with two beaks?"

  13. Sine-wave and noise-vocoded sine-wave speech in a tone language: Acoustic details matter.

    PubMed

    Rosen, Stuart; Hui, Sze Ngar Catherine

    2015-12-01

    Sine-wave speech (SWS) is a highly simplified version of speech consisting only of frequency- and amplitude-modulated sinusoids representing the formants. That listeners can successfully understand SWS has led to claims that speech perception must be based on abstract properties of the stimuli far removed from their specific acoustic form. Here it is shown, in bilingual Cantonese/English listeners, that performance with Cantonese SWS is improved by noise vocoding, with no effect on English SWS utterances. This manipulation preserves the abstract informational structure in the signals but changes its surface form. The differential effects of noise vocoding likely arise from the fact that Cantonese is a tonal language and hence more reliant on fundamental frequency (F0) contours for its intelligibility. SWS does not preserve tonal information from the original speech but does have false tonal information signalled by the lowest frequency sinusoid. Noise vocoding SWS appears to minimise the tonal percept, which thus interferes less in the perception of Cantonese. It has no effect in English, which is minimally reliant on F0 variations for intelligibility. Therefore it is not only the informational structure of a sound that is important but also how its acoustic detail interacts with the phonological structure of a given language. PMID:26723325

  14. Comparison of Active Noise Control Structures in the Presence of Acoustical Feedback by Using THEH∞SYNTHESIS Technique

    NASA Astrophysics Data System (ADS)

    Bai, M. R.; Lin, H. H.

    1997-10-01

    This study compares three control structures of active noise cancellation for ducts: feedback control, feedforward control, and hybrid control. These structures are compared in terms of performance, stability, and robustness by using a general framework of theH∞robust control theory. In addition, theH∞synthesis procedure automatically incorporates the acoustic feedback path that is usually a plaguing problem to feedforward control design. The controllers are implemented by using a digital signal processor and tested on a finite-length duct. In an experimental verification, the proposed controllers are also compared with the well-known filtered-uleast mean square (FULMS) controller. The advantages and disadvantages of each ANC structure as well as the adverse effects due to acoustic feedback are addressed.

  15. Acoustic Performance of Novel Fan Noise Reduction Technologies for a High Bypass Model Turbofan at Simulated Flights Conditions

    NASA Technical Reports Server (NTRS)

    Elliott, David M.; Woodward, Richard P.; Podboy, Gary G.

    2010-01-01

    Two novel fan noise reduction technologies, over the rotor acoustic treatment and soft stator vane technologies, were tested in an ultra-high bypass ratio turbofan model in the NASA Glenn Research Center s 9- by 15-Foot Low-Speed Wind Tunnel. The performance of these technologies was compared to that of the baseline fan configuration, which did not have these technologies. Sideline acoustic data and hot film flow data were acquired and are used to determine the effectiveness of the various treatments. The material used for the over the rotor treatment was foam metal and two different types were used. The soft stator vanes had several internal cavities tuned to target certain frequencies. In order to accommodate the cavities it was necessary to use a cut-on stator to demonstrate the soft vane concept.

  16. NASA powered lift facility internally generated noise and its transmission to the acoustic far field

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1988-01-01

    Noise tests of NASA Lewis Research Center's Powered Lift Facility (PLF) were performed to determine the frequency content of the internally generated noise that reaches the far field. The sources of the internally generated noise are the burner, elbows, valves, and flow turbulence. Tests over a range of nozzle pressure ratios from 1.2 to 3.5 using coherence analysis revealed that low frequency noise below 1200 Hz is transmitted through the nozzle. Broad banded peaks at 240 and 640 Hz were found in the transmitted noise. Aeroacoustic excitation effects are possible in this frequency range. The internal noise creates a noise floor that limits the amount of jet noise suppression that can be measured on the PLF and similar facilities.

  17. Short- and long-term changes in right whale calling behavior: the potential effects of noise on acoustic communication.

    PubMed

    Parks, Susan E; Clark, C W; Tyack, P L

    2007-12-01

    The impact of anthropogenic noise on marine mammals has been an area of increasing concern over the past two decades. Most low-frequency anthropogenic noise in the ocean comes from commercial shipping which has contributed to an increase in ocean background noise over the past 150 years. The long-term impacts of these changes on marine mammals are not well understood. This paper describes both short- and long-term behavioral changes in calls produced by the endangered North Atlantic right whale (Eubalaena glacialis) and South Atlantic right whale (Eubalaena australis) in the presence of increased low-frequency noise. Right whales produce calls with a higher average fundamental frequency and they call at a lower rate in high noise conditions, possibly in response to masking from low-frequency noise. The long-term changes have occurred within the known lifespan of individual whales, indicating that a behavioral change, rather than selective pressure, has resulted in the observed differences. This study provides evidence of a behavioral change in sound production of right whales that is correlated with increased noise levels and indicates that right whales may shift call frequency to compensate for increased band-limited background noise. PMID:18247780

  18. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  19. Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.

    2012-01-01

    The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories

  20. Acoustic and Laser Doppler Anemometer Results for Confluent, 22-Lobed, and Unique-Lobed Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)

    2002-01-01

    The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.

  1. Designing acoustics for linguistically diverse classrooms: Effects of background noise, reverberation and talker foreign accent on speech comprehension by native and non-native English-speaking listeners

    NASA Astrophysics Data System (ADS)

    Peng, Zhao Ellen

    The current classroom acoustics standard (ANSI S12.60-2010) recommends core learning spaces not to exceed background noise level (BNL) of 35 dBA and reverberation time (RT) of 0.6 second, based on speech intelligibility performance mainly by the native English-speaking population. Existing literature has not correlated these recommended values well with student learning outcomes. With a growing population of non-native English speakers in American classrooms, the special needs for perceiving degraded speech among non-native listeners, either due to realistic room acoustics or talker foreign accent, have not been addressed in the current standard. This research seeks to investigate the effects of BNL and RT on the comprehension of English speech from native English and native Mandarin Chinese talkers as perceived by native and non-native English listeners, and to provide acoustic design guidelines to supplement the existing standard. This dissertation presents two studies on the effects of RT and BNL on more realistic classroom learning experiences. How do native and non-native English-speaking listeners perform on speech comprehension tasks under adverse acoustic conditions, if the English speech is produced by talkers of native English (Study 1) versus native Mandarin Chinese (Study 2)? Speech comprehension materials were played back in a listening chamber to individual listeners: native and non-native English-speaking in Study 1; native English, native Mandarin Chinese, and other non-native English-speaking in Study 2. Each listener was screened for baseline English proficiency level, and completed dual tasks simultaneously involving speech comprehension and adaptive dot-tracing under 15 acoustic conditions, comprised of three BNL conditions (RC-30, 40, and 50) and five RT scenarios (0.4 to 1.2 seconds). The results show that BNL and RT negatively affect both objective performance and subjective perception of speech comprehension, more severely for non

  2. Considerations on nonlinearity measurement with high signal-to-noise ratio for RF surface and bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Kodaira, Ryosuke; Omori, Tatsuya; Hashimoto, Ken-ya; Kyoya, Haruki; Nakagawa, Ryo

    2015-07-01

    This paper discusses the measurement setup of non-linearity caused in radio frequency (RF) surface and bulk acoustic wave (SAW/BAW) devices with high signal-to-noise ratio (SNR). It is shown that when some important points are considered, the background level can be suppressed better than -135 dBm, and the non-linearity signals can be measured in high SNR. Finally, measured results are compared with those measured independently by Murata Manufacturing, and validity of the measurement is cross-checked.

  3. The noise environment of a school classroom due to the operation of utility helicopters. [acoustic measurements of helicopter noise during flight over building

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Pegg, R. J.

    1974-01-01

    Noise measurements under controlled conditions have been made inside and outside of a school building during flyover operations of four different helicopters. The helicopters were operated at a condition considered typical for a police patrol mission. Flyovers were made at an altitude of 500 ft and an airspeed of 45 miles per hour. During these operations acoustic measurements were made inside and outside of the school building with the windows closed and then open. The outside noise measurements during helicopter flyovers indicate that the outside db(A) levels were approximately the same for all test helicopters. For the windows closed case, significant reductions for the inside measured db(A) values were noted for all overflights. These reductions were approximately 20 db(A); similar reductions were noted in other subjective measuring units. The measured internal db(A) levels with the windows open exceeded published classroom noise criteria values; however, for the windows-closed case they are in general agreement with the criteria values.

  4. Near noise field characteristics of Nike rocket motors for application to space vehicle payload acoustic qualification

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Bruton, D.

    1977-01-01

    Results of a series of noise measurements that were made under controlled conditions during the static firing of two Nike solid propellant rocket motors are presented. The usefulness of these motors as sources for general spacecraft noise testing was assessed, and the noise expected in the cargo bay of the orbiter was reproduced. Brief descriptions of the Nike motor, the general procedures utilized for the noise tests, and representative noise data including overall sound pressure levels, one third octave band spectra, and octave band spectra were reviewed. Data are presented on two motors of different ages in order to show the similarity between noise measurements made on motors having different loading dates. The measured noise from these tests is then compared to that estimated for the space shuttle orbiter cargo bay.

  5. Prediction of helicopter rotor discrete frequency noise: A computer program incorporating realistic blade motions and advanced acoustic formulation

    NASA Technical Reports Server (NTRS)

    Brentner, K. S.

    1986-01-01

    A computer program has been developed at the Langley Research Center to predict the discrete frequency noise of conventional and advanced helicopter rotors. The program, called WOPWOP, uses the most advanced subsonic formulation of Farassat that is less sensitive to errors and is valid for nearly all helicopter rotor geometries and flight conditions. A brief derivation of the acoustic formulation is presented along with a discussion of the numerical implementation of the formulation. The computer program uses realistic helicopter blade motion and aerodynamic loadings, input by the user, for noise calculation in the time domain. A detailed definition of all the input variables, default values, and output data is included. A comparison with experimental data shows good agreement between prediction and experiment; however, accurate aerodynamic loading is needed.

  6. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 2: One-third octave data tabulations and selected narrowband traces

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The raw-acoustic data corrected to standard day, from acoustic tests performed on a 0.508-scale fan vehicle of a 111,300 newton thrust, full-size engine, which has application on an advanced transport aircraft, are presented. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec to achieve the desired pressure ratio in a single-stage fan with low radius ratio, and to maintain adequate stall margin. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized.

  7. Flap Side Edge Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  8. Acoustic evaluation and adjustment of an open-plan office through architectural design and noise control.

    PubMed

    Passero, Carolina Reich Marcon; Zannin, Paulo Henrique Trombetta

    2012-11-01

    Arranging office space into a single open room offers advantages in terms of easy exchange of information and interaction among coworkers, but reduces privacy and acoustic comfort. Thus, the purpose of this work was to evaluate the acoustic quality of a real open-plan office and to propose changes in the room to improve the acoustic conditioning of this office. The computational model of the office under study was calibrated based on RT and STI measurements. Predictions were made of the RT and STI, which generated the radius of distraction r(D), and the rate of spatial decay of sound pressure levels per distance doubling DL(2) in the real conditions of the office and after modifications of the room. The insertion of dividers between work stations and an increase in the ceiling's sound absorption improved the acoustic conditions in the office under study. PMID:22507599

  9. Predictive Acoustic Modelling Applied to the Control of Intake/exhaust Noise of Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Davies, P. O. A. L.; Harrison, M. F.

    1997-05-01

    The application of validated acoustic models to intake/exhaust system acoustic design is described with reference to a sequence of specific practical examples. These include large turbocharged diesel generating sets, truck engines and high performance petrol engines. The discussion includes a comparison of frequency domain, time domain and hybrid modelling approaches to design methodology. The calculation of sound emission from open terminations is summarized in an appendix.

  10. Passive acoustic detection and localization of whales: effects of shipping noise in Saguenay-St. Lawrence Marine Park.

    PubMed

    Simard, Yvan; Roy, Nathalie; Gervaise, Cédric

    2008-06-01

    The performance of large-aperture hydrophone arrays to detect and localize blue and fin whales' 15-85 Hz signature vocalizations under ocean noise conditions was assessed through simulations from a normal mode propagation model combined to noise statistics from 15 960 h of recordings in Saguenay-St. Lawrence Marine Park. The probability density functions of 2482 summer noise level estimates in the call bands were used to attach a probability of detection/masking to the simulated call levels as a function of whale depth and range for typical environmental conditions. Results indicate that call detection was modulated by the calling depth relative to the sound channel axis and by modal constructive and destructive interferences with range. Masking of loud infrasounds could reach 40% at 30 km for a receiver at the optimal depth. The 30 dB weaker blue whale D-call were subject to severe masking. Mapping the percentages of detection and localization allowed assessing the performance of a six-hydrophone array under mean- and low-noise conditions. This approach is helpful for optimizing hydrophone configuration in implementing passive acoustic monitoring arrays and building their detection function for whale density assessment, as an alternative to or in combination with the traditional undersampling visual methods. PMID:18537362

  11. Noise

    MedlinePlus

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  12. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight comprehensive data report. Volume 1: Test nozzles and acoustic data

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.

    1984-01-01

    Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Acoustic behavior as a function of nozzle flow passage geometry was measured. The acoustic data consist primarily of 1/3 octave band sound pressure levels and overall sound pressure levels. Detailed schematics and geometric characteristics of the six scale model nozzle configurations and acoustic test point definitions are presented. Tabulation of aerodynamic test conditions and a computer listing of the measured acoustic data are displayed.

  13. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator.

    PubMed

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  14. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implants.

    PubMed

    Li, Xing; Nie, Kaibao; Imennov, Nikita S; Won, Jong Ho; Drennan, Ward R; Rubinstein, Jay T; Atlas, Les E

    2012-11-01

    Harmonic and temporal fine structure (TFS) information are important cues for speech perception in noise and music perception. However, due to the inherently coarse spectral and temporal resolution in electric hearing, the question of how to deliver harmonic and TFS information to cochlear implant (CI) users remains unresolved. A harmonic-single-sideband-encoder [(HSSE); Nie et al. (2008). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing; Lie et al., (2010). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing] strategy has been proposed that explicitly tracks the harmonics in speech and transforms them into modulators conveying both amplitude modulation and fundamental frequency information. For unvoiced speech, HSSE transforms the TFS into a slowly varying yet still noise-like signal. To investigate its potential, four- and eight-channel vocoder simulations of HSSE and the continuous-interleaved-sampling (CIS) strategy were implemented, respectively. Using these vocoders, five normal-hearing subjects' speech recognition performance was evaluated under different masking conditions; another five normal-hearing subjects' Mandarin tone identification performance was also evaluated. Additionally, the neural discharge patterns evoked by HSSE- and CIS-encoded Mandarin tone stimuli were simulated using an auditory nerve model. All subjects scored significantly higher with HSSE than with CIS vocoders. The modeling analysis demonstrated that HSSE can convey temporal pitch cues better than CIS. Overall, the results suggest that HSSE is a promising strategy to enhance speech perception with CIs. PMID:23145619

  15. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    PubMed Central

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  16. Assessment at full scale of nozzle/wing geometry effects on OTW aero-acoustic characteristics. [short takeoff aircraft noise

    NASA Technical Reports Server (NTRS)

    Groesbeck, D.; Vonglahn, U.

    1979-01-01

    The effects on acoustic characteristics of nozzle type and location on a wing for STOL engine over-the-wing configurations are assessed at full scale on the basis of model-scale data. Three types of nozzle configurations are evaluated: a circular nozzle with external deflector mounted above the wing, a slot nozzle with external deflector mounted on the wing and a slot nozzle mounted on the wing. Nozzle exhaust plane locations with respect to the wing leading edge are varied from 10 to 46 percent chord (flaps retracted) with flap angles of 20 (takeoff altitude) and 60 (approach attitude). Perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots, static EPNL values, defined as flyover relative noise levels, are calculated and plotted as a function of lift and thrust ratios. From such plots the acoustic benefits attributable to variations in nozzle/deflector/wing geometry at full scale are assessed for equal aerodynamic performance.

  17. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  18. Core Noise: Implications of Emerging N+3 Designs and Acoustic Technology Needs

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a summary of the core-noise implications of NASA's primary N+3 aircraft concepts. These concepts are the MIT/P&W D8.5 Double Bubble design, the Boeing/GE SUGAR Volt hybrid gas-turbine/electric engine concept, the NASA N3-X Turboelectric Distributed Propulsion aircraft, and the NASA TBW-XN Truss-Braced Wing concept. The first two are future concepts for the Boeing 737/Airbus A320 US transcontinental mission of 180 passengers and a maximum range of 3000 nm. The last two are future concepts for the Boeing 777 transpacific mission of 350 passengers and a 7500 nm range. Sections of the presentation cover: turbofan design trends on the N+1.5 time frame and the already emerging importance of core noise; the NASA N+3 concepts and associated core-noise challenges; the historical trends for the engine bypass ratio (BPR), overall pressure ratio (OPR), and combustor exit temperature; and brief discussion of a noise research roadmap being developed to address the core-noise challenges identified for the N+3 concepts. The N+3 conceptual aircraft have (i) ultra-high bypass ratios, in the rage of 18 - 30, accomplished by either having a small-size, high-power-density core, an hybrid design which allows for an increased fan size, or by utilizing a turboelectric distributed propulsion design; and (ii) very high OPR in the 50 - 70 range. These trends will elevate the overall importance of turbomachinery core noise. The N+3 conceptual designs specify the need for the development and application of advanced liners and passive and active control strategies to reduce the core noise. Current engineering prediction of core noise uses semi-empirical methods based on older turbofan engines, with (at best) updates for more recent designs. The models have not seen the same level of development and maturity as those for fan and jet noise and are grossly inadequate for the designs considered for the N+3 time frame. An aggressive program for the development of updated noise

  19. Differences in acoustic features of vocalizations produced by killer whales cross-socialized with bottlenose dolphins.

    PubMed

    Musser, Whitney B; Bowles, Ann E; Grebner, Dawn M; Crance, Jessica L

    2014-10-01

    Limited previous evidence suggests that killer whales (Orcinus orca) are capable of vocal production learning. However, vocal contextual learning has not been studied, nor the factors promoting learning. Vocalizations were collected from three killer whales with a history of exposure to bottlenose dolphins (Tursiops truncatus) and compared with data from seven killer whales held with conspecifics and nine bottlenose dolphins. The three whales' repertoires were distinguishable by a higher proportion of click trains and whistles. Time-domain features of click trains were intermediate between those of whales held with conspecifics and dolphins. These differences provided evidence for contextual learning. One killer whale spontaneously learned to produce artificial chirps taught to dolphins; acoustic features fell within the range of inter-individual differences among the dolphins. This whale also produced whistles similar to a stereotyped whistle produced by one dolphin. Thus, results provide further support for vocal production learning and show that killer whales are capable of contextual learning. That killer whales produce similar repertoires when associated with another species suggests substantial vocal plasticity and motivation for vocal conformity with social associates. PMID:25324098

  20. The acoustic and perceptual effects of two noise-suppression algorithms.

    PubMed

    Zakis, Justin A; Wise, Christi

    2007-01-01

    Internal noise generated by hearing-aid circuits can be audible and objectionable to aid users, and may lead to the rejection of hearing aids. Two expansion algorithms were developed to suppress internal noise below a threshold level. The multiple-channel algorithm's expansion thresholds followed the 55-dB SPL long-term average speech spectrum, while the single-channel algorithm suppressed sounds below 45 dBA. With the recommended settings in static conditions, the single-channel algorithm provided lower noise levels, which were perceived as quieter by most normal-hearing participants. However, in dynamic conditions "pumping" noises were more noticeable with the single-channel algorithm. For impaired-hearing listeners fitted with the ADRO amplification strategy, both algorithms maintained speech understanding for words in sentences presented at 55 dB SPL in quiet (99.3% correct). Mean sentence reception thresholds in quiet were 39.4, 40.7, and 41.8 dB SPL without noise suppression, and with the single- and multiple-channel algorithms, respectively. The increase in the sentence reception threshold was statistically significant for the multiple-channel algorithm, but not the single-channel algorithm. Thus, both algorithms suppressed noise without affecting the intelligibility of speech presented at 55 dB SPL, with the single-channel algorithm providing marginally greater noise suppression in static conditions, and the multiple-channel algorithm avoiding pumping noises. PMID:17297798

  1. Noise in pressure transducer readings produced by variations in solar radiation

    USGS Publications Warehouse

    Cain, S. F., III; Davis, G.A.; Loheide, S.P., II; Butler, J.J., Jr.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  2. Noise in pressure transducer readings produced by variations in solar radiation.

    PubMed

    Cain, Samuel F; Davis, Gregory A; Loheide, Steven P; Butler, James J

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells. PMID:15584307

  3. Acoustic responses of monodisperse lipid-encapsulated microbubble contrast agents produced by flow focusing

    PubMed Central

    Kaya, Mehmet; Feingold, Steven; Hettiarachchi, Kanaka; Lee, Abraham P; Dayton, Paul A

    2010-01-01

    Lipid-encapsulated microbubbles are used as contrast agents in ultrasound imaging. Currently available commercially made contrast agents have a polydisperse size distribution. It has been hypothesised that improved imaging sensitivity could be achieved with a uniform microbubble radius. We have recently developed microfluidics technology to produce contrast agents with a nearly monodisperse distribution. In this manuscript, we analyze echo responses from individual microbubbles from monodisperse populations in order to establish the relationship between scattered echo, microbubble radius, and excitation frequency. Simulations of bubble response from a modified Rayleigh-Plesset type model corroborate experimental data. Results indicate that microbubble echo response can be greatly increased by optimal combinations of microbubble radius and acoustic excitation frequency. These results may have a significant impact in the formulation of contrast agents to improve ultrasonic sensitivity. PMID:21475641

  4. Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control

    SciTech Connect

    Kelley, N.D.; McKenna, H.E.; Hemphill, R.R.; Etter, C.L.; Garrelts, R.L.; Linn, N.C.

    1985-02-01

    This report summarizes extensive research by staff of the Solar Energy Research Institute and its subcontractors conducted to establish the origin and possible amelioration of acoustic disturbances associated with the operation of the DOE/NASA MOD-1 wind turbine installed in 1979 near Boone, North Carolina. Results have shown that the source of this acoustic annoyance was the transient, unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the low-frequency, acoustic impulses propagated into the structures in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing. Several techniques for reducing the abrupt, unsteady blade load transients were researched and are discussed in the report.

  5. Sodium-water reaction acoustic noise for liquid phase injections. [LMFBR

    SciTech Connect

    Callis, K.R.; Greene, D.A.; Malovrh, J.W.

    1981-02-01

    Data on liquid and steam injections into sodium were recorded during a series of wastage experiments. These data are analyzed for acoustic power and spectral characteristics, expanding the data base up to 10 gm/sec injection rates from the earlier 0.5 gms/sec. No significant difference in acoustic power was measured between low temperature steam and liquid injections for the same mass flowrates. The bandwidth for steam injections is broader than for liquid injections. Reaction product deposition during water injections appears to cause a decrease in signal strength with test duration.

  6. Active Control of Jet Noise Using High Resolution TRPIV Part 2: Velocity-Pressure-Acoustic Correlations

    NASA Astrophysics Data System (ADS)

    Low, Kerwin; Kostka, Stanislav; Berger, Zachary; Berry, Matthew; Gogineni, Sivaram; Glauser, Mark

    2011-11-01

    We investigate the pressure, velocity and acoustic field of a transonic jet. Test conditions comprise a 2 inch nozzle, analyzing two flow speeds, Mach 0.6 and 0.85, with open loop control explored for the Mach 0.6 case. We make simultaneous measurements of the near-field pressure and far-field acoustics at 40 kHz, alongside 10 kHz time resolved PIV measurements in the r-z plane. Cross correlations are performed exploring how both the near-field Fourier filtered pressure and low dimensional POD modes relate to the far-field acoustics. Of interest are those signatures witch exhibit the strongest correlation with far-field, and subsequently how these structures can be controlled. The goal is to investigate how flow-induced perturbations, via synthetic jet actuators, of the developing shear layer might bring insight into how one may alter the flow such that the far-field acoustic signature is mitigated. The TR-PIV measurements will prove to be a powerful tool in being able to track the propagation of physical structures for both the controlled and uncontrolled jet.

  7. Effects of forward velocity and acoustic treatment on inlet fan noise

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.; Merriman, J. E.

    1974-01-01

    Flyover and static noise data from several engines are presented that show inlet fan noise measured in flight can be lower than that projected from static tests for some engines. The differences between flight and static measurements appear greatest when the fan fundamental tone due to rotor-stator interaction or to the rotor-alone field is below cutoff. Data from engine and fan tests involving inlet treatment on the walls only are presented that show the attenuation from this treatment is substantially larger than expected from previous theories or flow duct experience. Data showing noise shielding effects due to the location of the engine on the airplane are also presented. These observations suggest that multiringed inlets may not be necessary to achieve the desired noise reduction in many applications.

  8. Acoustic evaluation of a novel swept-rotor fan. [noise reduction in turbofan engines

    NASA Technical Reports Server (NTRS)

    Lucas, J. G.; Woodward, R. P.; Mackinnon, M. J.

    1978-01-01

    Inlet noise and aerodynamic performance are presented for a high tip speed fan designed with rotor blade leading edge sweep that gives a subsonic component of inlet Mach number normal to the edge at all radii. The intent of the design was to minimize the generation of rotor leading edge shock waves thereby minimizing multiple pure tone noise. Sound power level and spectral comparisons are made with several high-speed fans of conventional design. Results show multiple pure tone noise at levels below those of some of the other fans and this noise was initiated at a higher tip speed. Aerodynamic performance of the fan did not meet design goals for this first build which applied conventional design procedures to the swept fan geometry.

  9. Investigation of the effects of a moving acoustic medium on jet noise measurements

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Palmer, D. W.

    1976-01-01

    Noise from an unheated sonic jet in the presence of an external flow is measured in a free-jet wind tunnel using microphones located both inside and outside the flow. Comparison of the data is made with results of similar studies. The results are also compared with theoretical predictions of the source strength for jet noise in the presence of flow and of the effects of sound propagation through a shear layer.

  10. A Robust Approach For Acoustic Noise Suppression In Speech Using ANFIS

    NASA Astrophysics Data System (ADS)

    Martinek, Radek; Kelnar, Michal; Vanus, Jan; Bilik, Petr; Zidek, Jan

    2015-11-01

    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.

  11. Theoretical study of refraction effects on noise produced by turbulent jets

    NASA Technical Reports Server (NTRS)

    Graham, E. W.; Graham, B. B.

    1975-01-01

    The transmission of acoustic disturbances from the interior of a jet into the ambient air is studied. The jet is assumed infinitely long with mean velocity profile independent of streamwise location. The noise generator is a sequence of transient sources drifting with the local fluid and confined to a short length of the jet. In Part 1, supersonic jets are considered. Numerical results for mean-square pressure versus angle in the far-field show unexpected peaks which are very sharp. Analysis of simplified models indicates that these are complex quasi-resonant effects which appear to the stationary observer in a high frequency range. The peaks are real for the idealized model, but would be smoothed by mathematical integration over source position, velocity, and frequency. Subsonic jets were considered in part 2, and a preliminary study of the near-field was attempted. Mean-square radial displacements (or mean radial energy flow or space-time correlations of radial pressure gradient) are first found for very simple cases. The most difficult case studied is a sequence of transient sources at the center of a uniform-velocity circular cylindrical jet. Here a numerical triple integration is required and seems feasible although only preliminary results for mean square radial displacement are now available. These preliminary results show disturbances decreasing with increasing radial distance, and with increasing distance upstream and downstream from the source. A trend towards greater downstream disturbances appears even in the near field.

  12. Noise Producing Toys and the Efficacy of Product Standard Criteria to Protect Health and Education Outcomes

    PubMed Central

    McLaren, Stuart J.; Page, Wyatt H.; Parker, Lou; Rushton, Martin

    2013-01-01

    An evaluation of 28 commercially available toys imported into New Zealand revealed that 21% of these toys do not meet the acoustic criteria in the ISO standard, ISO 8124-1:2009 Safety of Toys, adopted by Australia and New Zealand as AS/NZS ISO 8124.1:2010. While overall the 2010 standard provided a greater level of protection than the earlier 2002 standard, there was one high risk toy category where the 2002 standard provided greater protection. A secondary set of toys from the personal collections of children known to display atypical methods of play with toys, such as those with autism spectrum disorders (ASD), was part of the evaluation. Only one of these toys cleanly passed the 2010 standard, with the remainder failing or showing a marginal-pass. As there is no tolerance level stated in the standards to account for interpretation of data and experimental error, a value of +2 dB was used. The findings of the study indicate that the current standard is inadequate in providing protection against excessive noise exposure. Amendments to the criteria have been recommended that apply to the recently adopted 2013 standard. These include the integration of the new approaches published in the recently amended European standard (EN 71) on safety of toys. PMID:24452254

  13. Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan. [quiet engine program

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.; Clemons, A.

    1977-01-01

    Sound data which were obtained during tests of a 50.8 cm diameter, subsonic tip speed, low pressure ratio fan were analyzed. The test matrix was divided into two major investigations: (1) source noise reduction techniques; and (2) aft duct noise reduction with acoustic treatment. Source noise reduction techniques were investigated which include minimizing second harmonic noise by varying vane/blade ratio, variation in spacing, and lowering the Mach number through the vane row to lower fan broadband noise. Treatment in the aft duct which includes flow noise effects, faceplate porosity, rotor OGV treatment, slant cell treatment, and splitter simulation with variable depth on the outer wall and constant thickness treatment on the inner wall was investigated. Variable boundary conditions such as variation in treatment panel thickness and orientation, and mixed porosity combined with variable thickness were examined. Significant results are reported.

  14. Shanghai alleviates noise pollution

    SciTech Connect

    Ding Runling

    1983-07-14

    ''Environmental noise is now under control in Shanghai, the level of environmental noise is basically holding steady, and in some areas industrial and traffic noise has decreased.'' These were the conclusions of research by Hong Zonghui (3163 1350 6540) and Wang Shixian (3769 6164 6343) of Tongji University's Acoustics Laboratory, as put forward at a recent public academic lecture at Tongji University. In order to eliminate noise from the environment, Tongji University in the early 1970's began conducting investigations and research on noise pollution and its control together with concerned units in this city. After tests in a network of 2,117 points throughout the city, they determined that the most common form of noise pollution is traffic, which accounts for 50 percent of all noise. Since 1979, this city has adopted successive measures in the area of traffic control in order to eliminate the source of noise. Traffic noise has now dropped about 3 decibels in the city. This research report also pointed out that according to the results of regional environmental noise tests, this city does not meet the noise pollution standards set by the state. Tugboats on the Suzhou He blow their whistles late at night, and the noise at riverside homes can reach 82 decibels; the Fangua Lane residential district is close to a railroad where engine noise can reach 89 decibels and affect the residents' health. In addition, rather serious noise pollution is produced by more than 300 handicraft, light industry, textile, and electrical machinery plants.

  15. Thin film interface stresses produced by high amplitude laser generated surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Sherman, Bradley; Liou, Hong-Cin; Balogun, Oluwaseyi

    2015-10-01

    Surface acoustic waves (SAWs) have been explored for nondestructive metrology of thin film elastic properties and thickness due to confinement of their energy within a shallow depth from a material surface. In this paper, we study the dynamic interfacial stresses produced by high amplitude SAWs generated by a strongly ablative source in a thin film-substrate system, with the goal of investigating the possibility of inducing thin film delamination at high loading rates. For modeling purposes, we represent the mechanical loading resulting from the pulsed laser-sample interaction in the ablative regime by an equivalent compressive surface load, and the resulting stresses and particle velocities induced by the generated SAWs are calculated using a linear finite element model. We explore the numerical model to study the dependence of the film-substrate interface tractions on the ratio of the film thickness and SAW wavelength for a soft film on a stiff substrate. Furthermore, by matching the numerical results obtained from the finite element model with experimental results, we are able to predict the dynamic interfacial stresses for a copper film on a fused silica substrate produced by SAWs excited by a high power pulsed laser line source. This study has implications for exploring SAWs in the characterization of interfacial failure in thin-film substrate systems.

  16. Numerical and experimental investigation of noise from small scale axial fans focusing on inflow condition and acoustic source type

    NASA Astrophysics Data System (ADS)

    Shin, Yoon Shik

    The objective of this work was to conduct an experimental and numerical investigation of the noise radiated by a small-scale axial fan from two different points-of-view: the development of an inflow treatment to compensate for unfavorable inflow conditions that result in excessive noise, and a consideration of installation effects for the acoustic source type of small axial fans. The effect of disturbed inflow on axial fans was experimentally investigated by intentionally placing a blockage plate at four different locations upstream of a fan. The blocked inflow made the axial fan perform very poorly; the severely decreased pressure performance introduced an overly strong dependence of flow performance on pressure load condition. An inflow diffuser made from aluminum foam was suggested to improve the aerodynamic and acoustic performance of the axial fan under such unfavorable inflow conditions. The inflow diffuser improved the stability of flow performance and reduced the blade passing tone by a small amount, but the levels of the high frequency harmonics of the blade passing tone were increased. A corresponding numerical model was built to model the flow change due to the inflow foam treatment. The inflow foam diffuser was approximated as a homogeneous porous zone to make the computational cost affordable, and it was shown that the model can predict the foam's influence on the pressure and flow performance of the fan. The aeroacoustic analogy model was applied to the solid surfaces of the fan and its housing to simulate the tonal noise at the blade passing frequency. The validity of the homogeneous foam model in terms of aeroacoustic predictions was also confirmed. As for the second aspect of the axial fan noise source, the dipole-like source behavior of an axial fan at the blade passing frequency was verified by directivity measurements. Thus, dipole modeling of an axial fan was justified. This result is associated with the problem of overestimated fan source

  17. Long-term administration of magnesium after acoustic trauma caused by gunshot noise in guinea pigs.

    PubMed

    Abaamrane, L; Raffin, F; Gal, M; Avan, P; Sendowski, I

    2009-01-01

    In a previous study we observed that a 7-day post-trauma magnesium treatment significantly reduced auditory threshold shifts measured 7 days after gunshot noise exposure. However this improvement was only temporary, suggesting that it could be potentially beneficial to prolong this treatment. The aim of the present study was to evaluate the efficacy of a long-term (1 month) magnesium treatment after an impulse noise trauma, in comparison with either a 7-day magnesium treatment, an administration of methylprednisolone (conventional treatment), or a placebo (NaCl). Guinea pigs were exposed to impulse noise (three blank gunshots, 170 dB SPL peak). They received one of the four treatments, 1 h after the noise exposure. Auditory function was explored by recording the auditory brainstem response (ABR) and measuring the distortion product otoacoustic emissions (DPOAE) over a 3-month recovery period after the gunshot exposure. The functional hearing study was supplemented by a histological analysis. The results showed that a 1-month treatment with magnesium was the most effective treatment in terms of hair cell preservation. The DPOAE confirmed this effectiveness. Methylprednisolone accelerated recovery but its final efficacy remained moderate. It is probable that magnesium acts on the later metabolic processes that occur after noise exposure. Multiple mechanisms could be involved: calcium antagonism, anti-ischaemic effect or NMDA channel blockage. Regardless of the specific mechanism, a 1-month treatment with magnesium clearly attenuates NIHL, and presents the advantage of being safe for use in humans. PMID:19084059

  18. A difference theory for noise propagation in an acoustically lined duct with mean flow

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1973-01-01

    A finite difference formulation is presented for sound propagation in a two-dimensional straight soft-walled duct with uniform flow. The difference analysis is developed in terms of complex notation. The governing acoustic difference equations and the appropriate displacement boundary conditions associated with uniform flow are presented for the sound attenuation in straight hard and soft-walled ducts. At present the finite Mach number case is solved only for the one-dimensional hard walled duct.

  19. A difference theory for noise propagation in an acoustically lined duct with mean flow.

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1973-01-01

    A finite difference formulation is presented for sound propagation in a two-dimensional straight soft-walled duct with uniform flow. The difference analysis is developed in terms of complex notation. The governing acoustic difference equations and the appropriate displacement boundary conditions associated with uniform flow are presented. Example calculations are presented for the sound attenuation in straight hard and soft-walled ducts. At present the finite Mach number case is solved only for the one-dimensional hard walled duct.

  20. Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect

    Roadman, Jason; Huskey, Arlinda

    2015-07-01

    A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented in this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.

  1. Generalized acoustic energy density based active noise control in single frequency diffuse sound fields.

    PubMed

    Xu, Buye; Sommerfeldt, Scott D

    2014-09-01

    In a diffuse sound field, prior research has established that a secondary source can theoretically achieve perfect cancellation at an error microphone in the far field of the secondary source. However, the sound pressure level is generally only reduced in a small zone around the error sensor, and at a distance half of a wavelength away from the error sensor, the averaged sound pressure level will be increased by more than 10 dB. Recently an acoustic energy quantity, referred to as the generalized acoustic energy density (GED), has been introduced. The GED is obtained by using a weighting factor in the formulation of total acoustic energy density. Different values of the weighting factor can be chosen for different applications. When minimizing the GED at the error sensor, one can adjust the weighting factor to increase the spatial extent of the "quiet zone" and to achieve a desired balance between the degree of attenuation in the quiet zone and the total energy added into the sound field. PMID:25190386

  2. ACOUSTIC LINERS FOR TURBOFAN ENGINES

    NASA Technical Reports Server (NTRS)

    Minner, G. L.

    1994-01-01

    This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.

  3. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor.

    PubMed

    Zhang, Yumin; Chan, Yum-Ji; Huang, Lixi

    2014-05-01

    Broadband noise with profound low-frequency profile is prevalent and difficult to be controlled mechanically. This study demonstrates effective broadband sound absorption by reducing the mechanical reactance of a loudspeaker using a shunt circuit through electro-mechanical coupling, which induces reactance with different signs from that of loudspeaker. An RLC shunt circuit is connected to the moving coil to provide an electrically induced mechanical impedance which counters the cavity stiffness at low frequencies and reduces the system inertia above the resonance frequency. A sound absorption coefficient well above 0.5 is demonstrated across frequencies between 150 and 1200 Hz. The performance of the proposed device is superior to existing passive absorbers of the same depth (60 mm), which has lower frequency limits of around 300 Hz. A passive noise absorber is further proposed by paralleling a micro-perforated panel with shunted loudspeaker which shows potentials in absorbing band-limit impulse noise. PMID:24815257

  4. Subjective evaluation of speech and noise in learning environments in the realm of classroom acoustics: Results from laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Meis, Markus; Nocke, Christian; Hofmann, Simone; Becker, Bernhard

    2005-04-01

    The impact of different acoustical conditions in learning environments on noise annoyance and the evaluation of speech quality were tested in a series of three experiments. In Experiment 1 (n=79) the auralization of seven classrooms with reverberation times from 0.55 to 3.21 s [average between 250 Hz to 2 kHz] served to develop a Semantic Differential, evaluating a simulated teacher's voice. Four factors were found: acoustical comfort, roughness, sharpness, and loudness. In Experiment 2, the effects of two classroom renovations were examined from a holistic perspective. The rooms were treated acoustically with acoustic ceilings (RT=0.5 s [250 Hz-2 kHz]) and muffling floor materials as well as non-acoustically with a new lighting system and color design. The results indicate that pupils (n=61) in renovated classrooms judged the simulated voice more positively, were less annoyed from the noise in classrooms, and were more motivated to participate in the lessons. In Experiment 3 the sound environments from six different lecture rooms (RT=0.8 to 1.39 s [250 Hz-2 kHz]) in two Universities of Oldenburg were evaluated by 321 students during the lectures. Evidence found supports the assumption that acoustical comfort in rooms is dependent on frequency for rooms with higher reverberation times.

  5. Revealing, identifying, and assessing flaws in operating equipment by the acoustic emission image recognition method under strong background noise condition

    NASA Astrophysics Data System (ADS)

    Muravin, Gregory; Muravin, Boris; Lezvisky, Ludmila

    2004-05-01

    The analysis has shown that high pressure and high temperature piping in fossil and nuclear power plants suffer from unexpected and rarely predictable failures. To guarantee operational safety and to prevent failures authors have performed the complex investigations and have created Quantitative Acoustic Emission NDI technology for revealing, identifying and assessing flaws in equipment operated under strong background noise condition. These enabled: Overall inspection of the piping operated under stress, temperature, pressure, steam flow and loading, variation. Locating suspected zones and zones of flaw development with low J-integral value and the great variation of the dynamic range of flaws danger level. Identification of flaw types and their danger level. Detection of defective components in service prior to shut down. The continuous and the burst Acoustic Emission (AE) were used in combination as an information tool. As result, the significant number of flaws such as creep at stage 3a-3b, closed-edge micro-cracks, systems of randomly dispersed pores and inclusions, plastic deformation development around them, or/and individual micro-cracking were revealed, identified and assessed in 50 operating high energy piping. The findings and assessing flaw danger level obtained by QAE NDI were confirmed by independent NDI methods as TOFD, X-ray, replication, metallurgical investigations, etc. The findings and assessing flaw danger level obtained by QAE NDI were confirmed by independent NDI methods such as TOFD, X-ray, replication, metallurgical investigations, etc

  6. Numerical spatial marching techniques in duct acoustics. [noise source calculation from far field pressure measurements

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1979-01-01

    Direct calculation of the internal structure of a ducted noise source from farfield pressure measurements is regarded as an initial value problem, where the pressure and pressure gradient (farfield impedance) are assumed to be known along a line in the farfield. If pressure and impedance are known at the boundary of the farfield, the pressure can be uniquely determined in the vicinity of the inlet and inside the inlet ducting. A marching procedure is developed which, with this information obtained from measurements, enables a description of a ducted noise source. The technique uses a finite difference representation of the homogeneous Helmholtz equation.

  7. Evaluation of noise reduction systems for cochlear implant users in different acoustic environment.

    PubMed

    Hamacher, V; Doering, W H; Mauer, G; Fleischmann, H; Hennecke, J

    1997-11-01

    Evaluation of two different noise reduction algorithms for speech intelligibility enhancement in cochlear implant (CI) users is described in this report. The algorithms accomplish sophisticated interchannel processing of the noisy speech signals, picked up with two microphones, to form an improved monaural output signal, which is directly fed into the auxiliary input of the CI speech processor. Speech intelligibility tests were carried out in different realistic everyday life listening conditions to provide general and expressive performance assessment. Extensive tests in four CI users showed considerable speech intelligibility improvement using these noise reduction systems in adverse everyday life listening conditions. PMID:9391593

  8. Response to "Comments on 'A field study of the exposure-annoyance relationship of military shooting noise' " [J. Acoust. Soc. Am. 127, 2301-2311 (2010)] (L).

    PubMed

    Brink, Mark; Wunderli, Jean-Marc

    2012-05-01

    This letter is a response to Meyer's recent paper ["Comment on 'A field study of the exposure-annoyance relationship of military shooting noise,' "J. Acoust. Soc. Am. 130, 677-678 (2011)]. The authors describe that "explained variance" in noise annoyance surveys can mean different things and that the fit parameters of the statistical models reported in the commented article are well within an expectable range. It is discussed that non-dose-related factors for the prediction of noise annoyance have become increasingly important in the last years and deserve to be more thoroughly studied. PMID:22559337

  9. Small Hot Jet Acoustic Rig Validation

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Bridges, James

    2006-01-01

    The Small Hot Jet Acoustic Rig (SHJAR), located in the Aeroacoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center in Cleveland, Ohio, was commissioned in 2001 to test jet noise reduction concepts at low technology readiness levels (TRL 1-3) and develop advanced measurement techniques. The first series of tests on the SHJAR were designed to prove its capabilities and establish the quality of the jet noise data produced. Towards this goal, a methodology was employed dividing all noise sources into three categories: background noise, jet noise, and rig noise. Background noise was directly measured. Jet noise and rig noise were separated by using the distance and velocity scaling properties of jet noise. Effectively, any noise source that did not follow these rules of jet noise was labeled as rig noise. This method led to the identification of a high frequency noise source related to the Reynolds number. Experiments using boundary layer treatment and hot wire probes documented this noise source and its removal, allowing clean testing of low Reynolds number jets. Other tests performed characterized the amplitude and frequency of the valve noise, confirmed the location of the acoustic far field, and documented the background noise levels under several conditions. Finally, a full set of baseline data was acquired. This paper contains the methodology and test results used to verify the quality of the SHJAR rig.

  10. Method to Produce Flexible Ceramic Thermal Protection System Resistant to High Aeroacoustic Noise

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Calamito, Dominic P. (Inventor); Jong, Anthony (Inventor)

    1997-01-01

    A method of producing a three dimensional angle interlock ceramic fiber which is stable to high aeroacoustic noise of about 170 decibels and to high temperatures of about 2500 F is disclosed. The method uses multiple separate strands of a ceramic fiber or ceramic tow suitable for weaving having multiple warp fibers and multiple fill fibers woven with a modified fly-shuttle loom or rapier shuttleless loom which has nip rolls, a modified fabric advancement mechanism and at least eight harnesses in connection with a Dobby pattern chain utilizing sufficient heddles for each warp fiber and a reed which accommodates at least 168 ends per inch. The method produces a multilayered top fabric, rib fabric and single-layered bottom fabric.

  11. Assessment of an action against environmental noise: Acoustic durability of a pavement surface with crumb rubber.

    PubMed

    Vázquez, V F; Luong, J; Bueno, M; Terán, F; Paje, S E

    2016-01-15

    Environmental noise is a worldwide problem that has an adverse effect in the quality of life of urban population. Some work has shown that there is a correlation between environmental noise and health issues as sleep disturbance or annoyance. This study presents the time evolution of a test track fabricated with an asphalt mixture with 20% of crumb rubber by weight of bitumen, added by the wet process. A complete surface characterization has been performed by determining tire/pavement sound levels, road texture profiles, in-situ dynamic stiffness and sound absorption of compacted and extracted sample cores. Two measurement campaigns were performed: just after mixture laying and after 3 years in service. This study confirms that the use of crumb rubber as a modifier of bituminous binders (CRMB) can improve the pavement characteristics: gap-graded mixtures with crumb rubber can be used in the action plans as urban rehabilitation measure to fight noise pollution. However, this noise reduction seems to decrease with age at a rate of approximately 0.15 dB(A) per year. PMID:26519582

  12. Measurements of acoustic ambient noise in shallow water due to breaking surf

    NASA Astrophysics Data System (ADS)

    Wilson, O. B., Jr.; Wolf, S. N.; Ingenito, F.

    1982-12-01

    Horizontal directionality of ambient noise was measured at ranges up to 15 km from the south-eastern shore of Monterey Bay, California. Water depths at the sites ranged from 8 to 175 m. A steerable cardioid receiving pattern was formed using signals telemetered from dipole and omnidirectional hydrophones suspended from tethered buoys. With no nearby shipping, whenever the maximum of the cardioid pattern was directed toward the beach, noise levels in the frequency range from 20 Hz to 70 Hz were greater than those obtained when the maximum was directed seaward. This difference or anisotropy (seaward vs. shoreward), which depends on range from the beach, on frequency and on surf intensity, was 10 dB at 300 Hz at the 9 km site during very heavy surf. Surf beat was clearly audible when the cardioid maximum was steered shoreward at ranges as great as 2 km. During heavy surf, the omnidirectional ambient noise levels also increased significantly in the same frequency range at which the anisotropy is evident. The anisotropy effects diminish both in magnitude and in frequency range with lower wave height but are still observable during light surf. We have concluded that intense breaking surf can contribute significantly to ambient noise in fairly deep continental shelf waters.

  13. 1/f noise in etched groove surface acoustic wave (SAW) resonators.

    PubMed

    Parker, T E; Andres, D; Greer, J A; Montress, G K

    1994-01-01

    Measurements of 1/f (or flicker) frequency fluctuations in SAW resonators fabricated with etched groove reflectors on single crystal quartz have shown that the observed noise levels vary inversely with device size. These measurements were made on sixteen 450 MHz resonators of four different sizes. The 1/f noise levels were also evaluated on twenty-eight other SAW resonators ranging in frequency from 401 to 915 MHz. This additional data provides valuable information on the dependence of the flicker noise levels on resonator frequency. A model based an localized, independent velocity fluctuations in the quartz is proposed which correctly fits the observed size and frequency dependence of the measured 1/f noise levels. This model suggests that the velocity fluctuations originate in small regions (much less than ~5 mum in diameter) randomly distributed throughout the quartz with an average separation of about 5 mum between independent (incoherent) sources. The magnitude of the localized fractional velocity fluctuations, Deltav/v, averaged over a 5 micron cube is on the order of 1x10 (-9). PMID:18263275

  14. Two-stage, low noise advanced technology fan. 5: Acoustic final report

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Riloff, N., Jr.

    1975-01-01

    The NASA Q2S(quiet two-stage) fan is a 0.836m (32.9 in.) diameter model of the STF 433 engine fan, selected in a 1972 study for an Advanced Technology Transport (ATT) airplane. Noise-control features include: low tip speed, moderate stage pressure rise, large blade-vane spacings, no inlet guide vanes, and optimum blade and vane numbers. Tests were run on the baseline Q2S fan with standard inlet and discharge ducts. Further tests were made of a translating centerbody sonic inlet device and treated discharge ducts. Results were scaled to JT8D and JT3D engine fan size for comparison with current two-stage fans, and were also scaled to STF 433 fan size to compare calculated ATT flyover noise with FAR 36 limits. Baseline Q2S results scaled to JT8D and JT3D engine fan sizes showed substantial noise reductions. Calculated unsuppressed baseline ATT flyovers averaged about 2.5 EPNdB below FAR 36 limits. Using measured sonic inlet results, scaled baseline Q2S fan results, and calculated attenuations for a 1975 technology duct liner, projected flyover noise calculations for the ATT averaged about FAR 36 limits minus 10 EPNdB. Advances in suppression technology required to meet the 1985 goal of FAR 36 limits minus 20 EPNdB are discussed.

  15. Combined acoustical and visual performance of noise barriers in mitigating the environmental impact of motorways.

    PubMed

    Jiang, Like; Kang, Jian

    2016-02-01

    This study investigated the overall performance of noise barriers in mitigating environmental impact of motorways, taking into consideration their effects on reducing noise and visual intrusions of moving traffic, but also potentially inducing visual impact themselves. A laboratory experiment was carried out, using computer-visualised video scenes and motorway traffic noise recordings to present experimental scenarios covering two traffic levels, two distances of receiver to road, two types of background landscape, and five barrier conditions including motorway only, motorway with tree belt, motorways with 3 m timber barrier, 5m timber barrier, and 5m transparent barrier. Responses from 30 participants of university students were gathered and perceived barrier performance analysed. The results show that noise barriers were always beneficial in mitigating environmental impact of motorways, or made no significant changes in environmental quality when the impact of motorways was low. Overall, barriers only offered similar mitigation effect as compared to tree belt, but showed some potential to be more advantageous when traffic level went high. 5m timber barrier tended to perform better than the 3m one at the distance of 300 m but not at 100 m possibly due to its negative visual effect when getting closer. The transparent barrier did not perform much differently from the timber barriers but tended to be the least effective in most scenarios. Some low positive correlations were found between aesthetic preference for barriers and environmental impact reduction by the barriers. PMID:26584069

  16. Experimental study on mechanism and protection of stress ulcer produced by explosive noise

    PubMed Central

    Liu, Guo-Shi; Huang, Yu-Xin; Li, Shuan-Wei; Pan, Bo-Rong; Wang, Xin; Sun, Da-Yong; Wang, Qing-Li

    1998-01-01

    AIM: To establish an experimental model of stress ulcer produced by explosive noise, and to probe into its mechanism and protection. METHODS: The country standard Wistar white rats were randomly divided into control group (n = 8), which were neither stimulated nor protected, and stimulating group (divided into subgroups A, B and C, including 8 rats each which were decapitated to draw blood for test immediately, 12 h and 24 h after stimulation) and prevention group (divided into subgroups A, B and C, having 8 rats each, subgroup A was given cimetidine, B anisodamine and C both drugs). Firing noises of submachine guns were used as inflicting factor. The rats were fasted for 24 h and stimulated by firing noise for 12 h. The change of ulcer index, gastric mucosal and related serum hormones were observed. RESULTS: Stress ulcer was significant in the stimulating group, and its ulcer index (8.6 ± 0.6) was remarkably higher than that in both the control group and prevention group (0.3 ± 0.1, P < 0.01). Its serum gastrin (Gas ng/L, 294 ± 163 vs 63 ± 40, P < 0.01) and endothelin (ET ng/L, 181 ± 57 vs 135 ± 42, P < 0.1) were apparently higher than those in the control group, and its serum nitric oxide (NO) level was conspicuously lower than that in the control group (ng/L, 0.2 ± 0.1 vs 0.8 ± 0.5 P < 0.5), while the serum gastrin level (ng/L, 556 ± 225) in prevention group was distinctly higher than that in both the control (P < 0.01) and stimulating group (P < 0.05). There were no significant differences in the changes of ET and NO between the control and the stimulating groups. CONCLUSION: Stress ulcer model of rats can be successfully established by the stimulation of explosive noise. Gas, ET and NO are related to the formation of stress ulcer, and play an important role in its mechanism. Hepatic function affected by noise is observed in this experiment. PMID:11819360

  17. An evaluation of a computer code based on linear acoustic theory for predicting helicopter main rotor noise. [CH-53A and S-76 helicopters

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Egolf, T. A.

    1980-01-01

    Acoustic characteristics predicted using a recently developed computer code were correlated with measured acoustic data for two helicopter rotors. The analysis, is based on a solution of the Ffowcs-Williams-Hawkings (FW-H) equation and includes terms accounting for both the thickness and loading components of the rotational noise. Computations are carried out in the time domain and assume free field conditions. Results of the correlation show that the Farrassat/Nystrom analysis, when using predicted airload data as input, yields fair but encouraging correlation for the first 6 harmonics of blade passage. It also suggests that although the analysis represents a valuable first step towards developing a truly comprehensive helicopter rotor noise prediction capability, further work remains to be done identifying and incorporating additional noise mechanisms into the code.

  18. The effect of acoustic forcing on an airfoil tonal noise mechanism.

    PubMed

    Schumacher, Karn L; Doolan, Con J; Kelso, Richard M

    2014-08-01

    The response of the boundary layer over an airfoil with cavity to external acoustic forcing, across a sweep of frequencies, was measured. The boundary layer downstream of the cavity trailing edge was found to respond strongly and selectively at the natural airfoil tonal frequencies. This is considered to be due to enhanced feedback. However, the shear layer upstream of the cavity trailing edge did not respond at these frequencies. These findings confirm that an aeroacoustic feedback loop exists between the airfoil trailing edge and a location near the cavity trailing edge. PMID:25096150

  19. Acoustic and perceptual correlates of faster-than-habitual speech produced by speakers with Parkinson's disease and Multiple Sclerosis

    PubMed Central

    Kuo, Christina; Tjaden, Kris; Sussman, Joan E.

    2014-01-01

    Acoustic-perceptual characteristics of a faster-than-habitual rate (Fast condition) were examined for speakers with Parkinson's disease (PD) and Multiple Sclerosis (MS). Judgments of intelligibility for sentences produced at a habitual rate (Habitual condition) and at a faster-than-habitual rate (Fast condition) by 46 speakers with PD or MS as well as a group of 32 healthy speakers revealed that the Fast condition was, on average, associated with decreased intelligibility. However, some speakers' intelligibility did not decline. To further understand the acoustic characteristics of varied intelligibility in the Fast condition for speakers with dysarthria, a subgroup of speakers with PD or MS whose intelligibility did not decline in the Fast condition (No Decline group, n = 8) and a subgroup of speakers with significantly declined intelligibility (Decline group, n = 8) were compared. Acoustic measures of global speech timing, suprasegmental characteristics, and utterance-level segmental characteristics for vocalics were examined for the two subgroups. Results suggest acoustic contributions to intelligibility under rate modulation are complex. Potential clinical relevance and implications for the acoustic bases of intelligibility are discussed. PMID:25287378

  20. Acoustic design of rotor blades using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Wells, V. L.; Han, A. Y.; Crossley, W. A.

    1995-01-01

    A genetic algorithm coupled with a simplified acoustic analysis was used to generate low-noise rotor blade designs. The model includes thickness, steady loading and blade-vortex interaction noise estimates. The paper presents solutions for several variations in the fitness function, including thickness noise only, loading noise only, and combinations of the noise types. Preliminary results indicate that the analysis provides reasonable assessments of the noise produced, and that genetic algorithm successfully searches for 'good' designs. The results show that, for a given required thrust coefficient, proper blade design can noticeably reduce the noise produced at some expense to the power requirements.

  1. Analysis of Acoustic Modeling and Sound Propagation in Aircraft Noise Prediction

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Shepherd, Kevin P. (Technical Monitor)

    2006-01-01

    An analysis has been performed of measured and predicted aircraft noise levels around Denver International Airport. A detailed examination was made of 90 straight-out departures that yielded good measurements on multiple monitors. Predictions were made with INM 5, INM 6 and the simulation model NMSIM. Predictions were consistently lower than measurements, less so for the simulation model than for the integrated models. Lateral directivity ("installation effect") patterns were seen which are consistent with other recent measurements. Atmospheric absorption was determined to be a significant factor in the underprediction. Calculations of atmospheric attenuation were made over a full year of upper air data at seven locations across the United States. It was found that temperature/humidity effects could cause variations of up to +/-4 dB, depending on season, for the sites examined. It was concluded that local temperature and humidity should be accounted for in aircraft noise modeling.

  2. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  3. Experimental study of noise sources and acoustic propagation in a turbofan model

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Canard-Caruana, S.; Julliard, J.

    1990-10-01

    Experimental studies of the acoustic radiation of subsonic fans mainly due to blade and vane presure fluctuations were performed in the SNECMA 5C2 compressor anechoic facility. A brief description of the test rig is presented noting that the CA5 turbojet engine model fan has a diameter of 47 cm, 48 blades, and a nominal rotation speed of 12,600 rpm. The two chief experiments discussed are the measurement of blade and vane pressure fluctuations by thin-film transducers and the spinning mode analysis of the sound field propagating in the intake duct. Several examples of applications are discussed, and it is shown that an inflow control device, as expected, reduces the aerodynamic disturbances by about 10 dB. Rotor-stator interaction tones are determined by the modal analysis, and it is found that a duct lining with a length of one duct radius could give an insertion loss up to 20 dB in flight.

  4. Drive Rig Mufflers for Model Scale Engine Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2010-01-01

    Testing of air breathing propulsion systems in the 9x15 foot wind tunnel at NASA Glenn Research Center depends on compressed air turbines for power. The drive rig turbines exhaust directly to the wind tunnel test section, and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the model being tested. In order to mitigate this acoustic contamination, a muffler can be attached downstream of the drive rig turbine. The modern engine designs currently being tested produce much less noise than traditional engines, and consequently a lower noise floor is required of the facility. An acoustic test of a muffler designed to mitigate this extraneous noise is presented, and a noise reduction of 8 dB between 700 Hz and 20 kHz was documented, significantly improving the quality of acoustic measurements in the facility.

  5. Tone Noise and Nearfield Pressure Produced by Jet-Cavity Interaction

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Envia, Edmane; Bencic, Timothy J.

    1998-01-01

    Cavity flow resonance can cause numerous problems in aerospace applications. While our long-term goal is to understand cavity flows well enough to devise effective cavity resonance suppression techniques, this paper describes a fundamental study of resonant tones produced by jet-cavity interaction at subsonic and supersonic speeds. Our specific jet-cavity configuration can also be used as a test bed for evaluating active and passive flow resonance control concepts. Two significant findings emerge from this study. 1) Originally, we expected that tones produced by jet-cavity interaction would resemble cavity tones or jet tones or would involve some simple combinations of each. The experimental data do not support these expectations: instead, the jet cavity interaction produce a unique set of tones. We propose simple yet and physically insightful correlations for these tones. Although the pressure patterns on the cavity floor display very complex variations with the Mach number for a length/depth = 8 cavity, the tones correspond to the acoustic modes of the cavity-independent of flow. For a length/ depth = 3 cavity, however, a surprise emerges: the pressure patterns on the cavity floor are not so complex but the tones depend significantly on the flow. Additionally, we examine the role of external feedback unique to jet-cavity interaction. 2) Previous research led us to expect that traditional classifications (open, transitional, or closed) for cavities in an infinite flight stream would be insensitive to small changes in Mach number and would depend primarily on cavity length/depth ratios. Use of the novel high resolution photoluminescent pressure sensitive paint shows that the classifications are actually quite sensitive to jet Mach number for a length/depth = 8 cavity. However, these classifications provide no guidance whatsoever for tone amplitude or frequency. Detailed experimental data and insights presented here will assist researchers who are performing

  6. Acoustics lecturing in Mexico

    NASA Astrophysics Data System (ADS)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  7. Separation of Main and Tail Rotor Noise Sources from Ground-Based Acoustic Measurements Using Time-Domain De-Dopplerization

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric II; Schmitz, Fredric H.

    2009-01-01

    A new method of separating the contributions of helicopter main and tail rotor noise sources is presented, making use of ground-based acoustic measurements. The method employs time-domain de-Dopplerization to transform the acoustic pressure time-history data collected from an array of ground-based microphones to the equivalent time-history signals observed by an array of virtual inflight microphones traveling with the helicopter. The now-stationary signals observed by the virtual microphones are then periodically averaged with the main and tail rotor once per revolution triggers. The averaging process suppresses noise which is not periodic with the respective rotor, allowing for the separation of main and tail rotor pressure time-histories. The averaged measurements are then interpolated across the range of directivity angles captured by the microphone array in order to generate separate acoustic hemispheres for the main and tail rotor noise sources. The new method is successfully applied to ground-based microphone measurements of a Bell 206B3 helicopter and demonstrates the strong directivity characteristics of harmonic noise radiation from both the main and tail rotors of that helicopter.

  8. Removing Background Noise with Phased Array Signal Processing

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  9. Properties of Noise Cross Correlation Functions Obtained from a Distributed Acoustic Sensing (DAS) Array at Garner Valley, California

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Lancelle, C.; Thurber, C. H.; Fratta, D.; Wang, H. F.; Chalari, A.; Clarke, A.

    2015-12-01

    The field test of Distributed Acoustic Sensing (DAS) conducted at Garner Valley, California on September 11-12, 2013 provided a continuous overnight record of ambient noise. The DAS array recorded ground motions every one meter of optical cable that was arranged approximately in the shape of a rectangle with dimensions of 160 m by 80 m. The long dimension of the array was adjacent to a state highway. Three hours of record were used to compute noise cross-correlation functions (NCFs) in one-minute windows. The trace from each sensor channel was pre-processed by downsampling to 200 Hz, followed by normalization in the time-domain and bandpass filtering between 2 and 20 Hz (Bensen et al., 2007). The one-minute NCFs were then stacked using the time-frequency domain phase-weighted stacking method (Schimmel & Gallart, 2007). The NCFs between channels were asymmetrical reflecting the direction of traffic noise. The group velocities were found using the frequency-time analysis method. The energy was concentrated between 5 and 15 Hz, which falls into the typical traffic noise frequency band. The resulting velocities were between 100 and 300 m/s for frequencies between 10 and 20 Hz, which are in the same range as described in the results for surface-wave dispersion obtained using an active source for the same site (Lancelle et al., 2015). The group velocity starts to decrease for frequencies greater than ~10 Hz, which was expected on the basis of a previous shear-wave velocity model (Steidl et al., 1996). Then, the phase velocity was calculated using the multichannel analysis of surface wave technique (MASW - Park et al., 1999) with 114 NCFs spaced one meter apart. The resulting dispersion curve between 5 and 15 Hz gave phase velocities that ranged from approximately 170 m/s at 15 Hz to 250 m/s at 5 Hz. These results are consistent with other results of active-source DAS and seismometer records obtained at the Garner Valley site (e.g., Stokoe et al. 2004). This analysis is

  10. Comparison of Methods for Identifying Noise Sources in Far-Field Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Tenney, Andrew; Lewalle, Jacques

    2013-11-01

    Three different methods of extracting intermittent wave packets from unstructured background within complex time series signals were analyzed and compared. The algorithms are denoted ``cross correlation,'' ``denoising,'' and ``TFLE (Time-Frequency-Lag event)'' methods respectively. All three methods utilize Mexican Hat or Morlet wavelets for the transformation of time domain signals into time-frequency domain signals. Within the denoising and cross correlation algorithms, events are identified through comparison of high energy excerpts of each signal captured by individual far-field microphones, while the TFLE algorithm simply defines events by their contributions to positive correlation values. The goal of this analysis is to quantify the advantages and disadvantages of each of these methods. The results lend themselves to determining the validity of these methods as noise source identification algorithms to be used in jet noise characterization. This work is supported in part by Spectral Energies LLC, under an SBIR grant from AFRL; and by the Department of Mechanical and Aerospace Engineering REU Program at SU.

  11. Noise from high speed maglev systems: Noise sources, noise criteria, preliminary design guidelines for noise control, recommendations for acoustical test facility for maglev research. Final report, July 1991-October 1992

    SciTech Connect

    Hanson, C.E.; Abbot, P.; Dyer, I.

    1993-01-01

    Noise levels from magnetically-levitated trains (maglev) at very high speed may be high enough to cause environmental noise impact in residential areas. Aeroacoustic sources dominate the sound at high speeds and guideway vibrations generate noticeable sound at low speed. In addition to high noise levels, the startle effect as a result of sudden onset of sound from a rapidly moving nearby maglev vehicle may lead to increased annoyance to neighbors of a maglev system. The report provides a base for determining the noise consequences and potential mitigation for a high speed maglev system in populated areas of the United States. Four areas are included in the study: (1) definition of noise sources; (2) development of noise criteria; (3) development of design guidelines; and (4) recommendations for a noise testing facility.

  12. Acoustic Efficiency of Azimuthal Modes in Jet Noise Using Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Bridges, James

    2006-01-01

    The link between azimuthal modes in jet turbulence and in the acoustic sound field has been examined in cold, round jets. Chevron nozzles, however, impart an azimuthal structure on the jet with a shape dependent on the number, length and penetration angle of the chevrons. Two particular chevron nozzles, with 3 and 4 primary chevrons respectively, and a round baseline nozzle are compared at both cold and hot jet conditions to determine how chevrons impact the modal structure of the flow and how that change relates to the sound field. The results show that, although the chevrons have a large impact on the azimuthal shape of the mean axial velocity, the impact of chevrons on the azimuthal structure of the fluctuating axial velocity is small at the cold jet condition and smaller still at the hot jet condition. This is supported by results in the azimuthal structure of the sound field, which also shows little difference in between the two chevron nozzles and the baseline nozzle in the distribution of energy across the azimuthal modes measured.

  13. Preliminary evaluation of turbofan cycle parameters and acoustical suppression on the noise and direct operating cost of a commercial Mach 0.85 transport

    NASA Technical Reports Server (NTRS)

    Eisenberg, J. D.

    1975-01-01

    A study was made of the effects of turbofan cycle parameters and the use of acoustic noise suppression material to quiet 200 passenger, Mach 0.85 trijets having design ranges of 2778, 4630, and 9260 kilometers (1500, 2500, and 5000 n. mi). Aircraft gross weight and direct operating cost, which varied with amount of suppression and cycle selection, are presented as functions of both EPNdB traded and 90 EPNdB contour footprint area. Noise levels 10.9 EPNdB below FAR 36 requirements result in a 5 percent increase in DOC for an aircraft designed for a range of 9260 kilometers (5000 n. mi.). An aircraft designed for a 2778 kilometer (1500 n. mi.) range would have an EPNdB level 14 below FAR 36 for this same economic penalty. In this range of noise level, fan-machinery noise is the principal source.

  14. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1. [jet engine noise radiation through coannular exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots.

  15. Investigation of acoustic properties of a rigid foam with application to noise reduction in light aircraft

    NASA Technical Reports Server (NTRS)

    Holmer, C. I.

    1972-01-01

    A analytic model of sound transmission into an aircraft cabin was developed as well as test procedures which appropriately rank order properties which affect sound transmission. The proposed model agrees well with available data, and reveals that the pertinent properties of an aircraft cabin for sound transmission include: stiffness of cabin walls at low frequencies (as this reflects on impedance of the walls) and cabin wall transmission loss and interior absorption at mid and high frequencies. Below 315 Hz the foam contributes substantially to wall stiffness and sound transmission loss of typical light aircraft cabin construction, and could potentially reduce cabin noise levels by 3-5 db in this frequency range at a cost of about 0:2 lb/sq. ft. of treated cabin area. The foam was found not to have significant sound absorbing properties.

  16. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    NASA Astrophysics Data System (ADS)

    Kanamori, Masashi; Takahashi, Takashi; Aoyama, Takashi

    2015-10-01

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  17. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    SciTech Connect

    Kanamori, Masashi Takahashi, Takashi Aoyama, Takashi

    2015-10-28

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  18. Psychophysiological acoustics of indoor sound due to traffic noise during sleep

    NASA Astrophysics Data System (ADS)

    Tulen, J. H. M.; Kumar, A.; Jurriëns, A. A.

    1986-10-01

    The relation between the physical characteristics of sound and an individual's perception of its as annoyance is complex and unclear. Sleep disturbance by sound is manifested in the physiological responses to the sound stimuli and the quality of sleep perceived in the morning. Both may result in deterioration of functioning during wakefulness. Therefore, psychophysiological responses to noise during sleep should be studied for the evaluation of the efficacy of sound insulation. Nocturnal sleep and indoor sound level were recorded in the homes of 12 subjects living along a highway with high traffic density. Double glazing sound insulation was used to create two experimental conditions: low insulation and high insulation. Twenty recordings were made per subject, ten recordings in each condition. During the nights with low insulation the quality of sleep was so low that both performance and mood were negatively affected. The enhancement of sound insulation was not effective enough to increase the restorative effects of sleep. The transient and peaky characteristics of traffic sound were also found to result in non-adaptive physiological responses during sleep. Sound insulation did have an effect on noise peak characteristics such as peak level, peak duration and slope. However, the number of sound peaks were found to be the same in both conditions. The relation of these sound peaks detected in the indoor recorded sound level signal to characteristics of passing vehicles was established, indicating that the sound peaks causing the psychophysiological disturbances during sleep were generated by the passing vehicles. Evidence is presented to show that the reduction in sound level is not a good measure of efficacy of sound insulation. The parameters of the sound peaks, as described in this paper, are a better representation of psychophysiological efficacy of sound insulation.

  19. Perceived Annoyance to Noise Produced by a Distributed Electric Propulsion High Lift System

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem

    2016-01-01

    Results of a psychoacoustic test performed to understand the relative annoyance to noise produced by several configurations of a distributed electric propulsion high lift system are given. It is found that the number of propellers in the system is a major factor in annoyance perception. This is an intuitive result as annoyance increases, in general, with frequency, and, the blade passage frequency of the propellers increases with the number of propellers. Additionally, the data indicate that having some variation in the blade passage frequency from propeller-to-propeller is beneficial as it reduces the high tonality generated when all the propellers are spinning in synchrony at the same speed. The propellers can be set to spin at different speeds, but it was found that allowing the motor controllers to drift within 1% of nominal settings produced the best results (lowest overall annoyance). The methodology employed has been demonstrated to be effective in providing timely feedback to designers in the early stages of design development.

  20. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Astrophysics Data System (ADS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-07-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  1. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-01-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  2. Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Shen, Huijie; Zhang, Linke; Su, Yongsheng; Yu, Dianlong

    2016-07-01

    Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range.

  3. Active Control of Fan Noise: Feasibility Study. Volume 5; Numerical Computation of Acoustic Mode Reflection Coefficients for an Unflanged Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.

  4. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    NASA Astrophysics Data System (ADS)

    Mokrý, P.; Psota, P.; Steiger, K.; Václavík, J.; Doleček, R.; Lédl, V.; Šulc, M.

    2015-02-01

    The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC) actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH). The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV). The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.

  5. [Changes in antioxidant capacity of the guinea pig exposed to noise and the protective effect of alpha-lipoic acid against acoustic trauma].

    PubMed

    Diao, Ming-Fang; Liu, Hai-Ying; Zhang, Yan-Min; Gao, Wen-Yuan

    2003-12-25

    The study was aimed at exploring the effect of noise on total antioxidant capacity (TAC) in serum, nitric oxide (NO) level in the cochlea and the protective action of alpha-lipoic acid against noise-induced hearing loss (NIHL). Sixty guinea pigs (350-400 g) were divided randomly into three groups (control group, noise+saline group and noise+alpha-lipoic acid group). Serum and cochlear tissue were treated immediately after noise exposure (4-kHz octave band, 115 dB SPL 5 h) to determine the level of TAC and NO, respectively. Auditory brainstem responses (ABRs) were measured before and immediately after exposure. The threshold of hearing in the control group was relatively stable, while the hearing threshold in the noise+saline group was significantly higher than those in the noise+alpha-lipoic acid group (P<0.05). TAC level of the noise+saline group was significantly lower than that of the control group P<0.05 . TAC level of the noise+alpha-lipoic acid group was significantly higher than that of the noise+saline group P<0.05 , while there was no significant difference in the levels between the noise+alpha-lipoic acid group and the control group (P>0.05). The NO level of the cochlear tissue in the noise+saline group was significantly higher than that of the control group (P<0.05). Cochlear NO level in the noise+alpha-lipoic acid group was significantly lower than that of the noise+saline group (P<0.05), while there was no significant difference in cochlear NO levels between the noise+alpha-lipoic acid group and the control group (P>0.05). The results obtained indicate that noise exposure causes a decrease in serum TAC and an increase in NO in cochlea. alpha-Lipoid acid exerts a protective effect against hearing loss in acoustic trauma through its antioxidant effects. PMID:14695484

  6. Data analysis results of the second sea trial of ambient noise imaging with acoustic lens in 2014: Two-dimensional target images affected by direction of field of view and spatial noise distribution

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2016-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10–14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.

  7. CMB distortions from damping of acoustic waves produced by cosmic strings

    SciTech Connect

    Tashiro, Hiroyuki; Sabancilar, Eray; Vachaspati, Tanmay E-mail: Eray.Sabancilar@asu.edu

    2013-08-01

    We study diffusion damping of acoustic waves in the photon-baryon fluid due to cosmic strings, and calculate the induced μ- and y-type spectral distortions of the cosmic microwave background. For cosmic strings with tension within current bounds, their contribution to the spectral distortions is subdominant compared to the distortions from primordial density perturbations.

  8. Parametric Quantitative Acoustic Analysis of Conversation Produced by Speakers with Dysarthria and Healthy Speakers

    ERIC Educational Resources Information Center

    Rosen, Kristin M.; Kent, Raymond D.; Delaney, Amy L.; Duffy, Joseph R.

    2006-01-01

    Purpose: This study's main purpose was to (a) identify acoustic signatures of hypokinetic dysarthria (HKD) that are robust to phonetic variation in conversational speech and (b) determine specific characteristics of the variability associated with HKD. Method: Twenty healthy control (HC) participants and 20 participants with HKD associated with…

  9. Sub-chronic exposure to noise affects locomotor activity and produces anxiogenic and depressive like behavior in rats.

    PubMed

    Naqvi, Fizza; Haider, Saida; Batool, Zehra; Perveen, Tahira; Haleem, Darakhshan J

    2012-01-01

    Noise is defined as a displeasing and unwanted sound. It is one of the most encountered stressor to which mankind is exposed. Frustration, poor reading, impaired hearing and difficulty in problem solving activities are the common consequences of noise stress. It has been reported to produce atrophy of dendrites and alterations in neurotransmitter levels. Long term exposure to inescapable noise stress induces exhaustion, defeat, annoyance followed by decreased muscle movement, social contacts and mood changes. The present study was aimed to investigate the detrimental effects of noise exposure on behavior of rats and its association with altered neurochemistry. Changes in neurotransmitter levels in different brain regions including hippocampus have been reported following noise exposure and these changes in neurotransmitters levels have also been associated with altered behavior. In the present study, locomotor activity in rats was assessed by open field test (OFT) while anxiety and depressive behavior was monitored by elevated plus maze (EPM) and tail suspension (TST) tests. The results showed that 15 days sub-chronic exposure to noise stress induced anxiety and depression like behavior in male rats. These behavioral deficits observed in the present study suggest that an altered brain serotonergic and dopaminergic activity may be involved in the various psychological disorders following exposure to noise stress. PMID:22580521

  10. Acoustic test and analyses of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Brooks, B. M.; Metzger, F. B.

    1980-01-01

    Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.

  11. Parametric study of the noise produced by the interaction of the main rotor wake with the tail rotor

    NASA Technical Reports Server (NTRS)

    Balcerak, J. C.

    1976-01-01

    A model was designed, fabricated and wind tunnel tested to identify some of the parameters which were pertinent to the noise produced by the interaction of the main rotor wake with the tail rotor. The model provided for variations in many geometric and operating parameters. The initial set of tests indicated that the noise produced by the tail rotor was, in general, sensitive to the location of the vortex interaction on the tail rotor disk, direction of rotation, lateral rotor fin spacing, tip speed and the operating mode of the tail rotor; and generally insensitive to main rotor thrust coefficient, longitudinal spacing and tail rotor to main rotor rotational speed ratios. Refinements in the analyses to adequately predict the noise phenomenon have been outlined to complement further experimental investigations.

  12. Overview on the Diversity of Sounds Produced by Clownfishes (Pomacentridae): Importance of Acoustic Signals in Their Peculiar Way of Life

    PubMed Central

    Colleye, Orphal; Parmentier, Eric

    2012-01-01

    Background Clownfishes (Pomacentridae) are brightly colored coral reef fishes well known for their mutualistic symbiosis with tropical sea anemones. These fishes live in social groups in which there is a size-based dominance hierarchy. In this structure where sex is socially controlled, agonistic interactions are numerous and serve to maintain size differences between individuals adjacent in rank. Clownfishes are also prolific callers whose sounds seem to play an important role in the social hierarchy. Here, we aim to review and to synthesize the diversity of sounds produced by clownfishes in order to emphasize the importance of acoustic signals in their way of life. Methodology/Principal Findings Recording the different acoustic behaviors indicated that sounds are divided into two main categories: aggressive sounds produced in conjunction with threat postures (charge and chase), and submissive sounds always emitted when fish exhibited head shaking movements (i.e. a submissive posture). Both types of sounds showed size-related intraspecific variation in dominant frequency and pulse duration: smaller individuals produce higher frequency and shorter duration pulses than larger ones, and inversely. Consequently, these sonic features might be useful cues for individual recognition within the group. This observation is of significant importance due to the size-based hierarchy in clownfish group. On the other hand, no acoustic signal was associated with the different reproductive activities. Conclusions/Significance Unlike other pomacentrids, sounds are not produced for mate attraction in clownfishes but to reach and to defend the competition for breeding status, which explains why constraints are not important enough for promoting call diversification in this group. PMID:23145114

  13. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.

    1982-01-01

    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions.

  14. A short latency vestibular evoked potential (VsEP) produced by bone-conducted acoustic stimulation

    NASA Astrophysics Data System (ADS)

    McAngus Todd, Neil P.; Rosengren, Sally M.; Colebatch, James G.

    2003-12-01

    In this paper data are presented from an experiment which provides evidence for the existence of a short latency, acoustically evoked potential of probable vestibular origin. The experiment was conducted in two phases using bone-conducted acoustic stimulation. In the first phase subjects were stimulated with 6-ms, 500-Hz tone bursts in order to obtain the threshold VT for vestibular evoked myogenic potentials (VEMP). It was confirmed that the difference between bone-conducted auditory and acoustic vestibular thresholds was slightly over 30 dB. The estimated threshold was then used as a reference value in the second part of the experiment to stimulate subjects over a range of intensities from -6 to +18 dB (re:VT). Averaged EEG recordings were made with eight Ag/AgCl electrodes placed on the scalp at Fpz, F3, F4, F7, F8, Cz, T3, and T4 according to the 10-20 system. Below VT auditory midlatency responses (MLRs) were observed. Above VT two additional potentials appeared: a positivity at about 10 ms (P10) which was maximal at Cz, and a negativity at about 15 ms (N15) which was maximal at Fpz. Extrapolation of the growth functions for the P10 and N15 indicated a threshold close to VT, consistent with a vestibular origin of these potentials. Given the low threshold of vestibular acoustic sensitivity it is possible that this mode may make a contribution to the detection of and affective responses to loud low frequency sounds. The evoked potentials may also have application as a noninvasive and nontraumatic test of vestibular projections to the cortex.

  15. Acoustic Noise Levels of Dental Equipments and Its Association with Fear and Annoyance Levels among Patients Attending Different Dental Clinic Setups in Jaipur, India

    PubMed Central

    Ganta, Shravani; Nagaraj, Anup; Pareek, Sonia; Atri, Mansi; Singh, Kushpal; Sidiq, Mohsin

    2014-01-01

    Background: Noise is a source of pervasive occupational hazard for practicing dentists and the patients. The sources of dental sounds by various dental equipments can pose as a potential hazard to hearing system and add to the annoyance levels of the patients. The aim of the study was to analyze the noise levels from various equipments and evaluate the effect of acoustic noise stimulus on dental fear and annoyance levels among patients attending different dental clinic setups in Jaipur, India. Methodology: The sampling frame comprised of 180 patients, which included 90 patients attending 10 different private clinics and 90 patients attending a Dental College in Jaipur. The levels of Acoustic Noise Stimulus originating from different equipments were determined using a precision sound level meter/decibulometer. Dental fear among patients was measured using Dental Fear Scale (DFS). Results: Statistical analysis was performed using chi square test and unpaired t-test. The mean background noise levels were found to be maximum in the pre-clinical setup/ laboratory areas (69.23+2.20). Females and the patients attending dental college setup encountered more fear on seeing the drill as compared to the patients attending private clinics (p<0.001). Conclusion: The sources of dental sounds can pose as a potential hazard to hearing system. It was analyzed that the environment in the clinics can directly have an effect on the fear and annoyance levels of patients. Hence it is necessary control the noise from various dental equipments to reduce the fear of patients from visiting a dental clinic. PMID:24959512

  16. High signal-to-noise ratio acoustic sensor using phase shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2015-03-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices.

  17. High signal-to-noise acoustic sensor using phase-shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-11-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices.

  18. Experimental Study to Produce Multiple Focal Points of Acoustic Field for Active Path Selection of Microbubbles through Multi-bifurcation

    NASA Astrophysics Data System (ADS)

    Koda, Ren; Koido, Jun; Ito, Takumi; Mochizuki, Takashi; Masuda, Kohji; Ikeda, Seiichi; Arai, Fumihito; Miyamoto, Yoshitaka; Chiba, Toshio

    2013-07-01

    We previously reported our attempt to propel microbubbles in a flow by a primary Bjerknes force, which is a physical phenomenon where an acoustic wave pushes an obstacle along its direction of propagation. However, when ultrasound was emitted from the surface of the body, controlling bubbles in an against-flow was necessary. It is unpractical to use multiple transducers to produce the same number of focal points because single-element transducers cannot produce more than two focal points. In this study, we introduced a complex artificial blood vessel according to a capillary model and a two-dimensional (2D) array transducer to produce multiple focal points for the active control of microbubbles in an against-flow. From the results, about 15% more microbubbles were led to the desired path with multiple focal points of ultrasound relative to the no-emission case.

  19. Detecting vocal fatigue in student singers using acoustic measures of mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Sisakun, Siphan

    2000-12-01

    The purpose of this study is to explore the ability of four acoustic parameters, mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio, to detect vocal fatigue in student singers. The participants are 15 voice students, who perform two distinct tasks, data collection task and vocal fatiguing task. The data collection task includes the sustained vowel /a/, reading a standard passage, and self-rate on a vocal fatigue form. The vocal fatiguing task is the vocal practice of musical scores for a total of 45 minutes. The four acoustic parameters are extracted using the software EZVoicePlus. The data analyses are performed to answer eight research questions. The first four questions relate to correlations of the self-rating scale and each of the four parameters. The next four research questions relate to differences in the parameters over time using one-factor repeated measures analysis of variance (ANOVA). The result yields a proposed acoustic profile of vocal fatigue in student singers. This profile is characterized by increased fundamental frequency; slightly decreased jitter; slightly decreased shimmer; and slightly increased harmonics-to-noise ratio. The proposed profile requires further investigation.

  20. Study of Harmonics-to-Noise Ratio and Critical-Band Energy Spectrum of Speech as Acoustic Indicators of Laryngeal and Voice Pathology

    NASA Astrophysics Data System (ADS)

    Shama, Kumara; krishna, Anantha; Cholayya, Niranjan U.

    2006-12-01

    Acoustic analysis of speech signals is a noninvasive technique that has been proved to be an effective tool for the objective support of vocal and voice disease screening. In the present study acoustic analysis of sustained vowels is considered. A simple[InlineEquation not available: see fulltext.]-means nearest neighbor classifier is designed to test the efficacy of a harmonics-to-noise ratio (HNR) measure and the critical-band energy spectrum of the voiced speech signal as tools for the detection of laryngeal pathologies. It groups the given voice signal sample into pathologic and normal. The voiced speech signal is decomposed into harmonic and noise components using an iterative signal extrapolation algorithm. The HNRs at four different frequency bands are estimated and used as features. Voiced speech is also filtered with 21 critical-bandpass filters that mimic the human auditory neurons. Normalized energies of these filter outputs are used as another set of features. The results obtained have shown that the HNR and the critical-band energy spectrum can be used to correlate laryngeal pathology and voice alteration, using previously classified voice samples. This method could be an additional acoustic indicator that supplements the clinical diagnostic features for voice evaluation.

  1. Pilots noise exposure during a Boeing 747-400 round trip: Ambient noise and acoustic-head recording and analysis of data

    NASA Technical Reports Server (NTRS)

    Hoffman, Knut

    1992-01-01

    Pilot noise exposure is examined during the round trip flight of a Boeing 747-400 aircraft. Although the sound power origin is the aircraft, this paper examines the effects of this noise on the human occupants within the airplane. Data is acquired and analyzed to determine the noise exposure of pilots on long flights, in this case, a flight of 12 hours and 20 minutes. All results are presented in viewgraph format.

  2. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  3. Producing ion waves from acoustic pressure waves in pulsed ICP: Modeling vs. Experiments

    NASA Astrophysics Data System (ADS)

    Despiau-Pujo, Emilie; Cunge, Gilles; Darnon, Maxime; Sadeghi, Nader; Braithwaite, Nicholas

    2015-09-01

    Neutral depletion is an important phenomenon in CW high-density plasmas, mostly caused by gas heating - with a small contribution due to electron pressure Pe - under typical material processing conditions. In pulsed ICP, neutral depletion plays an important role on radical transport in the afterglow. At the beginning of the afterglow, Pe drops rapidly (10 μs) by electron cooling and the gas cools down as well. It generates a neutral pressure gradient between the plasma bulk and the reactor walls, which in turn forces the cold surrounding gas to move rapidly towards the center, thus launching an acoustic wave in the reactor. Fast gas displacement is evidenced by measuring Al atoms drift velocity in the early afterglow of a Cl2/Ar discharge by time-resolved LIF, the acoustic wave in the chamber being observed by mass spectrometry. 2D fluid simulations of Cl2 pulsed ICP predict similar results. These phenomena are further studied during both the plasma ignition and afterglow using modeling and experiments. Strong oscillations are observed both on the Cl2 neutral densities and on the ion flux. As neutrals are pushed towards (or outwards) the chamber walls by the pressure gradient, ions are also pushed in that direction through collisions, as well captured by our ion flux probe.

  4. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper (also available as NASA/TM-2015-218865). The NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject supported the current work. The fan and open rotor data were obtained under previous efforts supported by the NASA Quiet Aircraft Technology (QAT) Project and the NASA Environmentally Responsible Aviation (ERA) Project of the Integrated Systems Research Program in collaboration with GE Aviation, respectively. The overarching goal of the Advanced Air Transport (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  5. Depicting network structures from variable data produced by unknown colored-noise driven dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Wang, Shihong; Zheng, Zhigang; Zhang, Zhaoyang; Hu, Gang

    2016-01-01

    In recent decades, the topic of depicting network structures from output variable data, i.e., the inverse problem, turns to be a key issue in wide interdisciplinary areas, in particular, in biological and social fields. Noise inevitably exists in practical dynamic networks, and the output data are often generated via interplay between noise and network structures. The essential difficulty to solve the inverse problem is how to extract information of node links in networks under unknown and possibly strong noise. In this paper, based on the idea that the output variable data contain information not only for network topology but also for noise, we propose a method to deal with this problem, incorporating three crucial ingredients: Computing multiple matrices to extract as much as possible information on network topology and noise statistics; making a systematical matrix algebraic computation to obtain equations closed for network inference; using an effective iteration algorithm to solve the resulting nonlinear matrix equations. The above theory is established in an accurate and closed form, numerical computations convincingly verify the validity of theoretical analysis, and the possible applications in practical inverse problems are emphasized.

  6. Investigation into the response of the auditory and acoustic communications systems in the Beluga whale (Delphinapterus leucas) of the St. Lawrence River Estuary to noise, using vocal classification

    NASA Astrophysics Data System (ADS)

    Scheifele, Peter Martin

    2003-06-01

    Noise pollution has only recently become recognized as a potential danger to marine mammals in general, and to the Beluga Whale (Delphinapterus leucas) in particular. These small gregarious Odontocetes make extensive use of sound for social communication and pod cohesion. The St. Lawrence River Estuary is habitat to a small, critically endangered population of about 700 Beluga whales who congregate in four different sites in its upper estuary. The population is believed to be threatened by the stress of high-intensity, low frequency noise. One way to determine whether noise is having an effect on an animal's auditory ability might be to observe a natural and repeatable response of the auditory and vocal systems to varying noise levels. This can be accomplished by observing changes in animal vocalizations in response to auditory feedback. A response such as this observed in humans and some animals is known as the Lombard Vocal Response, which represents a reaction of the auditory system directly manifested by changes in vocalization level. In this research this population of Beluga Whales was tested to determine whether a vocalization-as-a-function-of-noise phenomenon existed by using Hidden Markhov "classified" vocalizations as targets for acoustical analyses. Correlation and regression analyses indicated that the phenomenon does exist and results of a human subjects experiment along with results from other animal species known to exhibit the response strongly implicate the Lombard Vocal Response in the Beluga.

  7. Analysis of existing data from a Distributed Acoustic Sensing experiment at Garner Valley, California using noise correlation functions (PoroTomo Substask 3.2)

    DOE Data Explorer

    Xiangfang Zeng

    2015-03-26

    In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes noise cross-correlation functions (NCF) . Each file includes a NCF between two channels. The name of each channel denotes the distance in meters from starting point of the fiber-optic cable. Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. 
https://agu.confex.com/agu/fm14/meetingapp.cgi#Paper/19828 The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf

  8. Reduction of turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A. (Inventor); Brookfield, John M. (Inventor); Sell, Julian (Inventor); Hayden, Belva J. (Inventor); Ingard, K. Uno (Inventor)

    1999-01-01

    In the invention, propagating broad band and tonal acoustic components of noise characteristic of interaction of a turbomachine blade wake, produced by a turbomachine blade as the blade rotates, with a turbomachine component downstream of the rotating blade, are reduced. This is accomplished by injection of fluid into the blade wake through a port in the rotor blade. The mass flow rate of the fluid injected into the blade wake is selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake. With this fluid injection, reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved. In a further noise reduction technique, boundary layer fluid is suctioned into the turbomachine blade through a suction port on the side of the blade that is characterized as the relatively low-pressure blade side. As with the fluid injection technique, the mass flow rate of the fluid suctioned into the blade is here selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake; reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved with this suction technique. Blowing and suction techniques are also provided in the invention for reducing noise associated with the wake produced by fluid flow around a stationary blade upstream of a rotating turbomachine.

  9. Analysis of noise produced by jet impingement near the trailing edge of a flat and a curved plate

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.; Burns, R. J.

    1975-01-01

    The sound fields produced by the interaction of a subsonic cold gas jet with the trailing edge of a large flat plate and a curved plate were analyzed. The analyses were performed to obtain a better understanding of the dominant noise source and the mechanism governing the peak sound-pressure-level frequencies of the broadband spectra. An analytical expression incorporating an available theory and experimental data predicts sound field data over an arc of approximately 105 deg measured from the upstream jet axis for the two independent sets of data. The dominant noise as detected on the impingement side of either plate results from the jet impact (eighth power of the velocity dependence) rather than a trailing-edge disturbance (fifth or sixth power of the velocity dependence). Also, the frequency of the peak SPL may be governed by a phenomenon which produces periodic formation and shedding of ring vortices from the nozzle lip.

  10. Acoustic Prediction Methodology and Test Validation for an Efficient Low-Noise Hybrid Wing Body Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Kawai, Ronald T. (Compiler)

    2011-01-01

    This investigation was conducted to: (1) Develop a hybrid wing body subsonic transport configuration with noise prediction methods to meet the circa 2007 NASA Subsonic Fixed Wing (SFW) N+2 noise goal of -52 dB cum relative to FAR 36 Stage 3 (-42 dB cum re: Stage 4) while achieving a -25% fuel burned compared to current transports (re :B737/B767); (2) Develop improved noise prediction methods for ANOPP2 for use in predicting FAR 36 noise; (3) Design and fabricate a wind tunnel model for testing in the LaRC 14 x 22 ft low speed wind tunnel to validate noise predictions and determine low speed aero characteristics for an efficient low noise Hybrid Wing Body configuration. A medium wide body cargo freighter was selected to represent a logical need for an initial operational capability in the 2020 time frame. The Efficient Low Noise Hybrid Wing Body (ELNHWB) configuration N2A-EXTE was evolved meeting the circa 2007 NRA N+2 fuel burn and noise goals. The noise estimates were made using improvements in jet noise shielding and noise shielding prediction methods developed by UC Irvine and MIT. From this the Quiet Ultra Integrated Efficient Test Research Aircraft #1 (QUIET-R1) 5.8% wind tunnel model was designed and fabricated.

  11. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish

    PubMed Central

    Nichols, Tye A.; Anderson, Todd W.; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  12. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish.

    PubMed

    Nichols, Tye A; Anderson, Todd W; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  13. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics: Proof-of-Concept Progress

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    A CFD-based simulation of single-stage turbine was done using the TURBO code to assess its viability for determining acoustic transmission through blade rows. Temporal and spectral analysis of the unsteady pressure data from the numerical simulations showed the allowable Tyler-Sofrin modes that are consistent with expectations. This indicated that high-fidelity acoustic transmission calculations are feasible with TURBO.

  14. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    NASA Astrophysics Data System (ADS)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  15. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  16. Evaluation of SHM System Produced by Additive Manufacturing via Acoustic Emission and Other NDT Methods

    PubMed Central

    Strantza, Maria; Aggelis, Dimitrios G.; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-01-01

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called “effective structural health monitoring” (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals. PMID:26506349

  17. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods.

    PubMed

    Strantza, Maria; Aggelis, Dimitrios G; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-01-01

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals. PMID:26506349

  18. Development of acoustically lined ejector technology for multitube jet noise suppressor nozzles by model and engine tests over a wide range of jet pressure ratios and temperatures

    NASA Technical Reports Server (NTRS)

    Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.

    1974-01-01

    An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.

  19. Fundamentals of noise control engineering

    SciTech Connect

    Miller, R.K.; Thumann, A.

    1986-01-01

    This reference provides coverage of noise control engineering. Techniques are presented in precise terms for both acoustical design of new facilities and cost-effective noise reduction in existing facilities. Examples illustrate how to design acoustical enclosures, apply silencing equipment, estimate equipment noise and meet noise criteria for communities.

  20. Implications of the road traffic and aircraft noise exposure and children's cognition and health (RANCH) study results for classroom acoustics

    NASA Astrophysics Data System (ADS)

    Stansfeld, Stephen A.; Clark, Charlotte

    2005-04-01

    Studies in West London have found associations between aircraft noise exposure and childrens' cognitive performance. This has culminated in the RANCH Study examining exposure-effect associations between aircraft and road traffic noise exposure and cognitive performance and health. The RANCH project, the largest cross-sectional study of noise and childrens health, examined 2844 children, 9-10 years old, from 89 schools around three major airports: in the Netherlands, Spain and the United Kingdom. Children were selected by external aircraft and road traffic noise exposure at school predicted from noise contour maps, modeling and on-site measurements. A substudy indicated high internal levels of noise within classrooms. Schools were matched for socioeconomic position within countries. Cognitive and health outcomes were measured by standardized tests and questionnaires administered in the classroom. A parental questionnaire collected information on socioeconomic position, parental education and ethnicity. Linear exposure-effect associations were found between chronic aircraft noise exposure and impairment of reading comprehension and recognition memory, maintained after adjustment for mothers education, socioeconomic factors, longstanding illness and classroom insulation. Road traffic noise exposure was linearly associated with episodic memory. The implications of these results for childrens' learning environments will be discussed. [Work supported by European Community (QLRT-2000-00197) Vth framework program.

  1. The challenge of acoustics

    NASA Astrophysics Data System (ADS)

    Lord, P.

    1981-01-01

    The various applications of acoustics, including sonar, ultrasonic examination of unborn foetuses and architectural applications, are briefly reviewed. Problems in traffic and industrial noise, auditorium design and explosive noise are considered in more detail. The educational aspects of acoustical science and technology are briefly considered.

  2. Recent Langley helicopter acoustics contributions

    NASA Technical Reports Server (NTRS)

    Morgan, Homer G.; Pao, S. P.; Powell, C. A.

    1988-01-01

    The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included.

  3. Adult Vampire Bats Produce Contact Calls When Isolated: Acoustic Variation by Species, Population, Colony, and Individual

    PubMed Central

    Carter, Gerald G.; Logsdon, Ryane; Arnold, Bryan D.; Menchaca, Angelica; Medellin, Rodrigo A.

    2012-01-01

    Background Bat pups produce individually distinct isolation calls to facilitate maternal recognition. Increasing evidence suggests that, in group-living bat species, adults often use similar calls to maintain contact. We investigated if isolated adults from all three species of the highly cooperative vampire bats (Phyllostomidae: Desmodontinae) would produce vocally distinct contact calls when physically isolated. Methods/Principal Findings We assessed variation in contact calls recorded from isolated captive and wild-caught adult common vampire bats (Desmodus rotundus), white-winged vampire bats (Diaemus youngi) and hairy-legged vampire bats (Diphylla ecaudata). We compared species-typical contact call structure, and used information theory and permuted discriminate function analyses to examine call structure variation, and to determine if the individuality of contact calls is encoded by different call features across species and populations. We found that isolated adult vampire bats produce contact calls that vary by species, population, colony, and individual. However, much variation occurred within a single context and individual. We estimated signature information for captive Diaemus (same colony), captive Desmodus (same colony), and wild Desmodus (different colonies) at 3.21, 3.26, and 3.88 bits, respectively. Contact calls from a captive colony of Desmodus were less individually distinct than calls from wild-caught Desmodus from different colonies. Both the degree of individuality and parameters encoding individuality differed between the bats from a single captive colony and the wild-caught individuals from different groups. This result is consistent with, but not sufficient evidence of, vocal convergence in groups. Conclusion Our results show that adult vampire bats of all three species produce highly variable contact calls when isolated. Contact calls contain sufficient information for vocal discrimination, but also possess more intra-individual variation

  4. NASA/GE quiet engine C acoustic test results

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Pass, J. E.

    1974-01-01

    The acoustic investigation and evaluation of the C propulsion turbofan engine are discussed. The engine was built as a part of the Quiet Engine Program. The objectives of the program are as follows: (1) to determine the noise levels produced turbofan bypass engines, (2) to demonstrate the technology and innovations which will reduce the production and radiation of noise in turbofan engines, and (3) to acquire experimental acoustic and aerodynamic data for high bypass turbofan engines to provide a better understanding of noise production mechanisms. The goals of the program called for a turbofan engine 15 to 20 PNdB quieter than currently available engines in the same thrust class.

  5. Comparison of acoustic fields produced by the original and upgraded HM-3 lithotripter

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Zhu, Songlin; Dreyer, Thomas; Liebler, Marko; Zhong, Pei

    2003-10-01

    To reduce tissue injury in shock wave lithotripsy (SWL) while maintaining satisfactory stone comminution, an original HM-3 lithotripter was upgraded by a reflector insert to suppress large intraluminal bubble expansion, which is a primary mechanism of vascular injury in SWL. The pressure waveforms produced by the original and upgraded HM-3 lithotripter were measured by using a fiber optical probe hydrophone (FOPH), which was scanned both along and transverse to the lithotripter axis at 1-mm step using a computer-controlled 3-D positioning system. At F2, the pressure waveform produced by the upgraded HM-3 lithotripter at 22 kV has a distinct dual-pulse structure, with a leading shock wave of ~45 MPa from the reflector insert and a 4-μs delayed second pulse of ~15 MPa reflected from the uncovered bottom surface of the original HM-3 reflector. The beam sizes of the original and upgraded HM-3 lithotripter are comparable in both axial and lateral directions. The pressure waveforms measured at the reflector aperture will be used as input to the KZK equation to predict the lithotripter shock wave at F2. Furthermore, bubble dynamics predicted by the Gilmore model will be compared with experimental observation by high-speed imaging. [Work supported by NIH.

  6. Ocean seismo-acoustics. Low-frequency underwater acoustics

    SciTech Connect

    Akal, T.; berkson, J.M.

    1986-01-01

    This book presents information on seismo-acoustic propagation in seawater and sea beds that includes theoretical developments, modelling and experiments, and fluctuations. Boundary scatteiring, seismo-acoustic waves and seismo-acoustic noise are discussed. Technology and new approaches in seismo-acoustic measurements are presented.

  7. Sensitivity of acoustic predictions to variation of input parameters

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Burley, Casey L.; Marcolini, Michael A.

    1994-01-01

    Rotor noise prediction codes predict the thickness and loading noise produced by a helicopter rotor, given the blade motion, rotor operating conditions, and fluctuating force distribution over the blade surface. However, the criticality of these various inputs, and their respective effects on the predicted acoustic field, have never been fully addressed. This paper examines the importance of these inputs, and the sensitivity of the acoustic predicitions to a variation of each parameter. The effects of collective and cyclic pitch, as well as coning and cyclic flapping, are presented. Blade loading inputs are examined to determine the necessary spatial and temporal resolution, as well as the importance of the chordwise distribution. The acoustic predictions show regions in the acoustic field where significant errors occur when simplified blade motions or blade loadings are used. An assessment of the variation in the predicted acoustic field is balanced by a consideration of Central Processing Unit (CPU) time necessary for the various approximations.

  8. Sensitivity of acoustic predictions to variation of input parameters

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Marcolini, Michael A.; Burley, Casey L.

    1991-01-01

    The noise prediction code WOPWOP predicts the thickness and loading noise produced by a helicopter rotor, given the blade motion, rotor operating conditions, and fluctuating force distribution over the blade surface. However, the criticality of these various inputs, and their respective effects on the predicted acoustic field, have never been fully addressed. This paper examines the importance of these inputs, and the sensitivity of the acoustic predictions to a variation of each parameter. The effects of collective and cyclic pitch, as well as coning and flapping, are presented. Blade loading inputs are examined to determine the necessary spatial and temporal resolution, as well as the importance of the cordwise distribution. The acoustic predictions show regions in the acoustic field where significant errors occur when simplified blade motions or blade loadings are used. An assessment of the variation in the predicted acoustic field is balanced by a consideration of CPU time necessary for the various approximations.

  9. Frequency and time pattern differences in acoustic signals produced by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae)in stored maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acoustic signals emitted by the last stage larval instars and adults of Prostephanus truncatus and Sitophilus zeamais in stored maize were investigated. Analyses were performed to identify brief, 1-10-ms broadband sound impulses of five different frequency patterns produced by larvae and adults,...

  10. A Longitudinal Acoustic Study of the Effects of the Radial Forearm Free Flap Reconstruction on Sibilants Produced by Tongue Cancer Patients

    ERIC Educational Resources Information Center

    Laaksonen, Juha-Pertti; Rieger, Jana; Harris, Jeffrey; Seikaly, Hadi

    2011-01-01

    Acoustic properties of 980 tokens of sibilants /s, z, [approximately]/ produced by 17 Canadian English-speaking female and male tongue cancer patients were studied. The patients had undergone tongue resection and tongue reconstruction with a radial forearm free flap (RFFF). The spectral moments (mean, skewness) and frication duration were analysed…

  11. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  12. Computer programs for producing single-event aircraft noise data for specific engine power and meteorological conditions for use with USAF (United States Air Force) community noise model (NOISEMAP)

    NASA Astrophysics Data System (ADS)

    Mohlman, H. T.

    1983-04-01

    The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.

  13. Acoustical Environment for Academic Buildings.

    ERIC Educational Resources Information Center

    Lortie, L.J.

    Discussion of the parameters governing noise control and room acoustics are followed by a demonstration on how to achieve a good acoustical environment. Topics emphasized include--(1) design and control objectives, (2) noise sources and propagation, (3) reverberation parameters, (4) noise control factors and parameters, and (5) sound systems. Also…

  14. A research program to reduce interior noise in general aviation airplanes. Design of an acoustic panel test facility

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Muirhead, V. U.; Smith, H. W.; Henderson, T. D.

    1977-01-01

    The design, construction, and costs of a test facility for determining the sound transmission loss characteristics of various panels and panel treatments are described. The pressurization system and electronic equipment used in experimental testing are discussed as well as the reliability of the facility and the data gathered. Tests results are compared to pertinent acoustical theories for panel behavior and minor anomalies in the data are examined. A method for predicting panel behavior in the stiffness region is also presented.

  15. Rational function representation of flap noise spectra including correction for reflection effects. [acoustic properties of engine exhaust jets deflected for externally blown flaps

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1974-01-01

    A rational function is presented for the acoustic spectra generated by deflection of engine exhaust jets for under-the-wing and over-the-wing versions of externally blown flaps. The functional representation is intended to provide a means for compact storage of data and for data analysis. The expressions are based on Fourier transform functions for the Strouhal normalized pressure spectral density, and on a correction for reflection effects based on the N-independent-source model of P. Thomas extended by use of a reflected ray transfer function. Curve fit comparisons are presented for blown flap data taken from turbofan engine tests and from large scale cold-flow model tests. Application of the rational function to scrubbing noise theory is also indicated.

  16. Acoustic characteristics of twin jets.

    PubMed

    He, F; Zhang, X W

    2002-09-01

    Experiments were conducted to investigate the acoustic characteristics of underexpanded supersonic twin jets in different azimuthal measurement planes. Compared with two independent jets, the twin jets produced additional noise due to the enhanced mixing and entrainment. The larger pressure ratio for switching from the axisymmetric mode to the helical mode led to lower noise levels at 90 degrees than for two independent jets. For pressure ratios greater than 5.00, the noise reduction was due to cessation of screeching of the twin jets while screeching of a single jet was still detected. The apparent shielding phenomenon was measured for the screech helical mode. The screech tone intensities were attenuated largely due to the shielding effects. The noise reductions due to shielding were obtained over a wide range of pressure ratios relative to the sum of two independent jets. PMID:12243185

  17. Books on acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil A.

    2001-05-01

    The legacy of a man is not limited to just his projects. His writings in many cases are a more lasting, and a definitely more accessible, monument. For 60 years, Leo L. Beranek has produced books on acoustics, acoustic measurements, sound control, music and architecture, noise and vibration control, concert halls, and opera houses in addition to teaching and consulting. His books are standard references and still cited in other books and in technical and professional articles. Many of his books were among, if not, the first comprehensive modern treatment of the subject and many are still foremost. A review of Dr. Beranek's many books as well as some anecdotes about the circumstances and consequences of same will be presented.

  18. Structure-acoustic finite element analyses for noise reduction investigations of launcher payload compartment structures made of CFRP sandwich material

    NASA Astrophysics Data System (ADS)

    Faust, M.; Schweickert, G.; Strobel, F.

    1991-10-01

    An investigation of the noise reduction properties of the Ariane 5 Speltra payload compartment structure is reported. The low frequency noise reduction was calculated by the Finite Element Method (FEM) with a formulation for fluid structure interaction (FE code PERMAS-FS). The results of the different analysis steps including uncoupled and coupled analysis are presented. The uncoupled structure and cavity dynamics results were compared to closed form solutions with good agreement. The introduction of external field effects, i.e. radiation damping and scattering, was performed by using closed form solutions for cylinder type structures. The analyses were performed for 2 different test cylinders and the Speltra cylindrical part. The test cylinder results were compared with the measured noise reductions and good agreement was obtained.

  19. Conceptual design study of advanced acoustic composite nacelle. [for achieving reductions in community noise and operating expense

    NASA Technical Reports Server (NTRS)

    Goodall, R. G.; Painter, G. W.

    1975-01-01

    Conceptual nacelle designs for wide-bodied and for advanced-technology transports were studied with the objective of achieving significant reductions in community noise with minimum penalties in airplane weight, cost, and in operating expense by the application of advanced composite materials to nacelle structure and sound suppression elements. Nacelle concepts using advanced liners, annular splitters, radial splitters, translating centerbody inlets, and mixed-flow nozzles were evaluated and a preferred concept selected. A preliminary design study of the selected concept, a mixed flow nacelle with extended inlet and no splitters, was conducted and the effects on noise, direct operating cost, and return on investment determined.

  20. Detection and modeling of the acoustic perturbation produced by the launch of the Space Shuttle using the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Bowling, T. J.; Calais, E.; Dautermann, T.

    2010-12-01

    Rocket launches are known to produce infrasonic pressure waves that propagate into the ionosphere where coupling between electrons and neutral particles induces fluctuations in ionospheric electron density observable in GPS measurements. We have detected ionospheric perturbations following the launch of space shuttle Atlantis on 11 May 2009 using an array of continually operating GPS stations across the Southeastern coast of the United States and in the Caribbean. Detections are prominent to the south of the westward shuttle trajectory in the area of maximum coupling between the acoustic wave and Earth’s magnetic field, move at speeds consistent with the speed of sound, and show coherency between stations covering a large geographic range. We model the perturbation as an explosive source located at the point of closest approach between the shuttle path and each sub-ionospheric point. The neutral pressure wave is propagated using ray tracing, resultant changes in electron density are calculated at points of intersection between rays and satellite-to-reciever line-of-sight, and synthetic integrated electron content values are derived. Arrival times of the observed and synthesized waveforms match closely, with discrepancies related to errors in the apriori sound speed model used for ray tracing. Current work includes the estimation of source location and energy.

  1. Acoustic Response to Playback of Pile-Driving Sounds by Snapping Shrimp.

    PubMed

    Spiga, Ilaria

    2016-01-01

    There is concern about the effects of noise from impact pile driving as this constructional technique becomes increasingly widespread in coastal areas. The habitats of most marine invertebrate species are likely to overlap with the areas of human activities along the coast and be affected by the increased levels of noise produced. This paper investigates the acoustic response of chorusing snapping shrimp to different sound pressure levels. A significant increase in the snap number and snap amplitude was recorded during the playback of piling noise, suggesting that noise exposure affected the acoustic behavior of these animals. PMID:26611071

  2. Jet noise modification by the 'whistler nozzle'

    NASA Technical Reports Server (NTRS)

    Hasan, M. A. Z.; Islam, O.; Hussain, A. K. M. F.

    1984-01-01

    The farfield noise characteristics of a subsonic whistler nozzle jet are measured as a function of Mach number (0.25, 0.37, and, 0.51), emission angle, and excitation mode. It is shown that a whistler nozzle has greater total and broadband acoustic power than an excited contraction nozzle; and that the intensity of far-field noise is a function of emission angle, Mach number, and whistler excitation stage. The whistler nozzle excitation produces broadband noise amplification with constant spectral shape; the broadband noise amplification (without associated whistler tones and harmonics) increases omnidirectionally with emission angle at all Mach numbers; and the broadband amplification factor decreases as Mach number and emission angle increase. Finally the whistler nozzle is described as a very efficient but inexpensive siren with applications in not only jet excitation but also acoustics.

  3. Noise pollution: a modem plague.

    PubMed

    Goines, Lisa; Hagler, Louis

    2007-03-01

    Noise is defined as unwanted sound. Environmental noise consists of all the unwanted sounds in our communities except that which originates in the workplace. Environmental noise pollution, a form of air pollution, is a threat to health and well-being. It is more severe and widespread than ever before, and it will continue to increase in magnitude and severity because of population growth, urbanization, and the associated growth in the use of increasingly powerful, varied, and highly mobile sources of noise. It will also continue to grow because of sustained growth in highway, rail, and air traffic, which remain major sources of environmental noise. The potential health effects of noise pollution are numerous, pervasive, persistent, and medically and socially significant. Noise produces direct and cumulative adverse effects that impair health and that degrade residential, social, working, and learning environments with corresponding real (economic) and intangible (well-being) losses. It interferes with sleep, concentration, communication, and recreation. The aim of enlightened governmental controls should be to protect citizens from the adverse effects of airborne pollution, including those produced by noise. People have the right to choose the nature of their acoustical environment; it should not be imposed by others. PMID:17396733

  4. Acoustic Localization with Infrasonic Signals

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  5. Small-Scale Trial for Evaluating Directional Resolution of Single Spherical Biconcave Acoustic Lens in Designing of Ambient Noise Imaging System

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki

    2008-05-01

    Ambient noise imaging (ANI) is the revolutionary idea of detecting objects by using natural ocean background noise. From the analysis results obtained by the finite difference time domain (FDTD) method in our previous studies, it was supposed that a spherical biconcave lens with an aperture diameter of 2.0 m has a sufficient directional resolution (for example, the beam width is 1° at 60 kHz) for realizing an ANI system. In this study, to confirm the analysis results, we performed a small-scale trial of one-fifth space in a water tank. The lens, made of acrylic resin, has an aperture diameter of 400 mm and a radius of curvature of 500 mm. A burst pulse of 25 cycles at 300 kHz, whose frequency increases 5 times, was radiated from the sound source. The sound pressure after passage through the acoustic lens was measured by moving the receiver around the image point. Results show that the shapes of -3 dB areas are similar to the FDTD analysis results at small incidence angles. It was verified that this lens has a sufficient directional resolution for use in the ANI system, because -3 dB areas do not overlap each other.

  6. Do We Perceive Others Better than Ourselves? A Perceptual Benefit for Noise-Vocoded Speech Produced by an Average Speaker

    PubMed Central

    Schuerman, William L.; Meyer, Antje; McQueen, James M.

    2015-01-01

    In different tasks involving action perception, performance has been found to be facilitated when the presented stimuli were produced by the participants themselves rather than by another participant. These results suggest that the same mental representations are accessed during both production and perception. However, with regard to spoken word perception, evidence also suggests that listeners’ representations for speech reflect the input from their surrounding linguistic community rather than their own idiosyncratic productions. Furthermore, speech perception is heavily influenced by indexical cues that may lead listeners to frame their interpretations of incoming speech signals with regard to speaker identity. In order to determine whether word recognition evinces similar self-advantages as found in action perception, it was necessary to eliminate indexical cues from the speech signal. We therefore asked participants to identify noise-vocoded versions of Dutch words that were based on either their own recordings or those of a statistically average speaker. The majority of participants were more accurate for the average speaker than for themselves, even after taking into account differences in intelligibility. These results suggest that the speech representations accessed during perception of noise-vocoded speech are more reflective of the input of the speech community, and hence that speech perception is not necessarily based on representations of one’s own speech. PMID:26134279

  7. Acoustic Location of Lightning Using Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Erives, H.; Arechiga, R. O.; Stock, M.; Lapierre, J. L.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    Acoustic arrays have been used to accurately locate thunder sources in lightning flashes. The acoustic arrays located around the Magdalena mountains of central New Mexico produce locations which compare quite well with source locations provided by the New Mexico Tech Lightning Mapping Array. These arrays utilize 3 outer microphones surrounding a 4th microphone located at the center, The location is computed by band-passing the signal to remove noise, and then computing the cross correlating the outer 3 microphones with respect the center reference microphone. While this method works very well, it works best on signals with high signal to noise ratios; weaker signals are not as well located. Therefore, methods are being explored to improve the location accuracy and detection efficiency of the acoustic location systems. The signal received by acoustic arrays is strikingly similar to th signal received by radio frequency interferometers. Both acoustic location systems and radio frequency interferometers make coherent measurements of a signal arriving at a number of closely spaced antennas. And both acoustic and interferometric systems then correlate these signals between pairs of receivers to determine the direction to the source of the received signal. The primary difference between the two systems is the velocity of propagation of the emission, which is much slower for sound. Therefore, the same frequency based techniques that have been used quite successfully with radio interferometers should be applicable to acoustic based measurements as well. The results presented here are comparisons between the location results obtained with current cross correlation method and techniques developed for radio frequency interferometers applied to acoustic signals. The data were obtained during the summer 2013 storm season using multiple arrays sensitive to both infrasonic frequency and audio frequency acoustic emissions from lightning. Preliminary results show that

  8. Helicopter rotor trailing edge noise. [noise prediction

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amier, R. K.

    1981-01-01

    A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.

  9. Sounds and Noises. A Position Paper on Noise Pollution.

    ERIC Educational Resources Information Center

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  10. Acoustical analysis and modeling of reciprocating compressors, noise produced by gas pulsation, using four-pole method. I

    NASA Astrophysics Data System (ADS)

    Herfat, Ali T.; Seel, Robert V.

    2003-04-01

    Presented in Paper I are the fluid-structure interactions, structural dynamics, and thermodynamic analyses of reciprocating compressors (such as air conditioning and refrigeration reciprocating compressors). The compressor performance can be analyzed using the follows criteria: (1) thermodynamic model of the cylinder process, using the polytropic process model for thermodynamic model of cylinder; (2) suction and discharge valves dynamics analysis and modeling; (3) the valves modeling and the cylinder volume calculation; (4) Effective flow area and effective force area models.

  11. Acoustic Aspects of Active-Twist Rotor Control

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Wilbur, Matthew L.

    2002-01-01

    The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.

  12. Comparison of acoustic performance of five muffler configurations on a small helicopter. [acoustic properties of modified helicopter exhaust system

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Hilton, D. A.

    1974-01-01

    A field noise measurement program has been conducted on a standard Bell 47 series helicopter and on one that had been modified with specially designed, airframe-mounted mufflers to reduce the engine exhaust noise. The purpose of the study was to evaluate the acoustic performance of five experimental exhaust muffler configurations for a helicopter reciprocating engine in an operational environment. All muffler configurations produced beneficial engine exhaust noise reductions but some configurations were markedly better than others. Flyover noise results indicated that maximum overall noise reductions of approximately 8 db were obtained with the various mufflers. The rotor noise was judged to be the dominant noise component for the muffler-equipped helicopters whereas the engine noise was the dominant component for the basic configuration.

  13. Simulated flight acoustic investigation of treated ejector effectiveness on advanced mechanical suppresors for high velocity jet noise reduction

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.; Motsinger, R. E.; Hoerst, D. J.

    1986-01-01

    Ten scale-model nozzles were tested in an anechoic free-jet facility to evaluate the acoustic characteristics of a mechanically suppressed inverted-velocity-profile coannular nozzle with an accoustically treated ejector system. The nozzle system used was developed from aerodynamic flow lines evolved in a previous contract, defined to incorporate the restraints imposed by the aerodynamic performance requirements of an Advanced Supersonic Technology/Variable Cycle Engine system through all its mission phases. Accoustic data of 188 test points were obtained, 87 under static and 101 under simulated flight conditions. The tests investigated variables of hardwall ejector application to a coannular nozzle with 20-chute outer annular suppressor, ejector axial positioning, treatment application to ejector and plug surfaces, and treatment design. Laser velocimeter, shadowgraph photograph, aerodynamic static pressure, and temperature measurement were acquired on select models to yield diagnositc information regarding the flow field and aerodynamic performance characteristics of the nozzles.

  14. Passive acoustic monitoring of human physiology during activity indicates health and performance of soldiers and firefighters

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-04-01

    The Army Research Laboratory has developed a unique gel-coupled acoustic physiological monitoring sensor that has acoustic impedance properties similar to the skin. This facilitates the transmission of body sounds into the sensor pad, yet significantly repels ambient airborne noises due to an impedance mismatch. The sensor's sensitivity and bandwidth produce excellent signatures for detection and spectral analysis of diverse physiological events. Acoustic signal processing detects heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. Comfortable acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Noise-canceling sensor arrays help remove out-of-phase motion noise and enhance covariant physiology by using two acoustic sensors on the front sides of the neck and two additional acoustic sensors on each wrist. Pulse wave transit time between neck and wrist acoustic sensors will indicate systolic blood pressure. Larger torso-sized arrays can be used to acoustically inspect the lungs and heart, or built into beds for sleep monitoring. Acoustics is an excellent input for sensor fusion.

  15. AFFECT OF NEW BLADES ON NOISE REDUCTION OF SMALL WIND TURBINE WATER PUMPING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustical noise data were collected on small wind turbines used for water pumping -- different blade designs were tested on each wind turbine. Three different blade designs were tested on 1 kW wind turbines and each successive blade design was shown to produce less noise with respect to rotor spee...

  16. Noise Control in Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.

    2009-01-01

    Acoustic limits in habitable space enclosures are required to ensure crew safety, comfort, and habitability. Noise control is implemented to ensure compliance with the acoustic requirements. The purpose of this paper is to describe problems with establishing acoustic requirements and noise control efforts, and present examples of noise control treatments and design applications used in the Space Shuttle Orbiter. Included is the need to implement the design discipline of acoustics early in the design process, and noise control throughout a program to ensure that limits are met. The use of dedicated personnel to provide expertise and oversight of acoustic requirements and noise control implementation has shown to be of value in the Space Shuttle Orbiter program. It is concluded that to achieve acceptable and safe noise levels in the crew habitable space, early resolution of acoustic requirements and implementation of effective noise control efforts are needed. Management support of established acoustic requirements and noise control efforts is essential.

  17. Therapeutic efficacy of intra-cochlear administration of methylprednisolone after acoustic trauma caused by gunshot noise in guinea pigs.

    PubMed

    Sendowski, I; Abaamrane, L; Raffin, F; Cros, A; Clarençon, D

    2006-11-01

    The therapeutic efficacy of cochlear infusion of methylprednisolone (MP) after an impulse noise trauma (170dB SPL peak) was evaluated in guinea pigs. The compound action potential threshold shifts were measured over a 14 days recovery period after the gunshot exposure. For each animal, one of the cochlea was perfused directly into the scala tympani with MP during 7 days via a mini-osmotic pump, whereas the other cochlea was not pump-implanted. The functional study of hearing was supplemented by histological analysis. Forty eight hours after the trauma, significant differences between auditory threshold shifts in the implanted and non-implanted ears were observed for frequencies above 8kHz. At day 7, the difference was significant for only one frequency and no difference was observed after 14 days recovery. Cochleograms showed that the hair cell losses were significantly lower in the MP treated ears. This work indicates that direct infusion of MP into perilymphatic space accelerates hearing recovery, reduces hair cell losses after impulse noise trauma but does not limit permanent threshold shifts. PMID:17008037

  18. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  19. Visualizing interior and exterior jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Moondra, Manmohan S.

    In today's competitive aerospace industry, the quest for quiet has drawn significant attention to both the interior and exterior design of an airplane. Understanding the noise generation mechanisms of a jet aircraft is a crucial first step toward developing the most cost-effective noise and vibrations abatement methods. In this investigation, the Helmholtz Equation Least Squares (HELS) based nearfield acoustic holography will be used to understand noise transmission caused by jet engine and turbulence into the fuselage of a jet aircraft cruising at 30,000 ft. Modern propulsive jet engines produce exterior noise sources with a high amplitude noise field and complicated characteristics, which makes them very difficult to characterize. In particular, there are turbulent eddies that are moving through the jet at high speeds along the jet boundary. These turbulent eddies in the shear layer produce a directional and frequency dependent noise. The original HELS approach assumes a spherical source at the origin and computes the acoustic field based on spherical emission from this source. This assumption of one source at the origin is not sufficient to characterize a complex source like a jet. As such, a modified HELS approach is introduced that will help improve the source characterization as it is not dependent on a single source at the origin but a number of virtual sources throughout the space. Custom microphones are created to take acoustic pressure measurements around the jet engine. These measured acoustic pressures are then taken as input to the modified HELS algorithm to visualize the noise pattern of a subsonic jet engine.

  20. On aerodynamic noises radiated by the pantograph system of high-speed trains

    NASA Astrophysics Data System (ADS)

    Yu, Hua-Hua; Li, Jia-Chun; Zhang, Hui-Qin

    2013-06-01

    Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.

  1. Benefits to Speech Perception in Noise From the Binaural Integration of Electric and Acoustic Signals in Simulated Unilateral Deafness

    PubMed Central

    Ma, Ning; Morris, Saffron; Kitterick, Pádraig Thomas

    2016-01-01

    Objectives: This study used vocoder simulations with normal-hearing (NH) listeners to (1) measure their ability to integrate speech information from an NH ear and a simulated cochlear implant (CI), and (2) investigate whether binaural integration is disrupted by a mismatch in the delivery of spectral information between the ears arising from a misalignment in the mapping of frequency to place. Design: Eight NH volunteers participated in the study and listened to sentences embedded in background noise via headphones. Stimuli presented to the left ear were unprocessed. Stimuli presented to the right ear (referred to as the CI-simulation ear) were processed using an eight-channel noise vocoder with one of the three processing strategies. An Ideal strategy simulated a frequency-to-place map across all channels that matched the delivery of spectral information between the ears. A Realistic strategy created a misalignment in the mapping of frequency to place in the CI-simulation ear where the size of the mismatch between the ears varied across channels. Finally, a Shifted strategy imposed a similar degree of misalignment in all channels, resulting in consistent mismatch between the ears across frequency. The ability to report key words in sentences was assessed under monaural and binaural listening conditions and at signal to noise ratios (SNRs) established by estimating speech-reception thresholds in each ear alone. The SNRs ensured that the monaural performance of the left ear never exceeded that of the CI-simulation ear. The advantages of binaural integration were calculated by comparing binaural performance with monaural performance using the CI-simulation ear alone. Thus, these advantages reflected the additional use of the experimentally constrained left ear and were not attributable to better-ear listening. Results: Binaural performance was as accurate as, or more accurate than, monaural performance with the CI-simulation ear alone. When both ears supported a

  2. Annoyance and acceptability judgements of noise produced by three types of aircraft by residents living near JFK Airport

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1974-01-01

    A random sample of selected communities near JFK Airport were interviewed. Subsamples, with differing feelings of fear of aircraft crashes and different locations of residence were invited to participate in a laboratory experiment. The subjects were exposed to tape recordings of simulated flyovers of aircraft in approach and departure operations at nominal distances from the airport. The subjects judged the extent of noise annoyance and acceptability of the aircraft noises. Results indicate that level of noise is most significant in affecting annoyance judgements. Subjects with feelings of high fear report significantly more annoyance and less acceptability of aircraft noise than subjects with feelings of low fear.

  3. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  4. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  5. Acoustic Measurements of Rectangular Nozzles With Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2012-01-01

    A series of convergent rectangular nozzles of aspect ratios 2:1, 4:1, and 8:1 were constructed with uniform exit velocity profiles. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. Far-field acoustic measurements were made and analyzed, and the results presented. The impact of aspect ratio on jet noise was similar to that of enhanced mixing devices: reduction in aft, peak frequency noise with an increase in broadside, high frequency noise. Azimuthally, it was found that rectangular jets produced more noise directed away from their wide sides than from their narrow sides. The azimuthal dependence decreased at aft angles where noise decreased. The effect of temperature, keeping acoustic Mach number constant, was minimal. Since most installations would have the observer on the wide size of the nozzle, the increased high frequency noise has a deleterious impact on the observer. Extending one wide side of the rectangular nozzle, evocative of an aft deck in an installed propulsion system, increased the noise of the jet with increasing length. The impact of both aspect ratio and bevel length were relatively well behaved, allowing a simple bilinear model to be constructed relative to a simple round jet.

  6. An experimental investigation of the shear-layer and acoustic sources produced by a leading edge slat

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen; Richard, Patrick; Hall, Joseph; Turbulence; Flow Noise Laboratory Team

    2013-11-01

    Leading edge slats are a common addition to airfoils as part of a high lift configuration employed during take-off and landing; the unsteady flow caused by these slats is a major contributor to the overal airframe noise. As the next generation of aircraft seeks to reduce these noise concerns, a better understanding of the sources of aeroacoustic noise generation is sought. Particle Image Velocimetry (PIV) and simultaneous multipoint measurements of the unsteady surface pressure are used herein to investigate the unsteady flow around a leading edge slat coupled with an airfoil for several different configurations and a range of Reynolds numbers (Re = 156 , 000 to Re = 1 . 2 million based on the wing chord). Shear-layer development off the slat cusp and the related unsteady vortex structures are examined in detail to better establish and understand the mechanisms responsible for the generation of aeroacoustic slat noise. The authors are grateful for the support provided by GARDN.

  7. Helicopter rotor trailing edge noise

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amiet, R. K.

    1981-01-01

    An experimental and theoretical study was conducted to assess the importance of trailing edge noise as a helicopter main rotor broadband noise source. The noise mechanism was isolated by testing a rotor blade segment in an open jet acoustic wind tunnel at close to full scale Reynolds numbers. Boundary layer data and acoustic data were used to develop scaling laws and assess a first principles trailing edge noise theory. Conclusions from the isolated blade study were analytically transformed to the rotating frame coordinate system to develop a generalized rotor noise prediction. Trailing edge noise was found to contribute significantly to the total helicopter noise spectrum at high frequencies.

  8. Helicopter rotor trailing edge noise

    NASA Astrophysics Data System (ADS)

    Schlinker, R. H.; Amiet, R. K.

    1981-10-01

    An experimental and theoretical study was conducted to assess the importance of trailing edge noise as a helicopter main rotor broadband noise source. The noise mechanism was isolated by testing a rotor blade segment in an open jet acoustic wind tunnel at close to full scale Reynolds numbers. Boundary layer data and acoustic data were used to develop scaling laws and assess a first principles trailing edge noise theory. Conclusions from the isolated blade study were analytically transformed to the rotating frame coordinate system to develop a generalized rotor noise prediction. Trailing edge noise was found to contribute significantly to the total helicopter noise spectrum at high frequencies.

  9. Speech-clarity judgments of hearing-aid-processed speech in noise: differing polar patterns and acoustic environments.

    PubMed

    Amlani, Amyn M; Rakerd, Brad; Punch, Jerry L

    2006-06-01

    This investigation assessed the extent to which listeners' preferences for hearing aid microphone polar patterns vary across listening environments, and whether normal-hearing and inexperienced and experienced hearing-impaired listeners differ in such preferences. Paired-comparison judgments of speech clarity (i.e. subjective speech intelligibility) were made monaurally for recordings of speech in noise processed by a commercially available hearing aid programmed with an omnidirectional and two directional polar patterns (cardioid and hypercardioid). Testing environments included a sound-treated room, a living room, and a classroom. Polar-pattern preferences were highly reliable and agreed closely across all three groups of listeners. All groups preferred listening in the sound-treated room over listening in the living room, and preferred listening in the living room over listening in the classroom. Each group preferred the directional patterns to the omnidirectional pattern in all room conditions. We observed no differences in preference judgments between the two directional patterns or between hearing-impaired listeners' extent of amplification experience. Overall, findings indicate that listeners perceived qualitative benefits from microphones having directional polar patterns. PMID:16777778

  10. Flow Structures and Noise Produced by a Heated Rectangular Nozzle with a Third Stream and Aft Deck

    NASA Astrophysics Data System (ADS)

    Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry

    2015-11-01

    Jet noise is a huge issue that affects both civilian and military aviation and is a two-fold problem. Near-field noise causes hearing damage and is of great concern to the Navy. Far-field noise is also a concern for military and civilian aircraft. For military jets, the trend has shown that newer and more advanced planes are louder than their predecessors. Most of these planes are designed keeping the performance as the main driver in mind while the jet noise becomes an afterthought. To remedy this and to aid the design process, we propose to create a joint noise and performance prediction tool. To create this tool, one must understand how the near-field flow structures generate noise and how they are related to far-field noise. In the current work, we considered rectangular, three-stream nozzle with an aft deck and investigated the flow structures such as corner vortices, shocks and their impact on the noise generation mechanism. We have also used state-of-the-art data analytical tools such as wavelets, POD, and stochastic estimations.

  11. A state feedback electro-acoustic transducer for active control of acoustic impedance

    NASA Astrophysics Data System (ADS)

    Samejima, Toshiya

    2003-03-01

    In this paper, a new control system in which the acoustic impedance of an electro-acoustic transducer diaphragm can be actively varied by modifying design parameters is presented and its effectiveness is theoretically investigated. The proposed control system is based on a state-space description of the control system derived from an electrical equivalent circuit of an electro-acoustic transducer to which a differentiating circuit is connected, and is designed using modern control theory. The optimal quadratic regulator is used in the control system design, with its quadratic performance index formulated for producing desired acoustic impedance. Computer simulations indicate that the acoustic impedance of the diaphragm can be significantly varied over a wide frequency range that includes the range below the resonance frequency of the electro-acoustic transducer. A computer model of the proposed control system is used to illustrate its application to semi-active noise control in a duct. It is demonstrated that the proposed control system provides substantial reductions in the noise radiating from the outlet of the duct, both in the stiffness control range and in the mass control range.

  12. Voice communications in the cockpit noise environment: The role of active noise reduction

    NASA Astrophysics Data System (ADS)

    Wheeler, Peter David

    The topic of voice communications in the cockpit noise environment of modern fast-jet aircraft and helicopters is addressed, and in particular, research undertaken in support of the development of a system for reducing the noise level at the operators' ear is described by acoustic cancellation within the ear defender, known as active noise reduction (ANR). The internal noise spectra of today's high performance fast-jet aircraft and military helicopters is described, and the complex interaction of acoustic noise transmission, speech, and microphone noise pick-up, which produces the total acoustic environment at the aircrews' ears, is discussed. Means of mathematically modelling the audio channel, quantifying the components identified above, and identifying areas of shortfall in performance are derived, leading to a procedure for the development of attenuation requirements, described as the communications audit. A model of the electroacoustic characteristics of the ANR ear defender assembly is presented and the sound field distribution within the ear defender/ear cavity, and its effect upon cancellation performance, is discussed. The extensive laboratory and flight testing of the ANR system that was undertaken is reviewed, paying particular attention to the measurement and analysis techniques employed in such testing. Finally, the performance characteristics of ANR are discussed and compared with the requirements previously established. Design limitations placed upon the system by the constraints of its area of application are described, and the scope for future improvements is considered.

  13. Contribution to the study of acoustic communication in two Belgian river bullheads (Cottus rhenanus and C. perifretum) with further insight into the sound-producing mechanism

    PubMed Central

    2013-01-01

    Background The freshwater sculpins (genus Cottus) are small, bottom-living fishes widely distributed in North America and Europe. The taxonomy of European species has remained unresolved for a long time due to the overlap of morphological characters. Sound production has already been documented in some cottid representatives, with sounds being involved in courtship and agonistic interactions. Although the movements associated with sound production have been observed, the underlying mechanism remains incomplete. Here, we focus on two closely related species from Belgium: C. rhenanus and C. perifretum. This study aims 1) to record and to compare acoustic communication in both species, 2) to give further insight into the sound-producing mechanism and 3) to look for new morphological traits allowing species differentiation. Results Both Cottus species produce multiple-pulsed agonistic sounds using a similar acoustic pattern: the first interpulse duration is always longer, making the first pulse unit distinct from the others. Recording sound production and hearing abilities showed a clear relationship between the sound spectra and auditory thresholds in both species: the peak frequencies of calls are around 150 Hz, which corresponds to their best hearing sensitivity. However, it appears that these fishes could not hear acoustic signals produced by conspecifics in their noisy habitat considering their hearing threshold expressed as sound pressure (~ 125 dB re 1 μPa). High-speed video recordings highlighted that each sound is produced during a complete back and forth movement of the pectoral girdle. Conclusions Both Cottus species use an acoustic pattern that remained conserved during species diversification. Surprisingly, calls do not seem to have a communicative function. On the other hand, fish could detect substrate vibrations resulting from movements carried out during sound production. Similarities in temporal and spectral characteristics also suggest that both

  14. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    A two-year study of noise production in a long tubular burner is described. The research was motivated by an interest in understanding and eventually reducing core noise in gas turbine engines. The general approach is to employ an acoustic source/propagation model to interpret the sound pressure spectrum in the acoustic far field of the burner in terms of the source spectrum that must have produced it. In the model the sources are assumed to be due uniquely to the unsteady component of combustion heat release; thus only direct combustion-noise is considered. The source spectrum is then the variation with frequency of the thermal-acoustic efficiency, defined as the fraction of combustion heat release which is converted into acoustic energy at a given frequency. The thrust of the research was to study the variation of the source spectrum with the design and operating parameters of the burner.

  15. Speech and melody recognition in binaurally combined acoustic and electric hearing

    NASA Astrophysics Data System (ADS)

    Kong, Ying-Yee; Stickney, Ginger S.; Zeng, Fan-Gang

    2005-03-01

    Speech recognition in noise and music perception is especially challenging for current cochlear implant users. The present study utilizes the residual acoustic hearing in the nonimplanted ear in five cochlear implant users to elucidate the role of temporal fine structure at low frequencies in auditory perception and to test the hypothesis that combined acoustic and electric hearing produces better performance than either mode alone. The first experiment measured speech recognition in the presence of competing noise. It was found that, although the residual low-frequency (<1000 Hz) acoustic hearing produced essentially no recognition for speech recognition in noise, it significantly enhanced performance when combined with the electric hearing. The second experiment measured melody recognition in the same group of subjects and found that, contrary to the speech recognition result, the low-frequency acoustic hearing produced significantly better performance than the electric hearing. It is hypothesized that listeners with combined acoustic and electric hearing might use the correlation between the salient pitch in low-frequency acoustic hearing and the weak pitch in the envelope to enhance segregation between signal and noise. The present study suggests the importance and urgency of accurately encoding the fine-structure cue in cochlear implants. .

  16. An Experimental Investigation of Trailing Edge Acoustics

    NASA Astrophysics Data System (ADS)

    Shannon, Daniel W.

    2005-11-01

    Measurements of the convected vorticity field in the near wake of a blunt asymmetric trailing edge has lead to the hypothesis that large scale turbulence related to a vortex shedding modulates the broadband sound produced by smaller scale turbulent motions. This paper will focus on efforts to support this hypothesis through the simultaneous measurement of the unsteady pressure on the model surface and the far field acoustic pressure. The acoustic data were acquired in an anechoic wind tunnel utilizing a pair of phased microphone arrays containing 40 condenser microphones each. Correlations between the surface pressure and the acoustic pressure suggest that the tonal noise is more closely related to the unsteady surface pressure on the attached pressure side of the model and that the broadband noise is correlated with the surface pressures over the separated suction side of the trailing edge. An analysis of the broadband noise as a function of the phase of the vortex shedding process suggests that the both the surface pressure and the acoustic pressure are modulated by the vortex shedding motions.

  17. Acoustic Performance of Drive Rig Mufflers for Model Scale Engine Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David, B.

    2013-01-01

    Aircraft engine component testing at the NASA Glenn Research Center (GRC) includes acoustic testing of scale model fans and propellers in the 9- by15-Foot Low Speed Wind Tunnel (LSWT). This testing utilizes air driven turbines to deliver power to the article being studied. These air turbines exhaust directly downstream of the model in the wind tunnel test section and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the engine model being tested. This report describes an acoustic test of a muffler designed to mitigate the extraneous turbine noise. The muffler was found to provide acoustic attenuation of at least 8 dB between 700 Hz and 20 kHz which significantly improves the quality of acoustic measurements in the facility.

  18. Application of the mechanical perturbation produced by traffic as a new approach of nonlinear acoustic technique for detecting microcracks in the concrete: A laboratory simulation

    NASA Astrophysics Data System (ADS)

    Moradi-Marani, F.; Kodjo, S. A.; Rivard, P.; Lamarche, C. P.

    2012-05-01

    Very few nonlinear acoustics techniques are currently applied on real structures because their large scale implementation is difficult. Recently, a new method based on nonlinear acoustics has been proposed at the Université de Sherbrooke for the characterization of the damage associated with Alkali-Silica Reaction (ASR). This method consists in quantifying the influence of an external mechanical disturbance on the propagation of a continual ultrasonic wave that probes the material. In this method, the mechanical perturbation produced by an impact causes sudden opening of microcracks and, consequently, the velocity of the probe ultrasonic wave is suddenly reduced. Then it slowly and gradually returns to its initial level as the microcracks are closing. The objective of this study is: using waves generated by traffics in infrastructures in order to monitor microdefects due to damage mechanisms like ASR. This type of mechanical disturbance (by traffic loadings) is used as a source of low frequency-high amplitude waves for opening/closing of the microdefects in the bulk of concrete. This paper presents a laboratory set-up made of three large deep concrete slabs used to study the nonlinear behavior of concrete using the disturbance caused by simulated traffic. The traffic is simulated with a controlled high accuracy jack to produce a wave similar to that produced by traffic. Results obtained from this study will be used in the future to design an in-situ protocol for assessing ASR-affected structures.

  19. Acoustics measurements in normal jet impingement

    NASA Technical Reports Server (NTRS)

    Kleis, S. J.

    1977-01-01

    The dependence of far field acoustic measurements for a uniform jet on nozzle to plate spacing for small dimensionless spacings (h/d - 0.75 to 3.0) was investigated. Spectra from a real time analyzer were read and processed by an HP 2116 minicomputer in on-line mode. Similar data was generated for a fully developed pipe flow exit condition jet to compare with other investigations. The data base for normal jet impingement was extended to smaller values of nozzle to plate spacing. The effects of slight noise heating (30 deg rise) of the jet on the far field noise produced by the impinging jet are demonstrated.

  20. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  1. High signal-to-noise ratio acoustic sensor using phase-shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices

  2. "Ladder" structure in tonal noise generated by laminar flow around an airfoil.

    PubMed

    Chong, Tze Pei; Joseph, Phillip

    2012-06-01

    The presence of a "ladder" structure in the airfoil tonal noise was discovered in the 1970s, but its mechanism hitherto remains a subject of continual investigation in the research community. Based on the measured noise results and some numerical analysis presented in this letter, the variations of four types of airfoil tonal noise frequencies with the flow velocity were analyzed individually. The ladder structure is proposed to be caused by the acoustic/hydrodynamic frequency lag between the scattering of the boundary layer instability noise and the discrete noise produced by an aeroacoustic feedback loop. PMID:22713022

  3. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  4. Acoustic data transmission through a drill string

    DOEpatents

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  5. The battle against noise in industry

    NASA Astrophysics Data System (ADS)

    Iudin, E. Ia.

    The physiological effects of noise in manufacturing plants and other industrial facilities are discussed, and several common noise abatement methods are described. Consideration is given to the acoustic properties of three types of noise which are present in industrial plants: aerohydrodynamic noise; mechanical noise; and electromagnetic noise. Among the specific noise abatement techniques discussed are: sound isolation by means of noise-absorbant screens; insulation or noise-emitting media; and acoustic interference. The use of earplugs and external ear protectors for protection of individual workers in noisy work environments is also considered.

  6. Broadband noise emissions produced by pulsed 1-MHz ultrasound exposures in the presence or absence of Optison, and their relationship to the hemolytic bioeffect

    NASA Astrophysics Data System (ADS)

    Brayman, Andrew A.; Chen, Wen S.; Matula, Thomas J.; Crum, Lawrence A.

    2002-05-01

    Gas-based contrast agents are known to increase ultrasound-induced bioeffects, presumably via an inertial cavitation (IC) mechanism. The relationship between IC ``dose'' (ICD) (cumulated rms broadband noise amplitude in the frequency domain) and 1.1-MHz ultrasound-induced hemolysis in whole human blood was explored with additions of Optison or degassed saline; the hypothesis was that hemolysis would correlate with ICD. Four experimental series were conducted, with variable: (1) peak negative acoustic pressure [P-] (2) Optison concentration; (3) pulse duration; and (4) total exposure duration and variable Optison concentration. The P- thresholds for hemolysis and ICD above noise levels were ~0.5 MPa. Enhancement of ICD and hemolysis was detected even at the lowest Optison concentration tested (0.1%) at P-=3 MPa. At 2 MPa P-(0.3% Optison), significant hemolysis and ICD were detected with pulse durations as brief as 2 and 4 cycles, respectively. At 3 MPa P-, hemolysis and ICD evolved as functions of time and Optison concentration; ultimate levels of hemolysis and ICD depended strongly on initial Optison concentration, but initial rates of change did not. Within experimental series, hemolysis was significantly correlated with ICD; across series, the correlation was significant at p less than 0.001.

  7. Effect of the temporal pattern of a given noise dose on TTS in guinea pigs.

    PubMed

    Buck, K; Dancer, A; Franke, R

    1984-10-01

    To show the effect of the temporal pattern of acoustic stimulation on TTS 15 min, guinea pigs were subjected to isoenergetic noises with the same spectrum. The exposures in a first experimental series were continuous noises and noise bursts. The continuous noise was presented with different durations and levels but always with the same energy. The noise burst stimulation consisted of a constant number of bursts with different interstimulus intervals. Both duration and repetition rate were shown to affect the TTS 15 min measured for these isoenergetic stimuli. A duration of 225 to 1800 s and a repetition rate of one per second produced the greatest TTS 15 min. In a second experimental series continuous noise and acoustic impulses with the same spectrum and 100-Hz repetition rate were presented at different levels. In this case the waveform of the stimulus (phase spectrum) was shown to have an effect on TTS 15 min. PMID:6501705

  8. Anisotropic grain noise in eddy current inspection of noncubic polycrystalline metals

    NASA Astrophysics Data System (ADS)

    Blodgett, Mark; Nagy, Peter B.

    1998-03-01

    This letter discusses the role electrical anisotropy plays in the structural integrity assessment of polycrystalline titanium alloys from the standpoint of fatigue crack detection and the related issue of microstructural noise. In eddy current inspection of noncubic crystallographic classes of polycrystalline metals the electric anisotropy of individual grains produces an inherent microstructural variation or noise that is very similar to the well-known acoustic noise produced by the elastic anisotropy of both cubic and noncubic materials in ultrasonic characterization. The presented results demonstrate that although the electrical grain noise is clearly detrimental in eddy current nondestructive testing for small flaws, it can be also exploited for characterization of the microstructure in noncubic polycrystalline materials such as titanium alloys in the same way acoustic grain noise is used for ultrasonic characterization of the microstructure in different materials.

  9. Data Quality Assurance for Supersonic Jet Noise Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.

    2010-01-01

    The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.

  10. Large eddy simulation of trailing edge noise

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Nitzkorski, Zane; Mahesh, Krishnan

    2015-11-01

    Noise generation is an important engineering constraint to many marine vehicles. A significant portion of the noise comes from propellers and rotors, specifically due to flow interactions at the trailing edge. Large eddy simulation is used to investigate the noise produced by a turbulent 45 degree beveled trailing edge and a NACA 0012 airfoil. A porous surface Ffowcs-Williams and Hawkings acoustic analogy is combined with a dynamic endcapping method to compute the sound. This methodology allows for the impact of incident flow noise versus the total noise to be assessed. LES results for the 45 degree beveled trailing edge are compared to experiment at M = 0 . 1 and Rec = 1 . 9 e 6 . The effect of boundary layer thickness on sound production is investigated by computing using both the experimental boundary layer thickness and a thinner boundary layer. Direct numerical simulation results of the NACA 0012 are compared to available data at M = 0 . 4 and Rec = 5 . 0 e 4 for both the hydrodynamic field and the acoustic field. Sound intensities and directivities are investigated and compared. Finally, some of the physical mechanisms of far-field noise generation, common to the two configurations, are discussed. Supported by Office of Naval research.

  11. Acoustic panels using magnetostrictive Metglas

    NASA Astrophysics Data System (ADS)

    Gerver, Michael J.; Goldie, James H.; Makseyn, Scott; Oleksy, John; Doherty, John J.; Remington, Paul

    1999-06-01

    Passive barriers to transmission of sound waves at frequencies below 500 Hz require large masses. Active noise cancellation systems, on the other hand, are complicated and expensive. We are developing a method for noise control, using an array of panels of magnetostrictive Metglas, which combines the low mass and flexibility of active noise control with the relatively low cost and simplicity of passive noise control. The method is based on the well known fact that an acoustic panel with a reaction mass, resonant at the frequency of the sound wave, will completely reflect that wave, simulating an infinite mass. By wrapping a coil around each Metglas panel, and terminating the coil in an impedance, the stiffness of the Metglas, and hence the resonant frequency of the panel, can be controlled by varying the terminal impedance. By choosing a terminal impedance which is itself frequency dependent, the panel can be made to resonate, and hence to have effective infinite mass, at all frequencies (over some fairly large range) simultaneously. This generally requires negative impedance, which can be produced by a simple circuit with an amplifier and feedback loop. In effect, the Metglas acts like both microphone and speaker in an active noise control system. Preliminary experimental results will be presented.

  12. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  13. Aviation noise effects

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Beattie, K. R.

    1985-03-01

    This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.

  14. The Source of Propeller Noise

    NASA Technical Reports Server (NTRS)

    Ernsthausen, W

    1937-01-01

    A two blade propeller of 40 cm diameter and zero pitch was explored for its noise development; it could be whirled up to 17,000 rpm - i.e., a tip speed of 355 meters/second. To obtain the power loss N(sub m) of the propeller for comparison with the produced acoustical power N(sub A) the engine performance characteristics were measured with and without propeller. The result is the sought-for relation c, that is, curve c' after correction with the engine efficiency.

  15. Identification of the noise using mathematical modelling

    NASA Astrophysics Data System (ADS)

    Dobeš, Josef; Kozubková, Milada; Mahdal, Miroslav

    2016-03-01

    In engineering applications the noisiness of a component or the whole device is a common problem. Currently, a lot of effort is put to eliminate noise of the already produced devices, to prevent generation of acoustic waves during the design of new components, or to specify the operating problems based on noisiness change. The experimental method and the mathematical modelling method belong to these identification methods. With the power of today's computers the ability to identify the sources of the noise on the mathematical modelling level is a very appreciated tool for engineers. For example, the noise itself may be generated by the vibration of the solid object, combustion, shock, fluid flow around an object or cavitation at the fluid flow in an object. For the given task generating the noise using fluid flow on the selected geometry and propagation of the acoustic waves and their subsequent identification are solved and evaluated. In this paper the principle of measurement of variables describing the fluid flow field and acoustic field are described. For the solution of fluid flow a mathematical model implemented into the CFD code is used. The mathematical modelling evaluation of the flow field is compared to the experimental data.

  16. Clamoring for quiet: new ways to mitigate noise.

    PubMed

    Manuel, John

    2005-01-01

    New technologies are providing innovative ways to reduce sound levels in many areas. Aircraft engineers are finding ways to reduce the noise produced by jet engines, while road builders are using rubber-enhanced pavement to quiet highway noise. Indoor acoustics are benefiting from materials that transform sound waves to heat, and so-called active noise control reduces harmful sounds through production of a mirror-image sound field. And new lawn equipment makes weekends at home quieter for yard lovers and their neighbors. PMID:15631960

  17. The effective acoustic environment of helicopter crewmen

    NASA Technical Reports Server (NTRS)

    Camp, R. T., Jr.; Mozo, B. T.

    1978-01-01

    Methods of measuring the composite acoustic environment of helicopters in order to quantify the effective acoustic environment of the crewmen and to assess the real acoustic hazards of the personnel are examined. It is indicated that the attenuation characteristics of the helmets and hearing protectors and the variables of the physiology of the human ear be accounted for in determining the effective acoustic environment of Army helicopter crewmen as well as the acoustic hazards of voice communications systems noise.

  18. The Effects of Surfaces on the Aerodynamics and Acoustics of Jet Flows

    NASA Technical Reports Server (NTRS)

    Smith, Matthew J.; Miller, Steven A. E.

    2013-01-01

    Aircraft noise mitigation is an ongoing challenge for the aeronautics research community. In response to this challenge, low-noise aircraft concepts have been developed that exhibit situations where the jet exhaust interacts with an airframe surface. Jet flows interacting with nearby surfaces manifest a complex behavior in which acoustic and aerodynamic characteristics are altered. In this paper, the variation of the aerodynamics, acoustic source, and far-field acoustic intensity are examined as a large at plate is positioned relative to the nozzle exit. Steady Reynolds-Averaged Navier-Stokes solutions are examined to study the aerodynamic changes in the field-variables and turbulence statistics. The mixing noise model of Tam and Auriault is used to predict the noise produced by the jet. To validate both the aerodynamic and the noise prediction models, results are compared with Particle Image Velocimetry (PIV) and free-field acoustic data respectively. The variation of the aerodynamic quantities and noise source are examined by comparing predictions from various jet and at plate configurations with an isolated jet. To quantify the propulsion airframe aeroacoustic installation effects on the aerodynamic noise source, a non-dimensional number is formed that contains the flow-conditions and airframe installation parameters.

  19. Critical Propulsion and Noise reduction Technologies for Future Commercial Subsonic Engines. Area of Interest 14.3: Separate Flow Exhaust System Noise

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Brausch, J. F.; Gliebe, P. R.; Coffin, R. S.; Martens, S.; Delaney, B. R.; Dalton, W. N.; Mengle, V. G.

    2000-01-01

    This presentation discusses: Project Objectives, Approach and Goal; Baseline Nozzles and Test Cycle Definition; Repeatability and Baseline Nozzle Results; Noise Reduction Concepts; Noise Reduction Tests Configurations of BPR=5 Internal Plug Nozzle adn Acoustic Results; Noise Reduction Test Configurations of BPR=5 External Plug Nozzle and Acoustic Results; and Noise Reduction Tests Configurations of BPR=8 External Plug Nozzle and Acoustic Results.

  20. The Traffic Noise Index: A Method of Controlling Noise Nuisance.

    ERIC Educational Resources Information Center

    Langdon, F. J.; Scholes, W. E.

    This building research survey is an analysis of the social nuisance caused by urban motor ways and their noise. The Traffic Noise Index is used to indicate traffic noises and their effects on architectural designs and planning, while suggesting the need for more and better window insulation and acoustical barriers. Overall concern is for--(1)…