Science.gov

Sample records for acoustic noise produced

  1. Structural and acoustic noise produced by turbulent flow over an elastic trailing edge

    NASA Astrophysics Data System (ADS)

    Howe, M. S.

    1993-09-01

    An analysis is made of the sound and vibration produced by turbulent flow at low Mach number over the trailing edge of an elastic plate. General formulas are developed for the structural and acoustic edge-noise when the control surface is modeled by a semiinfinite thin elastic plate which can support bending waves. Numerical results are given for steel plates in air and in water. In the latter case it is shown that, when the frequency is smaller than the coincidence frequency, the bending wave power exceeds the total sound power generated at the edge by 20-40 dB, independently of the mean flow velocity, so that sound generated by secondary scattering may then be the dominant source of acoustic radiation.

  2. A note on the acoustic-phonetic characteristics of non-native English vowels produced in noise

    NASA Astrophysics Data System (ADS)

    Li, Chi-Nin; Munro, Murray J.

    2003-10-01

    The Lombard reflex occurs when people unconsciously raise their vocal levels in the presence of loud background noise. Previous work has established that utterances produced in noisy environments exhibit increases in vowel duration and fundamental frequency (F0), and a shift in formant center frequencies for F1 and F2. Most studies of the Lombard reflex have been conducted with native speakers; research with second-language speakers is much less common. The present study examined the effects of the Lombard reflex on foreign-accented English vowel productions. Seven female Cantonese speakers and a comparison group of English speakers were recorded producing three vowels (/i u a/) in /bVt/ context in quiet and in 70 dB of masking noise. Vowel durations, F0, and the first two formants for each of the three vowels were measured. Analyses revealed that vowel durations and F0 were greater in the vowels produced in noise than those produced in quiet in most cases. First formants, but not F2, were consistently higher in Lombard speech than in normal speech. The findings suggest that non-native English speakers exhibit acoustic-phonetic patterns similar to those of native speakers when producing English vowels in noisy conditions.

  3. Jet mixer noise suppressor using acoustic feedback

    NASA Technical Reports Server (NTRS)

    Rice, Edward J. (Inventor)

    1995-01-01

    The present invention generally relates to providing an improved jet mixer noise suppressor for high speed jets that rapidly mixes high speed air flow with a lower speed air flow, and more particularly, relates to an improved jet mixer noise suppressor that uses feedback of acoustic waves produced by the interaction of shear flow instability waves with an obstacle downstream of the jet nozzle.

  4. Jet mixer noise suppressor using acoustic feedback

    NASA Technical Reports Server (NTRS)

    Rice, Edward J. (Inventor)

    1994-01-01

    The present invention generally relates to providing an improved jet mixer noise suppressor for high speed jets that rapidly mixes high speed air flow with a lower speed air flow, and more particularly, relates to an improved jet mixer noise suppressor that uses feedback of acoustic waves produced by the interaction of sheer flow instability waves with an obstacle downstream of the jet nozzle.

  5. Quenching of acoustic bandgaps by flow noise

    NASA Astrophysics Data System (ADS)

    Elnady, T.; Elsabbagh, A.; Akl, W.; Mohamady, O.; Garcia-Chocano, V. M.; Torrent, D.; Cervera, F.; Sánchez-Dehesa, J.

    2009-03-01

    We report an experimental study of acoustic effects produced by wind impinging on noise barriers based on two-dimensional sonic crystals with square symmetry. We found that the attenuation strength of sonic-crystal bandgaps decreases for increasing values of flow speed. A quenching of the acoustic bandgap appears at a certain speed value that depends of the barrier filling ratio. For increasing values of flow speed, the data indicate that the barrier becomes a sound source because of its interaction with the wind. We conclude that flow noise should be taken into account in designing acoustic barriers based on sonic crystals.

  6. Cabin acoustical noise

    NASA Astrophysics Data System (ADS)

    Homick, J. L.

    1981-12-01

    Using a hand-held sound pressure level meter the crew made one octave band and A-weight sound level measurements at four locations in the Orbiter on Mission Day 1. The data were voice recorded and transmitted to the ground prior to the first inflight sleep period. The data obtained are summarized. From a physiological point of view the noise levels measured on STS-1 were not hazardous to the crewmens' hearing.

  7. Ambient noise analysis of underwater acoustic data

    NASA Astrophysics Data System (ADS)

    Snyder, Mark A.; Orlin, Pete; Schulte, Annette; Newcomb, Joal

    2003-04-01

    The Littoral Acoustic Demonstration Center (LADC) deployed three Environmental Acoustic Recording System (EARS) buoys in the northern Gulf of Mexico during the summers of 2001 and 2002. The buoys recorded frequencies up to 5859 Hz continuously for 36 days in 2001 and for 72 days in 2002. The acoustic signals recorded include sperm whale vocalizations, seismic airguns, and shipping traffic. The variability of the ambient noise is analyzed using spectrograms, time series, and statistical measurements. Variations in ambient noise before, during, and after tropical storm/hurricane passage are also investigated.

  8. Acoustic Communication in Fishes and Potential Effects of Noise.

    PubMed

    Mann, David A

    2016-01-01

    Many soniferous fishes such as cods and groupers are commercially important. Sounds are produced during courtship and spawning, and there is the potential for aquatic noise to interfere with critical behaviors and affect populations. There are few data on the response of wild populations of sound-producing fishes to acoustic noise. New motion and sound exposure fish tags could be used to assess the behavioral responses of large numbers of fish to noise exposure. Many factors, such as fishing mortality and environmental variability in prey supply, could also affect populations and potentially interact with the behavioral responses to noise.

  9. Acoustic Communication in Fishes and Potential Effects of Noise.

    PubMed

    Mann, David A

    2016-01-01

    Many soniferous fishes such as cods and groupers are commercially important. Sounds are produced during courtship and spawning, and there is the potential for aquatic noise to interfere with critical behaviors and affect populations. There are few data on the response of wild populations of sound-producing fishes to acoustic noise. New motion and sound exposure fish tags could be used to assess the behavioral responses of large numbers of fish to noise exposure. Many factors, such as fishing mortality and environmental variability in prey supply, could also affect populations and potentially interact with the behavioral responses to noise. PMID:26611018

  10. Cardiorespiratory Responses to Acoustic Noise in Belugas.

    PubMed

    Lyamin, Oleg I; Korneva, Svetlana M; Rozhnov, Viatcheslav V; Mukhametov, Lev M

    2016-01-01

    To date, most research on the adverse effects of anthropogenic noise on marine mammals has focused on auditory and behavioral responses. Other responses have received little attention and are often ignored. In this study, the effect of acoustic noise on heart rate was examined in captive belugas. The data suggest that (1) heart rate can be used as a measure of physiological response (including stress) to noise in belugas and other cetaceans, (2) cardiac response is influenced by parameters of noise and adaptation to repeated exposure, and (3) cetacean calves are more vulnerable to the adverse effect of noise than adults. PMID:26611017

  11. Acoustics of Jet Surface Interaction - Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity to the structure or embedded in the airframe. While such integrated systems are intended to shield noise from the community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Green's function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Green's function decreases with increasing source frequency and/or jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Green's function in the absence of the surface, and flight effects are also investigated

  12. Noise maps for acoustically sensitive navigation

    NASA Astrophysics Data System (ADS)

    Martinson, Eric; Arkin, Ronald C.

    2004-12-01

    More and more robotic applications are equipping robots with microphones to improve the sensory information available to them. However, in most applications the auditory task is very low-level, only processing data and providing auditory event information to higher-level navigation routines. If the robot, and therefore the microphone, ends up in a bad acoustic location, then the results from that sensor will remain noisy and potentially useless for accomplishing the required task. To solve this problem, there are at least two possible solutions. The first is to provide bigger and more complex filters, which is the traditional signal processing approach. An alternative solution is to move the robot in concert with providing better audition. In this work, the second approach is followed by introducing noise maps as a tool for acoustically sensitive navigation. A noise map is a guide to noise in the environment, pinpointing locations which would most likely interfere with auditory sensing. A traditional noise map, in an acoustic sense, is a graphical display of the average sound pressure level at any given location. An area with high sound pressure level corresponds to high ambient noise that could interfere with an auditory application. Such maps can be either created by hand, or by allowing the robot to first explore the environment. Converted into a potential field, a noise map then becomes a useful tool for reducing the interference from ambient noise. Preliminary results with a real robot on the creation and use of noise maps are presented.

  13. The use of active noise control (ANC) to reduce acoustic noise generated during MRI scanning: some initial results.

    PubMed

    McJury, M; Stewart, R W; Crawford, D; Toma, E

    1997-01-01

    MRI scanning generates high levels of acoustic noise that cannot only pose a safety hazard, but also impair communication between staff and patient. In this article we present active noise control (ANC) techniques that introduce antiphase noise to destructively interfere with the MRI noise and with the aim of producing a zone of quiet around the patient's ears. Using noise recorded from a 1.0 Tesla midfield MR scanner the acoustic noise generated by three standard MR imaging sequences was replayed to a real time two channel ANC system. The results obtained show a useful attenuation of low-frequency periodic acoustic noise components. Therefore, in combination with standard passive ear protection, this suggests that MR generated acoustic noise can be effectively attenuated at both low and high frequencies leading to improved patient comfort.

  14. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  15. Acoustic noise during functional magnetic resonance imaging.

    PubMed

    Ravicz, M E; Melcher, J R; Kiang, N Y

    2000-10-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  16. Perceptual learning of acoustic noise generates memory-evoked potentials.

    PubMed

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-01

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.

  17. Shaping and timing gradient pulses to reduce MRI acoustic noise.

    PubMed

    Segbers, Marcel; Rizzo Sierra, Carlos V; Duifhuis, Hendrikus; Hoogduin, Johannes M

    2010-08-01

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an acoustic gradient coil response mainly during the rising and falling edge. In the falling edge, the coil acoustic response presents a 180 degrees phase difference compared to the rising edge. Therefore, by varying the width of the trapezoid and keeping the ramps constant, it is possible to suppress one selected frequency and its higher harmonics. This value is matched to one of the prominent resonance frequencies of the gradient coil system. The idea of cancelling a single frequency is extended to a second frequency, using two successive trapezoid-shaped pulses presented at a selected interval. Overall sound pressure level reduction of 6 and 10 dB is found for the two trapezoid shapes and a single pulse shape, respectively. The acoustically optimized pulse shape proposed is additionally tested in a simulated echo planar imaging readout train, obtaining a sound pressure level reduction of 12 dB for the best case.

  18. Airframe Noise Prediction by Acoustic Analogy: Revisited

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Casper, Jay H.; Tinetti, A.; Dunn, M. H.

    2006-01-01

    The present work follows a recent survey of airframe noise prediction methodologies. In that survey, Lighthill s acoustic analogy was identified as the most prominent analytical basis for current approaches to airframe noise research. Within this approach, a problem is typically modeled with the Ffowcs Williams and Hawkings (FW-H) equation, for which a geometry-independent solution is obtained by means of the use of the free-space Green function (FSGF). Nonetheless, the aeroacoustic literature would suggest some interest in the use of tailored or exact Green s function (EGF) for aerodynamic noise problems involving solid boundaries, in particular, for trailing edge (TE) noise. A study of possible applications of EGF for prediction of broadband noise from turbulent flow over an airfoil surface and the TE is, therefore, the primary topic of the present work. Typically, the applications of EGF in the literature have been limited to TE noise prediction at low Mach numbers assuming that the normal derivative of the pressure vanishes on the airfoil surface. To extend the application of EGF to higher Mach numbers, the uniqueness of the solution of the wave equation when either the Dirichlet or the Neumann boundary condition (BC) is specified on a deformable surface in motion. The solution of Lighthill s equation with either the Dirichlet or the Neumann BC is given for such a surface using EGFs. These solutions involve both surface and volume integrals just like the solution of FW-H equation using FSGF. Insight drawn from this analysis is evoked to discuss the potential application of EGF to broadband noise prediction. It appears that the use of a EGF offers distinct advantages for predicting TE noise of an airfoil when the normal pressure gradient vanishes on the airfoil surface. It is argued that such an approach may also apply to an airfoil in motion. However, for the prediction of broadband noise not directly associated with a trailing edge, the use of EGF does not

  19. Modeling and adaptive control of acoustic noise

    NASA Astrophysics Data System (ADS)

    Venugopal, Ravinder

    Active noise control is a problem that receives significant attention in many areas including aerospace and manufacturing. The advent of inexpensive high performance processors has made it possible to implement real-time control algorithms to effect active noise control. Both fixed-gain and adaptive methods may be used to design controllers for this problem. For fixed-gain methods, it is necessary to obtain a mathematical model of the system to design controllers. In addition, models help us gain phenomenological insights into the dynamics of the system. Models are also necessary to perform numerical simulations. However, models are often inadequate for the purpose of controller design because they involve parameters that are difficult to determine and also because there are always unmodeled effects. This fact motivates the use of adaptive algorithms for control since adaptive methods usually require significantly less model information than fixed-gain methods. The first part of this dissertation deals with derivation of a state space model of a one-dimensional acoustic duct. Two types of actuation, namely, a side-mounted speaker (interior control) and an end-mounted speaker (boundary control) are considered. The techniques used to derive the model of the acoustic duct are extended to the problem of fluid surface wave control. A state space model of small amplitude surfaces waves of a fluid in a rectangular container is derived and two types of control methods, namely, surface pressure control and map actuator based control are proposed and analyzed. The second part of this dissertation deals with the development of an adaptive disturbance rejection algorithm that is applied to the problem of active noise control. ARMARKOV models which have the same structure as predictor models are used for system representation. The algorithm requires knowledge of only one path of the system, from control to performance, and does not require a measurement of the disturbance nor

  20. Prediction of Acoustic Noise in Switched Reluctance Motor Drives

    SciTech Connect

    Lin, CJ; Fahimi, B

    2014-03-01

    Prediction of acoustic noise distribution generated by electric machines has become an integral part of design and control in noise sensitive applications. This paper presents a fast and precise acoustic noise imaging technique for switched reluctance machines (SRMs). This method is based on distribution of radial vibration in the stator frame of the SRM. Radial vibration of the stator frame, at a network of probing points, is computed using input phase current and phase voltage waveforms. Sequentially, the acceleration of the probing network will be expanded to predict full acceleration on the stator frame surface, using which acoustic noise emission caused by the stator can be calculated using the boundary element method.

  1. Identifying Potential Noise Sources within Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Holcomb, Victoria; Lewalle, Jacques

    2013-11-01

    We test a new algorithm for its ability to detect sources of noise within random background. The goal of these tests is to better understand how to identify sources within acoustic signals while simultaneously determining the strengths and weaknesses of the algorithm in question. Unlike previously published algorithms, the antenna method does not pinpoint events by looking for the most energetic portions of a signal. The algorithm searches for the ideal lag combinations between three signals by taking excerpts of possible events. The excerpt with the lowest calculated minimum distance between possible events is how the algorithm identifies sources. At the minimum distance, the events are close in time and frequency. This method can be compared to the cross correlation and denoising methods to better understand its effectiveness. This work is supported in part by Spectral Energies LLC, under an SBIR grant from AFRL, as well as the Syracuse University MAE department.

  2. Characterizing Response to Elemental Unit of Acoustic Imaging Noise: An fMRI Study

    PubMed Central

    Luh, Wen-Ming; Talavage, Thomas M.

    2010-01-01

    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation. PMID:19304477

  3. Separating underwater ambient noise from flow noise recorded on stereo acoustic tags attached to marine mammals.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Samarra, Filipa I P; Beerens, S Peter; Miller, Patrick J O

    2016-08-01

    Sound-recording acoustic tags attached to marine animals are commonly used in behavioural studies. Measuring ambient noise is of interest to efforts to understand responses of marine mammals to anthropogenic underwater sound, or to assess their communication space. Noise of water flowing around the tag reflects the speed of the animal, but hinders ambient noise measurement. Here, we describe a correlation-based method for stereo acoustic tags to separate the relative contributions of flow and ambient noise. The uncorrelated part of the noise measured in digital acoustic recording tag (DTAG) recordings related well to swim speed of a humpback whale (Megaptera novaeangliae), thus providing a robust measure of flow noise over a wide frequency bandwidth. By removing measurements affected by flow noise, consistent ambient noise estimates were made for two killer whales (Orcinus orca) with DTAGs attached simultaneously. The method is applicable to any multi-channel acoustic tag, enabling application to a wide range of marine species. PMID:27229472

  4. Separating underwater ambient noise from flow noise recorded on stereo acoustic tags attached to marine mammals.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Samarra, Filipa I P; Beerens, S Peter; Miller, Patrick J O

    2016-08-01

    Sound-recording acoustic tags attached to marine animals are commonly used in behavioural studies. Measuring ambient noise is of interest to efforts to understand responses of marine mammals to anthropogenic underwater sound, or to assess their communication space. Noise of water flowing around the tag reflects the speed of the animal, but hinders ambient noise measurement. Here, we describe a correlation-based method for stereo acoustic tags to separate the relative contributions of flow and ambient noise. The uncorrelated part of the noise measured in digital acoustic recording tag (DTAG) recordings related well to swim speed of a humpback whale (Megaptera novaeangliae), thus providing a robust measure of flow noise over a wide frequency bandwidth. By removing measurements affected by flow noise, consistent ambient noise estimates were made for two killer whales (Orcinus orca) with DTAGs attached simultaneously. The method is applicable to any multi-channel acoustic tag, enabling application to a wide range of marine species.

  5. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  6. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  7. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  8. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  9. Objective approach for analysis of noise source characteristics and acoustic conditions in noisy computerized embroidery workrooms.

    PubMed

    Aliabadi, Mohsen; Golmohammadi, Rostam; Mansoorizadeh, Muharram

    2014-03-01

    It is highly important to analyze the acoustic properties of workrooms in order to identify best noise control measures from the standpoint of noise exposure limits. Due to the fact that sound pressure is dependent upon environments, it cannot be a suitable parameter for determining the share of workroom acoustic characteristics in producing noise pollution. This paper aims to empirically analyze noise source characteristics and acoustic properties of noisy embroidery workrooms based on special parameters. In this regard, reverberation time as the special room acoustic parameter in 30 workrooms was measured based on ISO 3382-2. Sound power quantity of embroidery machines was also determined based on ISO 9614-3. Multiple linear regression was employed for predicting reverberation time based on acoustic features of the workrooms using MATLAB software. The results showed that the measured reverberation times in most of the workrooms were approximately within the ranges recommended by ISO 11690-1. Similarity between reverberation time values calculated by the Sabine formula and measured values was relatively poor (R (2) = 0.39). This can be due to the inaccurate estimation of the acoustic influence of furniture and formula preconditions. Therefore, this value cannot be considered representative of an actual acoustic room. However, the prediction performance of the regression method with root mean square error (RMSE) = 0.23 s and R (2) = 0.69 is relatively acceptable. Because the sound power of the embroidery machines was relatively high, these sources get the highest priority when it comes to applying noise controls. Finally, an objective approach for the determination of the share of workroom acoustic characteristics in producing noise could facilitate the identification of cost-effective noise controls. PMID:24214295

  10. The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1987-01-01

    This paper is theoretical in nature and addresses applications of the acoustic analogy in helicopter rotor noise prediction. It is argued that in many instances the acoustic analogy has not been used with care in rotor noise studies. By this it is meant that approximate or inappropriate formulations have been used. By considering various mechanisms of noise generation, such abuses are identified and the remedy is suggested. The mechanisms discussed are thickness, loading, quadrupole, and blade-vortex interaction noise. The quadrupole term of the Ffowcs Williams-Hawkings equation is written in a new form which separates the contributions of regions of high gradients such as shock surfaces. It is shown by order of magnitude studies that such regions are capable of producing noise with the same directivity as the thickness noise. The inclusion of this part of quadrupole sources in current acoustic codes is quite practical. Some of the difficulties with the use of loading noise formulations of the first author in predictions of blade-vortex interaction noise are discussed. It appears that there is a need for development of new theoretical results based on the acoustic analogy in this area. Because of the impulsive character of the blade surface pressure, a time scale of integration different from that used in loading and thickness computations must he used in a computer code for prediction of blade-vortex interaction noise.

  11. Acoustic noise from volcanoes - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Woulff, G.; Mcgetchin, T. R.

    1976-01-01

    The paper discusses some theoretical aspects of acoustic investigation of volcanoes and describes a field experiment involving the recording, analysis, and interpretation of acoustic radiation from energetic fumaroles at Volcan Acatenango, Guatemala, during mid-January 1973. Particular attention is given to deriving information about the flow velocity of the erupting medium from acoustics as a means to study eruption dynamics. Theoretical considerations suggest that acoustic power radiated during gaseous volcanic eruptions may be related to gas exit velocity according to appropriate power laws. Eruption acoustics proves useful as a means of quantitative monitoring of volcanic activity.

  12. Non-linear generation of acoustic noise in the IAR spacecraft

    NASA Technical Reports Server (NTRS)

    Westley, R.; Nguyen, K.; Westley, M. S.

    1990-01-01

    The requirement to produce high level acoustic noise fields with increasing accuracy in environmental test facilities dictates that a more precise understanding is required of the factors controlling nonlinear noise generation. Details are given of various nonlinear effects found in acoustic performance data taken from the IAR Spacecraft Acoustic Chamber. This type of data has enabled the IAR to test large spacecraft to relatively tight acoustic tolerances over a wide frequency range using manually set controls. An analog random noise automatic control system was available and modified to provide automatic selection of the chamber's spectral sound pressure levels. The automatic control system when used to complete a typical qualification test appeared to equal the accuracy of the manual system and had the added advantage that parallel spectra could be easily achieved during preset tests.

  13. Non-linear generation of acoustic noise in the IAR spacecraft

    NASA Astrophysics Data System (ADS)

    Westley, R.; Nguyen, K.; Westley, M. S.

    1990-11-01

    The requirement to produce high level acoustic noise fields with increasing accuracy in environmental test facilities dictates that a more precise understanding is required of the factors controlling nonlinear noise generation. Details are given of various nonlinear effects found in acoustic performance data taken from the IAR Spacecraft Acoustic Chamber. This type of data has enabled the IAR to test large spacecraft to relatively tight acoustic tolerances over a wide frequency range using manually set controls. An analog random noise automatic control system was available and modified to provide automatic selection of the chamber's spectral sound pressure levels. The automatic control system when used to complete a typical qualification test appeared to equal the accuracy of the manual system and had the added advantage that parallel spectra could be easily achieved during preset tests.

  14. The Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.

    2002-01-01

    This paper describes several methods for the prediction of jet noise. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while the other is the jet noise generation model recently proposed by Tam and Auriault. In all the approaches some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a k - epsilon turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach: but, is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. The paper concludes with a proposal for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms and a discussion of noise prediction issues that remain to be resolved.

  15. The Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.; Morris, Philip J.

    2002-01-01

    This paper describes several methods for the prediction of jet noise. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while the other is the jet noise generation model recently proposed by Tam and Auriault. In all the approaches some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a k-epsilon turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach: but, is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. The paper concludes with a proposal for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms and a discussion of noise prediction issues that remain to be resolved.

  16. Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.

    2002-01-01

    Several methods for the prediction of jet noise are described. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy, whereas the other is the jet noise generation model recently proposed by Tam and Auriault. In all of the approaches, some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier-Stokes equation using a kappa-sigma turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach, but instead is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. In conclusion, a proposal is presented for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms, as is a discussion of noise prediction issues that remain to be resolved.

  17. Active-passive gradient shielding for MRI acoustic noise reduction.

    PubMed

    Edelstein, William A; Kidane, Tesfaye K; Taracila, Victor; Baig, Tanvir N; Eagan, Timothy P; Cheng, Yu-Chung N; Brown, Robert W; Mallick, John A

    2005-05-01

    An important source of MRI acoustic noise-magnet cryostat warm-bore vibrations caused by eddy-current-induced forces-can be mitigated by a passive metal shield mounted on the outside of a vibration-isolated, vacuum-enclosed shielded gradient set. Finite-element (FE) calculations for a z-gradient indicate that a 2-mm-thick Cu layer wrapped on the gradient assembly can decrease mechanical power deposition in the warm bore and reduce warm-bore acoustic noise production by about 25 dB. Eliminating the conducting warm bore and other magnet parts as significant acoustic noise sources could lead to the development of truly quiet, fully functioning MRI systems with noise levels below 70 dB.

  18. Overview of a university course on acoustics and noise.

    PubMed

    Kessissoglou, Nicole J

    2012-03-01

    The Bachelor of Mechanical Engineering at the University of New South Wales in Sydney, Australia is a four year degree program. In their fourth and final year, students can choose from a range of technical elective courses, one of those being in acoustics. The acoustics course entitled "Fundamentals of Noise" can also be taken as a postgraduate coursework subject as part of a Masters by Coursework degree. The course covers fundamental topics in acoustics, noise, noise measurement, and noise control. This paper outlines the topics covered in the course, the range of assessment activities conducted by the students, and the use of invited industry guest speakers, all of which aim to maximize student knowledge, interest, and performance in the course.

  19. Environmental noise-a challenge for an acoustical engineer

    NASA Astrophysics Data System (ADS)

    Genuit, Klaus

    2003-10-01

    People live in a landscape full of noises which are composed of both natural environmental noises and technically created sounds. Regarding environmental noise, more and more people feel heavily annoyed by noises. Noise is defined as an audible sound which either disturbs the silence or an intentional sound listening or leads to annoyance. Thus, it is clearly defined that the assignment of noise cannot be reduced to simple determining objective parameters such as the A-weighted sound pressure level or the equivalent continuous sound pressure level. The question of whether a sound is judged as noise can only be made after the transformation from the sound event into an auditory event has been accomplished. The evaluation of noise depends on the physical characteristics of the sound event, on the psycho-acoustical features of the human ear, as well as on the psychological aspects of man. For the acoustical design of environmental noise and in order to create a better soundscape the acoustical engineer has to consider these aspects. That means a specific challenge for the sound engineering.

  20. Acoustics of Jet Surface Interaction-Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the structure or embedded in the airframe. While such integrated systems are intended to shield noise from community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Greens function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Greens function decreases with increasing source frequency andor jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Greens function in the absence of the surface, and flight effect are also investigated.

  1. Publications in acoustic and noise control from NASA Langley Research Center during 1940-1979. [bibliographies

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1980-01-01

    Reference lists of approximately 900 published Langley Research Center reports in various areas of acoustics and noise control for the period 1940-1979 are presented. Specific topic areas covered include: duct acoustics; propagation and operations; rotating blade noise; jet noise; sonic boom; flow surface interaction noise; structural response/interior noise; human response; and noise prediction.

  2. Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study

    ERIC Educational Resources Information Center

    Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.

    2012-01-01

    Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…

  3. Acoustic noise reduction in a 4 T MRI scanner.

    PubMed

    Mechefske, Chris K; Geris, Ryan; Gati, Joseph S; Rutt, Brian K

    2002-01-01

    High-field, high-speed magnetic resonance imaging (MRI) can generate high levels of noise. There is ongoing concern in the medical and imaging research communities regarding the detrimental effects of high acoustic levels on auditory function, patient anxiety, verbal communication between patients and health care workers and ultimately MR image quality. In order to effectively suppress the noise levels inside MRI scanners, the sound field needs to be accurately measured and characterized. This paper presents the results of measurements of the sound radiation from a gradient coil cylinder within a 4 T MRI scanner under a variety of conditions. These measurement results show: (1) that noise levels can be significantly reduced through the use of an appropriately designed passive acoustic liner; and (2) the true noise levels that are experienced by patients during echo planar imaging.

  4. Acoustic noise reduction in a 4 T MRI scanner.

    PubMed

    Mechefske, Chris K; Geris, Ryan; Gati, Joseph S; Rutt, Brian K

    2002-01-01

    High-field, high-speed magnetic resonance imaging (MRI) can generate high levels of noise. There is ongoing concern in the medical and imaging research communities regarding the detrimental effects of high acoustic levels on auditory function, patient anxiety, verbal communication between patients and health care workers and ultimately MR image quality. In order to effectively suppress the noise levels inside MRI scanners, the sound field needs to be accurately measured and characterized. This paper presents the results of measurements of the sound radiation from a gradient coil cylinder within a 4 T MRI scanner under a variety of conditions. These measurement results show: (1) that noise levels can be significantly reduced through the use of an appropriately designed passive acoustic liner; and (2) the true noise levels that are experienced by patients during echo planar imaging. PMID:11755093

  5. Acoustics, Noise, and Buildings. Revised Edition 1969.

    ERIC Educational Resources Information Center

    Parkin, P. H.; Humphreys, H. R.

    The fundamental physical concepts needed in any appreciation of acoustical problems are discussed by a scientist and an architect. The major areas of interest are--(1) the nature of sound, (2) the behavior of sound in rooms, (3) the design of rooms for speech, (4) the design of rooms for music, (5) the design of studios, (6) the design of high…

  6. Perceptual Learning of Acoustic Noise by Individuals with Dyslexia

    ERIC Educational Resources Information Center

    Agus, Trevor R.; Carrión-Castillo, Amaia; Pressnitzer, Daniel; Ramus, Franck

    2014-01-01

    Purpose: A phonological deficit is thought to affect most individuals with developmental dyslexia. The present study addresses whether the phonological deficit is caused by difficulties with perceptual learning of fine acoustic details. Method: A demanding test of nonverbal auditory memory, "noise learning," was administered to both…

  7. Development of an acoustic actuator for launch vehicle noise reduction.

    PubMed

    Henderson, Benjamin K; Lane, Steven A; Gussy, Joel; Griffin, Steve; Farinholt, Kevin M

    2002-01-01

    In many active noise control applications, it is necessary that acoustic actuators be mounted in small enclosures due to volume constraints and in order to remain unobtrusive. However, the air spring of the enclosure is detrimental to the low-frequency performance of the actuator. For launch vehicle noise control applications, mass and volume constraints are very limiting, but the low-frequency performance of the actuator is critical. This work presents a novel approach that uses a nonlinear buckling suspension system and partial evacuation of the air within the enclosure to yield a compact, sealed acoustic driver that exhibits a very low natural frequency. Linear models of the device are presented and numerical simulations are given to illustrate the advantages of this design concept. An experimental prototype was built and measurements indicate that this design can significantly improve the low-frequency response of compact acoustic actuators.

  8. Field-Deployable Acoustic Digital Systems for Noise Measurement

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  9. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  10. Acoustic FMRI noise: linear time-invariant system model.

    PubMed

    Rizzo Sierra, Carlos V; Versluis, Maarten J; Hoogduin, Johannes M; Duifhuis, Hendrikus Diek

    2008-09-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For auditory system studies, however, the acoustic noise generated by the scanner tends to interfere with the assessments of this activation. Understanding and modeling fMRI acoustic noise is a useful step to its reduction. To study acoustic noise, the MR scanner is modeled as a linear electroacoustical system generating sound pressure signals proportional to the time derivative of the input gradient currents. The transfer function of one MR scanner is determined for two different input specifications: 1) by using the gradient waveform calculated by the scanner software and 2) by using a recording of the gradient current. Up to 4 kHz, the first method is shown as reliable as the second one, and its use is encouraged when direct measurements of gradient currents are not possible. Additionally, the linear order and average damping properties of the gradient coil system are determined by impulse response analysis. Since fMRI is often based on echo planar imaging (EPI) sequences, a useful validation of the transfer function prediction ability can be obtained by calculating the acoustic output for the EPI sequence. We found a predicted sound pressure level (SPL) for the EPI sequence of 104 dB SPL compared to a measured value of 102 dB SPL. As yet, the predicted EPI pressure waveform shows similarity as well as some differences with the directly measured EPI pressure waveform.

  11. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  12. Cylindrical acoustical holography applied to full-scale jet noise.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M

    2014-09-01

    Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated. PMID:25190387

  13. Extracting the Green's function between receivers using underwater acoustic noise

    NASA Astrophysics Data System (ADS)

    Roux, Philippe; Lynch, Steve; Kuperman, W. A.

    2002-11-01

    Recent experimental and theoretical works in ultrasonics show that the Green's function between transducers fastened to an aluminum sample can be measured from the correlation of thermal noise [R. L. Weaver and O. J. Lobkis, ''Ultrasonics without a source. Thermal fluctuation correlations at MHz frequencies,'' Phys. Rev. Lett. 87, 134301 (2001)]. Similar results have been obtained in geophysics using seismic noise data [A. Paul and M. Campillo, ''Extracting the Green's function between two stations from coda waves,'' Trans. Am. Geophys. Union 82-47, F842 (2001)]. Sources of noise in underwater acoustics range from ship noise at low frequency to surface noise and even thermal noise at very high frequencies. We theoretically demonstrate that at least an approximate Green's function can be obtained from surface noise. This result is confirmed by noise data recorded on arrays of receivers during the NPAL98 experiment. [Work supported by ONR.] a)The NPAL group is composed of J. A. Colosi, B. D. Cornuelle, B. D. Dushaw, M. A. Dzieciuch, B. M. Howe, J. A. Mercer, R. C. Spindel, and P. F. Worcester.

  14. Trailing Edge Noise Prediction Based on a New Acoustic Formulation

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.

    2002-01-01

    A new analytic result in acoustics called 'Formulation 1B,' proposed by Farassat, is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experiment. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, using both analytical and experimental data on the airfoil surface. The results are compared to analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.

  15. Acoustic noise improves visual perception and modulates occipital oscillatory states.

    PubMed

    Gleiss, Stephanie; Kayser, Christoph

    2014-04-01

    Perception is a multisensory process, and previous work has shown that multisensory interactions occur not only for object-related stimuli but also for simplistic and apparently unrelated inputs to the different senses. We here compare the facilitation of visual perception induced by transient (target-synchronized) sounds to the facilitation provided by continuous background noise like sounds. Specifically, we show that continuous acoustic noise improves visual contrast detection by systematically shifting psychometric curves in an amplitude-dependent manner. This multisensory benefit was found to be both qualitatively and quantitatively similar to that induced by a transient and target synchronized sound in the same paradigm. Studying the underlying neural mechanisms using electric neuroimaging (EEG), we found that acoustic noise alters occipital alpha (8-12 Hz) power and decreases beta-band (14-20 Hz) coupling of occipital and temporal sites. Task-irrelevant and continuous sounds thereby have an amplitude-dependent effect on cortical mechanisms implicated in shaping visual cortical excitability. The same oscillatory mechanisms also mediate visual facilitation by transient sounds, and our results suggest that task-related sounds and task-irrelevant background noises could induce perceptually and mechanistically similar enhancement of visual perception. Given the omnipresence of sounds and noises in our environment, such multisensory interactions may affect perception in many everyday scenarios. PMID:24236698

  16. Acoustic tests of duct-burning turbofan jet noise simulation

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Stringas, E. J.; Brausch, J. F.; Staid, P. S.; Heck, P. H.; Latham, D.

    1978-01-01

    The results of a static acoustic and aerodynamic performance, model-scale test program on coannular unsuppressed and multielement fan suppressed nozzle configurations are summarized. The results of the static acoustic tests show a very beneficial interaction effect. When the measured noise levels were compared with the predicted noise levels of two independent but equivalent conical nozzle flow streams, noise reductions for the unsuppressed coannular nozzles were of the order of 10 PNdB; high levels of suppression (8 PNdB) were still maintained even when only a small amount of core stream flow was used. The multielement fan suppressed coannular nozzle tests showed 15 PNdB noise reductions and up to 18 PNdB noise reductions when a treated ejector was added. The static aerodynamic performance tests showed that the unsuppressed coannular plug nozzles obtained gross thrust coefficients of 0.972, with 1.2 to 1.7 percent lower levels for the multielement fan-suppressed coannular flow nozzles. For the first time anywhere, laser velocimeter velocity profile measurements were made on these types of nozzle configurations and with supersonic heated flow conditions. Measurements showed that a very rapid decay in the mean velocity occurs for the nozzle tested.

  17. Monitoring deep-ocean temperatures using acoustic ambient noise

    NASA Astrophysics Data System (ADS)

    Woolfe, Katherine F.; Lani, Shane; Sabra, Karim G.; Kuperman, W. A.

    2015-04-01

    Measuring temperature changes of the deep oceans, important for determining the oceanic heat content and its impact on the Earth's climate evolution, is typically done using free-drifting profiling oceanographic floats with limited global coverage. Acoustic thermometry provides an alternative and complementary remote sensing methodology for monitoring fine temperature variations of the deep ocean over long distances between a few underwater sources and receivers. We demonstrate a simpler, totally passive (i.e., without deploying any active sources) modality for acoustic thermometry of the deep oceans (for depths of ~ 500-1500 m), using only ambient noise recorded by two existing hydroacoustic stations of the International Monitoring System. We suggest that passive acoustic thermometry could improve global monitoring of deep-ocean temperature variations through implementation using a global network of hydrophone arrays.

  18. Acoustical Testing Laboratory Developed to Support the Low-Noise Design of Microgravity Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2001-01-01

    The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.

  19. An Overview of Virtual Acoustic Simulation of Aircraft Flyover Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2013-01-01

    Methods for testing human subject response to aircraft flyover noise have greatly advanced in recent years as a result of advances in simulation technology. Capabilities have been developed which now allow subjects to be immersed both visually and aurally in a three-dimensional, virtual environment. While suitable for displaying recorded aircraft noise, the true potential is found when synthesizing aircraft flyover noise because it allows the flexibility and freedom to study sounds from aircraft not yet flown. A virtual acoustic simulation method is described which is built upon prediction-based source noise synthesis, engineering-based propagation modeling, and empirically-based receiver modeling. This source-path-receiver paradigm allows complete control over all aspects of flyover auralization. With this capability, it is now possible to assess human response to flyover noise by systematically evaluating source noise reductions within the context of a system level simulation. Examples of auralized flyover noise and movie clips representative of an immersive aircraft flyover environment are made in the presentation.

  20. The Prediction of Jet Noise Ground Effects Using an Acoustic Analogy and a Tailored Green's Function

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    An assessment of an acoustic analogy for the mixing noise component of jet noise in the presence of an infinite surface is presented. The reflection of jet noise by the ground changes the distribution of acoustic energy and is characterized by constructive and destructive interference patterns. The equivalent sources are modeled based on the two-point cross- correlation of the turbulent velocity fluctuations and a steady Reynolds-Averaged Navier-Stokes (RANS) solution. Propagation effects, due to reflection by the surface and refaction by the jet shear layer, are taken into account by calculating the vector Green's function of the linearized Euler equations (LEE). The vector Green's function of the LEE is written in relation to Lilley's equation; that is, approximated with matched asymptotic solutions and the Green's function of the convective Helmholtz equation. The Green's function of the convective Helmholtz equation for an infinite flat plane with impedance is the Weyl-van der Pol equation. Predictions are compared with an unheated Mach 0.95 jet produced by a nozzle with an exit diameter of 0.3302 meters. Microphones are placed at various heights and distances from the nozzle exit in the peak jet noise direction above an acoustically hard and an asphalt surface. The predictions are shown to accurately capture jet noise ground effects that are characterized by constructive and destructive interference patterns in the mid- and far-field and capture overall trends in the near-field.

  1. Noise correction of turbulent spectra obtained from Acoustic Doppler Velocimeters

    SciTech Connect

    Durgesh, Vibhav; Thomson, Jim; Richmond, Marshall C.; Polagye, Brian

    2014-03-02

    Accurately estimated auto-spectral density functions are essential for characterization of turbulent flows, and they also have applications in computational fluid dynamics modeling, site and inflow characterization for hydrokinetic turbines, and inflow turbulence generation. The Acoustic Doppler Velocimeter (ADV) provides single-point temporally resolved data, that are used to characterize turbulent flows in rivers, seas, and oceans. However, ADV data are susceptible to contamination from various sources, including instrument noise, which is the intrinsic limit to the accuracy of acoustic velocity measurements. Due to the presence of instrument noise, the spectra obtained are altered at high frequencies. The focus of this study is to develop a robust and effective method for accurately estimating auto-spectral density functions from ADV data by reducing or removing the spectral contribution derived from instrument noise. For this purpose, the “Noise Auto-Correlation” (NAC) approach was developed, which exploits the correlation properties of instrument noise to identify and remove its contribution from spectra. The spectra estimated using the NAC approach exhibit increased fidelity and a slope of -5/3 in the inertial range, which is typically observed for turbulent flows. Finally, this study also compares the effectiveness of low-pass Gaussian filters in removing instrument noise with that of the NAC approach. For the data used in this study, both the NAC and Gaussian filter approaches are observed to be capable of removing instrument noise at higher frequencies from the spectra. However, the NAC results are closer to the expected frequency power of -5/3 in the inertial sub-range.

  2. Producing Metallic Glasses With Acoustic Leviation

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Feng, I. A.

    1983-01-01

    Acoustic fields support and cool liquid particles. Levitated by sound energy, liquid drop in acoustic standing-wave field surrounded by acousticically-induced jet streams. Streaming gas cools drow below its freezing point in small fraction of second. Allows new amorphous alloys including "metallic glass" to be formed.

  3. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    NASA Astrophysics Data System (ADS)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs

  4. Structural Acoustic Prediction and Interior Noise Control Technology

    NASA Technical Reports Server (NTRS)

    Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)

    2001-01-01

    This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.

  5. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, D.S.; Scott, D.D.

    1993-12-28

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  6. Analysis of noise produced by an orderly structure of turbulent jets

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1973-01-01

    The orderly structure which has been observed recently by numerous researchers within the transition region of subsonic turbulent jets is analyzed to reveal its noise-producing potential. For a circular jet, this structure is molded as a train of toroidal vortex rings which are formed near the jet exit and propagate downstream. The noise produced by the model is evaluated from a reformulation of Lighthill's expression for the far-field acoustic density, which emphasizes the importance of the vorticity within the turbulent flow field. It is shown that the noise production occurs mainly close to the jet exit and depends primarily upon temporal changes in the toroidal radii. The analysis suggests that the process of formation of this regular structure may also be an important contribution of the high-frequency jet noise. These results may be helpful in the understanding of jet-noise generation and in new approaches to jet-noise suppression.

  7. Structure borne noise analysis using Helmholtz equation least squares based forced vibro acoustic components

    NASA Astrophysics Data System (ADS)

    Natarajan, Logesh Kumar

    This dissertation presents a structure-borne noise analysis technology that is focused on providing a cost-effective noise reduction strategy. Structure-borne sound is generated or transmitted through structural vibration; however, only a small portion of the vibration can effectively produce sound and radiate it to the far-field. Therefore, cost-effective noise reduction is reliant on identifying and suppressing the critical vibration components that are directly responsible for an undesired sound. However, current technologies cannot successfully identify these critical vibration components from the point of view of direct contribution to sound radiation and hence cannot guarantee the best cost-effective noise reduction. The technology developed here provides a strategy towards identifying the critical vibration components and methodically suppressing them to achieve a cost-effective noise reduction. The core of this technology is Helmholtz equation least squares (HELS) based nearfield acoustic holography method. In this study, the HELS formulations derived in spherical co-ordinates using spherical wave expansion functions utilize the input data of acoustic pressures measured in the nearfield of a vibrating object to reconstruct the vibro-acoustic responses on the source surface and acoustic quantities in the far field. Using these formulations, three steps were taken to achieve the goal. First, hybrid regularization techniques were developed to improve the reconstruction accuracy of normal surface velocity of the original HELS method. Second, correlations between the surface vibro-acoustic responses and acoustic radiation were factorized using singular value decomposition to obtain orthogonal basis known here as the forced vibro-acoustic components (F-VACs). The F-VACs enables one to identify the critical vibration components for sound radiation in a similar manner that modal decomposition identifies the critical natural modes in a structural vibration. Finally

  8. Nonlinear Transport and Noise Properties of Acoustic Phonons

    NASA Astrophysics Data System (ADS)

    Walczak, Kamil

    We examine heat transport carried by acoustic phonons in molecular junctions composed of organic molecules coupled to two thermal baths of different temperatures. The phononic heat flux and its dynamical noise properties are analyzed within the scattering (Landauer) formalism with transmission probability function for acoustic phonons calculated within the method of atomistic Green's functions (AGF technique). The perturbative computational scheme is used to determine nonlinear corrections to phononic heat flux and its noise power spectral density with up to the second order terms with respect to temperature difference. Our results show the limited applicability of ballistic Fourier's law and fluctuation-dissipation theorem to heat transport in quantum systems. We also derive several noise-signal relations applicable to nanoscale heat flow carried by phonons, but valid for electrons as well. We also discuss the extension of the perturbative transport theory to higher order terms in order to address a huge variety of problems related to nonlinear thermal effects which may occur at nanoscale and at strongly non-equilibrium conditions with high-intensity heat fluxes. This work was supported by Pace University Start-up Grant.

  9. Propagation of high frequency jet noise using geometric acoustics

    NASA Technical Reports Server (NTRS)

    Khavaran, A.; Krejsa, E. A.

    1993-01-01

    Spherical directivity of noise radiated from a convecting quadrupole source embedded in an arbitrary spreading jet is obtained by ray-tracing methods of geometrical acoustics. The six propagation equations are solved in their general form in a rectangular coordinate system. The noise directivity in the far field is calculated by applying an iteration scheme that finds the required radiation angles at the source resulting in propagation through a given observer point. Factors influencing the zone of silence are investigated. The caustics of geometrical acoustics and the exact locations where it forms is demonstrated by studying the variation in ray tube area obtained from transport equation. For a ring source convecting along the center-axis of an axisymmetric jet, the polar directivity of the radiated noise is obtained by an integration with respect to azimuthal directivity of compact quadrupole sources distributed on the ring. The Doppler factor is shown to vary slightly from point to point on the ring. Finally the scaling of the directivity pattern with power -3 of Doppler factor is investigated and compared with experimental data.

  10. Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Dahl, Milo D.

    2012-01-01

    In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed.

  11. Real-time vehicle noise cancellation techniques for gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, Antonio L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2012-06-01

    Acoustical sniper positioning systems rely on the detection and direction-of-arrival (DOA) estimation of the shockwave and the muzzle blast in order to provide an estimate of a potential snipers location. Field tests have shown that detecting and estimating the DOA of the muzzle blast is a rather difficult task in the presence of background noise sources, e.g., vehicle noise, especially in long range detection and absorbing terrains. In our previous work presented in the 2011 edition of this conference we highlight the importance of improving the SNR of the gunshot signals prior to the detection and recognition stages, aiming at lowering the false alarm and miss-detection rates and, thereby, increasing the reliability of the system. This paper reports on real-time noise cancellation techniques, like Spectral Subtraction and Adaptive Filtering, applied to gunshot signals. Our model assumes the background noise as being short-time stationary and uncorrelated to the impulsive gunshot signals. In practice, relatively long periods without signal occur and can be used to estimate the noise spectrum and its first and second order statistics as required in the spectral subtraction and adaptive filtering techniques, respectively. The results presented in this work are supported with extensive simulations based on real data.

  12. Computational Aero-acoustics As a Tool For Turbo-machinery Noise Reduction

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2003-01-01

    This talk will provide an overview of the field of computational aero-acoustics and its use in fan noise prediction. After a brief history of computational fluid dynamics, some of the recent developments in computational aero-acoustics will be explored. Computational issues concerning sound wave production, propagation, and reflection in practical turbo-machinery applications will be discussed including: (a) High order/High Resolution Numerical Techniques. (b) High Resolution Boundary Conditions. [c] MIMD Parallel Computing. [d] Form of Governing Equations Useful for Simulations. In addition, the basic design of our Broadband Analysis Stator Simulator (BASS) code and its application to a 2 D rotor wake-stator interaction will be shown. An example of the noise produced by the wakes from a rotor impinging upon a stator cascade will be shown.

  13. [Evaluation of acoustic effectiveness of personnel protectors from extra-aural exposure to aviation noise].

    PubMed

    Dragan, S P; Soldatov, S K; Bogomolov, A V; Drozdov, S V; Poliakov, N M

    2013-01-01

    Purpose of the investigation was to validate testing acoustic effectiveness of a personnel vest-like protector (PP) from extra-aural exposure to aviation noise. Levels of aviation noise for PP testing were determined through calculation. Vest effectiveness in protecting from acoustic vibration generated by high-intensity aviation noise was evaluated both in laboratory and field tests. For comparison analysis, PP was also tested with a dummy exposed on a special tester, i.e. acoustic interferometer.

  14. Effects of long-chord acoustically treated stator vanes on fan noise. 2: Effect of acoustical treatment

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Scott, J. N.; Leonard, B. R.; Stakolich, E. G.

    1976-01-01

    A set of long chord stator vanes was designed to replace the vanes in an existing fan stage. The long chord stator vanes consisted of a turning section and axial extension pieces, all of which incorporated acoustic damping material. The long chord stator vanes were tested in two lengths, with the long version giving more noise reduction than the short, primarily because of the additional lining material. The noise reduction achieved with the acoustically treated long chord stator vanes was compared with the reduction achieved by an acoustically treated exhaust splitter. The long chord stator was at least as good as the splitter as a method for incorporating acoustic lining material. In addition, comparing an acoustic three ring inlet and an acoustic wall-only inlet discloses that the wall-only inlet could be used in an engine where the noise reduction requirements are not too stringent.

  15. The human immunodeficiency virus reduces network capacity: acoustic noise effect

    PubMed Central

    Tomasi, Dardo; Chang, Linda; de Castro Caparelli, Elisabeth; Telang, Frank; Ernst, Thomas

    2008-01-01

    Increased acoustic noise (AN) during working memory (WM) leads to increased brain activation in healthy individuals, and may have greater impact in human immunodeficiency virus (HIV) patients. Compared to controls, HIV subjects showed reduced AN-activation and lower neuronal marker N-acetylaspartate in prefrontal and parietal cortices. Competing use of the WM network between AN and cognitive load showed lower dynamic range of the hemodynamic responses in prefrontal and parietal cortices in HIV patients. These findings suggest reduced reserve capacity of the WM network in HIV patients and additional stress (e.g. AN) might exhaust the impaired network for more demanding tasks. PMID:16437575

  16. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  17. [Sleep changes produced by environmental noise].

    PubMed

    Llopis González, A; García García, A M; García Rodríguez, A

    1989-01-01

    This article reports the results of a survey trying to evaluate different aspects related with ambient noise and its effects on selected urban communities. A total of 263 residents in 5 different neighbourhoods of the city of Valencia were interviewed. For each one of the neighbourhoods, level of ambient noise were independently registered during 24 hours during some days of a week. 40% of the interviewees reported having some difficulty for getting to sleep and 59% of these with difficulties identified the traffic noise as the causation. Also, 49% reported to awake sometime during the night (24% of them pointed to the traffic noise as the major cause). All these problems were reported more frequently in the neighbourhoods with a greater level of ambient noise. The probably high number of people affected by sleep disturbances related with ambient noise during the night makes necessary to adopt adequate correcting actions.

  18. Acoustic confort at home: Noise emitted by house installations. Recommendations in order to avoid such noise

    NASA Astrophysics Data System (ADS)

    Jimenez, Santiago

    2002-11-01

    The present survey consists of the analysis and the study of the solutions used at present in the installations of water supply and elevators. It has been carried out from the acoustic point of view. In order to achieve a thorough study a pilot plant was built in the Laboratory of Acoustics of the School of Industrial Engineering of Terrassa. This pilot plant reproduced different kinds of installations of the water supply in houses. And it has allowed us to systematize the measures and also to determine the optimum solutions from the acoustic perspective. In accordance with the objectives and the process of the survey, the solutions regularly employed in the facilities of water supply and elevators in houses have been analyzed, and levels of noise associated to these facilities have been also presented. A summary of the results obtained in the plant has been included, according to diverse variables. Both the conclusions of the analysis of the data obtained in the laboratory and those of the installations of the houses have been also compared, which has allowed us to describe a series of suggestions with the purpose of reducing the acoustic emission of this type of installations, and increase the acoustic comfort at home. (To be presented in Spanish.)

  19. Publications in acoustics and noise control from the NASA Langley Research Center during 1940-1976

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1977-01-01

    Reference lists are presented of published research papers in various areas of acoustics and noise control for the period 1940-1976. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics; (2) propagation and operations; (3) rotating blade noise; (4) jet noise; (5) sonic boom; (6) flow-surface interaction noise; (7) human response; (8) structural response; (9) prediction; and (10) miscellaneous.

  20. Development of a Transient Acoustic Boundary Element Method to Predict the Noise Signature of Swimming Fish

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2015-11-01

    Animals have evolved flexible wings and fins to efficiently and quietly propel themselves through the air and water. The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates three essential features: the fluid mechanics, the elastic structural response, and the noise generation. This study focuses on the development, validation, and demonstration of a transient, two-dimensional acoustic boundary element solver accelerated by a fast multipole algorithm. The resulting acoustic solver is used to characterize the acoustic signature produced by a vortex street advecting over a NACA 0012 airfoil, which is representative of vortex-body interactions that occur in schools of swimming fish. Both 2S and 2P canonical vortex streets generated by fish are investigated over the range of Strouhal number 0 . 2 < St < 0 . 4 , and the acoustic signature of the airfoil is quantified. This study provides the first estimate of the noise signature of a school of swimming fish. Lehigh University CORE Grant.

  1. The Suppression of Selected Acoustic Noise Frequencies in MRI

    NASA Astrophysics Data System (ADS)

    Shou, Xingxian

    Problems due to Magnetic Resonance Imaging (MRI) acoustic noise have long been an important concern, both in research and clinical applications. A study is made of certain dominant frequencies in the acoustic noise spectrum of the MRI system. Motivated by both spring and string ideas, we investigate whether the contributions to the sound from certain frequencies can be cancelled by the appropriate the gradient pulse sequence design. Ideas for cancelling these frequencies are investigated by carrying out theoretical string calculations. The MRI gradient assembly is modeled as a string and the gradient pulse sequences as a driving force for that string. Analytical results are obtained with different input gradient pulses including boxcars, trapezoids, and multiple trapezoids, along with special "quadratic" pulses. Pulse trains composed of repetitions of these pulse structures are studied. For comparison and to test these ideas, both simulations and experiments are carried out to verify our analytical results for the cancellations of selected frequency peaks. The idea that vibrations resulting from an impulsive force associated with a ramping up of a gradient pulse are shown to be cancelled immediately upon the application of another impulsive force coming from the subsequent appropriately timed ramping down of that pulse is verified both by simulations and experiments. A general approach to suppression of multiple-frequency contributions involving a series of gradient pulses with variable timings is given for the cancellations between pairs of impulse forces. The various examples investigated with string analytics and simulations and the associated MRI experiments are a physical embodiments of general time-invariant linear response theory. The present study also provides a foundation to explain results in previous papers on this subject. The method suggests that a variety of pulse profiles and timing combinations can be used to attenuate important contributions to

  2. Effects of Classroom Acoustics and Self-Reported Noise Exposure on Teachers' Well-Being

    ERIC Educational Resources Information Center

    Kristiansen, Jesper; Persson, Roger; Lund, Soren Peter; Shibuya, Hitomi; Nielsen, Per Moberg

    2013-01-01

    Beyond noise annoyance and voice problems, little is known about the effects that noise and poor classroom acoustics have on teachers' health and well-being. The aim of this field study was therefore to investigate the effects of perceived noise exposure and classroom reverberation on measures of well-being. Data on self-reported noise exposure,…

  3. Spin noise spectroscopy from acoustic to GHz frequencies

    NASA Astrophysics Data System (ADS)

    Hübner, Jens

    2010-03-01

    Performing perturbation free measurements on semiconductor quantum systems has long been banished to textbooks on quantum mechanics. The emergent technique of spin noise spectroscopy is challenging this restriction. Empowered only by the ever present intrinsic spin fluctuation dynamics in thermal equilibrium, spin noise spectroscopy is capable to directly deduce several physical properties of carriers spins in semiconductors from these fluctuations. Originating from spin noise measurements on alkali metal vapors in quantum optics [1] the method has become a powerful technique to unravel the intrinsic spin dynamics in semiconductors [2]. In this talk I will present the recent progress of spin noise spectroscopy and how it is used to monitor the spin dynamic in semiconductor quantum wells at thermal equilibrium and as a consequence thereof directly detect the spatial dynamics of the carriers being marked with their own spin on a microscopic scale [3]. Further I will present measurements of how the non-perturbative nature of spin noise spectroscopy gives valuable insight into the delicate dependence of the spin relaxation time of electrons on doping density and temperature in semiconductors n-doped in the vicinity of the metal-insulator transition where hyperfine and intra-band depolarization compete [4]. Also the measurement bandwidth can be extended to GHz frequencies by ultrafast optical probing [5] yielding in conjunction with depth resolved spin noise measurements insights into the origin of inhomogeneous spin dephasing effects at high magnetic fields [5]. Additionally I will present how spin noise spectroscopy can be employed to spatially depth resolve doping profiles with optical resolution [6] and give a summary on easy to implement techniques of spin noise spectroscopy at acoustic frequencies in alkali metal vapors. [4pt] [1] E. Aleksandrov and V. Zapassky, Zh. Eksp. Teor. Fiz. 81, 132 (1981); S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. L. Smith

  4. An efficient feedback active noise control algorithm based on reduced-order linear predictive modeling of FMRI acoustic noise.

    PubMed

    Kannan, Govind; Milani, Ali A; Panahi, Issa M S; Briggs, Richard W

    2011-12-01

    Functional magnetic resonance imaging (fMRI) acoustic noise exhibits an almost periodic nature (quasi-periodicity) due to the repetitive nature of currents in the gradient coils. Small changes occur in the waveform in consecutive periods due to the background noise and slow drifts in the electroacoustic transfer functions that map the gradient coil waveforms to the measured acoustic waveforms. The period depends on the number of slices per second, when echo planar imaging (EPI) sequencing is used. Linear predictability of fMRI acoustic noise has a direct effect on the performance of active noise control (ANC) systems targeted to cancel the acoustic noise. It is shown that by incorporating some samples from the previous period, very high linear prediction accuracy can be reached with a very low order predictor. This has direct implications on feedback ANC systems since their performance is governed by the predictability of the acoustic noise to be cancelled. The low complexity linear prediction of fMRI acoustic noise developed in this paper is used to derive an effective and low-cost feedback ANC system.

  5. Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum.

    PubMed

    Lugli, M; Yan, H Y; Fine, M L

    2003-04-01

    Two freshwater gobies Padogobius martensii and Gobius nigricans live in shallow (5-70 cm) stony streams, and males of both species produce courtship sounds. A previous study demonstrated high noise levels near waterfalls, a quiet window in the noise around 100 Hz at noisy locations, and extremely short-range propagation of noise and goby signals. To investigate the relationship of this acoustic environment to communication, we determined audiograms for both species and measured parameters of courtship sounds produced in the streams. We also deflated the swimbladder in P. martensii to determine its effect on frequency utilization in sound production and hearing. Both species are maximally sensitive at 100 Hz and produce low-frequency sounds with main energy from 70 to 100-150 Hz. Swimbladder deflation does not affect auditory threshold or dominant frequency of courtship sounds and has no or minor effects on sound amplitude. Therefore, both species utilize frequencies for hearing and sound production that fall within the low-frequency quiet region, and the equivalent relationship between auditory sensitivity and maximum ambient noise levels in both species further suggests that ambient noise shapes hearing sensitivity. PMID:12665991

  6. Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum.

    PubMed

    Lugli, M; Yan, H Y; Fine, M L

    2003-04-01

    Two freshwater gobies Padogobius martensii and Gobius nigricans live in shallow (5-70 cm) stony streams, and males of both species produce courtship sounds. A previous study demonstrated high noise levels near waterfalls, a quiet window in the noise around 100 Hz at noisy locations, and extremely short-range propagation of noise and goby signals. To investigate the relationship of this acoustic environment to communication, we determined audiograms for both species and measured parameters of courtship sounds produced in the streams. We also deflated the swimbladder in P. martensii to determine its effect on frequency utilization in sound production and hearing. Both species are maximally sensitive at 100 Hz and produce low-frequency sounds with main energy from 70 to 100-150 Hz. Swimbladder deflation does not affect auditory threshold or dominant frequency of courtship sounds and has no or minor effects on sound amplitude. Therefore, both species utilize frequencies for hearing and sound production that fall within the low-frequency quiet region, and the equivalent relationship between auditory sensitivity and maximum ambient noise levels in both species further suggests that ambient noise shapes hearing sensitivity.

  7. Computational AeroAcoustics for Fan Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Ed; Hixon, Ray; Dyson, Rodger; Huff, Dennis (Technical Monitor)

    2002-01-01

    An overview of the current state-of-the-art in computational aeroacoustics as applied to fan noise prediction at NASA Glenn is presented. Results from recent modeling efforts using three dimensional inviscid formulations in both frequency and time domains are summarized. In particular, the application of a frequency domain method, called LINFLUX, to the computation of rotor-stator interaction tone noise is reviewed and the influence of the background inviscid flow on the acoustic results is analyzed. It has been shown that the noise levels are very sensitive to the gradients of the mean flow near the surface and that the correct computation of these gradients for highly loaded airfoils is especially problematic using an inviscid formulation. The ongoing development of a finite difference time marching code that is based on a sixth order compact scheme is also reviewed. Preliminary results from the nonlinear computation of a gust-airfoil interaction model problem demonstrate the fidelity and accuracy of this approach. Spatial and temporal features of the code as well as its multi-block nature are discussed. Finally, latest results from an ongoing effort in the area of arbitrarily high order methods are reviewed and technical challenges associated with implementing correct high order boundary conditions are discussed and possible strategies for addressing these challenges ore outlined.

  8. Estimates of acoustic noise generated by supply vessels working with oil-drilling platforms

    NASA Astrophysics Data System (ADS)

    Rutenko, A. N.; Ushchipovskii, V. G.

    2015-09-01

    The paper presents results on spatial measurements of acoustic noise generated by two types of tugs during their movement near the Molikpaq platform and in a dynamic positioning mode during operation with the PA-B platform. Based on the results of these measurements with the aid of simulation and preliminary research of the loss function conducted on acoustic profiles spanning from the platforms to the nearshore Piltun gray whale summer—fall feeding area, the spectra of equivalent point sources are constructed, which make it possible to construct the 1/3-octave spectra of anthropogenic noise at any point of the western profile and estimate the value of their level in a given frequency band with an accuracy of up to 2 dB. Field measurements have shown that in the dynamic positioning mode, the tugs generate 10 dB more noise than during movement; in fact, a diesel electric tug in both modes produced approximately 5 dB less noise than a diesel tug.

  9. Active Attenuation of Acoustic Noise Using Adaptive Armax Control.

    NASA Astrophysics Data System (ADS)

    Swanson, David Carl

    An adaptive auxiliary input autoregressive moving average (ARMAX) control system using the recursive least -squares lattice for system identification is developed for active control of dynamic systems. The closed-loop adaptive ARMAX control system is applied to active acoustic noise reduction in three-dimensional spaces. The structure of the ARMAX system is compared to that for duct cancellation systems, model-reference control systems, and the general field solution and is seen as a reasonable approach for active field control in the general case. The ARMAX system is derived for multiple inputs and outputs where the measured outputs are to be driven to desired waveforms with least -squares error using a multi-channel ARMAX lattice for recursive system identification. A significant reduction in complexity is obtained by neglecting the ARMAX zeros for the special case of active attenuation of non-dispersive acoustic waves. It is shown that using the least-squares lattice requires fewer multiplies, divides, additions, and subtractions than the recursive least-squares algorithm which is based on the matrix inversion lemma. Computational complexity is seen as an important issue in the application of adaptive ARMAX systems to active field control because the system must control relatively higher numbers of modes and frequencies in real time than are seen in industrial process plants for which the adaptive ARMAX systems were first developed using recursive least squares. Convergence requirements using the lattice system identification algorithm are the same as that for the recursive least squares algorithm in adaptive ARMAX system and are verified in numerical simulations using known ARMAX parameters. A real-time simulation of active attenuation of acoustic noise is presented using the blade-excited harmonics from a small axial flow fan. The adaptive ARMAX controller provides active attenuation for correlated spectral peaks but not for uncorrelated noise from turbulence

  10. Acoustical and perceptual assessment of water sounds and their use over road traffic noise.

    PubMed

    Galbrun, Laurent; Ali, Tahrir T

    2013-01-01

    This paper examines physical and perceptual properties of water sounds generated by small to medium sized water features that have applications for road traffic noise masking. A large variety of water sounds were produced in the laboratory by varying design parameters. Analysis showed that estimations can be made on how these parameters affect sound pressure levels, frequency content, and psychoacoustic properties. Comparisons with road traffic noise showed that there is a mismatch between the frequency responses of traffic noise and water sounds, with the exception of waterfalls with high flow rates, which can generate large low frequency levels comparable to traffic noise. Perceptual assessments were carried out in the context of peacefulness and relaxation, where both water sounds and noise from dense road traffic were audible. Results showed that water sounds should be similar or not less than 3 dB below the road traffic noise level (confirming previous research), and that stream sounds tend to be preferred to fountain sounds, which are in turn preferred to waterfall sounds. Analysis made on groups of sounds also indicated that low sharpness and large temporal variations were preferred on average, although no acoustical or psychoacoustical parameter correlated well with the individual sound preferences. PMID:23297897

  11. Acoustical and perceptual assessment of water sounds and their use over road traffic noise.

    PubMed

    Galbrun, Laurent; Ali, Tahrir T

    2013-01-01

    This paper examines physical and perceptual properties of water sounds generated by small to medium sized water features that have applications for road traffic noise masking. A large variety of water sounds were produced in the laboratory by varying design parameters. Analysis showed that estimations can be made on how these parameters affect sound pressure levels, frequency content, and psychoacoustic properties. Comparisons with road traffic noise showed that there is a mismatch between the frequency responses of traffic noise and water sounds, with the exception of waterfalls with high flow rates, which can generate large low frequency levels comparable to traffic noise. Perceptual assessments were carried out in the context of peacefulness and relaxation, where both water sounds and noise from dense road traffic were audible. Results showed that water sounds should be similar or not less than 3 dB below the road traffic noise level (confirming previous research), and that stream sounds tend to be preferred to fountain sounds, which are in turn preferred to waterfall sounds. Analysis made on groups of sounds also indicated that low sharpness and large temporal variations were preferred on average, although no acoustical or psychoacoustical parameter correlated well with the individual sound preferences.

  12. Effect of scanner acoustic background noise on strict resting-state fMRI

    PubMed Central

    Rondinoni, C.; Amaro, E.; Cendes, F.; Santos, A.C.dos; Salmon, C.E.G.

    2013-01-01

    Functional MRI (fMRI) resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state’ fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs). Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent) counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal), while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors. PMID:23579634

  13. Acoustic Array Development for Wind Turbine Noise Characterization

    SciTech Connect

    Buck, S.; Roadman, J.; Moriarty, P.; Palo, S.

    2013-11-01

    This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team from the University of Colorado Boulder. This design process is a continuation of the elliptical array design work done by Simley. A description of the array system design process is presented, including array shape design, mechanical design, design of electronics and the data acquisition system, and development of post-processing software. System testing and calibration methods are detailed. Results from the initial data acquisition campaign are offered and discussed. Issues faced during this initial deployment of the array are presented and potential remedies discussed.

  14. Observation of the fundamental Nyquist noise limit in an ultra-high Q-factor cryogenic bulk acoustic wave cavity

    SciTech Connect

    Goryachev, Maxim Ivanov, Eugene N.; Tobar, Michael E.; Kann, Frank van; Galliou, Serge

    2014-10-13

    Thermal Nyquist noise fluctuations of high-Q bulk acoustic wave cavities have been observed at cryogenic temperatures with a DC superconducting quantum interference device amplifier. High Q modes with bandwidths of few tens of milliHz produce thermal fluctuations with a signal-to-noise ratio of up to 23 dB. The estimated effective temperature from the Nyquist noise is in good agreement with the physical temperature of the device, confirming the validity of the equivalent circuit model and the non-existence of any excess resonator self-noise. The measurements also confirm that the quality factor remains extremely high (Q > 10{sup 8} at low order overtones) for very weak (thermal) system motion at low temperatures, when compared to values measured with relatively strong external excitation. This result represents an enabling step towards operating such a high-Q acoustic device at the standard quantum limit.

  15. Weather observations through oceanic acoustic noise recorded by gliders

    NASA Astrophysics Data System (ADS)

    Cauchy, Pierre; Testor, Pierre; Guinet, Christophe; Gervaise, Cedric; Di Oro, Lucia; Ioana, Cornel; Mortier, Laurent; Bouin, Marie-Noelle; Beguery, Laurent; Klein, Patrice

    2013-04-01

    Offshore estimates of the meteorological parameters are unfortunately spurious when considering in-situ observtions only due to obvious observational limitations while their use would allow to calibrate satellite observations and to have better weather forecasts, if assimilated in numerical weather forecasting systems. The WOTAN (Weather Observations through Acoustic Noise) approach may be used to fill these gaps if coupled to the Global Ocean Observing Sytem which has now a global coverage thanks to many autonomous observing platforms. In this study we show first results from acoustic records collected by gliders deployed in the northwestern Mediterranean Sea in the framework of MOOSE. We show that using 3 descriptors at 5kHz, 8kHz, and 20kHz allows to extract the intensity of the wind and the precipitation when the glider is at depth. This approach based on the method presented by Barry & Nuysten (2004) is compared with meterological data from coastal weather stations and the offshore meteorological buoys from Meteo-France. We also show that there is a vane effect with the tail of the glider while at surface which allows to estimate the direction of the wind every so often. These observations coupled with the in-situ profiles on temperature and salinity profiles can allow to better study air-sea interactions.

  16. Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload

    NASA Technical Reports Server (NTRS)

    Welsh, David; Smith, Holly; Wang, Shuo

    2010-01-01

    Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.

  17. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  18. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  19. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    PubMed

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation.

  20. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    PubMed

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation. PMID:26519093

  1. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations

    PubMed Central

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J.

    2015-01-01

    Speakers adjust their vocal effort when communicating in different room acoustic and noise conditions and when instructed to speak at different volumes. The present paper reports on the effects of voice style, noise level, and acoustic feedback on vocal effort, evaluated as sound pressure level, and self-reported vocal fatigue, comfort, and control. Speakers increased their level in the presence of babble and when instructed to talk in a loud style, and lowered it when acoustic feedback was increased and when talking in a soft style. Self-reported responses indicated a preference for the normal style without babble noise. PMID:26723357

  2. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations.

    PubMed

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J

    2015-12-01

    Speakers adjust their vocal effort when communicating in different room acoustic and noise conditions and when instructed to speak at different volumes. The present paper reports on the effects of voice style, noise level, and acoustic feedback on vocal effort, evaluated as sound pressure level, and self-reported vocal fatigue, comfort, and control. Speakers increased their level in the presence of babble and when instructed to talk in a loud style, and lowered it when acoustic feedback was increased and when talking in a soft style. Self-reported responses indicated a preference for the normal style without babble noise.

  3. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements

    NASA Astrophysics Data System (ADS)

    Hugo, Ronald J.; Nowlin, Scott R.; Hahn, Ila L.; Eaton, Frank D.; McCrae, Kim A.

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence.

  4. Automated acoustic intensity measurements and the effect of gear tooth profile on noise

    NASA Technical Reports Server (NTRS)

    Atherton, W. J.; Pintz, A.; Lewicki, D. G.

    1987-01-01

    Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.

  5. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    SciTech Connect

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  6. Acoustic and Perceptual Characteristics of Vowels Produced during Simultaneous Communication

    ERIC Educational Resources Information Center

    Schiavetti, Nicholas; Metz, Dale Evan; Whitehead, Robert L.; Brown, Shannon; Borges, Janie; Rivera, Sara; Schultz, Christine

    2004-01-01

    This study investigated the acoustical and perceptual characteristics of vowels in speech produced during simultaneous communication (SC). Twelve normal hearing, experienced sign language users were recorded under SC and speech alone (SA) conditions speaking a set of sentences containing monosyllabic words designed for measurement of vowel…

  7. Publications in acoustics and noise control from the NASA Langley Research Center during 1940 - 1974

    NASA Technical Reports Server (NTRS)

    Smith, G. C. (Compiler); Laneave, J. N. (Compiler)

    1975-01-01

    This document contains reference lists of published Langley Research Center papers in various areas of acoustics and noise control for the period 1940-1974. The research work was performed either in-house by the center staff or by other personnel supported entirely or in part by grants or contracts. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics, (2) Propagation and operations, (3) Rotating blade noise, (4) Jet noise, (5) Sonic boom, (6) Flow-surface interaction noise, (7) Human response, and (8) Structural response.

  8. Distortion-rotor interaction noise produced by a drooped inlet

    NASA Technical Reports Server (NTRS)

    Smith, E. B.; Moore, M. T.; Gliebe, P. R.

    1980-01-01

    The 'drooped' inlet used on most wing mounted engines produces a wall static pressure distortion at the fan face of about plus or minus 2%. The interaction of the fan rotor with this fixed distortion pattern produces blade passing frequency and harmonic tone levels in flight which contribute to forward radiated engine noise spectra. Data from a wind tunnel test, using both a drooped inlet and an inlet with no droop, show large changes in forward radiated noise levels over a limited fan speed range. An analytical model of this fan noise mechanism is developed and is used to account for the major features of the measured results.

  9. Flight Acoustic Testing and For the Rotorcraft Noise Data Acquisition Model (RNM)

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Smith, Charles D.; Conner, David A.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the "Acoustics Week" flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  10. Flight Acoustic Testing and Data Acquisition For the Rotor Noise Model (RNM)

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Burley, Casey L.; Smith, Charles D.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the Acoustics Week flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  11. A survey of acoustic conditions and noise levels in secondary school classrooms in England.

    PubMed

    Shield, Bridget; Conetta, Robert; Dockrell, Julie; Connolly, Daniel; Cox, Trevor; Mydlarz, Charles

    2015-01-01

    An acoustic survey of secondary schools in England has been undertaken. Room acoustic parameters and background noise levels were measured in 185 unoccupied spaces in 13 schools to provide information on the typical acoustic environment of secondary schools. The unoccupied acoustic and noise data were correlated with various physical characteristics of the spaces. Room height and the amount of glazing were related to the unoccupied reverberation time and therefore need to be controlled to reduce reverberation to suitable levels for teaching and learning. Further analysis of the unoccupied data showed that the introduction of legislation relating to school acoustics in England and Wales in 2003 approximately doubled the number of school spaces complying with current standards. Noise levels were also measured during 274 lessons to examine typical levels generated during teaching activities in secondary schools and to investigate the influence of acoustic design on working noise levels in the classroom. Comparison of unoccupied and occupied data showed that unoccupied acoustic conditions affect the noise levels occurring during lessons. They were also related to the time spent in disruption to the lessons (e.g., students talking or shouting) and so may also have an impact upon student behavior in the classroom.

  12. A survey of acoustic conditions and noise levels in secondary school classrooms in England.

    PubMed

    Shield, Bridget; Conetta, Robert; Dockrell, Julie; Connolly, Daniel; Cox, Trevor; Mydlarz, Charles

    2015-01-01

    An acoustic survey of secondary schools in England has been undertaken. Room acoustic parameters and background noise levels were measured in 185 unoccupied spaces in 13 schools to provide information on the typical acoustic environment of secondary schools. The unoccupied acoustic and noise data were correlated with various physical characteristics of the spaces. Room height and the amount of glazing were related to the unoccupied reverberation time and therefore need to be controlled to reduce reverberation to suitable levels for teaching and learning. Further analysis of the unoccupied data showed that the introduction of legislation relating to school acoustics in England and Wales in 2003 approximately doubled the number of school spaces complying with current standards. Noise levels were also measured during 274 lessons to examine typical levels generated during teaching activities in secondary schools and to investigate the influence of acoustic design on working noise levels in the classroom. Comparison of unoccupied and occupied data showed that unoccupied acoustic conditions affect the noise levels occurring during lessons. They were also related to the time spent in disruption to the lessons (e.g., students talking or shouting) and so may also have an impact upon student behavior in the classroom. PMID:25618049

  13. Aircraft interior noise prediction using a structural-acoustic analogy in NASTRAN modal synthesis

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Marulo, Francesco

    1988-01-01

    The noise induced inside a cylindrical fuselage model by shaker excitation is investigated theoretically and experimentally. The NASTRAN modal-synthesis program is used in the theoretical analysis, and the predictions are compared with experimental measurements in extensive graphs. Good general agreement is obtained, but the need for further refinements to account for acoustic-cavity damping and structural-acoustic interaction is indicated.

  14. Applications of aero-acoustics to wind turbine noise prediction and control

    NASA Astrophysics Data System (ADS)

    Lowson, Martin V.

    1993-01-01

    Wind turbine noise generation mechanisms are essentially equivalent to the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. Basic sources for the wind turbine noise radiation process are defined, and their significance assessed. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance.

  15. Noise control for a ChamberCore cylindrical structure using long T-shaped acoustic resonators

    NASA Astrophysics Data System (ADS)

    Li, Deyu; Vipperman, Jeffrey S.

    2003-10-01

    The Air Force Research Laboratory, Space Vehicles Directorate has developed a new advanced composite launch vehicle fairing (referred to as ``ChamberCore''). The ChamberCore is sandwich-type structure fabricated from multi-layered composite face sheets separated by channels that form passive acoustic chambers. These acoustic chambers have a potential to create an acoustic resonator network that can be used to attenuate noise inside the closed ChamberCore cylindrical structure. In this study, first, the feasibility of using cylindrical Helmholtz resonators to control noise in a mock-scale ChamberCore composite cylinder is investigated. The targeted frequencies for noise control are the first four acoustic cavity resonances of the ChamberCore cylinder. The optimal position of the Helmholtz resonators for controlling each targeted cavity mode is discussed, and the effects of resonator spacing on noise attenuation are also experimentally evaluated. Next, six long T-shaped acoustic resonators are designed and constructed within the acoustic chambers of the structure and investigated. Several tests are conducted to evaluate the noise control ability of the resonators in the ChamberCore cylinder. Reductions ranging from 3.2 to 6.0 dB were observed in the overall mean-square noise reduction spectrum at the targeted inner cavity resonance frequencies. [Work supported by AFRL/DV.

  16. Determination of acoustic attenuation in the Hudson River Estuary by means of ship noise observations.

    PubMed

    Roh, Heui-Seol; Sutin, Alexander; Bunin, Barry

    2008-06-01

    Analysis of sound propagation in a complex urban estuary has application to underwater threat detection systems, underwater communication, and acoustic tomography. One of the most important acoustic parameters, sound attenuation, was analyzed in the Hudson River near Manhattan using measurements of acoustic noise generated by passing ships and recorded by a fixed hydrophone. Analysis of the ship noise level for varying distances allowed estimation of the sound attenuation in the frequency band of 10-80 kHz. The effective attenuation coefficient representing the attenuation loss above cylindrical spreading loss had only slight frequency dependence and can be estimated by the frequency independent value of 0.058 dBm.

  17. Theoretical design of acoustic treatment for cabin noise control of a light aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Mixson, J. S.

    1984-01-01

    An analytical procedure has been used to design an acoustic treatment for cabin noise control of a light aircraft. Using this approach acoustic add-on treatments capable of reducing the average noise levels in the cabin by about 17 dB from the untreated condition are developed. The added weight of the noise control package is about 2 percent of the total gross take-off weight of the aircraft. The analytical model uses modal solutions wherein the structural modes of the sidewall and the acoustic modes of the receiving space are accounted for. The additional noise losses due to add-on treatments are calculated by the impedance transfer method. The input noise spectral levels are selected utilizing experimental flight data. The add-on treatments considered for cabin noise control include aluminum honeycomb panels, constrained layer damping tape, porous acoustic materials, noise barriers and limp trim panels. To reduce the noise transmitted through the double wall aircraft windows to acceptable levels, changes in the design of the aircraft window are recommended.

  18. Acoustical and Perceptual Comparison of Noise Reduction and Compression in Hearing Aids

    ERIC Educational Resources Information Center

    Brons, Inge; Houben, Rolph; Dreschler, Wouter A.

    2015-01-01

    Purpose: Noise reduction and dynamic-range compression are generally applied together in hearing aids but may have opposite effects on amplification. This study evaluated the acoustical and perceptual effects of separate and combined processing of noise reduction and compression. Design: Recordings of the output of 4 hearing aids for speech in…

  19. An objective method and measuring equipment for noise control and acoustic diagnostics of motorcars. [acoustic diagnostics on automobile engines

    NASA Technical Reports Server (NTRS)

    Kacprowski, J.; Motylewski, J.; Miazga, J.

    1974-01-01

    An objective method and apparatus for noise control and acoustic diagnostics of motorcar engines are reported. The method and apparatus let us know whether the noisiness of the vehicle under test exceeds the admissible threshold levels given by appropriate standards and if so what is the main source of the excessive noise. The method consists in measuring both the overall noise level and the sound pressure levels in definite frequency bands while the engine speed is controlled as well and may be fixed at prescribed values. Whenever the individually adjusted threshold level has been exceeded in any frequency band, a self-sustaining control signal is sent.

  20. A First Look at the DGEN380 Engine Acoustic Data from a Core-Noise Perspective

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2015-01-01

    This work is a first look at acoustic data acquired in the NASA Glenn Research Center Aero-Acoustic Propulsion Laboratory using the Price Induction DGEN380 small turbofan engine, with particular emphasis on broadband combustor (core) noise. Combustor noise is detected by using a two-signal source separation technique employing one engine-internal sensor and one semi-far-field microphone. Combustor noise is an important core-noise component and is likely to become a more prominent contributor to overall airport community noise due to turbofan design trends, expected aircraft configuration changes, and advances in fan-noise-mitigation techniques. This work was carried out under the NASA Fundamental Aeronautics Program, Fixed Wing Project, Quiet Performance Subproject

  1. Passive acoustic observations of tide height in the Iroise Sea using ambient noise.

    PubMed

    Kinda, G Bazile; Bonnel, Julien

    2015-09-01

    Considering a broadband motionless source in a waveguide with a depth that varies with time, the time-frequency representation of the acoustic intensity shows a striation pattern than can be explained using the depth-frequency waveguide invariant. This phenomenon is used here to describe acoustic data recorded in the Iroise Sea, where intense tides occur. The originality of this study is that the acoustic data consist of only ambient noise. The best hypothesis is that these striations are created by distant marine traffic in the Bay of Brest, and the results suggest that tide height can be monitored using long-term passive acoustics.

  2. Passive acoustic observations of tide height in the Iroise Sea using ambient noise.

    PubMed

    Kinda, G Bazile; Bonnel, Julien

    2015-09-01

    Considering a broadband motionless source in a waveguide with a depth that varies with time, the time-frequency representation of the acoustic intensity shows a striation pattern than can be explained using the depth-frequency waveguide invariant. This phenomenon is used here to describe acoustic data recorded in the Iroise Sea, where intense tides occur. The originality of this study is that the acoustic data consist of only ambient noise. The best hypothesis is that these striations are created by distant marine traffic in the Bay of Brest, and the results suggest that tide height can be monitored using long-term passive acoustics. PMID:26428830

  3. Quantitative Measures of Anthropogenic Noise on Harbor Porpoises: Testing the Reliability of Acoustic Tag Recordings.

    PubMed

    Wisniewska, Danuta M; Teilmann, Jonas; Hermannsen, Line; Johnson, Mark; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-01-01

    In recent years, several sound and movement recording tags have been developed to sample the acoustic field experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal's orientation in the sound field affect the reliability of on-animal recordings as proxies for actual exposure. Here, we quantify sound exposure levels recorded with a DTAG-3 tag on a captive harbor porpoise exposed to vessel noise in a controlled acoustic environment. Results show that flow noise is limiting onboard noise recordings, whereas no evidence of body shading has been found for frequencies of 2-20 kHz. PMID:26611092

  4. Quantitative Measures of Anthropogenic Noise on Harbor Porpoises: Testing the Reliability of Acoustic Tag Recordings.

    PubMed

    Wisniewska, Danuta M; Teilmann, Jonas; Hermannsen, Line; Johnson, Mark; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-01-01

    In recent years, several sound and movement recording tags have been developed to sample the acoustic field experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal's orientation in the sound field affect the reliability of on-animal recordings as proxies for actual exposure. Here, we quantify sound exposure levels recorded with a DTAG-3 tag on a captive harbor porpoise exposed to vessel noise in a controlled acoustic environment. Results show that flow noise is limiting onboard noise recordings, whereas no evidence of body shading has been found for frequencies of 2-20 kHz.

  5. Noise control using a plate radiator and an acoustic resonator

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor)

    1996-01-01

    An active noise control subassembly for reducing noise caused by a source (such as an aircraft engine) independent of the subassembly. A noise radiating panel is bendably vibratable to generate a panel noise canceling at least a portion of the source noise. A piezoceramic actuator plate is connected to the panel. A front plate is spaced apart from the panel and the first plate, is positioned generally between the source noise and the panel, and has a sound exit port. A first pair of spaced-apart side walls each generally abut the panel and the front plate so as to generally enclose a front cavity to define a resonator.

  6. Modeling hemodynamic responses in auditory cortex at 1.5 T using variable duration imaging acoustic noise.

    PubMed

    Hu, Shuowen; Olulade, Olumide; Castillo, Javier Gonzalez; Santos, Joseph; Kim, Sungeun; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2010-02-15

    A confound for functional magnetic resonance imaging (fMRI), especially for auditory studies, is the presence of imaging acoustic noise generated mainly as a byproduct of rapid gradient switching during volume acquisition and, to a lesser extent, the radiofrequency transmit. This work utilized a novel pulse sequence to present actual imaging acoustic noise for characterization of the induced hemodynamic responses and assessment of linearity in the primary auditory cortex with respect to noise duration. Results show that responses to brief duration (46 ms) imaging acoustic noise is highly nonlinear while responses to longer duration (>1 s) imaging acoustic noise becomes approximately linear, with the right primary auditory cortex exhibiting a higher degree of nonlinearity than the left for the investigated noise durations. This study also assessed the spatial extent of activation induced by imaging acoustic noise, showing that the use of modeled responses (specific to imaging acoustic noise) as the reference waveform revealed additional activations in the auditory cortex not observed with a canonical gamma variate reference waveform, suggesting an improvement in detection sensitivity for imaging acoustic noise-induced activity. Longer duration (1.5 s) imaging acoustic noise was observed to induce activity that expanded outwards from Heschl's gyrus to cover the superior temporal gyrus as well as parts of the middle temporal gyrus and insula, potentially affecting higher level acoustic processing.

  7. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  8. Advantages from bilateral hearing in speech perception in noise with simulated cochlear implants and residual acoustic hearing.

    PubMed

    Schoof, Tim; Green, Tim; Faulkner, Andrew; Rosen, Stuart

    2013-02-01

    Acoustic simulations were used to study the contributions of spatial hearing that may arise from combining a cochlear implant with either a second implant or contralateral residual low-frequency acoustic hearing. Speech reception thresholds (SRTs) were measured in twenty-talker babble. Spatial separation of speech and noise was simulated using a spherical head model. While low-frequency acoustic information contralateral to the implant simulation produced substantially better SRTs there was no effect of spatial cues on SRT, even when interaural differences were artificially enhanced. Simulated bilateral implants showed a significant head shadow effect, but no binaural unmasking based on interaural time differences, and weak, inconsistent overall spatial release from masking. There was also a small but significant non-spatial summation effect. It appears that typical cochlear implant speech processing strategies may substantially reduce the utility of spatial cues, even in the absence of degraded neural processing arising from auditory deprivation. PMID:23363118

  9. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  10. Acoustic temperature measurement in a rocket noise field.

    PubMed

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.

  11. Beaked whale (Mesoplodon densirostris) passive acoustic detection in increasing ambient noise.

    PubMed

    Ward, Jessica; Jarvis, Susan; Moretti, David; Morrissey, Ronald; Dimarzio, Nancy; Johnson, Mark; Tyack, Peter; Thomas, Len; Marques, Tiago

    2011-02-01

    Passive acoustic detection is being increasingly used to monitor visually cryptic cetaceans such as Blainville's beaked whales (Mesoplodon densirostris) that may be especially sensitive to underwater sound. The efficacy of passive acoustic detection is traditionally characterized by the probability of detecting the animal's sound emissions as a function of signal-to-noise ratio. The probability of detection can be predicted using accepted, but not necessarily accurate, models of the underwater acoustic environment. Recent field studies combining far-field hydrophone arrays with on-animal acoustic recording tags have yielded the location and time of each sound emission from tagged animals, enabling in-situ measurements of the probability of detection. However, tagging studies can only take place in calm seas and so do not reflect the full range of ambient noise conditions under which passive acoustic detection may be used. Increased surface-generated noise from wind and wave interaction degrades the signal-to-noise ratio of animal sound receptions at a given distance leading to a reduction in probability of detection. This paper presents a case study simulating the effect of increasing ambient noise on detection of M. densirostris foraging clicks recorded from a tagged whale swimming in the vicinity of a deep-water, bottom-mounted hydrophone array.

  12. Radiation force produced by time reversal acoustic focusing system

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Armen; Sutin, Alexander

    2003-10-01

    An ultrasonic induced radiation force is an efficient tool for remote probing of internal anatomical structures and evaluating tissue viscoelastic properties, which are closely related to tissue functional state and abnormalities. Time Reversal Acoustic Focusing System (TRA FS) can provide efficient ultrasound focusing in highly inhomogeneous media. Furthermore, numerous reflections from boundaries, which distort focusing in conventional ultrasound focusing systems and are viewed as a significant technical hurdle, lead to an improvement of the focusing ability of the TRA system. In this work the TRA FS field structure and radiation force in a transcranial phantom were investigated. A simple TRA FS comprising a plane piezoceramic transducer attached to an external resonator such as an aluminum block was acoustically coupled to the tested transcranial phantom. A custom-designed compact electronic unit for TRA FS provided receiving, digitizing, storing, time reversing and transmitting of acoustic signals in a wide frequency range from 0.01 to 10 MHz. The radiation force produced by ultrasonic pulses was investigated as a function of the transmitted ultrasound temporal parameters. The simplest TRA FS provided focusing of 500 kHz ultrasound pulses and the generation of a radiation force with an efficacy hardly achievable using conventional sophisticated phased array transmitters. [Work supported by NIH.

  13. Effects of contralateral white noise stimulation on transitory evoked otoacoustic emissions in patients with acoustic neuroma.

    PubMed

    Maurer, J; Hinni, M; Beck, A; Mann, W

    1995-03-01

    Transitory evoked otoacoustic emissions are normal phenomena observed in most persons with hearing levels greater than 35 dB. Further, masking of the contralateral ear produces amplitude reductions in the transitory evoked otoacoustic emissions. We have undertaken a study of transitory evoked otoacoustic emissions in 20 patients with acoustic neuroma. All patients were assessed for transitory evoked otoacoustic emissions bilaterally, with and without contralateral masking with white band noise at 40, 50, and 60 dB. We found that transitory evoked otoacoustic emissions were present in 30% of ears with tumor and that the presence of transitory evoked otoacoustic emissions is associated with improved preoperative hearing levels, but that tumor size is not associated with the presence or absence of transitory evoked otoacoustic emissions. The amplitude of transitory evoked otoacoustic emissions from ears with tumor, when present, is decreased when compared with normal ears of normal patients. Further, with contralateral masking little of the amplitude reduction observed in normal patients is observed in the ears with acoustic neuroma. However, with masking of the contralateral ear, the ear without tumor demonstrated significantly greater amplitude reductions than normal ears from normal patients (p = 0.0006). Pertinent anatomy and possible explanations for these findings are discussed. PMID:7870435

  14. School cafeteria noise-The impact of room acoustics and speech intelligibility on children's voice levels

    NASA Astrophysics Data System (ADS)

    Bridger, Joseph F.

    2002-05-01

    The impact of room acoustics and speech intelligibility conditions of different school cafeterias on the voice levels of children is examined. Methods of evaluating cafeteria designs and predicting noise levels are discussed. Children are shown to modify their voice levels with changes in speech intelligibility like adults. Reverberation and signal to noise ratio are the important acoustical factors affecting speech intelligibility. Children have much more difficulty than adults in conditions where noise and reverberation are present. To evaluate the relationship of voice level and speech intelligibility, a database of real sound levels and room acoustics data was generated from measurements and data recorded during visits to a variety of existing cafeterias under different occupancy conditions. The effects of speech intelligibility and room acoustics on childrens voice levels are demonstrated. A new method is presented for predicting speech intelligibility conditions and resulting noise levels for the design of new cafeterias and renovation of existing facilities. Measurements are provided for an existing school cafeteria before and after new room acoustics treatments were added. This will be helpful for acousticians, architects, school systems, regulatory agencies, and Parent Teacher Associations to create less noisy cafeteria environments.

  15. Acoustic and vibration response of a structure with added noise control treatment under various excitations.

    PubMed

    Rhazi, Dilal; Atalla, Noureddine

    2014-02-01

    The evaluation of the acoustic performance of noise control treatments is of great importance in many engineering applications, e.g., aircraft, automotive, and building acoustics applications. Numerical methods such as finite- and boundary elements allow for the study of complex structures with added noise control treatment. However, these methods are computationally expensive when used for complex structures. At an early stage of the acoustic trim design process, many industries look for simple and easy to use tools that provide sufficient physical insight that can help to formulate design criteria. The paper presents a simple and tractable approach for the acoustic design of noise control treatments. It presents and compares two transfer matrix-based methods to investigate the vibroacoustic behavior of noise control treatments. The first is based on a modal approach, while the second is based on wave-number space decomposition. In addition to the classical rain-on-the-roof and diffuse acoustic field excitations, the paper also addresses turbulent boundary layer and point source (monopole) excitations. Various examples are presented and compared to a finite element calculation to validate the methodology and to confirm its relevance along with its limitations. PMID:25234878

  16. Neural underpinnings of background acoustic noise in normal aging and mild cognitive impairment.

    PubMed

    Sinanaj, Indrit; Montandon, Marie-Louise; Rodriguez, Cristelle; Herrmann, François; Santini, Francesco; Haller, Sven; Giannakopoulos, Panteleimon

    2015-12-01

    Previous contributions in younger cohorts have revealed that reallocation of cerebral resources, a crucial mechanism for working memory (WM), may be disrupted by parallel demands of background acoustic noise suppression. To date, no study has explored the impact of such disruption on brain activation in elderly individuals with or without subtle cognitive deficits. We performed a functional Magnetic Resonance Imaging (fMRI) study in 23 cases (mean age=75.7 y.o., 16 men) with mild cognitive impairment (MCI) and 16 elderly healthy controls (HC, mean age=70.1 y.o., three men) using a 2-back WM task, under two distinct MRI background acoustic noise conditions (louder vs. lower noise echo-planar imaging). General linear models were used to assess brain activation as a function of group and noise. In both groups, lower background noise is associated with increased activation of the working memory network (WMN). A decrease of the normally observed deactivation of the default mode network (DMN) is found under louder noise in both groups. Unlike HC, MCI cases also show decreased deactivation of the DMN under both louder and lower background noise. Under louder noise, this decrease is observed in anterior parts of the DMN in HC, and in the posterior cingulate cortex in MCI cases. Our results suggest that background acoustic noise has a differential impact on WMN activation in normal aging as a function of the cognitive status. Only louder noise has a disruptive effect on the usually observed DMN deactivation during WM task performance in HC. In contrast, MCI cases show altered DMN reactivity even in the presence of lower noise. PMID:26391923

  17. Neural underpinnings of background acoustic noise in normal aging and mild cognitive impairment.

    PubMed

    Sinanaj, Indrit; Montandon, Marie-Louise; Rodriguez, Cristelle; Herrmann, François; Santini, Francesco; Haller, Sven; Giannakopoulos, Panteleimon

    2015-12-01

    Previous contributions in younger cohorts have revealed that reallocation of cerebral resources, a crucial mechanism for working memory (WM), may be disrupted by parallel demands of background acoustic noise suppression. To date, no study has explored the impact of such disruption on brain activation in elderly individuals with or without subtle cognitive deficits. We performed a functional Magnetic Resonance Imaging (fMRI) study in 23 cases (mean age=75.7 y.o., 16 men) with mild cognitive impairment (MCI) and 16 elderly healthy controls (HC, mean age=70.1 y.o., three men) using a 2-back WM task, under two distinct MRI background acoustic noise conditions (louder vs. lower noise echo-planar imaging). General linear models were used to assess brain activation as a function of group and noise. In both groups, lower background noise is associated with increased activation of the working memory network (WMN). A decrease of the normally observed deactivation of the default mode network (DMN) is found under louder noise in both groups. Unlike HC, MCI cases also show decreased deactivation of the DMN under both louder and lower background noise. Under louder noise, this decrease is observed in anterior parts of the DMN in HC, and in the posterior cingulate cortex in MCI cases. Our results suggest that background acoustic noise has a differential impact on WMN activation in normal aging as a function of the cognitive status. Only louder noise has a disruptive effect on the usually observed DMN deactivation during WM task performance in HC. In contrast, MCI cases show altered DMN reactivity even in the presence of lower noise.

  18. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  19. Modeling the acoustical characteristics of silencers for suppressing noise from a gas-turbine unit compressor

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. E.; Khomenok, L. A.; Yablonik, L. R.

    2010-02-01

    An acoustic model constructed for silencers of noise from the air intake paths of gas-turbine units is proposed, which correlates indicators characterizing the effectiveness of noise suppression with dimension-less parameters that depend on linear dimensions of the construction, current frequency of sound, as well as factors characterizing the properties of working medium and sound-absorbing material. Universal acoustic characteristics of extended dissipative plate silencers filled with a fibrous sound absorber are constructed. The influence of protective fabric coating on the sound-proofing properties of silencers is analyzed.

  20. Acoustic Noise Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect

    Roadman, J.; Huskey, A.

    2013-07-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the Viryd CS8 is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and binning by wind speed instead of regression analysis.

  1. Acoustic Noise Test Report for the SWIFT Wind Turbine in Boulder, CO

    SciTech Connect

    Roadman, J.; Huskey, A.

    2013-04-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the SWIFT is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and utilized binning by wind speed instead of regression analysis.

  2. Acoustic temperature measurement in a rocket noise field.

    PubMed

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations. PMID:21117711

  3. Frequency-space prediction filtering for acoustic clutter and random noise attenuation in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Shin, Junseob; Huang, Lianjie

    2016-04-01

    Frequency-space prediction filtering (FXPF), also known as FX deconvolution, is a technique originally developed for random noise attenuation in seismic imaging. FXPF attempts to reduce random noise in seismic data by modeling only real signals that appear as linear or quasilinear events in the aperture domain. In medical ultrasound imaging, channel radio frequency (RF) signals from the main lobe appear as horizontal events after receive delays are applied while acoustic clutter signals from off-axis scatterers and electronic noise do not. Therefore, FXPF is suitable for preserving only the main-lobe signals and attenuating the unwanted contributions from clutter and random noise in medical ultrasound imaging. We adapt FXPF to ultrasound imaging, and evaluate its performance using simulated data sets from a point target and an anechoic cyst. Our simulation results show that using only 5 iterations of FXPF achieves contrast-to-noise ratio (CNR) improvements of 67 % in a simulated noise-free anechoic cyst and 228 % in a simulated anechoic cyst contaminated with random noise of 15 dB signal-to-noise ratio (SNR). Our findings suggest that ultrasound imaging with FXPF attenuates contributions from both acoustic clutter and random noise and therefore, FXPF has great potential to improve ultrasound image contrast for better visualization of important anatomical structures and detection of diseased conditions.

  4. Arousal from sleep by noises from aircraft with and without acoustically treated nacelles

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Peeler, D. J.; Dobbs, M. E.

    1973-01-01

    The electroencephalographic and behavioral responses during sleep of four subjects, aged 46 to 58 years, to three types of noises were tested over 14 consecutive nights. The stimuli were two DC-8 jet landing noises (each 30 seconds in duration and coming from DC-8 aircraft with and without acoustical treatment on the engine nacelles) and a 4-second burst of pink noise. Each of the noises was tested at nominal intensities of 61 and 79 dBA. Other physical descriptors of the noises were measured or computed. The results indicate that for an equivalent degree of sleep disruption, noise form the jet aircraft with untreated nacelles must be about 6 dBA less intense than the jet with acoustically treated nacelles. Predictions of the effects of noise on sleep appear, tentatively, to attain the highest accuracy when the physical descriptor of noise intensity includes information about the impulsive characteristics of that noise as well as its long-term spectral content.

  5. Towards a Comprehensive Model of Jet Noise Using an Acoustic Analogy and Steady RANS Solutions

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    An acoustic analogy is developed to predict the noise from jet flows. It contains two source models that independently predict the noise from turbulence and shock wave shear layer interactions. The acoustic analogy is based on the Euler equations and separates the sources from propagation. Propagation effects are taken into account by calculating the vector Green's function of the linearized Euler equations. The sources are modeled following the work of Tam and Auriault, Morris and Boluriaan, and Morris and Miller. A statistical model of the two-point cross-correlation of the velocity fluctuations is used to describe the turbulence. The acoustic analogy attempts to take into account the correct scaling of the sources for a wide range of nozzle pressure and temperature ratios. It does not make assumptions regarding fine- or large-scale turbulent noise sources, self- or shear-noise, or convective amplification. The acoustic analogy is partially informed by three-dimensional steady Reynolds-Averaged Navier-Stokes solutions that include the nozzle geometry. The predictions are compared with experiments of jets operating subsonically through supersonically and at unheated and heated temperatures. Predictions generally capture the scaling of both mixing noise and BBSAN for the conditions examined, but some discrepancies remain that are due to the accuracy of the steady RANS turbulence model closure, the equivalent sources, and the use of a simplified vector Green's function solver of the linearized Euler equations.

  6. The electrical properties of a planar coil electromagnetic acoustic transducer and their implications for noise performance

    NASA Astrophysics Data System (ADS)

    Seher, Matthias; Challis, Richard

    2016-02-01

    This paper is concerned with the electrical properties of an electromagnetic acoustic transducer (EMAT) formed of a flat spiral coil coupled to steel sheet components and operating over a narrow band of frequencies around 50 kHz, well below significant resonances. The electromagnetic skin effect is a significant contributor to the terminal impedance of the EMAT and hence to signal sensitivity, Johnson noise generation and the achievable signal-to-noise ratios (SNR). A transformer model is developed to simulate these effects and to assist in the optimization of the SNR. In this analysis Johnson noise in the system is compared to the unknown emf generated in the eddy current path by an incident acoustic wave to yield a fundamental SNR. The attainable SNR of the whole system is normalized to this in the form of a noise figure.

  7. Acoustic-optic spectrometer. 1: Noise contributions and system consideration

    NASA Technical Reports Server (NTRS)

    Chin, G.

    1984-01-01

    An acousto-optic spectrometer (AOS) used as an IF spectrometer to a heterodyne receiver is modeled as a total power multi-channel integrating receiver. Systematic noise contributions common to all total power, time integrating receivers, as well as noise terms unique to the use of optical elements and photo-detectors in an AOS are identified and discussed. In addition, degradation of signal-to-noise ratio of an unbalanced Dicke receiver compared to a balanced Dicke receiver is found to be due to gain calibration processing and is not an instrumental effect.

  8. Active Structural Acoustic Control of Interior Noise on a Raytheon 1900D

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran; Sullivan, Brenda; Cline, John

    2000-01-01

    An active structural acoustic control system has been demonstrated on a Raytheon Aircraft Company 1900D turboprop airliner. Both single frequency and multi-frequency control of the blade passage frequency and its harmonics was accomplished. The control algorithm was a variant of the popular filtered-x LMS implemented in the principal component domain. The control system consisted of 21 inertial actuators and 32 microphones. The actuators were mounted to the aircraft's ring frames. The microphones were distributed uniformly throughout the interior at head height, both seated and standing. Actuator locations were selected using a combinatorial search optimization algorithm. The control system achieved a 14 dB noise reduction of the blade passage frequency during single frequency tests. Multi-frequency control of the first 1st, 2nd and 3rd harmonics resulted in 10.2 dB, 3.3 dB and 1.6 dB noise reductions respectively. These results fall short of the predictions which were produced by the optimization algorithm (13.5 dB, 8.6 dB and 6.3 dB). The optimization was based on actuator transfer functions taken on the ground and it is postulated that cabin pressurization at flight altitude was a factor in this discrepancy.

  9. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 1: Results and analysis

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The acoustic tests and data analysis for a 0.508-scale fan vehicle of a 111,300 newton (25,000 pound) thrust, full-size engine, which would have application on an advanced transport aircraft, is described. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec) to achieve the desired pressure ratio in a single-stage fan with low radius ratio (0.38), and to maintain adequate stall margin. The fan has 44 tip-shrouded rotor blades and 90 outlet guide vanes. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized. The suppressed fan noise was shown to be consistent with the proposed federal regulation on aircraft noise.

  10. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. Practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrowband signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat.

  11. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-06-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. .

  12. Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.

    2008-01-01

    This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.

  13. Relationships between non-acoustic factors and subjective reactions to floor impact noise in apartment buildings.

    PubMed

    Park, Sang Hee; Lee, Pyoung Jik; Yang, Kwan Seop; Kim, Kyoung Woo

    2016-03-01

    The aim of this study was to provide an understanding of how residents in apartment buildings perceive and react to impact sounds coming from the upstairs neighbours' dwellings. Based on existing theoretical and empirical studies on environmental noise, a conceptual model was developed to explain relationships among noise annoyance and non-acoustic factors. The model was then tested using structural equation modelling with survey data from residents living in apartment buildings (N = 487). The findings showed that the conceptual model was consistent with other models developed for environmental noises. The results indicated that annoyance induced by floor impact noise was associated with perceived disturbance, coping, and self-reported health complaints. Noise sensitivity had a direct impact on perceived disturbance and an indirect impact on annoyance, and moderating variables affected the non-acoustic factors. Exposure to footstep noises increased the impact size of noise sensitivity to disturbance. Predictability, marital status, and house ownership were found to influence the relationship between attitudes towards authorities and coping. In addition, a negative attitude towards neighbours (i.e., the noise source) moderated the positive relationship between annoyance and coping.

  14. Relationships between non-acoustic factors and subjective reactions to floor impact noise in apartment buildings.

    PubMed

    Park, Sang Hee; Lee, Pyoung Jik; Yang, Kwan Seop; Kim, Kyoung Woo

    2016-03-01

    The aim of this study was to provide an understanding of how residents in apartment buildings perceive and react to impact sounds coming from the upstairs neighbours' dwellings. Based on existing theoretical and empirical studies on environmental noise, a conceptual model was developed to explain relationships among noise annoyance and non-acoustic factors. The model was then tested using structural equation modelling with survey data from residents living in apartment buildings (N = 487). The findings showed that the conceptual model was consistent with other models developed for environmental noises. The results indicated that annoyance induced by floor impact noise was associated with perceived disturbance, coping, and self-reported health complaints. Noise sensitivity had a direct impact on perceived disturbance and an indirect impact on annoyance, and moderating variables affected the non-acoustic factors. Exposure to footstep noises increased the impact size of noise sensitivity to disturbance. Predictability, marital status, and house ownership were found to influence the relationship between attitudes towards authorities and coping. In addition, a negative attitude towards neighbours (i.e., the noise source) moderated the positive relationship between annoyance and coping. PMID:27036252

  15. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    PubMed

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy.

  16. Acoustic transmission loss and structureborne noise transmission tests on a LASCOR and a reference steel panel

    NASA Astrophysics Data System (ADS)

    Norwood, C. J.

    1993-09-01

    LASCOR is a laser welded corrugated steel sandwich developed as a lightweight construct for ship superstructures. Tests were performed to measure acoustic transmission loss and structureborne noise transmission for both a LASCOR panel and a reference conventional rib-stiffened steel panel. This report outlines the test methods used and compares the results for the two panels.

  17. Flap Side-Edge Noise: Acoustic Analysis of Sen's Model

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.; Martin, James E.

    1996-01-01

    The two-dimensional flap side-edge flow model developed by Sen is analyzed to reveal the noise production potential of the proposed mechanism. The model assumes that a vortex will form at the equilibrium position off the side edge of the flap. The vortex is then perturbed away from the equilibrium position by incoming turbulence causing it to oscillate and thus radiate sound. The noise field is calculated three-dimensionally by taking the flap to have a finite chord. Spectra and directivity of the farfield sound are presented. In addition, the effect of retarded time differences is evaluated. The parameters in the model are related to typical aircraft parameters and noise reduction possibilities are proposed.

  18. Information-bearing acoustic change outperforms duration in predicting intelligibility of full-spectrum and noise-vocoded sentences.

    PubMed

    Stilp, Christian E

    2014-03-01

    Recent research has demonstrated a strong relationship between information-bearing acoustic changes in the speech signal and speech intelligibility. The availability of information-bearing acoustic changes reliably predicts intelligibility of full-spectrum [Stilp and Kluender (2010). Proc. Natl. Acad. Sci. U.S.A. 107(27), 12387-12392] and noise-vocoded sentences amid noise interruption [Stilp et al. (2013). J. Acoust. Soc. Am. 133(2), EL136-EL141]. However, other research reports that proportion of signal duration preserved also predicts intelligibility of noise-interrupted speech. These factors have only ever been investigated independently, obscuring whether one better explains speech perception. The present experiments manipulated both factors to answer this question. A broad range of sentence durations (160-480 ms) containing high or low information-bearing acoustic changes were replaced by speech-shaped noise in noise-vocoded (Experiment 1) and full-spectrum sentences (Experiment 2). Sentence intelligibility worsened with increasing noise replacement, but in both experiments, information-bearing acoustic change was a statistically superior predictor of performance. Perception relied more heavily on information-bearing acoustic changes in poorer listening conditions (in spectrally degraded sentences and amid increasing noise replacement). Highly linear relationships between measures of information and performance suggest that exploiting information-bearing acoustic change is a shared principle underlying perception of acoustically rich and degraded speech. Results demonstrate the explanatory power of information-theoretic approaches for speech perception.

  19. Determination of acoustic attenuation in the Hudson River Estuary by means of ship noise observations.

    PubMed

    Roh, Heui-Seol; Sutin, Alexander; Bunin, Barry

    2008-06-01

    Analysis of sound propagation in a complex urban estuary has application to underwater threat detection systems, underwater communication, and acoustic tomography. One of the most important acoustic parameters, sound attenuation, was analyzed in the Hudson River near Manhattan using measurements of acoustic noise generated by passing ships and recorded by a fixed hydrophone. Analysis of the ship noise level for varying distances allowed estimation of the sound attenuation in the frequency band of 10-80 kHz. The effective attenuation coefficient representing the attenuation loss above cylindrical spreading loss had only slight frequency dependence and can be estimated by the frequency independent value of 0.058 dBm. PMID:18537300

  20. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine C

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor was evaluated. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penality. The NASA core suppressor without the spltter suppressed most of the core noise without any engine performance penalty.

  1. Passive localization of noise-producing targets using a compact volumetric array.

    PubMed

    Gebbie, John; Siderius, Martin; Nielsen, Peter L; Miller, James

    2014-07-01

    A technique is presented for passively localizing multiple noise-producing targets by cross-correlating the elevation beams of a compact volumetric array on separate bearings. A target's multipath structure inherently contains information about its range; however, unknown, random noise waveforms make time separation of individual arrivals difficult. Ocean ambient noise has previously been used to measure multipath delays to the seabed by cross-correlating the beams of a vertical line array [Siderius, Song, Gerstoft, Hodgkiss, Hursky, and Harrison, J. Acoust. Soc. Am. 127, 2193-2200 (2010)], but this methodology has not been applied to distant noise sources having non-vertical arrivals. The technique presented in this paper uses a compact volumetric array mounted to an autonomous underwater vehicle to measure the three-dimensional directionality and time delays of multipath arrivals, while adaptively rejecting clutter and multi-target interference. This is validated with experimental results in a shallow ocean environment in which a small workboat maneuvered in the vicinity. Short ranges could be estimated reliably using straight ray paths, but longer ranges required accounting for ray refraction. PMID:24993197

  2. Passive localization of noise-producing targets using a compact volumetric array.

    PubMed

    Gebbie, John; Siderius, Martin; Nielsen, Peter L; Miller, James

    2014-07-01

    A technique is presented for passively localizing multiple noise-producing targets by cross-correlating the elevation beams of a compact volumetric array on separate bearings. A target's multipath structure inherently contains information about its range; however, unknown, random noise waveforms make time separation of individual arrivals difficult. Ocean ambient noise has previously been used to measure multipath delays to the seabed by cross-correlating the beams of a vertical line array [Siderius, Song, Gerstoft, Hodgkiss, Hursky, and Harrison, J. Acoust. Soc. Am. 127, 2193-2200 (2010)], but this methodology has not been applied to distant noise sources having non-vertical arrivals. The technique presented in this paper uses a compact volumetric array mounted to an autonomous underwater vehicle to measure the three-dimensional directionality and time delays of multipath arrivals, while adaptively rejecting clutter and multi-target interference. This is validated with experimental results in a shallow ocean environment in which a small workboat maneuvered in the vicinity. Short ranges could be estimated reliably using straight ray paths, but longer ranges required accounting for ray refraction.

  3. An investigation of acoustic noise requirements for the Space Station centrifuge facility

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy

    1994-01-01

    Acoustic noise emissions from the Space Station Freedom (SSF) centrifuge facility hardware represent a potential technical and programmatic risk to the project. The SSF program requires that no payload exceed a Noise Criterion 40 (NC-40) noise contour in any octave band between 63 Hz and 8 kHz as measured 2 feet from the equipment item. Past experience with life science experiment hardware indicates that this requirement will be difficult to meet. The crew has found noise levels on Spacelab flights to be unacceptably high. Many past Ames Spacelab life science payloads have required waivers because of excessive noise. The objectives of this study were (1) to develop an understanding of acoustic measurement theory, instruments, and technique, and (2) to characterize the noise emission of analogous Facility components and previously flown flight hardware. Test results from existing hardware were reviewed and analyzed. Measurements of the spectral and intensity characteristics of fans and other rotating machinery were performed. The literature was reviewed and contacts were made with NASA and industry organizations concerned with or performing research on noise control.

  4. Effects of noise and acoustics in schools on vocal health in teachers.

    PubMed

    Cutiva, Lady Catherine Cantor; Burdorf, Alex

    2015-01-01

    Previous studies on the influence of noise and acoustics in the classroom on voice symptoms among teachers have exclusively relied on self-reports. Since self-reported physical conditions may be biased, it is important to determine the role of objective measurements of noise and acoustics in the presence of voice symptoms. To assess the association between objectively measured and self-reported physical conditions at school with the presence of voice symptoms among teachers. In 12 public schools in Bogotα, we conducted a cross-sectional study among 682 Colombian school workers at 377 workplaces. After signed the informed consent, participants filled out a questionnaire on individual and work-related conditions and the nature and severity of voice symptoms in the past month. Short-term environmental measurements of sound levels, temperature, humidity, and reverberation time were conducted during visits at the workplaces, such as classrooms and offices. Logistic regression analysis was used to determine associations between work-related factors and voice symptoms. High noise levels outside schools (odds ratio [OR] = 1.83; 95% confidence interval [CI]: 1.12-2.99) and self-reported poor acoustics at the workplace (OR = 2.44; 95% CI: 1.88-3.53) were associated with voice symptoms. We found poor agreement between the objective measurements and self-reports of physical conditions at the workplace. This study indicates that noise and acoustics may play a role in the occurrence of voice symptoms among teachers. The poor agreement between objective measurements and self-reports of physical conditions indicate that these are different entities, which argue for inclusion of physical measurements of the working environment in studies on the influence of noise and acoustics on vocal health.

  5. Noise in an acoustic-optic modulated laser source

    SciTech Connect

    Kachelmyer, A.L.; Eng, R.S.

    1989-01-01

    This paper considers the measurement of amplitude modulation (AM) and phase modulation (PM) noise in a tunable CO{sub 2} laser source. Theoretical and experimental heterodyned output power spectrums are used to evaluate the quality of the acousto-optically tuned source.

  6. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation.

    PubMed

    Hu, Yi

    2010-05-01

    Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.

  7. Finite Difference Time Domain Analysis of Underwater Acoustic Lens System for Ambient Noise Imaging

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Miyazaki, Ayano; Ogasawara, Hanako; Yokoyama, Tomoki; Nakamura, Toshiaki

    2006-05-01

    Much attention has been paid to the new idea of detecting objects using ocean ambient noise. This concept is called ambient noise imaging (ANI). In this study, sound fields focused by an acoustic lens system constructed with a single biconcave lens were analyzed using the finite difference time domain (FDTD) method for realizing an ANI system. The size of the lens aperture that would have sufficient resolution—for example, the beam width is 1° at 60 kHz—was roughly determined by comparing the image points and -3 dB areas of sound pressure fields generated by lenses with various apertures. Then, in another FDTD analysis, we successfully used a lens with a determined aperture to detect rigid target objects in an acoustic noise field generated by a large number of point sources.

  8. Characterizing noise in nonhuman vocalizations: Acoustic analysis and human perception of barks by coyotes and dogs

    NASA Astrophysics Data System (ADS)

    Riede, Tobias; Mitchell, Brian R.; Tokuda, Isao; Owren, Michael J.

    2005-07-01

    Measuring noise as a component of mammalian vocalizations is of interest because of its potential relevance to the communicative function. However, methods for characterizing and quantifying noise are less well established than methods applicable to harmonically structured aspects of signals. Using barks of coyotes and domestic dogs, we compared six acoustic measures and studied how they are related to human perception of noisiness. Measures of harmonic-to-noise-ratio (HNR), percent voicing, and shimmer were found to be the best predictors of perceptual rating by human listeners. Both acoustics and perception indicated that noisiness was similar across coyote and dog barks, but within each species there was significant variation among the individual vocalizers. The advantages and disadvantages of the various measures are discussed.

  9. Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators

    PubMed Central

    Siemers, Björn M.; Schaub, Andrea

    2011-01-01

    Noise pollution from human traffic networks and industrial activity impacts vast areas of our planet. While anthropogenic noise effects on animal communication are well documented, we have very limited understanding of noise impact on more complex ecosystem processes, such as predator–prey interactions, albeit urgently needed to devise mitigation measures. Here, we show that traffic noise decreases the foraging efficiency of an acoustic predator, the greater mouse-eared bat (Myotis myotis). These bats feed on large, ground-running arthropods that they find by listening to their faint rustling sounds. We measured the bats' foraging performance on a continuous scale of acoustically simulated highway distances in a behavioural experiment, designed to rule out confounding factors such as general noise avoidance. Successful foraging bouts decreased and search time drastically increased with proximity to the highway. At 7.5 m to the road, search time was increased by a factor of five. From this increase, we predict a 25-fold decrease in surveyed ground area and thus in foraging efficiency for a wild bat. As most of the bats' prey are predators themselves, the noise impact on the bats' foraging performance will have complex effects on the food web and ultimately on the ecosystem stability. Similar scenarios apply to other ecologically important and highly protected acoustic predators, e.g. owls. Our study provides the empirical basis for quantitative predictions of anthropogenic noise impacts on ecosystem processes. It highlights that an understanding of the effects of noise emissions and other forms of ‘sensory pollution’ are crucially important for the assessment of environmental impact of human activities. PMID:21084347

  10. Acoustic noise improves motor learning in spontaneously hypertensive rats, a rat model of attention deficit hyperactivity disorder.

    PubMed

    Söderlund, Göran B W; Eckernäs, Daniel; Holmblad, Olof; Bergquist, Filip

    2015-03-01

    The spontaneously hypertensive (SH) rat model of ADHD displays impaired motor learning. We used this characteristic to study if the recently described acoustic noise benefit in learning in children with ADHD is also observed in the SH rat model. SH rats and a Wistar control strain were trained in skilled reach and rotarod running under either ambient noise or in 75 dBA white noise. In other animals the effect of methylphenidate (MPH) on motor learning was assessed with the same paradigms. To determine if acoustic noise influenced spontaneous motor activity, the effect of acoustic noise was also determined in the open field activity paradigm. We confirm impaired motor learning in the SH rat compared to Wistar SCA controls. Acoustic noise restored motor learning in SH rats learning the Montoya reach test and the rotarod test, but had no influence on learning in Wistar rats. Noise had no effect on open field activity in SH rats, but increased corner time in Wistar. MPH completely restored rotarod learning and performance but did not improve skilled reach in the SH rat. It is suggested that the acoustic noise benefit previously reported in children with ADHD is shared by the SH rat model of ADHD, and the effect is in the same range as that of stimulant treatment. Acoustic noise may be useful as a non-pharmacological alternative to stimulant medication in the treatment of ADHD.

  11. Generation of desired signals from acoustic drivers. [for aircraft engine internal noise propagation experiment

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, R.; Salikuddin, M.; Ahuja, K. K.

    1982-01-01

    A procedure to control transient signal generation is developed for the study of internal noise propagation from aircraft engines. A simple algorithm incorporating transform techniques is used to produce signals of any desired waveform from acoustic drivers. The accurate driver response is then calculated, and from this the limiting frequency characteristics are determined and the undesirable frequencies where the driver response is poor are eliminated from the analysis. A synthesized signal is then produced by convolving the inverse of the response function with the desired signal. Although the shape of the synthesized signal is in general quite awkward, the driver generates the desired signal when the distorted signal is fed into the driver. The results of operating the driver in two environments, in a free field and in a duct, are presented in order to show the impedance matching effect of the driver. In addition, results using a high frequency cut-off value as a parameter is presented in order to demonstrate the extent of the applicability of the synthesis procedure. It is concluded that the desired signals can be generated through the signal synthesis procedure.

  12. Noise reduction of a composite cylinder subjected to random acoustic excitation

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Beyer, T.

    1989-01-01

    Interior and exterior noise measurements were conducted on a stiffened composite floor-equipped cylinder, with and without an interior trim installed. Noise reduction was obtained for the case of random acoustic excitation in a diffuse field; the frequency range of interest was 100-800-Hz one-third octave bands. The measured data were compared with noise reduction predictions from the Propeller Aircraft Interior Noise (PAIN) program and from a statistical energy analysis. Structural model parameters were not predicted well by the PAIN program for the given input parameters; this resulted in incorrect noise reduction predictions for the lower one-third octave bands where the power flow into the interior of the cylinder was predicted on a mode-per-mode basis.

  13. Aero acoustic analysis and community noise. HSCT climb to cruise noise assessment

    NASA Technical Reports Server (NTRS)

    Mortlock, Alan K.

    1992-01-01

    The widely accepted industry High Speed Civil Transport (HSCT) design goal for exterior noise is to achieve Federal Aviation Regulation (FAR) Part 36 Stage 3 noise limits currently required for new subsonic aircraft. The three phases of the concern are as follows: (1) airport noise abatement at communities close to the airport, (2) climb power opening-up procedures, and (3) the climb to cruise phase affecting communities far from the airport.

  14. Aero acoustic analysis and community noise. HSCT climb to cruise noise assessment

    NASA Astrophysics Data System (ADS)

    Mortlock, Alan K.

    1992-04-01

    The widely accepted industry High Speed Civil Transport (HSCT) design goal for exterior noise is to achieve Federal Aviation Regulation (FAR) Part 36 Stage 3 noise limits currently required for new subsonic aircraft. The three phases of the concern are as follows: (1) airport noise abatement at communities close to the airport, (2) climb power opening-up procedures, and (3) the climb to cruise phase affecting communities far from the airport.

  15. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations. PMID:12880062

  16. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations.

  17. A measure of acoustic noise generated from transcranial magnetic stimulation coils.

    PubMed

    Dhamne, Sameer C; Kothare, Raveena S; Yu, Camilla; Hsieh, Tsung-Hsun; Anastasio, Elana M; Oberman, Lindsay; Pascual-Leone, Alvaro; Rotenberg, Alexander

    2014-01-01

    The intensity of sound emanating from the discharge of magnetic coils used in repetitive transcranial magnetic stimulation (rTMS) can potentially cause acoustic trauma. Per Occupational Safety and Health Administration (OSHA) standards for safety of noise exposure, hearing protection is recommended beyond restricted levels of noise and time limits. We measured the sound pressure levels (SPLs) from four rTMS coils with the goal of assessing if the acoustic artifact levels are of sufficient amplitude to warrant protection from acoustic trauma per OSHA standards. We studied the SPLs at two frequencies (5 and 10 Hz), three machine outputs (MO) (60, 80 and 100%), and two distances from the coil (5 and 10 cm). We found that the SPLs were louder at closer proximity from the coil and directly dependent on the MO. We also found that in all studied conditions, SPLs were lower than the OSHA permissible thresholds for short (<15 min) acoustic exposure, but at extremes of use, may generate sufficient noise to warrant ear protection with prolonged (>8 h) exposure.

  18. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers

    SciTech Connect

    Arenas, Celia; Leiva, Carlos; Vilches, Luis F.

    2013-11-15

    Highlights: • The particle size of bottom ash influenced the acoustic behavior of the barrier. • The best sound absorption coefficients were measured for larger particle sizes. • The maximum noise absorption is displaced to lower frequencies for higher thickness. • A noise barrier was designed with better properties than commercial products. • Recycling products from bottom ash no present leaching and radioactivity problems. - Abstract: The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectively recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk.

  19. The ecological and evolutionary consequences of noise-induced acoustic habitat loss

    NASA Astrophysics Data System (ADS)

    Tennessen, Jennifer Beissinger

    Anthropogenic threats are facilitating rapid environmental change and exerting novel pressures on the integrity of ecological patterns and processes. Currently, habitat loss is the leading factor contributing to global biodiversity loss. Noise created by human activities is nearly ubiquitous in terrestrial and marine systems, and causes acoustic habitat loss by interfering with species' abilities to freely send and receive critical acoustic biological information. My dissertation investigates how novel sounds from human activities affect ecological and evolutionary processes in space and time in marine and terrestrial systems, and how species may cope with this emerging novel pressure. Using species from both marine and terrestrial systems, I present results from a theoretical investigation, and four acoustic playback experiments combining laboratory studies and field trials, that reveal a range of eco-evolutionary consequences of noiseinduced acoustic habitat loss. First, I use sound propagation modeling to assess how marine shipping noise reduces communication space between mother-calf pairs of North Atlantic right whales (Eubalaena glacialis ), an important unit of an endangered species. I show that shipping noise poses significant challenges for mother-calf pairs, but that vocal compensation strategies can substantially improve communication space. Next, in a series of acoustic playback experiments I show that road traffic noise impairs breeding migration behavior and physiology of wood frogs (Lithobates sylvaticus ). This work reveals the first evidence that traffic noise elicits a physiological stress response and suppresses production of antimicrobial peptides (a component of the innate immune response) in anurans. Further, wood frogs from populations with a history of inhabiting noisy sites mounted reduced physiological stress responses to continuous traffic noise exposure. This research using wood frogs suggests that chronic traffic noise exposure has

  20. Ocean acoustic remote sensing using ambient noise: results from the Florida Straits

    NASA Astrophysics Data System (ADS)

    Brown, M. G.; Godin, O. A.; Zang, X.; Ball, J. S.; Zabotin, N. A.; Zabotina, L. Y.; Williams, N. J.

    2016-07-01

    Noise interferometry is the process by which approximations to acoustic Green's functions, which describe sound propagation between two locations, are estimated by cross-correlating time series of ambient noise measured at those locations. Noise-interferometry-based approximations to Green's functions can be used as the basis for a variety of inversion algorithms, thereby providing a purely passive alternative to active-source ocean acoustic remote sensing. In this paper we give an overview of results from noise interferometry experiments conducted in the Florida Straits at 100 m depth in December 2012, and at 600 m depth in September/October 2013. Under good conditions for noise interferometry, estimates of cross-correlation functions are shown to allow one to perform advanced phase-coherent signal processing techniques to perform waveform inversions, estimate currents by exploiting non-reciprocity, perform time-reversal/back-propagation calculations and investigate modal dispersion using time-warping techniques. Conditions which are favourable for noise interferometry are identified and discussed.

  1. Preliminary Analysis of Acoustic Measurements from the NASA-Gulfstream Airframe Noise Flight Test

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Lockhard, David D.; Humphreys, Willliam M.; Choudhari, Meelan M.; Van De Ven, Thomas

    2008-01-01

    The NASA-Gulfstream joint Airframe Noise Flight Test program was conducted at the NASA Wallops Flight Facility during October, 2006. The primary objective of the AFN flight test was to acquire baseline airframe noise data on a regional jet class of transport in order to determine noise source strengths and distributions for model validation. To accomplish this task, two measuring systems were used: a ground-based microphone array and individual microphones. Acoustic data for a Gulfstream G550 aircraft were acquired over the course of ten days. Over twenty-four test conditions were flown. The test matrix was designed to provide an acoustic characterization of both the full aircraft and individual airframe components and included cruise to landing configurations. Noise sources were isolated by selectively deploying individual components (flaps, main landing gear, nose gear, spoilers, etc.) and altering the airspeed, glide path, and engine settings. The AFN flight test program confirmed that the airframe is a major contributor to the noise from regional jets during landing operations. Sound pressure levels from the individual microphones on the ground revealed the flap system to be the dominant airframe noise source for the G550 aircraft. The corresponding array beamform maps showed that most of the radiated sound from the flaps originates from the side edges. Using velocity to the sixth power and Strouhal scaling of the sound pressure spectra obtained at different speeds failed to collapse the data into a single spectrum. The best data collapse was obtained when the frequencies were left unscaled.

  2. Transient cavitation and acoustic emission produced by different laser lithotripters.

    PubMed

    Zhong, P; Tong, H L; Cocks, F H; Pearle, M S; Preminger, G M

    1998-08-01

    Transient cavitation and shockwave generation produced by pulsed-dye and holmium:YAG laser lithotripters were studied using high-speed photography and acoustic emission measurements. In addition, stone phantoms were used to compare the fragmentation efficiency of various laser and electrohydraulic lithotripters. The pulsed-dye laser, with a wavelength (504 nm) strongly absorbed by most stone materials but not by water, and a short pulse duration of approximately 1 microsec, induces plasma formation on the surface of the target calculi. Subsequently, the rapid expansion of the plasma forms a cavitation bubble, which expands spherically to a maximum size and then collapses violently, leading to strong shockwave generation and microjet impingement, which comprises the primary mechanism for stone fragmentation with short-pulse lasers. In contrast, the holmium laser, with a wavelength (2100 nm) most strongly absorbed by water as well as by all stone materials and a long pulse duration of 250 to 350 microsec, produces an elongated, pear-shaped cavitation bubble at the tip of the optical fiber that forms a vapor channel to conduct the ensuing laser energy to the target stone (Moss effect). The expansion and subsequent collapse of the elongated bubble is asymmetric, resulting in weak shockwave generation and microjet impingement. Thus, stone fragmentation in holmium laser lithotripsy is caused primarily by thermal ablation (drilling effect).

  3. Copula filtration of spoken language signals on the background of acoustic noise

    NASA Astrophysics Data System (ADS)

    Kolchenko, Lilia V.; Sinitsyn, Rustem B.

    2010-09-01

    This paper is devoted to the filtration of acoustic signals on the background of acoustic noise. Signal filtering is done with the help of a nonlinear analogue of a correlation function - a copula. The copula is estimated with the help of kernel estimates of the cumulative distribution function. At the second stage we suggest a new procedure of adaptive filtering. The silence and sound intervals are detected before the filtration with the help of nonparametric algorithm. The results are confirmed by experimental processing of spoken language signals.

  4. Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation

    PubMed Central

    Siegert, M. E.; Römer, H.; Hartbauer, M.

    2014-01-01

    SUMMARY We examined acoustic masking in a chirping katydid species of the Mecopoda elongata complex due to interference with a sympatric Mecopoda species where males produce continuous trills at high amplitudes. Frequency spectra of both calling songs range from 1 to 80 kHz; the chirper species has more energy in a narrow frequency band at 2 kHz and above 40 kHz. Behaviourally, chirper males successfully phase-locked their chirps to playbacks of conspecific chirps under masking conditions at signal-to-noise ratios (SNRs) of −8 dB. After the 2 kHz band in the chirp had been equalised to the level in the masking trill, the breakdown of phase-locked synchrony occurred at a SNR of +7 dB. The remarkable receiver performance is partially mirrored in the selective response of a first-order auditory interneuron (TN1) to conspecific chirps under these masking conditions. However, the selective response is only maintained for a stimulus including the 2 kHz component, although this frequency band has no influence on the unmasked TN1 response. Remarkably, the addition of masking noise at 65 dB sound pressure level (SPL) to threshold response levels of TN1 for pure tones of 2 kHz enhanced the sensitivity of the response by 10 dB. Thus, the spectral dissimilarity between masker and signal at a rather low frequency appears to be of crucial importance for the ability of the chirping species to communicate under strong masking by the trilling species. We discuss the possible properties underlying the cellular/synaptic mechanisms of the ‘novelty detector’. PMID:24307713

  5. Noise affects the shape of female preference functions for acoustic signals.

    PubMed

    Reichert, Michael S; Ronacher, Bernhard

    2015-02-01

    The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise.

  6. Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles.

    PubMed

    Yasui, Kyuichi; Tuziuti, Toru; Lee, Judy; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

    2010-02-01

    Numerical simulations of cavitation noise have been performed under the experimental conditions reported by Ashokkumar et al. (2007) [26]. The results of numerical simulations have indicated that the temporal fluctuation in the number of bubbles results in the broad-band noise. "Transient" cavitation bubbles, which disintegrate into daughter bubbles mostly in a few acoustic cycles, generate the broad-band noise as their short lifetimes cause the temporal fluctuation in the number of bubbles. Not only active bubbles in light emission (sonoluminescence) and chemical reactions but also inactive bubbles generate the broad-band noise. On the other hand, "stable" cavitation bubbles do not generate the broad-band noise. The weaker broad-band noise from a low-concentration surfactant solution compared to that from pure water observed experimentally by Ashokkumar et al. is caused by the fact that most bubbles are shape stable in a low-concentration surfactant solution due to the smaller ambient radii than those in pure water. For a relatively high number density of bubbles, the bubble-bubble interaction intensifies the broad-band noise. Harmonics in cavitation noise are generated by both "stable" and "transient" cavitation bubbles which pulsate nonlinearly with the period of ultrasound.

  7. Influence of gradient acoustic noise on fMRI response in the human visual cortex.

    PubMed

    Zhang, Nanyin; Zhu, Xiao-Hong; Chen, Wei

    2005-08-01

    A paired-stimuli paradigm combined with fMRI was utilized to study the effect of gradient acoustic noise on fMRI response in the human primary visual cortex (V1) in terms of the auditory-visual cross-modal neural interaction. The gradient noise generated during the fMRI acquisition was used as the primary stimulus, and a single flashing light was used as the secondary stimulus. An interstimulus interval (ISI) separated the two. Six tasks were designed with different ISIs ranging from 50 to 700 ms. Both BOLD signal intensity and the number of activated pixels in V1 were analyzed and examined, and they showed a significant reduction when the gradient noise preceded the flashing light by approximately 300 ms. These results indicate that the gradient acoustic noise generated during fMRI acquisitions does interfere with neural behavior and the BOLD signal in the human visual cortex. This interference is modulated by the delay between the gradient noise and visual stimulation, and it can be studied quantitatively when the stimulation paradigm is designed appropriately. This study provides evidence of the auditory-visual interaction during fMRI studies, and the results should have an impact on fMRI applications.

  8. The Acoustic Analogy: A Powerful Tool in Aeroacoustics with Emphasis on Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Doty, Michael J.; Hunter, Craig A.

    2004-01-01

    The acoustic analogy introduced by Lighthill to study jet noise is now over 50 years old. In the present paper, Lighthill s Acoustic Analogy is revisited together with a brief evaluation of the state-of-the-art of the subject and an exploration of the possibility of further improvements in jet noise prediction from analytical methods, computational fluid dynamics (CFD) predictions, and measurement techniques. Experimental Particle Image Velocimetry (PIV) data is used both to evaluate turbulent statistics from Reynolds-averaged Navier-Stokes (RANS) CFD and to propose correlation models for the Lighthill stress tensor. The NASA Langley Jet3D code is used to study the effect of these models on jet noise prediction. From the analytical investigation, a retarded time correction is shown that improves, by approximately 8 dB, the over-prediction of aft-arc jet noise by Jet3D. In experimental investigation, the PIV data agree well with the CFD mean flow predictions, with room for improvement in Reynolds stress predictions. Initial modifications, suggested by the PIV data, to the form of the Jet3D correlation model showed no noticeable improvements in jet noise prediction.

  9. Noise transmission from a curved panel into a cylindrical enclosure: analysis of structural acoustic coupling.

    PubMed

    Henry, J K; Clark, R L

    2001-04-01

    Much of the research on sound transmission through the aircraft fuselage into the interior of aircraft has considered coupling of the entire cylinder to the acoustic modes of the enclosure. Yet, much of the work on structural acoustic control of sound radiation has focused on reducing sound radiation from individual panels into an acoustic space. Research by the authors seeks to bridge this gap by considering the transmission of sound from individual panels on the fuselage to the interior of the aircraft. As part of this research, an analytical model of a curved panel, with attached piezoelectric actuators, subjected to a static pressure load was previously developed. In the present work, the analytical model is extended to consider the coupling of a curved panel to the interior acoustics of a rigid-walled cylinder. Insight gained from an accurate analytical model of the dynamics of the noise transmission from the curved panels of the fuselage into the cylindrical enclosure of an aircraft is essential to the development of feedback control systems for the control of stochastic inputs, such as turbulent boundary layer excitation. The criteria for maximal structural acoustic coupling between the modes of the curved panel and the modes of the cylindrical enclosure are studied. For panels with aspect ratios typical of those found in aircraft, results indicate that predominately axial structural modes couple most efficiently to the acoustic modes of the enclosure. The effects of the position of the curved panel on the cylinder are also studied. Structural acoustic coupling is found to not be significantly affected by varying panel position. The impact of the findings of this study on structural acoustic control design is discussed. PMID:11325117

  10. Two stage low noise advanced technology fan. 1: Aerodynamic, structural, and acoustic design

    NASA Technical Reports Server (NTRS)

    Messenger, H. E.; Ruschak, J. T.; Sofrin, T. G.

    1974-01-01

    A two-stage fan was designed to reduce noise 20 db below current requirements. The first-stage rotor has a design tip speed of 365.8 m/sec and a hub/tip ratio of 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiency of 85.3 percent at a specific inlet corrected flow of 209.2kg/sec/sq m. Noise reduction devices include acoustically treated casing walls, a flowpath exit acoustic splitter, a translating centerbody sonic inlet device, widely spaced blade rows, and the proper ratio of blades and vanes. Multiple-circular-arc rotor airfoils, resettable stators, split outer casings, and capability to go to close blade-row spacing are also included.

  11. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object's reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel's color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  12. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Kazuyoshi Mori,; Hanako Ogasawara,; Toshiaki Nakamura,; Takenobu Tsuchiya,; Nobuyuki Endoh,

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object’s reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel’s color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  13. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  14. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearinga

    PubMed Central

    Carroll, Jeff; Tiaden, Stephanie; Zeng, Fan-Gang

    2011-01-01

    Cochlear implant (CI) users have been shown to benefit from residual low-frequency hearing, specifically in pitch related tasks. It remains unclear whether this benefit is dependent on fundamental frequency (F0) or other acoustic cues. Three experiments were conducted to determine the role of F0, as well as its frequency modulated (FM) and amplitude modulated (AM) components, in speech recognition with a competing voice. In simulated CI listeners, the signal-to-noise ratio was varied to estimate the 50% correct response. Simulation results showed that the F0 cue contributes to a significant proportion of the benefit seen with combined acoustic and electric hearing, and additionally that this benefit is due to the FM rather than the AM component. In actual CI users, sentence recognition scores were collected with either the full F0 cue containing both the FM and AM components or the 500-Hz low-pass speech cue containing the F0 and additional harmonics. The F0 cue provided a benefit similar to the low-pass cue for speech in noise, but not in quiet. Poorer CI users benefited more from the F0 cue than better users. These findings suggest that F0 is critical to improving speech perception in noise in combined acoustic and electric hearing. PMID:21973360

  15. On Acoustic Source Specification for Rotor-Stator Interaction Noise Prediction

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Caesy L.

    2010-01-01

    This paper describes the use of measured source data to assess the effects of acoustic source specification on rotor-stator interaction noise predictions. Specifically, the acoustic propagation and radiation portions of a recently developed coupled computational approach are used to predict tonal rotor-stator interaction noise from a benchmark configuration. In addition to the use of full measured data, randomization of source mode relative phases is also considered for specification of the acoustic source within the computational approach. Comparisons with sideline noise measurements are performed to investigate the effects of various source descriptions on both inlet and exhaust predictions. The inclusion of additional modal source content is shown to have a much greater influence on the inlet results. Reasonable agreement between predicted and measured levels is achieved for the inlet, as well as the exhaust when shear layer effects are taken into account. For the number of trials considered, phase randomized predictions follow statistical distributions similar to those found in previous statistical source investigations. The shape of the predicted directivity pattern relative to measurements also improved with phase randomization, having predicted levels generally within one standard deviation of the measured levels.

  16. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  17. An active structural acoustic control approach for the reduction of the structure-borne road noise

    NASA Astrophysics Data System (ADS)

    Douville, Hugo; Berry, Alain; Masson, Patrice

    2002-11-01

    The reduction of the structure-borne road noise generated inside the cabin of an automobile is investigated using an Active Structural Acoustic Control (ASAC) approach. First, a laboratory test bench consisting of a wheel/suspension/lower suspension A-arm assembly has been developed in order to identify the vibroacoustic transfer paths (up to 250 Hz) for realistic road noise excitation of the wheel. Frequency Response Function (FRF) measurements between the excitation/control actuators and each suspension/chassis linkage are used to characterize the different transfer paths that transmit energy through the chassis of the car. Second, a FE/BE model (Finite/Boundary Elements) was developed to simulate the acoustic field of an automobile cab interior. This model is used to predict the acoustic field inside the cabin as a response to the measured forces applied on the suspension/chassis linkages. Finally, an experimental implementation of ASAC is presented. The control approach relies on the use of inertial actuators to modify the vibration behavior of the suspension and the automotive chassis such that its noise radiation efficiency is decreased. The implemented algorithm consists of a MIMO (Multiple-Input-Multiple-Output) feedforward configuration with a filtered-X LMS algorithm using an advanced reference signal (width FIR filters) using the Simulink/Dspace environment for control prototyping.

  18. Quasi-static acoustic mapping of helicopter blade vortex interaction noise

    NASA Astrophysics Data System (ADS)

    Gopalan, Gaurav

    This research extends the applicability of storage-based noise prediction techniques to slowly maneuvering flight. The quasi-static equivalence between longitudinal decelerating flight and steady-state longitudinal descent flight, and its application to the estimation of BVI noise radiation under slow longitudinal maneuvering flight conditions, is investigated through various orders of flight dynamics modeling. The entire operating state of the helicopter is shown to be similar during equivalent flight conditions at the same flight velocity. This equivalence is also applied to the prediction of control requirements during longitudinal maneuvers. Inverse simulation based flight dynamics models of lower order are seen to capture many important trends associated with slow maneuvers, when compared with higher order modeling. The lower order flight dynamics model is used to design controlled maneuvers that may be practically flown during descent operations or as part of research flight testing. A version of a storage-based acoustic mapping technique, extended to slowly maneuvering longitudinal flight, is implemented for helicopter main rotor Blade-Vortex Interaction (BVI) noise. Various approach trajectories are formulated and analytical estimates of the BVI noise radiation characteristics associated with a full-scale two-bladed rotor are mapped to the ground using this quasi-static mapping approach. Multi-segment decelerating descent approaches are shown to be effective in ground noise abatement. The effects of steady longitudinal winds are investigated on radiated and ground noise. Piloting trim choices are seen to dominate the noise radiation under these flight conditions.

  19. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  20. Acoustic noise alters selective attention processes as indicated by direct current (DC) brain potential changes.

    PubMed

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts-which are discussed to represent different states of cortical activation-of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest-besides some limitations-that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested "attention shift". Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  1. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC) Brain Potential Changes

    PubMed Central

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed. PMID:25264675

  2. Acoustic noise and pneumatic wave vortices energy harvesting on highways

    NASA Astrophysics Data System (ADS)

    Pogacian, S.; Bot, A.; Zotoiu, D.

    2012-02-01

    This paper is aimed to present the structure and the principle of a energy harvesting system that uses the air movement emanated from passing traffic to produce and accumulate electrical energy. Each of the system's elements consists of a inertial mass panel which oscillate when driving cars pass. The panel is attached to a linear electromagnetic mini generator (or/and some piezo electric micro generators) and at the time of passing, it produces energy which is store it in a supercapacitor or in a rechargeable battery. The concept can be applied to busy roads, and to high-frequented rail networks and it can work with street and road lighting, information panels and monitoring devices.

  3. Characterization of the Acoustic Field in Marine Environments with Anthropogenic Noise

    NASA Astrophysics Data System (ADS)

    Guan, Shane

    Most animals inhabit the aquatic environment are acoustical-oriented, due to the physical characteristics of water that favors sound transmission. Many aquatic animals depend on underwater sound to navigate, communicate, find prey, and avoid predators. The degradation of underwater acoustic environment due to human activities is expected to affected these animals' well-being and survival at the population level. This dissertation presents three original studies on the characteristics and behavior of underwater sound fields in three unique marine environments with anthropogenic noises. The first study examines the soundscape of the Chinese white dolphin habitat in Taiwan. Acoustic recordings were made at two coastal shallow water locations, Yunlin and Waisanding, in 2012. Results show that croaker choruses are dominant sound sources in the 1.2--2.4 kHz frequency band for both locations at night, and noises from container ships in the 150--300 Hz frequency band define the relative higher broadband sound levels at Yunlin. Results also illustrate interrelationships among different biotic, abiotic, and anthropogenic elements that shape the fine-scale soundscape in a coastal environment. The second study investigates the inter-pulse sound field during an open-water seismic survey in coastal shallow waters of the Arctic. The research uses continuous acoustic recordings collected from one bottom-mounted hydrophone deployed in the Beaufort Sea in summer 2012. Two quantitative methods were developed to examine the inter-pulse sound field characteristics and its dependence on source distances. Results show that inter-pulse sound field could raise the ambient noise floor by as much as 9 dB, depending on ambient condition and source distance. The third study examines the inter-ping sound field of simulated mid-frequency active sonar in deep waters off southern California in 2013 and 2014. The study used drifting acoustic recorder buoys to collect acoustic data during sonar

  4. Acoustic flight tests of rotorcraft noise-abatement approaches using local differential GPS guidance

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Hindson, William S.; Mueller, Arnold W.

    1995-01-01

    This paper presents the test design, instrumentation set-up, data acquisition, and the results of an acoustic flight experiment to study how noise due to blade-vortex interaction (BVI) may be alleviated. The flight experiment was conducted using the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) research helicopter. A Local Differential Global Positioning System (LDGPS) was used for precision navigation and cockpit display guidance. A laser-based rotor state measurement system on board the aircraft was used to measure the main rotor tip-path-plane angle-of-attack. Tests were performed at Crows Landing Airfield in northern California with an array of microphones similar to that used in the standard ICAO/FAA noise certification test. The methodology used in the design of a RASCAL-specific, multi-segment, decelerating approach profile for BVI noise abatement is described, and the flight data pertaining to the flight technical errors and the acoustic data for assessing the noise reduction effectiveness are reported.

  5. Study of thermal and acoustic noise interferences in low stiffness atomic force microscope cantilevers and characterization of their dynamic properties

    SciTech Connect

    Boudaoud, Mokrane; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe

    2012-01-15

    The atomic force microscope (AFM) is a powerful tool for the measurement of forces at the micro/nano scale when calibrated cantilevers are used. Besides many existing calibration techniques, the thermal calibration is one of the simplest and fastest methods for the dynamic characterization of an AFM cantilever. This method is efficient provided that the Brownian motion (thermal noise) is the most important source of excitation during the calibration process. Otherwise, the value of spring constant is underestimated. This paper investigates noise interference ranges in low stiffness AFM cantilevers taking into account thermal fluctuations and acoustic pressures as two main sources of noise. As a result, a preliminary knowledge about the conditions in which thermal fluctuations and acoustic pressures have closely the same effect on the AFM cantilever (noise interference) is provided with both theoretical and experimental arguments. Consequently, beyond the noise interference range, commercial low stiffness AFM cantilevers are calibrated in two ways: using the thermal noise (in a wide temperature range) and acoustic pressures generated by a loudspeaker. We then demonstrate that acoustic noises can also be used for an efficient characterization and calibration of low stiffness AFM cantilevers. The accuracy of the acoustic characterization is evaluated by comparison with results from the thermal calibration.

  6. Study of thermal and acoustic noise interferences in low stiffness atomic force microscope cantilevers and characterization of their dynamic properties.

    PubMed

    Boudaoud, Mokrane; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe

    2012-01-01

    The atomic force microscope (AFM) is a powerful tool for the measurement of forces at the micro/nano scale when calibrated cantilevers are used. Besides many existing calibration techniques, the thermal calibration is one of the simplest and fastest methods for the dynamic characterization of an AFM cantilever. This method is efficient provided that the Brownian motion (thermal noise) is the most important source of excitation during the calibration process. Otherwise, the value of spring constant is underestimated. This paper investigates noise interference ranges in low stiffness AFM cantilevers taking into account thermal fluctuations and acoustic pressures as two main sources of noise. As a result, a preliminary knowledge about the conditions in which thermal fluctuations and acoustic pressures have closely the same effect on the AFM cantilever (noise interference) is provided with both theoretical and experimental arguments. Consequently, beyond the noise interference range, commercial low stiffness AFM cantilevers are calibrated in two ways: using the thermal noise (in a wide temperature range) and acoustic pressures generated by a loudspeaker. We then demonstrate that acoustic noises can also be used for an efficient characterization and calibration of low stiffness AFM cantilevers. The accuracy of the acoustic characterization is evaluated by comparison with results from the thermal calibration.

  7. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    PubMed

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  8. Acoustic noise reduction. January 1970-November 1988 (Citations from the US Patent data base). Report for January 1970-November 1988

    SciTech Connect

    Not Available

    1988-12-01

    This bibliography contains citations of selected patents concerning methods, devices, and materials for acoustic-noise reduction. Included are noise-reduction techniques for engines, turbines, machinery, motor vehicles, pumps, aircraft cabins, and compressors. (Contains 189 citations fully indexed and including a title list.)

  9. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. The investigation relies on highly detailed numerical simulations of the unsteady flowfield inside a modern high-pressure turbine (HPT). The simulations are developed using TURBO, which is an unsteady Reynolds-averaged Navier-Stokes (URANS) code capable of multi-stage simulations. The purpose of this study is twofold. First, to determine an estimate of the relative importance of the contributions to the coherent part of the acoustic signature of a turbine from the three potential sources of turbine noise generation, namely, blade-row viscous interaction, potential field interaction, and entropic source associated with the interaction of the blade rows with the temperature nonuniformities caused by the incomplete mixing of the hot fluid and the cooling flow. Second, to develop an understanding of the turbine acoustic transmission characteristics and to assess the applicability of existing empirical and analytical transmission loss models to realistic geometries and flow conditions for modern turbine designs. The investigation so far has concentrated on two simulations: (1) a single-stage HPT and (2) a two-stage HPT and the associated inter-turbine duct/strut segment. The simulations are designed to resolve up to the second harmonic of the blade passing frequency tone in accordance with accepted rules for second order solvers like TURBO. The calculations include blade and vane cooling flows and a radial profile of pressure and temperature at the turbine inlet. The calculation can be modified later to include the combustor pattern factor at the

  10. Acoustic noise generation by the DOE/NASA MOD-1 wind turbine

    NASA Astrophysics Data System (ADS)

    Kelley, N. D.

    1981-05-01

    The results of a series of measurements taken over the past year of the acoustic emissions from the DOE/NASA MOD-1 Wind Turbine show the maximum acoustic energy is concentrated in the low frequency range, often below 100 Hz. The temporal as well as the frequency characteristics of the turbine sounds have been shown to be important since the MOD-1 is capable of radiating both coherent and incoherent noise. The coherent sounds are usually impulsive and are manifested in an averaged frequency domain plot as large numbers of discrete energy bands extending from the blade passage frequency to beyond 50 Hz on occasion. It is these impulsive sounds which are identified as the principal source of the annoyance to a dozen families living within 3 km of the turbine. The source of the coherent noise appears to be the rapid, unsteady blade loads encountered as the blade passes through the wake of the tower structure. Annoying levels are occasionally reached at nearby homes due to the interaction of the low frequency, high energy peaks in the acoustic impulses and the structural modes of the homes as well as by direct radiation outdoors. The peak levels of these impulses can be enhanced or subdued through complete propagation.

  11. Acoustic noise generation by the DOE/NASA MOD-1 wind turbine

    NASA Technical Reports Server (NTRS)

    Kelley, N. D.

    1981-01-01

    The results of a series of measurements taken over the past year of the acoustic emissions from the DOE/NASA MOD-1 Wind Turbine show the maximum acoustic energy is concentrated in the low frequency range, often below 100 Hz. The temporal as well as the frequency characteristics of the turbine sounds have been shown to be important since the MOD-1 is capable of radiating both coherent and incoherent noise. The coherent sounds are usually impulsive and are manifested in an averaged frequency domain plot as large numbers of discrete energy bands extending from the blade passage frequency to beyond 50 Hz on occasion. It is these impulsive sounds which are identified as the principal source of the annoyance to a dozen families living within 3 km of the turbine. The source of the coherent noise appears to be the rapid, unsteady blade loads encountered as the blade passes through the wake of the tower structure. Annoying levels are occasionally reached at nearby homes due to the interaction of the low frequency, high energy peaks in the acoustic impulses and the structural modes of the homes as well as by direct radiation outdoors. The peak levels of these impulses can be enhanced or subdued through complete propagation.

  12. Lobed Mixer Design for Noise Suppression: Plume, Aerodynamic and Acoustic Data. Volume 2

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Baker, V. David; Dalton, William N.; Bridges, James (Technical Monitor)

    2002-01-01

    A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft per s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASE's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude and also noise in the reference frame of the nozzle. This volume is divided into three parts: in the first two parts, we collate the plume survey data in graphical form (line, contour and surface plots) and analyze it; in part 3, we tabulate the aerodynamic data for the acoustics tests and the acoustic data in one-third octave band levels.

  13. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    NASA Astrophysics Data System (ADS)

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system

  14. Acoustic emissions of digital data video projectors- Investigating noise sources and their change during product aging

    NASA Astrophysics Data System (ADS)

    White, Michael Shane

    2005-09-01

    Acoustic emission testing continues to be a growing part of IT and telecommunication product design, as product noise is increasingly becoming a differentiator in the marketplace. This is especially true for digital/video display companies, such as InFocus Corporation, considering the market shift of these products to the home entertainment consumer as retail prices drop and performance factors increase. Projectors and displays using Digital Light Processing(tm) [DLP(tm)] technology incorporate a device known as a ColorWheel(tm) to generate the colors displayed at each pixel in the image. These ColorWheel(tm) devices spin at very high speeds and can generate high-frequency tones not typically heard in liquid crystal displays and other display technologies. Also, acoustic emission testing typically occurs at the beginning of product life and is a measure of acoustic energy emitted at this point in the lifecycle. Since the product is designed to be used over a long period of time, there is concern as to whether the acoustic emissions change over the lifecycle of the product, whether these changes will result in a level of nuisance to the average customer, and does this nuisance begin to develop prior to the intended lifetime of the product.

  15. Acoustic noise from tandem wind rotors of intelligent wind power unit

    NASA Astrophysics Data System (ADS)

    Kubo, Koichi; Mihara, Nobuhiko; Enishi, Akira; Kanemoto, Toshiaki

    2010-04-01

    The authors had invented the unique wind power unit composed of the large-sized front wind rotor, the small-sized rear wind rotor and the peculiar generator with the inner and the outer rotational armatures without the conventional stator. This unit is called "Intelligent Wind Power Unit" by the authors. The front and the rear wind rotors drive the inner and the outer armatures, respectively, while the rotational torque is counter-balanced between both armatures/wind rotors. This paper discusses experimentally the acoustic noise from the front and the rear wind rotors. The acoustic noise, in the counter-rotating operation, is induced mainly from the flow interaction between both rotors, and has the dominant power spectrum density at the frequency of the blade passing interaction. The noise is caused mainly from the turbulent fluctuation due to the flow separation on the blade, when the rear wind rotor stops or rotates in the same direction as the front wind rotor.

  16. JAPE 91: Influence of terrain masking of the acoustic propagation of helicopter noise

    NASA Technical Reports Server (NTRS)

    Naz, P.

    1993-01-01

    The acoustic propagation in the case of a noise source masked by a small element of terrain has been investigated experimentally. These data have been measured during the 'terrain masking' experiment of the NATO JAPE 91 experimental campaign. The main objective of that experiment was to study the acoustic detection of a helicopter masked by a small hill. Microphones have been placed at different locations on the shadow zone of the hill to study the effect of the terrain obstruction on sound propagation. The results presented come from data measured by Atlas Elektronik and by ISL, and have been processed together. The terrain obstruction causes an excess attenuation of the SPL (Sound Pressure Level) for all the frequencies, but this attenuation is more effective for the high frequencies than for the low frequencies. Results typical of diffraction phenomena have been observed; the SPL is minimal at the foot of the hill and is relatively constant beyond it.

  17. Controlling Technically Produced Noise to Reduce Psychological Stress

    ERIC Educational Resources Information Center

    Carlestam, Gosta

    1973-01-01

    Discusses the causes and problems associated with increasing levels of noise pollution in urban societies. Particular attention is given to noise emanating from aircraft and to possible means of reducing this problem and its resulting psychological stress and social strain. (JR)

  18. Ambient Noise Surface Wave Tomography for Geotechnical Monitoring Using "Large N" Distributed Acoustic Sensing

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Martin, E. R.; Wagner, A. M.; Robertson, M.; Bjella, K.; Gelvin, A.; Ulrich, C.; Wu, Y.; Freifeld, B. M.; Daley, T. M.; Dou, S.

    2015-12-01

    Surface wave tomography using ambient noise sources has found broad application at the regional scale but has not been adopted fully for geotechnical applications despite the abundance of noise sources in this context. The recent development of Distributed Acoustic Sensing (DAS) provides a clear path for inexpensively recording high spatial resolution (< 1m sampling) surface wave data in the context of infrastructure monitoring over significant spatial domains (10s of km). Infrastructure monitoring is particularly crucial in the context of high-latitude installations where a changing global climate can trigger reductions in soil strength due to permafrost thaw. DAS surface wave monitoring systems, particularly those installed in/near transport corridors and coupled to ambient noise inversion algorithms, could be a critical "early warning" system to detect zones of decreased shear strength before failure. We present preliminary ambient noise tomography results from a 1.3 km continuously recording subsurface DAS array used to record traffic noise next to an active road in Fairbanks, AK. The array, depolyed at the Farmer's Loop Permafrost Test Station, was designed as a narrow 2D array and installed via trenching at ~30 cm. We develop a pre-processing and QC approach to analyze the large resulting volume of data, equivalent to a 1300 geophone array sampled at 1 khz. We utilize automated dispersion analysis and a quasi-2D MC inversion to generate a shear wave velocity profile underneath the road in a region of discontinuous permafrost. The results are validated against a high-resolution ERT survey as well as direct-push data on ice content. We also compare vintages of ambient noise DAS data to evaluate the short-term repeatability of the technique in the face of changing noise environments. The resulting dataset demonstrates the utility of using DAS for real-time shear-modulus monitoring in support of critical infrastructure.

  19. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  20. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers.

    PubMed

    Arenas, Celia; Leiva, Carlos; Vilches, Luis F; Cifuentes, Héctor

    2013-11-01

    The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectively recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk. PMID:23916843

  1. Acoustic characteristics of an electrodynamic planar digital loudspeaker using noise shaping technology.

    PubMed

    Hayama, Atsushi; Furihata, Kenji; Asano, David K; Yanagisawa, Takesaburo

    2005-06-01

    The present study extends our previous work [Furihata et al., J. Acoust. Soc. Am. 114, 174-184 (2003)] by investigating our electrodynamic planar loudspeaker when driven by a 12 bit digital signal with noise shaping. Changing the structure of the loudspeaker can lead to improvement, but in this paper improvements that can be made using signal processing are investigated. Results show that the digital loudspeaker demonstrated good linearity over its 84 dB dynamic range from 40 Hz to 10 kHz. This shows that a 12 bit digital loudspeaker which is equivalent to a 16 bit one is possible.

  2. Effects of acoustic hood on noise, CFC-11, and particulate matter in a recycling system for waste refrigerator cabinet.

    PubMed

    Guo, Jie; Fang, Wenxiong; Yang, Yichen; Xu, Zhenming

    2014-11-01

    The mechanical-physical process was proven to be technologically feasible for waste refrigerator recycling and has been widely used in the typical e-waste recycling factories in China. In this study, effects of the acoustic hood on the reduction of noise level, CFC-11, and heavy metals (Cr, Ni, Cu, Cd, and Pb) in particulate matter (PM) were evaluated. For noise pollution, the noise level inside and outside the acoustic hood was 96.4 and 78.9 dB, respectively. Meanwhile, it had a significant effect on A-weighted sound level with a reduction from 98.3 to 63.6 dB. For CFC-11 exposure, abundant CFC-11 (255 mg/m(3)) was detected in the acoustic hood. However, the mean concentration of CFC-11 at the outline of polyurethane foam collection was obviously diminished to 14 mg/m(3), and no CFC-11 was monitored around the acoustic hood. The concentrations of PM and heavy metals in PM outside the acoustic hood were lower than those inside the acoustic hood due to the physical barriers of the acoustic hood. Based on the risk assessment, only adverse health effect caused by Pb might likely appear. All the results can provide the basic data for pollution control and risk assessment in waste refrigerator recycling system.

  3. Effects of acoustic hood on noise, CFC-11, and particulate matter in a recycling system for waste refrigerator cabinet.

    PubMed

    Guo, Jie; Fang, Wenxiong; Yang, Yichen; Xu, Zhenming

    2014-11-01

    The mechanical-physical process was proven to be technologically feasible for waste refrigerator recycling and has been widely used in the typical e-waste recycling factories in China. In this study, effects of the acoustic hood on the reduction of noise level, CFC-11, and heavy metals (Cr, Ni, Cu, Cd, and Pb) in particulate matter (PM) were evaluated. For noise pollution, the noise level inside and outside the acoustic hood was 96.4 and 78.9 dB, respectively. Meanwhile, it had a significant effect on A-weighted sound level with a reduction from 98.3 to 63.6 dB. For CFC-11 exposure, abundant CFC-11 (255 mg/m(3)) was detected in the acoustic hood. However, the mean concentration of CFC-11 at the outline of polyurethane foam collection was obviously diminished to 14 mg/m(3), and no CFC-11 was monitored around the acoustic hood. The concentrations of PM and heavy metals in PM outside the acoustic hood were lower than those inside the acoustic hood due to the physical barriers of the acoustic hood. Based on the risk assessment, only adverse health effect caused by Pb might likely appear. All the results can provide the basic data for pollution control and risk assessment in waste refrigerator recycling system. PMID:24965005

  4. Simulation of a hot coaxial jet: Direct noise prediction and flow-acoustics correlations

    NASA Astrophysics Data System (ADS)

    Bogey, Christophe; Barré, Sébastien; Juvé, Daniel; Bailly, Christophe

    2009-03-01

    A coaxial jet originating from parallel coplanar pipe nozzles is computed by a compressible large eddy simulation (LES) using low-dissipation and low-dispersion schemes in order to determine its acoustic field and to study noise generation mechanisms. The jet streams are at high velocities, the primary stream is heated, and the Reynolds number based on the primary velocity and the secondary diameter is around 106. High levels of turbulence intensity are also specified at the nozzle exit. The jet aerodynamic field and the near-pressure field are both obtained directly from the LES. The far-field noise is calculated by solving the linear acoustic equations, from the unsteady LES data on a cylindrical surface surrounding the jet. A good agreement is observed in terms of directivity, levels, and narrow-band spectra with noise measurements carried out during the EU project CoJeN for a coaxial jet displaying same stream velocities and temperatures, coplanar nozzle outlets with identical area ratio, and a high Reynolds number. However, certainly due to differences in the properties of the nozzle-exit boundary layers with respect to the experiment, some unexpected peaks are noticed in the simulation spectra. They are attributed to the development of a Von Kármán street in the inner mixing layer and to vortex pairings in the outer shear layer. High correlation levels are also calculated between the pressure waves radiated in the downstream direction and flow quantities such as axial velocity, vorticity norm, density, and temperature, taken around the end of the primary and secondary potential cores. Noise generation in the coaxial jet therefore appears significant around the end of the two potential cores. These flow regions are characterized by intermittency, a dominant Strouhal number, and variations in the convection velocity as similarly found in single jets. The use of density or temperature to compute flow-noise correlations finally seems appropriate for a heated

  5. Vessel noise affects beaked whale behavior: results of a dedicated acoustic response study.

    PubMed

    Pirotta, Enrico; Milor, Rachael; Quick, Nicola; Moretti, David; Di Marzio, Nancy; Tyack, Peter; Boyd, Ian; Hastie, Gordon

    2012-01-01

    Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville's beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement.

  6. Vessel Noise Affects Beaked Whale Behavior: Results of a Dedicated Acoustic Response Study

    PubMed Central

    Pirotta, Enrico; Milor, Rachael; Quick, Nicola; Moretti, David; Di Marzio, Nancy; Tyack, Peter; Boyd, Ian; Hastie, Gordon

    2012-01-01

    Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville’s beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement. PMID:22880022

  7. A multi-band spectral subtraction-based algorithm for real-time noise cancellation applied to gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2013-06-01

    Acoustical sniper positioning is based on the detection and direction-of-arrival estimation of the shockwave and the muzzle blast acoustical signals. In real-life situations, the detection and direction-of-arrival estimation processes is usually performed under the influence of background noise sources, e.g., vehicles noise, and might result in non-negligible inaccuracies than can affect the system performance and reliability negatively, specially when detecting the muzzle sound under long range distance and absorbing terrains. This paper introduces a multi-band spectral subtraction based algorithm for real-time noise reduction, applied to gunshot acoustical signals. The ballistic shockwave and the muzzle blast signals exhibit distinct frequency contents that are affected differently by additive noise. In most real situations, the noise component is colored and a multi-band spectral subtraction approach for noise reduction contributes to reducing the presence of artifacts in denoised signals. The proposed algorithm is tested using a dataset generated by combining signals from real gunshots and real vehicle noise. The noise component was generated using a steel tracked military tank running on asphalt and includes, therefore, the sound from the vehicle engine, which varies slightly in frequency over time according to the engine's rpm, and the sound from the steel tracks as the vehicle moves.

  8. Noise from high speed maglev systems: Noise sources, noise criteria, preliminary design guidelines for noise control, and recommendations for acoustical test facility for maglev research

    NASA Astrophysics Data System (ADS)

    Hanson, C. E.; Abbot, P.; Dyer, I.

    1993-01-01

    Noise levels from magnetically-levitated trains (maglev) at very high speed may be high enough to cause environmental noise impact in residential areas. Aeroacoustic sources dominate the sound at high speeds and guideway vibrations generate noticeable sound at low speed. In addition to high noise levels, the startle effect as a result of sudden onset of sound from a rapidly moving nearby maglev vehicle may lead to increased annoyance to neighbors of a maglev system. The report provides a base for determining the noise consequences and potential mitigation for a high speed maglev system in populated areas of the United States. Four areas are included in the study: (1) definition of noise sources; (2) development of noise criteria; (3) development of design guidelines; and (4) recommendations for a noise testing facility.

  9. Active noise reduction systems: Their interaction with very low frequency acoustical energy

    NASA Astrophysics Data System (ADS)

    Crabtree, R. Brian

    1994-08-01

    Active noise reduction (ANR) is used for reducing noise at the ears of an observer through the action of interfering sound waves. Noise sensed by a microphone built into the observer's headset or helmet is processed and reintroduced into the ear cup cavity out of phase with the original sound, thus cancelling the noise at the ear. Recent field experience has shown that system exposure to very high amplitude low-frequency sound, such as during the operation of helicopters, can lead to saturation or overload of the ANR electronics. Experiments using acoustical maniquins were conducted to assess the low-frequency behavior of ANR equipment. Results of measurement of the threshold of overload indicated large differences in the saturation thresholds among systems tested. Performance strongly depended on the integrity of the ear seal. Those systems offering active attenuation into the infrasound region tended to saturate most easily, but did create the best listening condition for the user when operated below the saturation threshold.

  10. Lobed Mixer Design for Noise Suppression Acoustic and Aerodynamic Test Data Analysis

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Dalton, William N.; Boyd, Kathleen (Technical Monitor); Bridges, James (Technical Monitor)

    2002-01-01

    A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft/s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASK's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude. Sound in the nozzle reference frame was analyzed to understand the source characteristics. Several new concepts, mechanisms and methods are reported for such lobed mixers, such as, "boomerang" scallops, "tongue" mixer, detection of "excess" internal noise sources, and extrapolation of flyover noise data from one flight speed to different flight speeds. Noise reduction of as much as 3 EPNdB was found with a deeply scalloped mixer compared to annular nozzle at net thrust levels of 9500 lb for a 29 in. diameter nozzle after optimizing the nozzle length.

  11. On linear acoustic solutions of high speed helicopter impulsive noise problems

    NASA Astrophysics Data System (ADS)

    Tam, C. K. W.

    1983-07-01

    The nature of linear acoustic solutions for a helicopter rotor blade with a blunt leading edge operating at high transonic tip Mach number is studied. As a part of this investigation a very efficient computation procedure for helicopter rotor blade thickness noise according to linear theory is developed. Numerical and analytical results reveal that as the blade tip Mach number approaches unity, the solution develops singularities and a radiating discontinuity. It is shown that these characteristic features are caused by the contributions of the higher harmonics which decrease in magnitude only as n exp-1/2 in the limit n tending to infinity. These higher harmonics are generated by the blunt leading edge. The far field wave form at sonic tip Mach number for a blade with a NACA 0012 airfoil section has a singularity of the inverse root type at its front and a logarithmic singularity near its end. Thus caution must be exercised in applying linear acoustic theory to high speed helicopter impulsive noise problems.

  12. Validation of the Small Hot Jet Acoustic Rig for Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Bridges, James; Brown, Clifford A.

    2005-01-01

    The development and acoustic validation of the Small Hot Jet Aeroacoustic Rig (SHJAR) is documented. Originally conceived to support fundamental research in jet noise, the rig has been designed and developed using the best practices of the industry. While validating the rig for acoustic work, a method of characterizing all extraneous rig noise was developed. With this in hand, the researcher can know when the jet data being measured is being contaminated and design the experiment around this limitation. Also considered is the question of uncertainty, where it is shown that there is a fundamental uncertainty of 0.5dB or so to the best experiments, confirmed by repeatability studies. One area not generally accounted for in the uncertainty analysis is the variation which can result from differences in initial condition of the nozzle shear layer. This initial condition was modified and the differences in both flow and sound were documented. The bottom line is that extreme caution must be applied when working on small jet rigs, but that highly accurate results can be made independent of scale.

  13. The Effects of Noise on Speech Recognition in Cochlear Implant Subjects: Predictions and Analysis Using Acoustic Models

    NASA Astrophysics Data System (ADS)

    Remus, Jeremiah J.; Collins, Leslie M.

    2005-12-01

    Cochlear implants can provide partial restoration of hearing, even with limited spectral resolution and loss of fine temporal structure, to severely deafened individuals. Studies have indicated that background noise has significant deleterious effects on the speech recognition performance of cochlear implant patients. This study investigates the effects of noise on speech recognition using acoustic models of two cochlear implant speech processors and several predictive signal-processing-based analyses. The results of a listening test for vowel and consonant recognition in noise are presented and analyzed using the rate of phonemic feature transmission for each acoustic model. Three methods for predicting patterns of consonant and vowel confusion that are based on signal processing techniques calculating a quantitative difference between speech tokens are developed and tested using the listening test results. Results of the listening test and confusion predictions are discussed in terms of comparisons between acoustic models and confusion prediction performance.

  14. Acoustic measurements from a rotor blade-vortex interaction noise experiment in the German-Dutch Wind Tunnel (DNW)

    NASA Technical Reports Server (NTRS)

    Martin, Ruth M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.

    1988-01-01

    Acoustic data are presented from a 40 percent scale model of the 4-bladed BO-105 helicopter main rotor, measured in the large European aeroacoustic wind tunnel, the DNW. Rotor blade-vortex interaction (BVI) noise data in the low speed flight range were acquired using a traversing in-flow microphone array. The experimental apparatus, testing procedures, calibration results, and experimental objectives are fully described. A large representative set of averaged acoustic signals is presented.

  15. Acoustics in educational settings. Subcommittee on Acoustics in Educational Settings of the Bioacoustics Standards and Noise Standards Committee American Speech-Language-Hearing Association.

    PubMed

    1995-03-01

    The Americans with Disabilities Act (enacted July 26, 1990) has brought into focus the need for removing barriers and improving accessibility of all buildings and facilities. It is clear that the definition of barrier must be expanded to include not only structural features that limit physical accessibility, but also acoustical barriers that limit access to communication and information. Acoustical interference caused by inappropriate levels of background noise and reverberation presents a barrier to learning and communication in educational settings and school-sponsored extracurricular activities, particularly for students with hearing loss or other language/learning concerns. ASHA has provided these guidelines and acoustical improvement strategies in order to assist communication-related professionals, teachers, school officials, architects, contractors, state education agencies, and others in developing the best possible learning environment for all students. Additional research on both the acoustical characteristics of learning environments and the communication requirements of learners is encouraged. PMID:7696882

  16. Clinical characteristics of acoustic trauma caused by gunshot noise in mass rifle drills without ear protection.

    PubMed

    Moon, In Seok; Park, Sang-Yong; Park, Hyun Jin; Yang, Hoon-Shik; Hong, Sung-Jong; Lee, Won-Sang

    2011-10-01

    One of the major occupational hazards of working in military service is being subjected to intense impulse noise. We analyzed the clinical presentation of acoustic traumas, induced by mass rifle gunshot noise during military training, in unprotected patients. We evaluated 189 soldiers who had otologic symptoms after rifle shooting exercises without using any hearing protection. All soldiers had been training on the K2 rifle. We took medical histories; conducted physical examinations and hearing evaluations (pure-tone audiometry, speech audiometry, and impedence audiometry); and distributed the Newmann's Tinnitus Handicap Inventory (THI) survey. In addition, we evaluated a normal control group of 64 subjects of similar age who had never fired a rifle. In the patient group, the most common and irritating reported symptom was tinnitus (94.2%), and the average THI score in the patient group was 39.51 ± 14.87, which was significantly higher than the control group score (0.56 ± 3.94) (p < 0.001). Average outcomes of post-exposure air conduction thresholds were 21.33 ± 13.25 dB HL in the affected ears. These levels also were significantly higher than those of the control group (9.16 ± 4.07dB HL) (p < 0.001). Hearing loss was most prominent at high frequencies. An asymmetry of hearing loss related to head position during shooting was not observed. Acoustic trauma induced by gunshot noise can cause permanent tinnitus and hearing loss. Hearing protection (bilateral earplugs) and environmental reform are necessary. PMID:21936701

  17. Duct wall impedance control as an advanced concept for acoustic suppression enhancement. [engine noise reduction

    NASA Technical Reports Server (NTRS)

    Dean, P. D.

    1978-01-01

    A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.

  18. Noise suppression by an acoustically treated three-ring inlet on a TF-34 engine

    NASA Technical Reports Server (NTRS)

    Minner, G. L.; Goldman, R. G.; Heidelberg, L. J.

    1976-01-01

    Acoustic performance tests were conducted with a three-ring inlet noise suppressor designed for a TF-34 engine. For all tests the aft noise sources were highly suppressed. The measured inlet suppression was large, reaching levels greater than 30 db at the peak. Comparisons of the data and the performance predictions were in reasonably good agreement. The frequency of peak attenuation was well predicted; the magnitude and spectral shape were reasonably well predicted. Agreement was best when the distribution of sound energy across the inlet was taken into account in the performance predictions. Tests in which the length of treatment was varied showed an orderly progression of attenuation with length; performance predictions for the different lengths also showed an orderly progression with length. At the highest speed of the engine, multiple pure tones were present throughout the spectrum in the source noise signature. These tones were effectively suppressed by the inlet liner, even at low frequencies, although the liner was designed to work best at the blade-passing frequency.

  19. Measurement and evaluation of the acoustic noise of a 3 Tesla MR scanner.

    PubMed

    Hattori, Yoko; Fukatsu, Hiroshi; Ishigaki, Takeo

    2007-01-01

    We measured the sound level and frequencies of the acoustic noise generated by a 3 Tesla (T) MR scanner, and investigated the subjective sound level for 30 healthy volunteers with either earplugs, headphones or both. The sound level of 3T was found to be higher than that of 1.5T in all sequences. The peak sound pressure level of 3T ranged from 125.7 dB for MR angiography to 130.7 dB for single shot EPI on the linear scale. The equivalent noise level was from 110.0 dB for FLAIR to 115.8 dB for T1-IR on the A-weighted scale, which exceeded 99 dB, the level regulated by the International Electrotechnical Commission (IEC). The study of the subjective sound level showed that the effect of noise reduction was not significantly different between earplugs and headphones. However, the use of both devices could reduce the subjective sound level significantly better than either one alone (P < 0.01). Thus we propose wearing both devices for ear-protection during 3T examinations.

  20. Impulse noise and acute acoustic trauma in Finnish conscripts. Number of shots fired and safe distances.

    PubMed

    Savolainen, S; Lehtomäki, K M

    1997-01-01

    This prospective study of acute acoustic trauma (AAT) from exposure to impulse noise during compulsory military service focused on three issues the number of shot or explosion impulses that the conscript was exposed to at the time of AAT, distance of injured ear from causal firearm, and the circumstances under which AAT occurred protected ears. The series includes 449 consecutive, verified cases of AAT seen at the Central Military Hospital in Helsinki, Finland, in the period 1989-1993. AAT usually occurred during combat training (87%) as a result of exposure to impulses from small arms (83%). In 41%. AAT was caused by a single shot or detonation impulse. As many as 92% of all AATs occurred within 2 m of the causal firearm. Fourteen percent were wearing hearing protectors when the accident took place, but every third had badly fitting protectors or had neglected safety regulations and used insufficient protection. Of all AATs caused by one noise impulse in protected ears. 83% were attributable to heavy arms and only 14% to small arms. The results of the study suggest that combined use of earmuffs and earplugs in association with a safe distance of over 5 m from the noise source gives adequate protection against AAT. However, for conscripts using certain heavy arms e.g. hazooka. more effective hearing protection should be developed. PMID:9187006

  1. Theoretical study of the effects of refraction on the noise produced by turbulence in jets

    NASA Technical Reports Server (NTRS)

    Graham, E. W.; Graham, B. B.

    1974-01-01

    The production of noise by turbulence in jets is an extremely complex problem. One aspect of that problem, the transmission of acoustic disturbances from the interior of the jet through the mean velocity profile and into the far field is studied. The jet (two-dimensional or circular cylindrical) is assumed infinitely long with mean velocity profile independent of streamwise location. The noise generator is a sequence of transient sources drifting with the surrounding fluid and confined to a short length of the jet.

  2. Acoustic Emission Signals in Thin Plates Produced by Impact Damage

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Humes, Donald H.

    1999-01-01

    Acoustic emission (AE) signals created by impact sources in thin aluminum and graphite/epoxy composite plates were analyzed. Two different impact velocity regimes were studied. Low-velocity (less than 0.21 km/s) impacts were created with an airgun firing spherical steel projectiles (4.5 mm diameter). High-velocity (1.8 to 7 km/s) impacts were generated with a two-stage light-gas gun firing small cylindrical nylon projectiles (1.5 mm diameter). Both the impact velocity and impact angle were varied. The impacts did not penetrate the aluminum plates at either low or high velocities. For high-velocity impacts in composites, there were both impacts that fully penetrated the plate as well as impacts that did not. All impacts generated very large amplitude AE signals (1-5 V at the sensor), which propagated as plate (extensional and/or flexural) modes. In the low-velocity impact studies, the signal was dominated by a large flexural mode with only a small extensional mode component detected. As the impact velocity was increased within the low velocity regime, the overall amplitudes of both the extensional and flexural modes increased. In addition, a relative increase in the amplitude of high-frequency components of the flexural mode was also observed. Signals caused by high-velocity impacts that did not penetrate the plate contained both a large extensional and flexural mode component of comparable amplitudes. The signals also contained components of much higher frequency and were easily differentiated from those caused by low-velocity impacts. An interesting phenomenon was observed in that the large flexural mode component, seen in every other case, was absent from the signal when the impact particle fully penetrated through the composite plates.

  3. Acoustical and noise redesign considerations when trying to increase patient privacy while ensuring comfort

    NASA Astrophysics Data System (ADS)

    Klavetter, Eric

    2005-09-01

    An internal assessment was undertaken to understand the flow of patients to ensure comfort and privacy during their health care experience at Mayo Clinic. A number of different prototypes, work flows, and methodologies were utilized and assessed to determine the ``best experience for our patients.'' A number of prototypes ranging from self-check in to personal pagers were assessed along with creating environments that introduced ``passive distractions'' for acoustical and noise management, which can range from fireplaces, to coffee shops to playgrounds to ``tech corridors.'' While a number of these designs are currently being piloted, the over-reaching goal is to make the patient experience ``like no other'' when receiving their care at Mayo Clinic.

  4. Development of a model to assess acoustic treatments to reduce railway noise

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Squicciarini, G.; Thompson, D. J.; Ryue, J.

    2016-09-01

    Porous materials have recently been used in absorptive treatments around railway tracks to reduce noise emissions. To investigate the effect of porous materials, a finite element model has been developed. 2D models for porous materials have been considered either as an equivalent fluid or as a poroelastic material based on the Biot theory. The two models have been validated and compared with each other to check the effect of the skeleton vibration. The poroelastic FE model has been coupled with a 2D acoustic boundary element model for use in railway applications. The results show that it may be necessary to include the frame vibration, especially at low frequencies where a frame resonance occurs. A method for the characterization of porous materials is also discussed. From this it is shown that the elastic properties of the material determine the resonance frequency and the magnitude.

  5. What's All the Noise? Differentiating Dimensions of Acoustic Stress and the Limits to Meta-Analysis: Reply to Smith (2012)

    ERIC Educational Resources Information Center

    Szalma, J. L.; Hancock, P. A.

    2012-01-01

    Smith (2012) has provided pertinent observations on our recently published meta-analytic review (Szalma & Hancock, 2011) of the effects of acoustic noise on performance. His main points are as follows: (a) our review excluded some areas of research; (b) there were conceptual problems with our moderator analyses; and (c) limitations to…

  6. Acoustic noise reduction for vehicle engines. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-06-01

    The bibliography contains citations of selected patents concerning methods, devices, and materials to reduce acoustic noise in vehicle engines. Vehicles covered include automobiles, railway locomotives, agricultural tractors, and aircraft. Internal combustion, diesel, and gas turbine engines are covered. (Contains a minimum of 188 citations and includes a subject term index and title list.)

  7. Measurement of acoustic noise effect due to the gradient pulsing in functional magnetic resonance imaging (fMRI)

    NASA Astrophysics Data System (ADS)

    Chung, SungTaek; Song, Inchang; Park, Hyun Wook

    1999-05-01

    In MRI, gradient magnetic fields are used to obtain the spatial information by frequency modulation of the received signal. The gradient fields are generated by switching currents on the gradient coils, which generates acoustic noise due to Lorentzian force. In particular, fast imaging methods, which are usually used for fMRI, require fast switching of the gradient pulse, thereby generating large acoustic noise. The intensity of the acoustic noise depends on the imaging method and the pulse sequences. The acoustic noise induced by gradient pulsing may interfere for signal enhancement of brain areas with the presentation of auditory stimuli during fMRI. In this paper, the gradient pulsing effects on fMRI are analyzed for different combinations of gradients. The experimental results show that total activations by visual stimulation are slightly larger for a combination of Z readout and Y phase-encoding gradients than those for a combination of Y readout and Z phase-encoding gradients when sagittal-view fMRI is performed.

  8. Baseline acoustic levels of the NASA Active Noise Control Fan rig

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Heidelberg, Laurence J.; Elliott, David M.; Nallasamy, M.

    1996-01-01

    Extensive measurements of the spinning acoustic mode structure in the NASA 48 inch Active Noise Control Fan (ANCF) test rig have been taken. A continuously rotating microphone rake system with a least-squares data reduction technique was employed to measure these modes in the inlet and exhaust. Farfield directivity patterns in an anechoic environment were also measured at matched corrected rotor speeds. Several vane counts and spacings were tested over a range of rotor speeds. The Eversman finite element radiation code was run with the measured in-duct modes as input and the computed farfield results were compared to the experimentally measured directivity pattern. The experimental data show that inlet spinning mode measurements can be made very accurately. Exhaust mode measurements may have wake interference, but the least-squares reduction does a good job of rejecting the non-acoustic pressure. The Eversman radiation code accurately extrapolates the farfield levels and directivity pattern when all in-duct modes are included.

  9. Customization of the acoustic field produced by a piezoelectric array through interelement delays

    PubMed Central

    Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.

    2008-01-01

    A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369

  10. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  11. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  12. [Acoustic and spirometric indices of forced expiration noise in the conditions of 5-day dry immersion].

    PubMed

    Mikhaĭlovskaia, A N; Osipova, A A; D'iachenko, A I

    2011-01-01

    Dynamic studies of forced expiration (FE) indices involved 7 normal males aged 21 to 25 participating in a 5-d experiment with dry immersion (DI). FE spirometry was conducted simultaneously with registration of tracheal noise with the help of a microphone. Indices included acoustic duration of tracheal noise (Ta), forced lung capacity (FLC), FE volume per a second (FEV1), peak expiratory rate (PER) and time to reach (T(PER)) before DI, on DI days 1 and 4, and next day after completion. PER showed a significant decrease by 8.4% on DI day-1 and rose by 8.9% on DI day-4, though remaining below pre-DI values. Throughout the experiment, FLC and FEV1 did not change on the average. There was a noticeable increase of Ta by 17 % after DI which may suggest strengthening of respiratory resistance and invites further investigation. A moderate negative correlation was stated between TA and the Gensler index (r = -0.63), whereas correlation with the other spirometric indices was weak or absent. PMID:22423491

  13. Acoustic plane waves normally incident on a clamped panel in a rectangular duct. [to explain noise reduction curves for reducing interior noise in aircraft

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1979-01-01

    The theory of acoustic plane wave normally incident on a clamped panel in a rectangular duct is developed. The coupling theory between the elastic vibrations of the panel (plate) and the acoustic wave propagation in infinite space and in the rectangular duct is considered. The partial differential equation which governs the vibration of the panel (plate) is modified by adding to its stiffness (spring) forces and damping forces, and the fundamental resonance frequency and the attenuation factor are discussed. The noise reduction expression based on the theory is found to agree well with the corresponding experimental data of a sample aluminum panel in the mass controlled region, the damping controlled region, and the stiffness controlled region. All the frequency positions of the upward and downward resonance spikes in the sample experimental data are identified theoretically as resulting from four cross interacting major resonance phenomena: the cavity resonance, the acoustic resonance, the plate resonance, and the wooden back panel resonance.

  14. Extraction of Stoneley and acoustic Rayleigh waves from ambient noise on ocean bottom observations

    NASA Astrophysics Data System (ADS)

    Tonegawa, T.; Fukao, Y.; Takahashi, T.; Obana, K.; Kodaira, S.; Kaneda, Y.

    2013-12-01

    In the interferometry, the wavefield propagating between two positions can be retrieved by correlating ambient noise recorded on the two positions. This approach is useful for applying to various kinds of wavefield, such as ultrasonic, acoustic (ocean acoustic), and also seismology. Off the Kii Peninsula, Japan, more than 150 short-period (4.5 Hz) seismometers, in which hydrophone is also cosited, had been deployed for ~2 months on 2012 by Japan Agency for Marine-Earth Science and Technology (JAMSTEC) as a part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. In this study, correlating ambient noise recorded on the sensors and hydrophones, we attempt to investigate characteristics of wavefield relative to the ocean, sediment, and solid-fluid boundary. The observation period is from Sep. 2012 to Dec. 2012. Station spacing is around 5 km. For 5 lines off the Kii Peninsula, the 30-40 seismometers are distributed at each line. Sampling interval is 200 Hz for both seismometer and hydrophone. The vertical component is just used in this study for correlation analysis. The instruments are located at 100-4800 m in water depth. In the processing for the both records, we applied a bandpass filter of 1-3 Hz, replaced the amplitude to zero if it exceeds a value that was set in this study, and took one-bit normalization. We calculated cross-correlation function (CCF) by using continuous records with a time length of 600 s, stacked the CCFs over the whole observation period. As a result of the analysis for hydrophone, a strong peak can be seen in the CCF for pairs of stations where the separation distance is ~5 km. Although the peak emerges in the CCFs for the separation distance up to 10 km, it disappears in the case that two stations are greater than 15 km separated. As a next approach, along a line off the Kii Peninsula, we aligned CCFs for two stations with

  15. Acoustic vibrations contribute to the diffuse scatter produced by ribosome crystals.

    PubMed

    Polikanov, Yury S; Moore, Peter B

    2015-10-01

    The diffuse scattering pattern produced by frozen crystals of the 70S ribosome from Thermus thermophilus is as highly structured as it would be if it resulted entirely from domain-scale motions within these particles. However, the qualitative properties of the scattering pattern suggest that acoustic displacements of the crystal lattice make a major contribution to it.

  16. An Acoustic and Perceptual Study of Final Stops Produced by Profoundly Hearing Impaired Adolescents

    ERIC Educational Resources Information Center

    Khouw, Edward; Ciocca, Valter

    2006-01-01

    Purpose: This study investigated formant frequencies for their role as acoustic and perceptual correlates to the place of articulation of Cantonese final stops produced by profoundly hearing impaired speakers. Method: Speakers were 10 Cantonese adolescents (mean age = 13;5 [years;months]) who were profoundly hearing impaired (HI). Control speakers…

  17. Acoustic vibrations contribute to the diffuse scatter produced by ribosome crystals

    PubMed Central

    Polikanov, Yury S.; Moore, Peter B.

    2015-01-01

    The diffuse scattering pattern produced by frozen crystals of the 70S ribosome from Thermus thermophilus is as highly structured as it would be if it resulted entirely from domain-scale motions within these particles. However, the qualitative properties of the scattering pattern suggest that acoustic displacements of the crystal lattice make a major contribution to it. PMID:26457426

  18. Signal Analysis of Helicopter Blade-Vortex-Interaction Acoustic Noise Data

    NASA Technical Reports Server (NTRS)

    Rogers, James C.; Dai, Renshou

    1998-01-01

    Blade-Vortex-Interaction (BVI) produces annoying high-intensity impulsive noise. NASA Ames collected several sets of BVI noise data during in-flight and wind tunnel tests. The goal of this work is to extract the essential features of the BVI signals from the in-flight data and examine the feasibility of extracting those features from BVI noise recorded inside a large wind tunnel. BVI noise generating mechanisms and BVI radiation patterns an are considered and a simple mathematical-physical model is presented. It allows the construction of simple synthetic BVI events that are comparable to free flight data. The boundary effects of the wind tunnel floor and ceiling are identified and more complex synthetic BVI events are constructed to account for features observed in the wind tunnel data. It is demonstrated that improved recording of BVI events can be attained by changing the geometry of the rotor hub, floor, ceiling and microphone. The Euclidean distance measure is used to align BVI events from each blade and improved BVI signals are obtained by time-domain averaging the aligned data. The differences between BVI events for individual blades are then apparent. Removal of wind tunnel background noise by optimal Wiener-filtering is shown to be effective provided representative noise-only data have been recorded. Elimination of wind tunnel reflections by cepstral and optimal filtering deconvolution is examined. It is seen that the cepstral method is not applicable but that a pragmatic optimal filtering approach gives encouraging results. Recommendations for further work include: altering measurement geometry, real-time data observation and evaluation, examining reflection signals (particularly those from the ceiling) and performing further analysis of expected BVI signals for flight conditions of interest so that microphone placement can be optimized for each condition.

  19. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    NASA Astrophysics Data System (ADS)

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  20. The discomfort produced by noise and whole-body vertical vibration presented separately and in combination.

    PubMed

    Huang, Yu; Griffin, Michael J

    2014-01-01

    This study investigated the prediction of the discomfort caused by simultaneous noise and vibration from the discomfort caused by noise and the discomfort caused by vibration when they are presented separately. A total of 24 subjects used absolute magnitude estimation to report their discomfort caused by seven levels of noise (70-88 dBA SEL), 7 magnitudes of vibration (0.146-2.318 ms(- 1.75)) and all 49 possible combinations of these noise and vibration stimuli. Vibration did not significantly influence judgements of noise discomfort, but noise reduced vibration discomfort by an amount that increased with increasing noise level, consistent with a 'masking effect' of noise on judgements of vibration discomfort. A multiple linear regression model or a root-sums-of-squares model predicted the discomfort caused by combined noise and vibration, but the root-sums-of-squares model is more convenient and provided a more accurate prediction of the discomfort produced by combined noise and vibration.

  1. Comparing the effects of reverberation and of noise on speech recognition in simulated electric-acoustic listening

    PubMed Central

    Helms Tillery, Kate; Brown, Christopher A.; Bacon, Sid P.

    2012-01-01

    Cochlear implant users report difficulty understanding speech in both noisy and reverberant environments. Electric-acoustic stimulation (EAS) is known to improve speech intelligibility in noise. However, little is known about the potential benefits of EAS in reverberation, or about how such benefits relate to those observed in noise. The present study used EAS simulations to examine these questions. Sentences were convolved with impulse responses from a model of a room whose estimated reverberation times were varied from 0 to 1 sec. These reverberated stimuli were then vocoded to simulate electric stimulation, or presented as a combination of vocoder plus low-pass filtered speech to simulate EAS. Monaural sentence recognition scores were measured in two conditions: reverberated speech and speech in a reverberated noise. The long-term spectrum and amplitude modulations of the noise were equated to the reverberant energy, allowing a comparison of the effects of the interferer (speech vs noise). Results indicate that, at least in simulation, (1) EAS provides significant benefit in reverberation; (2) the benefits of EAS in reverberation may be underestimated by those in a comparable noise; and (3) the EAS benefit in reverberation likely arises from partially preserved cues in this background accessible via the low-frequency acoustic component. PMID:22280603

  2. Health-Based Audible Noise Guidelines Account for Infrasound and Low-Frequency Noise Produced by Wind Turbines

    PubMed Central

    Berger, Robert G.; Ashtiani, Payam; Ollson, Christopher A.; Whitfield Aslund, Melissa; McCallum, Lindsay C.; Leventhall, Geoff; Knopper, Loren D.

    2015-01-01

    Setbacks for wind turbines have been established in many jurisdictions to address potential health concerns associated with audible noise. However, in recent years, it has been suggested that infrasound (IS) and low-frequency noise (LFN) could be responsible for the onset of adverse health effects self-reported by some individuals living in proximity to wind turbines, even when audible noise limits are met. The purpose of this paper was to investigate whether current audible noise-based guidelines for wind turbines account for the protection of human health, given the levels of IS and LFN typically produced by wind turbines. New field measurements of indoor IS and outdoor LFN at locations between 400 and 900 m from the nearest turbine, which were previously underrepresented in the scientific literature, are reported and put into context with existing published works. Our analysis showed that indoor IS levels were below auditory threshold levels while LFN levels at distances >500 m were similar to background LFN levels. A clear contribution to LFN due to wind turbine operation (i.e., measured with turbines on in comparison to with turbines off) was noted at a distance of 480 m. However, this corresponded to an increase in overall audible sound measures as reported in dB(A), supporting the hypothesis that controlling audible sound produced by normally operating wind turbines will also control for LFN. Overall, the available data from this and other studies suggest that health-based audible noise wind turbine siting guidelines provide an effective means to evaluate, monitor, and protect potential receptors from audible noise as well as IS and LFN. PMID:25759808

  3. Health-based audible noise guidelines account for infrasound and low-frequency noise produced by wind turbines.

    PubMed

    Berger, Robert G; Ashtiani, Payam; Ollson, Christopher A; Whitfield Aslund, Melissa; McCallum, Lindsay C; Leventhall, Geoff; Knopper, Loren D

    2015-01-01

    Setbacks for wind turbines have been established in many jurisdictions to address potential health concerns associated with audible noise. However, in recent years, it has been suggested that infrasound (IS) and low-frequency noise (LFN) could be responsible for the onset of adverse health effects self-reported by some individuals living in proximity to wind turbines, even when audible noise limits are met. The purpose of this paper was to investigate whether current audible noise-based guidelines for wind turbines account for the protection of human health, given the levels of IS and LFN typically produced by wind turbines. New field measurements of indoor IS and outdoor LFN at locations between 400 and 900 m from the nearest turbine, which were previously underrepresented in the scientific literature, are reported and put into context with existing published works. Our analysis showed that indoor IS levels were below auditory threshold levels while LFN levels at distances >500 m were similar to background LFN levels. A clear contribution to LFN due to wind turbine operation (i.e., measured with turbines on in comparison to with turbines off) was noted at a distance of 480 m. However, this corresponded to an increase in overall audible sound measures as reported in dB(A), supporting the hypothesis that controlling audible sound produced by normally operating wind turbines will also control for LFN. Overall, the available data from this and other studies suggest that health-based audible noise wind turbine siting guidelines provide an effective means to evaluate, monitor, and protect potential receptors from audible noise as well as IS and LFN.

  4. Health-based audible noise guidelines account for infrasound and low-frequency noise produced by wind turbines.

    PubMed

    Berger, Robert G; Ashtiani, Payam; Ollson, Christopher A; Whitfield Aslund, Melissa; McCallum, Lindsay C; Leventhall, Geoff; Knopper, Loren D

    2015-01-01

    Setbacks for wind turbines have been established in many jurisdictions to address potential health concerns associated with audible noise. However, in recent years, it has been suggested that infrasound (IS) and low-frequency noise (LFN) could be responsible for the onset of adverse health effects self-reported by some individuals living in proximity to wind turbines, even when audible noise limits are met. The purpose of this paper was to investigate whether current audible noise-based guidelines for wind turbines account for the protection of human health, given the levels of IS and LFN typically produced by wind turbines. New field measurements of indoor IS and outdoor LFN at locations between 400 and 900 m from the nearest turbine, which were previously underrepresented in the scientific literature, are reported and put into context with existing published works. Our analysis showed that indoor IS levels were below auditory threshold levels while LFN levels at distances >500 m were similar to background LFN levels. A clear contribution to LFN due to wind turbine operation (i.e., measured with turbines on in comparison to with turbines off) was noted at a distance of 480 m. However, this corresponded to an increase in overall audible sound measures as reported in dB(A), supporting the hypothesis that controlling audible sound produced by normally operating wind turbines will also control for LFN. Overall, the available data from this and other studies suggest that health-based audible noise wind turbine siting guidelines provide an effective means to evaluate, monitor, and protect potential receptors from audible noise as well as IS and LFN. PMID:25759808

  5. Counting statistics of photons produced by electronic shot noise.

    PubMed

    Beenakker, C W; Schomerus, H

    2001-01-22

    A theory is presented for the photodetection statistics of radiation produced by current fluctuations in a phase-coherent conductor. Deviations are found from the Poisson statistics that would result from a classical current. For detection in a narrow frequency interval delta omega, the photocount distribution has the negative-binomial form of blackbody radiation if e delta omega is less than the mean current I in the conductor. When electronic localization sets in, I drops below e delta omega and a different type of super-Poissonian photon statistics results. PMID:11177916

  6. Cold-flow acoustic evaluation of a small scale, divergent, lobed nozzle for supersonic jet noise suppression

    NASA Technical Reports Server (NTRS)

    Huff, R. G.; Groesbeck, D. E.

    1975-01-01

    A supersonic jet noise suppressor was tested with cold flow for acoustic and thrust characteristics at nozzle- to atmospheric-pressure ratios of 1.5 to 4.0. Jet noise suppression and spectral characteristics of the divergent, lobed, suppressor (DLS) nozzle with and without an ejector are presented. Suppression was obtained at nozzle pressure ratios of 2.5 to 4.0. The largest, maximum-lobe, sound pressure level suppression with a hard-wall ejector was 14.6 decibels at a nozzle pressure ratio of 3.5. The thrust loss was 2 percent. In general, low-frequency jet noise was suppressed, leaving higher frequencies essentially unchanged. Without the ejector the nozzle showed a thrust loss of 11 percent together with slightly poorer noise suppression.

  7. Comparison of Some Aspherical Curved Surfaces of A Single Biconcave Acoustic Lens System for Ambient Noise Imaging

    NASA Astrophysics Data System (ADS)

    Mori, K.; Ogasawara, H.; Nakamura, T.

    Ambient Noise Imaging (ANI) is a revolutionary method for detecting silent objects using the ocean's background noise. In this study, a sound field focused by an acoustic lens system constructed with a single biconcave lens was analyzed using the 2-D Finite Difference Time Domain (FDTD) method in order to design an ANI system. The -3dB areas and relative pressure level at image points were surveyed using lenses with some aspherical curved surfaces, such as popular aspherical lenses (elliptical, parabolic, and hyperbolic) and an aplanatic lens. The analysis results indicate that the effects of both spherical and coma aberrations were corrected by the aplanatic lens.

  8. Acoustic properties of naturally produced clear speech at normal speaking rates

    NASA Astrophysics Data System (ADS)

    Krause, Jean C.; Braida, Louis D.

    2004-01-01

    Sentences spoken ``clearly'' are significantly more intelligible than those spoken ``conversationally'' for hearing-impaired listeners in a variety of backgrounds [Picheny et al., J. Speech Hear. Res. 28, 96-103 (1985); Uchanski et al., ibid. 39, 494-509 (1996); Payton et al., J. Acoust. Soc. Am. 95, 1581-1592 (1994)]. While producing clear speech, however, talkers often reduce their speaking rate significantly [Picheny et al., J. Speech Hear. Res. 29, 434-446 (1986); Uchanski et al., ibid. 39, 494-509 (1996)]. Yet speaking slowly is not solely responsible for the intelligibility benefit of clear speech (over conversational speech), since a recent study [Krause and Braida, J. Acoust. Soc. Am. 112, 2165-2172 (2002)] showed that talkers can produce clear speech at normal rates with training. This finding suggests that clear speech has inherent acoustic properties, independent of rate, that contribute to improved intelligibility. Identifying these acoustic properties could lead to improved signal processing schemes for hearing aids. To gain insight into these acoustical properties, conversational and clear speech produced at normal speaking rates were analyzed at three levels of detail (global, phonological, and phonetic). Although results suggest that talkers may have employed different strategies to achieve clear speech at normal rates, two global-level properties were identified that appear likely to be linked to the improvements in intelligibility provided by clear/normal speech: increased energy in the 1000-3000-Hz range of long-term spectra and increased modulation depth of low frequency modulations of the intensity envelope. Other phonological and phonetic differences associated with clear/normal speech include changes in (1) frequency of stop burst releases, (2) VOT of word-initial voiceless stop consonants, and (3) short-term vowel spectra.

  9. Observation of the Kibble–Zurek Mechanism in Microscopic Acoustic Crackling Noises

    PubMed Central

    Ghaffari, H. O.; Griffth, W. A.; Benson, P.M.; Xia, K.; Young, R. P.

    2016-01-01

    Characterizing the fast evolution of microstructural defects is key to understanding “crackling” phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks, and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM. PMID:26876156

  10. Problems in Assessment of Wind Energy Potential and Acoustic Noise Distribution when Designing Wind Power Plants

    NASA Astrophysics Data System (ADS)

    Bezrukovs, Valerijs; Bezrukovs, Vladislavs; Levins, Nikolajs

    2011-01-01

    Interest in the use of renewable energy in Latvia is increasing every year. Government support and availability of large unpopulated areas on the coast makes the use of these lands for the placement of large wind power plants (WPP) attractive. The key factors that determine the choice of the location of WPP are reliable information about distribution of the resource of wind energy in this area and the influence of wind turbines on the environment. The paper presents the results of years-long observations on the density fluctuations of wind energy at heights of 10 to 60 m in the area in the Baltic Sea coast in Ventspils and Ainaži. The velocity observations since 2007 have been gathered by measurements complex of the LOGGER 9200 Symphonie type. The results are presented in the form of tables, bar charts and graphs. Extrapolation results of wind velocity and density mean values on heights up to 150 m for the two areas with different terrain types were shown. The distribution of acoustic noise in the vicinity of the WPP was studied and an assessment of its impact on the environment in accordance with the Latvian government requirements was conducted.

  11. Observation of the Kibble-Zurek Mechanism in Microscopic Acoustic Crackling Noises

    NASA Astrophysics Data System (ADS)

    Ghaffari, H. O.; Griffth, W. A.; Benson, P. M.; Xia, K.; Young, R. P.

    2016-02-01

    Characterizing the fast evolution of microstructural defects is key to understanding “crackling” phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks, and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM.

  12. Observation of the Kibble-Zurek Mechanism in Microscopic Acoustic Crackling Noises.

    PubMed

    Ghaffari, H O; Griffth, W A; Benson, P M; Xia, K; Young, R P

    2016-01-01

    Characterizing the fast evolution of microstructural defects is key to understanding "crackling" phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks, and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM. PMID:26876156

  13. Paradoxical effects of contralateral white noise on evoked otoacoustic emissions in ears with acoustic neuroma.

    PubMed

    Quaranta, A; Gandolfi, A; Fava, G; Quaranta, N; Zini, C

    2000-03-01

    A contralateral suppression effect on evoked otoacoustic emissions (EOAEs) is usually present in normally hearing subjects and in patients with sensorineural hearing loss, while it is absent or reduced in ears to which the vestibular nerve has been cut and in ears with acoustic neuroma (AN). To date, a paradoxical effect, that is an increase in EOAE amplitude during contralateral stimulation, has been described in one ear with sensorineural hearing loss of unknown aetiology and in three ears with AN (two in the present paper). Evidence has been provided that the contralateral suppression effect on EOAEs is accomplished largely, if not entirely, via the medial olivocochlear bundle (OCB). According to clinical data the absence or the reduced amount of contralateral suppression effect on EAOEs may be attributed to a totally, or partially, damaged or malfunctioning medial OCB. The way in which a contralateral noise may increase EOAE amplitude is more difficult to explain. One attractive hypothesis is that this paradoxical effect is a result of some pathological adaptive process in the medial OCB. PMID:11603779

  14. Potential efficacy of early treatment of acute acoustic trauma with steroids and piracetam after gunshot noise.

    PubMed

    Psillas, George; Pavlidis, Pavlos; Karvelis, Ioannis; Kekes, George; Vital, Victor; Constantinidis, John

    2008-12-01

    The purpose of this randomized study was to evaluate the early effect of the treatment of acute acoustic trauma (AAT) with steroids and piracetam in a sample of 52 young soldiers who were exposed to intense gunfire noise (G3 rifle). These patients were divided into three groups: (1) group A (20 patients) in which the treatment began within the first hour after the AAT, (2) group B (17 patients) in which the treatment started more than 1 h later and less than 16 h after the AAT and (3) group C (15 patients) in which the treatment began after 24 h or more. One month after the treatment onset, 36 (69%) patients of all the groups showed hearing improvement (complete-partial recovery) in the pure tone audiometry. The greater number of patients who showed complete recovery after AAT was noted in group A (65%) compared to group B (23.5%) and C (13.3%). Moreover, in group A, in the final audiogram, the averaged hearing threshold was statistically better (P < 0.001) than that of groups B and C. In spite of the lack of control group, our data demonstrated the possible effectiveness of the immediate onset of treatment of AAT. PMID:18463885

  15. On the precise implications of acoustic analogies for aerodynamic noise at low Mach numbers

    NASA Astrophysics Data System (ADS)

    Spalart, Philippe R.

    2013-05-01

    We seek a clear statement of the scaling which may be expected with rigour for transportation or other noise at low Mach numbers M, based on Lighthill's and Curle's theories of 1952 and 1955. In the presence of compact solid bodies, the leading term in the acoustic intensity is of order M6. Contrary to the belief held since that time that it is of order M8, the contribution of quadrupoles, in the presence of dipoles, is of order only M7. Retarded-time-difference effects are also of order M7. Curle's widely used approximation based on unsteady forces neglects both effects. Its order of accuracy is thus lower than was thought, and the common estimates of the value of M below which it applies appear precarious. The M6 leading term is modified by powers up to the fourth of (1-Mr), where Mr is the relative Mach number between source and observer; at speeds of interest the effect is several dB. However, this is only one of the corrections of order M7, which makes its value debatable. The same applies to the difference between emission distance and reception distance. The scaling with M6 is theoretically correct to leading order, but this prediction may be so convincing, like the M8 scaling for jet noise, that some authors rush to confirm it when their measurements are in conflict with it. We survey experimental studies of landing-gear noise, and argue that the observed power of M is often well below 6. We also object to comparisons across Mach numbers at fixed frequency; they should be made at fixed Strouhal number St instead. Finally, the compact-source argument does not only require M≪1; it requires MSt≪1. This is more restrictive if the relevant St is well above 1, a situation which can be caused by interference with a boundary or by wake impingement, among other effects. The best length scales to define St for this purpose are discussed.

  16. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Contra-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, Dave; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  17. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, David; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  18. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper.

  19. Active Control of Fan Noise-Feasibility Study. Volume 2: Canceling Noise Source-Design of an Acoustic Plate Radiator Using Piezoceramic Actuators

    NASA Technical Reports Server (NTRS)

    Pla, F. G.; Rajiyah, H.

    1995-01-01

    The feasibility of using acoustic plate radiators powered by piezoceramic thin sheets as canceling sources for active control of aircraft engine fan noise is demonstrated. Analytical and numerical models of actuated beams and plates are developed and validated. An optimization study is performed to identify the optimum combination of design parameters that maximizes the plate volume velocity for a given resonance frequency. Fifteen plates with various plate and actuator sizes, thicknesses, and bonding layers were fabricated and tested using results from the optimization study. A maximum equivalent piston displacement of 0.39 mm was achieved with the optimized plate samples tested with only one actuator powered, corresponding to a plate deflection at the center of over 1 millimeter. This is very close to the deflection required for a full size engine application and represents a 160-fold improvement over previous work. Experimental results further show that performance is limited by the critical stress of the piezoceramic actuator and bonding layer rather than by the maximum moment available from the actuator. Design enhancements are described in detail that will lead to a flight-worthy acoustic plate radiator by minimizing actuator tensile stresses and reducing nonlinear effects. Finally, several adaptive tuning methods designed to increase the bandwidth of acoustic plate radiators are analyzed including passive, active, and semi-active approaches. The back chamber pressurization and volume variation methods are investigated experimentally and shown to be simple and effective ways to obtain substantial control over the resonance frequency of a plate radiator. This study shows that piezoceramic-based plate radiators can be a viable acoustic source for active control of aircraft engine fan noise.

  20. An acoustical study of English word stress produced by Americans and Koreans

    NASA Astrophysics Data System (ADS)

    Yang, Byunggon

    2002-05-01

    Acoustical correlates of stress can be divided into duration, intensity, and fundamental frequency. This study examined the acoustical difference in the first two syllables of stressed English words produced by ten American and Korean speakers. The Korean subjects scored very high in TOEFL. They read, at a normal speed, a fable from which the acoustical parameters of eight words were analyzed. In order to make the data comparison meaningful, each parameter was collected at 100 dynamic time points proportional to the total duration of the two syllables. Then, the ratio of the parameter sum of the first rime to that of the second rime was calculated to determine the relative prominence of the syllables. Results showed that the durations of the first two syllables were almost comparable between the Americans and Koreans. However, statistically significant differences showed up in the diphthong pronunciations and in the words with the second syllable stressed. Also, remarkably high r-squared values were found between pairs of the three acoustical parameters, which suggests that either one or a combination of two or more parameters may account for the prominence of a syllable within a word. [Work supported by Korea Science Foundation R01-1999-00229.

  1. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  2. Acoustic testing of a 1.5 pressure ratio low tip speed fan with a serrated rotor (QEP fan B scale model). [reduction of engine noise

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Paas, J. E.; Minzner, W. R.

    1973-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a serrated rotor leading edge to determine its effects on noise generation. The serrated rotor was produced by cutting teeth into the leading edge of the nominal rotor blades. The effects of speed and exhaust nozzle area on the scale models noise characteristics were investigated with both the nominal rotor and serrated rotor. Acoustic results indicate the serrations reduced front quadrant PNL's at takeoff power. In particular, the 200 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdb at 40 deg for nominal and large nozzle operation. However, the rear quadrant maximum sideline PNL's were increased 1.5 to 3 PNdb at approach thust and up to 2 PNdb at takeoff thust with these serrated rotor blades. The configuration with the serrated rotor produced the lowest maximum 200 foot (61.0 m) sideline PNL for any given thust when the large nozzle (116% of design area) was employed.

  3. Temporal and acoustic characteristics of Greek vowels produced by adults with cerebral palsy

    NASA Astrophysics Data System (ADS)

    Botinis, Antonis; Orfanidou, Ioanna; Fourakis, Marios; Fourakis, Marios

    2005-09-01

    The present investigation examined the temporal and spectral characteristics of Greek vowels as produced by speakers with intact (NO) versus cerebral palsy affected (CP) neuromuscular systems. Six NO and six CP native speakers of Greek produced the Greek vowels [i, e, a, o, u] in the first syllable of CVCV nonsense words in a short carrier phrase. Stress could be on either the first or second syllable. There were three female and three male speakers in each group. In terms of temporal characteristics, the results showed that: vowels produced by CP speakers were longer than vowels produced by NO speakers; stressed vowels were longer than unstressed vowels; vowels produced by female speakers were longer than vowels produced by male speakers. In terms of spectral characteristics the results showed that the vowel space of the CP speakers was smaller than that of the NO speakers. This is similar to the results recently reported by Liu et al. [J. Acoust. Soc. Am. 117, 3879-3889 (2005)] for CP speakers of Mandarin. There was also a reduction of the acoustic vowel space defined by unstressed vowels, but this reduction was much more pronounced in the vowel productions of CP speakers than NO speakers.

  4. Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance.

    PubMed

    Alcoverro, Benoit; Le Pichon, Alexis

    2005-04-01

    The implementation of the infrasound network of the International Monitoring System (IMS) for the enforcement of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) increases the effort in the design of suitable noise reducer systems. In this paper we present a new design consisting of low impedance elements. The dimensioning and the optimization of this discrete mechanical system are based on numerical simulations, including a complete electroacoustical modeling and a realistic wind-noise model. The frequency response and the noise reduction obtained for a given wind speed are compared to statistical noise measurements in the [0.02-4] Hz frequency band. The effects of the constructive parameters-the length of the pipes, inner diameters, summing volume, and number of air inlets-are investigated through a parametric study. The studied system consists of 32 air inlets distributed along an overall diameter of 16 m. Its frequency response is flat up to 4 Hz. For a 2 m/s wind speed, the maximal noise reduction obtained is 15 dB between 0.5 and 4 Hz. At lower frequencies, the noise reduction is improved by the use of a system of larger diameter. The main drawback is the high-frequency limitation introduced by acoustical resonances inside the pipes.

  5. Measurement of Noise Produced by a Plasma Contactor Operating in Ground Based Facilities

    NASA Technical Reports Server (NTRS)

    Snyder, Steve

    1996-01-01

    Methods to measure electric field fluctuations accurately in a plasma with an active monopole antenna are described. It is shown that the conductive surfaces of the antenna must be adequately isolated from the ambient plasma and that the monopole must be sufficiently short to avoid antenna amplifier saturation. Experimental results illustrate that the noise produced by plasma contactor operation and sensed by the antenna is due to plasma phenomena and is not induced by laboratory power supplies. A good correlation is shown between the current fluctuations in the contactor electrical circuit and the noise detected by the antenna. A large body of experimental data support the conclusion that the majority of noise sensed by the antenna at frequencies less than 1 MHz is due to current fluctuations (electrostatic waves) in the plasma adjacent to the antenna and not to electromagnetic wave radiation. Caution is suggested when comparing antenna noise measurements to conventional specifications for radiated emissions.

  6. [Assessment and analysis of the acoustic environment of soldiers exposed to impulse noise].

    PubMed

    Konopka, Wiesław; Pawlaczyk-Łuszczyńska, Małgorzata; Zalewski, Piotr; Miłoński, Jarosław

    2002-01-01

    The aim of the study was to assess the acoustic environment of soldiers attending a one year basic military service. The study material comprised 13 types of weapons used by this group of soldiers. During the target practice, the following parameters were measured separately for the right ear and the left ear: equivalent sound pressure level A (LA eq, Te); maximum sound pressure level A (LA F max) and peak sound pressure level C (LC peak). The measurements covered several single shots or a shot series. In addition, a spectroanalysis in 1/3-octave band frequency of 40-50,000 Hz, was conducted. There were following values of measurements in the direct vicinity of the ears: LA eq, Te fell within the range of 106.2-119.5 dB (mean, 112.2 dB) for the right ear and 104.2 dB-118.4 dB (mean, 113.2 dB) for the left ear; LA F max within the range of 124.5-132.3 dB (mean, 128.3 dB) for the right ear and 116.3-135.1 dB (mean, 128.1 dB) for the left ear; LC pcak within the range of 151.8-156.5 dB (mean, 154.8 dB/155 dB) for the right ear and 151.9-156.2 dB (mean, 155.4 dB) for the left ear. In the noise spectrum, components of audible frequencies predominated, 160-300 Hz (mainly for high caliber weapon); 1600-6300 Hz for the right ear and 2500-4000 Hz for the left peak (small caliber weapons); 6300-16,000 and ultrasonic 25,000-50,000 Hz. No significant differences were found in the measurements of the right ear and the left ear.

  7. [Assessment and analysis of the acoustic environment of soldiers exposed to impulse noise].

    PubMed

    Konopka, Wiesław; Pawlaczyk-Łuszczyńska, Małgorzata; Zalewski, Piotr; Miłoński, Jarosław

    2002-01-01

    The aim of the study was to assess the acoustic environment of soldiers attending a one year basic military service. The study material comprised 13 types of weapons used by this group of soldiers. During the target practice, the following parameters were measured separately for the right ear and the left ear: equivalent sound pressure level A (LA eq, Te); maximum sound pressure level A (LA F max) and peak sound pressure level C (LC peak). The measurements covered several single shots or a shot series. In addition, a spectroanalysis in 1/3-octave band frequency of 40-50,000 Hz, was conducted. There were following values of measurements in the direct vicinity of the ears: LA eq, Te fell within the range of 106.2-119.5 dB (mean, 112.2 dB) for the right ear and 104.2 dB-118.4 dB (mean, 113.2 dB) for the left ear; LA F max within the range of 124.5-132.3 dB (mean, 128.3 dB) for the right ear and 116.3-135.1 dB (mean, 128.1 dB) for the left ear; LC pcak within the range of 151.8-156.5 dB (mean, 154.8 dB/155 dB) for the right ear and 151.9-156.2 dB (mean, 155.4 dB) for the left ear. In the noise spectrum, components of audible frequencies predominated, 160-300 Hz (mainly for high caliber weapon); 1600-6300 Hz for the right ear and 2500-4000 Hz for the left peak (small caliber weapons); 6300-16,000 and ultrasonic 25,000-50,000 Hz. No significant differences were found in the measurements of the right ear and the left ear. PMID:12577807

  8. Acoustic comparisons of Japanese and English vowels produced by native speakers of Japanese

    NASA Astrophysics Data System (ADS)

    Nishi, Kanae; Akahane-Yamada, Reiko; Kubo, Rieko; Strange, Winifred

    2003-10-01

    This study explored acoustic similarities/differences between Japanese (J) and American English (AE) vowels produced by native J speakers and compared production patterns to their perceptual assimilation of AE vowels [Strange et al., J. Phonetics 26, 311-344 (1998)]. Eight male native J speakers who had served as listeners in Strange et al. produced 18 Japanese (J) vowels (5 long-short pairs, 2 double vowels, and 3 long-short palatalized pairs) and 11 American English (AE) vowels in /hVbopena/ disyllables embedded in a carrier sentence. Acoustical parameters included formant frequencies at syllable midpoint (F1/F2/F3), formant change from 25% to 75% points in syllable (formant change), and vocalic duration. Results of linear discriminant analyses showed rather poor acoustic differentiation of J vowel categories when F1/F2/F3 served as input variables (60% correct classification), which greatly improved when duration and formant change were added. In contrast, correct classification of J speakers' AE vowels using F1/F2/F3 was very poor (66%) and did not improve much when duration and dynamic information were added. J speakers used duration to differentiate long/short AE vowel contrasts except for mid-to-low back vowels; these vowels were perceptually assimilated to a single Japanese vowel, and are very difficult for Japanese listeners to identify.

  9. Acoustic Database for Turbofan Engine Core-Noise Sources. I; Volume

    NASA Technical Reports Server (NTRS)

    Gordon, Grant

    2015-01-01

    were processed using software that accounts for the effects of convective and conductive heat transfer. The software was developed under previous NASA sponsored programs. Compensated temperature spectra and compensated time histories corresponding to the dynamic temperature of the gas stream were generated. Auto-spectral and cross-spectral analyses of the data were performed to investigate spectral features, acoustic circumferential mode content, signal coherence, and time delays. The dynamic temperature data exhibit a wideband and fairly flat spectral content. The temperature spectra do not change substantially with operating speed. The pressure spectra in the combustor and ITD exhibit generally similar shapes and amplitudes, making it difficult to identify any features that suggest the presence of indirect combustion noise. Cross-spectral analysis reveal a strong correlation between pressure and temperature fluctuations in the ITD, but little correlation between temperature fluctuations at the entrance of the HPT and pressure fluctuations downstream of it. Temperature fluctuations at the entrance of the low pressure turbine were an order of magnitude smaller than those at the entrance to the high pressure turbine. Time delay analysis of the temperature fluctuations in the combustor was inconclusive, perhaps due to the substantial mixing that occurs between the upstream and downstream locations. Time delay analysis of the temperature fluctuations in the ITD indicate that they convect at the mean flow speed. Analysis of the data did not reveal any convincing indications of the presence of indirect combustion noise. However, this analysis has been preliminary and additional exploration of the data is recommended including the use of more sophisticated signal processing to explore subtle issues that have been revealed but which are not yet fully understood or explained.

  10. Studies of the effects of experimentally produced noise associated with oil and gas exploration and development on sea otters in California. Final report

    SciTech Connect

    Riedman, M.L.

    1983-11-15

    During the winter 1983 tape-recorded industrial noises associated with offshore oil and gas operations were projected underwater at Soberanes Point, California. Seismic-exploration sounds were produced using a multiple air gun array (4000 cu. in) and a single air gun (100 cu. in) along a 10-15 km transect paralleling the coastline from Rocky Point to Yankee Point. The behavior, density, and distribution of sea otters (Enhydra lutris) within the vicinity of the sound projection area were not affected by the acoustic experiments. Foraging and diving behaviors of sea otters were normal and undisturbed. There were no movements of otters away from the sound source or out of the sound projection vicinity during either the winter or spring acoustic experiments.

  11. Effects of Noise and Filtering on the Intelligibility of Speech Produced during Simultaneous Communication

    ERIC Educational Resources Information Center

    MacKenzie, Douglas J.; Schiavetti, Nicholas; Whitehead, Robert L.; Metz, Dale Evan

    2004-01-01

    This study investigated the effects of noise and filtering on the intelligibility of speech produced during simultaneous communication (SC). Four normal hearing, experienced sign language users were recorded under SC and speech alone (SA) conditions speaking Boothroyd's forced-choice phonetic contrast material designed for measurement of speech…

  12. An acoustic analysis of laughter produced by congenitally deaf and normally hearing college students.

    PubMed

    Makagon, Maja M; Funayama, E Sumie; Owren, Michael J

    2008-07-01

    Relatively few empirical data are available concerning the role of auditory experience in nonverbal human vocal behavior, such as laughter production. This study compared the acoustic properties of laughter in 19 congenitally, bilaterally, and profoundly deaf college students and in 23 normally hearing control participants. Analyses focused on degree of voicing, mouth position, air-flow direction, temporal features, relative amplitude, fundamental frequency, and formant frequencies. Results showed that laughter produced by the deaf participants was fundamentally similar to that produced by the normally hearing individuals, which in turn was consistent with previously reported findings. Finding comparable acoustic properties in the sounds produced by deaf and hearing vocalizers confirms the presumption that laughter is importantly grounded in human biology, and that auditory experience with this vocalization is not necessary for it to emerge in species-typical form. Some differences were found between the laughter of deaf and hearing groups; the most important being that the deaf participants produced lower-amplitude and longer-duration laughs. These discrepancies are likely due to a combination of the physiological and social factors that routinely affect profoundly deaf individuals, including low overall rates of vocal fold use and pressure from the hearing world to suppress spontaneous vocalizations.

  13. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2002-01-01

    Low power EM waves are used to detect motions of vocal tract tissues of the human speech system before, during, and after voiced speech. A voiced excitation function is derived. The excitation function provides speech production information to enhance speech characterization and to enable noise removal from human speech.

  14. Sine-wave and noise-vocoded sine-wave speech in a tone language: Acoustic details matter.

    PubMed

    Rosen, Stuart; Hui, Sze Ngar Catherine

    2015-12-01

    Sine-wave speech (SWS) is a highly simplified version of speech consisting only of frequency- and amplitude-modulated sinusoids representing the formants. That listeners can successfully understand SWS has led to claims that speech perception must be based on abstract properties of the stimuli far removed from their specific acoustic form. Here it is shown, in bilingual Cantonese/English listeners, that performance with Cantonese SWS is improved by noise vocoding, with no effect on English SWS utterances. This manipulation preserves the abstract informational structure in the signals but changes its surface form. The differential effects of noise vocoding likely arise from the fact that Cantonese is a tonal language and hence more reliant on fundamental frequency (F0) contours for its intelligibility. SWS does not preserve tonal information from the original speech but does have false tonal information signalled by the lowest frequency sinusoid. Noise vocoding SWS appears to minimise the tonal percept, which thus interferes less in the perception of Cantonese. It has no effect in English, which is minimally reliant on F0 variations for intelligibility. Therefore it is not only the informational structure of a sound that is important but also how its acoustic detail interacts with the phonological structure of a given language.

  15. Sine-wave and noise-vocoded sine-wave speech in a tone language: Acoustic details matter.

    PubMed

    Rosen, Stuart; Hui, Sze Ngar Catherine

    2015-12-01

    Sine-wave speech (SWS) is a highly simplified version of speech consisting only of frequency- and amplitude-modulated sinusoids representing the formants. That listeners can successfully understand SWS has led to claims that speech perception must be based on abstract properties of the stimuli far removed from their specific acoustic form. Here it is shown, in bilingual Cantonese/English listeners, that performance with Cantonese SWS is improved by noise vocoding, with no effect on English SWS utterances. This manipulation preserves the abstract informational structure in the signals but changes its surface form. The differential effects of noise vocoding likely arise from the fact that Cantonese is a tonal language and hence more reliant on fundamental frequency (F0) contours for its intelligibility. SWS does not preserve tonal information from the original speech but does have false tonal information signalled by the lowest frequency sinusoid. Noise vocoding SWS appears to minimise the tonal percept, which thus interferes less in the perception of Cantonese. It has no effect in English, which is minimally reliant on F0 variations for intelligibility. Therefore it is not only the informational structure of a sound that is important but also how its acoustic detail interacts with the phonological structure of a given language. PMID:26723325

  16. Acoustic Performance of Novel Fan Noise Reduction Technologies for a High Bypass Model Turbofan at Simulated Flights Conditions

    NASA Technical Reports Server (NTRS)

    Elliott, David M.; Woodward, Richard P.; Podboy, Gary G.

    2010-01-01

    Two novel fan noise reduction technologies, over the rotor acoustic treatment and soft stator vane technologies, were tested in an ultra-high bypass ratio turbofan model in the NASA Glenn Research Center s 9- by 15-Foot Low-Speed Wind Tunnel. The performance of these technologies was compared to that of the baseline fan configuration, which did not have these technologies. Sideline acoustic data and hot film flow data were acquired and are used to determine the effectiveness of the various treatments. The material used for the over the rotor treatment was foam metal and two different types were used. The soft stator vanes had several internal cavities tuned to target certain frequencies. In order to accommodate the cavities it was necessary to use a cut-on stator to demonstrate the soft vane concept.

  17. Comparison of Active Noise Control Structures in the Presence of Acoustical Feedback by Using THEH∞SYNTHESIS Technique

    NASA Astrophysics Data System (ADS)

    Bai, M. R.; Lin, H. H.

    1997-10-01

    This study compares three control structures of active noise cancellation for ducts: feedback control, feedforward control, and hybrid control. These structures are compared in terms of performance, stability, and robustness by using a general framework of theH∞robust control theory. In addition, theH∞synthesis procedure automatically incorporates the acoustic feedback path that is usually a plaguing problem to feedforward control design. The controllers are implemented by using a digital signal processor and tested on a finite-length duct. In an experimental verification, the proposed controllers are also compared with the well-known filtered-uleast mean square (FULMS) controller. The advantages and disadvantages of each ANC structure as well as the adverse effects due to acoustic feedback are addressed.

  18. NASA powered lift facility internally generated noise and its transmission to the acoustic far field

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1988-01-01

    Noise tests of NASA Lewis Research Center's Powered Lift Facility (PLF) were performed to determine the frequency content of the internally generated noise that reaches the far field. The sources of the internally generated noise are the burner, elbows, valves, and flow turbulence. Tests over a range of nozzle pressure ratios from 1.2 to 3.5 using coherence analysis revealed that low frequency noise below 1200 Hz is transmitted through the nozzle. Broad banded peaks at 240 and 640 Hz were found in the transmitted noise. Aeroacoustic excitation effects are possible in this frequency range. The internal noise creates a noise floor that limits the amount of jet noise suppression that can be measured on the PLF and similar facilities.

  19. Short- and long-term changes in right whale calling behavior: the potential effects of noise on acoustic communication.

    PubMed

    Parks, Susan E; Clark, C W; Tyack, P L

    2007-12-01

    The impact of anthropogenic noise on marine mammals has been an area of increasing concern over the past two decades. Most low-frequency anthropogenic noise in the ocean comes from commercial shipping which has contributed to an increase in ocean background noise over the past 150 years. The long-term impacts of these changes on marine mammals are not well understood. This paper describes both short- and long-term behavioral changes in calls produced by the endangered North Atlantic right whale (Eubalaena glacialis) and South Atlantic right whale (Eubalaena australis) in the presence of increased low-frequency noise. Right whales produce calls with a higher average fundamental frequency and they call at a lower rate in high noise conditions, possibly in response to masking from low-frequency noise. The long-term changes have occurred within the known lifespan of individual whales, indicating that a behavioral change, rather than selective pressure, has resulted in the observed differences. This study provides evidence of a behavioral change in sound production of right whales that is correlated with increased noise levels and indicates that right whales may shift call frequency to compensate for increased band-limited background noise.

  20. Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures

    NASA Astrophysics Data System (ADS)

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2014-01-01

    Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques.

  1. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  2. Acoustic and Laser Doppler Anemometer Results for Confluent, 22-Lobed, and Unique-Lobed Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)

    2002-01-01

    The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.

  3. Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.

    2012-01-01

    The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories

  4. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: Examination of noise conduction through the ear canal, head, and bodya)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.

    2007-01-01

    Approaches were examined for reducing acoustic noise levels heard by subjects during functional magnetic resonance imaging (fMRI), a technique for localizing brain activation in humans. Specifically, it was examined whether a device for isolating the head and ear canal from sound (a “helmet”) could add to the isolation provided by conventional hearing protection devices (i.e., earmuffs and earplugs). Both subjective attenuation (the difference in hearing threshold with versus without isolation devices in place) and objective attenuation (difference in ear-canal sound pressure) were measured. In the frequency range of the most intense fMRI noise (1–1.4 kHz), a helmet, earmuffs, and earplugs used together attenuated perceived sound by 55–63 dB, whereas the attenuation provided by the conventional devices alone was substantially less: 30–37 dB for earmuffs, 25–28 dB for earplugs, and 39–41 dB for earmuffs and earplugs used together. The data enabled the clarification of the relative importance of ear canal, head, and body conduction routes to the cochlea under different conditions: At low frequencies (≤500 Hz), the ear canal was the dominant route of sound conduction to the cochlea for all of the device combinations considered. At higher frequencies (>500 Hz), the ear canal was the dominant route when either earmuffs or earplugs were worn. However, the dominant route of sound conduction was through the head when both earmuffs and earplugs were worn, through both ear canal and body when a helmet and earmuffs were worn, and through the body when a helmet, earmuffs, and earplugs were worn. It is estimated that a helmet, earmuffs, and earplugs together will reduce the most intense fMRI noise levels experienced by a subject to 60–65 dB SPL. Even greater reductions in noise should be achievable by isolating the body from the surrounding noise field. PMID:11206150

  5. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.

    PubMed

    Zhong, P; Cioanta, I; Cocks, F H; Preminger, G M

    1997-05-01

    The inertial cavitation and associated acoustic emission generated during electrohydraulic shock wave lithotripsy were studied using high-speed photography and acoustic pressure measurements. The dynamics of cavitation bubble clusters, induced in vitro by an experimental laboratory lithotripter, were recorded using a high-speed rotating drum camera at 20,000 frames/s. The acoustic emission, generated by the rapid initial expansion and subsequent violent collapse of the cavitation bubbles, was measured simultaneously using a 1-MHz focused hydrophone, The expansion duration of the cavitation bubble cluster was found to correlate closely with the time delay between the first two groups of pressure spikes in the acoustic emission signal. This correlation provides an essential physical basis to assess the inertial cavitation produced by a clinical Dornier HM-3 shock wave lithotripter, both in water and in renal parenchyma of a swine model. In the clinical output voltage range (16-24 kV), the expansion duration of the primary cavitation bubble cluster generated by the HM-3 lithotripter in water increases from 158 to 254 microseconds, whereas the corresponding values in renal parenchyma are much smaller and remain almost unchanged (from 71 to 72 microseconds). In contrast, subsequent oscillation of the bubble following its primary collapse is significantly prolonged (from 158-235 microseconds in water to 1364-1373 microseconds in renal parenchyma). These distinctive differences between lithotripsy-induced inertial cavitation in vitro and that in vivo are presumably due to the constraining effect of renal tissue on bubble expansion. PMID:9165740

  6. Designing acoustics for linguistically diverse classrooms: Effects of background noise, reverberation and talker foreign accent on speech comprehension by native and non-native English-speaking listeners

    NASA Astrophysics Data System (ADS)

    Peng, Zhao Ellen

    The current classroom acoustics standard (ANSI S12.60-2010) recommends core learning spaces not to exceed background noise level (BNL) of 35 dBA and reverberation time (RT) of 0.6 second, based on speech intelligibility performance mainly by the native English-speaking population. Existing literature has not correlated these recommended values well with student learning outcomes. With a growing population of non-native English speakers in American classrooms, the special needs for perceiving degraded speech among non-native listeners, either due to realistic room acoustics or talker foreign accent, have not been addressed in the current standard. This research seeks to investigate the effects of BNL and RT on the comprehension of English speech from native English and native Mandarin Chinese talkers as perceived by native and non-native English listeners, and to provide acoustic design guidelines to supplement the existing standard. This dissertation presents two studies on the effects of RT and BNL on more realistic classroom learning experiences. How do native and non-native English-speaking listeners perform on speech comprehension tasks under adverse acoustic conditions, if the English speech is produced by talkers of native English (Study 1) versus native Mandarin Chinese (Study 2)? Speech comprehension materials were played back in a listening chamber to individual listeners: native and non-native English-speaking in Study 1; native English, native Mandarin Chinese, and other non-native English-speaking in Study 2. Each listener was screened for baseline English proficiency level, and completed dual tasks simultaneously involving speech comprehension and adaptive dot-tracing under 15 acoustic conditions, comprised of three BNL conditions (RC-30, 40, and 50) and five RT scenarios (0.4 to 1.2 seconds). The results show that BNL and RT negatively affect both objective performance and subjective perception of speech comprehension, more severely for non

  7. The noise environment of a school classroom due to the operation of utility helicopters. [acoustic measurements of helicopter noise during flight over building

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Pegg, R. J.

    1974-01-01

    Noise measurements under controlled conditions have been made inside and outside of a school building during flyover operations of four different helicopters. The helicopters were operated at a condition considered typical for a police patrol mission. Flyovers were made at an altitude of 500 ft and an airspeed of 45 miles per hour. During these operations acoustic measurements were made inside and outside of the school building with the windows closed and then open. The outside noise measurements during helicopter flyovers indicate that the outside db(A) levels were approximately the same for all test helicopters. For the windows closed case, significant reductions for the inside measured db(A) values were noted for all overflights. These reductions were approximately 20 db(A); similar reductions were noted in other subjective measuring units. The measured internal db(A) levels with the windows open exceeded published classroom noise criteria values; however, for the windows-closed case they are in general agreement with the criteria values.

  8. Flap Side Edge Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  9. Near noise field characteristics of Nike rocket motors for application to space vehicle payload acoustic qualification

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Bruton, D.

    1977-01-01

    Results of a series of noise measurements that were made under controlled conditions during the static firing of two Nike solid propellant rocket motors are presented. The usefulness of these motors as sources for general spacecraft noise testing was assessed, and the noise expected in the cargo bay of the orbiter was reproduced. Brief descriptions of the Nike motor, the general procedures utilized for the noise tests, and representative noise data including overall sound pressure levels, one third octave band spectra, and octave band spectra were reviewed. Data are presented on two motors of different ages in order to show the similarity between noise measurements made on motors having different loading dates. The measured noise from these tests is then compared to that estimated for the space shuttle orbiter cargo bay.

  10. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 2: One-third octave data tabulations and selected narrowband traces

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The raw-acoustic data corrected to standard day, from acoustic tests performed on a 0.508-scale fan vehicle of a 111,300 newton thrust, full-size engine, which has application on an advanced transport aircraft, are presented. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec to achieve the desired pressure ratio in a single-stage fan with low radius ratio, and to maintain adequate stall margin. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized.

  11. Acoustic evaluation and adjustment of an open-plan office through architectural design and noise control.

    PubMed

    Passero, Carolina Reich Marcon; Zannin, Paulo Henrique Trombetta

    2012-11-01

    Arranging office space into a single open room offers advantages in terms of easy exchange of information and interaction among coworkers, but reduces privacy and acoustic comfort. Thus, the purpose of this work was to evaluate the acoustic quality of a real open-plan office and to propose changes in the room to improve the acoustic conditioning of this office. The computational model of the office under study was calibrated based on RT and STI measurements. Predictions were made of the RT and STI, which generated the radius of distraction r(D), and the rate of spatial decay of sound pressure levels per distance doubling DL(2) in the real conditions of the office and after modifications of the room. The insertion of dividers between work stations and an increase in the ceiling's sound absorption improved the acoustic conditions in the office under study.

  12. Predictive Acoustic Modelling Applied to the Control of Intake/exhaust Noise of Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Davies, P. O. A. L.; Harrison, M. F.

    1997-05-01

    The application of validated acoustic models to intake/exhaust system acoustic design is described with reference to a sequence of specific practical examples. These include large turbocharged diesel generating sets, truck engines and high performance petrol engines. The discussion includes a comparison of frequency domain, time domain and hybrid modelling approaches to design methodology. The calculation of sound emission from open terminations is summarized in an appendix.

  13. Passive acoustic detection and localization of whales: effects of shipping noise in Saguenay-St. Lawrence Marine Park.

    PubMed

    Simard, Yvan; Roy, Nathalie; Gervaise, Cédric

    2008-06-01

    The performance of large-aperture hydrophone arrays to detect and localize blue and fin whales' 15-85 Hz signature vocalizations under ocean noise conditions was assessed through simulations from a normal mode propagation model combined to noise statistics from 15 960 h of recordings in Saguenay-St. Lawrence Marine Park. The probability density functions of 2482 summer noise level estimates in the call bands were used to attach a probability of detection/masking to the simulated call levels as a function of whale depth and range for typical environmental conditions. Results indicate that call detection was modulated by the calling depth relative to the sound channel axis and by modal constructive and destructive interferences with range. Masking of loud infrasounds could reach 40% at 30 km for a receiver at the optimal depth. The 30 dB weaker blue whale D-call were subject to severe masking. Mapping the percentages of detection and localization allowed assessing the performance of a six-hydrophone array under mean- and low-noise conditions. This approach is helpful for optimizing hydrophone configuration in implementing passive acoustic monitoring arrays and building their detection function for whale density assessment, as an alternative to or in combination with the traditional undersampling visual methods. PMID:18537362

  14. Extraction of Target Scatterings from Received Transients on Target Detection Trial of Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2012-07-01

    We have already designed and fabricated an aspherical lens with an aperture diameter of 1.0 m to develop a prototype system for ambient noise imaging (ANI). It has also been verified that this acoustic lens realizes a directional resolution, which is a beam width of 1° at the center frequency of 120 kHz over the field of view from -7 to +7°. In this study, a sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay, in November of 2010. There were many transients in the received sound. These transients were classified roughly into directly received noises and target scatterings. We proposed a classification method to extract transients of only target scatterings. By analyzing transients extracted as target scatterings, it was verified that the power spectrum density levels of the on-target directions were greater than those of the off-target directions in the higher frequency band over 60 kHz. These results showed that the targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps.

  15. Passive acoustic detection and localization of whales: effects of shipping noise in Saguenay-St. Lawrence Marine Park.

    PubMed

    Simard, Yvan; Roy, Nathalie; Gervaise, Cédric

    2008-06-01

    The performance of large-aperture hydrophone arrays to detect and localize blue and fin whales' 15-85 Hz signature vocalizations under ocean noise conditions was assessed through simulations from a normal mode propagation model combined to noise statistics from 15 960 h of recordings in Saguenay-St. Lawrence Marine Park. The probability density functions of 2482 summer noise level estimates in the call bands were used to attach a probability of detection/masking to the simulated call levels as a function of whale depth and range for typical environmental conditions. Results indicate that call detection was modulated by the calling depth relative to the sound channel axis and by modal constructive and destructive interferences with range. Masking of loud infrasounds could reach 40% at 30 km for a receiver at the optimal depth. The 30 dB weaker blue whale D-call were subject to severe masking. Mapping the percentages of detection and localization allowed assessing the performance of a six-hydrophone array under mean- and low-noise conditions. This approach is helpful for optimizing hydrophone configuration in implementing passive acoustic monitoring arrays and building their detection function for whale density assessment, as an alternative to or in combination with the traditional undersampling visual methods.

  16. The background and bases for the proposed military standard on acoustical noise limits in helicopters

    NASA Astrophysics Data System (ADS)

    Garinther, G. R.; Hodge, D. C.

    1981-06-01

    A design standard for interior noise of helicopters was prepared to provide the developer and user with realistic noise limits which consider hearing damage risk, speech intelligibility, mission profile, state-of-the-art in noise reduction, and helicopter weight. The levels selected meet the current hearing conservation limits of the Department of Defense and permit electrically aided sentence intelligibility of 98%. Helicopters below 20,000 pounds are treated separately from those above because of the strong positive relation between internal noise and vehicle gross weight. This standard defines the locations and flight conditions under which noise measurements shall be made for compliance. It also specifies the types of instrumentation and the test procedures to be used to collect interior noise level data.

  17. The background and bases for the proposed military standard on acoustical noise limits in helicopters

    NASA Astrophysics Data System (ADS)

    Garinther, G. R.; Hodge, D. C.

    1981-03-01

    A design standard for interior noise of helicopters has been prepared to provide the developer and user with realistic noise limits which consider hearing damage risk, speech intelligibility, mission profile, state-of-the-art in noise reduction, and helicopter weight. The levels selected meet the current hearing conservation limits of the Department of Defense and permit electrically aided sentence intelligibility of 98%. Helicopters below 20,000 pounds are treated separately from those above because of the strong positive relation between internal noise and vehicle gross weight. This standard defines the locations and flight conditions under which noise measurements shall be made for compliance. It also specifies the types of instrumentation and the test procedures to be used to collect interior noise level data. This degree of specificity in the instrumentation and measurements area is intended to insure that data collected by different development and test agencies will be both accurate and consistent.

  18. Study of noise sources in a subsonic fan using measured blade pressures and acoustic theory

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1975-01-01

    Sources of noise in a 1.4 m (4.6 ft) diameter subsonic tip speed propulsive fan running statically outdoors are studied using a combination of techniques. Signals measured with pressure transducers on a rotor blade are plotted in a format showing the space-time history of inlet distortion. Study of these plots visually and with statistical correlation analysis confirms that the inlet flow contains long, thin eddies of turbulence. Turbulence generated in the boundary layer of the shroud upstream of the rotor tips was not found to be an important noise source. Fan noise is diagnosed by computing narrowband spectra of rotor and stator sound power and comparing these with measured sound power spectra. Rotor noise is computed from spectra of the measured blade pressures and stator noise is computed using the author's stator noise theory. It is concluded that the rotor and stator sources contribute about equally at frequencies in the vicinity of the first three harmonics of blade passing frequency. At higher frequencies, the stator contribution diminishes rapidly and the rotor/inlet turbulence mechanism dominates. Two parametric studies are performed by using the rotor noise calculation procedure which was correlated with test. In the first study, the effects on noise spectrum and directivity are calculated for changes in turbulence properties, rotational Mach number, number of blades, and stagger angle. In the second study the influences of design tip speed and blade number on noise are evaluated.

  19. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight comprehensive data report. Volume 1: Test nozzles and acoustic data

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.

    1984-01-01

    Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Acoustic behavior as a function of nozzle flow passage geometry was measured. The acoustic data consist primarily of 1/3 octave band sound pressure levels and overall sound pressure levels. Detailed schematics and geometric characteristics of the six scale model nozzle configurations and acoustic test point definitions are presented. Tabulation of aerodynamic test conditions and a computer listing of the measured acoustic data are displayed.

  20. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implants.

    PubMed

    Li, Xing; Nie, Kaibao; Imennov, Nikita S; Won, Jong Ho; Drennan, Ward R; Rubinstein, Jay T; Atlas, Les E

    2012-11-01

    Harmonic and temporal fine structure (TFS) information are important cues for speech perception in noise and music perception. However, due to the inherently coarse spectral and temporal resolution in electric hearing, the question of how to deliver harmonic and TFS information to cochlear implant (CI) users remains unresolved. A harmonic-single-sideband-encoder [(HSSE); Nie et al. (2008). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing; Lie et al., (2010). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing] strategy has been proposed that explicitly tracks the harmonics in speech and transforms them into modulators conveying both amplitude modulation and fundamental frequency information. For unvoiced speech, HSSE transforms the TFS into a slowly varying yet still noise-like signal. To investigate its potential, four- and eight-channel vocoder simulations of HSSE and the continuous-interleaved-sampling (CIS) strategy were implemented, respectively. Using these vocoders, five normal-hearing subjects' speech recognition performance was evaluated under different masking conditions; another five normal-hearing subjects' Mandarin tone identification performance was also evaluated. Additionally, the neural discharge patterns evoked by HSSE- and CIS-encoded Mandarin tone stimuli were simulated using an auditory nerve model. All subjects scored significantly higher with HSSE than with CIS vocoders. The modeling analysis demonstrated that HSSE can convey temporal pitch cues better than CIS. Overall, the results suggest that HSSE is a promising strategy to enhance speech perception with CIs. PMID:23145619

  1. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  2. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator.

    PubMed

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  3. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    PubMed Central

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  4. Assessment at full scale of nozzle/wing geometry effects on OTW aero-acoustic characteristics. [short takeoff aircraft noise

    NASA Technical Reports Server (NTRS)

    Groesbeck, D.; Vonglahn, U.

    1979-01-01

    The effects on acoustic characteristics of nozzle type and location on a wing for STOL engine over-the-wing configurations are assessed at full scale on the basis of model-scale data. Three types of nozzle configurations are evaluated: a circular nozzle with external deflector mounted above the wing, a slot nozzle with external deflector mounted on the wing and a slot nozzle mounted on the wing. Nozzle exhaust plane locations with respect to the wing leading edge are varied from 10 to 46 percent chord (flaps retracted) with flap angles of 20 (takeoff altitude) and 60 (approach attitude). Perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots, static EPNL values, defined as flyover relative noise levels, are calculated and plotted as a function of lift and thrust ratios. From such plots the acoustic benefits attributable to variations in nozzle/deflector/wing geometry at full scale are assessed for equal aerodynamic performance.

  5. Core Noise: Implications of Emerging N+3 Designs and Acoustic Technology Needs

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a summary of the core-noise implications of NASA's primary N+3 aircraft concepts. These concepts are the MIT/P&W D8.5 Double Bubble design, the Boeing/GE SUGAR Volt hybrid gas-turbine/electric engine concept, the NASA N3-X Turboelectric Distributed Propulsion aircraft, and the NASA TBW-XN Truss-Braced Wing concept. The first two are future concepts for the Boeing 737/Airbus A320 US transcontinental mission of 180 passengers and a maximum range of 3000 nm. The last two are future concepts for the Boeing 777 transpacific mission of 350 passengers and a 7500 nm range. Sections of the presentation cover: turbofan design trends on the N+1.5 time frame and the already emerging importance of core noise; the NASA N+3 concepts and associated core-noise challenges; the historical trends for the engine bypass ratio (BPR), overall pressure ratio (OPR), and combustor exit temperature; and brief discussion of a noise research roadmap being developed to address the core-noise challenges identified for the N+3 concepts. The N+3 conceptual aircraft have (i) ultra-high bypass ratios, in the rage of 18 - 30, accomplished by either having a small-size, high-power-density core, an hybrid design which allows for an increased fan size, or by utilizing a turboelectric distributed propulsion design; and (ii) very high OPR in the 50 - 70 range. These trends will elevate the overall importance of turbomachinery core noise. The N+3 conceptual designs specify the need for the development and application of advanced liners and passive and active control strategies to reduce the core noise. Current engineering prediction of core noise uses semi-empirical methods based on older turbofan engines, with (at best) updates for more recent designs. The models have not seen the same level of development and maturity as those for fan and jet noise and are grossly inadequate for the designs considered for the N+3 time frame. An aggressive program for the development of updated noise

  6. Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control

    SciTech Connect

    Kelley, N.D.; McKenna, H.E.; Hemphill, R.R.; Etter, C.L.; Garrelts, R.L.; Linn, N.C.

    1985-02-01

    This report summarizes extensive research by staff of the Solar Energy Research Institute and its subcontractors conducted to establish the origin and possible amelioration of acoustic disturbances associated with the operation of the DOE/NASA MOD-1 wind turbine installed in 1979 near Boone, North Carolina. Results have shown that the source of this acoustic annoyance was the transient, unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the low-frequency, acoustic impulses propagated into the structures in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing. Several techniques for reducing the abrupt, unsteady blade load transients were researched and are discussed in the report.

  7. Noise in pressure transducer readings produced by variations in solar radiation

    USGS Publications Warehouse

    Cain, S. F.; Davis, G.A.; Loheide, S.P.; Butler, J.J.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  8. Differences in acoustic features of vocalizations produced by killer whales cross-socialized with bottlenose dolphins.

    PubMed

    Musser, Whitney B; Bowles, Ann E; Grebner, Dawn M; Crance, Jessica L

    2014-10-01

    Limited previous evidence suggests that killer whales (Orcinus orca) are capable of vocal production learning. However, vocal contextual learning has not been studied, nor the factors promoting learning. Vocalizations were collected from three killer whales with a history of exposure to bottlenose dolphins (Tursiops truncatus) and compared with data from seven killer whales held with conspecifics and nine bottlenose dolphins. The three whales' repertoires were distinguishable by a higher proportion of click trains and whistles. Time-domain features of click trains were intermediate between those of whales held with conspecifics and dolphins. These differences provided evidence for contextual learning. One killer whale spontaneously learned to produce artificial chirps taught to dolphins; acoustic features fell within the range of inter-individual differences among the dolphins. This whale also produced whistles similar to a stereotyped whistle produced by one dolphin. Thus, results provide further support for vocal production learning and show that killer whales are capable of contextual learning. That killer whales produce similar repertoires when associated with another species suggests substantial vocal plasticity and motivation for vocal conformity with social associates. PMID:25324098

  9. Differences in acoustic features of vocalizations produced by killer whales cross-socialized with bottlenose dolphins.

    PubMed

    Musser, Whitney B; Bowles, Ann E; Grebner, Dawn M; Crance, Jessica L

    2014-10-01

    Limited previous evidence suggests that killer whales (Orcinus orca) are capable of vocal production learning. However, vocal contextual learning has not been studied, nor the factors promoting learning. Vocalizations were collected from three killer whales with a history of exposure to bottlenose dolphins (Tursiops truncatus) and compared with data from seven killer whales held with conspecifics and nine bottlenose dolphins. The three whales' repertoires were distinguishable by a higher proportion of click trains and whistles. Time-domain features of click trains were intermediate between those of whales held with conspecifics and dolphins. These differences provided evidence for contextual learning. One killer whale spontaneously learned to produce artificial chirps taught to dolphins; acoustic features fell within the range of inter-individual differences among the dolphins. This whale also produced whistles similar to a stereotyped whistle produced by one dolphin. Thus, results provide further support for vocal production learning and show that killer whales are capable of contextual learning. That killer whales produce similar repertoires when associated with another species suggests substantial vocal plasticity and motivation for vocal conformity with social associates.

  10. Frequency spectrum of the noise emitted by two interacting cavitation bubbles in strong acoustic fields.

    PubMed

    Jiang, Liang; Liu, Fengbing; Chen, Haosheng; Wang, Jiadao; Chen, Darong

    2012-03-01

    The dynamics and acoustic emission of two interacting cavitation bubbles exposed to strong acoustic fields with a frequency of 515 KHz are investigated numerically in this paper. After comparing the dynamics of a single bubble excited by the given pressure waves, bubbles with ambient radii of 2 and 5 μm were chosen to be studied to discuss the influence of the mutual bubble-bubble interaction on the dynamic behaviors and acoustic emission of the bubbles. The results show that, aside from the external driving pressure waves, the interaction between the bubbles imposes an extra nonlinear effect on the oscillations of the bubbles and that the dynamics of the smaller bubble could be suppressed gradually with the enhancement of this mutual interaction by decreasing the distance between the bubbles. Moreover, the improvement in the oscillation nonlinearity of the bubbles due to the change in the ambient circumstance could readily be observed from the frequency spectra of the bubbles' acoustic emission, which interprets the change by exhibiting an appropriate development of the subharmonics, the ultraharmonics, and the broadband component.

  11. Vocal warm-up produces acoustic change in singers' vibrato rate.

    PubMed

    Moorcroft, Lynda; Kenny, Dianna T

    2012-09-01

    Vibrato rate and vibrato extent were acoustically assessed in 12 classically trained female singers before and after 25 minutes of vocal warm-up exercises. Vocal warm-up produced three notable changes in vibrato rate: (1) more regularity in the cyclic undulations comprising the vibrato rate of a note, (2) more stability in mean vibrato rates from one sustained note to the next, and (3) a moderating of excessively fast and excessively slow mean vibrato rates. No significant change was found for vibrato extent. The findings indicate that vocal warm-up may regulate vibrato rate. Thus tone quality, which is strongly linked to vibrato characteristics, may undergo positive change as a result of vocal warm-up. PMID:22521322

  12. Acoustic evaluation of a novel swept-rotor fan. [noise reduction in turbofan engines

    NASA Technical Reports Server (NTRS)

    Lucas, J. G.; Woodward, R. P.; Mackinnon, M. J.

    1978-01-01

    Inlet noise and aerodynamic performance are presented for a high tip speed fan designed with rotor blade leading edge sweep that gives a subsonic component of inlet Mach number normal to the edge at all radii. The intent of the design was to minimize the generation of rotor leading edge shock waves thereby minimizing multiple pure tone noise. Sound power level and spectral comparisons are made with several high-speed fans of conventional design. Results show multiple pure tone noise at levels below those of some of the other fans and this noise was initiated at a higher tip speed. Aerodynamic performance of the fan did not meet design goals for this first build which applied conventional design procedures to the swept fan geometry.

  13. Effects of forward velocity and acoustic treatment on inlet fan noise

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.; Merriman, J. E.

    1974-01-01

    Flyover and static noise data from several engines are presented that show inlet fan noise measured in flight can be lower than that projected from static tests for some engines. The differences between flight and static measurements appear greatest when the fan fundamental tone due to rotor-stator interaction or to the rotor alone field is below cutoff. Data from engine and fan tests involving inlet treatment on the walls only are presented that show the attenuation from this treatment is substantially larger than expected from previous theories or flow duct experience. Data showing noise shielding effects due to the location of the engine on the airplane are also presented. These observations suggest that multiringed inlets may not be necessary to achieve the desired noise reduction in many applications.

  14. A Robust Approach For Acoustic Noise Suppression In Speech Using ANFIS

    NASA Astrophysics Data System (ADS)

    Martinek, Radek; Kelnar, Michal; Vanus, Jan; Bilik, Petr; Zidek, Jan

    2015-11-01

    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.

  15. Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan. [quiet engine program

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.; Clemons, A.

    1977-01-01

    Sound data which were obtained during tests of a 50.8 cm diameter, subsonic tip speed, low pressure ratio fan were analyzed. The test matrix was divided into two major investigations: (1) source noise reduction techniques; and (2) aft duct noise reduction with acoustic treatment. Source noise reduction techniques were investigated which include minimizing second harmonic noise by varying vane/blade ratio, variation in spacing, and lowering the Mach number through the vane row to lower fan broadband noise. Treatment in the aft duct which includes flow noise effects, faceplate porosity, rotor OGV treatment, slant cell treatment, and splitter simulation with variable depth on the outer wall and constant thickness treatment on the inner wall was investigated. Variable boundary conditions such as variation in treatment panel thickness and orientation, and mixed porosity combined with variable thickness were examined. Significant results are reported.

  16. Noise producing toys and the efficacy of product standard criteria to protect health and education outcomes.

    PubMed

    McLaren, Stuart J; Page, Wyatt H; Parker, Lou; Rushton, Martin

    2014-01-01

    An evaluation of 28 commercially available toys imported into New Zealand revealed that 21% of these toys do not meet the acoustic criteria in the ISO standard, ISO 8124-1:2009 Safety of Toys, adopted by Australia and New Zealand as AS/NZS ISO 8124.1:2010. While overall the 2010 standard provided a greater level of protection than the earlier 2002 standard, there was one high risk toy category where the 2002 standard provided greater protection. A secondary set of toys from the personal collections of children known to display atypical methods of play with toys, such as those with autism spectrum disorders (ASD), was part of the evaluation. Only one of these toys cleanly passed the 2010 standard, with the remainder failing or showing a marginal-pass. As there is no tolerance level stated in the standards to account for interpretation of data and experimental error, a value of +2 dB was used. The findings of the study indicate that the current standard is inadequate in providing protection against excessive noise exposure. Amendments to the criteria have been recommended that apply to the recently adopted 2013 standard. These include the integration of the new approaches published in the recently amended European standard (EN 71) on safety of toys. PMID:24452254

  17. Noise producing toys and the efficacy of product standard criteria to protect health and education outcomes.

    PubMed

    McLaren, Stuart J; Page, Wyatt H; Parker, Lou; Rushton, Martin

    2013-12-19

    An evaluation of 28 commercially available toys imported into New Zealand revealed that 21% of these toys do not meet the acoustic criteria in the ISO standard, ISO 8124-1:2009 Safety of Toys, adopted by Australia and New Zealand as AS/NZS ISO 8124.1:2010. While overall the 2010 standard provided a greater level of protection than the earlier 2002 standard, there was one high risk toy category where the 2002 standard provided greater protection. A secondary set of toys from the personal collections of children known to display atypical methods of play with toys, such as those with autism spectrum disorders (ASD), was part of the evaluation. Only one of these toys cleanly passed the 2010 standard, with the remainder failing or showing a marginal-pass. As there is no tolerance level stated in the standards to account for interpretation of data and experimental error, a value of +2 dB was used. The findings of the study indicate that the current standard is inadequate in providing protection against excessive noise exposure. Amendments to the criteria have been recommended that apply to the recently adopted 2013 standard. These include the integration of the new approaches published in the recently amended European standard (EN 71) on safety of toys.

  18. Theoretical study of refraction effects on noise produced by turbulent jets

    NASA Technical Reports Server (NTRS)

    Graham, E. W.; Graham, B. B.

    1975-01-01

    The transmission of acoustic disturbances from the interior of a jet into the ambient air is studied. The jet is assumed infinitely long with mean velocity profile independent of streamwise location. The noise generator is a sequence of transient sources drifting with the local fluid and confined to a short length of the jet. In Part 1, supersonic jets are considered. Numerical results for mean-square pressure versus angle in the far-field show unexpected peaks which are very sharp. Analysis of simplified models indicates that these are complex quasi-resonant effects which appear to the stationary observer in a high frequency range. The peaks are real for the idealized model, but would be smoothed by mathematical integration over source position, velocity, and frequency. Subsonic jets were considered in part 2, and a preliminary study of the near-field was attempted. Mean-square radial displacements (or mean radial energy flow or space-time correlations of radial pressure gradient) are first found for very simple cases. The most difficult case studied is a sequence of transient sources at the center of a uniform-velocity circular cylindrical jet. Here a numerical triple integration is required and seems feasible although only preliminary results for mean square radial displacement are now available. These preliminary results show disturbances decreasing with increasing radial distance, and with increasing distance upstream and downstream from the source. A trend towards greater downstream disturbances appears even in the near field.

  19. Noise Producing Toys and the Efficacy of Product Standard Criteria to Protect Health and Education Outcomes

    PubMed Central

    McLaren, Stuart J.; Page, Wyatt H.; Parker, Lou; Rushton, Martin

    2013-01-01

    An evaluation of 28 commercially available toys imported into New Zealand revealed that 21% of these toys do not meet the acoustic criteria in the ISO standard, ISO 8124-1:2009 Safety of Toys, adopted by Australia and New Zealand as AS/NZS ISO 8124.1:2010. While overall the 2010 standard provided a greater level of protection than the earlier 2002 standard, there was one high risk toy category where the 2002 standard provided greater protection. A secondary set of toys from the personal collections of children known to display atypical methods of play with toys, such as those with autism spectrum disorders (ASD), was part of the evaluation. Only one of these toys cleanly passed the 2010 standard, with the remainder failing or showing a marginal-pass. As there is no tolerance level stated in the standards to account for interpretation of data and experimental error, a value of +2 dB was used. The findings of the study indicate that the current standard is inadequate in providing protection against excessive noise exposure. Amendments to the criteria have been recommended that apply to the recently adopted 2013 standard. These include the integration of the new approaches published in the recently amended European standard (EN 71) on safety of toys. PMID:24452254

  20. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.

    PubMed

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-04-01

    The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.

  1. Long-term administration of magnesium after acoustic trauma caused by gunshot noise in guinea pigs.

    PubMed

    Abaamrane, L; Raffin, F; Gal, M; Avan, P; Sendowski, I

    2009-01-01

    In a previous study we observed that a 7-day post-trauma magnesium treatment significantly reduced auditory threshold shifts measured 7 days after gunshot noise exposure. However this improvement was only temporary, suggesting that it could be potentially beneficial to prolong this treatment. The aim of the present study was to evaluate the efficacy of a long-term (1 month) magnesium treatment after an impulse noise trauma, in comparison with either a 7-day magnesium treatment, an administration of methylprednisolone (conventional treatment), or a placebo (NaCl). Guinea pigs were exposed to impulse noise (three blank gunshots, 170 dB SPL peak). They received one of the four treatments, 1 h after the noise exposure. Auditory function was explored by recording the auditory brainstem response (ABR) and measuring the distortion product otoacoustic emissions (DPOAE) over a 3-month recovery period after the gunshot exposure. The functional hearing study was supplemented by a histological analysis. The results showed that a 1-month treatment with magnesium was the most effective treatment in terms of hair cell preservation. The DPOAE confirmed this effectiveness. Methylprednisolone accelerated recovery but its final efficacy remained moderate. It is probable that magnesium acts on the later metabolic processes that occur after noise exposure. Multiple mechanisms could be involved: calcium antagonism, anti-ischaemic effect or NMDA channel blockage. Regardless of the specific mechanism, a 1-month treatment with magnesium clearly attenuates NIHL, and presents the advantage of being safe for use in humans. PMID:19084059

  2. Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect

    Roadman, Jason; Huskey, Arlinda

    2015-07-01

    A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented in this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.

  3. [Comparision of forced expiratory time, recorded by two spirometers with flow sensors of various types, and acoustic duration of tracheal forced expiratory noises].

    PubMed

    Malaeva, V V; Pochekutova, I A; Korenbaum, V I

    2015-01-01

    In the sample of 44 volunteers forced expiratory time values obtained in spirometers, equipped with flow sensor of Lilly type and turbine flow sensor, and acoustic duration of tracheal forced expiratory noises are compared. It is shown that spirometric forced expiratory time is dependent on flow sensor type. Therefore it can't be used in diagnostic aims.

  4. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor.

    PubMed

    Zhang, Yumin; Chan, Yum-Ji; Huang, Lixi

    2014-05-01

    Broadband noise with profound low-frequency profile is prevalent and difficult to be controlled mechanically. This study demonstrates effective broadband sound absorption by reducing the mechanical reactance of a loudspeaker using a shunt circuit through electro-mechanical coupling, which induces reactance with different signs from that of loudspeaker. An RLC shunt circuit is connected to the moving coil to provide an electrically induced mechanical impedance which counters the cavity stiffness at low frequencies and reduces the system inertia above the resonance frequency. A sound absorption coefficient well above 0.5 is demonstrated across frequencies between 150 and 1200 Hz. The performance of the proposed device is superior to existing passive absorbers of the same depth (60 mm), which has lower frequency limits of around 300 Hz. A passive noise absorber is further proposed by paralleling a micro-perforated panel with shunted loudspeaker which shows potentials in absorbing band-limit impulse noise.

  5. Subjective evaluation of speech and noise in learning environments in the realm of classroom acoustics: Results from laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Meis, Markus; Nocke, Christian; Hofmann, Simone; Becker, Bernhard

    2005-04-01

    The impact of different acoustical conditions in learning environments on noise annoyance and the evaluation of speech quality were tested in a series of three experiments. In Experiment 1 (n=79) the auralization of seven classrooms with reverberation times from 0.55 to 3.21 s [average between 250 Hz to 2 kHz] served to develop a Semantic Differential, evaluating a simulated teacher's voice. Four factors were found: acoustical comfort, roughness, sharpness, and loudness. In Experiment 2, the effects of two classroom renovations were examined from a holistic perspective. The rooms were treated acoustically with acoustic ceilings (RT=0.5 s [250 Hz-2 kHz]) and muffling floor materials as well as non-acoustically with a new lighting system and color design. The results indicate that pupils (n=61) in renovated classrooms judged the simulated voice more positively, were less annoyed from the noise in classrooms, and were more motivated to participate in the lessons. In Experiment 3 the sound environments from six different lecture rooms (RT=0.8 to 1.39 s [250 Hz-2 kHz]) in two Universities of Oldenburg were evaluated by 321 students during the lectures. Evidence found supports the assumption that acoustical comfort in rooms is dependent on frequency for rooms with higher reverberation times.

  6. ACOUSTIC LINERS FOR TURBOFAN ENGINES

    NASA Technical Reports Server (NTRS)

    Minner, G. L.

    1994-01-01

    This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.

  7. Do public inquiries for noise control serve a useful purpose?--An acoustic consultant's view.

    PubMed

    Flindell, I H

    2003-01-01

    In the United Kingdom, before the introduction of the various town and country planning acts and associated regulations, landowners were free to use their land in any way they wished, subject only to limitations imposed by lease or covenant and the avoidance of nuisance or trespass against neighbours. Any disputes arising would be resolved by negotiation or via a court of law. Under current planning laws and regulations, local authorities are empowered to impose special conditions or even to refuse development to prevent excessive nuisance, but the resulting noise management solutions are not always optimum from either the noise maker's or the noise exposed's points of view. In addition, the planning system has almost no effect on existing noise. Public inquiries provide a useful mechanism for the investigation of appeals against local authority decisions, or where the government has decided that issues of strategic or national importance need to be fully explored in a public forum. In practice, and largely because of individual disagreement, public inquiries can result in excessive delays while all interested parties are allowed to have their say. There seems to be an increasing consensus that the general inadequacy of existing methods of assessing noise impact is at least partly to blame. The new European Environmental Noise Directive represents a step change towards the imposition of one-size-fits-all regulatory or administrative procedures which should eventually contribute towards the reduction of public inquiry delays, but on the other hand, any weakening of the general principle of basing decisions on 'informed flexibility' will probably have significant negative consequences over the longer term.

  8. Small Hot Jet Acoustic Rig Validation

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Bridges, James

    2006-01-01

    The Small Hot Jet Acoustic Rig (SHJAR), located in the Aeroacoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center in Cleveland, Ohio, was commissioned in 2001 to test jet noise reduction concepts at low technology readiness levels (TRL 1-3) and develop advanced measurement techniques. The first series of tests on the SHJAR were designed to prove its capabilities and establish the quality of the jet noise data produced. Towards this goal, a methodology was employed dividing all noise sources into three categories: background noise, jet noise, and rig noise. Background noise was directly measured. Jet noise and rig noise were separated by using the distance and velocity scaling properties of jet noise. Effectively, any noise source that did not follow these rules of jet noise was labeled as rig noise. This method led to the identification of a high frequency noise source related to the Reynolds number. Experiments using boundary layer treatment and hot wire probes documented this noise source and its removal, allowing clean testing of low Reynolds number jets. Other tests performed characterized the amplitude and frequency of the valve noise, confirmed the location of the acoustic far field, and documented the background noise levels under several conditions. Finally, a full set of baseline data was acquired. This paper contains the methodology and test results used to verify the quality of the SHJAR rig.

  9. Assessment of an action against environmental noise: Acoustic durability of a pavement surface with crumb rubber.

    PubMed

    Vázquez, V F; Luong, J; Bueno, M; Terán, F; Paje, S E

    2016-01-15

    Environmental noise is a worldwide problem that has an adverse effect in the quality of life of urban population. Some work has shown that there is a correlation between environmental noise and health issues as sleep disturbance or annoyance. This study presents the time evolution of a test track fabricated with an asphalt mixture with 20% of crumb rubber by weight of bitumen, added by the wet process. A complete surface characterization has been performed by determining tire/pavement sound levels, road texture profiles, in-situ dynamic stiffness and sound absorption of compacted and extracted sample cores. Two measurement campaigns were performed: just after mixture laying and after 3 years in service. This study confirms that the use of crumb rubber as a modifier of bituminous binders (CRMB) can improve the pavement characteristics: gap-graded mixtures with crumb rubber can be used in the action plans as urban rehabilitation measure to fight noise pollution. However, this noise reduction seems to decrease with age at a rate of approximately 0.15 dB(A) per year. PMID:26519582

  10. 1/f noise in etched groove surface acoustic wave (SAW) resonators.

    PubMed

    Parker, T E; Andres, D; Greer, J A; Montress, G K

    1994-01-01

    Measurements of 1/f (or flicker) frequency fluctuations in SAW resonators fabricated with etched groove reflectors on single crystal quartz have shown that the observed noise levels vary inversely with device size. These measurements were made on sixteen 450 MHz resonators of four different sizes. The 1/f noise levels were also evaluated on twenty-eight other SAW resonators ranging in frequency from 401 to 915 MHz. This additional data provides valuable information on the dependence of the flicker noise levels on resonator frequency. A model based an localized, independent velocity fluctuations in the quartz is proposed which correctly fits the observed size and frequency dependence of the measured 1/f noise levels. This model suggests that the velocity fluctuations originate in small regions (much less than ~5 mum in diameter) randomly distributed throughout the quartz with an average separation of about 5 mum between independent (incoherent) sources. The magnitude of the localized fractional velocity fluctuations, Deltav/v, averaged over a 5 micron cube is on the order of 1x10 (-9). PMID:18263275

  11. Combined acoustical and visual performance of noise barriers in mitigating the environmental impact of motorways.

    PubMed

    Jiang, Like; Kang, Jian

    2016-02-01

    This study investigated the overall performance of noise barriers in mitigating environmental impact of motorways, taking into consideration their effects on reducing noise and visual intrusions of moving traffic, but also potentially inducing visual impact themselves. A laboratory experiment was carried out, using computer-visualised video scenes and motorway traffic noise recordings to present experimental scenarios covering two traffic levels, two distances of receiver to road, two types of background landscape, and five barrier conditions including motorway only, motorway with tree belt, motorways with 3 m timber barrier, 5m timber barrier, and 5m transparent barrier. Responses from 30 participants of university students were gathered and perceived barrier performance analysed. The results show that noise barriers were always beneficial in mitigating environmental impact of motorways, or made no significant changes in environmental quality when the impact of motorways was low. Overall, barriers only offered similar mitigation effect as compared to tree belt, but showed some potential to be more advantageous when traffic level went high. 5m timber barrier tended to perform better than the 3m one at the distance of 300 m but not at 100 m possibly due to its negative visual effect when getting closer. The transparent barrier did not perform much differently from the timber barriers but tended to be the least effective in most scenarios. Some low positive correlations were found between aesthetic preference for barriers and environmental impact reduction by the barriers.

  12. Assessment of an action against environmental noise: Acoustic durability of a pavement surface with crumb rubber.

    PubMed

    Vázquez, V F; Luong, J; Bueno, M; Terán, F; Paje, S E

    2016-01-15

    Environmental noise is a worldwide problem that has an adverse effect in the quality of life of urban population. Some work has shown that there is a correlation between environmental noise and health issues as sleep disturbance or annoyance. This study presents the time evolution of a test track fabricated with an asphalt mixture with 20% of crumb rubber by weight of bitumen, added by the wet process. A complete surface characterization has been performed by determining tire/pavement sound levels, road texture profiles, in-situ dynamic stiffness and sound absorption of compacted and extracted sample cores. Two measurement campaigns were performed: just after mixture laying and after 3 years in service. This study confirms that the use of crumb rubber as a modifier of bituminous binders (CRMB) can improve the pavement characteristics: gap-graded mixtures with crumb rubber can be used in the action plans as urban rehabilitation measure to fight noise pollution. However, this noise reduction seems to decrease with age at a rate of approximately 0.15 dB(A) per year.

  13. Two-stage, low noise advanced technology fan. 5: Acoustic final report

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Riloff, N., Jr.

    1975-01-01

    The NASA Q2S(quiet two-stage) fan is a 0.836m (32.9 in.) diameter model of the STF 433 engine fan, selected in a 1972 study for an Advanced Technology Transport (ATT) airplane. Noise-control features include: low tip speed, moderate stage pressure rise, large blade-vane spacings, no inlet guide vanes, and optimum blade and vane numbers. Tests were run on the baseline Q2S fan with standard inlet and discharge ducts. Further tests were made of a translating centerbody sonic inlet device and treated discharge ducts. Results were scaled to JT8D and JT3D engine fan size for comparison with current two-stage fans, and were also scaled to STF 433 fan size to compare calculated ATT flyover noise with FAR 36 limits. Baseline Q2S results scaled to JT8D and JT3D engine fan sizes showed substantial noise reductions. Calculated unsuppressed baseline ATT flyovers averaged about 2.5 EPNdB below FAR 36 limits. Using measured sonic inlet results, scaled baseline Q2S fan results, and calculated attenuations for a 1975 technology duct liner, projected flyover noise calculations for the ATT averaged about FAR 36 limits minus 10 EPNdB. Advances in suppression technology required to meet the 1985 goal of FAR 36 limits minus 20 EPNdB are discussed.

  14. Method to Produce Flexible Ceramic Thermal Protection System Resistant to High Aeroacoustic Noise

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Calamito, Dominic P. (Inventor); Jong, Anthony (Inventor)

    1997-01-01

    A method of producing a three dimensional angle interlock ceramic fiber which is stable to high aeroacoustic noise of about 170 decibels and to high temperatures of about 2500 F is disclosed. The method uses multiple separate strands of a ceramic fiber or ceramic tow suitable for weaving having multiple warp fibers and multiple fill fibers woven with a modified fly-shuttle loom or rapier shuttleless loom which has nip rolls, a modified fabric advancement mechanism and at least eight harnesses in connection with a Dobby pattern chain utilizing sufficient heddles for each warp fiber and a reed which accommodates at least 168 ends per inch. The method produces a multilayered top fabric, rib fabric and single-layered bottom fabric.

  15. An evaluation of a computer code based on linear acoustic theory for predicting helicopter main rotor noise. [CH-53A and S-76 helicopters

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Egolf, T. A.

    1980-01-01

    Acoustic characteristics predicted using a recently developed computer code were correlated with measured acoustic data for two helicopter rotors. The analysis, is based on a solution of the Ffowcs-Williams-Hawkings (FW-H) equation and includes terms accounting for both the thickness and loading components of the rotational noise. Computations are carried out in the time domain and assume free field conditions. Results of the correlation show that the Farrassat/Nystrom analysis, when using predicted airload data as input, yields fair but encouraging correlation for the first 6 harmonics of blade passage. It also suggests that although the analysis represents a valuable first step towards developing a truly comprehensive helicopter rotor noise prediction capability, further work remains to be done identifying and incorporating additional noise mechanisms into the code.

  16. The effect of acoustic forcing on an airfoil tonal noise mechanism.

    PubMed

    Schumacher, Karn L; Doolan, Con J; Kelso, Richard M

    2014-08-01

    The response of the boundary layer over an airfoil with cavity to external acoustic forcing, across a sweep of frequencies, was measured. The boundary layer downstream of the cavity trailing edge was found to respond strongly and selectively at the natural airfoil tonal frequencies. This is considered to be due to enhanced feedback. However, the shear layer upstream of the cavity trailing edge did not respond at these frequencies. These findings confirm that an aeroacoustic feedback loop exists between the airfoil trailing edge and a location near the cavity trailing edge.

  17. Acoustic design of rotor blades using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Wells, V. L.; Han, A. Y.; Crossley, W. A.

    1995-01-01

    A genetic algorithm coupled with a simplified acoustic analysis was used to generate low-noise rotor blade designs. The model includes thickness, steady loading and blade-vortex interaction noise estimates. The paper presents solutions for several variations in the fitness function, including thickness noise only, loading noise only, and combinations of the noise types. Preliminary results indicate that the analysis provides reasonable assessments of the noise produced, and that genetic algorithm successfully searches for 'good' designs. The results show that, for a given required thrust coefficient, proper blade design can noticeably reduce the noise produced at some expense to the power requirements.

  18. Analysis of Acoustic Modeling and Sound Propagation in Aircraft Noise Prediction

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Shepherd, Kevin P. (Technical Monitor)

    2006-01-01

    An analysis has been performed of measured and predicted aircraft noise levels around Denver International Airport. A detailed examination was made of 90 straight-out departures that yielded good measurements on multiple monitors. Predictions were made with INM 5, INM 6 and the simulation model NMSIM. Predictions were consistently lower than measurements, less so for the simulation model than for the integrated models. Lateral directivity ("installation effect") patterns were seen which are consistent with other recent measurements. Atmospheric absorption was determined to be a significant factor in the underprediction. Calculations of atmospheric attenuation were made over a full year of upper air data at seven locations across the United States. It was found that temperature/humidity effects could cause variations of up to +/-4 dB, depending on season, for the sites examined. It was concluded that local temperature and humidity should be accounted for in aircraft noise modeling.

  19. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  20. Propulsion system noise reduction

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.; Heidelberg, L. J.; Karchmer, A. M.; Lansing, D. L.; Miller, B. A.; Rice, E. J.

    1975-01-01

    The progress in propulsion system noise reduction is reviewed. The noise technology areas discussed include: fan noise; advances in suppression including conventional acoustic treatment, high Mach number inlets, and wing shielding; engine core noise; flap noise from both under-the-wing and over-the-wing powered-lift systems; supersonic jet noise suppression; and the NASA program in noise prediction.

  1. Experimental study of noise sources and acoustic propagation in a turbofan model

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Canard-Caruana, S.; Julliard, J.

    1990-10-01

    Experimental studies of the acoustic radiation of subsonic fans mainly due to blade and vane presure fluctuations were performed in the SNECMA 5C2 compressor anechoic facility. A brief description of the test rig is presented noting that the CA5 turbojet engine model fan has a diameter of 47 cm, 48 blades, and a nominal rotation speed of 12,600 rpm. The two chief experiments discussed are the measurement of blade and vane pressure fluctuations by thin-film transducers and the spinning mode analysis of the sound field propagating in the intake duct. Several examples of applications are discussed, and it is shown that an inflow control device, as expected, reduces the aerodynamic disturbances by about 10 dB. Rotor-stator interaction tones are determined by the modal analysis, and it is found that a duct lining with a length of one duct radius could give an insertion loss up to 20 dB in flight.

  2. Drive Rig Mufflers for Model Scale Engine Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2010-01-01

    Testing of air breathing propulsion systems in the 9x15 foot wind tunnel at NASA Glenn Research Center depends on compressed air turbines for power. The drive rig turbines exhaust directly to the wind tunnel test section, and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the model being tested. In order to mitigate this acoustic contamination, a muffler can be attached downstream of the drive rig turbine. The modern engine designs currently being tested produce much less noise than traditional engines, and consequently a lower noise floor is required of the facility. An acoustic test of a muffler designed to mitigate this extraneous noise is presented, and a noise reduction of 8 dB between 700 Hz and 20 kHz was documented, significantly improving the quality of acoustic measurements in the facility.

  3. Removing Background Noise with Phased Array Signal Processing

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  4. Separation of Main and Tail Rotor Noise Sources from Ground-Based Acoustic Measurements Using Time-Domain De-Dopplerization

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric II; Schmitz, Fredric H.

    2009-01-01

    A new method of separating the contributions of helicopter main and tail rotor noise sources is presented, making use of ground-based acoustic measurements. The method employs time-domain de-Dopplerization to transform the acoustic pressure time-history data collected from an array of ground-based microphones to the equivalent time-history signals observed by an array of virtual inflight microphones traveling with the helicopter. The now-stationary signals observed by the virtual microphones are then periodically averaged with the main and tail rotor once per revolution triggers. The averaging process suppresses noise which is not periodic with the respective rotor, allowing for the separation of main and tail rotor pressure time-histories. The averaged measurements are then interpolated across the range of directivity angles captured by the microphone array in order to generate separate acoustic hemispheres for the main and tail rotor noise sources. The new method is successfully applied to ground-based microphone measurements of a Bell 206B3 helicopter and demonstrates the strong directivity characteristics of harmonic noise radiation from both the main and tail rotors of that helicopter.

  5. The effect of masking noise on acoustic-phonetic contrasts in post-lingually deafened cochlear implant users

    NASA Astrophysics Data System (ADS)

    Vick, Jennell C.; Perkell, Joseph S.; Stockmann, Ellen; Zandipour, Majid; Lane, Harlan; Tiede, Mark

    2003-10-01

    This study examined the effect on the vowel contrast distance (average inter-vowel distance in the F1-F2 plane) of gradually decreasing the signal-to-noise ratio (SNR) in the auditory feedback of a post-lingually deafened cochlear implant (CI) user at 1-month and 1-year following CI processor activation. Masking noise, mixed with normal levels of speech feedback, was presented through the headpiece of a research sound processor to the CI user. As a control, an analogous procedure was used for a normal-hearing speaker where the masking noise and speech feedback were delivered over headphones. The SNR was gradually decreased over seven steps as the speakers produced ten repetitions of two vowel contrasts (æ\\/[g\\/] and i\\/u). Speech SPL and vowel contrast distance were measured at all seven masking noise levels. Data from both subjects showed that SPL gradually increased with decreased SNR, while contrast distance decreased. The effect was greater after 1 year of experience with a CI than at 1 month. The effect in the NH speaker was similar to that noted in the CI user after 1 year of experience. Data from additional subjects will be analyzed and reported. [Work supported by NIH Grant No. R01 DC03007.

  6. Noise from high speed maglev systems: Noise sources, noise criteria, preliminary design guidelines for noise control, recommendations for acoustical test facility for maglev research. Final report, July 1991-October 1992

    SciTech Connect

    Hanson, C.E.; Abbot, P.; Dyer, I.

    1993-01-01

    Noise levels from magnetically-levitated trains (maglev) at very high speed may be high enough to cause environmental noise impact in residential areas. Aeroacoustic sources dominate the sound at high speeds and guideway vibrations generate noticeable sound at low speed. In addition to high noise levels, the startle effect as a result of sudden onset of sound from a rapidly moving nearby maglev vehicle may lead to increased annoyance to neighbors of a maglev system. The report provides a base for determining the noise consequences and potential mitigation for a high speed maglev system in populated areas of the United States. Four areas are included in the study: (1) definition of noise sources; (2) development of noise criteria; (3) development of design guidelines; and (4) recommendations for a noise testing facility.

  7. Properties of Noise Cross Correlation Functions Obtained from a Distributed Acoustic Sensing (DAS) Array at Garner Valley, California

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Lancelle, C.; Thurber, C. H.; Fratta, D.; Wang, H. F.; Chalari, A.; Clarke, A.

    2015-12-01

    The field test of Distributed Acoustic Sensing (DAS) conducted at Garner Valley, California on September 11-12, 2013 provided a continuous overnight record of ambient noise. The DAS array recorded ground motions every one meter of optical cable that was arranged approximately in the shape of a rectangle with dimensions of 160 m by 80 m. The long dimension of the array was adjacent to a state highway. Three hours of record were used to compute noise cross-correlation functions (NCFs) in one-minute windows. The trace from each sensor channel was pre-processed by downsampling to 200 Hz, followed by normalization in the time-domain and bandpass filtering between 2 and 20 Hz (Bensen et al., 2007). The one-minute NCFs were then stacked using the time-frequency domain phase-weighted stacking method (Schimmel & Gallart, 2007). The NCFs between channels were asymmetrical reflecting the direction of traffic noise. The group velocities were found using the frequency-time analysis method. The energy was concentrated between 5 and 15 Hz, which falls into the typical traffic noise frequency band. The resulting velocities were between 100 and 300 m/s for frequencies between 10 and 20 Hz, which are in the same range as described in the results for surface-wave dispersion obtained using an active source for the same site (Lancelle et al., 2015). The group velocity starts to decrease for frequencies greater than ~10 Hz, which was expected on the basis of a previous shear-wave velocity model (Steidl et al., 1996). Then, the phase velocity was calculated using the multichannel analysis of surface wave technique (MASW - Park et al., 1999) with 114 NCFs spaced one meter apart. The resulting dispersion curve between 5 and 15 Hz gave phase velocities that ranged from approximately 170 m/s at 15 Hz to 250 m/s at 5 Hz. These results are consistent with other results of active-source DAS and seismometer records obtained at the Garner Valley site (e.g., Stokoe et al. 2004). This analysis is

  8. Acoustics lecturing in Mexico

    NASA Astrophysics Data System (ADS)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  9. Tone Noise and Nearfield Pressure Produced by Jet-Cavity Interaction

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Envia, Edmane; Bencic, Timothy J.

    1998-01-01

    Cavity flow resonance can cause numerous problems in aerospace applications. While our long-term goal is to understand cavity flows well enough to devise effective cavity resonance suppression techniques, this paper describes a fundamental study of resonant tones produced by jet-cavity interaction at subsonic and supersonic speeds. Our specific jet-cavity configuration can also be used as a test bed for evaluating active and passive flow resonance control concepts. Two significant findings emerge from this study. 1) Originally, we expected that tones produced by jet-cavity interaction would resemble cavity tones or jet tones or would involve some simple combinations of each. The experimental data do not support these expectations: instead, the jet cavity interaction produce a unique set of tones. We propose simple yet and physically insightful correlations for these tones. Although the pressure patterns on the cavity floor display very complex variations with the Mach number for a length/depth = 8 cavity, the tones correspond to the acoustic modes of the cavity-independent of flow. For a length/ depth = 3 cavity, however, a surprise emerges: the pressure patterns on the cavity floor are not so complex but the tones depend significantly on the flow. Additionally, we examine the role of external feedback unique to jet-cavity interaction. 2) Previous research led us to expect that traditional classifications (open, transitional, or closed) for cavities in an infinite flight stream would be insensitive to small changes in Mach number and would depend primarily on cavity length/depth ratios. Use of the novel high resolution photoluminescent pressure sensitive paint shows that the classifications are actually quite sensitive to jet Mach number for a length/depth = 8 cavity. However, these classifications provide no guidance whatsoever for tone amplitude or frequency. Detailed experimental data and insights presented here will assist researchers who are performing

  10. Comparison of Methods for Identifying Noise Sources in Far-Field Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Tenney, Andrew; Lewalle, Jacques

    2013-11-01

    Three different methods of extracting intermittent wave packets from unstructured background within complex time series signals were analyzed and compared. The algorithms are denoted ``cross correlation,'' ``denoising,'' and ``TFLE (Time-Frequency-Lag event)'' methods respectively. All three methods utilize Mexican Hat or Morlet wavelets for the transformation of time domain signals into time-frequency domain signals. Within the denoising and cross correlation algorithms, events are identified through comparison of high energy excerpts of each signal captured by individual far-field microphones, while the TFLE algorithm simply defines events by their contributions to positive correlation values. The goal of this analysis is to quantify the advantages and disadvantages of each of these methods. The results lend themselves to determining the validity of these methods as noise source identification algorithms to be used in jet noise characterization. This work is supported in part by Spectral Energies LLC, under an SBIR grant from AFRL; and by the Department of Mechanical and Aerospace Engineering REU Program at SU.

  11. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1. [jet engine noise radiation through coannular exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots.

  12. Control of an experiment to measure acoustic noise in the space shuttle

    NASA Astrophysics Data System (ADS)

    Cameron, Charles B.

    1989-06-01

    The potential use of a general-purpose controller to measure acoustic vibration autonomously in the Space Shuttle Cargo Bay during launch is described. The experimental package will be housed in a Shuttle Get Away Special (GAS) canister. The control functions were implemented with software written largely in the C programming language. An IBM MS DOS computer and C cross-compiler were used to generate Z-80 assembly language code, assemble and link this code, and then transfer it to EPROM for use in the experiment's controller. The software is written in a modular fashion to permit adapting it easily to other applications. The software combines the experimental control functions with a menu-driven, diagnostic subsystem to ensure that the software will operate in practice as it does in theory and under test. The experiment uses many peripheral devices controlled by the software described here. These devices include: (1) a solid-state data recorder; (2) a bubble memory storage module; (3) a real-time clock; (4) an RS-232C serial interface; (5) a power control subsystem; (6) a matched filter subsystem to detect activation of the Space Shuttle's auxillary power units five minutes prior to launch; (7) a launch detection subsystem based on vibrational and barometric sensors; (8) analog-to-digital converters; and (9) a heater subsystem. The matched filter design is discussed in detail and the results of a computer simulation of the performance of its most critical sub-circuit are presented.

  13. Acoustic Efficiency of Azimuthal Modes in Jet Noise Using Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Bridges, James

    2006-01-01

    The link between azimuthal modes in jet turbulence and in the acoustic sound field has been examined in cold, round jets. Chevron nozzles, however, impart an azimuthal structure on the jet with a shape dependent on the number, length and penetration angle of the chevrons. Two particular chevron nozzles, with 3 and 4 primary chevrons respectively, and a round baseline nozzle are compared at both cold and hot jet conditions to determine how chevrons impact the modal structure of the flow and how that change relates to the sound field. The results show that, although the chevrons have a large impact on the azimuthal shape of the mean axial velocity, the impact of chevrons on the azimuthal structure of the fluctuating axial velocity is small at the cold jet condition and smaller still at the hot jet condition. This is supported by results in the azimuthal structure of the sound field, which also shows little difference in between the two chevron nozzles and the baseline nozzle in the distribution of energy across the azimuthal modes measured.

  14. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  15. Lexico-semantic and acoustic-phonetic processes in the perception of noise-vocoded speech: implications for cochlear implantation

    PubMed Central

    McGettigan, Carolyn; Rosen, Stuart; Scott, Sophie K.

    2014-01-01

    Noise-vocoding is a transformation which, when applied to speech, severely reduces spectral resolution and eliminates periodicity, yielding a stimulus that sounds “like a harsh whisper” (Scott et al., 2000, p. 2401). This process simulates a cochlear implant, where the activity of many thousand hair cells in the inner ear is replaced by direct stimulation of the auditory nerve by a small number of tonotopically-arranged electrodes. Although a cochlear implant offers a powerful means of restoring some degree of hearing to profoundly deaf individuals, the outcomes for spoken communication are highly variable (Moore and Shannon, 2009). Some variability may arise from differences in peripheral representation (e.g., the degree of residual nerve survival) but some may reflect differences in higher-order linguistic processing. In order to explore this possibility, we used noise-vocoding to explore speech recognition and perceptual learning in normal-hearing listeners tested across several levels of the linguistic hierarchy: segments (consonants and vowels), single words, and sentences. Listeners improved significantly on all tasks across two test sessions. In the first session, individual differences analyses revealed two independently varying sources of variability: one lexico-semantic in nature and implicating the recognition of words and sentences, and the other an acoustic-phonetic factor associated with words and segments. However, consequent to learning, by the second session there was a more uniform covariance pattern concerning all stimulus types. A further analysis of phonetic feature recognition allowed greater insight into learning-related changes in perception and showed that, surprisingly, participants did not make full use of cues that were preserved in the stimuli (e.g., vowel duration). We discuss these findings in relation cochlear implantation, and suggest auditory training strategies to maximize speech recognition performance in the absence of

  16. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-01-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  17. Investigation of acoustic properties of a rigid foam with application to noise reduction in light aircraft

    NASA Technical Reports Server (NTRS)

    Holmer, C. I.

    1972-01-01

    A analytic model of sound transmission into an aircraft cabin was developed as well as test procedures which appropriately rank order properties which affect sound transmission. The proposed model agrees well with available data, and reveals that the pertinent properties of an aircraft cabin for sound transmission include: stiffness of cabin walls at low frequencies (as this reflects on impedance of the walls) and cabin wall transmission loss and interior absorption at mid and high frequencies. Below 315 Hz the foam contributes substantially to wall stiffness and sound transmission loss of typical light aircraft cabin construction, and could potentially reduce cabin noise levels by 3-5 db in this frequency range at a cost of about 0:2 lb/sq. ft. of treated cabin area. The foam was found not to have significant sound absorbing properties.

  18. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    NASA Astrophysics Data System (ADS)

    Kanamori, Masashi; Takahashi, Takashi; Aoyama, Takashi

    2015-10-01

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  19. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    SciTech Connect

    Kanamori, Masashi Takahashi, Takashi Aoyama, Takashi

    2015-10-28

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  20. Psychophysiological acoustics of indoor sound due to traffic noise during sleep

    NASA Astrophysics Data System (ADS)

    Tulen, J. H. M.; Kumar, A.; Jurriëns, A. A.

    1986-10-01

    The relation between the physical characteristics of sound and an individual's perception of its as annoyance is complex and unclear. Sleep disturbance by sound is manifested in the physiological responses to the sound stimuli and the quality of sleep perceived in the morning. Both may result in deterioration of functioning during wakefulness. Therefore, psychophysiological responses to noise during sleep should be studied for the evaluation of the efficacy of sound insulation. Nocturnal sleep and indoor sound level were recorded in the homes of 12 subjects living along a highway with high traffic density. Double glazing sound insulation was used to create two experimental conditions: low insulation and high insulation. Twenty recordings were made per subject, ten recordings in each condition. During the nights with low insulation the quality of sleep was so low that both performance and mood were negatively affected. The enhancement of sound insulation was not effective enough to increase the restorative effects of sleep. The transient and peaky characteristics of traffic sound were also found to result in non-adaptive physiological responses during sleep. Sound insulation did have an effect on noise peak characteristics such as peak level, peak duration and slope. However, the number of sound peaks were found to be the same in both conditions. The relation of these sound peaks detected in the indoor recorded sound level signal to characteristics of passing vehicles was established, indicating that the sound peaks causing the psychophysiological disturbances during sleep were generated by the passing vehicles. Evidence is presented to show that the reduction in sound level is not a good measure of efficacy of sound insulation. The parameters of the sound peaks, as described in this paper, are a better representation of psychophysiological efficacy of sound insulation.

  1. The use of a global index of acoustic assessment for predicting noise in industrial rooms and optimizing the location of machinery and workstations.

    PubMed

    Pleban, Dariusz

    2014-01-01

    This paper describes the results of a study aimed at developing a tool for optimizing the location of machinery and workstations. A global index of acoustic assessment of machines was developed for this purpose. This index and a genetic algorithm were used in a computer tool for predicting noise emission of machines as well as optimizing the location of machines and workstations in industrial rooms. The results of laboratory and simulation tests demonstrate that the developed global index and the genetic algorithm support measures aimed at noise reduction at workstations.

  2. Perceived Annoyance to Noise Produced by a Distributed Electric Propulsion High Lift System

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem

    2016-01-01

    Results of a psychoacoustic test performed to understand the relative annoyance to noise produced by several configurations of a distributed electric propulsion high lift system are given. It is found that the number of propellers in the system is a major factor in annoyance perception. This is an intuitive result as annoyance increases, in general, with frequency, and, the blade passage frequency of the propellers increases with the number of propellers. Additionally, the data indicate that having some variation in the blade passage frequency from propeller-to-propeller is beneficial as it reduces the high tonality generated when all the propellers are spinning in synchrony at the same speed. The propellers can be set to spin at different speeds, but it was found that allowing the motor controllers to drift within 1% of nominal settings produced the best results (lowest overall annoyance). The methodology employed has been demonstrated to be effective in providing timely feedback to designers in the early stages of design development.

  3. Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Shen, Huijie; Zhang, Linke; Su, Yongsheng; Yu, Dianlong

    2016-07-01

    Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range.

  4. Active Control of Fan Noise: Feasibility Study. Volume 5; Numerical Computation of Acoustic Mode Reflection Coefficients for an Unflanged Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.

  5. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    NASA Astrophysics Data System (ADS)

    Mokrý, P.; Psota, P.; Steiger, K.; Václavík, J.; Doleček, R.; Lédl, V.; Šulc, M.

    2015-02-01

    The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC) actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH). The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV). The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.

  6. Data analysis results of the second sea trial of ambient noise imaging with acoustic lens in 2014: Two-dimensional target images affected by direction of field of view and spatial noise distribution

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2016-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10–14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.

  7. Data analysis results of the second sea trial of ambient noise imaging with acoustic lens in 2014: Two-dimensional target images affected by direction of field of view and spatial noise distribution

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2016-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10-14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.

  8. Evaluating Directional Resolution of Aplanatic Acoustic Lens for Designing Ambient Noise Imaging System

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Sato, Yuji; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2009-07-01

    In our previous studies, it was verified that a spherical biconcave lens with an aperture diameter of 2.0 m has a sufficient directional resolution (e.g., a beam width of 1° at 60 kHz) for realizing an ambient noise imaging (ANI) system. In this study, an aplanatic lens that corrects both spherical and coma aberrations with the same aperture was designed for an ANI system, and its directional resolution was evaluated. First, in order to predict the resolution, we performed a numerical analysis using the finite difference time domain (FDTD) method. Second, the numerical analysis results were verified by a small-scale trial of one-fifth of full size in a water tank. The shapes of the -3 dB areas were similar between the numerical analysis and experimental results at small incidence angles, and the -3 dB areas do not overlap at 1° increments of incidence angle. The resolution of the aplanatic lens was closer to that of an ideal lens than to that of the spherical lens. Finally, it was satisfied that the present lens has sufficient directional resolution for use in an ANI system.

  9. Experimental verification of transient nonlinear acoustical holography.

    PubMed

    Jing, Yun; Cannata, Jonathan; Wang, Tianren

    2013-05-01

    This paper presents an experimental study on nonlinear transient acoustical holography. The validity and effectiveness of a recently proposed nonlinear transient acoustical holography algorithm is evaluated in the presence of noise. The acoustic field measured on a post-focal plane of a high-intensity focused transducer is backward projected to reconstruct the pressure distributions on the focal and a pre-focal plane, which are shown to be in good agreement with the measurement. In contrast, the conventional linear holography produces erroneous results in this case where the nonlinearity involved is strong. Forward acoustic field projection was also carried out to further verify the algorithm. PMID:23654362

  10. Experimental verification of transient nonlinear acoustical holography.

    PubMed

    Jing, Yun; Cannata, Jonathan; Wang, Tianren

    2013-05-01

    This paper presents an experimental study on nonlinear transient acoustical holography. The validity and effectiveness of a recently proposed nonlinear transient acoustical holography algorithm is evaluated in the presence of noise. The acoustic field measured on a post-focal plane of a high-intensity focused transducer is backward projected to reconstruct the pressure distributions on the focal and a pre-focal plane, which are shown to be in good agreement with the measurement. In contrast, the conventional linear holography produces erroneous results in this case where the nonlinearity involved is strong. Forward acoustic field projection was also carried out to further verify the algorithm.

  11. Cylindrical transducer for producing an acoustic spiral wave for underwater navigation (L).

    PubMed

    Brown, David A; Aronov, Boris; Bachand, Corey

    2012-12-01

    A cylindrical piezoceramic transducer using two orthogonal dipoles driven in phase quadrature to create an acoustic spiral wave, having constant amplitude and phase that varies linearly with azimuthal angle, is considered as a source for an underwater acoustic navigation system. Comparison of the spiral-wave signal with an omnidirectional reference signal having a constant phase originating from the same or co-located source provides a means for an underwater vehicle to determine its bearing angle relative to the signaling beacon [B. Hefner and B. Dzikowicz, J. Acoust. Soc. Am. 129(6), 3630-3639 (2011)]. An alternative proof-of-principle transducer along with experimental results including transmit frequency response, directional factors, and computed versus measured bearing angle are presented. PMID:23231092

  12. Cylindrical transducer for producing an acoustic spiral wave for underwater navigation (L).

    PubMed

    Brown, David A; Aronov, Boris; Bachand, Corey

    2012-12-01

    A cylindrical piezoceramic transducer using two orthogonal dipoles driven in phase quadrature to create an acoustic spiral wave, having constant amplitude and phase that varies linearly with azimuthal angle, is considered as a source for an underwater acoustic navigation system. Comparison of the spiral-wave signal with an omnidirectional reference signal having a constant phase originating from the same or co-located source provides a means for an underwater vehicle to determine its bearing angle relative to the signaling beacon [B. Hefner and B. Dzikowicz, J. Acoust. Soc. Am. 129(6), 3630-3639 (2011)]. An alternative proof-of-principle transducer along with experimental results including transmit frequency response, directional factors, and computed versus measured bearing angle are presented.

  13. Acoustic and Laser Doppler Anemometer Results for Confluent and 12-Lobed E(exp 3) Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Babbit, R. R.; Shin, H.; Wisler, S.; Janardan, B. A.; Majjigi, R. K.; Bridges, James (Technical Monitor)

    2002-01-01

    The research described in this report has been funded by NASA Glenn Research Center as part of the Advanced Subsonic Technologies (AST) initiative. The program operates under the Large Engine Technologies (LET) as Task Order #3 1. Task Order 31 is a three year research program divided into three subtasks. Subtask A develops the experimental acoustic and aerodynamic subsonic mixed flow exhaust system databases. Subtask B seeks to develop and assess CFD-based aero-acoustic methods for subsonic mixed flow exhaust systems. Subtask B relies on the data obtained from Subtask A to direct and calibrate the aero-acoustic methods development. Subtask C then seeks to utilize both the aero-acoustic data bases developed in Subtask A and the analytical methods developed in Subtask B to define improved subsonic mixed-flow exhaust systems. The mixed flow systems defined in Subtask C will be experimentally demonstrated for improved noise reduction in a scale model aero-acoustic test conducted similarly to the test performed in Subtask A. The overall object of this Task Order is to develop and demonstrate the technology to define a -3EPNdB exhaust system relative to 1992 exhaust system technology.

  14. CMB distortions from damping of acoustic waves produced by cosmic strings

    SciTech Connect

    Tashiro, Hiroyuki; Sabancilar, Eray; Vachaspati, Tanmay E-mail: Eray.Sabancilar@asu.edu

    2013-08-01

    We study diffusion damping of acoustic waves in the photon-baryon fluid due to cosmic strings, and calculate the induced μ- and y-type spectral distortions of the cosmic microwave background. For cosmic strings with tension within current bounds, their contribution to the spectral distortions is subdominant compared to the distortions from primordial density perturbations.

  15. Parametric Quantitative Acoustic Analysis of Conversation Produced by Speakers with Dysarthria and Healthy Speakers

    ERIC Educational Resources Information Center

    Rosen, Kristin M.; Kent, Raymond D.; Delaney, Amy L.; Duffy, Joseph R.

    2006-01-01

    Purpose: This study's main purpose was to (a) identify acoustic signatures of hypokinetic dysarthria (HKD) that are robust to phonetic variation in conversational speech and (b) determine specific characteristics of the variability associated with HKD. Method: Twenty healthy control (HC) participants and 20 participants with HKD associated with…

  16. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.

    1982-01-01

    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions.

  17. Acoustic test and analyses of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Brooks, B. M.; Metzger, F. B.

    1980-01-01

    Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.

  18. Prop Rotor Acoustics for Conceptual Design

    NASA Technical Reports Server (NTRS)

    Wells, Valana L.

    1996-01-01

    The report describes a methodology for the simple prediction of noise generated by a tilt-rotor aircraft in hover and forward flight. In order to avoid the computational penalties associated with exact noise calculations, simplifications to the loading noise calculation and the blade-vortex interaction noise calculation have been introduced. The loading noise computation utilizes a constant chordwise loading assumption, while the BVI noise level is estimated through use of a dimensionless parameter, here termed 'BVI number.' The acoustic computation code, designed as a module for use with VASCOMP, has two modes of operation, one as a quick estimator of acoustic amplitude produced by a tilt rotor with a typical rotor design and the other as a tool for rotor parametric design studies.

  19. Acoustic Noise Levels of Dental Equipments and Its Association with Fear and Annoyance Levels among Patients Attending Different Dental Clinic Setups in Jaipur, India

    PubMed Central

    Ganta, Shravani; Nagaraj, Anup; Pareek, Sonia; Atri, Mansi; Singh, Kushpal; Sidiq, Mohsin

    2014-01-01

    Background: Noise is a source of pervasive occupational hazard for practicing dentists and the patients. The sources of dental sounds by various dental equipments can pose as a potential hazard to hearing system and add to the annoyance levels of the patients. The aim of the study was to analyze the noise levels from various equipments and evaluate the effect of acoustic noise stimulus on dental fear and annoyance levels among patients attending different dental clinic setups in Jaipur, India. Methodology: The sampling frame comprised of 180 patients, which included 90 patients attending 10 different private clinics and 90 patients attending a Dental College in Jaipur. The levels of Acoustic Noise Stimulus originating from different equipments were determined using a precision sound level meter/decibulometer. Dental fear among patients was measured using Dental Fear Scale (DFS). Results: Statistical analysis was performed using chi square test and unpaired t-test. The mean background noise levels were found to be maximum in the pre-clinical setup/ laboratory areas (69.23+2.20). Females and the patients attending dental college setup encountered more fear on seeing the drill as compared to the patients attending private clinics (p<0.001). Conclusion: The sources of dental sounds can pose as a potential hazard to hearing system. It was analyzed that the environment in the clinics can directly have an effect on the fear and annoyance levels of patients. Hence it is necessary control the noise from various dental equipments to reduce the fear of patients from visiting a dental clinic. PMID:24959512

  20. High signal-to-noise acoustic sensor using phase-shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-11-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices.

  1. High signal-to-noise ratio acoustic sensor using phase shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2015-03-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices.

  2. Estimating Noise Levels In An Enclosed Space

    NASA Technical Reports Server (NTRS)

    Azzi, Elias

    1995-01-01

    GEGS Acoustic Analysis Program (GAAP) developed to compute composite profile of noise in Spacelab module on basis of data on noise produced by equipment, data on locations of equipment, and equipment-operating schedules. Impetus for development of GAAP provided by noise that generated in Spacelab Module during SLS-1 mission because of concurrent operation of many pieces of experimental and subsystem equipment. Although originally intended specifically to help compute noise in Spacelab, also applicable to any region with multiple sources of noise. Written in FORTRAN 77.

  3. A method to account for acoustic microstreaming when predicting bubble growth rates produced by rectified diffusion.

    PubMed

    Church, C C

    1988-11-01

    A reinterpretation of existing theory for rectified diffusion, the process by which bubbles in a sound field may grow in radius, is presented in order to quantitate the effect of acoustic microstreaming on bubble growth rates. The 1/t term in the growth rate equation is defined as the "decay term" and t as the "decay time," the time required for the gas concentration in the liquid contacting the bubble to rise (or fall) from its initial to its final value. In the absence of microstreaming, t is the duration of sonification. In the presence of microstreaming, t may be calculated from the streaming velocity and the bubble radius. A comparison between theory and the experimental results of Eller [A. Eller, J. Acoust. Soc. Am. 46, 1246-1250 (1969)] and of Gould [R.K. Gould, J. Acoust. Soc. Am. 56, 1740-1746 (1974)] shows reasonable agreement in the low kHz range. Theoretical results in the frequency range of 1-10 MHz at 1 and 4 bar are also presented.

  4. Detecting vocal fatigue in student singers using acoustic measures of mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Sisakun, Siphan

    2000-12-01

    The purpose of this study is to explore the ability of four acoustic parameters, mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio, to detect vocal fatigue in student singers. The participants are 15 voice students, who perform two distinct tasks, data collection task and vocal fatiguing task. The data collection task includes the sustained vowel /a/, reading a standard passage, and self-rate on a vocal fatigue form. The vocal fatiguing task is the vocal practice of musical scores for a total of 45 minutes. The four acoustic parameters are extracted using the software EZVoicePlus. The data analyses are performed to answer eight research questions. The first four questions relate to correlations of the self-rating scale and each of the four parameters. The next four research questions relate to differences in the parameters over time using one-factor repeated measures analysis of variance (ANOVA). The result yields a proposed acoustic profile of vocal fatigue in student singers. This profile is characterized by increased fundamental frequency; slightly decreased jitter; slightly decreased shimmer; and slightly increased harmonics-to-noise ratio. The proposed profile requires further investigation.

  5. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper (also available as NASA/TM-2015-218865). The NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject supported the current work. The fan and open rotor data were obtained under previous efforts supported by the NASA Quiet Aircraft Technology (QAT) Project and the NASA Environmentally Responsible Aviation (ERA) Project of the Integrated Systems Research Program in collaboration with GE Aviation, respectively. The overarching goal of the Advanced Air Transport (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  6. Experimental Study to Produce Multiple Focal Points of Acoustic Field for Active Path Selection of Microbubbles through Multi-bifurcation

    NASA Astrophysics Data System (ADS)

    Koda, Ren; Koido, Jun; Ito, Takumi; Mochizuki, Takashi; Masuda, Kohji; Ikeda, Seiichi; Arai, Fumihito; Miyamoto, Yoshitaka; Chiba, Toshio

    2013-07-01

    We previously reported our attempt to propel microbubbles in a flow by a primary Bjerknes force, which is a physical phenomenon where an acoustic wave pushes an obstacle along its direction of propagation. However, when ultrasound was emitted from the surface of the body, controlling bubbles in an against-flow was necessary. It is unpractical to use multiple transducers to produce the same number of focal points because single-element transducers cannot produce more than two focal points. In this study, we introduced a complex artificial blood vessel according to a capillary model and a two-dimensional (2D) array transducer to produce multiple focal points for the active control of microbubbles in an against-flow. From the results, about 15% more microbubbles were led to the desired path with multiple focal points of ultrasound relative to the no-emission case.

  7. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  8. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  9. Investigation into the response of the auditory and acoustic communications systems in the Beluga whale (Delphinapterus leucas) of the St. Lawrence River Estuary to noise, using vocal classification

    NASA Astrophysics Data System (ADS)

    Scheifele, Peter Martin

    2003-06-01

    Noise pollution has only recently become recognized as a potential danger to marine mammals in general, and to the Beluga Whale (Delphinapterus leucas) in particular. These small gregarious Odontocetes make extensive use of sound for social communication and pod cohesion. The St. Lawrence River Estuary is habitat to a small, critically endangered population of about 700 Beluga whales who congregate in four different sites in its upper estuary. The population is believed to be threatened by the stress of high-intensity, low frequency noise. One way to determine whether noise is having an effect on an animal's auditory ability might be to observe a natural and repeatable response of the auditory and vocal systems to varying noise levels. This can be accomplished by observing changes in animal vocalizations in response to auditory feedback. A response such as this observed in humans and some animals is known as the Lombard Vocal Response, which represents a reaction of the auditory system directly manifested by changes in vocalization level. In this research this population of Beluga Whales was tested to determine whether a vocalization-as-a-function-of-noise phenomenon existed by using Hidden Markhov "classified" vocalizations as targets for acoustical analyses. Correlation and regression analyses indicated that the phenomenon does exist and results of a human subjects experiment along with results from other animal species known to exhibit the response strongly implicate the Lombard Vocal Response in the Beluga.

  10. Reduction of turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A. (Inventor); Brookfield, John M. (Inventor); Sell, Julian (Inventor); Hayden, Belva J. (Inventor); Ingard, K. Uno (Inventor)

    1999-01-01

    In the invention, propagating broad band and tonal acoustic components of noise characteristic of interaction of a turbomachine blade wake, produced by a turbomachine blade as the blade rotates, with a turbomachine component downstream of the rotating blade, are reduced. This is accomplished by injection of fluid into the blade wake through a port in the rotor blade. The mass flow rate of the fluid injected into the blade wake is selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake. With this fluid injection, reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved. In a further noise reduction technique, boundary layer fluid is suctioned into the turbomachine blade through a suction port on the side of the blade that is characterized as the relatively low-pressure blade side. As with the fluid injection technique, the mass flow rate of the fluid suctioned into the blade is here selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake; reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved with this suction technique. Blowing and suction techniques are also provided in the invention for reducing noise associated with the wake produced by fluid flow around a stationary blade upstream of a rotating turbomachine.

  11. Analysis of existing data from a Distributed Acoustic Sensing experiment at Garner Valley, California using noise correlation functions (PoroTomo Substask 3.2)

    SciTech Connect

    Zeng, Xiangfang

    2015-03-26

    In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes noise cross-correlation functions (NCF) . Each file includes a NCF between two channels. The name of each channel denotes the distance in meters from starting point of the fiber-optic cable. Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. https://agu.confex.com/agu/fm14/meetingapp.cgi#Paper/19828 The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf

  12. Depicting network structures from variable data produced by unknown colored-noise driven dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Wang, Shihong; Zheng, Zhigang; Zhang, Zhaoyang; Hu, Gang

    2016-01-01

    In recent decades, the topic of depicting network structures from output variable data, i.e., the inverse problem, turns to be a key issue in wide interdisciplinary areas, in particular, in biological and social fields. Noise inevitably exists in practical dynamic networks, and the output data are often generated via interplay between noise and network structures. The essential difficulty to solve the inverse problem is how to extract information of node links in networks under unknown and possibly strong noise. In this paper, based on the idea that the output variable data contain information not only for network topology but also for noise, we propose a method to deal with this problem, incorporating three crucial ingredients: Computing multiple matrices to extract as much as possible information on network topology and noise statistics; making a systematical matrix algebraic computation to obtain equations closed for network inference; using an effective iteration algorithm to solve the resulting nonlinear matrix equations. The above theory is established in an accurate and closed form, numerical computations convincingly verify the validity of theoretical analysis, and the possible applications in practical inverse problems are emphasized.

  13. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish.

    PubMed

    Nichols, Tye A; Anderson, Todd W; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  14. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish

    PubMed Central

    Nichols, Tye A.; Anderson, Todd W.; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  15. Acoustic Prediction Methodology and Test Validation for an Efficient Low-Noise Hybrid Wing Body Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Kawai, Ronald T. (Compiler)

    2011-01-01

    This investigation was conducted to: (1) Develop a hybrid wing body subsonic transport configuration with noise prediction methods to meet the circa 2007 NASA Subsonic Fixed Wing (SFW) N+2 noise goal of -52 dB cum relative to FAR 36 Stage 3 (-42 dB cum re: Stage 4) while achieving a -25% fuel burned compared to current transports (re :B737/B767); (2) Develop improved noise prediction methods for ANOPP2 for use in predicting FAR 36 noise; (3) Design and fabricate a wind tunnel model for testing in the LaRC 14 x 22 ft low speed wind tunnel to validate noise predictions and determine low speed aero characteristics for an efficient low noise Hybrid Wing Body configuration. A medium wide body cargo freighter was selected to represent a logical need for an initial operational capability in the 2020 time frame. The Efficient Low Noise Hybrid Wing Body (ELNHWB) configuration N2A-EXTE was evolved meeting the circa 2007 NRA N+2 fuel burn and noise goals. The noise estimates were made using improvements in jet noise shielding and noise shielding prediction methods developed by UC Irvine and MIT. From this the Quiet Ultra Integrated Efficient Test Research Aircraft #1 (QUIET-R1) 5.8% wind tunnel model was designed and fabricated.

  16. Producing acoustic 'Frozen Waves': simulated experiments with diffraction/attenuation resistant beams in lossy media.

    PubMed

    Prego-Borges, José L; Zamboni-Rached, Michel; Recami, Erasmo; Costa, Eduardo Tavares

    2014-08-01

    The so-called Localized Waves (LW), and the "Frozen Waves" (FW), have raised significant attention in the areas of Optics and Ultrasound, because of their surprising energy localization properties. The LWs resist the effects of diffraction for large distances, and possess an interesting self-reconstruction -self-healing- property (after obstacles with size smaller than the antenna's); while the FWs, a sub-class of LWs, offer the possibility of arbitrarily modeling the longitudinal field intensity pattern inside a prefixed interval, for instance 0⩽z⩽L, of the wave propagation axis. More specifically, the FWs are localized fields "at rest", that is, with a static envelope (within which only the carrier wave propagates), and can be endowed moreover with a high transverse localization. In this paper we investigate, by simulated experiments, various cases of generation of ultrasonic FW fields, with the frequency of f0=1 MHz in a water-like medium, taking account of the effects of attenuation. We present results of FWs for distances up to L=80 mm, in attenuating media with absorption coefficient α in the range 70⩽α⩽170 dB/m. Such simulated FW fields are constructed by using a procedure developed by us, via appropriate finite superpositions of monochromatic ultrasonic Bessel beams. We pay due attention to the selection of the FW parameters, constrained by the rather tight restrictions imposed by experimental Acoustics, as well as to some practical implications of the transducer design. The energy localization properties of the Frozen Waves can find application even in many medical apparatus, such as bistouries or acoustic tweezers, as well as for treatment of diseased tissues (in particular, for the destruction of tumor cells, without affecting the surrounding tissues; also for kidney stone shuttering, etc.).

  17. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    NASA Astrophysics Data System (ADS)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  18. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics: Proof-of-Concept Progress

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    A CFD-based simulation of single-stage turbine was done using the TURBO code to assess its viability for determining acoustic transmission through blade rows. Temporal and spectral analysis of the unsteady pressure data from the numerical simulations showed the allowable Tyler-Sofrin modes that are consistent with expectations. This indicated that high-fidelity acoustic transmission calculations are feasible with TURBO.

  19. Preliminary Work for Modeling the Propellers of an Aircraft as a Noise Source in an Acoustic Boundary Element Analysis

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.

    1998-01-01

    An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.

  20. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  1. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    NASA Astrophysics Data System (ADS)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  2. Development of acoustically lined ejector technology for multitube jet noise suppressor nozzles by model and engine tests over a wide range of jet pressure ratios and temperatures

    NASA Technical Reports Server (NTRS)

    Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.

    1974-01-01

    An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.

  3. An Acoustic and Perceptual Study of Initial Stops Produced by Profoundly Hearing Impaired Adolescents

    ERIC Educational Resources Information Center

    Khouw, Edward; Ciocca, Valter

    2007-01-01

    This study investigated the role of Voice Onset Time (VOT) as perceptual cue to the aspiration contrast of Cantonese initial stops produced by adolescent profoundly hearing impaired speakers. Speakers with normal hearing signalled the aspiration contrast through VOT differences. Hearing impaired speakers produced initial stops with no significant…

  4. Implications of the road traffic and aircraft noise exposure and children's cognition and health (RANCH) study results for classroom acoustics

    NASA Astrophysics Data System (ADS)

    Stansfeld, Stephen A.; Clark, Charlotte

    2005-04-01

    Studies in West London have found associations between aircraft noise exposure and childrens' cognitive performance. This has culminated in the RANCH Study examining exposure-effect associations between aircraft and road traffic noise exposure and cognitive performance and health. The RANCH project, the largest cross-sectional study of noise and childrens health, examined 2844 children, 9-10 years old, from 89 schools around three major airports: in the Netherlands, Spain and the United Kingdom. Children were selected by external aircraft and road traffic noise exposure at school predicted from noise contour maps, modeling and on-site measurements. A substudy indicated high internal levels of noise within classrooms. Schools were matched for socioeconomic position within countries. Cognitive and health outcomes were measured by standardized tests and questionnaires administered in the classroom. A parental questionnaire collected information on socioeconomic position, parental education and ethnicity. Linear exposure-effect associations were found between chronic aircraft noise exposure and impairment of reading comprehension and recognition memory, maintained after adjustment for mothers education, socioeconomic factors, longstanding illness and classroom insulation. Road traffic noise exposure was linearly associated with episodic memory. The implications of these results for childrens' learning environments will be discussed. [Work supported by European Community (QLRT-2000-00197) Vth framework program.

  5. Evaluation of SHM System Produced by Additive Manufacturing via Acoustic Emission and Other NDT Methods

    PubMed Central

    Strantza, Maria; Aggelis, Dimitrios G.; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-01-01

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called “effective structural health monitoring” (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals. PMID:26506349

  6. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods.

    PubMed

    Strantza, Maria; Aggelis, Dimitrios G; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-01-01

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

  7. Analysis of binary mixtures of aqueous aromatic hydrocarbons with low-phase-noise shear-horizontal surface acoustic wave sensors using multielectrode transducer designs.

    PubMed

    Bender, Florian; Mohler, Rachel E; Ricco, Antonio J; Josse, Fabien

    2014-11-18

    The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX

  8. Recent Langley helicopter acoustics contributions

    NASA Technical Reports Server (NTRS)

    Morgan, Homer G.; Pao, S. P.; Powell, C. A.

    1988-01-01

    The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included.

  9. A Remotely Operated Multiple Array Acoustic Range (ROMAAR) and its application for the measurement of airplane flyover noise footprints

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. H.

    1976-01-01

    The ROMAAR now in operation at NASA will allow direct measurement and display of aircraft noise in several measurement units during takeoff, landing, and flyby operations. This information, in addition to its application in terms of ground noise footprints, will also permit determination of the statistical variation of footprints or contours due to the atmosphere or aircraft operational parameters, and a measure of the impact of various noise reduction techniques and hardware on ground noise footprints. The methods, techniques, and equipment developed for the ROMAAR concept are applicable to CTOL, STOL, General Aviation, and VTOL aircraft. ROMAAR represents a unique combination of state of the art digital and analog noise recording methods, computer-controlled digital communications methods, radar-tracking facilities, quick-look weather capabilities, and a large data handling facility complemented by a large capacity curve fitting and plotting routine. The ROMAAR is set apart from the standard airport noise monitoring system by having the unique features mentioned above plus the fact that at present as many as 38 separate (but simultaneous) noise measurements can be made for each aircraft overflight.

  10. NASA/GE quiet engine C acoustic test results

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Pass, J. E.

    1974-01-01

    The acoustic investigation and evaluation of the C propulsion turbofan engine are discussed. The engine was built as a part of the Quiet Engine Program. The objectives of the program are as follows: (1) to determine the noise levels produced turbofan bypass engines, (2) to demonstrate the technology and innovations which will reduce the production and radiation of noise in turbofan engines, and (3) to acquire experimental acoustic and aerodynamic data for high bypass turbofan engines to provide a better understanding of noise production mechanisms. The goals of the program called for a turbofan engine 15 to 20 PNdB quieter than currently available engines in the same thrust class.

  11. TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps

    NASA Astrophysics Data System (ADS)

    Mendrik, Adriënne M.; Vonken, Evert-jan; van Ginneken, Bram; de Jong, Hugo W.; Riordan, Alan; van Seeters, Tom; Smit, Ewoud J.; Viergever, Max A.; Prokop, Mathias

    2011-07-01

    patient data showed that the TIPS bilateral filter resulted in realistic mean values with a smaller standard deviation than the other evaluated filters and higher contrast-to-noise ratios. Therefore, applying the proposed TIPS bilateral filtering method to 4D CTP data produces higher quality CBF maps than applying the standard Gaussian, 3D bilateral or 4D bilateral filter. Furthermore, the TIPS bilateral filter is computationally faster than both the 3D and 4D bilateral filters.

  12. Adult Vampire Bats Produce Contact Calls When Isolated: Acoustic Variation by Species, Population, Colony, and Individual

    PubMed Central

    Carter, Gerald G.; Logsdon, Ryane; Arnold, Bryan D.; Menchaca, Angelica; Medellin, Rodrigo A.

    2012-01-01

    Background Bat pups produce individually distinct isolation calls to facilitate maternal recognition. Increasing evidence suggests that, in group-living bat species, adults often use similar calls to maintain contact. We investigated if isolated adults from all three species of the highly cooperative vampire bats (Phyllostomidae: Desmodontinae) would produce vocally distinct contact calls when physically isolated. Methods/Principal Findings We assessed variation in contact calls recorded from isolated captive and wild-caught adult common vampire bats (Desmodus rotundus), white-winged vampire bats (Diaemus youngi) and hairy-legged vampire bats (Diphylla ecaudata). We compared species-typical contact call structure, and used information theory and permuted discriminate function analyses to examine call structure variation, and to determine if the individuality of contact calls is encoded by different call features across species and populations. We found that isolated adult vampire bats produce contact calls that vary by species, population, colony, and individual. However, much variation occurred within a single context and individual. We estimated signature information for captive Diaemus (same colony), captive Desmodus (same colony), and wild Desmodus (different colonies) at 3.21, 3.26, and 3.88 bits, respectively. Contact calls from a captive colony of Desmodus were less individually distinct than calls from wild-caught Desmodus from different colonies. Both the degree of individuality and parameters encoding individuality differed between the bats from a single captive colony and the wild-caught individuals from different groups. This result is consistent with, but not sufficient evidence of, vocal convergence in groups. Conclusion Our results show that adult vampire bats of all three species produce highly variable contact calls when isolated. Contact calls contain sufficient information for vocal discrimination, but also possess more intra-individual variation

  13. Acoustic characteristics of two hybrid inlets at forward speed

    NASA Astrophysics Data System (ADS)

    Falarski, M. D.; Moore, M. T.

    1980-02-01

    A wind tunnel investigation of the acoustic and aerodynamic characteristics of two hybrid inlets installed on a JT15D-1 turbofan engine was performed. The hybrid inlets combined moderate throat Mach number and wall acoustic treatment to suppress the fan inlet noise. Acoustic and aerodynamic data were recorded over a range of flight and engine operating conditions. In a simulated flight environment, the hybrid inlets provided significant levels of suppression at both design and off-design throat Mach numbers with good aerodynamic performance. A comparison of inlet noise at quasi-static and forward-speed conditions in the wind tunnel showed a reduction in the fan tones, demonstrating the flight cleanup effect. High angles of attack produced slight increases in fan noise at the high acoustic directivity angles.

  14. Sensitivity of acoustic predictions to variation of input parameters

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Burley, Casey L.; Marcolini, Michael A.

    1994-01-01

    Rotor noise prediction codes predict the thickness and loading noise produced by a helicopter rotor, given the blade motion, rotor operating conditions, and fluctuating force distribution over the blade surface. However, the criticality of these various inputs, and their respective effects on the predicted acoustic field, have never been fully addressed. This paper examines the importance of these inputs, and the sensitivity of the acoustic predicitions to a variation of each parameter. The effects of collective and cyclic pitch, as well as coning and cyclic flapping, are presented. Blade loading inputs are examined to determine the necessary spatial and temporal resolution, as well as the importance of the chordwise distribution. The acoustic predictions show regions in the acoustic field where significant errors occur when simplified blade motions or blade loadings are used. An assessment of the variation in the predicted acoustic field is balanced by a consideration of Central Processing Unit (CPU) time necessary for the various approximations.

  15. Sensitivity of acoustic predictions to variation of input parameters

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Marcolini, Michael A.; Burley, Casey L.

    1991-01-01

    The noise prediction code WOPWOP predicts the thickness and loading noise produced by a helicopter rotor, given the blade motion, rotor operating conditions, and fluctuating force distribution over the blade surface. However, the criticality of these various inputs, and their respective effects on the predicted acoustic field, have never been fully addressed. This paper examines the importance of these inputs, and the sensitivity of the acoustic predictions to a variation of each parameter. The effects of collective and cyclic pitch, as well as coning and flapping, are presented. Blade loading inputs are examined to determine the necessary spatial and temporal resolution, as well as the importance of the cordwise distribution. The acoustic predictions show regions in the acoustic field where significant errors occur when simplified blade motions or blade loadings are used. An assessment of the variation in the predicted acoustic field is balanced by a consideration of CPU time necessary for the various approximations.

  16. The development of technologies and devices for protection from noise generated by power equipment

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. E.; Khomenok, L. A.; Yablonik, L. R.

    2010-01-01

    The main lines of currently conducted research and development activities on suppressing noise produced by power-generating equipment are presented. Matters related to preventing the occurrence of aeroacoustic self-excited vibrations, optimizing dissipative noise silencers, using structural methods for damping acoustic vibrations, suppressing low-frequency noise, and analyzing the effectiveness of soundproof coatings are considered. The process diagrams and parameters of devices for suppressing noise generated during discharge into the atmosphere of high-pressure gaseous media are discussed.

  17. Long-term, passive exposure to non-traumatic acoustic noise induces neural adaptation in the adult rat medial geniculate body and auditory cortex.

    PubMed

    Lau, Condon; Zhang, Jevin W; McPherson, Bradley; Pienkowski, Martin; Wu, Ed X

    2015-02-15

    Exposure to loud sounds can lead to permanent hearing loss, i.e., the elevation of hearing thresholds. Exposure at more moderate sound pressure levels (SPLs) (non-traumatic and within occupational limits) may not elevate thresholds, but could in the long-term be detrimental to speech intelligibility by altering its spectrotemporal representation in the central auditory system. In support of this, electrophysiological and behavioral changes following long-term, passive (no conditioned learning) exposure at moderate SPLs have recently been observed in adult animals. To assess the potential effects of moderately loud noise on the entire auditory brain, we employed functional magnetic resonance imaging (fMRI) to study noise-exposed adult rats. We find that passive, pulsed broadband noise exposure for two months at 65 dB SPL leads to a decrease of the sound-evoked blood oxygenation level-dependent fMRI signal in the thalamic medial geniculate body (MGB) and in the auditory cortex (AC). This points to the thalamo-cortex as the site of the neural adaptation to the moderately noisy environment. The signal reduction is statistically significant during 10 Hz pulsed acoustic stimulation (MGB: p<0.05, AC: p<10(-4)), but not during 5 Hz stimulation. This indicates that noise exposure has a greater effect on the processing of higher pulse rate sounds. This study has enhanced our understanding of functional changes following exposure by mapping changes across the entire auditory brain. These findings have important implications for speech processing, which depends on accurate processing of sounds with a wide spectrum of pulse rates.

  18. Computer programs for producing single-event aircraft noise data for specific engine power and meteorological conditions for use with USAF (United States Air Force) community noise model (NOISEMAP)

    NASA Astrophysics Data System (ADS)

    Mohlman, H. T.

    1983-04-01

    The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.

  19. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  20. Acoustical Environment for Academic Buildings.

    ERIC Educational Resources Information Center

    Lortie, L.J.

    Discussion of the parameters governing noise control and room acoustics are followed by a demonstration on how to achieve a good acoustical environment. Topics emphasized include--(1) design and control objectives, (2) noise sources and propagation, (3) reverberation parameters, (4) noise control factors and parameters, and (5) sound systems. Also…

  1. A research program to reduce interior noise in general aviation airplanes. Design of an acoustic panel test facility

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Muirhead, V. U.; Smith, H. W.; Henderson, T. D.

    1977-01-01

    The design, construction, and costs of a test facility for determining the sound transmission loss characteristics of various panels and panel treatments are described. The pressurization system and electronic equipment used in experimental testing are discussed as well as the reliability of the facility and the data gathered. Tests results are compared to pertinent acoustical theories for panel behavior and minor anomalies in the data are examined. A method for predicting panel behavior in the stiffness region is also presented.

  2. A Longitudinal Acoustic Study of the Effects of the Radial Forearm Free Flap Reconstruction on Sibilants Produced by Tongue Cancer Patients

    ERIC Educational Resources Information Center

    Laaksonen, Juha-Pertti; Rieger, Jana; Harris, Jeffrey; Seikaly, Hadi

    2011-01-01

    Acoustic properties of 980 tokens of sibilants /s, z, [approximately]/ produced by 17 Canadian English-speaking female and male tongue cancer patients were studied. The patients had undergone tongue resection and tongue reconstruction with a radial forearm free flap (RFFF). The spectral moments (mean, skewness) and frication duration were analysed…

  3. Frequency and time pattern differences in acoustic signals produced by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae)in stored maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acoustic signals emitted by the last stage larval instars and adults of Prostephanus truncatus and Sitophilus zeamais in stored maize were investigated. Analyses were performed to identify brief, 1-10-ms broadband sound impulses of five different frequency patterns produced by larvae and adults,...

  4. Conceptual design study of advanced acoustic composite nacelle. [for achieving reductions in community noise and operating expense

    NASA Technical Reports Server (NTRS)

    Goodall, R. G.; Painter, G. W.

    1975-01-01

    Conceptual nacelle designs for wide-bodied and for advanced-technology transports were studied with the objective of achieving significant reductions in community noise with minimum penalties in airplane weight, cost, and in operating expense by the application of advanced composite materials to nacelle structure and sound suppression elements. Nacelle concepts using advanced liners, annular splitters, radial splitters, translating centerbody inlets, and mixed-flow nozzles were evaluated and a preferred concept selected. A preliminary design study of the selected concept, a mixed flow nacelle with extended inlet and no splitters, was conducted and the effects on noise, direct operating cost, and return on investment determined.

  5. Jet noise modification by the 'whistler nozzle'

    NASA Technical Reports Server (NTRS)

    Hasan, M. A. Z.; Islam, O.; Hussain, A. K. M. F.

    1984-01-01

    The farfield noise characteristics of a subsonic whistler nozzle jet are measured as a function of Mach number (0.25, 0.37, and, 0.51), emission angle, and excitation mode. It is shown that a whistler nozzle has greater total and broadband acoustic power than an excited contraction nozzle; and that the intensity of far-field noise is a function of emission angle, Mach number, and whistler excitation stage. The whistler nozzle excitation produces broadband noise amplification with constant spectral shape; the broadband noise amplification (without associated whistler tones and harmonics) increases omnidirectionally with emission angle at all Mach numbers; and the broadband amplification factor decreases as Mach number and emission angle increase. Finally the whistler nozzle is described as a very efficient but inexpensive siren with applications in not only jet excitation but also acoustics.

  6. Acoustic Response to Playback of Pile-Driving Sounds by Snapping Shrimp.

    PubMed

    Spiga, Ilaria

    2016-01-01

    There is concern about the effects of noise from impact pile driving as this constructional technique becomes increasingly widespread in coastal areas. The habitats of most marine invertebrate species are likely to overlap with the areas of human activities along the coast and be affected by the increased levels of noise produced. This paper investigates the acoustic response of chorusing snapping shrimp to different sound pressure levels. A significant increase in the snap number and snap amplitude was recorded during the playback of piling noise, suggesting that noise exposure affected the acoustic behavior of these animals.

  7. Long term statistical measurements of environmental acoustics parameters in the Arctic: Ambient noise levels in the West Greenland Sea

    NASA Astrophysics Data System (ADS)

    Buck, B. M.; Jaecks, D. W.

    1984-12-01

    Propagation loss data were taken using manned ice camps and aircraft, and ambient noise levels were measured using arctic data buoys that operated through the NIMBUS 6 and NOAA series satellites. The present report addresses one of a total of six arctic geographic areas - the West Greenland Sea, and presents ambient noise levels taken evvery three hours at the synoptic weather times from nine data buoys that drifted through the area. These data buoys collect a very large amount of independent measurements that are impractical to present in raw form. Therefore, a first-level statistical analysis was performed to allow reporting and distribution. These data, along with other regularly available meteorological, oceanographic and ice data, should enable higher order analyses and modeling for both prediction and understanding the mechanisms of arctic background noise. The data buoys, while limited in some respects, offer the only present means of long-term, wide-area investigations of arctic ambient noise on a true statistical basis.

  8. Helicopter rotor trailing edge noise. [noise prediction

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amier, R. K.

    1981-01-01

    A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.

  9. Sounds and Noises. A Position Paper on Noise Pollution.

    ERIC Educational Resources Information Center

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  10. Small-Scale Trial for Evaluating Directional Resolution of Single Spherical Biconcave Acoustic Lens in Designing of Ambient Noise Imaging System

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki

    2008-05-01

    Ambient noise imaging (ANI) is the revolutionary idea of detecting objects by using natural ocean background noise. From the analysis results obtained by the finite difference time domain (FDTD) method in our previous studies, it was supposed that a spherical biconcave lens with an aperture diameter of 2.0 m has a sufficient directional resolution (for example, the beam width is 1° at 60 kHz) for realizing an ANI system. In this study, to confirm the analysis results, we performed a small-scale trial of one-fifth space in a water tank. The lens, made of acrylic resin, has an aperture diameter of 400 mm and a radius of curvature of 500 mm. A burst pulse of 25 cycles at 300 kHz, whose frequency increases 5 times, was radiated from the sound source. The sound pressure after passage through the acoustic lens was measured by moving the receiver around the image point. Results show that the shapes of -3 dB areas are similar to the FDTD analysis results at small incidence angles. It was verified that this lens has a sufficient directional resolution for use in the ANI system, because -3 dB areas do not overlap each other.

  11. Effects of an acoustic diode on the pressure waveform and cavitation bubble dynamics produced by a piezoelectric shock wave generator

    NASA Astrophysics Data System (ADS)

    Zhu, Songlin; Zhong, Pei

    2003-10-01

    High-speed schlieren imaging, combined with fiber optical probe hydrophone (FOPH) and passive cavitation detection (PCD) were used to access the effects of an acoustic diode (AD) on the pressure waveform and associated cavitation activities produced by a piezoelectric shock wave (PSW) generator. Without the AD, a typical pressure waveform at the focus of the PSW generator consists of a leading shock wave, followed by a tensile wave and several oscillation waves (OWs) of gradually reduced amplitudes. When the AD was placed 30 mm in front of the focus, the amplitude of the tensile wave was reduced and the subsequent OWs were removed. The pulse intensity integral of the tensile wave was reduced by 58%, and subsequently, PSW-induced bubble dynamics were altered significantly. Based on PCD data, the collapse time of cavitation bubble(s) was reduced by about 11%. Although intensive collapse of microbubbles was observed in about 10 μs following the shock front of the original PSW, the forced collapse of microbubbles was not observed when the AD was used, presumably due to the removal of the OWs. Theoretical calculation based on the Gilmore model confirmed these experimental observations. [Work supported by the Whitaker Foundation and NIH.

  12. Acoustic Localization with Infrasonic Signals

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  13. Acoustic Location of Lightning Using Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Erives, H.; Arechiga, R. O.; Stock, M.; Lapierre, J. L.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    Acoustic arrays have been used to accurately locate thunder sources in lightning flashes. The acoustic arrays located around the Magdalena mountains of central New Mexico produce locations which compare quite well with source locations provided by the New Mexico Tech Lightning Mapping Array. These arrays utilize 3 outer microphones surrounding a 4th microphone located at the center, The location is computed by band-passing the signal to remove noise, and then computing the cross correlating the outer 3 microphones with respect the center reference microphone. While this method works very well, it works best on signals with high signal to noise ratios; weaker signals are not as well located. Therefore, methods are being explored to improve the location accuracy and detection efficiency of the acoustic location systems. The signal received by acoustic arrays is strikingly similar to th signal received by radio frequency interferometers. Both acoustic location systems and radio frequency interferometers make coherent measurements of a signal arriving at a number of closely spaced antennas. And both acoustic and interferometric systems then correlate these signals between pairs of receivers to determine the direction to the source of the received signal. The primary difference between the two systems is the velocity of propagation of the emission, which is much slower for sound. Therefore, the same frequency based techniques that have been used quite successfully with radio interferometers should be applicable to acoustic based measurements as well. The results presented here are comparisons between the location results obtained with current cross correlation method and techniques developed for radio frequency interferometers applied to acoustic signals. The data were obtained during the summer 2013 storm season using multiple arrays sensitive to both infrasonic frequency and audio frequency acoustic emissions from lightning. Preliminary results show that

  14. Do We Perceive Others Better than Ourselves? A Perceptual Benefit for Noise-Vocoded Speech Produced by an Average Speaker

    PubMed Central

    Schuerman, William L.; Meyer, Antje; McQueen, James M.

    2015-01-01

    In different tasks involving action perception, performance has been found to be facilitated when the presented stimuli were produced by the participants themselves rather than by another participant. These results suggest that the same mental representations are accessed during both production and perception. However, with regard to spoken word perception, evidence also suggests that listeners’ representations for speech reflect the input from their surrounding linguistic community rather than their own idiosyncratic productions. Furthermore, speech perception is heavily influenced by indexical cues that may lead listeners to frame their interpretations of incoming speech signals with regard to speaker identity. In order to determine whether word recognition evinces similar self-advantages as found in action perception, it was necessary to eliminate indexical cues from the speech signal. We therefore asked participants to identify noise-vocoded versions of Dutch words that were based on either their own recordings or those of a statistically average speaker. The majority of participants were more accurate for the average speaker than for themselves, even after taking into account differences in intelligibility. These results suggest that the speech representations accessed during perception of noise-vocoded speech are more reflective of the input of the speech community, and hence that speech perception is not necessarily based on representations of one’s own speech. PMID:26134279

  15. Acoustic Aspects of Active-Twist Rotor Control

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Wilbur, Matthew L.

    2002-01-01

    The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.

  16. Noise produced by turbulent flow into a rotor: Theory manual for atmospheric turbulence prediction and mean flow and turbulence contraction prediction

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.

    1989-01-01

    Prediction of helicopter main rotor noise due to ingestion of atmospheric turbulence was analyzed. The analysis combines several different models that describe the fluid mechanics of the turbulence and the ingestion process. Two models, atmospheric turbulence, and mean flow and turbulence contraction were covered. The third model, covered in a separate report, describes the rotor acoustic mode. The method incorporates the atmospheric turbulence model and a rapid distortion turbulence contraction description to determine the statistics of the anisotropic turbulence at the rotor plane. The analytical basis for a module was provided which was incorporated in NASA's ROTONET helicopter noise prediction program. The mean flow and turbulence statistics associated with the atmospheric boundary layer were modeled including effects of atmospheric stability length, wind speed, and altitude. The turbulence distortion process is modeled as a deformation of vortex filaments (which represent the turbulence field) by a mean flow field due to the rotor inflow.

  17. Generation of terahertz radiation via an electromagnetically induced transparency at ion acoustic frequency region in laser-produced dense plasmas.

    PubMed

    Nakagawa, Makoto; Kodama, Ryosuke; Higashiguchi, Takeshi; Yugami, Noboru

    2009-08-01

    Electromagnetically induced transparency is a well-known quantum phenomena that electromagnetic wave controls the refractive index of medium. It enables us to create a passband for low-frequency electromagnetic wave in a dense plasma even if the plasma is opaque for the electromagnetic wave. This technique can be used to prove the ion acoustic wave because the ion acoustic frequency is lower than the plasma frequency. We have investigated a feasibility of electromagnetic radiation at THz region corresponding to the ion acoustic frequency from a dense plasma. We confirmed that the passband is created at about 7.5 THz corresponding to the ion acoustic frequency in the electron plasma density of 10(21) cm(-3) with a Ti:Sapphire laser with the wavelength of 800 nm and the laser intensity of 10(17) W/cm(2). The estimated radiation power is around 1 MW, which is expected to be useful for nonlinear THz science and applications.

  18. Simulated flight acoustic investigation of treated ejector effectiveness on advanced mechanical suppresors for high velocity jet noise reduction

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.; Motsinger, R. E.; Hoerst, D. J.

    1986-01-01

    Ten scale-model nozzles were tested in an anechoic free-jet facility to evaluate the acoustic characteristics of a mechanically suppressed inverted-velocity-profile coannular nozzle with an accoustically treated ejector system. The nozzle system used was developed from aerodynamic flow lines evolved in a previous contract, defined to incorporate the restraints imposed by the aerodynamic performance requirements of an Advanced Supersonic Technology/Variable Cycle Engine system through all its mission phases. Accoustic data of 188 test points were obtained, 87 under static and 101 under simulated flight conditions. The tests investigated variables of hardwall ejector application to a coannular nozzle with 20-chute outer annular suppressor, ejector axial positioning, treatment application to ejector and plug surfaces, and treatment design. Laser velocimeter, shadowgraph photograph, aerodynamic static pressure, and temperature measurement were acquired on select models to yield diagnositc information regarding the flow field and aerodynamic performance characteristics of the nozzles.

  19. Noise Control in Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.

    2009-01-01

    Acoustic limits in habitable space enclosures are required to ensure crew safety, comfort, and habitability. Noise control is implemented to ensure compliance with the acoustic requirements. The purpose of this paper is to describe problems with establishing acoustic requirements and noise control efforts, and present examples of noise control treatments and design applications used in the Space Shuttle Orbiter. Included is the need to implement the design discipline of acoustics early in the design process, and noise control throughout a program to ensure that limits are met. The use of dedicated personnel to provide expertise and oversight of acoustic requirements and noise control implementation has shown to be of value in the Space Shuttle Orbiter program. It is concluded that to achieve acceptable and safe noise levels in the crew habitable space, early resolution of acoustic requirements and implementation of effective noise control efforts are needed. Management support of established acoustic requirements and noise control efforts is essential.

  20. Passive acoustic monitoring of human physiology during activity indicates health and performance of soldiers and firefighters

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-04-01

    The Army Research Laboratory has developed a unique gel-coupled acoustic physiological monitoring sensor that has acoustic impedance properties similar to the skin. This facilitates the transmission of body sounds into the sensor pad, yet significantly repels ambient airborne noises due to an impedance mismatch. The sensor's sensitivity and bandwidth produce excellent signatures for detection and spectral analysis of diverse physiological events. Acoustic signal processing detects heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. Comfortable acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Noise-canceling sensor arrays help remove out-of-phase motion noise and enhance covariant physiology by using two acoustic sensors on the front sides of the neck and two additional acoustic sensors on each wrist. Pulse wave transit time between neck and wrist acoustic sensors will indicate systolic blood pressure. Larger torso-sized arrays can be used to acoustically inspect the lungs and heart, or built into beds for sleep monitoring. Acoustics is an excellent input for sensor fusion.

  1. Applications of ripple analysis in hydro-acoustics

    NASA Astrophysics Data System (ADS)

    Leducq, D.; Schlegel, R.

    Software developed for ripple analysis in hydro-acoustic applications is described. Noise and vibration analysis using this software is shown to be particularly effective. The importance of post treatment of the data in order to obtain dependable results is stressed. Examples are presented of the use of the ripple analysis software in measuring the noise and vibration produced by a pump. The software is used in the analysis of cavitation noise. Cavitation noise frequency graphs are presented to illustrate the experimented results. The advantages of the ripple analysis techniques in obtaining a better understanding of the underlying physics of the processes studied are stressed.

  2. Visualizing interior and exterior jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Moondra, Manmohan S.

    In today's competitive aerospace industry, the quest for quiet has drawn significant attention to both the interior and exterior design of an airplane. Understanding the noise generation mechanisms of a jet aircraft is a crucial first step toward developing the most cost-effective noise and vibrations abatement methods. In this investigation, the Helmholtz Equation Least Squares (HELS) based nearfield acoustic holography will be used to understand noise transmission caused by jet engine and turbulence into the fuselage of a jet aircraft cruising at 30,000 ft. Modern propulsive jet engines produce exterior noise sources with a high amplitude noise field and complicated characteristics, which makes them very difficult to characterize. In particular, there are turbulent eddies that are moving through the jet at high speeds along the jet boundary. These turbulent eddies in the shear layer produce a directional and frequency dependent noise. The original HELS approach assumes a spherical source at the origin and computes the acoustic field based on spherical emission from this source. This assumption of one source at the origin is not sufficient to characterize a complex source like a jet. As such, a modified HELS approach is introduced that will help improve the source characterization as it is not dependent on a single source at the origin but a number of virtual sources throughout the space. Custom microphones are created to take acoustic pressure measurements around the jet engine. These measured acoustic pressures are then taken as input to the modified HELS algorithm to visualize the noise pattern of a subsonic jet engine.

  3. Acoustic Levitation With Less Equipment

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  4. Therapeutic efficacy of intra-cochlear administration of methylprednisolone after acoustic trauma caused by gunshot noise in guinea pigs.

    PubMed

    Sendowski, I; Abaamrane, L; Raffin, F; Cros, A; Clarençon, D

    2006-11-01

    The therapeutic efficacy of cochlear infusion of methylprednisolone (MP) after an impulse noise trauma (170dB SPL peak) was evaluated in guinea pigs. The compound action potential threshold shifts were measured over a 14 days recovery period after the gunshot exposure. For each animal, one of the cochlea was perfused directly into the scala tympani with MP during 7 days via a mini-osmotic pump, whereas the other cochlea was not pump-implanted. The functional study of hearing was supplemented by histological analysis. Forty eight hours after the trauma, significant differences between auditory threshold shifts in the implanted and non-implanted ears were observed for frequencies above 8kHz. At day 7, the difference was significant for only one frequency and no difference was observed after 14 days recovery. Cochleograms showed that the hair cell losses were significantly lower in the MP treated ears. This work indicates that direct infusion of MP into perilymphatic space accelerates hearing recovery, reduces hair cell losses after impulse noise trauma but does not limit permanent threshold shifts. PMID:17008037

  5. On aerodynamic noises radiated by the pantograph system of high-speed trains

    NASA Astrophysics Data System (ADS)

    Yu, Hua-Hua; Li, Jia-Chun; Zhang, Hui-Qin

    2013-06-01

    Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.

  6. Acoustic Measurements of Rectangular Nozzles With Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2012-01-01

    A series of convergent rectangular nozzles of aspect ratios 2:1, 4:1, and 8:1 were constructed with uniform exit velocity profiles. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. Far-field acoustic measurements were made and analyzed, and the results presented. The impact of aspect ratio on jet noise was similar to that of enhanced mixing devices: reduction in aft, peak frequency noise with an increase in broadside, high frequency noise. Azimuthally, it was found that rectangular jets produced more noise directed away from their wide sides than from their narrow sides. The azimuthal dependence decreased at aft angles where noise decreased. The effect of temperature, keeping acoustic Mach number constant, was minimal. Since most installations would have the observer on the wide size of the nozzle, the increased high frequency noise has a deleterious impact on the observer. Extending one wide side of the rectangular nozzle, evocative of an aft deck in an installed propulsion system, increased the noise of the jet with increasing length. The impact of both aspect ratio and bevel length were relatively well behaved, allowing a simple bilinear model to be constructed relative to a simple round jet.

  7. Development of a surface-wave imaging system for geotechnical applications based on distributed acoustic sensing (DAS) and ambient noise interferometry

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Daley, T. M.; Freifeld, B. M.; Tang, D. G.; Zhang, R.; Wagner, A. M.; Dou, S.; Lindsey, N.; Bjella, K.; Pevzner, R.

    2014-12-01

    Distributed fiber-optic sensing methods have been used since the 1980's for continuous monitoring of near-surface soil properties, typically exploiting Raman scattering to measure temperature (DTS) or stimulated Brillouin scattering to measure strain (DSS). Recent advances in high speed measurement of Rayleigh scattering has enabled distributed recording of seismic waves over long sections of fiber; this approach, referred to as distributed acoustic sensing (DAS) has the potential to allow nearly continuous monitoring of near-surface mechanical properties, a crucial target for geotechnical management of infrastructure dependent on soil strength. We present initial results from our effort to build a real-time soil property monitoring system based on DAS; our approach employs seismic interferometry and dispersion analysis of ambient noise generated by infrastructure to provide a continuously updated model of shear modulus. Our preliminary results include an in-depth investigation of DAS fiber response in the context of active sources; this component of our study verifies classical models for the azimuthal response of straight fibers to propagating surface waves. We also explore the "noisescape" of linear infrastructure and show a usable seismic signal band of 8-40 hz at a series of sites, primarily consisting of Rayleigh waves. Finally, we present preliminary results from a DAS monitoring array installed at the Richmond Field Station near a heavily used road and compare interferometric processing of the acquired data to that generated by surface deployment of geophones.

  8. Annoyance and acceptability judgements of noise produced by three types of aircraft by residents living near JFK Airport

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1974-01-01

    A random sample of selected communities near JFK Airport were interviewed. Subsamples, with differing feelings of fear of aircraft crashes and different locations of residence were invited to participate in a laboratory experiment. The subjects were exposed to tape recordings of simulated flyovers of aircraft in approach and departure operations at nominal distances from the airport. The subjects judged the extent of noise annoyance and acceptability of the aircraft noises. Results indicate that level of noise is most significant in affecting annoyance judgements. Subjects with feelings of high fear report significantly more annoyance and less acceptability of aircraft noise than subjects with feelings of low fear.

  9. Landslide noise.

    PubMed

    Cadman, J D; Goodman, R E

    1967-12-01

    Acoustical monitoring of real landslides has revealed the existence of subaudible noise activity prior to failure and has enabled prediction of the depth of the seat of sliding when conducted in boreholes beneath the surface. Recordings of noise generated in small slopes of moist sand, tilted to failure in laboratory tests, have been analyzed to determine the foci of discrete subaudible noise events. The noises emitted shortly before failure were plotted close to the true sliding surface observed after failure. The foci of earlier events lay either within the central portion of the sliding mass or in a region behind the failure surface. The head and toe zones were devoid of strong seismic activity. PMID:17734306

  10. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  11. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  12. Design and Convergence Performance Analysis of Aspherical Acoustic Lens Applied to Ambient Noise Imaging in Actual Ocean Experiment

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2011-07-01

    In this study, an aspherical lens with the aperture diameter of 1.0 m was designed for utilization in an actual ocean experiment of ambient noise imaging (ANI). It was expected that this ANI system would realize directional resolution, which is a beam width of 1° at the center frequency of 120 kHz. We analyzed the sound pressure distribution focused by the designed lens using the 3D finite difference time domain method. The frequency dependence of a -3 dB area was then compared between 120 kHz and the higher or lower frequency. The analysis results suggested that the designed lens has fine directional resolution over the center frequency of 120 kHz. We had measured the directivity of the designed lens in an actual ocean experiment in Uchiura Bay in November of 2010. It was verified that the ANI system with this lens realizes a beam width of 1° at 120 kHz.

  13. Laughter Differs in Children with Autism: An Acoustic Analysis of Laughs Produced by Children with and without the Disorder

    ERIC Educational Resources Information Center

    Hudenko, William J.; Stone, Wendy; Bachorowski, Jo-Anne

    2009-01-01

    Few studies have examined vocal expressions of emotion in children with autism. We tested the hypothesis that during social interactions, children diagnosed with autism would exhibit less extreme laugh acoustics than their nonautistic peers. Laughter was recorded during a series of playful interactions with an examiner. Results showed that…

  14. Flow Structures and Noise Produced by a Heated Rectangular Nozzle with a Third Stream and Aft Deck

    NASA Astrophysics Data System (ADS)

    Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry

    2015-11-01

    Jet noise is a huge issue that affects both civilian and military aviation and is a two-fold problem. Near-field noise causes hearing damage and is of great concern to the Navy. Far-field noise is also a concern for military and civilian aircraft. For military jets, the trend has shown that newer and more advanced planes are louder than their predecessors. Most of these planes are designed keeping the performance as the main driver in mind while the jet noise becomes an afterthought. To remedy this and to aid the design process, we propose to create a joint noise and performance prediction tool. To create this tool, one must understand how the near-field flow structures generate noise and how they are related to far-field noise. In the current work, we considered rectangular, three-stream nozzle with an aft deck and investigated the flow structures such as corner vortices, shocks and their impact on the noise generation mechanism. We have also used state-of-the-art data analytical tools such as wavelets, POD, and stochastic estimations.

  15. Voice communications in the cockpit noise environment: The role of active noise reduction

    NASA Astrophysics Data System (ADS)

    Wheeler, Peter David

    The topic of voice communications in the cockpit noise environment of modern fast-jet aircraft and helicopters is addressed, and in particular, research undertaken in support of the development of a system for reducing the noise level at the operators' ear is described by acoustic cancellation within the ear defender, known as active noise reduction (ANR). The internal noise spectra of today's high performance fast-jet aircraft and military helicopters is described, and the complex interaction of acoustic noise transmission, speech, and microphone noise pick-up, which produces the total acoustic environment at the aircrews' ears, is discussed. Means of mathematically modelling the audio channel, quantifying the components identified above, and identifying areas of shortfall in performance are derived, leading to a procedure for the development of attenuation requirements, described as the communications audit. A model of the electroacoustic characteristics of the ANR ear defender assembly is presented and the sound field distribution within the ear defender/ear cavity, and its effect upon cancellation performance, is discussed. The extensive laboratory and flight testing of the ANR system that was undertaken is reviewed, paying particular attention to the measurement and analysis techniques employed in such testing. Finally, the performance characteristics of ANR are discussed and compared with the requirements previously established. Design limitations placed upon the system by the constraints of its area of application are described, and the scope for future improvements is considered.

  16. ACOUSTICAL STANDARDS NEWS.

    PubMed

    Stremmel, Neil; Struck, Christopher J

    2016-07-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27475185

  17. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    A two-year study of noise production in a long tubular burner is described. The research was motivated by an interest in understanding and eventually reducing core noise in gas turbine engines. The general approach is to employ an acoustic source/propagation model to interpret the sound pressure spectrum in the acoustic far field of the burner in terms of the source spectrum that must have produced it. In the model the sources are assumed to be due uniquely to the unsteady component of combustion heat release; thus only direct combustion-noise is considered. The source spectrum is then the variation with frequency of the thermal-acoustic efficiency, defined as the fraction of combustion heat release which is converted into acoustic energy at a given frequency. The thrust of the research was to study the variation of the source spectrum with the design and operating parameters of the burner.

  18. Speech and melody recognition in binaurally combined acoustic and electric hearing

    NASA Astrophysics Data System (ADS)

    Kong, Ying-Yee; Stickney, Ginger S.; Zeng, Fan-Gang

    2005-03-01

    Speech recognition in noise and music perception is especially challenging for current cochlear implant users. The present study utilizes the residual acoustic hearing in the nonimplanted ear in five cochlear implant users to elucidate the role of temporal fine structure at low frequencies in auditory perception and to test the hypothesis that combined acoustic and electric hearing produces better performance than either mode alone. The first experiment measured speech recognition in the presence of competing noise. It was found that, although the residual low-frequency (<1000 Hz) acoustic hearing produced essentially no recognition for speech recognition in noise, it significantly enhanced performance when combined with the electric hearing. The second experiment measured melody recognition in the same group of subjects and found that, contrary to the speech recognition result, the low-frequency acoustic hearing produced significantly better performance than the electric hearing. It is hypothesized that listeners with combined acoustic and electric hearing might use the correlation between the salient pitch in low-frequency acoustic hearing and the weak pitch in the envelope to enhance segregation between signal and noise. The present study suggests the importance and urgency of accurately encoding the fine-structure cue in cochlear implants. .

  19. Acoustic Performance of Drive Rig Mufflers for Model Scale Engine Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David, B.

    2013-01-01

    Aircraft engine component testing at the NASA Glenn Research Center (GRC) includes acoustic testing of scale model fans and propellers in the 9- by15-Foot Low Speed Wind Tunnel (LSWT). This testing utilizes air driven turbines to deliver power to the article being studied. These air turbines exhaust directly downstream of the model in the wind tunnel test section and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the engine model being tested. This report describes an acoustic test of a muffler designed to mitigate the extraneous turbine noise. The muffler was found to provide acoustic attenuation of at least 8 dB between 700 Hz and 20 kHz which significantly improves the quality of acoustic measurements in the facility.

  20. "Ladder" structure in tonal noise generated by laminar flow around an airfoil.

    PubMed

    Chong, Tze Pei; Joseph, Phillip

    2012-06-01

    The presence of a "ladder" structure in the airfoil tonal noise was discovered in the 1970s, but its mechanism hitherto remains a subject of continual investigation in the research community. Based on the measured noise results and some numerical analysis presented in this letter, the variations of four types of airfoil tonal noise frequencies with the flow velocity were analyzed individually. The ladder structure is proposed to be caused by the acoustic/hydrodynamic frequency lag between the scattering of the boundary layer instability noise and the discrete noise produced by an aeroacoustic feedback loop.

  1. Contribution to the study of acoustic communication in two Belgian river bullheads (Cottus rhenanus and C. perifretum) with further insight into the sound-producing mechanism

    PubMed Central

    2013-01-01

    Background The freshwater sculpins (genus Cottus) are small, bottom-living fishes widely distributed in North America and Europe. The taxonomy of European species has remained unresolved for a long time due to the overlap of morphological characters. Sound production has already been documented in some cottid representatives, with sounds being involved in courtship and agonistic interactions. Although the movements associated with sound production have been observed, the underlying mechanism remains incomplete. Here, we focus on two closely related species from Belgium: C. rhenanus and C. perifretum. This study aims 1) to record and to compare acoustic communication in both species, 2) to give further insight into the sound-producing mechanism and 3) to look for new morphological traits allowing species differentiation. Results Both Cottus species produce multiple-pulsed agonistic sounds using a similar acoustic pattern: the first interpulse duration is always longer, making the first pulse unit distinct from the others. Recording sound production and hearing abilities showed a clear relationship between the sound spectra and auditory thresholds in both species: the peak frequencies of calls are around 150 Hz, which corresponds to their best hearing sensitivity. However, it appears that these fishes could not hear acoustic signals produced by conspecifics in their noisy habitat considering their hearing threshold expressed as sound pressure (~ 125 dB re 1 μPa). High-speed video recordings highlighted that each sound is produced during a complete back and forth movement of the pectoral girdle. Conclusions Both Cottus species use an acoustic pattern that remained conserved during species diversification. Surprisingly, calls do not seem to have a communicative function. On the other hand, fish could detect substrate vibrations resulting from movements carried out during sound production. Similarities in temporal and spectral characteristics also suggest that both

  2. High signal-to-noise ratio acoustic sensor using phase-shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices

  3. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  4. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  5. Acoustic data transmission through a drill string

    DOEpatents

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  6. Data Quality Assurance for Supersonic Jet Noise Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.

    2010-01-01

    The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.

  7. Large eddy simulation of trailing edge noise

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Nitzkorski, Zane; Mahesh, Krishnan

    2015-11-01

    Noise generation is an important engineering constraint to many marine vehicles. A significant portion of the noise comes from propellers and rotors, specifically due to flow interactions at the trailing edge. Large eddy simulation is used to investigate the noise produced by a turbulent 45 degree beveled trailing edge and a NACA 0012 airfoil. A porous surface Ffowcs-Williams and Hawkings acoustic analogy is combined with a dynamic endcapping method to compute the sound. This methodology allows for the impact of incident flow noise versus the total noise to be assessed. LES results for the 45 degree beveled trailing edge are compared to experiment at M = 0 . 1 and Rec = 1 . 9 e 6 . The effect of boundary layer thickness on sound production is investigated by computing using both the experimental boundary layer thickness and a thinner boundary layer. Direct numerical simulation results of the NACA 0012 are compared to available data at M = 0 . 4 and Rec = 5 . 0 e 4 for both the hydrodynamic field and the acoustic field. Sound intensities and directivities are investigated and compared. Finally, some of the physical mechanisms of far-field noise generation, common to the two configurations, are discussed. Supported by Office of Naval research.

  8. Aviation noise effects

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Beattie, K. R.

    1985-03-01

    This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.

  9. Poor Marks for Classroom Acoustics.

    ERIC Educational Resources Information Center

    Herbert, R. Kring

    1999-01-01

    Discusses the problem of low acoustical performance in many of today's K-12 classrooms and its impact on student learning. The following three primary types of classroom noise and their control are explored: reverberation; climate control system noise; and noise from outside the classroom. (GR)

  10. The Source of Propeller Noise

    NASA Technical Reports Server (NTRS)

    Ernsthausen, W

    1937-01-01

    A two blade propeller of 40 cm diameter and zero pitch was explored for its noise development; it could be whirled up to 17,000 rpm - i.e., a tip speed of 355 meters/second. To obtain the power loss N(sub m) of the propeller for comparison with the produced acoustical power N(sub A) the engine performance characteristics were measured with and without propeller. The result is the sought-for relation c, that is, curve c' after correction with the engine efficiency.

  11. Identification of the noise using mathematical modelling

    NASA Astrophysics Data System (ADS)

    Dobeš, Josef; Kozubková, Milada; Mahdal, Miroslav

    2016-03-01

    In engineering applications the noisiness of a component or the whole device is a common problem. Currently, a lot of effort is put to eliminate noise of the already produced devices, to prevent generation of acoustic waves during the design of new components, or to specify the operating problems based on noisiness change. The experimental method and the mathematical modelling method belong to these identification methods. With the power of today's computers the ability to identify the sources of the noise on the mathematical modelling level is a very appreciated tool for engineers. For example, the noise itself may be generated by the vibration of the solid object, combustion, shock, fluid flow around an object or cavitation at the fluid flow in an object. For the given task generating the noise using fluid flow on the selected geometry and propagation of the acoustic waves and their subsequent identification are solved and evaluated. In this paper the principle of measurement of variables describing the fluid flow field and acoustic field are described. For the solution of fluid flow a mathematical model implemented into the CFD code is used. The mathematical modelling evaluation of the flow field is compared to the experimental data.

  12. Clamoring for quiet: new ways to mitigate noise.

    PubMed

    Manuel, John

    2005-01-01

    New technologies are providing innovative ways to reduce sound levels in many areas. Aircraft engineers are finding ways to reduce the noise produced by jet engines, while road builders are using rubber-enhanced pavement to quiet highway noise. Indoor acoustics are benefiting from materials that transform sound waves to heat, and so-called active noise control reduces harmful sounds through production of a mirror-image sound field. And new lawn equipment makes weekends at home quieter for yard lovers and their neighbors. PMID:15631960

  13. The Traffic Noise Index: A Method of Controlling Noise Nuisance.

    ERIC Educational Resources Information Center

    Langdon, F. J.; Scholes, W. E.

    This building research survey is an analysis of the social nuisance caused by urban motor ways and their noise. The Traffic Noise Index is used to indicate traffic noises and their effects on architectural designs and planning, while suggesting the need for more and better window insulation and acoustical barriers. Overall concern is for--(1)…

  14. Critical Propulsion and Noise reduction Technologies for Future Commercial Subsonic Engines. Area of Interest 14.3: Separate Flow Exhaust System Noise

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Brausch, J. F.; Gliebe, P. R.; Coffin, R. S.; Martens, S.; Delaney, B. R.; Dalton, W. N.; Mengle, V. G.

    2000-01-01

    This presentation discusses: Project Objectives, Approach and Goal; Baseline Nozzles and Test Cycle Definition; Repeatability and Baseline Nozzle Results; Noise Reduction Concepts; Noise Reduction Tests Configurations of BPR=5 Internal Plug Nozzle adn Acoustic Results; Noise Reduction Test Configurations of BPR=5 External Plug Nozzle and Acoustic Results; and Noise Reduction Tests Configurations of BPR=8 External Plug Nozzle and Acoustic Results.

  15. The Lombard effect in male ultrasonic frogs: Regulating antiphonal signal frequency and amplitude in noise.

    PubMed

    Shen, Jun-Xian; Xu, Zhi-Min

    2016-01-01

    Acoustic communication in noisy environments presents a significant challenge for vocal animals because noise can interfere with animal acoustic signals by decreasing signal-to-noise ratios and masking signals. Birds and mammals increase call intensity or frequency as noise levels increase, but it is unclear to what extend this behavior is shared by frogs. Concave-eared torrent frogs (Odorrana tormota) have evolved the capacity to produce various calls containing ultrasonic harmonics and to communicate beside noisy streams. However, it is largely unclear how frogs regulate vocalization in response to increasing noise levels. We exposed male frogs to various levels of noise with playback of conspecific female courtship calls and recorded antiphonal signals and spontaneous short calls. Males were capable of rapidly adjusting fundamental frequency and amplitude of antiphonal signals as noise levels increased. The increment in fundamental frequency and amplitude was approximately 0.5 kHz and 3 dB with every 10 dB increase in noise level, indicating the presence of noise-dependent signal characteristics. Males showed the noise-tolerant adaption in response to female calls in noise level from 40 to 90 dB SPL. The results suggest that the noise-dependent signal characteristics in O. tormota have evolved as a strategy to cope with varying torrent noise. PMID:27345957

  16. The Lombard effect in male ultrasonic frogs: Regulating antiphonal signal frequency and amplitude in noise

    PubMed Central

    Shen, Jun-Xian; Xu, Zhi-Min

    2016-01-01

    Acoustic communication in noisy environments presents a significant challenge for vocal animals because noise can interfere with animal acoustic signals by decreasing signal-to-noise ratios and masking signals. Birds and mammals increase call intensity or frequency as noise levels increase, but it is unclear to what extend this behavior is shared by frogs. Concave-eared torrent frogs (Odorrana tormota) have evolved the capacity to produce various calls containing ultrasonic harmonics and to communicate beside noisy streams. However, it is largely unclear how frogs regulate vocalization in response to increasing noise levels. We exposed male frogs to various levels of noise with playback of conspecific female courtship calls and recorded antiphonal signals and spontaneous short calls. Males were capable of rapidly adjusting fundamental frequency and amplitude of antiphonal signals as noise levels increased. The increment in fundamental frequency and amplitude was approximately 0.5 kHz and 3 dB with every 10 dB increase in noise level, indicating the presence of noise-dependent signal characteristics. Males showed the noise-tolerant adaption in response to female calls in noise level from 40 to 90 dB SPL. The results suggest that the noise-dependent signal characteristics in O. tormota have evolved as a strategy to cope with varying torrent noise. PMID:27345957

  17. The Lombard effect in male ultrasonic frogs: Regulating antiphonal signal frequency and amplitude in noise.

    PubMed

    Shen, Jun-Xian; Xu, Zhi-Min

    2016-01-01

    Acoustic communication in noisy environments presents a significant challenge for vocal animals because noise can interfere with animal acoustic signals by decreasing signal-to-noise ratios and masking signals. Birds and mammals increase call intensity or frequency as noise levels increase, but it is unclear to what extend this behavior is shared by frogs. Concave-eared torrent frogs (Odorrana tormota) have evolved the capacity to produce various calls containing ultrasonic harmonics and to communicate beside noisy streams. However, it is largely unclear how frogs regulate vocalization in response to increasing noise levels. We exposed male frogs to various levels of noise with playback of conspecific female courtship calls and recorded antiphonal signals and spontaneous short calls. Males were capable of rapidly adjusting fundamental frequency and amplitude of antiphonal signals as noise levels increased. The increment in fundamental frequency and amplitude was approximately 0.5 kHz and 3 dB with every 10 dB increase in noise level, indicating the presence of noise-dependent signal characteristics. Males showed the noise-tolerant adaption in response to female calls in noise level from 40 to 90 dB SPL. The results suggest that the noise-dependent signal characteristics in O. tormota have evolved as a strategy to cope with varying torrent noise.

  18. Acoustics and its relation to language: The influence of Dick Bolt

    NASA Astrophysics Data System (ADS)

    Stevens, Kenneth N.

    2003-04-01

    Under the mentoring of Dick Bolt, and the stimulation he provided in the Acoustics Laboratory at MIT, many students were exposed to a range of topics in acoustics, including mechanisms of sound generation, radiation, and propagation, noise control, acoustics of resonators and rooms, human responses to sound, and speech perception under various adverse conditions. As someone who became interested in speech communication, I have recognized that this kind of quantitative background in acoustics is an important requirement for developing models of how humans produce speech, how they perceive and understand speech, and how children acquire these skills. Speech production involves sound sources produced by a nonlinear mechanical system and by noise arising from turbulent airflow. Sound is propagated in a vocal tract with yielding walls, and acoustic coupling is introduced by lossy resonators attached to the vocal tract, including the trachea and the nasal cavity. These acoustic principles of sound generation create an inventory of sound types that give rise to distinctive responses in the ears and brains of listeners. The solid grounding in acoustics provided by Dick Bolt and his leadership have helped in the formation of this linkage between acoustics, speech physiology, linguistics, and human perception.

  19. The Effects of Surfaces on the Aerodynamics and Acoustics of Jet Flows

    NASA Technical Reports Server (NTRS)

    Smith, Matthew J.; Miller, Steven A. E.

    2013-01-01

    Aircraft noise mitigation is an ongoing challenge for the aeronautics research community. In response to this challenge, low-noise aircraft concepts have been developed that exhibit situations where the jet exhaust interacts with an airframe surface. Jet flows interacting with nearby surfaces manifest a complex behavior in which acoustic and aerodynamic characteristics are altered. In this paper, the variation of the aerodynamics, acoustic source, and far-field acoustic intensity are examined as a large at plate is positioned relative to the nozzle exit. Steady Reynolds-Averaged Navier-Stokes solutions are examined to study the aerodynamic changes in the field-variables and turbulence statistics. The mixing noise model of Tam and Auriault is used to predict the noise produced by the jet. To validate both the aerodynamic and the noise prediction models, results are compared with Particle Image Velocimetry (PIV) and free-field acoustic data respectively. The variation of the aerodynamic quantities and noise source are examined by comparing predictions from various jet and at plate configurations with an isolated jet. To quantify the propulsion airframe aeroacoustic installation effects on the aerodynamic noise source, a non-dimensional number is formed that contains the flow-conditions and airframe installation parameters.

  20. The effective acoustic environment of helicopter crewmen

    NASA Technical Reports Server (NTRS)

    Camp, R. T., Jr.; Mozo, B. T.

    1978-01-01

    Methods of measuring the composite acoustic environment of helicopters in order to quantify the effective acoustic environment of the crewmen and to assess the real acoustic hazards of the personnel are examined. It is indicated that the attenuation characteristics of the helmets and hearing protectors and the variables of the physiology of the human ear be accounted for in determining the effective acoustic environment of Army helicopter crewmen as well as the acoustic hazards of voice communications systems noise.