Science.gov

Sample records for acoustic oscillation measurement

  1. Cosmological implications of baryon acoustic oscillation measurements

    SciTech Connect

    Aubourg, Eric

    2015-12-01

    Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H0=67.3±1.1 km s-1 Mpc-1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ωm=0.301±0.008 and curvature Ωk=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species,

  2. Cosmological implications of baryon acoustic oscillation measurements

    DOE PAGES

    Aubourg, Eric

    2015-12-01

    Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibratedmore » physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H0=67.3±1.1 km s-1 Mpc-1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ωm=0.301±0.008 and curvature Ωk=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Σmν<0.56 eV (95% confidence), improving to Σmν<0.25 eV if we include

  3. On measuring the absolute scale of baryon acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Sutherland, Will

    2012-10-01

    The baryon acoustic oscillation (BAO) feature in the distribution of galaxies provides a fundamental standard ruler which is widely used to constrain cosmological parameters. In most analyses, the comoving length of the ruler is inferred from a combination of cosmic microwave background (CMB) observations and theory. However, this inferred length may be biased by various non-standard effects in early universe physics; this can lead to biased inferences of cosmological parameters such as H0, Ωm and w, so it would be valuable to measure the absolute BAO length by combining a galaxy redshift survey and a suitable direct low-z distance measurement. One obstacle is that low-redshift BAO surveys mainly constrain the ratio rS/DV(z), where DV is a dilation scale which is not directly observable by standard candles. Here, we find a new approximation DV(z)≃34DL(43z)(1+43z)-1(1-0.02455 z3+0.0105 z4) which connects DV to the standard luminosity distance DL at a somewhat higher redshift; this is shown to be very accurate (relative error <0.2 per cent) for all Wilkinson Microwave Anisotropy Probe compatible Friedmann models at z < 0.4, with very weak dependence on cosmological parameters H0, Ωm, Ωk, w. This provides a route to measure the absolute BAO length using only observations at z ≲ 0.3, including Type Ia supernovae, and potentially future H0-free physical distance indicators such as gravitational lenses or gravitational wave standard sirens. This would provide a zero-parameter check of the standard cosmology at 103 ≲ z ≲ 105, and can constrain the number of relativistic species Neff with fewer degeneracies than the CMB.

  4. Local oscillator phase noise limitation on the resolution of acoustic delay line wireless passive sensor measurement

    NASA Astrophysics Data System (ADS)

    Chrétien, N.; Friedt, J.-M.; Martin, G.

    2014-06-01

    The role of the phase noise of a local oscillator driving a pulsed-mode RADAR used for probing surface acoustic wave sensors is investigated. The echo delay, representative of the acoustic velocity, and hence the physical quantity probed by the sensor, is finely measured as a phase. Considering that the intrinsic oscillator phase fluctuation defines the phase noise measurement resolution, we experimentally and theoretically assess the relation between phase noise, measurement range, and measurand resolution.

  5. Measuring baryon acoustic oscillations from the clustering of voids

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhao, Cheng; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2016-07-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal from voids, based on galaxy redshift catalogues. To this end, we study the dependence of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale-dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the methodology on an additional set of 1000 realistic mock galaxy catalogues reproducing the SDSS-III/BOSS CMASS DR11 data, to control the impact of sky mask and radial selection function. Our solution is based on generating voids from randoms including the same survey geometry and completeness, and a post-processing cleaning procedure in the holes and at the boundaries of the survey. The methodology and optimal selection of void populations validated in this work have been used to perform the first BAO detection from voids in observations, presented in a companion paper.

  6. Measuring the speed of light with baryon acoustic oscillations.

    PubMed

    Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth

    2015-03-13

    In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.

  7. Cosmic sound: Measuring the Universe with baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Hütsi, Gert

    2006-05-01

    matter power spectrum one is able to put constraints on several cosmological parameters. In this thesis we have investigated the prospects for the future wide-field SZ cluster surveys to detect the acoustic scale in the matter power spectrum, specifically concentrating on the possibilities for constraining the properties of the DE. The core part of the thesis is concerned with a power spectrum analysis of the SDSS Luminous Red Galaxy (LRG) sample. We have been able to detect acoustic features in the redshift-space power spectrum of LRGs down to scales of ~ 0.2 hMpc^{-1}, which approximately corresponds to the seventh peak in the CMB angular spectrum. Using this power spectrum measurement along with the measured size of the sound horizon, we have carried out the maximum likelihood cosmological parameter estimation using Markov chain Monte Carlo techniques. The precise measurement of the low redshift sound horizon in combination with the CMB data has enabled us to measure, under some simplifying assumptions, the Hubble constant with a high precision: H_0 = 70.8 {+1.9} {-1.8} km/s/Mpc. Also we have shown that a decelerating expansion of the Universe is ruled out at more than 5-sigma confidence level.

  8. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.

    1978-01-01

    A number of 401.2 MHz surface acoustic wave (SAW) controlled oscillators were built and tested. The performance of these oscillators was evaluated for possible use as stable oscillators in communication systems. A short term frequency stability of better than 1 x 10 to the minus 9th power for one second was measured for the SAW oscillators. Long term frequency drift was measured and was found to be dependent on SAW design and packaging. Drift rates ranging from 15 ppm in twenty weeks to 2.5 ppm in twenty weeks were observed. Some further improvement was required. The temperature dependence of the saw oscillators was evaluated and it was concluded that some form of temperature compensation will be necessary to meet the requirements of some communication systems.

  9. Measuring the distance-redshift relation with the baryon acoustic oscillations of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Veropalumbo, A.; Marulli, F.; Moscardini, L.; Moresco, M.; Cimatti, A.

    2016-05-01

    We analyse the largest spectroscopic samples of galaxy clusters to date, and provide observational constraints on the distance-redshift relation from baryon acoustic oscillations. The cluster samples considered in this work have been extracted from the Sloan Digital Sky Survey at three median redshifts, z = 0.2, 0.3 and 0.5. The number of objects is 12 910, 42 215 and 11 816, respectively. We detect the peak of baryon acoustic oscillations for all the three samples. The derived distance constraints are rs/DV(z = 0.2) = 0.18 ± 0.01, rs/DV(z = 0.3) = 0.124 ± 0.004 and rs/DV(z = 0.5) = 0.080 ± 0.002. Combining these measurements with the sound horizon scale measured from the cosmic microwave background, we obtain robust constraints on cosmological parameters. Our results are in agreement with the standard Λ cold dark matter (ΛCDM) model. Specifically, we constrain the Hubble constant in a ΛCDM model, H_0 = 64_{-8}^{+17} km s^{-1} Mpc^{-1} , the density of curvature energy, in the oΛCDM context, Ω _K = -0.01_{-0.33}^{+0.34}, and finally the parameter of the dark energy equation of state in the wCDM case, w = -1.06_{-0.52}^{+0.49}. This is the first time the distance-redshift relation has been constrained using only the peak of baryon acoustic oscillations of galaxy clusters.

  10. Galaxy bias and its effects on the Baryon acoustic oscillations measurements

    SciTech Connect

    Mehta, Kushal T.; Seo, Hee -Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Metchnik, Marc; Pinto, Philip; Xu, Xiaoying

    2011-05-31

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. (2009). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.

  11. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    NASA Astrophysics Data System (ADS)

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  12. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints.

    PubMed

    Hinton, Samuel R; Kazin, Eyal; Davis, Tamara M; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J; Drinkwater, Michael J; Glazebrook, Karl; Jurek, Russell J; Parkinson, David; Pimbblet, Kevin A; Poole, Gregory B; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ω c  h(2), H(z), and DA (z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  13. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    PubMed Central

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2016-01-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey. PMID:28066154

  14. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    SciTech Connect

    Mazumdar, A.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Ballot, J.; Antia, H. M.; Basu, S.; Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Mathur, S.; García, R. A.; Verner, G. A.; Chaplin, W. J.; Sanderfer, D. T.; Seader, S. E.; Smith, J. C.

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  15. The measurement of geodesic acoustic mode magnetic field oscillations in J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Lan, T.; Wu, J.; Shen, H. G.; Deng, T. J.; Liu, A. D.; Xie, J. L.; Li, H.; Liu, W. D.; Yu, C. X.; Sun, Y.; Liu, H.; Chen, Z. P.; Zhuang, G.

    2014-10-01

    Geodesic acoustic mode (GAM) magnetic field oscillations have been investigated using three-dimension magnetic probe and Langmuir probe arrays in the edge of J-TEXT tokamak. The probe arrays are placed on the two top windows of tokamak, separated toroidally. Inside the LCFS, GAM shows apparent oscillations in floating potential. In contrast, GAM magnetic field oscillations are not significant in raw magnetic fields signals. Using toroidal correlation technique, the GAM magnetic field oscillations are distinguished from ambient magnetic field. The amplitudes of three dimension GAM magnetic field fluctuations, as well as the dependence with local plasma parameters such as safety factor and plasma beta, are coincident with theoretical predictions. And its toroidal symmetry mode structure, i.e. n = 0, is identified. Furthermore, the GAM current sheet, in which GAM oscillates, is firstly verified with magnetic probes arrays in different radial positions, which may help us to understand the radial structure of GAM. Supported by NNSFC (Nos. 10990210, 10990211, 10335060, 10905057 and 11375188), CPSF (No. 20080440104), YIF (No. WK2030040019) and KIPCAS (No. kjcx-yw-n28).

  16. Distance, Growth Factor, and Dark Energy Constraints from Photometric Baryon Acoustic Oscillation and Weak Lensing Measurements

    NASA Astrophysics Data System (ADS)

    Zhan, Hu; Knox, Lloyd; Tyson, J. Anthony

    2009-01-01

    Baryon acoustic oscillations (BAOs) and weak lensing (WL) are complementary probes of cosmology. We explore the distance and growth factor measurements from photometric BAO and WL techniques, and investigate the roles of the distance and growth factor in constraining dark energy. We find for WL that the growth factor has a great impact on dark energy constraints, but is much less powerful than the distance. Dark energy constraints from WL are concentrated in considerably fewer distance eigenmodes than those from BAO, with the largest contributions from modes that are sensitive to the absolute distance. Both techniques have some well-determined distance eigenmodes that are not very sensitive to the dark energy equation-of-state parameters w0 and wa, suggesting that they can accommodate additional parameters for dark energy and for the control of systematic uncertainties. A joint analysis of BAO and WL is far more powerful than either technique alone, and the resulting constraints on the distance and growth factor will be useful for distinguishing dark energy and modified gravity models. The Large Synoptic Survey Telescope (LSST) will yield both WL and angular BAO over a sample of several billion galaxies. Joint LSST BAO and WL can yield 0.5% level precision on ten comoving distances evenly spaced in log(1 + z) between redshift 0.3 and 3 with cosmic microwave background priors from Planck. In addition, since the angular diameter distance, which directly affects the observables, is linked to the comoving distance solely by the curvature radius in the Friedmann-Robertson-Walker metric solution, the LSST can achieve a pure metric constraint of 0.017 on the mean curvature parameter Ω k of the universe simultaneously with the constraints on the comoving distances.

  17. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  18. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    PubMed

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  19. Suppression of Spontaneous Gas Oscillations by Acoustic Self-Feedback

    NASA Astrophysics Data System (ADS)

    Biwa, Tetsushi; Sawada, Yoshiki; Hyodo, Hiroaki; Kato, Soichiro

    2016-10-01

    This paper demonstrates a method of acoustical self-feedback to suppress spontaneous gas oscillations such as those observed in combustors of gas-turbine engines. Whereas a conventional feedback system consists of electromechanical devices, the present method achieves acoustical self-feedback with a hollow tube that connects two positions of the oscillation system. A model oscillator of combustion-driven gas oscillations is designed and built to demonstrate the applicability of the self-feedback concept. Stability analysis through measurements of Q values (quality factor) of oscillations shows that the desired delay time and gain are obtained when the tube length is equal to the odd integer times half the wavelength of the anticipated acoustic oscillations.

  20. Acoustic loading effects on oscillating rod bundles

    SciTech Connect

    Lin, W.H.

    1980-01-01

    An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed.

  1. PRSA hydrogen tank thermal acoustic oscillation study

    NASA Technical Reports Server (NTRS)

    Riemer, D. H.

    1979-01-01

    The power reactant storage assembly (PRSA) hydrogen tank test data were reviewed. Two hundred and nineteen data points illustrating the effect of flow rate, temperature ratio and configuration were identified. The test data were reduced to produce the thermal acoustic oscillation parameters. Frequency and amplitude were determined for model correlation. A comparison of PRSA hydrogen tank test data with the analytical models indicated satisfactory agreement for the supply and poor agreement for the full line.

  2. Damping of thermal acoustic oscillations in hydrogen systems

    NASA Technical Reports Server (NTRS)

    Gu, Youfan; Timmerhaus, Klaus D.

    1991-01-01

    Acoustic waves initiated by a large temperature gradient along a tube are defined as thermal acoustic oscillations (TAOs). These oscillations have been damped by introducing such sound absorbing techniques as acoustic filters, resonators, etc.. These devices serve as an acoustic sink that is used to absorb or dissipate the acoustic energy thereby eliminating or damping such oscillations. Several empirical damping techniques, such as attaching a resonator as a side branch or inserting a wire in the tube, have been developed in the past and have provided reasonable success. However, the effect of connecting tube radius, length, and resonator volume on the damping of thermal acoustic oscillations has not been evaluated quantitatively. Further, these methods have not been effective when the oscillating tube radius was relatively large. Detailed theoretical analyses of these techniques including a newly developed method for damping oscillations in a tube of relatively large radius are provided in this presentation.

  3. Baryon acoustic oscillation intensity mapping of dark energy.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  4. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  5. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    NASA Astrophysics Data System (ADS)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  6. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  7. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  8. Investigation of acoustic streaming patterns around oscillating sharp edges

    PubMed Central

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2014-01-01

    Oscillating sharp edges have been employed to achieve rapid and homogeneous mixing in microchannels using acoustic streaming. Here we use a perturbation approach to study the flow around oscillating sharp edges in a microchannel. This work extends prior experimental studies to numerically characterize the effect of various parameters on the acoustically induced flow. Our numerical results match well with the experimental results. We investigated multiple device parameters such as the tip angle, oscillation amplitude, and channel dimensions. Our results indicate that, due to the inherent nonlinearity of acoustic streaming, the channel dimensions could significantly impact the flow patterns and device performance. PMID:24903475

  9. Behaviour of a Premixed Flame Subjected to Acoustic Oscillations

    PubMed Central

    Qureshi, Shafiq R.; Khan, Waqar A.; Prosser, Robert

    2013-01-01

    In this paper, a one dimensional premixed laminar methane flame is subjected to acoustic oscillations and studied. The purpose of this analysis is to investigate the effects of acoustic perturbations on the reaction rates of different species, with a view to their respective contribution to thermoacoustic instabilities. Acoustically transparent non reflecting boundary conditions are employed. The flame response has been studied with acoustic waves of different frequencies and amplitudes. The integral values of the reaction rates, the burning velocities and the heat release of the acoustically perturbed flame are compared with the unperturbed case. We found that the flame's sensitivity to acoustic perturbations is greatest when the wavelength is comparable to the flame thickness. Even in this case, the perturbations are stable with time. We conclude that acoustic fields acting on the chemistry do not contribute significantly to the emergence of large amplitude pressure oscillations. PMID:24376501

  10. Thermal acoustic oscillations, volume 2. [cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Sims, W. H.; Fan, C.

    1975-01-01

    A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions.

  11. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  12. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  13. Coupling between ion-acoustic waves and neutrino oscillations.

    PubMed

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2017-01-01

    The work investigates the coupling between ion-acoustic waves and neutrino flavor oscillations in a nonrelativistic electron-ion plasma under the influence of a mixed neutrino beam. Neutrino oscillations are mediated by the flavor polarization vector dynamics in a material medium. The linear dispersion relation around homogeneous static equilibria is developed. When resonant with the ion-acoustic mode, the neutrino flavor oscillations can transfer energy to the plasma exciting a new fast unstable mode in extreme astrophysical scenarios. The growth rate and the unstable wavelengths are determined in typical type II supernova parameters. The predictions can be useful for a new indirect probe on neutrino oscillations in nature.

  14. Coupling between ion-acoustic waves and neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2017-01-01

    The work investigates the coupling between ion-acoustic waves and neutrino flavor oscillations in a nonrelativistic electron-ion plasma under the influence of a mixed neutrino beam. Neutrino oscillations are mediated by the flavor polarization vector dynamics in a material medium. The linear dispersion relation around homogeneous static equilibria is developed. When resonant with the ion-acoustic mode, the neutrino flavor oscillations can transfer energy to the plasma exciting a new fast unstable mode in extreme astrophysical scenarios. The growth rate and the unstable wavelengths are determined in typical type II supernova parameters. The predictions can be useful for a new indirect probe on neutrino oscillations in nature.

  15. Thermal Acoustic Oscillation: Causes, Detection, Analysis and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Hartwig, Jason W.

    2014-01-01

    The presentation discusses the causes of Thermal Acoustic Oscillations, how it can be detected, analyzed and prevented. It also discusses where it can occur, where it doesn't occur and practical mitigation techniques.

  16. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  17. Experimental and theoretical demonstration of acoustic Bloch oscillations in porous silicon structures

    SciTech Connect

    Lazcano, Z.; Arriaga, J.; Aliev, G. N.

    2014-04-21

    We report the theoretical calculations and the experimental demonstration of acoustic Bloch oscillations and Wannier-Stark ladders in linear tilted multilayer structures based on porous silicon. The considered structures consist of layers with constant porosity alternated by layers with a linear gradient in the parameter η=1/v{sub L}{sup 2} along the growth direction in order to tilt the acoustic band gap. The purpose of this gradient is to mimic the tilted electronic miniband structure of a superlattice semiconductor under an external electric field. In this way, acoustic Wannier-Stark ladders of equidistant modes are formed and they were experimentally confirmed in the transmission spectrum around 1.2 GHz. Their frequency separation defines the period of the acoustic Bloch oscillations. We fabricated three different structures with the same thicknesses but different values in the η parameter to observe the effect on the period of the Bloch oscillations. We measured the acoustic transmission spectra in the frequency domain, and by using the Fourier transform, we obtained the transmission in the time domain. The transmission spectra of the fabricated samples show acoustic Bloch oscillations with periods of 27, 24, and 19 ns. The experimental results are in good agreement with the transfer matrix calculations. The observed phenomenon is the acoustic counterpart of the well known electronic Bloch oscillations.

  18. Acoustic impedance measurements of pulse tube refrigerators

    NASA Astrophysics Data System (ADS)

    Iwase, Takashi; Biwa, Tetsushi; Yazaki, Taichi

    2010-02-01

    Complex acoustic impedance is determined in a prototype refrigerator that can mimic orifice-type, inertance-type, and double inlet-type pulse tube refrigerators from simultaneous measurements of pressure and velocity oscillations at the cold end. The impedance measurements revealed the means by which the oscillatory flow condition in the basic pulse tube refrigerator is improved by additional components such as a valve and a tank. The working mechanism of pulse tube refrigerators is explained based on an electrical circuit analogy.

  19. Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics

    NASA Technical Reports Server (NTRS)

    Buffum, D. H.; Fleeter, S.

    1994-01-01

    The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes, which have detrimental effects on the experimental results. Acoustic treatment is proposed to rectify this problem.

  20. Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1993-01-01

    The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes which have detrimental effects on the experimental data. Acoustic treatment is proposed to rectify this problem.

  1. Acoustic resonances in cylinder bundles oscillating in a compressibile fluid

    SciTech Connect

    Lin, W.H.; Raptis, A.C.

    1984-12-01

    This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determined from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.

  2. Acoustic Bloch oscillations in a two-dimensional phononic crystal

    NASA Astrophysics Data System (ADS)

    He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou

    2007-11-01

    We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.

  3. Study of multilayered insulation pipe penetration. Thermal acoustic oscillation

    NASA Technical Reports Server (NTRS)

    Lovin, J. K.

    1974-01-01

    Tests were conducted to determine the net heat leak to a source of liquid nitrogen caused by a metal penetration through the blanket of multilayer insulation. The conditions under which the tests were conducted are described. A graph of the theoretical and experimental temperature distribution is developed for comparison. The variables involved in the computer program to process the data are defined. A study was conducted to develop analytical methods for predicting the effect and magnitudes of thermoacoustic oscillations on the penetration heat leak to cryogens. The oscillations develop as a result of large thermal gradients imposed on a compressible fluid. The predominant amplitudes and frequencies of the thermal acoustic oscillations were investigated.

  4. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  5. Design Guidelines for Avoiding Thermo-Acoustic Oscillations in Helium Piping Systems

    SciTech Connect

    Gupta, Prabhat Kumar; Rabehl, Roger

    2014-01-01

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.2 K), and the closed ends of these tubes are connected to the high temperature (300K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This work also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location.

  6. Acoustic gas oscillations in coaxial tubes

    NASA Astrophysics Data System (ADS)

    Semenova, E. V.; Larionov, V. M.; Iovleva, O. V.

    2017-01-01

    Pulsating combustion is one of the possible solutions to improve energy efficiency of combustors that use hydrocarbon fuels. In this paper analysis of gas oscillations in coaxial tubes is provided. An influence of geometric parameters of the combustion chamber and the resonance tube on the installation frequency is considered.

  7. Acoustic-velocity measurements in materials using a regenerative method

    DOEpatents

    Laine, E.F.

    1982-09-30

    Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  8. Acoustic velocity measurements in materials using a regenerative method

    DOEpatents

    Laine, Edwin F.

    1986-01-01

    Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  9. Vertical vibration and shape oscillation of acoustically levitated water drops

    SciTech Connect

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  10. A numerical method for acoustic oscillations in tubes

    NASA Technical Reports Server (NTRS)

    Gary, John M.

    1988-01-01

    A numerical method to obtain the neutral curve for the onset of acoustic oscillations in a helium-filled tube is described. Such oscillations can cause a serious heat loss in the plumbing associated with liquid helium dewars. The problem is modelled by a second-order, ordinary differential eigenvalue problem for the pressure perturbation. The numerical method to find the eigenvalues and track the resulting points along the neutral curve is tailored to this problem. The results show that a tube with a uniform temperature gradient along it is much more stable than one where the temperature suddenly jumps from the cold to the hot value in the middle of the tube.

  11. Magnetophonon oscillations caused by acoustic phonons in bulk conductors

    NASA Astrophysics Data System (ADS)

    Raichev, O. E.

    2016-09-01

    The interaction of electrons with acoustic phonons under a magnetic field leads to a remarkable kind of magnetophonon oscillation of transport coefficients, recently discovered in two-dimensional electron systems. The present study shows that similar oscillations exist in bulk conductors and provides a theory of this phenomenon for the case of spherical Fermi surfaces. The resonance peaks occur when the product of the Fermi surface diameter by the sound velocity is a multiple of the cyclotron frequency. Theoretical predictions may facilitate the experimental observation of the phenomenon.

  12. Efficient construction of mock catalogs for baryon acoustic oscillation surveys

    NASA Astrophysics Data System (ADS)

    Sunayama, Tomomi; Padmanabhan, Nikhil; Heitmann, Katrin; Habib, Salman; Rangel, Esteban

    2016-05-01

    Precision measurements of the large scale structure of the Universe require large numbers of high fidelity mock catalogs to accurately assess, and account for, the presence of systematic effects. We introduce and test a scheme for generating mock catalogs rapidly using suitably derated N-body simulations. Our aim is to reproduce the large scale structure and the gross properties of dark matter halos with high accuracy, while sacrificing the details of the halo's internal structure. By adjusting global and local time-steps in an N-body code, we demonstrate that we recover halo masses to better than 0.5% and the power spectrum to better than 1% both in real and redshift space for k=1hMpc-1, while requiring a factor of 4 less CPU time. We also calibrate the redshift spacing of outputs required to generate simulated light cones. We find that outputs separated by Δ z=0.05 allow us to interpolate particle positions and velocities to reproduce the real and redshift space power spectra to better than 1% (out to k=1hMpc-1). We apply these ideas to generate a suite of simulations spanning a range of cosmologies, motivated by the Baryon Oscillation Spectroscopic Survey (BOSS) but broadly applicable to future large scale structure surveys including eBOSS and DESI. As an initial demonstration of the utility of such simulations, we calibrate the shift in the baryonic acoustic oscillation peak position as a function of galaxy bias with higher precision than has been possible so far. This paper also serves to document the simulations, which we make publicly available.

  13. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, V.

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  14. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    PubMed

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  15. On Mode Correlation of Solar Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Chang, Heon-Young

    2009-09-01

    In helioseismology it is normally assumed that p-mode oscillations are excited in a statistically independent fashion. Unfortunately, however, this issue is not clearly settled down in that two experiments exist, which apparently look in discrepancy. That is, Appourchaux et al.~(2000) looked at bin-to-bin correlation and found no evidence that the assumption is invalid. On the other hand, Roth (2001) reported that p-mode pairs with nearby frequencies tend to be anti-correlated, possibly by a mode-coupling effect. This work is motivated by an idea that one may test if there exists an excess of anticorrelated power variations of pairs of solar p-modes. We have analyzed a 72-day MDI spherical-harmonic time series to examine temporal variations of p-mode power and their correlation. The power variation is computed by a running-window method after the previous study by Roth (2001), and then distribution function of power correlation between mode pairs is produced. We have confirmed Roth's result that there is an excess of anti-correlated p-mode pairs with nearby frequencies. On the other hand, the amount of excess was somewhat smaller than the previous study. Moreover, the distribution function does not exhibit significant change when we paired modes with non-nearby frequencies, implying that the excess is not due to mode coupling. We conclude that the origin of this excess of anticorrelations may not be a solar physical process, by pointing out the possibility of statistical bias playing the central role in producing the excess.

  16. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  17. Method and means for measuring acoustic emissions

    DOEpatents

    Renken, Jr., Claus J.

    1976-01-06

    The detection of acoustic emissions emanating from an object is achieved with a capacitive transducer coupled to the object. The capacitive transducer is charged and then allowed to discharge with the rate of discharge being monitored. Oscillations in the rate of discharge about the normally exponential discharge curve for the capacitive transducer indicate the presence of acoustic emissions.

  18. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    SciTech Connect

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This work also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.

  19. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    DOE PAGES

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This workmore » also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.« less

  20. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  1. The Acoustic Simple Harmonic Oscillator: Experimental Verification and Applications

    NASA Astrophysics Data System (ADS)

    Matteson, Sam

    2009-04-01

    In his famous volume, The Sensations of Tone, published in 1877, Hermann Helmholtz introduced a resonator that was central to his investigations of acoustics. This talk revisits the device that Helmholtz described and examines it as a manifestation of an acoustic simple harmonic oscillator (SHO). The presentation demonstrates that an enclosed volume which communicates with the outside world via a narrow tube exhibits a single strong frequency response in analogy to a mechanical SHO, along with weaker resonances of the air in the short pipe that comprises the ``neck.'' The investigations, furthermore, report results of a straightforward experiment that confirms the SHO model (with damping) and that is very accessible to undergraduate students using inexpensive equipment and internet-obtainable freeware. The current work also extends the analysis to include applications of the Helmholtz Resonator to several folk instruments, namely, the ocarina, whistling, and the ``bottle band.''

  2. On the dynamics and acoustics of cloud cavitation on an oscillating hydrofoil

    SciTech Connect

    McKenney, E.A.; Brennen, C.E.

    1994-12-31

    Observations have been made of the growth and collapse of surface and cloud cavitation on a finite aspect ratio hydrofoil oscillating in pitch. The cavitation was recorded using both still and high-speed motion picture photography, and the variations with cavitation number and reduced frequency of oscillation were investigated. The noise generated by the cavity collapse was also measured and analyzed. The acoustic signals associated with individual cavity collapse events have been synchronized with the motion pictures, providing insights into the correspondence between the flow structures involved in the cavity collapse process and the sound generated by them.

  3. Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, R. J.; Hartwig, J. W.

    2014-01-01

    Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.

  4. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Vargas, Magda B.

    2013-01-01

    Subscale rocket acoustic data is used to predict acoustic environments for full scale rockets. Over the last several years acoustic data has been collected during horizontal tests of solid rocket motors. Space Launch System (SLS) Scale Model Acoustic Test (SMAT) was designed to evaluate the acoustics of the SLS vehicle including the liquid engines and solid rocket boosters. SMAT is comprised of liquid thrusters scalable to the Space Shuttle Main engines (SSME) and Rocket Assisted Take Off (RATO) motors scalable to the 5-segment Reusable Solid Rocket Motor (RSTMV). Horizontal testing of the liquid thrusters provided an opportunity to collect acoustic data from liquid thrusters to characterize the acoustic environments. Acoustic data was collected during the horizontal firings of a single thruster and a 4-thruster (Quad) configuration. Presentation scope. Discuss the results of the single and 4-thruster acoustic measurements. Compare the measured acoustic levels of the liquid thrusters to the Solid Rocket Test Motor V - Nozzle 2 (SRTMV-N2).

  5. MASS-DEPENDENT BARYON ACOUSTIC OSCILLATION SIGNAL AND HALO BIAS

    SciTech Connect

    Wang Qiao; Zhan Hu

    2013-05-10

    We characterize the baryon acoustic oscillations (BAO) feature in halo two-point statistics using N-body simulations. We find that nonlinear damping of the BAO signal is less severe for halos in the mass range we investigate than for dark matter. The amount of damping depends weakly on the halo mass. The correlation functions show a mass-dependent drop of the halo clustering bias below roughly 90 h {sup -1} Mpc, which coincides with the scale of the BAO trough. The drop of bias is 4% for halos with mass M > 10{sup 14} h {sup -1} M{sub Sun} and reduces to roughly 2% for halos with mass M > 10{sup 13} h {sup -1} M{sub Sun }. In contrast, halo biases in simulations without BAO change more smoothly around 90 h {sup -1} Mpc. In Fourier space, the bias of M > 10{sup 14} h {sup -1} M{sub Sun} halos decreases smoothly by 11% from wavenumber k = 0.012 h Mpc{sup -1} to 0.2 h Mpc{sup -1}, whereas that of M > 10{sup 13} h {sup -1} M{sub Sun} halos decreases by less than 4% over the same range. By comparing the halo biases in pairs of otherwise identical simulations, one with and the other without BAO, we also observe a modulation of the halo bias. These results suggest that precise calibrations of the mass-dependent BAO signal and scale-dependent bias on large scales would be needed for interpreting precise measurements of the two-point statistics of clusters or massive galaxies in the future.

  6. Measuring neutrino oscillation parameters using $\

    SciTech Connect

    Backhouse, Christopher James

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0.11

  7. Investigation of micromixing by acoustically oscillated sharp-edges.

    PubMed

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-03-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel.

  8. Investigation of micromixing by acoustically oscillated sharp-edges

    PubMed Central

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-01-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel. PMID:27158292

  9. Surface acoustic BLOCH oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling in a solid.

    PubMed

    de Lima, M M; Kosevich, Yu A; Santos, P V; Cantarero, A

    2010-04-23

    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.

  10. Acoustic measurements of articulator motions.

    PubMed

    Schroeder, M R; Strube, H W

    1979-01-01

    Methods for estimating articulatory data from acoustic measurements are reviewed. First, relations between the vocal-tract area function and formant or impedance data are pointed out. Then the possibility of determining a (discretized) area function from the speech signal itself is considered. Finally, we look at the estimation of certain articulatory parameters rather than the area function. By using a regression method, such parameters can even be estimated independently of any vocal-tract model. Results for real-speech data are given.

  11. Acoustic Oscillations in Main-Sequence Stars: HD155543

    NASA Astrophysics Data System (ADS)

    Belmonte, J. A.; Pérez Hernández, F.; Roca Cortés, T.

    High-speed photometric techniques have been found useful as a way to study the acoustic mode signature in low main sequence stars. In this work, the discovery of solar-like oscillations associated to the presence of acoustic modes of pulsation in the F2V star HD155543, located outside of the instability strip, is reported. This finding has been obtained through an analysis of a long series of data (184 hours) obtained in 20 nights of observation with two twin three channel photometers attached to two 1.5 m telescopes sited at two observatories, simultaneously: Teide (OT) at Tenerife (Spain) and San Pedro Mártir (SPM) at Baja California Norte (Mexico). The major results yielded have been: the range of frequencies where p-modes signal is present (1 to 3 mHz); an upper limit of 20 µmag for the amplitude of the modes; the mean spacing between modes of equal degree l and consecutive order n, v o = 97.3 ± 0.6 µHz and two possible values of D o, 1.4 or 1.8 µHz. The values of these parameters agree, within the resolution, with those yielded by standard computed models of main sequence stars compatible with the luminosity and effective temperature already known for HD155543. These results open new perspectives for astero-seismology in the near future.

  12. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  13. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding.

    PubMed

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  14. Effects of acoustic wave resonance oscillation on immobilized enzyme

    NASA Astrophysics Data System (ADS)

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-03-01

    In aiming at developing a new method to artificially activate enzyme catalysts immobilized on surface, the effects of resonance oscillation of bulk acoustic waves were studied. Glucose oxidase (GOD) was immobilized by a covalent coupling method on a ferroelectric lead zirconate titanate (PZT) device that was able to generate thickness-extensional resonance oscillation (TERO). Glucose oxidation by the GOD enzyme was studied in a microreactor. The generation of TERO immediately increased the catalytic activity of immobilized GOD by a factor of 2-3. With turn-off of TERO, no significant activity decrease occurred, and 80-90% of the enhanced activity was maintained while the reaction proceeded. The almost complete reversion of the activity to the original low level before TERO generation was observed when the immobilized GOD was exposed to a glucose substrate-free solution. These results indicated that the presence of glucose substrate was essential for TERO-induced GOD activation and preservation of the increased activity level. The influences of reaction temperature, glucose concentration, pH, and rf electric power on the TERO activation showed that TERO strengthened the interactions of the immobilized enzyme with glucose substrate and hence promoted the formation of an activation complex.

  15. Acoustic Measurements of Small Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Rocket acoustic noise can induce loads and vibration on the vehicle as well as the surrounding structures. Models have been developed to predict these acoustic loads based on scaling existing solid rocket motor data. The NASA Marshall Space Flight Center acoustics team has measured several small solid rocket motors (thrust below 150,000 lbf) to anchor prediction models. This data will provide NASA the capability to predict the acoustic environments and consequent vibro-acoustic response of larger rockets (thrust above 1,000,000 lbf) such as those planned for the NASA Constellation program. This paper presents the methods used to measure acoustic data during the static firing of small solid rocket motors and the trends found in the data.

  16. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Zhang, Yuning; Li, Shengcai

    2017-03-01

    The multi-frequency acoustic excitation has been employed to enhance the effects of oscillating bubbles in sonochemistry for many years. In the present paper, nonlinear dynamic oscillations of bubble under dual-frequency acoustic excitation are numerically investigated within a broad range of parameters. By investigating the power spectra and the response curves of oscillating bubbles, two unique features of bubble oscillations under dual-frequency excitation (termed as "combination resonance" and "simultaneous resonance") are revealed and discussed. Specifically, the amplitudes of the combination resonances are quantitatively compared with those of other traditional resonances (e.g. main resonances, harmonics). The influences of several paramount parameters (e.g., the bubble radius, the acoustic pressure amplitude, the energy allocation between two component waves) on nonlinear bubble oscillations are demonstrated.

  17. Acoustic oscillations and elastic moduli of single gold nanorods.

    PubMed

    Zijlstra, Peter; Tchebotareva, Anna L; Chon, James W M; Gu, Min; Orrit, Michel

    2008-10-01

    We present the first acoustic vibration measurements of single gold nanorods with well-characterized dimensions and crystal structure. The nanorods have an average size of 90 nm x 30 nm and display two vibration modes, the breathing mode and the extensional mode. Correlation between the dimensions obtained from electron microscope images and the vibrational frequencies of the same particle allows us to determine the elastic moduli for each individual nanorod. Contrary to previous reports on ensembles of gold nanorods, we find that the single particle elastic moduli agree well with bulk values.

  18. Baryon acoustic oscillations from the SDSS DR10 galaxies angular correlation function

    NASA Astrophysics Data System (ADS)

    Carvalho, G. C.; Bernui, A.; Benetti, M.; Carvalho, J. C.; Alcaniz, J. S.

    2016-01-01

    The 2-point angular correlation function w (θ ) (2PACF), where θ is the angular separation between pairs of galaxies, provides the transversal baryon acoustic oscillation (BAO) signal almost model independently. In this paper we use 409 337 luminous red galaxies in the redshift range z =[0.440 ,0.555 ] obtained from the tenth data release of the Sloan Digital Sky Survey (SDSS DR10) to estimate θBAO(z ) from the 2PACF at six redshift shells. Since noise and systematics can hide the BAO signature in the w -θ plane, we also discuss some criteria to localize the acoustic bump. We identify two sources of model dependence in the analysis, namely, the value of the acoustic scale from cosmic microwave background (CMB) measurements and the correction in the θBAO(z ) position due to projection effects. Constraints on the dark energy equation-of-state parameter w (z ) from the θBAO(z ) diagram are derived, as well as from a joint analysis with current CMB measurements. We find that the standard Λ CDM model as well as some of its extensions are in good agreement with these θBAO(z ) measurements.

  19. Acoustic measurement of the surface tension of levitated drops

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Marston, P. L.; Robey, J. L.

    1988-01-01

    The measurement of the frequency of the fundamental mode of shape oscillation of acoustically levitated drops has been carried out to determine the surface tension of the drop material. Sound fields of about 20 kHz in frequency allow the suspension of drops a few millimeters in size, as well as the necessary drive for oscillations. The surface tension of water, hexadecane, silicone oil, and aqueous solutions of glycerin levitated in air has been measured, and the results have been compared with those obtained with standard ring tensiometry. The two sets of data are in good agreement, the largest discrepancy being about 10 percent. Uncertainties in the effects of the nonspherical static shape of drops levitated in the earth's gravitational field and the rotation state of the sample are the major contributors to the experimental error. A decrease of the resonance frequency of the fundamental mode indicates a soft nonlinearity as the oscillation amplitude increases.

  20. The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.

    PubMed

    Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh

    2015-07-01

    Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry.

  1. Cosmological implications of different baryon acoustic oscillation data

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Hu, YaZhou; Li, Miao

    2017-04-01

    In this work, we explore the cosmological implications of different baryon acoustic oscillation (BAO) data, including the BAO data extracted by using the spherically averaged one-dimensional galaxy clustering (GC) statistics (hereafter BAO1) and the BAO data obtained by using the anisotropic two-dimensional GC statistics (hereafter BAO2). To make a comparison, we also take into account the case without BAO data (hereafter NO BAO). Firstly, making use of these BAO data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we give the cosmological constraints of the ΛCDM, the wCDM, and the Chevallier-Polarski-Linder (CPL) model. Then, we discuss the impacts of different BAO data on cosmological consquences, including its effects on parameter space, equation of state (EoS), figure of merit (FoM), deceleration-acceleration transition redshift, Hubble parameter H( z), deceleration parameter q( z), statefinder hierarchy S 3 (1)( z), S 4 (1)( z) and cosmic age t( z). We find that: (1) NO BAO data always give a smallest fractional matter density Ω m0, a largest fractional curvature density Ωk0 and a largest Hubble constant h; in contrast, BAO1 data always give a largest Ω m0, a smallest Ω k0 and a smallest h. (2) For the wCDM and the CPL model, NO BAO data always give a largest EoS w; in contrast, BAO2 data always give a smallest w. (3) Compared with the case of BAO1, BAO2 data always give a slightly larger FoM, and thus can give a cosmological constraint with a slightly better accuracy. (4) The impacts of different BAO data on the cosmic evolution and the comic age are very small, and cannot be distinguished by using various dark energy diagnoses and the cosmic age data.

  2. Impact of Neutrino Oscillation Measurements on Theory

    SciTech Connect

    Murayama, Hitoshi

    2003-11-30

    Neutrino oscillation data had been a big surprise to theorists, and indeed they have ongoing impact on theory. I review what the impact has been, and what measurements will have critical impact on theory in the future.

  3. Measuring the acoustic response of Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Monteiro, Martín; Marti, Arturo C.; Vogt, Patrik; Kasper, Lutz; Quarthal, Dominik

    2015-04-01

    Many experiments have been proposed to investigate acoustic phenomena in college and early undergraduate levels, in particular the speed of sound,1-9 by means of different methods, such as time of flight, transit time, or resonance in tubes. In this paper we propose to measure the acoustic response curves of a glass beaker filled with different gases, used as an acoustic resonator. We show that these curves expose many interesting peaks and features, one of which matches the resonance peak predicted for a Helmholtz resonator fairly well, and gives a decent estimate for the speed of sound in some cases. The measures are obtained thanks to the capabilities of smartphones.

  4. Quantum nondemolition measurements of harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Caves, C. M.; Zimmermann, M.; Sandberg, V. D.; Drever, R. W. P.

    1978-01-01

    Measuring systems to determine the real component of the complex amplitude of a harmonic oscillator are described. This amplitude is constant in the absence of driving forces, and the uncertainty principle accounts for the fact that only the real component can be measured precisely and continuously ('quantum nondemolition measurement'). Application of the measuring systems to the detection of gravitational waves is considered.

  5. Acoustic Impedance Measurement for Underground Surfaces.

    NASA Astrophysics Data System (ADS)

    Cockcroft, Paul William

    Available from UMI in association with The British Library. Requires signed TDF. This thesis investigates the measurement of acoustic impedance for surfaces likely to be found in underground coal mines. By introducing the concepts of industrial noise, the effects of noise on the ear and relevant legislation the need for the protection of workers can be appreciated. Representative acoustic impedance values are vital as input for existing computer models that predict sound levels in various underground environments. These enable the mining engineer to predict the noise level at any point within a mine in the vicinity of noisy machinery. The concepts of acoustic intensity and acoustic impedance are investigated and different acoustic impedance measurement techniques are detailed. The possible use of either an impedance tube or an intensity meter for these kinds of measurements are suggested. The problems with acoustic intensity and acoustic impedance measurements are discussed with reference to the restraints that an underground environment imposes on any measurement technique. The impedance tube method for work in an acoustics laboratory is shown and the theory explained, accompanied by a few representative results. The use of a Metravib intensity meter in a soundproof chamber to gain impedance values is explained in detail. The accompanying software for the analysis of the two measured pressure signals is shown as well as the actual results for a variety of test surfaces. The use of a Nagra IV-SJ tape recorder is investigated to determine the effect of recording on the measurement and subsequent analysis of the input signals, particularly with reference to the phase difference introduced between the two simultaneous pressure signals. The subsequent use of a Norwegian Electronic intensity meter, including a proposal for underground work, is shown along with results for tests completed with this piece of equipment. Finally, recommendations are made on how to link up

  6. Cosmic distance-duality relation test using type Ia supernovae and the baryon acoustic oscillation

    NASA Astrophysics Data System (ADS)

    Wu, Puxun; Li, Zhengxiang; Liu, Xiaoliang; Yu, Hongwei

    2015-07-01

    A check of the validity of the distance-duality relation (DDR) is necessary since a violation of one of the assumptions underlying this relation might be possible. In this paper, we test the DDR by combining the Union2.1 type Ia supernovae (SNIa) and five angular diameter distance data from the baryonic acoustic oscillation (BAO) measurements. We find that the DDR is consistent with the observations at the 2 σ confidence level (CL) for the case of the Hubble constant h =0.7 , and the consistency is improved to be 1 σ CL when h =0.7 is replaced by the latest constraint from the Planck satellite, i.e., h =0.678 , or h is marginalized. Our results show that the BAO measurement is a very powerful tool to test the DDR. With more and more BAO data being released in the future, we are expecting a better validity check of the DDR.

  7. Prediction of thermal acoustic oscillations (TAOs) in the CLAES solid CO2/neon system

    NASA Technical Reports Server (NTRS)

    Spradley, I. E.; Yuan, S. W. K.

    1991-01-01

    Results are presented of a study initiated to investigate the possibility that the existence of thermal acoustic oscillations (TAOs) in the Cryogenic Limb Atmospheric Etalon Spectrometer (CLAES) neon plumbing system ground configuration could be the cause of higher-than-predicted heat rates measured during thermal ground testing. Tests were conducted between warm boundary temperatures ranging from 40 to 100 K, which simulated the actual test conditions of the CLAES CO2/neon system. TAOs were observed between 6 and 106 Torr, which agreed with the analytical predictions, and verified the possible existence of TAOs in the CLAES system during ground testing. The presence of TAOs was eventually confirmed in the CLAES system during a subsequent thermal test and were determined to have caused the higher heat rates measured during the prior thermal test.

  8. Long-Lived, Coherent Acoustic Phonon Oscillations in GaN Single Crystals

    SciTech Connect

    Wu, S.; Geiser, P.; Jun, J.; Karpinski, J.; Park, J.-R.; Sobolewski, R.

    2006-01-31

    We report on coherent acoustic phonon (CAP) oscillations studied in high-quality bulk GaN single crystals with a two-color femtosecond optical pump-probe technique. Using a far-above-the-band gap ultraviolet excitation (~270 nm wavelength) and a near-infrared probe beam (~810 nm wavelength), the long-lived, CAP transients were observed within a 10 ns time-delay window between the pump and probe pulses, with a dispersionless (proportional to the probe-beam wave vector) frequency of ~45 GHz. The measured CAP attenuation corresponded directly to the absorption of the probe light in bulk GaN, indicating that the actual (intrinsic) phonon-wave attenuation in our crystals was significantly smaller than the measured 65.8 cm^-1 value. The velocity of the phonon propagation was equal to the velocity of sound in GaN.

  9. Acoustic Measurements for Small Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.

  10. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations

    SciTech Connect

    Font-Ribera, Andreu; Kirkby, David; Blomqvist, Michael; Busca, Nicolas; Aubourg, Éric; Bautista, Julian; Ross, Nicholas P.; Bailey, Stephen; Beutler, Florian; Carithers, Bill; Slosar, Anže; Rich, James; Delubac, Timothée; Bhardwaj, Vaishali; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, Jon; Brownstein, Joel R.; Dawson, Kyle S.; and others

    2014-05-01

    We measure the large-scale cross-correlation of quasars with the Lyα forest absorption, using over 164,000 quasars from Data Release 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We extend the previous study of roughly 60,000 quasars from Data Release 9 to larger separations, allowing a measurement of the Baryonic Acoustic Oscillation (BAO) scale along the line of sight c/(H(z = 2.36)r{sub s}) = 9.0±0.3 and across the line of sight D{sub A}(z = 2.36)/r{sub s} = 10.8±0.4, consistent with CMB and other BAO data. Using the best fit value of the sound horizon from Planck data (r{sub s} = 147.49 Mpc), we can translate these results to a measurement of the Hubble parameter of H(z = 2.36) = 226±8 km s{sup −1} Mpc{sup −1} and of the angular diameter distance of D{sub A}(z = 2.36) = 1590±60 Mpc. The measured cross-correlation function and an update of the code to fit the BAO scale (baofit) are made publicly available.

  11. Reflectance measurement validation using acoustic horns

    PubMed Central

    Rasetshwane, Daniel M.; Neely, Stephen T.

    2015-01-01

    Variability in wideband acoustic reflectance (and absorbance) measurements adversely affects the clinical utility of reflectance for diagnosis of middle-ear disorders. A reflectance standard would encourage consistency across different measurement systems and help identify calibration related issues. Theoretical equations exist for the reflectance of finite-length exponential, conical, and parabolic acoustic horns. Reflectance measurements were repeatedly made in each of these three horn shapes and the results were compared to the corresponding theoretical reflectance. A method is described of adjusting acoustic impedance measurements to compensate for spreading of the wave front that propagates from the small diameter sound port of the probe to the larger diameter of the acoustic cavity. Agreement between measured and theoretical reflectance was less than 1 dB at most frequencies in the range from 0.2 to 10 kHz. Pearson correlation coefficients were greater than 0.95 between measured and theoretical time-domain reflectance within the flare region of the horns. The agreement suggests that the distributed reflectance of acoustic horns may be useful for validating reflectance measurements made in human ear canals; however, refinements to reflectance measurement methods may still be needed. PMID:26520306

  12. Reflectance measurement validation using acoustic horns.

    PubMed

    Rasetshwane, Daniel M; Neely, Stephen T

    2015-10-01

    Variability in wideband acoustic reflectance (and absorbance) measurements adversely affects the clinical utility of reflectance for diagnosis of middle-ear disorders. A reflectance standard would encourage consistency across different measurement systems and help identify calibration related issues. Theoretical equations exist for the reflectance of finite-length exponential, conical, and parabolic acoustic horns. Reflectance measurements were repeatedly made in each of these three horn shapes and the results were compared to the corresponding theoretical reflectance. A method is described of adjusting acoustic impedance measurements to compensate for spreading of the wave front that propagates from the small diameter sound port of the probe to the larger diameter of the acoustic cavity. Agreement between measured and theoretical reflectance was less than 1 dB at most frequencies in the range from 0.2 to 10 kHz. Pearson correlation coefficients were greater than 0.95 between measured and theoretical time-domain reflectance within the flare region of the horns. The agreement suggests that the distributed reflectance of acoustic horns may be useful for validating reflectance measurements made in human ear canals; however, refinements to reflectance measurement methods may still be needed.

  13. Constraint on the growth factor of the cosmic structure from the damping of the baryon acoustic oscillation signature

    SciTech Connect

    Nakamura, Gen; Sato, Takahiro; Yamamoto, Kazuhiro; Huetsi, Gert

    2009-12-15

    We determine a constraint on the growth factor by measuring the damping of the baryon acoustic oscillations in the matter power spectrum using the Sloan digital sky survey luminous red galaxy sample. We obtain an effective upper limit on {sigma}{sub 8}D{sub 1}(z=0.3) using the damping of the baryon acoustic oscillation signature, where {sigma}{sub 8} is the root mean square overdensity in a sphere of radius 8h{sup -1} Mpc and D{sub 1}(z) is the growth factor at redshift z. The above result assumes that other parameters are fixed and the cosmology is taken to be a spatially flat cold dark matter universe with the cosmological constant.

  14. Numerical investigation of amplitude-dependent dynamic response in acoustic metamaterials with nonlinear oscillators.

    PubMed

    Manimala, James M; Sun, C T

    2016-06-01

    The amplitude-dependent dynamic response in acoustic metamaterials having nonlinear local oscillator microstructures is studied using numerical simulations on representative discrete mass-spring models. Both cubically nonlinear hardening and softening local oscillator cases are considered. Single frequency, bi-frequency, and wave packet excitations at low and high amplitude levels were used to interrogate the models. The propagation and attenuation characteristics of harmonic waves in a tunable frequency range is found to correspond to the amplitude and nonlinearity-dependent shifts in the local resonance bandgap for such nonlinear acoustic metamaterials. A predominant shift in the propagated wave spectrum towards lower frequencies is observed. Moreover, the feasibility of amplitude and frequency-dependent selective filtering of composite signals consisting of individual frequency components which fall within propagating or attenuating regimes is demonstrated. Further enrichment of these wave manipulation mechanisms in acoustic metamaterials using different combinations of nonlinear microstructures presents device implications for acoustic filters and waveguides.

  15. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.; ,

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  16. The BOSS-WiggleZ overlap region - I. Baryon acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Blake, Chris; Koda, Jun; Marín, Felipe A.; Seo, Hee-Jong; Cuesta, Antonio J.; Schneider, Donald P.

    2016-01-01

    We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We calculate the auto-correlation and cross-correlation functions in the overlap region of the two data sets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO measurement from the cross-correlation function represents the first such detection between two different galaxy surveys. After applying density-field reconstruction we report distance-scale measurements D_V r_s^fid / r_s = (1970 ± 45, 2132 ± 65, 2100 ± 200) Mpc from CMASS, the cross-correlation and WiggleZ, respectively. The distance scales derived from the two data sets are consistent, and are also robust against switching the displacement fields used for reconstruction between the two surveys. We use correlated mock realizations to calculate the covariance between the three BAO constraints. This approach can be used to construct a correlation matrix, permitting for the first time a rigorous combination of WiggleZ and CMASS BAO measurements. Using a volume-scaling technique, our result can also be used to combine WiggleZ and future CMASS DR12 results. Finally, we show that the relative velocity effect, a possible source of systematic uncertainty for the BAO technique, is consistent with zero for our samples.

  17. Theoretical Estimation of the Acoustic Energy Generation and Absorption Caused by Jet Oscillation

    NASA Astrophysics Data System (ADS)

    Takahashi, Kin'ya; Iwagami, Sho; Kobayashi, Taizo; Takami, Toshiya

    2016-04-01

    We investigate the energy transfer between the fluid field and acoustic field caused by a jet driven by an acoustic particle velocity field across it, which is the key to understanding the aerodynamic sound generation of flue instruments, such as the recorder, flute, and organ pipe. Howe's energy corollary allows us to estimate the energy transfer between these two fields. For simplicity, we consider the situation such that a free jet is driven by a uniform acoustic particle velocity field across it. We improve the semi-empirical model of the oscillating jet, i.e., exponentially growing jet model, which has been studied in the field of musical acoustics, and introduce a polynomially growing jet model so as to apply Howe's formula to it. It is found that the relative phase between the acoustic oscillation and jet oscillation, which changes with the distance from the flue exit, determines the quantity of the energy transfer between the two fields. The acoustic energy is mainly generated in the downstream area, but it is consumed in the upstream area near the flue exit in driving the jet. This theoretical examination well explains the numerical calculation of Howe's formula for the two-dimensional flue instrument model in our previous work [http://doi.org/10.1088/0169-5983/46/6/061411, Fluid Dyn. Res. 46, 061411 (2014)] as well as the experimental result of Yoshikawa et al. [http://doi.org/10.1016/j.jsv.2012.01.026, J. Sound Vib. 331, 2558 (2012)].

  18. Drag Measurements of Porous Plate Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Wolter, John D.

    2005-01-01

    This paper presents the results of direct drag measurements on a variety of porous plate acoustic liners. The existing literature describes numerous studies of drag on porous walls with injection or suction, but relatively few of drag on porous plates with neither injection nor suction. Furthermore, the porosity of the porous plate in existing studies is much lower than typically used in acoustic liners. In the present work, the acoustic liners consisted of a perforated face sheet covering a bulk acoustic absorber material. Factors that were varied in the experiment were hole diameter, hole pattern, face sheet thickness, bulk material type, and size of the gap (if any) between the face sheet and the absorber material.

  19. Redshift weights for baryon acoustic oscillations: application to mock galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Zhu, Fangzhou; Padmanabhan, Nikhil; White, Martin; Ross, Ashley J.; Zhao, Gongbo

    2016-09-01

    Large redshift surveys capable of measuring the baryon acoustic oscillation (BAO) signal have proven to be an effective way of measuring the distance-redshift relation in cosmology. Building off the work in Zhu et al., we develop a technique to directly constrain the distance-redshift relation from BAO measurements without splitting the sample into redshift bins. We apply the redshift weighting technique in Zhu et al. to the clustering of galaxies from 1000 Quick particle mesh (QPM) mock simulations after reconstruction and achieve a 0.75 per cent measurement of the angular diameter distance DA at z = 0.64 and the same precision for Hubble parameter H at z = 0.29. These QPM mock catalogues mimic the clustering and noise level of the Baryon Oscillation Spectroscopic Survey Data Release 12 (DR12). We compress the correlation functions in the redshift direction on to a set of weighted correlation functions. These estimators give unbiased DA and H measurements across the entire redshift range of the combined sample. We demonstrate the effectiveness of redshift weighting in improving the distance and Hubble parameter estimates. Instead of measuring at a single `effective' redshift as in traditional analyses, we report our DA and H measurements at all redshifts. The measured fractional error of DA ranges from 1.53 per cent at z = 0.2 to 0.75 per cent at z = 0.64. The fractional error of H ranges from 0.75 per cent at z = 0.29 to 2.45 per cent at z = 0.7. Our measurements are consistent with a Fisher forecast to within 10-20 per cent depending on the pivot redshift. We further show the results are robust against the choice of fiducial cosmologies, galaxy bias models, and redshift-space distortions streaming parameters.

  20. Fine Structure of Solar Acoustic Oscillations Due to Rotation

    NASA Technical Reports Server (NTRS)

    Goode, P. R.; Dziembowski, W.

    1984-01-01

    The nature of the fine structure of high order, low degree five minute period solar oscillations following from various postulated forms of spherical rotation is predicted. The first and second order effects of rotation are included.

  1. THE BARYON ACOUSTIC OSCILLATION BROADBAND AND BROAD-BEAM ARRAY: DESIGN OVERVIEW AND SENSITIVITY FORECASTS

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; McQuinn, Matthew; Ali, Zaki; DeBoer, David R.; McDonald, Patrick; Aguirre, James E.; Bradley, Richard F.; Chang, Tzu-Ching; Morales, Miguel F.

    2013-03-15

    This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z {approx} 10. At z {approx} 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z {approx} 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from {approx}0.5 to 1.5.

  2. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.

    PubMed

    Doinikov, Alexander A; Combriat, Thomas; Thibault, Pierre; Marmottant, Philippe

    2016-09-01

    A theoretical model is developed for acoustic streaming generated by a cylindrical bubble confined in a fluid channel between two planar elastic walls. The bubble is assumed to undergo volume and translational oscillations. The volume oscillation is caused by an imposed acoustic pressure field and generates the bulk scattered wave in the fluid gap and Lamb-type surface waves propagating along the fluid-wall interfaces. The translational oscillation is induced by the velocity field of an external sound source such as another bubble or an oscillatory fluid flow. The acoustic streaming is assumed to result from the interaction of the volume and the translational modes of the bubble oscillations. The general solutions for the linear equations of fluid motion and the equations of acoustic streaming are calculated with no restrictions on the ratio between the viscous penetration depth and the bubble size. Approximate solutions for the limit of low viscosity are provided as well. Simulations of streamline patterns show that the geometry of the streaming resembles flows generated by a source dipole, while the vortex orientation is governed by the driving frequency, bubble size, and the distance of the bubble from the source of translational excitation. Experimental verification of the developed theory is performed using data for streaming generated by bubble pairs.

  3. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.; Combriat, Thomas; Thibault, Pierre; Marmottant, Philippe

    2016-09-01

    A theoretical model is developed for acoustic streaming generated by a cylindrical bubble confined in a fluid channel between two planar elastic walls. The bubble is assumed to undergo volume and translational oscillations. The volume oscillation is caused by an imposed acoustic pressure field and generates the bulk scattered wave in the fluid gap and Lamb-type surface waves propagating along the fluid-wall interfaces. The translational oscillation is induced by the velocity field of an external sound source such as another bubble or an oscillatory fluid flow. The acoustic streaming is assumed to result from the interaction of the volume and the translational modes of the bubble oscillations. The general solutions for the linear equations of fluid motion and the equations of acoustic streaming are calculated with no restrictions on the ratio between the viscous penetration depth and the bubble size. Approximate solutions for the limit of low viscosity are provided as well. Simulations of streamline patterns show that the geometry of the streaming resembles flows generated by a source dipole, while the vortex orientation is governed by the driving frequency, bubble size, and the distance of the bubble from the source of translational excitation. Experimental verification of the developed theory is performed using data for streaming generated by bubble pairs.

  4. Resonant mode interactions and the bifurcation of combustion-driven acoustic oscillations in resonance tubes

    SciTech Connect

    Margolis, S.B. . Combustion Research Facility)

    1994-12-01

    Acoustic oscillations in practical combustion devices such as pulse combustors and rocket motors, whether desirable or not, are properly interpreted as combustion instabilities. A nonlinear stability analysis of the corresponding fluid motions than shows that the nonsteady behavior is governed by infinitely coupled systems of nonlinear evolution equations for the amplitudes of the classical acoustic modes. However, under certain conditions, it has been conjectured that relatively low-order truncations can give qualitatively correct physical results. In the present work, one particular model of a pulse combustor is considered, and a parameter regime in the neighborhood of a primary acoustic bifurcation where either one or a pair of purely longitudinal acoustic modes achieves a positive linear growth rate is focused upon. In the first case, it is formally shown that a decoupling occurs such that a two-mode approximation consisting of the linearly unstable mode and its first resonant harmonic completely determines the dynamics of the oscillation. In the later case, it is again demonstrated that a decoupling occurs, and although mode interactions require the retention of additional modes besides the two linearly unstable modes and their first resonant harmonics, a relatively low-order dynamical system still governs the bifurcation behavior. The presence of two linearly unstable modes is then shown to lead to more complicated dynamics, including the stable secondary bifurcation of a multiperiodic acoustic oscillation from one of the single-period primary branches.

  5. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    SciTech Connect

    Bassindale, P. G.; Drinkwater, B. W.; Phillips, D. B.; Barnes, A. C.

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces are separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.

  6. How does non-linear dynamics affect the baryon acoustic oscillation?

    SciTech Connect

    Sugiyama, Naonori S.; Spergel, David N. E-mail: dns@astro.princeton.edu

    2014-02-01

    We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do not guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.

  7. Acoustic Measurement of Potato Cannon Velocity

    ERIC Educational Resources Information Center

    Courtney, Michael; Courtney, Amy

    2007-01-01

    Potato cannon velocity can be measured with a digitized microphone signal. A microphone is attached to the potato cannon muzzle, and a potato is fired at an aluminum target about 10 m away. Flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato…

  8. Acoustical measurements in ancient Roman theatres

    NASA Astrophysics Data System (ADS)

    Farnetani, Andrea; Fausti, Patrizio; Pompoli, Roberto; Prodi, Nicola

    2004-05-01

    The Greek and Roman theatres are among the most precious and spectacular items of cultural heritage in the Mediterranean countries. The theatres are famous not only for their impressive architecture, but also for the acoustic qualities. For this reason it is important to consider these theatres as an acoustical heritage and to study their sound field. Within the activities of the ERATO (identification Evaluation and Revival of the Acoustical heritage of ancient Theatres and Odea) project, acoustical measurements were taken in well-preserved ancient Roman theatres at Aspendos (Turkey) and Jerash (Jordan). Roman theatres have an impressive stage building that forms a back wall in the orchestra area, and it was found that, from the analysis of the acoustical parameters, the reverberation time (e.g., 1.7 s at middle frequencies in the theatre of Aspendos) is quite long compared not only with other open-space theatres but also with closed spaces. Contrary to modern halls the clarity is high and this fact, together with a low sound level in most of the seats, gives the sound field a unique character.

  9. Helioseismology and asteroseismology: looking for gravitational waves in acoustic oscillations

    SciTech Connect

    Lopes, Ilídio; Silk, Joseph E-mail: ilopes@uevora.pt

    2014-10-10

    Current helioseismology observations allow the determination of the frequencies and surface velocity amplitudes of solar acoustic modes with exceptionally high precision. In some cases, the frequency accuracy is better than one part in a million. We show that there is a distinct possibility that quadrupole acoustic modes of low order could be excited by gravitational waves (GWs), if the GWs have a strain amplitude in the range 10{sup –20} h {sub –20} with h {sub –20} ∼ 1 or h {sub –20} ∼ 10{sup 3}, as predicted by several types of GW sources, such as galactic ultracompact binaries or extreme mass ratio inspirals and coalescence of black holes. If the damping rate at low order is 10{sup –3}η {sub N} μHz, with η {sub N} ∼ 10{sup –3}-1, as inferred from the theory of stellar pulsations, then GW radiation will lead to a maximum rms surface velocity amplitude of quadrupole modes of the order of h{sub −20}η{sub N}{sup −1}∼ 10{sup –9}-10{sup –3} cm s{sup –1}, on the verge of what is currently detectable via helioseismology. The frequency and sensitivity range probed by helioseismological acoustic modes overlap with, and complement, the capabilities of eLISA for the brightest resolved ultracompact galactic binaries.

  10. Coherent acoustic oscillations of nanoscale Au triangles and pyramids: influence of size and substrate

    NASA Astrophysics Data System (ADS)

    Taubert, R.; Hudert, F.; Bartels, A.; Merkt, F.; Habenicht, A.; Leiderer, P.; Dekorsy, T.

    2007-10-01

    We investigate the impulsively excited acoustic dynamics of nanoscale Au triangles of different sizes and thicknesses on silicon and glass substrates. We employ high-speed asynchronous optical sampling in order to study the damping of the acoustic vibrations with high sensitivity in the time domain. From the observed damping dynamics we deduce the reflection coefficient of acoustic energy from the gold-substrate interface. The observed damping times of coherent acoustic vibrations are found to be significantly longer than expected from the acoustic impedance mismatch for an ideal gold-substrate interface, hence pointing towards a reduced coupling strength. The strength of the coupling can be determined quantitatively. For Au triangles with large lateral size-to-thickness ratio, i.e. a small aspect ratio, the acoustic dynamics is dominated by a thickness oscillation similar to that of a closed film. For triangles with large aspect ratio the coherent acoustic excitation consists of a superposition of different three-dimensional modes which exhibit different damping times.

  11. Surface Acoustic Wave Microwave Oscillator and Frequency Synthesizer.

    DTIC Science & Technology

    1980-06-01

    AD-A086 336 TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/ A /5 SURFACE ACOUSTIC WAVE MICROWA VE OSC ILLATOR AND FR EQUENCY SYNTME--ETC(U...DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703 HISAŕ 78 UNCLASSIFIED 6 URTSfaceIO A si WHS ae Micowvef scilltr nermepteOt󈧫 BEFORE COEPETINFOR RE~~~ a ...D OKUI UBRj~ ~~n SpaReT ParkWCAIO OP T05HIS A .11eu.0t13..... IINCLASSTFTF[ gCUNTY CLASSIFICATION OF THIS PAOI(Whin DEla AIRIm Fminimum frequency step

  12. Optical measurements of self-induced oscillations

    NASA Astrophysics Data System (ADS)

    Gutierrez Hernandez, David Asael; Perez Lopez, Carlos; Mendoza Santoyo, Fernando; Hernandez Montes, Ma. Socorro; Trillo Yanez, Cristina

    2011-06-01

    High speed digital holographic interferometry is used to measure the self-induced mechanical oscillations produced by frequency signals near the first natural resonance mode of a rectangular polyester membrane. The external excitation produces very low mechanical amplitude levels in the membrane. This non-invasive optical technique has high temporal and spatial resolution allowing large data acquisition and hence allowing the processing of thousands of recorded images acquired in a CMOS camera set at 5000 frames per second (fps).

  13. An Expendable Source for Measuring Shallow Water Acoustic Propagation and Geo-Acoustic Bottom Properties

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. An Expendable Source for Measuring Shallow Water Acoustic ...Propagation and Geo- Acoustic Bottom Properties Harry A DeFerrari RSMAS – University of Miami 4600 Rickenbacker Causeway Miami FL. 33149...broadband source is being developed that transmits high gain m-sequence to clandestinly measure pulse response of shallow water acoustic propagation

  14. Measuring Antineutrino Oscillations with the MINOS Experiment

    SciTech Connect

    Evans, Justin John

    2008-09-01

    MINOS is a long baseline neutrino oscillation experiment. A manmade beam of predominantly muon neutrinos is detected both 1 km and 735 km from the production point by two functionally identical detectors. A comparison of the energy spectra measured by the two detectors shows the energy-dependent disappearance of muon neutrinos characteristic of oscillations and allows a measurement of the parameters governing the oscillations. This thesis presents work leading to measurements of disappearance in the 6% $\\bar{v}$μ background in that beam. A calibration is developed to correct for time-dependent changes in the responses of both detectors, reducing the corresponding uncertainty on hadronic energy measurements from 1.8% to 0.4% in the near detector and from 0.8% to 0.4% in the far detector. A method of selecting charged current $\\bar{v}$μ events is developed, with purities (efficiencies) of 96.5% (74.4%) at the near detector, and 98.8% (70.9%) at the far detector in the region below 10 GeV reconstructed antineutrino energy. A method of using the measured near detector neutrino energy spectrum to predict that expected at the far detector is discussed, and developed for use in the $\\bar{v}$μ analysis. Sources of systematic uncertainty contributing to the oscillation measurements are discussed. In the far detector, 32 charged current $\\bar{v}$μ events are observed below a reconstructed energy of 30 GeV, compared to an expectation of 47.8 for Δ$\\bar{m}$atm2 = Δ$\\bar{m}$atm2, sin2(2$\\bar{θ}$23) = sin2(2θ23). This deficit, in such a low-statistics sample, makes the result difficult to interpret in the context of an oscillation parameter measurement. Possible sources for the discrepancy are discussed, concluding that considerably more data are required for a definitive solution. Running MINOS with a dedicated $\\bar

  15. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P. Oshkai; M. Geveci; D. Rockwell; M. Pollack

    2002-12-12

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of,these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  16. Shallow Bulk Acoustic Wave (SBAW) Devices and Oscillators.

    DTIC Science & Technology

    1982-11-01

    millimeter adapter for the automatic network analyzer. The two phase-locked sources would be implemented as SBAW phase-locked oscillators at 7 GHz, followed ...GHz device was designed with the parameters shown in Fig. 4-18s to be replicated as devices using a Shipley resist on AT quartz, followed by ion milling...Width 0.4 um Aperture Width 100 x Number of Fingers/Transducer 1001 Center-to-Center Separation of Transducers 1000 1m Distance Between Transducers 200

  17. KamLAND's precision neutrino oscillation measurements

    NASA Astrophysics Data System (ADS)

    Decowski, M. P.

    2016-07-01

    The KamLAND experiment started operation in the Spring of 2002 and is operational to this day. The experiment observes signals from electron antineutrinos from distant nuclear reactors. The program, spanning more than a decade, allowed the determination of LMA-MSW as the solution to the solar neutrino transformation results (under the assumption of CPT invariance) and the measurement of various neutrino oscillation parameters. In particular, the solar mass-splitting Δ m212 was determined to high precision. Besides the study of neutrino oscillation, KamLAND started the investigation of geologically produced antineutrinos (geo-ν‾e). The collaboration also reported on a variety of other topics related to particle and astroparticle physics.

  18. Oscillating bubble as a sensor of low frequency electro-acoustic signals in electrolytes.

    PubMed

    Tankovsky, N; Baerner, K; Barey, Dooa Abdel

    2006-08-16

    Small air-bubble deformations, caused by electro-acoustic signals generated in electrolytic solutions have been detected by angle-modulation of a refracted He-Ne laser beam. The observed electromechanical resonance at low frequency, below 100 Hz, has proved to be directly related to the oscillations of characteristic ion-doped water structures when driven by an external electric field. The presence of structure-breaking or structure-making ions modifies the water structure, which varies the mechanical losses of the oscillating system and can be registered as changes in the width of the observed resonance curves.

  19. Measuring Acoustic Noise around Kahoolawe Island.

    DTIC Science & Technology

    1981-10-01

    NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CALIFORNIA 92152 C y 2 .V ANAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152 AN ACTIV IT Y OF THE NAVAL... Ocean Systems Center (NOSC), Code 512, on NSAP Project TH-1 -80, "Measurement of Acoustic Noise Around Kahoolawe". CDR J. W. Carlmark, USN, COMTHIRDFLT N...Bioacoustics & Bionics Division Biosciences Department ,or -.. .- ?---1 1 : ’" " "’ .... .-j UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data

  20. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    SciTech Connect

    Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.

  1. FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation

    NASA Astrophysics Data System (ADS)

    Švancara, Pavel; Horáček, J.; Hrůza, V.

    The flow induced self-oscillation of the human vocal folds in interaction with acoustic processes in the simplified vocal tract model was explored by three-dimensional (3D) finite element (FE) model. Developed FE model includes vocal folds pretension before phonation, large deformations of the vocal fold tissue, vocal folds contact, fluid-structure interaction, morphing the fluid mesh according the vocal folds motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. Iterative partitioned approach is used for modelling the fluid-structure interaction. Computed results prove that the developed model can be used for simulation of the vocal folds self-oscillation and resulting acoustic waves. The developed model enables to numerically simulate an influence of some pathological changes in the vocal fold tissue on the voice production.

  2. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  3. Acoustic Doppler velocimeter-induced acoustic streaming and its implications for measurement

    NASA Astrophysics Data System (ADS)

    Poindexter, C. M.; Rusello, P. J.; Variano, E. A.

    2011-05-01

    The acoustic Doppler velocimeter (ADV) is widely used for the characterization of fluid flow. Secondary flows ("acoustic streaming") generated by the ADV's acoustic pulses may affect the accuracy of measurements in experiments with small velocities. We assessed the impact of acoustic streaming on flow measurement using particle image velocimetry. The probes of two different ADVs were successively mounted in a tank of quiescent water. The probes' ultrasound emitters were aligned with a laser light sheet. Observed flow was primarily in the axial direction, accelerating from the ultrasound emitter and peaking within centimeters of the velocimeter sampling volume before dropping off. We measured the dependence of acoustic streaming velocity on ADV configuration, finding that different settings induce streaming ranging from negligible to more than 2.0 cm s-1. From these results, we describe cases where acoustic streaming affects velocity measurements and also cases where ADVs accurately measure their own acoustic streaming.

  4. The effect of Jupiter oscillations on Juno gravity measurements

    NASA Astrophysics Data System (ADS)

    Durante, Daniele; Guillot, Tristan; Iess, Luciano

    2017-01-01

    Seismology represents a unique method to probe the interiors of giant planets. Recently, Saturn's f-modes have been indirectly observed in its rings, and there is strong evidence for the detection of Jupiter global modes by means of ground-based, spatially-resolved, velocimetry measurements. We propose to exploit Juno's extremely accurate radio science data by looking at the gravity perturbations that Jupiter's acoustic modes would produce. We evaluate the perturbation to Jupiter's gravitational field using the oscillation spectrum of a polytrope with index 1 and the corresponding radial eigenfunctions. We show that Juno will be most sensitive to the fundamental mode (n = 0), unless its amplitude is smaller than 0.5 cm/s, i.e. 100 times weaker than the n ∼ 4 - 11 modes detected by spatially-resolved velocimetry. The oscillations yield contributions to Juno's measured gravitational coefficients similar to or larger than those expected from shallow zonal winds (extending to depths less than 300 km). In the case of a strong f-mode (radial velocity ∼ 30 cm/s), these contributions would become of the same order as those expected from deep zonal winds (extending to 3000 km), especially on the low degree zonal harmonics, therefore requiring a new approach to the analysis of Juno data.

  5. Measurements of acoustic sources in motion

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Norum, T. D.

    1978-01-01

    Results of the far-field pressures measured from three different types of moving sources are presented. These acoustic sources consist of a point monopole, a small model jet, and an aircraft. Results for the pressure time history produced by the point source show good agreement with those predicted analytically. Both actual and simulated forward motion of the model jet show reductions in noise levels with forward speed at all angles between the source and observer. Measurement with the aircraft over both an anechoic floor and over the ground yields a method for evaluating the transfer function for ground reflections at various angles between the moving aircraft and measurement position.

  6. Effect of acoustic radiation on the stability of spherical bubble oscillations

    NASA Astrophysics Data System (ADS)

    Gumerov, Nail A.

    1998-07-01

    A recent analysis of the stability of spherical bubble oscillations shows that the high order shape modes are parametrically unstable with respect to small but finite perturbations [Z. C. Feng and L. G. Leal, J. Fluid Mech. 266, 209 (1994)]. Using a heuristic approach it is shown here that the acoustic radiation due to the liquid compressibility plays an important role in stabilization of the high frequency modes and overall stability of the bubble spherical shape.

  7. An Acoustic Levitation Technique for the Study of Nonlinear Oscillations of Gas Bubbles in Liquids.

    DTIC Science & Technology

    1983-08-15

    alcohol and a mixture of glycerine and water (33-1/3% glycerine by volume) were the two liquids used in this research. Bubbles were levitated near the...bubble can be trapped over a - -range of positions near a pressure antinode as a result of the balancing of these two forces. * The acoustic...then used to investigate the nonlinear oscillations of the bubble over a range of sizes. The bubbles were studied in two liq- uids: isopropyl alcohol

  8. Surface Acoustic-Wave-Induced Magnetoresistance Oscillations in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Robinson, John P.; Kennett, Malcolm P.; Cooper, Nigel R.; Fal'Ko, Vladimir I.

    2004-07-01

    We study the geometrical commensurability oscillations imposed on the resistivity of 2D electrons in a perpendicular magnetic field by a propagating surface acoustic wave (SAW). We show that, for ω<ωc, this effect contains an anisotropic dynamical classical contribution increasing the resistivity and a nonequilibrium quantum contribution isotropically decreasing the resistivity, and we predict zero-resistance states associated with geometrical commensurability at large SAW amplitude.

  9. Measured oscillator strengths in singly ionized molybdenum

    NASA Astrophysics Data System (ADS)

    Mayo-García, R.; Aragón, C.; Aguilera, J. A.; Ortiz, M.

    2015-11-01

    In this article, 112 oscillator strengths from Mo II have been measured, 79 of which for the first time. The radiative parameters have been obtained by laser-induced breakdown spectroscopy (LIBS). The plasma is produced from a fused glass sample prepared from molybdenum oxide with a Mo atomic concentration of 0.1%. The plasma evolved in air at atmospheric pressure, and measurements were carried out with the following plasma parameters: an electron density of (2.5+/- 0.1)\\cdot {10}17 cm-3 and an electron temperature of 14,400+/- 200 K. In these conditions, a local thermodynamic equilibrium environment and an optically thin plasma were confirmed for the measurements. The relative intensities were placed on an absolute scale by combining branching fractions with the measured lifetimes and by comparing well-known lines using the plasma temperature. Comparisons were made to previously obtained experimental and theoretical values wherever possible.

  10. Optical measurements of auto-excited oscillations

    NASA Astrophysics Data System (ADS)

    Pérez López, Carlos; Gutiérrez Hernández, David Asael; Mendoza Santoyo, Fernando

    2009-09-01

    In this work, the measurements done, by way of digital holography, of auto-induced mechanical oscillations assumed by signals of frequency near to the first natural modal of resonance, are reported. Using a high speed digital camera, the study of a rectangular membrane under external excitation of a very low mechanical amplitude level, is done. The optical technique of high temporal and spatial resolution allows the acquisition and processing of data coming from thousands of acquired images with a relation of 5000 frames per second.

  11. Supernova and baryon acoustic oscillation constraints on (new) polynomial dark energy parametrizations: current results and forecasts

    NASA Astrophysics Data System (ADS)

    Sendra, Irene; Lazkoz, Ruth

    2012-05-01

    In this work we introduce two new polynomial parametrizations of dark energy and explore their correlation properties. The parameters to fit are the equation-of-state values at z= 0 and z= 0.5, which have naturally low correlation and have already been shown to improve the popular Chevallier-Polarski-Linder (CPL) parametrization. We test our models with low-redshift astronomical probes: type Ia supernovae and baryon acoustic oscillations (BAO), in the form of both current and synthetic data. Specifically, we present simulations of measurements of the radial and transversal BAO scales similar to those expected in a BAO high-precision spectroscopic redshift survey such as EUCLID. According to the Bayesian deviance information criterion (DIC), which penalizes large errors and correlations, we show that our models perform better than the CPL reparametrization proposed by Wang (in terms of z= 0 and z= 0.5). This is due to the combination of lower correlation and smaller relative errors. The same holds for a frequentist perspective: the figure-of-merit is larger for our parametrizations.

  12. Acoustic measuring techniques for suspended sediment

    NASA Astrophysics Data System (ADS)

    Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.

    2016-11-01

    Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.

  13. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Koroleva, I.; Manevitch, L. I.; Bergman, L. A.; Vakakis, A. F.

    2016-09-01

    We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "N L pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the

  14. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice.

    PubMed

    Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F

    2016-09-01

    We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the

  15. Baryon acoustic oscillations in 2D. II. Redshift-space halo clustering in N-body simulations

    NASA Astrophysics Data System (ADS)

    Nishimichi, Takahiro; Taruya, Atsushi

    2011-08-01

    We measure the halo power spectrum in redshift space from cosmological N-body simulations, and test the analytical models of redshift distortions particularly focusing on the scales of baryon acoustic oscillations. Remarkably, the measured halo power spectrum in redshift space exhibits a large-scale enhancement in amplitude relative to the real-space clustering, and the effect becomes significant for the massive or highly biased halo samples. These findings cannot be simply explained by the so-called streaming model frequently used in the literature. By contrast, a physically motivated perturbation theory model developed in the previous paper reproduces the halo power spectrum very well, and the model combining a simple linear scale-dependent bias can accurately characterize the clustering anisotropies of halos in two dimensions, i.e., line-of-sight and its perpendicular directions. The results highlight the significance of nonlinear coupling between density and velocity fields associated with two competing effects of redshift distortions, i.e., Kaiser and Finger-of-God effects, and a proper account of this effect would be important in accurately characterizing the baryon acoustic oscillations in two dimensions.

  16. MODEL-INDEPENDENT EVIDENCE FOR DARK ENERGY EVOLUTION FROM BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Sahni, V.; Shafieloo, A.; Starobinsky, A. A. E-mail: arman@apctp.org

    2014-10-01

    Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s{sup –1} Mpc{sup –1} at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh {sup 2} from SDSS DR9 and DR11 data, namely, Omh {sup 2} ≈ 0.122 ± 0.01, which is equivalent to Ω{sub 0m} h {sup 2} for the spatially flat ΛCDM model, is in tension with the value Ω{sub 0m} h {sup 2} = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.

  17. Model-independent Evidence for Dark Energy Evolution from Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Sahni, V.; Shafieloo, A.; Starobinsky, A. A.

    2014-10-01

    Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s-1 Mpc-1 at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh 2 from SDSS DR9 and DR11 data, namely, Omh 2 ≈ 0.122 ± 0.01, which is equivalent to Ω0m h 2 for the spatially flat ΛCDM model, is in tension with the value Ω0m h 2 = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.

  18. Baryonic acoustic oscillations from 21 cm intensity mapping: the Square Kilometre Array case

    NASA Astrophysics Data System (ADS)

    Villaescusa-Navarro, Francisco; Alonso, David; Viel, Matteo

    2017-04-01

    We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21 cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometre Array (SKA) instrument, makes it undetectable at redshifts z ≳ 1. We however demonstrate that the BAO peak can still be detected in the radial 21 cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21 cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21 cm power spectrum. We systematically investigate the signal to noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected noise levels of SKA would degrade the final BAO errors by ∼5 per cent with respect to the cosmic-variance limited case at low redshifts, but that the effect grows up to ∼65 per cent at z ∼ 2-3. Furthermore, we find that the radial BAO signature is robust against foreground systematics, and that the main effect is an increase of ∼20 per cent in the final uncertainty on the standard ruler caused by the contribution of foreground residuals as well as the reduction in sky area needed to avoid high-foreground regions. We also find that it should be possible to detect the radial BAO signature with high significance in the full redshift range. We conclude that a 21 cm experiment carried out by the SKA should be able to make direct measurements of the expansion rate H(z) with measure the expansion with competitive per cent level precision on redshifts z ≲ 2.5.

  19. Frequency-shift vibro-acoustic modulation driven by low-frequency broadband excitations in a bistable cantilever oscillator

    NASA Astrophysics Data System (ADS)

    He, Qingbo; Xu, Yanyan; Lu, Siliang; Shao, Yong

    2017-03-01

    This paper reports a frequency-shift vibro-acoustic modulation (VAM) effect in a bistable microcracked cantilever oscillator. Low-frequency broadband excitations induced a VAM effect with a shifted modulation frequency through involving a microcracked metal beam in a bistable oscillator model. We used nonlinear dynamics equations and principles to describe the mechanism of a bistable oscillator whose natural frequency varied as the oscillation amplitude increased. We demonstrated this frequency-shift VAM effect using a prototype bistable oscillator model designed to efficiently detect microcracks in solid materials via the VAM effect using ambient vibration excitations.

  20. Acoustics measurements in normal jet impingement

    NASA Technical Reports Server (NTRS)

    Kleis, S. J.

    1977-01-01

    The dependence of far field acoustic measurements for a uniform jet on nozzle to plate spacing for small dimensionless spacings (h/d - 0.75 to 3.0) was investigated. Spectra from a real time analyzer were read and processed by an HP 2116 minicomputer in on-line mode. Similar data was generated for a fully developed pipe flow exit condition jet to compare with other investigations. The data base for normal jet impingement was extended to smaller values of nozzle to plate spacing. The effects of slight noise heating (30 deg rise) of the jet on the far field noise produced by the impinging jet are demonstrated.

  1. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    PubMed Central

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-01-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process. PMID:26223474

  2. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    NASA Astrophysics Data System (ADS)

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-07-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process.

  3. The measurement of frequency and frequency stability of precision oscillators

    NASA Technical Reports Server (NTRS)

    Allan, D. W.

    1974-01-01

    The specification and performance of precision oscillators is discussed as a very important topic to the owners and users of these oscillators. This paper presents at the tutorial level some convenient methods of measuring the frequencies of precision oscillators -- giving advantages and disadvantages of these methods. Further it is shown that by processing the data from the frequency measurements in certain ways, one may be able to state more general characteristics of the oscillators being measured. The goal in this regard is to allow the comparisons of different manufacturers' specifications and more importantly to help assess whether these oscillators will meet the standard of performance the user may have in a particular application.

  4. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  5. Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators

    NASA Astrophysics Data System (ADS)

    Manimala, James Mathew

    Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation

  6. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Rianon, Nahid; Feiveson, Alan; Shackelford, Linda; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Bone Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift. The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values (less than 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  7. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Feiveson, Alan H.; Shackelford, Linda; Rianon, Nahida; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Done Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift, The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values ( < 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  8. Flight Acoustics Measurement Techniques and Applications

    NASA Technical Reports Server (NTRS)

    Preisser, J. S.; Marcolini, M. A.

    1998-01-01

    Careful consideration must be given to data acquisition and analysis techniques in the design of experiments for the measurement of noise generated by flight vehicles. Although noise measurement locations and data reduction procedures are specified for aircraft certification by FAA and ICAO directives, for example, there are virtually no established procedures for aircraft noise measurement for other purposes. To optimize the quality and quantity of information obtained in a flight acoustics experiment, microphone layout, data acquisition, and analysis must be tailored to the specific test objective. This paper will review flight acoustics technology at NASA Langley Research Center developed over the past decade. In particular, the paper will focus on flight experiments performed for three diverse objectives: (1) research applications, such as noise prediction code validation, (2) noise impact modeling, and (3) noise abatement flight procedures. To best achieve these diverse objectives, different deployments of microphone systems on the ground are required, and different data analysis techniques are needed. In all cases, accurate positioning of the aircraft synchronized in time with the data recording is necessary. However, there are some restrictions on flight operations unique to each case for the methods to properly work.

  9. Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames

    SciTech Connect

    Durox, D.; Schuller, T.; Noiray, N.; Birbaud, A.L.; Candel, S.

    2008-11-15

    Instabilities of confined combustion systems are often discussed in terms of the Rayleigh criterion, which provides a necessary condition for unstable operation and is commonly used to distinguish driving and damping regions. The analysis is also carried out in some cases by making use of an acoustic energy balance in which the Rayleigh term acts as a source. The case of unconfined flames is less well documented but of importance in practical systems used in heating and drying. This study is motivated by problems of self-sustained oscillations of radiant burners for domestic or industrial processes and of various other types of open flames. Application of the Rayleigh criterion and of the balance of acoustic energy to oscillations arising in such unconfined systems is examined. The objective is to see if the Rayleigh condition is fulfilled and to show how the different perturbed variables are linked to each other to develop an unstable oscillation. These issues are investigated by experiments in two geometries. The first case relates to a single ''V''- or ''M''-shaped flame formed by a burner behaving like a Helmholtz resonator. The second geometry features a collection of conical flames (CCF) established by a multipoint injector. This system is fed by a manifold that features a set of plane modes and resonates like an organ pipe at frequencies corresponding to odd multiples of the quarter wave. The Rayleigh criterion and a related result written in the form of an acoustic energy balance are used to define conditions of instability. A link is established between the pressure signal radiated by the burner and the total heat release rate perturbation yielding the phase lag between these two variables and providing conditions for unstable operation. Systematic experiments carried out in the two burner geometries and model predictions are in good agreement indicating that the Rayleigh source term is positive and that the criterion is well fulfilled by the wavefield

  10. Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames

    SciTech Connect

    Durox, D.; Schuller, T.; Noiray, N.; Birbaud, A.L.; Candel, S.

    2009-01-15

    Instabilities of confined combustion systems are often discussed in terms of the Rayleigh criterion, which provides a necessary condition for unstable operation and is commonly used to distinguish driving and damping regions. The analysis is also carried out in some cases by making use of an acoustic energy balance in which the Rayleigh term acts as a source. The case of unconfined flames is less well documented but of importance in practical systems used in heating and drying. This study is motivated by problems of self-sustained oscillations of radiant burners for domestic or industrial processes and of various other types of open flames. Application of the Rayleigh criterion and of the balance of acoustic energy to oscillations arising in such unconfined systems is examined. The objective is to see if the Rayleigh condition is fulfilled and to show how the different perturbed variables are linked to each other to develop an unstable oscillation. These issues are investigated by experiments in two geometries. The first case relates to a single ''V''- or ''M''-shaped flame formed by a burner behaving like a Helmholtz resonator. The second geometry features a collection of conical flames (CCF) established by a multipoint injector. This system is fed by a manifold that features a set of plane modes and resonates like an organ pipe at frequencies corresponding to odd multiples of the quarter wave. The Rayleigh criterion and a related result written in the form of an acoustic energy balance are used to define conditions of instability. A link is established between the pressure signal radiated by the burner and the total heat release rate perturbation yielding the phase lag between these two variables and providing conditions for unstable operation. Systematic experiments carried out in the two burner geometries and model predictions are in good agreement indicating that the Rayleigh source term is positive and that the criterion is well fulfilled by the wavefield

  11. Measurement of the acoustic radiation force on a sphere embedded in a soft solid

    NASA Astrophysics Data System (ADS)

    Lidon, Pierre; Villa, Louis; Taberlet, Nicolas; Manneville, Sébastien

    2017-01-01

    The acoustic radiation force exerted on a small sphere located at the focus of an ultrasonic beam is measured in a soft gel. It is proved to evolve quadratically with the local amplitude of the acoustic field. Strong oscillations of the local pressure are observed and attributed to an acoustic Fabry-Pérot effect between the ultrasonic emitter and the sphere. Taking this effect into account with a simple model, a quantitative link between the radiation force and the acoustic pressure is proposed and compared to theoretical predictions in the absence of dissipation. The discrepancy between experiment and theory suggests that dissipative effects should be taken into account for fully modeling the observations.

  12. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1982-01-01

    Very little information is available concerning acoustic velocity meter (AVM) operation, performance, and limitations. This report provides a better understanding about the application of AVM instrumentation to streamflow measurment. Operational U.S. Geological Survey systems have proven that AVM equipment is accurate and dependable. AVM equipment has no practical upper limit of measureable velocity if sonic transducers are securely placed and adequately protected, and will measure velocitites as low as 0.1 meter per second which is normally less than the threshold level for mechanical or head-loss meters. In some situations the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Smaller, less-expensive, more conveniently operable microprocessor equipment is now available which should increase use of AVM systems in streamflow applications. (USGS)

  13. Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing.

    PubMed

    Doelling, Keith B; Arnal, Luc H; Ghitza, Oded; Poeppel, David

    2014-01-15

    A growing body of research suggests that intrinsic neuronal slow (<10 Hz) oscillations in auditory cortex appear to track incoming speech and other spectro-temporally complex auditory signals. Within this framework, several recent studies have identified critical-band temporal envelopes as the specific acoustic feature being reflected by the phase of these oscillations. However, how this alignment between speech acoustics and neural oscillations might underpin intelligibility is unclear. Here we test the hypothesis that the 'sharpness' of temporal fluctuations in the critical band envelope acts as a temporal cue to speech syllabic rate, driving delta-theta rhythms to track the stimulus and facilitate intelligibility. We interpret our findings as evidence that sharp events in the stimulus cause cortical rhythms to re-align and parse the stimulus into syllable-sized chunks for further decoding. Using magnetoencephalographic recordings, we show that by removing temporal fluctuations that occur at the syllabic rate, envelope-tracking activity is reduced. By artificially reinstating these temporal fluctuations, envelope-tracking activity is regained. These changes in tracking correlate with intelligibility of the stimulus. Together, the results suggest that the sharpness of fluctuations in the stimulus, as reflected in the cochlear output, drive oscillatory activity to track and entrain to the stimulus, at its syllabic rate. This process likely facilitates parsing of the stimulus into meaningful chunks appropriate for subsequent decoding, enhancing perception and intelligibility.

  14. Suppressed Alpha Oscillations Predict Intelligibility of Speech and its Acoustic Details

    PubMed Central

    Weisz, Nathan

    2012-01-01

    Modulations of human alpha oscillations (8–13 Hz) accompany many cognitive processes, but their functional role in auditory perception has proven elusive: Do oscillatory dynamics of alpha reflect acoustic details of the speech signal and are they indicative of comprehension success? Acoustically presented words were degraded in acoustic envelope and spectrum in an orthogonal design, and electroencephalogram responses in the frequency domain were analyzed in 24 participants, who rated word comprehensibility after each trial. First, the alpha power suppression during and after a degraded word depended monotonically on spectral and, to a lesser extent, envelope detail. The magnitude of this alpha suppression exhibited an additional and independent influence on later comprehension ratings. Second, source localization of alpha suppression yielded superior parietal, prefrontal, as well as anterior temporal brain areas. Third, multivariate classification of the time–frequency pattern across participants showed that patterns of late posterior alpha power allowed best for above-chance classification of word intelligibility. Results suggest that both magnitude and topography of late alpha suppression in response to single words can indicate a listener's sensitivity to acoustic features and the ability to comprehend speech under adverse listening conditions. PMID:22100354

  15. NONLINEAR BEHAVIOR OF BARYON ACOUSTIC OSCILLATIONS IN REDSHIFT SPACE FROM THE ZEL'DOVICH APPROXIMATION

    SciTech Connect

    McCullagh, Nuala; Szalay, Alexander S.

    2015-01-10

    Baryon acoustic oscillations (BAO) are a powerful probe of the expansion history of the universe, which can tell us about the nature of dark energy. In order to accurately characterize the dark energy equation of state using BAO, we must understand the effects of both nonlinearities and redshift space distortions on the location and shape of the acoustic peak. In a previous paper, we introduced a novel approach to second order perturbation theory in configuration space using the Zel'dovich approximation, and presented a simple result for the first nonlinear term of the correlation function. In this paper, we extend this approach to redshift space. We show how to perform the computation and present the analytic result for the first nonlinear term in the correlation function. Finally, we validate our result through comparison with numerical simulations.

  16. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P Oshkai; M Geveci; D Rockwell; M Pollack

    2004-05-24

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe, which give rise to flow tones, are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  17. Acoustic Measurements of Rectangular Nozzles With Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2012-01-01

    A series of convergent rectangular nozzles of aspect ratios 2:1, 4:1, and 8:1 were constructed with uniform exit velocity profiles. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. Far-field acoustic measurements were made and analyzed, and the results presented. The impact of aspect ratio on jet noise was similar to that of enhanced mixing devices: reduction in aft, peak frequency noise with an increase in broadside, high frequency noise. Azimuthally, it was found that rectangular jets produced more noise directed away from their wide sides than from their narrow sides. The azimuthal dependence decreased at aft angles where noise decreased. The effect of temperature, keeping acoustic Mach number constant, was minimal. Since most installations would have the observer on the wide size of the nozzle, the increased high frequency noise has a deleterious impact on the observer. Extending one wide side of the rectangular nozzle, evocative of an aft deck in an installed propulsion system, increased the noise of the jet with increasing length. The impact of both aspect ratio and bevel length were relatively well behaved, allowing a simple bilinear model to be constructed relative to a simple round jet.

  18. Acoustic Measurements of Rectangular Nozzles with Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2012-01-01

    A series of convergent rectangular nozzles of aspect ratios 2:1, 4:1, and 8:1 were constructed with uniform exit velocity profiles. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. Far-field acoustic measurements were made and analyzed, and the results presented. The impact of aspect ratio on jet noise was similar to that of enhanced mixing devices: reduction in aft, peak frequency noise with an increase in broadside, high frequency noise. Azimuthally, it was found that rectangular jets produced more noise directed away from their wide sides than from their narrow sides. The azimuthal dependence decreased at aft angles where noise decreased. The effect of temperature, keeping acoustic Mach number constant, was minimal. Since most installations would have the observer on the wide size of the nozzle, the increased high frequency noise has a deleterious impact on the observer. Extending one wide side of the rectangular nozzle, evocative of an aft deck in an installed propulsion system, increased the noise of the jet with increasing length. The impact of both aspect ratio and bevel length were relatively well behaved, allowing a simple bilinear model to be constructed relative to a simple round jet.

  19. Resin characterization by electro-acoustic measurements.

    PubMed

    Müller, Egbert; Mann, Christian

    2007-03-09

    The electro-acoustic effects, namely the ion vibration potential (IVP) and the colloidal vibration current (CVI), colloidal vibration potential (CVP) first described by P. Debye [P. Debye, J. Chem. Phys. 1 (1933) 13], are a result of charge separation of bound or free ions at different degrees by ultrasonic waves. Today commercial instruments are available to investigate liquid homogeneous and heterogeneous systems. In the present paper the application of this technique for the characterization of salts, protein solutions and resins for biochromatography is shown and valuable information about resins can be derived in a short time. Various resins were investigated with the following results: (1) the CVI magnitude is dependent of several parameters (such as particle size distribution, volume fraction, density difference); (2) the CVI is influenced by the surface modification of the resins. Polymeric modifications decrease the value of CVI. The CVI is generally lower for high capacity resins; (3) the measurement of the electro-acoustic effects can be used to detect small changes in resins. The CVI is dependent of the amount of adsorbed protein in "native" and denatured state.

  20. Acoustic oscillation phenomena in low-velocity steady flow with heating

    NASA Technical Reports Server (NTRS)

    Liburdy, J. A.; Wofford, J. L.

    1980-01-01

    Thermally driven acoustic oscillations in low-velocity mean flows are investigated. A criterion is developed for marginal stability with respect to a fluid temperature increase; a cylindrical geometry is chosen for flow in a constant-area tube where any circumferential variation is neglected. The range of parameters of concern is limited to conditions resembling cryogenic storage designs proposed for long-term space missions; helium was chosen as the fluid in order to allow comparison with zero flow rate results in half-open tubes.

  1. A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles

    NASA Astrophysics Data System (ADS)

    Huang, Po-Hsun; Ian Lapsley, Michael; Ahmed, Daniel; Chen, Yuchao; Wang, Lin; Jun Huang, Tony

    2012-10-01

    Merging acoustofluidic mixing with optofluidic integration, we have demonstrated a single-layer, planar, optofluidic switch that is driven by acoustically excited oscillating microbubbles. The device was found to have a switching speed of 5 Hz, an insertion loss of 6.02 dB, and an extinction ratio of 28.48 dB. With its simplicity, low fluid consumption, and compatibility with other microfluidic devices, our design could lead to a line of inexpensive, yet effective optical switches for many lab-on-a-chip applications.

  2. Measurement of acoustical characteristics of mosques in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abdou, Adel A.

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.

  3. Measurement of acoustical characteristics of mosques in Saudi Arabia.

    PubMed

    Abdou, Adel A

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.

  4. EFFECT OF MODEL-DEPENDENT COVARIANCE MATRIX FOR STUDYING BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Labatie, A.; Starck, J. L.

    2012-12-01

    Large-scale structures in the universe are a powerful tool to test cosmological models and constrain cosmological parameters. A particular feature of interest comes from baryon acoustic oscillations (BAOs), which are sound waves traveling in the hot plasma of the early universe that stopped at the recombination time. This feature can be observed as a localized bump in the correlation function at the scale of the sound horizon r{sub s} . As such, it provides a standard ruler and a lot of constraining power in the correlation function analysis of galaxy surveys. Moreover, the detection of BAOs at the expected scale gives strong support to cosmological models. Both of these studies (BAO detection and parameter constraints) rely on a statistical modeling of the measured correlation function {xi}-circumflex. Usually {xi}-circumflex is assumed to be Gaussian, with a mean {xi}{sub {theta}} depending on the cosmological model and a covariance matrix C generally approximated as a constant (i.e., independent of the model). In this article, we study whether a realistic model-dependent C {sub {theta}} changes the results of cosmological parameter constraints compared to the approximation of a constant covariance matrix C. For this purpose, we use a new procedure to generate lognormal realizations of the luminous red galaxy sample of the Sloan Digital Sky Survey Data Release 7 to obtain a model-dependent C {sub {theta}} in a reasonable time. The approximation of C {sub {theta}} as a constant creates small changes in the cosmological parameter constraints on our sample. We quantify this modeling error using a lot of simulations and find that it only has a marginal influence on cosmological parameter constraints for current and next-generation galaxy surveys. It can be approximately taken into account by extending the 1{sigma} intervals by a factor Almost-Equal-To 1.3.

  5. Measuring aeolian sand transport using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Poortinga, Ate; van Rheenen, Hans; Ellis, Jean T.; Sherman, Douglas J.

    2015-03-01

    Acoustic sensors are frequently used to measure aeolian saltation. Different approaches are used to process the signals from these instruments. The goal of this paper is to describe and discuss a method to measure aeolian saltation with acoustic sensors. In a laboratory experiment, we measured the output from an advanced signal processing scheme on the circuit board of the saltiphone. We use a software implementation of this processing scheme to re-analyse data from four miniphones obtained during a field experiment. It is shown that a set of filters remove background noise outside the frequency spectrum of aeolian saltation (at 8 kHz), whereas signals within this frequency spectrum are amplified. The resulting analogue signal is a proxy of the energy. Using an AC pulse convertor, this signal can be converted into a digital and analogue count signal or an analogue energy signal, using a rectifier and integrator. Spatio-temporal correlation between field deployed miniphones increases by using longer integration times for signal processing. To quantify aeolian grain impact, it is suggested to use the analogue energy output, as this mode is able to detect changes in frequency and amplitude. The analogue and digital count signals are able to detect an increase in frequency, but are not able to detect an increase in signal amplitude. We propose a two-stage calibration scheme consisting of (1) a factory calibration, to set the frequency spectrum of the sensor and (2) a standardized drop-test conducted before and after the experiment to evaluate the response of the sensor.

  6. Solar cycle variations in the powers and damping rates of low-degree solar acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Broomhall, A.-M.; Pugh, C. E.; Nakariakov, V. M.

    2015-12-01

    Helioseismology uses the Sun's natural resonant oscillations to study the solar interior. The properties of the solar oscillations are sensitive to the Sun'2019;s magnetic activity cycle. Here we examine variations in the powers, damping rates, and energy supply rates of the most prominent acoustic oscillations in unresolved, Sun-as-a-star data, obtained by the Birmingham Solar Oscillations Network (BiSON) during solar cycles 22, 23, and the first half of 24. The variations in the helioseismic parameters are compared to the 10.7 cm flux, a well-known global proxy of solar activity. As expected the oscillations are most heavily damped and the mode powers are at a minimum at solar activity maximum. The 10.7 cm flux was linearly regressed using the fractional variations of damping rates and powers observed during cycle 23. In general, good agreement is found between the damping rates and the 10.7 cm flux. However, the linearly regressed 10.7 cm flux and fractional variation in powers diverge in cycles 22 and 24, indicating that the relationship between the mode powers and the 10.7 cm flux is not consistent from one cycle to the next. The energy supply rate of the oscillations, which is usually approximately constant, also decreases at this time. We have determined that this discrepancy is not because of the first-order bias introduced by an increase in the level of background noise or gaps in the data. Although we cannot categorically rule out an instrumental origin, the divergence observed in cycle 24, when the data were of high quality and the data coverage was over 80%, raises the possibility that the effect may be solar in origin.

  7. Asymptotic solutions for shocked resonant acoustic oscillations between concentric spheres and coaxial cylinders

    NASA Astrophysics Data System (ADS)

    Seymour, Brian R.; Mortell, Michael P.; Amundsen, David E.

    2012-02-01

    For resonant oscillations of a gas in a straight tube with a closed end, shocks form and all harmonics are generated, see Chester ["Resonant oscillations in a closed tube," J. Fluid Mech. 18, 44 (1964)], 10.1017/S0022112064000040. When the gas is confined between two concentric spheres or coaxial cylinders, the radially symmetric resonant oscillations may be continuous or shocked. For a fixed small Mach number of the input, the flow is continuous for sufficiently small L, defined as the ratio of the inner radius to the difference of the radii, see Seymour et al. ["Resonant oscillations of an inhomogeneous gas between concentric spheres," Proc. R. Soc. London, Ser. A 467, 2149 (2011)], 10.1098/rspa.2010.0576. However, shocks appear in the resonant flow for either larger values of L or larger input Mach number. A nonlinear geometric acoustics approximation is used to analyse the shocked motion of the gas when L ≫ 1. This approximation and the exact numerical solution are compared for the shocked wave profiles and shock strengths, and the approximation is valid for surprisingly small values of L. The flow in the plane wave case for a straight tube is recovered in the limit L → ∞ for both the spherical and cylindrical cases, providing a check on the results. The shocked solutions given here complement those continuous solutions previously derived from a dominant first mode approximation.

  8. Acoustic saturation in bubbly cavitating flow adjacent to an oscillating wall

    NASA Astrophysics Data System (ADS)

    Colonius, T.; d'Auria, F.; Brennen, C. E.

    2000-11-01

    Bubbly cavitating flow generated by the normal oscillation of a wall bounding a semi-infinite domain of fluid is computed using a continuum two-phase flow model. Bubble dynamics are computed, on the microscale, using the Rayleigh-Plesset equation. A Lagrangian finite volume scheme and implicit adaptive time marching are employed to accurately resolve bubbly shock waves and other steep gradients in the flow. The one-dimensional, unsteady computations show that when the wall oscillation frequency is much smaller than the bubble natural frequency, the power radiated away from the wall is limited by an acoustic saturation effect (the radiated power becomes independent of the amplitude of vibration), which is similar to that found in a pure gas. That is, for large enough vibration amplitude, nonlinear steepening of the generated waves leads to shocking of the wave train, and the dissipation associated with the jump conditions across each shock limits the radiated power. In the model, damping of the bubble volume oscillations is restricted to a simple "effective" viscosity. For wall oscillation frequency less than the bubble natural frequency, the saturation amplitude of the radiated field is nearly independent of any specific damping mechanism. Finally, implications for noise radiation from cavitating flows are discussed.

  9. Measuring Acoustic Nonlinearity by Collinear Mixing Waves

    NASA Astrophysics Data System (ADS)

    Liu, M.; Tang, G.; Jacobs, L. J.; Qu, J.

    2011-06-01

    It is well known that the acoustic nonlinearity parameter β is correlated to fatigue damage in metallic materials. Various methods have been developed to measure β. One of the most often used methods is the harmonic generation technique, in which β is obtained by measuring the magnitude of the second order harmonic waves. An inherent weakness of this method is the difficulty in distinguishing material nonlinearity from the nonlinearity of the measurement system. In this paper, we demonstrate the possibility of using collinear mixing waves to measure β. The wave mixing method is based on the interaction between two incident waves in a nonlinear medium. Under certain conditions, such interactions generate a third wave of different frequency. This generated third wave is also called resonant wave, because its amplitude is unbounded if the medium has no attenuation. Such resonant waves are less sensitive to the nonlinearity of the measurement system, and have the potential to identify the source location of the nonlinearity. In this work, we used a longitudinal wave and a shear wave as the incident waves. The resonant shear wave is measured experimentally on samples made of aluminum and steel, respectively. Numerical simulations of the tests were also performed using a finite difference method.

  10. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  11. Extreme low frequency acoustic measurement system

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor)

    2013-01-01

    The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.

  12. Extreme Low Frequency Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor)

    2017-01-01

    The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.

  13. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults.

    PubMed

    Papalambros, Nelly A; Santostasi, Giovanni; Malkani, Roneil G; Braun, Rosemary; Weintraub, Sandra; Paller, Ken A; Zee, Phyllis C

    2017-01-01

    Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60-84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses ("ON interval") was followed by a pause of approximately equal length ("OFF interval"). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity.

  14. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults

    PubMed Central

    Papalambros, Nelly A.; Santostasi, Giovanni; Malkani, Roneil G.; Braun, Rosemary; Weintraub, Sandra; Paller, Ken A.; Zee, Phyllis C.

    2017-01-01

    Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60–84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses (“ON interval”) was followed by a pause of approximately equal length (“OFF interval”). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity. PMID:28337134

  15. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Beutler, Florian; Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Seo, Hee-Jong; Vargas-Magaña, Mariana; Cuesta, Antonio J.; Percival, Will J.; Burden, Angela; Sánchez, Ariel G.; Grieb, Jan Niklas; Reid, Beth; Brownstein, Joel R.; Dawson, Kyle S.; Eisenstein, Daniel J.; Ho, Shirley; Kitaura, Francisco-Shu; Nichol, Robert C.; Olmstead, Matthew D.; Prada, Francisco; Rodríguez-Torres, Sergio A.; Saito, Shun; Salazar-Albornoz, Salvador; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Wang, Yuting; White, Martin; Zhao, Gong-bo

    2017-01-01

    We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 deg2, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on BAO scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

  16. Outdoor Synthetic Aperture Acoustic Ground Target Measurements

    DTIC Science & Technology

    2010-04-19

    1341 (2003). [11] C. A. Dimarzio, T. Shi, F. J. Blonigen et al., “ Laser -Induced Acoustic Landmine Detection,” The Journal Of The Acoustical Society...High Frequency A/S Coupling For Ap Buried Landmine Detection Using Laser Doppler Vibrometers,” Proc. SPIE 5415(1), 35-41 (2004). [16] Bishop, S... Dolphin Echolocation Clicks For Target Discrimination,” The Journal Of The Acoustical Society Of America 124(1), 657-666 (2008). [20] Y. Nakamura

  17. The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Davis, Tamara; Poole, Gregory B.; Parkinson, David; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J.; Li, I.-Hui; Madore, Barry; Martin, D. Christopher; Pimbblet, Kevin; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, H. K. C.

    2011-08-01

    We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z= 0.6, using the distribution of N= 132 509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. The results are mutually consistent, corresponding to a 4.0 per cent measurement of the cosmic distance-redshift relation at z= 0.6 [in terms of the acoustic parameter 'A(z)' introduced by Eisenstein et al., we find A(z= 0.6) = 0.452 ± 0.018]. Both BAOs and power spectrum shape information contribute towards these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2σ. The ratios of our distance measurements to those obtained using BAOs in the distribution of luminous red galaxies at redshifts z= 0.2 and 0.35 are consistent with a flat Λ cold dark matter model that also provides a good fit to the pattern of observed fluctuations in the cosmic microwave background radiation. The addition of the current WiggleZ data results in a ≈30 per cent improvement in the measurement accuracy of a constant equation of state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < -1/3) is required with a probability of 99.8 per cent, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ survey data set is complete.

  18. Hybrid system for magnetic and acoustic measurement.

    PubMed

    Bruno, A C; Baffa, O; Carneiro, A O

    2009-01-01

    In order to improve the spatial resolution of Biosusceptometry of Alternate Current (BAC), we are suggesting the coupling of a Doppler ultrasonic transducer with the BAC system. The Doppler transducer obtains information from the vibration of ferromagnetic particles immersed in a visco-elastic medium when it is excited by an alternating magnetic field. In this case, the same magnetic particles used as contrast for susceptometric measurement also will work as contrast for the Doppler measurement. In this work, we present the characterization of the hybrid system for susceptometric and acoustic measurements simultaneously. It was observed that the susceptometric and Doppler ultrasound signal have the same profile and maximum amplitude for frequency of magnetizing field about 200 Hz. When using ferrite particles as magnetic contrast mixed with yogurt as based material, the susceptometric and Doppler measurement have sensitivity for concentration of particles as low as 1%. The sensitivity of the Doppler is dependent of the gradient of magnetic field over the sample. In this work, the magnetic field 5 cm far from the face of the transducer was 70 microT/volts.

  19. Preliminary investigation of acoustic oscillations in an H2-O2 fired Hall generator

    NASA Technical Reports Server (NTRS)

    Phillips, B.

    1981-01-01

    Burner pressure oscillations and interelectrode voltage oscillations measured in an open-cycle supersonic flow Hall generator are presented. The ionized gas for the channel was supplied by seeding the approximately 1 lb/sec of hydrogen-oxygen combustion products with cesium. Since both the burner and the channel were located within magnetic fields exceeding 4 Tesla during operation, an infinite probe pressure measurement technique was used to measure burner pressure oscillations. Calibration of the burner pressure transducer using a resonance tube technique is presented. Evidence is presented for the existence of the first longitudinal mode of oscillations (5000 Hz) within the burner. Interelectrode voltage oscillations were simultaneously measured at two separate axial stations. The magnitude change and the phase shift between the two signals was interpreted as a decaying magnetoacoustic wave driven by the burner that propagates at local gas plus sonic velocities. The amplitude of the electrical voltage oscillations at the start of the power producing region of the channel varied with the magnetic field. This variation is compared with the results of a simple perturbation analysis. Arguments are presented for using an unsteady model for analyzing wave processes in channels.

  20. Measurement of neutrino oscillations in MACRO experiment

    NASA Technical Reports Server (NTRS)

    Musser, J.

    1985-01-01

    The possibility of investigating neutrino oscillations in the proposed MACRO experiment are considered. Its sensitivity taking into account the theoretical uncertainties coming from flux calculations, geomagnetic effects and propagation through matter, and the experimental limitations.

  1. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1983-01-01

    The acoustic velocity meter (AVM), also referred to as an ultrasonic flowmeter, has been an operational tool for the measurement of streamflow since 1965. Very little information is available concerning AVM operation, performance, and limitations. The purpose of this report is to consolidate information in such a manner as to provide a better understanding about the application of this instrumentation to streamflow measurement. AVM instrumentation is highly accurate and nonmechanical. Most commercial AVM systems that measure streamflow use the time-of-travel method to determine a velocity between two points. The systems operate on the principle that point-to-point upstream travel-time of sound is longer than the downstream travel-time, and this difference can be monitored and measured accurately by electronics. AVM equipment has no practical upper limit of measurable velocity if sonic transducers are securely placed and adequately protected. AVM systems used in streamflow measurement generally operate with a resolution of ?0.01 meter per second but this is dependent on system frequency, path length, and signal attenuation. In some applications the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Presently used minicomputer systems, although expensive to purchase and maintain, perform well. Increased use of AVM systems probably will be realized as smaller, less expensive, and more conveniently operable microprocessor-based systems become readily available. Available AVM equipment should be capable of flow measurement in a wide variety of situations heretofore untried. New signal-detection techniques and communication linkages can provide additional flexibility to the systems so that operation is possible in more river and estuary situations.

  2. Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine

    NASA Astrophysics Data System (ADS)

    Morii, Jun; Biwa, Tetsushi; Yazaki, Taichi

    2014-09-01

    We present theoretical solutions, based on linear acoustic theory, for axial acoustic particle velocity in an annular region of a coaxial duct. The solutions are expressed in terms of two non-dimensional parameters h/δν and R; h and δν, respectively, represent the half of the spacing between two concentric ducts and the characteristic length given by kinematic viscosity of the gas and angular frequency of acoustic oscillations, and R is the radius ratio of the ducts. The validity of the solutions was verified by direct measurements using a laser Doppler velocimeter. The present results are applied to measurements of the acoustic power distribution in a traveling wave thermoacoustic engine with a coaxial duct, which provides experimental evidence for acoustic power feedback in the coaxial duct.

  3. Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine.

    PubMed

    Morii, Jun; Biwa, Tetsushi; Yazaki, Taichi

    2014-09-01

    We present theoretical solutions, based on linear acoustic theory, for axial acoustic particle velocity in an annular region of a coaxial duct. The solutions are expressed in terms of two non-dimensional parameters h/δ(ν) and R; h and δ(ν), respectively, represent the half of the spacing between two concentric ducts and the characteristic length given by kinematic viscosity of the gas and angular frequency of acoustic oscillations, and R is the radius ratio of the ducts. The validity of the solutions was verified by direct measurements using a laser Doppler velocimeter. The present results are applied to measurements of the acoustic power distribution in a traveling wave thermoacoustic engine with a coaxial duct, which provides experimental evidence for acoustic power feedback in the coaxial duct.

  4. Field Measurement of the Acoustic Nonlinearity Parameter in Turbine Blades

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.; Na, Jeong K.; Yost, William T.; Kessel, Gregory L.

    2000-01-01

    Nonlinear acoustics techniques were used to measure fatigue in turbine blades in a power generation plant. The measurements were made in the field using a reference based measurement technique, and a reference sample previously measured in the laboratory. The acoustic nonlinearity parameter showed significant increase with fatigue in the blades, as indicated by service age and areas of increased stress. The technique shows promise for effectively measuring fatigue in field applications and predicting subsequent failures.

  5. Measuring Neutrino Oscillations with Nuclear Reactors

    SciTech Connect

    McKeown, R. D.

    2007-10-26

    Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided crucial information on the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

  6. Applications of acoustics in the measurement of coal slab thickness

    NASA Technical Reports Server (NTRS)

    Hadden, W. J., Jr.; Mills, J. M.; Pierce, A. D.

    1980-01-01

    The determination of the possibility of employing acoustic waves at ultrasonic frequencies for measurements of thicknesses of slabs of coal backed by shale is investigated. Fundamental information concerning the acoustical properties of coal, and the relationship between these properties and the structural and compositional parameters used to characterize coal samples was also sought. The testing device, which utilizes two matched transducers, is described.

  7. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  8. Basin stability measure of different steady states in coupled oscillators

    PubMed Central

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-01-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis. PMID:28378760

  9. Experimental and analytical study of thermal acoustic oscillations. [in the transfer and storage of cryogens

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Dean, W. G.; Karu, Z. S.

    1976-01-01

    The thermal acoustic oscillations (TAO) data base was expanded by running a large number of tubes over a wide range of parameters known to affect the TAO phenomenon. These parameters include tube length, wall thickness, diameter, material, insertion length and length-to-diameter ratio. Emphasis was placed on getting good boiloff data. A large quantity of data was obtained, reduced, correlated and analyzed and is presented. Also presented are comparisons with previous types of correlations. These comparisons show that the boiloff data did not correlate with intensity. The data did correlate in the form used by Rott, that is boiloff versus TAO pressure squared times frequency to the one-half power. However, this latter correlation required a different set of correlation constants, slope and intercept, for each tube tested.

  10. Measurements of fuel mixture fraction oscillations of a turbulent jet non-premixed flame

    SciTech Connect

    Kanga, D.M.; Fernandez, V.; Culick, F.E.C.; Ratner, A.

    2009-01-15

    This work describes new type of combustion instability for which the 3-way coupling between mixing, flame heat release, and acoustics is modified by local buoyancy effects. Measurements of fuel mixture fraction are made for a non-premixed jet flame in a combustion chamber to assess the dynamics of mixing under imposed acoustic oscillations (22-55 Hz). Infrared laser absorption and phase resolved acetone-planar laser induced fluorescence are used to measure the fuel mixture fraction and then the degree of fuel/air mixing is calculated by determining the unmixedness. Results show acoustic excitation causes oscillations in the degree of fuel/air mixing at the driving frequency, which results in oscillatory flame behavior. This oscillatory flame behavior couples to the buoyancy and this in turn affects the mixing. Results also show that the mixing becomes less effective when the excitation frequency is increased or when the flame is present, compared to the non-reacting case. This work describes a key coupling mechanism that occurs when buoyancy is a significant factor in the flow field. (author)

  11. Low frequency oscillations in total ozone measurements

    NASA Technical Reports Server (NTRS)

    Gao, X. H.; Stanford, J. L.

    1989-01-01

    Low frequency oscillations with periods of approximately one to two months are found in eight years of global grids of total ozone data from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The low frequency oscillations corroborate earlier analyses based on four years of data. In addition, both annual and seasonal one-point correlation maps based on the 8-year TOMS data are presented. The results clearly show a standing dipole in ozone perturbations, oscillating with 35 to 50 day periods over the equatorial Indian Ocean-west Pacific region. This contrasts with the eastward moving dipole reported in other data sets. The standing ozone dipole appears to be a dynamical feature associated with vertical atmospheric motions. Consistent with prior analyses based on lower stratospheric temperature fields, large-scale standing patterns are also found in the extratropics of both hemispheres, correlated with ozone fluctuations over the equatorial west Pacific. In the Northern Hemisphere, a standing pattern is observed extending from the tropical Indian Ocean to the north Pacific, across North America, and down to the equatorial Atlantic Ocean region. This feature is most pronounced in the NH summer.

  12. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  13. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Fourier space

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Seo, Hee-Jong; Ross, Ashley J.; McDonald, Patrick; Saito, Shun; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Percival, Will J.; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A.; Ross, Nicholas P.; Salazar-Albornoz, Salvador; Sánchez, Ariel G.; Schneider, Donald P.; Slosar, Anže; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.

    2017-01-01

    We analyse the baryon acoustic oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in the Fourier space, using the power spectrum monopole and quadrupole. The data set includes 1198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this data set into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as ˜1000 MultiDark-Patchy mock catalogues that mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line of sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H(z) separately. We obtain two independent 1.6 and 1.5 per cent constraints on DA(z) and 2.9 and 2.3 per cent constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1 and 0.9 per cent constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski effect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within Λ cold dark matter. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

  14. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space

    SciTech Connect

    Beutler, Florian; Seo, Hee -Jong; Ross, Ashley J.; McDonald, Patrick; Saito, Shun; Bolton, Adam S.; Joel R. Brownstein; Chuang, Chia -Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco -Shu; Modi, Chirag; Nichol, Robert C.; Percival, Will J.; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A.; Ross, Nicholas P.; Salazar-Albornoz, Salvador; Sanchez, Ariel G.; Schneider, Donald P.; Slosar, Anze; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Vazquez, Jose A.

    2016-07-13

    Here, we analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes 1 198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this dataset into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as 1000 MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density eld reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can sep-arate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H ( z ) separately. We obtain two independent 1 : 6% and 1 : 5% constraints on DA(z) and 2.9% and 2.3% constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1% and 0.9% constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski e ect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.

  15. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space

    DOE PAGES

    Beutler, Florian; Seo, Hee -Jong; Ross, Ashley J.; ...

    2016-07-13

    Here, we analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes 1 198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this dataset into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as 1000 MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density eld reconstruction to enhance themore » BAO signal-to-noise ratio. By including the power spectrum quadrupole we can sep-arate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H ( z ) separately. We obtain two independent 1 : 6% and 1 : 5% constraints on DA(z) and 2.9% and 2.3% constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1% and 0.9% constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski e ect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.« less

  16. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    SciTech Connect

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  17. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    DOE PAGES

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  18. Enthalpy of sublimation as measured using a silicon oscillator

    NASA Astrophysics Data System (ADS)

    Shakeel, Hamza; Pomeroy, J. M.

    In this study, we report the enthalpy of sublimation of common gases (nitrogen, oxygen, argon, carbon dioxide, neon, krypton, xenon, and water vapor) using a large area silicon oscillator with a sub-ng (~0.027 ng/cm2) mass sensitivity. The double paddle oscillator design enables high frequency stability (17 ppb) at cryogenic temperatures and provides a consistent technique for enthalpy measurements. The enthalpies of sublimation are derived from the rate of mass loss during programmed thermal desorption and are detected as a change in the resonance frequency of the self-tracking oscillator. These measured enthalpy values show excellent agreement with the accepted literature values.

  19. Comparison of acoustic and mechanical excitation for modal response measurements

    NASA Astrophysics Data System (ADS)

    Musson, B. G.; Stevens, J. R.

    An acoustic field is examined as an alternate to mechanical excitation of a test specimen to measure modal response. A square, flat plate with clamped edges is used because classical analytical solutions to its modal analysis are readily available. A small hammer with a built-in force transducer is used to mechanically excite the plate, and the plate is excited with electro-pneumatic acoustic drivers coupled to a progressive-wave test fixture. Band limited random amplitude acoustic waves over a frequency range of 50 to 1000 Hz are applied at grazing incidence to the plate. The acoustic field is characterized and a microphone at a single fixed position is used to provide the reference forcing function. Results are compared with the analytical solutions and with the mechanically excited results. Conclusions are presented concerning the equivalence of acoustic and mechanical excitation for obtaining modal response.

  20. Measurement of the Q value of an acoustic resonator.

    PubMed

    Biwa, Tetsushi; Ueda, Yuki; Nomura, Hiroshi; Mizutani, Uichiro; Yazaki, Taichi

    2005-08-01

    A cylindrical acoustic resonator was externally driven at the first resonance frequency by a compression driver. The acoustic energy stored in the resonator and the power dissipated per unit time were evaluated through the simultaneous measurements of acoustic pressure and velocity, in order to determine the Q value of the resonator. The resulting Q value, being employed as a measure of the damping in a resonator, was obtained as 36. However, the Q value determined from a frequency response curve known as a conventional technique turned out to be 25, which is 30% less than that obtained in the present method. By further applying these two methods in the case of a resonator having an acoustic load inside, we present an accurate measurement of the Q value of the resonator by making full use of its definition.

  1. Experimental investigation of acoustic self-oscillation influence on decay process for underexpanded supersonic jet in submerged space

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. Yu.; Arefyev, K. Yu.; Ilchenko, M. A.

    2016-07-01

    Intensification of mixing between the gaseous working body ejected through a jet nozzle with ambient medium is an important scientific and technical problem. Effective mixing can increase the total efficiency of power and propulsion apparatuses. The promising approach, although poorly studied, is generation of acoustic self-oscillation inside the jet nozzle: this impact might enhance the decay of a supersonic jet and improve the mixing parameters. The paper presents peculiar properties of acoustic self-excitation in jet nozzle. The paper presents results of experimental study performed for a model injector with a set of plates placed into the flow channel, enabling the excitation of acoustic self-oscillations. The study reveals the regularity of under-expanded supersonic jet decay in submerged space for different flow modes. Experimental data support the efficiency of using the jet nozzle with acoustic self-oscillation in application to the systems of gas fuel supply. Experimental results can be used for designing new power apparatuses for aviation and space industry and for process plants.

  2. Acoustic wayfinding: A method to measure the acoustic contrast of different paving materials for blind people.

    PubMed

    Secchi, Simone; Lauria, Antonio; Cellai, Gianfranco

    2017-01-01

    Acoustic wayfinding involves using a variety of auditory cues to create a mental map of the surrounding environment. For blind people, these auditory cues become the primary substitute for visual information in order to understand the features of the spatial context and orient themselves. This can include creating sound waves, such as tapping a cane. This paper reports the results of a research about the "acoustic contrast" parameter between paving materials functioning as a cue and the surrounding or adjacent surface functioning as a background. A number of different materials was selected in order to create a test path and a procedure was defined for the verification of the ability of blind people to distinguish different acoustic contrasts. A method is proposed for measuring acoustic contrast generated by the impact of a cane tip on the ground to provide blind people with environmental information on spatial orientation and wayfinding in urban places.

  3. Acoustic temperature measurement in a rocket noise field.

    PubMed

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.

  4. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Petrovic, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

    2012-08-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Δ m322 = (3.1 ± 0.9) ṡ10-3eV2 is obtained, in good agreement with the world average value.

  5. Classroom acoustics in Omaha, Nebraska: Measurements and outreach

    NASA Astrophysics Data System (ADS)

    Bowden, Erica E.; Wang, Lily M.; Bradley, David T.

    2002-11-01

    This project collected data detailing the current status of classroom acoustics while simultaneously increasing awareness of educational acoustics and exposure to acoustical engineering research in local schools. In 8 Omaha-area schools, 2 acoustical aspects which directly influence speech intelligibility were measured and studied: (1) background noise levels resulting from a building's mechanical systems; and (2) reverberation times within the classroom. Prior to each measurement session, a presentation on good classroom acoustic principles was presented to the teacher and students in that classroom. Subsequently, the teacher and students assisted the principal investigator and research assistants in the measurement of the acoustic data from their classroom. In total, 13 classrooms were studied, with the assistance of 425 middle and high school students in 14 different classes. The background noise results have been associated with commonly used noise criterion curves. Results are compared to recommended background noise levels and reverberation times suggested by ANSI standard S12.60-2002. The resulting database provides knowledge on the current status of classrooms in Omaha, and may be indicative of classroom situations across the midwestern United States.

  6. Relation between near field and far field acoustic measurements

    NASA Technical Reports Server (NTRS)

    Bies, D. A.; Scharton, T. D.

    1974-01-01

    Several approaches to the problem of determining the far field directivity of an acoustic source located in a reverberant environment, such as a wind tunnel, are investigated analytically and experimentally. The decrease of sound pressure level with distance is illustrated; and the spatial extent of the hydrodynamic and geometric near fields, the far field, and the reverberant field are described. A previously-prosposed analytical technique for predicting the far field directivity of the acoustic source on the basis of near field data is investigated. Experiments are conducted with small acoustic sources and an analysis is performed to determine the variation with distance from the source of the directionality of the sound field. A novel experiment is conducted in which the sound pressure measured at various distances from an acoustic driver located in the NASA Ames 40 x 80 ft wind tunnel is crosscorrelated with the driver excitation voltage.

  7. Improved Forecasts for the Baryon Acoustic Oscillations and Cosmological Distance Scale

    NASA Astrophysics Data System (ADS)

    Seo, Hee-Jong; Eisenstein, Daniel J.

    2007-08-01

    We present the cosmological distance errors achievable using the baryonic acoustic oscillations as a standard ruler. We begin from a Fisher matrix formalism that is upgraded from earlier Seo and Eisenstein work. We isolate the information from the baryonic peaks by excluding distance information from other less robust sources. Meanwhile, we accommodate the Lagrangian displacement distribution into the Fisher matrix calculation to reflect the gradual loss of information in scale and in time due to nonlinear growth, nonlinear bias, and nonlinear redshift distortions. We then show that we can contract the multidimensional Fisher matrix calculations into a two-dimensional or even one-dimensional formalism with physically motivated approximations. We present the resulting fitting formula for the cosmological distance errors from galaxy redshift surveys as a function of survey parameters and nonlinearity, which saves us going through the 12 dimensional Fisher matrix calculations. Finally, we show excellent agreement between the distance error estimates from the revised Fisher matrix and the precision on the distance scale recovered from N-body simulations.

  8. The Alcock Paczy'nski test with Baryon Acoustic Oscillations: systematic effects for future surveys

    NASA Astrophysics Data System (ADS)

    Lepori, Francesca; Di Dio, Enea; Viel, Matteo; Baccigalupi, Carlo; Durrer, Ruth

    2017-02-01

    We investigate the Alcock Paczy'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, causing different values of galaxy bias to induce offsets up to 1% in the AP test. On the other hand, we find that the lensing correction around the BAO scale modifies the amplitude but not the shape of the correlation function and therefore does not introduce any systematic effect. Furthermore, we investigate in details how the AP test is sensitive to redshift binning: a window function in transverse direction suppresses correlations and shifts the peak position toward smaller angular scales. We determine the correction that should be applied in order to account for this effect, when performing the test with data from three future planned galaxy redshift surveys: Euclid, the Dark Energy Spectroscopic Instrument (DESI) and the Square Kilometer Array (SKA).

  9. Small scale aspects of warm dark matter: Power spectra and acoustic oscillations

    SciTech Connect

    Boyanovsky, Daniel; Wu Jun

    2011-02-15

    We provide a semianalytic derivation of approximate evolution equations for density perturbations of warm dark matter candidates that decoupled while relativistic with arbitrary distribution functions, their solutions at small scales, and a simple numerical implementation that yields their transfer functions and power spectra. Density perturbations evolve through three stages: radiation domination when the particle is relativistic and nonrelativistic and matter domination. An early integrated Sachs-Wolfe effect during the first stage leads to an enhancement of density perturbations and a plateau in the transfer function for k < or approx. k{sub fs}, the free-streaming wave vector. An effective fluid description emerges at small scales which includes the effects of free streaming in initial conditions and inhomogeneities. The transfer function features warm dark matter acoustic oscillations at scales k > or approx. 2k{sub fs}. A simple analytic interpolation of the power spectra between large and small scales and a numerical implementation valid for arbitrary distribution functions is provided. As an application we study the power spectra for two models of sterile neutrinos with m{approx}keV produced nonresonantly and compare our results to those obtained from Boltzmann codes.

  10. Measurement of precision oscillator phase noise using the two-oscillator coherent down-conversion technique

    NASA Technical Reports Server (NTRS)

    Pagnanelli, Christopher J.; Cashin, William F.

    1992-01-01

    The characterization of precision frequency standard phase noise and spurious outputs is addressed, using the two-oscillator coherent downconversion technique. Focus is on techniques for making accurate measurements of phase noise and spurious outputs within 100 KHz of a carrier. Significant sources of measurement error related to hardware design problems and inadequate measurement procedures are discussed: measurement errors resulting from system noise sources, phase-locked loop effects, and system bandwidth limitations. In addition, methods and design considerations for minimizing the effects of such errors are presented. Analytic discussions and results are supplemented with actual test data and measurements made using measurement hardware developed at the Ball Corporation, Efratom Division.

  11. Measurement of Atomic Oscillator Strength Distribution from the Excited States

    SciTech Connect

    Hussain, Shahid; Saleem, M.; Baig, M. A.

    2008-10-22

    Saturation technique has been employed to measure the oscillator strength distribution in spectra of helium lithium using an electrical discharge cell a thermionic diode ion detector respectively. The photoabsorption cross sections in the discrete or bound region (commonly known as f-values) have been determined form the Rydberg series accessed from a particular excited state calibrating it with the absolute value of the photoionization cross section measured at the ionization threshold. The extracted discrete f-values merge into the oscillator strength densities, estimated from the measured photoionization cross sections at different photon energies above the first ionization threshold. The experimental data on helium and lithium show continuity between the discrete and the continuous oscillator strengths across the ionization threshold.

  12. Quantum nondemolition measurement by pulsed oscillation

    NASA Astrophysics Data System (ADS)

    Zhang, Gui-Ying; Zhao, Kai-Feng

    2016-03-01

    Paramagnetic Faraday rotation is a quantum nondemolition measurement method that can generate spin squeezing and improve the measurement precision of a collective spin component beyond the standard quantum limit. In practice, a constant bias magnetic field is used to drive the spin precessing at sufficiently high frequency in order to lift the signal out of low-frequency technical noises. However, continuous measurement of precessing spins introduces back-action noise (BAN) due to the light-shift effect. Two types of back-action-evading (BAE) measurement of collective spin components have been demonstrated recently: continuous measurement of a two-ensemble system and stroboscopic measurement of a single ensemble. Here we propose another single ensemble BAE measurement by periodically modulating the bias field with π pulses. Our theoretical calculation shows that under experimental settings where pulse-field modulation does not introduce significant decoherences, the proposed method can suppress the BAN and generate spin squeezing faster than the stroboscopic one at the same probe light power. Moreover, if it is combined with synchronous stroboscopic probing, light-shift BAN can be completely eliminated.

  13. Experimentally Measured Radiative Lifetimes and Oscillator Strengths in Neutral Vanadium

    NASA Astrophysics Data System (ADS)

    Holmes, C. E.; Pickering, J. C.; Ruffoni, M. P.; Blackwell-Whitehead, R.; Nilsson, H.; Engström, L.; Hartman, H.; Lundberg, H.; Belmonte, M. T.

    2016-06-01

    We report a new study of the V i atom using a combination of time-resolved laser-induced fluorescence and Fourier transform spectroscopy that contains newly measured radiative lifetimes for 25 levels between 24,648 cm-1 and 37,518 cm-1 and oscillator strengths for 208 lines between 3040 and 20000 Å from 39 upper energy levels. Thirteen of these oscillator strengths have not been reported previously. This work was conducted independently of the recent studies of neutral vanadium lifetimes and oscillator strengths carried out by Den Hartog et al. and Lawler et al., and thus serves as a means to verify those measurements. Where our data overlap with their data, we generally find extremely good agreement in both level lifetimes and oscillator strengths. However, we also find evidence that Lawler et al. have systematically underestimated oscillator strengths for lines in the region of 9000 ± 100 Å. We suggest a correction of 0.18 ± 0.03 dex for these values to bring them into agreement with our results and those of Whaling et al. We also report new measurements of hyperfine structure splitting factors for three odd levels of V i lying between 24,700 and 28,400 cm-1.

  14. On acoustic intensity measurements in the presence of mean flow

    NASA Technical Reports Server (NTRS)

    Munro, D. H.; Ingard, K. U.

    1979-01-01

    A theoretical analysis demonstrates that the technique of measuring acoustic intensity by means of cross correlation between nearby microphones cannot, in general, be extended to situations in which there is mean flow. However, it may be possible to use this technique to measure intensities in ducts with mean flow at frequencies below their cutoff frequencies.

  15. Approach to Eliminate Couplant-Effect in Acoustic Nonlinearity Measurements

    SciTech Connect

    Sun, L.; Kulkarni, S. S.; Achenbach, J. D.; Krishnaswamy, S.

    2006-03-06

    An approach to eliminate couplant-effect in acoustic nonlinearity measurements for fatigued components is proposed in this paper. Measurements are performed on a fatigued steel 4340 specimen using both the conventional and proposed techniques. It is observed that the coefficients of variation of the nonlinearity parameter obtained using the proposed technique is approximately half of that obtained using the conventional technique.

  16. Acoustic measurement study 40 by 80 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An acoustical study conducted during the period from September 1, 1973 to April 30, 1974 measured sound pressure levels and vibration amplitudes inside and outside of the subsonic tunnel and on the tunnel structure. A discussion of the technical aspects of the study, the field measurement and data reduction procedures, and results are presentd, and conclusions resulting from the study which bear upon near field and far field tunnel noise, upon the tunnel as an acoustical enclosure, and upon the sources of noise within the tunnel drive system are given.

  17. Measurement of the acoustic reflex without a pressure seal.

    PubMed

    Surr, R K; Schuchman, G I

    1976-03-01

    Obtaining a hermetic seal in the external auditory canal is often a major obstacle in impedance audiometry. In the present study, the acoustic reflex threshold was determined for three groups of subjects, first with and then without a pressure-tight seal. It was found that for subjects with normal hearing or sensorineural hearing loss and normal tympanograms, 96% of the measurements obtained without a pressure seal were within 5 dB of those obtained with a seal. Among the subjects who exhibited negative middle ear pressure, the acoustic reflex could be measured consistently at the point of maximum compliance, while no response was observed without a pressure seal.

  18. An optoacoustic point source for acoustic scale model measurements.

    PubMed

    Bolaños, Javier Gómez; Pulkki, Ville; Karppinen, Pasi; Hæggström, Edward

    2013-04-01

    A massless acoustic source is proposed for scale model work. This source is generated by focusing a pulsed laser beam to rapidly heat the air at the focal point. This produces an expanding small plasma ball which generates a sonic impulse that may be used as an acoustic point source. Repeatability, frequency response, and directivity of the source were measured to show that it can serve as a massless point source. The impulse response of a rectangular space was determined using this type of source. A good match was found between the predicted and the measured impulse responses of the space.

  19. Resolving the source of the solar acoustic oscillations: What will be possible with DKIST?

    NASA Astrophysics Data System (ADS)

    Rast, Mark; Martinez Pillet, Valentin

    2016-05-01

    The solar p-modes are likely excited by small-scale convective dynamics in the solar photosphere, but the detailed source properties are not known. Theoretical models differ and observations are yet unable to differentiate between them. Resolving the underlying source events is more than a curiosity. It is important to the veracity of global helioseismic measurements (including local spectral methods such as ring diagram analysis) because global p-mode line shapes and thus accurate frequency determinations depend critically on the relationship between intensity and velocity during the excitation events. It is also fundamental to improving the accuracy of the local time-distance measurements because in these kernel calculations depend on knowledge of the source profile and the properties of the excitation noise. The Daniel K. Inouye Solar Telescope (DKIST) will have the spatial resolution and spectral range needed to resolve the solar acoustic excitation events in both time and space (horizontally and with height) using multi-wavelength observations. Inversions to determine the dynamic and thermodynamic evolution of the discrete small-scale convective events that serve as acoustic sources may also be possible, though determination of the pressure fluctuations associated with the sources is a challenge. We describe the DKIST capabilities anticipated and the preliminary work needed to prepare for them.

  20. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  1. End tidal carbon dioxide measurement using an electro acoustic sensor.

    PubMed

    Folke, M; Hok, B; Ekstrom, M; Backlund, Y

    2004-01-01

    End tidal carbon dioxide measurement with an electro-acoustic sensor is demonstrated. The sensor consists of an acoustic resonator coupled to a low cost electro-acoustic element. By simultaneous measurements with a reference sensor, the new device was tested on subjects performing exercise, hypo- and hyperventilation whereby the CO2concentration ranged from 2.1 to 7.0 kPa. The output from the experimental device correlated well with the reference CO2readings with a correlation coefficient of 0.976. Response time for expiration less than 0.8 seconds was noted. The new device could be useful in situations where selectivity to other gases is not important.

  2. Measurement of rolling friction by a damped oscillator

    NASA Technical Reports Server (NTRS)

    Dayan, M.; Buckley, D. H.

    1983-01-01

    An experimental method for measuring rolling friction is proposed. The method is mechanically simple. It is based on an oscillator in a uniform magnetic field and does not involve any mechanical forces except for the measured friction. The measured pickup voltage is Fourier analyzed and yields the friction spectral response. The proposed experiment is not tailored for a particular case. Instead, various modes of operation, suitable to different experimental conditions, are discussed.

  3. Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters

    SciTech Connect

    Fernandez-Martinez, Enrique; Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

    2010-11-01

    The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.

  4. Measuring the momentum of a nanomechanical oscillator using tunnel junctions

    NASA Astrophysics Data System (ADS)

    Doiron, Charles; Trauzettel, Bjoern; Bruder, Christoph

    2008-03-01

    We present a way to measure the momentum p of a nanomechanical oscillatorootnotetextC. B. Doiron, B. Trauzettel, C. Bruder. arXiv:0707.2709.. The momentum detector is based on two tunnel junctions in an Aharonov-Bohm-type setup, where one of the tunneling amplitudes depends on the motion of the oscillator and the other one does not. The coupling between the first tunnel junction and the oscillator is assumed to be linear in the position x of the oscillator t(x) = t0+ t1x. However, the presence of two junctions can, under certain conditions, lead to an effective imaginary coupling t(x) = t0+ i t1x. By calculating the equation-of-motion for the density matrix of the coupled (oscillator+tunnel junction) systemootnotetextA.A Clerk, S. Girvin. Phys. Rev. B 70, 121303 (2004)., we show that in this case the finite-frequency current noise of the detector is proportional to the momentum spectrum of the oscillator.

  5. THE CORRELATION FUNCTION OF GALAXY CLUSTERS AND DETECTION OF BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-10

    We calculate the correlation function of 13,904 galaxy clusters of z {<=} 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model {xi}(r) = (r/R{sub 0}){sup -{gamma}} on the scales of 10 h{sup -1} Mpc {<=} r {<=} 50 h{sup -1} Mpc, with a larger correlation length of R{sub 0} = 18.84 {+-} 0.27 h{sup -1} Mpc for clusters with a richness of R {>=} 15 and a smaller length of R{sub 0} = 16.15 {+-} 0.13 h{sup -1} Mpc for clusters with a richness of R {>=} 5. The power-law index of {gamma} = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r {approx} 110 h{sup -1} Mpc with a significance of {approx}1.9{sigma}. By analyzing the correlation function in the range of 20 h{sup -1} Mpc {<=} r {<=} 200 h{sup -1} Mpc, we find that the constraints on distance parameters are D{sub v} (z{sub m} = 0.276) = 1077 {+-} 55(1{sigma}) Mpc and h = 0.73 {+-} 0.039(1{sigma}), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density {Omega}{sub m} h{sup 2} = 0.093 {+-} 0.0077(1{sigma}), which deviates from the WMAP7 result by more than 3{sigma}. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  6. The Correlation Function of Galaxy Clusters and Detection of Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-01

    We calculate the correlation function of 13,904 galaxy clusters of z <= 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model ξ(r) = (r/R 0)-γ on the scales of 10 h -1 Mpc <= r <= 50 h -1 Mpc, with a larger correlation length of R 0 = 18.84 ± 0.27 h -1 Mpc for clusters with a richness of R >= 15 and a smaller length of R 0 = 16.15 ± 0.13 h -1 Mpc for clusters with a richness of R >= 5. The power-law index of γ = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r ~ 110 h -1 Mpc with a significance of ~1.9σ. By analyzing the correlation function in the range of 20 h -1 Mpc <= r <= 200 h -1 Mpc, we find that the constraints on distance parameters are Dv (zm = 0.276) = 1077 ± 55(1σ) Mpc and h = 0.73 ± 0.039(1σ), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density Ω m h 2 = 0.093 ± 0.0077(1σ), which deviates from the WMAP7 result by more than 3σ. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  7. Distinguishing interacting dark energy from wCDM with CMB, lensing, and baryon acoustic oscillation data

    SciTech Connect

    Väliviita, Jussi; Palmgren, Elina E-mail: elina.palmgren@helsinki.fi

    2015-07-01

    We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological wCDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, ω{sub c}, allowing a large interaction rate |Γ| ∼ H{sub 0}. However, as has been known for a while, the BAO data break this degeneracy. Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift z ∼ 2 and is very sensitive to the growth of structure, and hence one of the tools for discerning between the ΛCDM model and its alternatives. However, we find that in the non-phantom models (w{sub de}>−1), the constraints remain unchanged by the inclusion of the lensing data and consistent with zero interaction, −0.14 < Γ/H{sub 0} < 0.02 at 95% CL. On the contrary, in the phantom models (w{sub de}<−1), energy transfer from dark energy to dark matter is moderately favoured over the non-interacting model; 0−0.57 < Γ/H{sub 0} < −0.1 at 95% CL with CMB+BAO, while addition of the lensing data shifts this to −0.46 < Γ/H{sub 0} < −0.01.

  8. A new method to measure the acoustic surface impedance outdoors.

    PubMed

    Carpinello, S; L'Hermite, Ph; Bérengier, M; Licitra, G

    2004-01-01

    In the European countries noise pollution is considered to be one of the most important environmental problems. With respect to traffic noise, different researchers are working on the reduction of noise at the source, on the modelling of the acoustic absorption of the road structure and on the effects of the pavement on the propagation. The aim of this paper is to propose a new method to measure the acoustic impedance of surfaces located outdoors, which allows us to further noise propagation models, in order to evaluate exactly the noise exposure.

  9. Advances in non-invasive measures of vocal acoustics.

    PubMed

    LaBlance, G R; Steckol, K F; Cooper, M H

    1991-10-01

    Objective assessment of vocal pitch, loudness, and quality is a crucial adjunct to endoscopy in the diagnosis and treatment of vocal pathology. Historically, this assessment was made through subjective, perceptual measures that were questionable in terms of validity and reliability. Recent advances in electronic technology now permit objective analysis of the acoustic characteristics of voice. Kay Elemetric's Visi-Pitch, DSP 5500 Digital Spectrograph, and Nasometer are representative of these new instruments and are used as illustrations in the discussion of the assessment of speech acoustics.

  10. Acoustic ship signature measurements by cross-correlation method.

    PubMed

    Fillinger, Laurent; Sutin, Alexander; Sedunov, Alexander

    2011-02-01

    Cross-correlation methods were applied for the estimation of the power spectral density and modulation spectrum of underwater noise generated by moving vessels. The cross-correlation of the signal from two hydrophones allows the separation of vessel acoustic signatures in a busy estuary. Experimental data recorded in the Hudson River are used for demonstration that cross-correlation method measured the same ship noise and ship noise modulation spectra as conventional methods. The cross-correlation method was then applied for the separation of the acoustic signatures of two ships present simultaneously. Presented methods can be useful for ship traffic monitoring and small ship classification, even in noisy harbor environments.

  11. High-frequency attenuation measurements using an acoustic microscope.

    PubMed

    Gracewski, S M; Waag, R C; Schenk, E A

    1988-06-01

    An acoustic microscope was used to measure excess attenuation of aqueous solutions of sugars and proteins at 1.0 GHz. Interference pattern spacing and peak amplitude reduction of V(z) curves, obtained with these solutions as the acoustic microscope coupling liquid, were related to the solution wavespeed and attenuation, respectively. Consistent with published results for lower frequencies, solutions with molecular weight greater than 10,000 had a higher specific absorption than those with a molecular weight less than 1000 and within these two molecular weight ranges specific absorption was independent of concentration.

  12. A Comparative Study of Two Acoustic Measures of Hypernasality

    ERIC Educational Resources Information Center

    Vogel, Adam P.; Ibrahim, Hasherah M.; Reilly, Sheena; Kilpatrick, Nicky

    2009-01-01

    Purpose: This study aimed to compare 2 quantitative acoustic measures of nasality in children with cleft lip and palate (CLP) and healthy controls using formalized perceptual assessment as a guide. Method: Fifty participants (23 children with CLP and 27 age- and gender-matched healthy controls) aged between 4 and 12 years produced a variety of…

  13. Measuring acoustic properties of materials and jet nozzles

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Plumblee, H. E.; Salikuddin, M.

    1980-01-01

    Method measures acoustic properties of sound-absorbent materials and jet-nozzle system. Advantages of impulse method over other methods are that test time and complication are reduced. Results obtained from impulse method have been compared with those from existing methods, both experimental and theoretical, and show excellent agreement.

  14. Measurement of the total acoustic output power of HITU transducers

    NASA Astrophysics Data System (ADS)

    Jenderka, Klaus-V.; Beissner, Klaus

    2010-03-01

    The majority of High Intensity Therapeutic Ultrasound (HITU) applications use strongly focused ultrasound fields generating very high local intensities in the focal region. The metrology of these high-power ultrasound fields is a challenge for the established measurement procedures and devices. This paper describes the results of measurements by means of the radiation force for a total acoustic output power up to 400 W at 1.5 MHz and up to 200 W at 2.45 MHz. For this purpose, a radiation force balance set-up was adapted for the determination of large acoustic output powers. For two types of HITU transducers, the relationship between the total acoustic output power and the applied net electrical power was determined at close transducer-target distance. Further, dependence of the measured electro-acoustic radiation conductance on the transducer-target distance was investigated at reduced power levels, considering the appearance of focal anomalies. Concluding, a list of the main uncertainty contributions, and an estimate of the uncertainty for the used radiation force balance set-up is given for measurements at high power levels.

  15. Laboratory comparisons of acoustic and optical sensors for microbubble measurement

    NASA Technical Reports Server (NTRS)

    Su, Ming Yang; Todoroff, Douglas; Cartmill, John

    1994-01-01

    This paper presents the results of a recent comparison between three microbubble size spectrum measurement systems. These systems are the light-scattering bubble counter, the photographic bubble-imaging system, and the acoustic resonator array. Good agreement was formed among these three systems over the bubble size range appropriate for each system.

  16. Voice Acoustical Measurement of the Severity of Major Depression

    ERIC Educational Resources Information Center

    Cannizzaro, Michael; Harel, Brian; Reilly, Nicole; Chappell, Phillip; Snyder, Peter J.

    2004-01-01

    A number of empirical studies have documented the relationship between quantifiable and objective acoustical measures of voice and speech, and clinical subjective ratings of severity of Major Depression. To further explore this relationship, speech samples were extracted from videotape recordings of structured interviews made during the…

  17. Measurement of acoustic shielding by a turbulent jet

    NASA Technical Reports Server (NTRS)

    Yu, J. C.; Fratello, D. J.

    1985-01-01

    The acoustic shielding properties of a turbulent jet have been investigated experimentally. The experimental arrangement consisted of an acoustic point source and a turbulent shielding jet. The source and jet parameters investigated include the source frequency, source spectrum, jet velocity, jet heating by simulation and the lateral and longitudinal source positions with respect to the shielding jet. It is found that the maximum sound attenuation provided by the shielding jet depends on the balance between refraction and diffraction. Over the frequency range investigated, the redistribution of sound by the shielding air jet is power conserving. Comparison between measurement and prediction based on an idealized cylindrical uniform jet model indicates that the spreading and decay of the flow field in real jets are important. Comparisons between the present data trends and those reported for jet-by-jet shielding suggest that the major effects observed in the latter are acoustical rather than aerodynamical.

  18. Acoustic measurements of air entrainment by breaking waves

    NASA Astrophysics Data System (ADS)

    Terrill, Eric James

    1998-11-01

    Wave breaking at the surface of the ocean plays an important role in air-sea interaction processes. Bubbles entrained by breaking waves not only enhance the transfer of atmospheric gases to the ocean, but also modify the phase speed and attenuation of acoustic waves propagating through the bubbly medium. The development of acoustic instruments to measure bubbles and the results obtained from a number of field and laboratory experiments are presented. The first part of this dissertation addresses sound speed measurements made in the North Atlantic as part of the Acoustic Surface Reverberation Experiment (ASREX). An autonomous buoy system that directly measures the sound speed in the surface wave layer was developed. Data obtained with the instrument spanned several storm cycles with wind speeds and significant wave heights reaching 20 m/s and 8 m, respectively. The use of Wood's relation (1946) allows the calculation of the void fraction of air based on the low-frequency sound speed measurements. The highly variable near-surface sound speed/void fraction field is analyzed with respect to wind and surface wave- breaking parameters. The second part of this dissertation presents the development of a broadband acoustic technique which simultaneously measures the phase speed and attenuation at acoustic frequencies ranging from 4-100 kHz. The acoustic data is inverted for the size distribution of bubbles using algorithms that are based upon the physics of sound propagation through a bubbly mixture. This acoustic technique was evaluated in the large wave channel at the Hydraulics Laboratory, Scripps Institution of Oceanography, using mechanically generated breaking waves in seawater. Field measurements of bubble concentrations that result from wave breaking were made in both shallow water off Scripps Pier, California and in deep water near Point Conception, California using the broadband technique. Significant variability is observed in the bubble field, characterized by

  19. Picosecond acoustics in vegetal cells: non-invasive in vitro measurements at a sub-cell scale.

    PubMed

    Audoin, B; Rossignol, C; Chigarev, N; Ducousso, M; Forget, G; Guillemot, F; Durrieu, M C

    2010-02-01

    A 100 fs laser pulse passes through a single transparent cell and is absorbed at the surface of a metallic substrate. Picosecond acoustic waves are generated and propagate through the cell in contact with the metal. Interaction of the high frequency acoustic pulse with a probe laser light gives rise to Brillouin oscillations. The measurements are thus made with lasers for both the opto-acoustic generation and the acousto-optic detection, and acoustic frequencies as high as 11 GHz can be detected, as reported in this paper. The technique offers perspectives for single cell imaging. The in-plane resolution is limited by the pump and probe spot sizes, i.e. approximately 1 microm, and the in-depth resolution is provided by the acoustic frequencies, typically in the GHz range. The effect of the technique on cell safety is discussed. Experiments achieved in vegetal cells illustrate the reproducibility and sensitivity of the measurements. The acoustic responses of cell organelles are significantly different. The results support the potentialities of the hypersonic non-invasive technique in the fields of bio-engineering and medicine.

  20. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-01

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad2/Hz at 1 kHz offset and -150 dB rad2/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10-9 at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10-11 τ-1/2 up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  1. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    SciTech Connect

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-15

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2–4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be −23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is −105 dB rad{sup 2}/Hz at 1 kHz offset and −150 dB rad{sup 2}/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10{sup −9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10{sup −11} τ{sup −1/2} up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  2. Measurement of b_s oscillations at CDF

    SciTech Connect

    Salamanna, G.; /Rome U. /INFN, Rome

    2006-09-01

    The first precise measurement of the B{sub s}{sup 0} - {bar B}{sub s}{sup 0} oscillation frequency {Delta}m{sub s} with the CDFII experiment is summarized in this talk. The measurement is performed with 1 fb{sup -1} of data collected at the Fermilab Tevatron hadron collider. They find a signal consistent with flavor oscillations; the probability that such a signal is originated by random fluctuations is 0.2%. They measure {Delta}m{sub s} = 17.31{sub -0.18}{sup +0.33}(stat.) {+-} 0.07(syst.)ps{sup -1}. After a brief theoretical overview, the author describes the experimental technique and shows the results of the CDF analysis and the |V{sub td}/V{sub ts}| value we infer from this measurement.

  3. Navy precision optical interferometer measurements of 10 stellar oscillators

    SciTech Connect

    Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.; Benson, James A.; Zavala, R. T.; Van Belle, Gerard T.

    2014-02-01

    Using the Navy Precision Optical Interferometer, we measured the angular diameters of 10 stars that have previously measured solar-like oscillations. Our sample covered a range of evolutionary stages but focused on evolved subgiant and giant stars. We combined our angular diameters with Hipparcos parallaxes to determine the stars' physical radii, and used photometry from the literature to calculate their bolometric fluxes, luminosities, and effective temperatures. We then used our results to test the scaling relations used by asteroseismology groups to calculate radii and found good agreement between the radii measured here and the radii predicted by stellar oscillation studies. The precision of the relations is not as well constrained for giant stars as it is for less evolved stars.

  4. Influence of sound absorbing surfaces on acoustic oscillations and flame acceleration in hydrogen-air mixture

    NASA Astrophysics Data System (ADS)

    Korobov, A. E.; Volodin, V. V.; Golovastov, S. V.

    2016-11-01

    The frequency spectrum of acoustic disturbances that are emitted by accelerating flame front in an air-hydrogen mixture within an axially symmetric channel with a uniform cross section is experimentally determined. The effect of acoustic disturbances that are reflected from the closed end of the combustion chamber on the flame front acceleration is studied. It is revealed that the frequency spectrum of generated acoustic disturbances under experiment conditions has maximums at frequencies close to 250, 800, and 1500 Hz.

  5. Wake profile measurements of fixed and oscillating flaps

    NASA Technical Reports Server (NTRS)

    Owen, F. K.

    1984-01-01

    Although the potential of laser velocimetry for the non-intrusive measurement of complex shear flows has long been recognized, there have been few applications in other small, closely controlled laboratory situations. Measurements in large scale, high speed wind tunnels are still a complex task. To support a study of periodic flows produced by an oscillating edge flap in the Ames eleven foot wind tunnel, this study was done. The potential for laser velocimeter measurements in large scale production facilities are evaluated. The results with hot wire flow field measurements are compared.

  6. Absolute Measurements of Optical Oscillator Strengths of Xe

    NASA Astrophysics Data System (ADS)

    Gibson, N. D.

    1998-05-01

    The dramatically increased interest in Xe as a discharge medium for the efficient generation of UV radiation, and Xe use in high technology applications such as flat panel displays for laptop computer screens and home TV and theater applications, has created the need for significantly more accurate oscillator strength data. Modeling of plasma processing systems and lighting discharges critically depends on accurate, precise atomic data. We are measuring the optical oscillator strengths of several Xe resonance lines. These measurements use a 900 eV collimated electron beam to excite the Xe atoms. In the method of self absorption used here, the transmission of the emitted radiation is measured as a function of the gas density. The measured oscillator strengths are proportional to the distance between the electron beam and the fixed aperture of the spectrometer-detector system. Since the theoretical form of the transmission function is well understood, there are few systematic errors. Absolute errors as low as 3-4% can be obtained.

  7. Rotational friction of dipolar colloids measured by driven torsional oscillations

    PubMed Central

    Steinbach, Gabi; Gemming, Sibylle; Erbe, Artur

    2016-01-01

    Despite its prominent role in the dynamics of soft materials, rotational friction remains a quantity that is difficult to determine for many micron-sized objects. Here, we demonstrate how the Stokes coefficient of rotational friction can be obtained from the driven torsional oscillations of single particles in a highly viscous environment. The idea is that the oscillation amplitude of a dipolar particle under combined static and oscillating fields provides a measure for the Stokes friction. From numerical studies we derive a semi-empirical analytic expression for the amplitude of the oscillation, which cannot be calculated analytically from the equation of motion. We additionally demonstrate that this expression can be used to experimentally determine the rotational friction coefficient of single particles. Here, we record the amplitudes of a field-driven dipolar Janus microsphere with optical microscopy. The presented method distinguishes itself in its experimental and conceptual simplicity. The magnetic torque leaves the local environment unchanged, which contrasts with other approaches where, for example, additional mechanical (frictional) or thermal contributions have to be regarded. PMID:27680399

  8. Measurement and control of plasma oscillations in femtosecond filaments.

    PubMed

    Zhou, B; Houard, A; Liu, Y; Prade, B; Mysyrowicz, A; Couairon, A; Mora, P; Smeenk, C; Arissian, L; Corkum, P

    2011-06-24

    The short-lived longitudinal plasma oscillations generated during filamentation in argon and nitrogen gas are measured with a specially designed current monitor. The magnitude and initial direction of the corresponding currents depend sensitively on laser polarization and nature of the gas. The results are interpreted as resulting from the competition between two forces acting on free electrons born during the filamentation process: the Lorentz laser force and a Coulomb wake force resulting from a lateral expansion of the plasma.

  9. Measurement and Control of Plasma Oscillations in Femtosecond Filaments

    SciTech Connect

    Zhou, B.; Houard, A.; Liu, Y.; Prade, B.; Mysyrowicz, A.; Couairon, A.; Mora, P.; Smeenk, C.; Arissian, L.; Corkum, P.

    2011-06-24

    The short-lived longitudinal plasma oscillations generated during filamentation in argon and nitrogen gas are measured with a specially designed current monitor. The magnitude and initial direction of the corresponding currents depend sensitively on laser polarization and nature of the gas. The results are interpreted as resulting from the competition between two forces acting on free electrons born during the filamentation process: the Lorentz laser force and a Coulomb wake force resulting from a lateral expansion of the plasma.

  10. Laser Velocimetry Measurements of Oscillating Airfoil Dynamic Stall Flow Field

    DTIC Science & Technology

    1991-06-01

    Velocimetry Measurements of Oscillating Airfoil Dynamic Stall Flow Field By M.S.Chandrasekharal Navy-NASA Joint Institute of Aeronautics and Fluid Mechanics ...tunnel of the Fluid Mechanics Laboratory(FML) angle information. The other could be used for the at NASA Ames Research Center (ARC). It is one of...were on throat is always kept choked so that no disturbances a different traverse mechanism , but this was driven as can propagate upstream into the

  11. Field Assessment of Acoustic-Doppler Based Discharge Measurements

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2002-01-01

    The use of equipment based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun a field validation of the instruments currently (2002) available for making discharge measurements from a moving boat in streams of various sizes. Instruments manufactured by SonTek/YSI2 and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made by the use of a Price AA current meter and standard USGS procedures with the acoustic instruments at each site during data collection. The discharges measured with the acoustic instruments were compared with the discharges measured with Price AA meters and the current USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating. Additional analysis of the data collected indicates that the coefficient of variation of the discharge measurements consistently was less for the RD Instruments, Inc. Rio Grandes than it was for the SonTek/YSI RiverSurveyors. The bottom-tracking referenced measurement had a lower coefficient of variation than the differentially corrected global positioning system referenced measurements. It was observed that the higher frequency RiverSurveyors measured a moving bed more often than the lower frequency Rio Grandes. The detection of a moving bed caused RiverSurveyors to be consistently biased low when referenced to bottom tracking. Differentially corrected global positioning system data may be used to remove the bias observed in the bottom-tracking referenced measurements.

  12. Viscosity Measurements of Industrial Alloys Using the Oscillating Cup Technique

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Overfelt, R. A.

    1999-11-01

    Molten metal processing can be effectively simulated using state-of-the-art computer algorithms, and manufacturers increasingly rely upon these tools to optimize the design of their operations. Reliable thermophysical properties of the solid, solid + liquid, and liquid phases are essential for effective computer simulation. Commercially available instruments can measure many of the required properties of molten metals (e.g., transformation temperatures, thermal conductivity, specific heat, latent heat, and density). However, there are no commercially available instruments to characterize several important thermophysical properties (e.g., emissivity, electrical resistivity, surface tension, and viscosity). Although the literature has numerous examples of measurements of surface tension using the sessile drop and the oscillating drop techniques, literature references are sparse with regard to measurements of emissivity, electrical resistivity, and viscosity. The present paper discusses the development of an oscillating cup viscometer and its application to characterizing the viscosity of fully molten industrial alloys. The theory behind the oscillating cup technique is reviewed, and the design details of the current instrument are discussed. In addition, experimental data of the viscosity of several nickel-based superalloys are presented.

  13. Measurement of the Bs0-Bs0 oscillation frequency.

    PubMed

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Di Ruzza, B; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H J; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-08-11

    We present the first precise measurement of the Bs0-Bs0 oscillation frequency Deltams. We use 1 fb-1 of data from pp collisions at sqrts=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. The sample contains signals of 3600 fully reconstructed hadronic Bs decays and 37,000 partially reconstructed semileptonic Bs decays. We measure the probability as a function of proper decay time that the Bs decays with the same, or opposite, flavor as the flavor at production, and we find a signal consistent with Bs0-Bs0 oscillations. The probability that random fluctuations could produce a comparable signal is 0.2%. Under the hypothesis that the signal is due to Bs0-Bs0 oscillations, we measure Deltams=17.31(-0.18)+0.33(stat)+/-0.07(syst) ps-1 and determine |Vtd/Vts|=0.208(-0.002)+0.001(expt)-0.006(+0.008)(theor).

  14. REGARDING THE LINE-OF-SIGHT BARYONIC ACOUSTIC FEATURE IN THE SLOAN DIGITAL SKY SURVEY AND BARYON OSCILLATION SPECTROSCOPIC SURVEY LUMINOUS RED GALAXY SAMPLES

    SciTech Connect

    Kazin, Eyal A.; Blanton, Michael R.; Scoccimarro, Roman; McBride, Cameron K.; Berlind, Andreas A.

    2010-08-20

    We analyze the line-of-sight baryonic acoustic feature in the two-point correlation function {xi} of the Sloan Digital Sky Survey luminous red galaxy (LRG) sample (0.16 < z < 0.47). By defining a narrow line-of-sight region, r{sub p} < 5.5 h {sup -1} Mpc, where r{sub p} is the transverse separation component, we measure a strong excess of clustering at {approx}110 h {sup -1} Mpc, as previously reported in the literature. We also test these results in an alternative coordinate system, by defining the line of sight as {theta} < 3{sup 0}, where {theta} is the opening angle. This clustering excess appears much stronger than the feature in the better-measured monopole. A fiducial {Lambda}CDM nonlinear model in redshift space predicts a much weaker signature. We use realistic mock catalogs to model the expected signal and noise. We find that the line-of-sight measurements can be explained well by our mocks as well as by a featureless {xi} = 0. We conclude that there is no convincing evidence that the strong clustering measurement is the line-of-sight baryonic acoustic feature. We also evaluate how detectable such a signal would be in the upcoming Baryon Oscillation Spectroscopic Survey (BOSS) LRG volume. Mock LRG catalogs (z < 0.6) suggest that (1) the narrow line-of-sight cylinder and cone defined above probably will not reveal a detectable acoustic feature in BOSS; (2) a clustering measurement as high as that in the current sample can be ruled out (or confirmed) at a high confidence level using a BOSS-sized data set; (3) an analysis with wider angular cuts, which provide better signal-to-noise ratios, can nevertheless be used to compare line-of-sight and transverse distances, and thereby constrain the expansion rate H(z) and diameter distance D{sub A}(z).

  15. Nonlinear acoustic measurements ahead of a notch during fatigue

    NASA Astrophysics Data System (ADS)

    Martin, R. W.; Mooers, R. D.; Hutson, A. L.; Sathish, S.; Blodgett, M. P.

    2013-01-01

    This paper presents measurements of relative nonlinear acoustic parameter (βrel), ahead of a notch in Al 7075-T651 dog bone samples, subjected to fatigue. It is compared with crack growth measurements on the same samples. Measurements performed on two samples subjected to identical fatigue conditions that failed at vastly different number of fatigue cycles are described. The βrel measurement for both samples as a function of fatigue cycles was fit a Boltzmann curve. The role of changing βrel ahead of a notch is explored as a possible approach for remain life evaluation.

  16. Acoustic property measurements in a photoacoustic imager

    NASA Astrophysics Data System (ADS)

    Willemink, René G. H.; Manohar, Srirang; Slump, Cornelis H.; van der Heijden, Ferdi; van Leeuwen, Ton

    2007-07-01

    Photoacoustics is a hybrid imaging technique that combines the contrast available to optical imaging with the resolution that is possessed by ultrasound imaging. The technique is based on generating ultrasound from absorbing structures in tissue using pulsed light. In photoacoustic (PA) computerized tomography (CT) imaging, reconstruction of the optical absorption in a subject, is performed for example by filtered backprojection. The backprojection is performed along circular paths in image space instead of along straight lines as in X-ray CT imaging. To achieve this, the speed-of-sound through the subject is usually assumed constant. An unsuitable speed-of-sound can degrade resolution and contrast. We discuss here a method of actually measuring the speed-of- sound distribution using ultrasound transmission through the subject under photoacoustic investigation. This is achieved in a simple approach that does not require any additional ultrasound transmitter. The method uses a passive element (carbon fiber) that is placed in the imager in the path of the illumination which generates ultrasound by the photoacoustic effect and behaves as an ultrasound source. Measuring the time-of-flight of this ultrasound transient by the same detector used for conventional photoacoustics, allows a speed-of-sound image to be reconstructed. This concept is validated on phantoms.

  17. Single Microbubble Measurements of Lipid Monolayer Viscoelastic Properties for Small-Amplitude Oscillations.

    PubMed

    Lum, Jordan S; Dove, Jacob D; Murray, Todd W; Borden, Mark A

    2016-09-20

    Lipid monolayer rheology plays an important role in a variety of interfacial phenomena, the physics of biological membranes, and the dynamic response of acoustic bubbles and drops. We show here measurements of lipid monolayer elasticity and viscosity for very small strains at megahertz frequency. Individual plasmonic microbubbles of 2-6 μm radius were photothermally activated with a short laser pulse, and the subsequent nanometer-scale radial oscillations during ring-down were monitored by optical scatter. This method provided average dynamic response measurements of single microbubbles. Each microbubble was modeled as an underdamped linear oscillator to determine the damping ratio and eigenfrequency, and thus the lipid monolayer viscosity and elasticity. Our nonisothermal measurement technique revealed viscoelastic trends for different lipid shell compositions. We observed a significant increase in surface elasticity with the lipid acyl chain length for 16 to 20 carbons, and this effect was explained by an intermolecular forces model that accounts for the lipid composition, packing, and hydration. The surface viscosity was found to be equivalent for these lipid shells. We also observed an anomalous decrease in elasticity and an increase in viscosity when increasing the acyl chain length from 20 to 22 carbons. These results illustrate the use of a novel nondestructive optical technique to investigate lipid monolayer rheology in new regimes of frequency and strain, possibly elucidating the phase behavior, as well as how the dynamic response of a microbubble can be tuned by the lipid intermolecular forces.

  18. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  19. Atypical prosody in Asperger syndrome: perceptual and acoustic measurements.

    PubMed

    Filipe, Marisa G; Frota, Sónia; Castro, São Luís; Vicente, Selene G

    2014-08-01

    It is known that individuals with Asperger syndrome (AS) may show no problems with regard to what is said (e.g., lexical content) but tend to have difficulties in how utterances are produced, i.e., they may show prosodic impairments. In the present study, we focus on the use of prosodic features to express grammatical meaning. Specifically, we explored the sentence type difference between statements and questions that is conveyed by intonation, using perceptual and acoustic measurements. Children aged 8 and 9 years with AS (n = 12) were matched according to age and nonverbal intelligence with typically developing peers (n = 17). Although children with AS could produce categorically accurate prosodic patterns, their prosodic contours were perceived as odd by adult listeners, and acoustic measurements showed alterations in duration and pitch. Additionally, children with AS had greater variability in fundamental frequency contours compared to typically developing peers.

  20. Determining Transmission Loss from Measured External and Internal Acoustic Environments

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler; Smith, A. M.

    2012-01-01

    An estimate of the internal acoustic environment in each internal cavity of a launch vehicle is needed to ensure survivability of Space Launch System (SLS) avionics. Currently, this is achieved by using the noise reduction database of heritage flight vehicles such as the Space Shuttle and Saturn V for liftoff and ascent flight conditions. Marshall Space Flight Center (MSFC) is conducting a series of transmission loss tests to verify and augment this method. For this test setup, an aluminum orthogrid curved panel representing 1/8th of the circumference of a section of the SLS main structure was mounted in between a reverberation chamber and an anechoic chamber. Transmission loss was measured across the panel using microphones. Data measured during this test will be used to estimate the internal acoustic environments for several of the SLS launch vehicle internal spaces.

  1. Validation of streamflow measurements made with acoustic doppler current profilers

    USGS Publications Warehouse

    Oberg, K.; Mueller, D.S.

    2007-01-01

    The U.S. Geological Survey and other international agencies have collaborated to conduct laboratory and field validations of acoustic Doppler current profiler (ADCP) measurements of streamflow. Laboratory validations made in a large towing basin show that the mean differences between tow cart velocity and ADCP bottom-track and water-track velocities were -0.51 and -1.10%, respectively. Field validations of commercially available ADCPs were conducted by comparing streamflow measurements made with ADCPs to reference streamflow measurements obtained from concurrent mechanical current-meter measurements, stable rating curves, salt-dilution measurements, or acoustic velocity meters. Data from 1,032 transects, comprising 100 discharge measurements, were analyzed from 22 sites in the United States, Canada, Sweden, and The Netherlands. Results of these analyses show that broadband ADCP streamflow measurements are unbiased when compared to the reference discharges regardless of the water mode used for making the measurement. Measurement duration is more important than the number of transects for reducing the uncertainty of the ADCP streamflow measurement. ?? 2007 ASCE.

  2. Acoustic temperature profile measurement technique for large combustion chambers

    NASA Technical Reports Server (NTRS)

    Venkateshan, S. P.; Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1989-01-01

    Measurement of times of flight of sound waves can be used to determine temperatures in a gas. This paper describes a system, based on this principle, that is capable of giving the temperature profile in a nonisothermal gas volume, for example, prevalent in a large furnace. The apparatus is simple, rugged, accurate, and capable of being automated for process control applications. It is basically an acoustic waveguide where the outside temperature profile is transferred to a chosen gas contained inside the guide.

  3. Visibility of Jupiter global oscillations with photometric measurements

    NASA Astrophysics Data System (ADS)

    Gaulme, P.; Planetologie Collaboration

    2005-08-01

    The receipt for a successful study of the Jovian interior structure is given by the association of seismology and precise visible photometry. In this framework, the micro-satellite project JOVIS, presented to the French space agency (Mosser et al. 2004), is for Jupiter a copy of what the European space mission COROT is for the stars (Baglin et al. 1998). The Jovian visible flux being dominated by the albedo map, an accurate analysis of the cloud response to a seismic wave is needed. Therefore, we have revisited the propagation of sound waves in the Jovian troposphere, in order to estimate how they affect the albedo of the uppest clouds layer, composed of ammonia ice. The relative variations of albedo generated by an acoustic wave reach the 70-ppm level, what would be observable from space and would allow the detection of 4 mm/s waves. Moreover, the detection of Jovian global oscillations implies the identification of the modes in noisy images. We present a method to filter the mode signatures in simulations of Jupiter images as seen by JOVIS. Baglin et al. 1998. 185 IAU. Symp. pp. 301. Kyoto. Mosser et al. 2004. SF2A-2004 pp. 257. EdP-Sciences, Les Ulis.

  4. Viscosity measurements of metallic melts using the oscillating drop technique

    NASA Astrophysics Data System (ADS)

    Heintzmann, P.; Yang, F.; Schneider, S.; Lohöfer, G.; Meyer, A.

    2016-06-01

    By means of benchmarking reduced gravity experiments, we have verified the measured viscosity of binary Zr-Ni glass forming liquids utilizing the oscillating drop technique combined with ground-based electrostatic levitation (ESL). Reliable viscosity data can be obtained as long as internal viscous damping of a single oscillation mode of a levitated drop dominates external perturbations. This can be verified by the absence of a sample mass dependence of the results. Hence, ESL is an excellent tool for studying the viscosity of metallic glass forming melts in the range of about 10-250 mPa s, with sample masses below 100 mg. To this end, we show that, for binary Zr-Ni melts, the viscosity is qualitatively controlled by the packing density.

  5. Unsteady wake measurements of an oscillating flap at transonic speeds

    NASA Technical Reports Server (NTRS)

    Bodapati, S.; Lee, C.-S.

    1984-01-01

    The steady and unsteady wake profiles of an airfoil with an oscillating flap were measured at nominal free stream Mach number of 0.8 in the NASA Ames 11 x 11-foot wind tunnel. The instantaneous wake velocity and pressure profiles at four axial locations are presented up to one chord length from the trailing edge. Both fundamental harmonic frequency and typical time history data are presented to observe the effects of airfoil incidence and flap angle. The drag coefficient obtained from the wake pressure measurements is compared with that obtained from the airfoil pressure distribution.

  6. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  7. Determining low-frequency source location from acoustic phase measurements

    NASA Astrophysics Data System (ADS)

    Poole, Travis L.; Frisk, George V.

    2002-11-01

    For low-frequency cw sound sources in shallow water, the time rate-of-change of the measured acoustic phase is well approximated by the time rate-of-change of the source-receiver separation distance. An algorithm for determining a locus of possible source locations based on this idea has been developed. The locus has the general form of a hyperbola, which can be used to provide a bearing estimation at long ranges, and an estimate of source location at short ranges. The algorithm uses only acoustic phase data and receiver geometry as input, and can be used even when the source frequency is slightly unstable and/or imprecisely known. The algorithm has been applied to data from low-frequency experiments (20-300 Hz), both for stable and unstable source frequencies, and shown to perform well. [Work supported by ONR and WHOI Academic Programs Office.

  8. Measurement of atmospheric neutrino oscillations with IceCube.

    PubMed

    Aartsen, M G; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Bechet, S; Becker Tjus, J; Becker, K-H; Bell, M; Benabderrahmane, M L; Benzvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H-P; Brown, A M; Bruijn, R; Brunner, J; Carson, M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Cruz Silva, A H; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Desiati, P; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Groß, A; Ha, C; Haj Ismail, A; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Palazzo, A; Paul, L; Pepper, J A; Pérez de los Heros, C; Pfendner, C; Pieloth, D; Pinat, E; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Wasserman, R; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-08-23

    We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (~20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5σ significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters |Δm(32)(2)|=(2.3(-0.5)(+0.6))×10(-3) eV(2) and sin(2)(2θ(23))>0.93, and maximum mixing is favored.

  9. Measurement of Atmospheric Neutrino Oscillations with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Bertrand, D.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Desiati, P.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Ellsworth, R. W.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Palazzo, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Wasserman, R.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.

    2013-08-01

    We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (˜20GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5σ significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters |Δm322|=(2.3-0.5+0.6)×10-3eV2 and sin⁡2(2θ23)>0.93, and maximum mixing is favored.

  10. Acoustic Intensity Measurements in the Presence of Low Mach Number Flow

    DTIC Science & Technology

    1993-09-01

    broadband acoustic holography ,3 intensity measurements in the presence of flow,"𔄁𔄀. 7 in-situ evaluation of the acoustic impedance and sound absorption...Cross Spectra" Ph.D. Thesis, Catholic University, (1987). 3. Loyau, T., Pascal, J., Gaillard, P., "Broadband Acoustic Holography Reconstruction From...AD-A269 995 The Pennsylvania State University APPLIED RESEARCH LABORATORY P.O. Box 30 State College, PA 16804 ACOUSTIC INTENSITY MEASUREMENTS IN THE

  11. Calibration of ipsilateral stimulus transducer for acoustic reflex measurements.

    PubMed

    Olsen, S; Osterhammel, P A; Rasmussen, A N; Nielsen, L H

    1995-01-01

    Pure-tone Reference Equivalent Threshold Sound Pressure Level (RETSPL) of the ipsilateral stimulus receiver for acoustic reflex measurements on Madsen Electronics type Zodiac 901 impedance audiometer is provided. The results, obtained from 20 normal-hearing subjects, are achieved by comparing hearing threshold levels measured using a TDH 39 telephone (calibrated to ISO 389) with thresholds recorded using the ipsilateral stimulus insert phone. The calibration is referenced to an IEC-711 ear simulator and comprises the following frequencies: 125, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 6000, 8000 Hz.

  12. Acoustic force measurement in a dual-temperature resonant chamber

    NASA Technical Reports Server (NTRS)

    Robey, Judith L.; Trinh, Eugene H.; Wang, Taylor G.

    1987-01-01

    The acoustic radiation force was measured for a dual-temperature resonant chamber. This rectangular chamber has its long dimension approximately 8.5 times the square cross-sectional dimension, and the opposite ends are at widely different temperatures. Force profiles were obtained for two hot end temperatures of 520 C and 760 C, while the cool end remained at approximately room temperature. Force magnitudes as high as 17 dyn for a sample 1.2 cm in diameter at 760 C and at 162-dB input level were measured.

  13. Measuring acoustic nonlinearity parameter using collinear wave mixing

    NASA Astrophysics Data System (ADS)

    Liu, Minghe; Tang, Guangxin; Jacobs, Laurence J.; Qu, Jianmin

    2012-07-01

    This study introduces a new acoustic nonlinearity parameter βT. It is shown that βT is associated with the interaction between a longitudinal wave and a shear wave in isotropic elastic solids with quadratic nonlinearity. Experimental measurements are conducted to demonstrate that the collinear wave mixing technique is capable of measuring βT nondestructively. Further, it is shown that βT is well-correlated with the plastic deformation in Al-6061 alloys. These results indicate that collinear wave mixing is a promising method for nondestructive assessment of plastic deformation, and possibly, fatigue damage in metallic materials.

  14. Electrodynamic soil plate oscillator: Modeling nonlinear mesoscopic elastic behavior and hysteresis in nonlinear acoustic landmine detection

    NASA Astrophysics Data System (ADS)

    Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.

    2015-10-01

    An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit

  15. Evaluation of disfluent speech by means of automatic acoustic measurements.

    PubMed

    Lustyk, Tomas; Bergl, Petr; Cmejla, Roman

    2014-03-01

    An experiment was carried out to determine whether the level of the speech fluency disorder can be estimated by means of automatic acoustic measurements. These measures analyze, for example, the amount of silence in a recording or the number of abrupt spectral changes in a speech signal. All the measures were designed to take into account symptoms of stuttering. In the experiment, 118 audio recordings of read speech by Czech native speakers were employed. The results indicate that the human-made rating of the speech fluency disorder in read speech can be predicted on the basis of automatic measurements. The number of abrupt spectral changes in the speech segments turns out to be the most appropriate measure to describe the overall speech performance. The results also imply that there are measures with good results describing partial symptoms (especially fixed postures without audible airflow).

  16. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler

    PubMed Central

    Brunker, Joanna; Beard, Paul

    2016-01-01

    Acoustic resolution photoacoustic Doppler velocimetry promises to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Despite successful implementation using blood-mimicking fluids, measurements in blood have proved challenging, thus preventing in vivo application. A common explanation for this difficulty is that whole blood is insufficiently heterogeneous relative to detector frequencies of tens of MHz compatible with deep tissue photoacoustic measurements. Through rigorous experimental measurements we provide new insight that refutes this assertion. We show for the first time that, by careful choice of the detector frequency and field-of-view, and by employing novel signal processing methods, it is possible to make velocity measurements in whole blood using transducers with frequencies in the tens of MHz range. These findings have important implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions. PMID:27446707

  17. Comparison of multi-microphone transfer matrix measurements with acoustic network models of swirl burners

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Hirsch, C.; Sattelmayer, T.

    2006-11-01

    Utilizing the close analogy between electronic circuits and ducted acoustic systems, mathematical methods originally developed for the characterization of electronic networks are applied to the experimental acoustic plane wave characterization of swirl burners with complex geometries. The experiments presented in the paper show that the acoustic behavior of swirl generators can be quantitatively evaluated treating them as acoustic two-ports. Such acoustic two-ports are presented in forms of transfer-, scattering- and mobility matrices of the element. In the acoustic burner study dynamic pressure measurements were made at several locations of a tubular combustor test rig for two acoustically independent states, which were generated by forcing with sirens at the opposite ends of the setup. The technique for the experimental evaluation of acoustic transfer matrices of complex geometries on the basis of these dynamic pressure measurements is illustrated. As an alternative to the experiment, the evaluation of the acoustic behavior of acoustic systems is assessed using acoustic networks consisting of simple acoustic elements like ducts, bends, junctions and sudden area changes with transfer matrices, which are derived from first principles. In the paper, a network model representing the transfer characteristics of swirl burners is presented and compared with the previously measured transfer matrices. Although the burner geometry is rather complex, its acoustic behavior can be successfully mapped to a network consisting of a serial connection of nine elements with only minor adjustment of one parameter.

  18. An Acoustic Measure for Word Prominence in Spontaneous Speech

    PubMed Central

    Wang, Dagen; Narayanan, Shrikanth

    2010-01-01

    An algorithm for automatic speech prominence detection is reported in this paper. We describe a comparative analysis on various acoustic features for word prominence detection and report results using a spoken dialog corpus with manually assigned prominence labels. The focus is on features such as spectral intensity and speech rate that are directly extracted from speech based on a correlation-based approach without requiring explicit linguistic or phonetic knowledge. Additionally, various pitch-based measures are studied with respect to their discriminating ability for prominence detection. A parametric scheme for modeling pitch plateau is proposed and this feature alone is found to outperform the traditional local pitch statistics. Two sets of experiments are used to explore the usefulness of the acoustic score generated using these features. The first set focuses on a more traditional way of word prominence detection based on a manually-tagged corpus. A 76.8% classification accuracy was achieved on a corpus of role-playing spoken dialogs. Due to difficulties in manually tagging speech prominence into discrete levels (categories), the second set of experiments focuses on evaluating the score indirectly. Specifically, through experiments on the Switchboard corpus, it is shown that the proposed acoustic score can discriminate between content word and function words in a statistically significant way. The relation between speech prominence and content/function words is also explored. Since prominent words tend to be predominantly content words, and since content words can be automatically marked from text-derived part of speech (POS) information, it is shown that the proposed acoustic score can be indirectly cross-validated through POS information. PMID:20454538

  19. Diffraction correction for precision surface acoustic wave velocity measurements

    NASA Astrophysics Data System (ADS)

    Ruiz M., Alberto; Nagy, Peter B.

    2002-09-01

    Surface wave dispersion measurements can be used to nondestructively characterize shot-peened, laser shock-peened, burnished, and otherwise surface-treated specimens. In recent years, there have been numerous efforts to separate the contribution of surface roughness from those of near-surface material variations, such as residual stress, texture, and increased dislocation density. As the accuracy of the dispersion measurements was gradually increased using state-of-the-art laser-ultrasonic scanning and sophisticated digital signal processing methods, it was recognized that a perceivable dispersive effect, similar to the one found on rough shot-peened specimens, is exhibited by untreated smooth surfaces as well. This dispersion effect is on the order of 0.1%, that is significantly higher than the experimental error associated with the measurements and comparable to the expected velocity change produced by near-surface compressive residual stresses in metals below their yield point. This paper demonstrates that the cause of this apparent dispersion is the diffraction of the surface acoustic wave (SAW) as it travels over the surface of the specimen. The results suggest that a diffraction correction may be introduced to increase the accuracy of surface wave dispersion measurements. A simple diffraction correction model was developed for surface waves and this correction was subsequently validated by laser-interferometric velocity measurements on aluminum specimens. copyright 2002 Acoustical Society of America.

  20. Precise Frequency Measurements Using a Superconducting Cavity Stabilized Oscillator

    NASA Technical Reports Server (NTRS)

    Strayer, D. M.; Yeh, N.-C.; Jiang, W.; Anderson, V. L.; Asplund, N.

    1999-01-01

    Many physics experiments call on improved resolution to better define the experimental results, thus improving tests of theories. Modern microwave technology combined with high-Q resonators can achieve frequency readout and control with resolutions up to a part in 10(exp 18). When the physical quantity in question in the experiment can be converted to a frequency or a change in frequency, a high-stability microwave oscillator can be applied to obtain state-of-the-art precision. In this work we describe the overall physical concepts and the required experimental procedures for optimizing a high-resolution frequency measurement system that employs a high-Q superconducting microwave cavity and a low-noise frequency synthesizer. The basic approach is to resolve the resonant frequencies of a high-Q (Q > 10(exp 10)) cavity to extremely high precision (one part in 10(exp 17)- 10(exp 18)). Techniques for locking the synthesizer frequency to a resonant frequency of the superconducting cavity to form an ultra-stable oscillator are described. We have recently set up an ultra-high-vacuum high-temperature annealing system to process superconducting niobium cavities, and have been able to consistently achieve Q > 10(exp 9). We have integrated high-Q superconducting cavities with a low-noise microwave synthesizer in a phase-locked-loop to verify the frequency stability of the system. Effects that disturb the cavity resonant frequency (such as the temperature fluctuations and mechanical vibrations) and methods to mitigate those effects are also considered. Applicability of these techniques to experiments will be discussed, and our latest experimental progress in achieving high-resolution frequency measurements using the superconducting-cavity-stabilized-oscillator will be presented.

  1. Photo-acoustic tomography in a rotating measurement setting

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume; Moradifam, Amir

    2016-10-01

    Photo-acoustic tomography (PAT) aims to leverage the photo-acoustic coupling between optical absorption of light sources and ultrasound (US) emission to obtain high contrast reconstructions of optical parameters with the high resolution of sonic waves. Quantitative PAT often involves a two-step procedure: first the map of sonic emission is reconstructed from US boundary measurements; and second optical properties of biological tissues are evaluated. We consider here a practical measurement setting in which such a separation does not apply. We assume that the optical source and an array of ultrasonic transducers are mounted on a rotating frame (in two or three dimensions) so that the light source rotates at the same time as the US measurements are acquired. As a consequence, we no longer have the option to reconstruct a map of sonic emission corresponding to a given optical illumination. We propose here a framework where the two steps are combined into one and an absorption map is directly reconstructed from the available US measurements.

  2. Compensating for ear-canal acoustics when measuring otoacoustic emissions.

    PubMed

    Charaziak, Karolina K; Shera, Christopher A

    2017-01-01

    Otoacoustic emissions (OAEs) provide an acoustic fingerprint of the inner ear, and changes in this fingerprint may indicate changes in cochlear function arising from efferent modulation, aging, noise trauma, and/or exposure to harmful agents. However, the reproducibility and diagnostic power of OAE measurements is compromised by the variable acoustics of the ear canal, in particular, by multiple reflections and the emergence of standing waves at relevant frequencies. Even when stimulus levels are controlled using methods that circumvent standing-wave problems (e.g., forward-pressure-level calibration), distortion-product otoacoustic emission (DPOAE) levels vary with probe location by 10-15 dB near half-wave resonant frequencies. The method presented here estimates the initial outgoing OAE pressure wave at the eardrum from measurements of the conventional OAE, allowing one to separate the emitted OAE from the many reflections trapped in the ear canal. The emitted pressure level (EPL) represents the OAE level that would be recorded were the ear canal replaced by an infinite tube with no reflections. When DPOAEs are expressed using EPL, their variation with probe location decreases to the test-retest repeatability of measurements obtained at similar probe positions. EPL provides a powerful way to reduce the variability of OAE measurements and improve their ability to detect cochlear changes.

  3. Acoustic measurement of the Deepwater Horizon Macondo well flow rate

    PubMed Central

    Camilli, Richard; Di Iorio, Daniela; Bowen, Andrew; Reddy, Christopher M.; Techet, Alexandra H.; Yoerger, Dana R.; Whitcomb, Louis L.; Seewald, Jeffrey S.; Sylva, Sean P.; Fenwick, Judith

    2012-01-01

    On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and acoustic Doppler sonar operating onboard a remotely operated vehicle for noncontact measurement of flow cross-section and velocity from the well’s two leak sites. Over 2,500 sonar cross-sections and over 85,000 Doppler velocity measurements were recorded during the acquisition process. These data were then applied to turbulent jet and plume flow models to account for entrained water and calculate a combined hydrocarbon flow rate from the two leak sites at seafloor conditions. Based on the chemical composition of end-member samples collected from within the well, this bulk volumetric rate was then normalized to account for contributions from gases and condensates at initial leak source conditions. Results from this investigation indicate that on May 31, 2010, the well’s oil flow rate was approximately 0.10 ± 0.017 m3 s-1 at seafloor conditions, or approximately 85 ± 15 kg s-1 (7.4 ± 1.3 Gg d-1), equivalent to approximately 57,000 ± 9,800 barrels of oil per day at surface conditions. End-member chemical composition indicates that this oil release rate was accompanied by approximately an additional 24 ± 4.2 kg s-1 (2.1 ± 0.37 Gg d-1) of natural gas (methane through pentanes), yielding a total hydrocarbon release rate of 110 ± 19 kg s-1 (9.5 ± 1.6 Gg d-1). PMID:21903931

  4. Acoustic measurement of the Deepwater Horizon Macondo well flow rate.

    PubMed

    Camilli, Richard; Di Iorio, Daniela; Bowen, Andrew; Reddy, Christopher M; Techet, Alexandra H; Yoerger, Dana R; Whitcomb, Louis L; Seewald, Jeffrey S; Sylva, Sean P; Fenwick, Judith

    2012-12-11

    On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and acoustic Doppler sonar operating onboard a remotely operated vehicle for noncontact measurement of flow cross-section and velocity from the well's two leak sites. Over 2,500 sonar cross-sections and over 85,000 Doppler velocity measurements were recorded during the acquisition process. These data were then applied to turbulent jet and plume flow models to account for entrained water and calculate a combined hydrocarbon flow rate from the two leak sites at seafloor conditions. Based on the chemical composition of end-member samples collected from within the well, this bulk volumetric rate was then normalized to account for contributions from gases and condensates at initial leak source conditions. Results from this investigation indicate that on May 31, 2010, the well's oil flow rate was approximately 0.10 ± 0.017 m(3) s(-1) at seafloor conditions, or approximately 85 ± 15 kg s(-1) (7.4 ± 1.3 Gg d(-1)), equivalent to approximately 57,000 ± 9,800 barrels of oil per day at surface conditions. End-member chemical composition indicates that this oil release rate was accompanied by approximately an additional 24 ± 4.2 kg s(-1) (2.1 ± 0.37 Gg d(-1)) of natural gas (methane through pentanes), yielding a total hydrocarbon release rate of 110 ± 19 kg s(-1) (9.5 ± 1.6 Gg d(-1)).

  5. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars

    SciTech Connect

    Delubac, Timothée; Bautista, Julian E.; Rich, James; Kirkby, David; Bailey, Stephen; Font-Ribera, Andreu; Slosar, Anže; Lee, Khee-Gan; Pieri, Matthew M.; Hamilton, Jean-Christophe; Bovy, Jo; Brinkmann, Jon; Carithers, William; Dawson, Kyle S.; Eisenstein, Daniel J.; Gontcho A Gontcho, Satya; Kneib, Jean-Paul; Margala, Daniel; Miralda-Escudé, Jordi; Myers, Adam D.; Nichol, Robert C.; Noterdaeme, Pasquier; O’Connell, Ross; Olmstead, Matthew D.; Palanque-Delabrouille, Nathalie; Pâris, Isabelle; Petitjean, Patrick; Ross, Nicholas P.; Rossi, Graziano; Schlegel, David J.; Schneider, Donald P.; Weinberg, David H.; Yèche, Christophe; York, Donald G.

    2015-01-26

    We report a detection of the baryon acousticoscillation (BAO) feature in the flux-correlation function of the Lyα forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range 2.1 ≤ z ≤ 3.5 from the data release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, DA(z = 2.34) and expansion rate, H(z = 2.34), both on a scale set by the sound horizon at the drag epoch, rd. We find DA/rd = 11.28 ± 0.65(1σ)$+2.8\\atop{-1.2}$(2σ) and DH/rd = 9.18 ± 0.28(1σ) ± 0.6(2σ) where DH = c/H. The optimal combination, ~D$0.7\\atop{H}$ D$0.3\\atop{A}/rd is determined with a precision of ~2%. For the value rd = 147.4 Mpc, consistent with the cosmic microwave background power spectrum measured by Planck, we find DA(z = 2.34) = 1662 ± 96(1σ) Mpc and H(z = 2.34) = 222 ± 7(1σ) km s-1 Mpc-1. Tests with mock catalogs and variations of our analysis procedure have revealed no systematic uncertainties comparable to our statistical errors. Our results agree with the previously reported BAO measurement at the same redshift using the quasar-Lyα forest cross-correlation. The autocorrelation and cross-correlation approaches are complementary because of the quite different impact of redshift-space distortion on the two measurements. The combined constraints from the two correlation functions imply values of DA/rd that are 7% lower and 7% higher for DH/rd than the predictions of a flat ΛCDM cosmological model with the best-fit Planck parameters. With our estimated statistical errors, the significance of this discrepancy is ≈2.5σ.

  6. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars

    DOE PAGES

    Delubac, Timothée; Bautista, Julian E.; Busca, Nicolás G.; ...

    2015-01-26

    We report a detection of the baryon acousticoscillation (BAO) feature in the flux-correlation function of the Lyα forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range 2.1 ≤ z ≤ 3.5 from the data release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, DA(z = 2.34) and expansion rate, H(z = 2.34), both on a scale set by the sound horizon at the drag epoch, rd. We find DA/rd = 11.28 ± 0.65(1σ)more » $$+2.8\\atop{-1.2}$$(2σ) and DH/rd = 9.18 ± 0.28(1σ) ± 0.6(2σ) where DH = c/H. The optimal combination, ~D$$0.7\\atop{H}$$ D$0.3\\atop{A}/rd is determined with a precision of ~2%. For the value rd = 147.4 Mpc, consistent with the cosmic microwave background power spectrum measured by Planck, we find DA(z = 2.34) = 1662 ± 96(1σ) Mpc and H(z = 2.34) = 222 ± 7(1σ) km s-1 Mpc-1. Tests with mock catalogs and variations of our analysis procedure have revealed no systematic uncertainties comparable to our statistical errors. Our results agree with the previously reported BAO measurement at the same redshift using the quasar-Lyα forest cross-correlation. The autocorrelation and cross-correlation approaches are complementary because of the quite different impact of redshift-space distortion on the two measurements. The combined constraints from the two correlation functions imply values of DA/rd that are 7% lower and 7% higher for DH/rd than the predictions of a flat ΛCDM cosmological model with the best-fit Planck parameters. With our estimated statistical errors, the significance of this discrepancy is ≈2.5σ.« less

  7. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    PubMed

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics.

  8. Measurement of food texture by an acoustic vibration method

    NASA Astrophysics Data System (ADS)

    Sakurai, Naoki; Taniwaki, Mitsuru; Iwatani, Shin-ichiro; Akimoto, Hidemi

    2011-09-01

    Food texture was measured by a new acoustic vibration method. A piezoelectric sensor sandwiched between a probe and piston was inserted into a food sample by delivery of silicon oil to a cylinder by a pump. Vibration emitted from the food sample on insertion of the probe was monitored by voltage outputs of the sensor. The voltage signals were passed through 19 half octave bands to calculate texture index for each band. The texture index was defined as vibration energy of the probe caused by the food rupture and/or breakage per unit time.

  9. Passive Wake Acoustics Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Wang, Frank Y.; Wassaf, Hadi; Dougherty, Robert P.; Clark, Kevin; Gulsrud, Andrew; Fenichel, Neil; Bryant, Wayne H.

    2004-01-01

    From August to September 2003, NASA conducted an extensive measurement campaign to characterize the acoustic signal of wake vortices. A large, both spatially as well as in number of elements, phased microphone array was deployed at Denver International Airport for this effort. This paper will briefly describe the program background, the microphone array, as well as the supporting ground-truth and meteorological sensor suite. Sample results to date are then presented and discussed. It is seen that, in the frequency range processed so far, wake noise is generated predominantly from a very confined area around the cores.

  10. Acoustic absorption by sunspots

    NASA Technical Reports Server (NTRS)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  11. Determination of rotor harmonic blade loads from acoustic measurements

    NASA Technical Reports Server (NTRS)

    Kasper, P. K.

    1975-01-01

    The magnitude of discrete frequency sound radiated by a rotating blade is strongly influenced by the presence of a nonuniform distribution of aerodynamic forces over the rotor disk. An analytical development and experimental results are provided for a technique by which harmonic blade loads are derived from acoustic measurements. The technique relates, on a one-to-one basis, the discrete frequency sound harmonic amplitudes measured at a point on the axis of rotation to the blade-load harmonic amplitudes. This technique was applied to acoustic data from two helicopter types and from a series of test results using the NASA-Langley Research Center rotor test facility. The inferred blade-load harmonics for the cases considered tended to follow an inverse power law relationship with harmonic blade-load number. Empirical curve fits to the data showed the harmonic fall-off rate to be in the range of 6 to 9 db per octave of harmonic order. These empirical relationships were subsequently used as input data in a compatible far field rotational noise prediction model. A comparison between predicted and measured off-axis sound harmonic levels is provided for the experimental cases considered.

  12. Analysis of acoustic reduction using spectral similarity measures.

    PubMed

    Hämäläinen, Annika; Gubian, Michele; ten Bosch, Louis; Boves, Lou

    2009-12-01

    Articulatory and acoustic reduction can manifest itself in the temporal and spectral domains. This study introduces a measure of spectral reduction, which is based on the speech decoding techniques commonly used in automatic speech recognizers. Using data for four frequent Dutch affixes from a large corpus of spontaneous face-to-face conversations, it builds on an earlier study examining the effects of lexical frequency on durational reduction in spoken Dutch [Pluymaekers, M. et al. (2005). J. Acoust. Soc. Am. 118, 2561-2569], and compares the proposed measure of spectral reduction with duration as a measure of reduction. The results suggest that the spectral reduction scores capture other aspects of reduction than duration. While duration can--albeit to a moderate degree--be predicted by a number of linguistically motivated variables (such as word frequency, segmental context, and speech rate), the spectral reduction scores cannot. This suggests that the spectral reduction scores capture information that is not directly accounted for by the linguistically motivated variables. The results also show that the spectral reduction scores are able to predict a substantial amount of the variation in duration that the linguistically motivated variables do not account for.

  13. A precise measurement of the B^0 meson oscillation frequency

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; C. Forshaw, D.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; K. Kuonen, A.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusardi, N.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; W. Ronayne, J.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zhukov, V.; Zucchelli, S.

    2016-07-01

    The oscillation frequency, Δ m_d, of B^0 mesons is measured using semileptonic decays with a D^- or D^{*-} meson in the final state. The data sample corresponds to 3.0fb^{-1} of pp collisions, collected by the LHCb experiment at centre-of-mass energies √{s} = 7 and 8 TeV. A combination of the two decay modes gives Δ m_d = (505.0 ± 2.1 ± 1.0) ns^{-1}, where the first uncertainty is statistical and the second is systematic. This is the most precise single measurement of this parameter. It is consistent with the current world average and has similar precision.

  14. Calorimetric measurement of work for a driven harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Sampaio, Rui; Suomela, Samu; Ala-Nissila, Tapio

    2016-12-01

    A calorimetric measurement has recently been proposed as a promising technique to measure thermodynamic quantities in a dissipative superconducting qubit. These measurements rely on the fact that the system is projected into energy eigenstates whenever energy is exchanged with the environment. This requirement imposes a restriction on the class of systems that can be measured in this way. Here we extend the calorimetric protocol to the measurement of work in a driven quantum harmonic oscillator. We employ a scheme based on a two-level approximation that makes use of an experimentally accessible quantity and show how it relates to the work obtained through the standard two-measurement protocol. We find that the average work is well approximated in the underdamped regime for short driving times and, in the overdamped regime, for any driving time. However, this approximation fails for the variance and higher moments of work at finite temperatures. Furthermore, we show how to relate the work statistics obtained through this scheme to the work statistics given by the two-measurement protocol.

  15. Calorimetric measurement of work for a driven harmonic oscillator.

    PubMed

    Sampaio, Rui; Suomela, Samu; Ala-Nissila, Tapio

    2016-12-01

    A calorimetric measurement has recently been proposed as a promising technique to measure thermodynamic quantities in a dissipative superconducting qubit. These measurements rely on the fact that the system is projected into energy eigenstates whenever energy is exchanged with the environment. This requirement imposes a restriction on the class of systems that can be measured in this way. Here we extend the calorimetric protocol to the measurement of work in a driven quantum harmonic oscillator. We employ a scheme based on a two-level approximation that makes use of an experimentally accessible quantity and show how it relates to the work obtained through the standard two-measurement protocol. We find that the average work is well approximated in the underdamped regime for short driving times and, in the overdamped regime, for any driving time. However, this approximation fails for the variance and higher moments of work at finite temperatures. Furthermore, we show how to relate the work statistics obtained through this scheme to the work statistics given by the two-measurement protocol.

  16. Wideband acoustic immittance measures: developmental characteristics (0 to 12 months).

    PubMed

    Kei, Joseph; Sanford, Chris A; Prieve, Beth A; Hunter, Lisa L

    2013-07-01

    Rapid developmental changes of the peripheral auditory system in normal infants occur in the first year of life. Specifically, the postnatal development of the external and middle ear affects all measures of external and middle ear function including wideband acoustic immittance(WAI). This article provides an overview of WAI studies in newborns and infants from a developmental perspective. Normative WAI data in newborns are fairly consistent across studies. However, there are discrepancies in some WAI measures between studies, possibly due to differences in sampling, methodology, and instrumentation. Accuracy of WAI measurements is compromised when a good probe seal cannot be maintained during testing or an inaccurate estimate of the cross-sectional area of the ear canal of newborns occurs. Comparison of WAI data between age groups from 0 to 12 months reveals maturation effects. Additional age-specific longitudinal and cross-sectional normative WAI data for infants from birth to 12 months are required to validate and consolidate existing data.

  17. Classification of heart valve condition using acoustic measurements

    SciTech Connect

    Clark, G.

    1994-11-15

    Prosthetic heart valves and the many great strides in valve design have been responsible for extending the life spans of many people with serious heart conditions. Even though the prosthetic valves are extremely reliable, they are eventually susceptible to long-term fatigue and structural failure effects expected from mechanical devices operating over long periods of time. The purpose of our work is to classify the condition of in vivo Bjork-Shiley Convexo-Concave (BSCC) heart valves by processing acoustic measurements of heart valve sounds. The structural failures of interest for Bscc valves is called single leg separation (SLS). SLS can occur if the outlet strut cracks and separates from the main structure of the valve. We measure acoustic opening and closing sounds (waveforms) using high sensitivity contact microphones on the patient`s thorax. For our analysis, we focus our processing and classification efforts on the opening sounds because they yield direct information about outlet strut condition with minimal distortion caused by energy radiated from the valve disc.

  18. Turbulent Diffusivity under High Winds from Acoustic Measurements of Bubbles

    NASA Astrophysics Data System (ADS)

    Wang, D. W.; Wijesekera, H. W.; Jarosz, E.; Teague, W. J.; Pegau, W. S.

    2015-12-01

    Breaking surface waves generate layers of bubble clouds as air parcels entrain into the upper-ocean by the action of turbulent motions. The turbulent diffusivity in the bubble cloud layer was investigated by combining measurements of surface winds, waves, bubble acoustic backscatter, currents, and hydrography. These measurements were made at water depths of 60-90 m on the shelf of the Gulf of Alaska near Kayak Island during late December 2012, a period where the ocean was experiencing winds and significant wave heights up to 22 m s-1 and 9 m, respectively. Vertical profiles of acoustic backscatter decayed exponentially from the wave surface with e-folding lengths of about 0.6 to 6 m, while the bubble penetration depths were about 3 to 30 m. Both e-folding lengths and bubble depths were highly correlated with surface wind and wave conditions. The turbulent diffusion coefficients, inferred from e-folding length and bubble depth, varied from about 0.01 m2 s-1 to 0.4 m2 s-1. Our analysis suggests that the turbulent diffusivity in the bubble layer can be parameterized as a function of the cube of the wind friction velocity with a proportionality coefficient that depends weakly on wave age. Furthermore, in the bubble layer, on average, the shear production of the turbulent kinetic energy estimated by the diffusion coefficients was a similar order magnitude as the dissipation rate predicted by the wall boundary-layer theory.

  19. Measurements of Low-Frequency Acoustic Attenuation in Soils.

    DTIC Science & Technology

    2007-11-02

    Engineering Research Laboratory to design an acoustic subsurface imaging system, a set of experiments was conducted in which the attenuation and the velocity...support of the U.S. Army Construction Engineering Research Laboratory’s efforts to design an acoustic subsurface imaging system which would ideally be...of acoustic waves such as those generated by a subsurface imaging system. An experiment reported in the literature characterized the acoustic

  20. Properties of the Solar Acoustic Source Inferred from Nonadiabatic Oscillation Spectra

    NASA Astrophysics Data System (ADS)

    Wachter, R.; Kosovichev, A. G.

    2005-07-01

    Severino et al. suggested in 2001 that observed power and cross spectra of medium-degree p-modes in velocity and intensity can be described by splitting the solar background noise into correlated, coherent, and uncoherent components. We account for the nonadiabatic nature of solar oscillations by including the perturbations of the radiative energy flux in our model for the oscillations. Our calculations show the potential to explain the observations without the ad hoc phase differences between velocity and intensity oscillations introduced in the model of Severino et al. The phases and amplitudes of the correlated noise components are obtained by fitting our nonadiabatic model to the SOHO MDI power and cross spectra. These parameters provide information about the p-mode excitation process. We show that the type and location of the source can not be uniquely determined by the properties of the resonant p-modes in power and cross spectra of velocity and intensity oscillations. However, we obtain estimates for the phases and amplitudes of the correlated noise, which we interpret in terms of isolated rapid downdrafts in intergranular lanes. This idea is supported by three-dimensional simulations of the upper solar convection zone.

  1. Suppression of nonlinear oscillations in combustors with partial length acoustic liners

    NASA Technical Reports Server (NTRS)

    Espander, W. R.; Mitchell, C. E.; Baer, M. R.

    1975-01-01

    An analytical model is formulated for a three-dimensional nonlinear stability problem in a rocket motor combustion chamber. The chamber is modeled as a right circular cylinder with a short (multi-orifice) nozzle, and an acoustic linear covering an arbitrary portion of the cylindrical periphery. The combustion is concentrated at the injector and the gas flow field is characterized by a mean Mach number. The unsteady combustion processes are formulated using the Crocco time lag model. The resulting equations are solved using a Green's function method combined with numerical evaluation techniques. The influence of acoustic liners on the nonlinear waveforms is predicted. Nonlinear stability limits and regions where triggering is possible are also predicted for both lined and unlined combustors in terms of the combustion parameters.

  2. Nonlinear Resonant Oscillations of Gas in Optimized Acoustical Resonators and the Effect of Central Blockage

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Finkbeiner, Joshua; Raman, Ganesh; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    Optimizing resonator shapes for maximizing the ratio of maximum to minimum gas pressure at an end of the resonator is investigated numerically. It is well known that the resonant frequencies and the nonlinear standing waveform in an acoustical resonator strongly depend on the resonator geometry. A quasi-Newton type scheme was used to find optimized axisymmetric resonator shapes achieving the maximum pressure compression ratio with an acceleration of constant amplitude. The acoustical field was solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects were obtained through an automation scheme based on continuation method. Results are presented for optimizing three types of geometry: a cone, a horn-cone and a half cosine-shape. For each type, different optimized shapes were found when starting with different initial guesses. Further, the one-dimensional model was modified to study the effect of an axisymmetric central blockage on the nonlinear standing wave.

  3. Modeling and Measuring Acoustic Backscatter from Fish Aggregations

    DTIC Science & Technology

    1999-09-30

    of the abundance, spatial distribution, schooling behaviour and acoustic backscatter of the Namibian pilchard. Cruise Report 99-4, Dr. Fridtjof ... Nansen . 103 pp. Rudstam, L, Horne, J., Fleischer, G. Report from the Great Lakes Acoustic Workshop III: Translation of acoustic data to fish abundance

  4. Relationship between acoustic measures and speech naturalness ratings in Parkinson's disease: A within-speaker approach.

    PubMed

    Klopfenstein, Marie

    2015-01-01

    This study investigated the acoustic basis of across-utterance, within-speaker variation in speech naturalness for four speakers with dysarthria secondary to Parkinson's disease (PD). Speakers read sentences and produced spontaneous speech. Acoustic measures of fundamental frequency, phrase-final syllable lengthening, intensity and speech rate were obtained. A group of listeners judged speech naturalness using a nine-point Likert scale. Relationships between judgements of speech naturalness and acoustic measures were determined for individual speakers with PD. Relationships among acoustic measures also were quantified. Despite variability between speakers, measures of mean F0, intensity range, articulation rate, average syllable duration, duration of final syllables, vocalic nucleus length of final unstressed syllables and pitch accent of final syllables emerged as possible acoustic variables contributing to within-speaker variations in speech naturalness. Results suggest that acoustic measures correlate with speech naturalness, but in dysarthric speech they depend on the speaker due to the within-speaker variation in speech impairment.

  5. Frequency Measurement System of Optical Clocks Without a Flywheel Oscillator.

    PubMed

    Fujieda, Miho; Ido, Tetsuya; Hachisu, Hidekazu; Gotoh, Tadahiro; Takiguchi, Hiroshi; Hayasaka, Kazuhiro; Toyoda, Kenji; Yonegaki, Kenji; Tanaka, Utako; Urabe, Shinji

    2016-12-01

    We developed a system for the remote frequency comparison of optical clocks. The system does not require a flywheel oscillator at the remote end, making it possible to evaluate optical frequencies even in laboratories, where no stable microwave reference, such as an Rb clock, a Cs clock, or a hydrogen maser exists. The system is established by the integration of several systems: a portable carrier-phase two-way satellite frequency transfer station and a microwave signal generation system by an optical frequency comb from an optical clock. The measurement was as quick as a conventional method that employs a local microwave reference. We confirmed the system uncertainty and instability to be at the low 10(-15) level using an Sr lattice clock.

  6. Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics

    NASA Technical Reports Server (NTRS)

    Kenny, Robert Jeremy

    2009-01-01

    NASA's current models to predict lift-off acoustics for launch vehicles are currently being updated using several numerical and empirical inputs. One empirical input comes from free-field acoustic data measured at three Space Shuttle Reusable Solid Rocket Motor (RSRM) static firings. The measurements were collected by a joint collaboration between NASA - Marshall Space Flight Center, Wyle Labs, and ATK Launch Systems. For the first time NASA measured large-thrust solid rocket motor plume acoustics for evaluation of both noise sources and acoustic radiation properties. Over sixty acoustic free-field measurements were taken over the three static firings to support evaluation of acoustic radiation near the rocket plume, far-field acoustic radiation patterns, plume acoustic power efficiencies, and apparent noise source locations within the plume. At approximately 67 m off nozzle centerline and 70 m downstream of the nozzle exit plan, the measured overall sound pressure level of the RSRM was 155 dB. Peak overall levels in the far field were over 140 dB at 300 m and 50-deg off of the RSRM thrust centerline. The successful collaboration has yielded valuable data that are being implemented into NASA's lift-off acoustic models, which will then be used to update predictions for Ares I and Ares V liftoff acoustic environments.

  7. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    SciTech Connect

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  8. Measured acoustic properties of variable and low density bulk absorbers

    NASA Technical Reports Server (NTRS)

    Dahl, M. D.; Rice, E. J.

    1985-01-01

    Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.

  9. [EFFECTS OF MUSIC-ACOUSTIC SIGNALS, ONLINE CONTROLLED BY EEG OSCILLATORS OF THE SUBJECT].

    PubMed

    Fedotchev, A I; Bondar, A T; Bakhchina, A V; Parin, S B; Polevaya, S A; Radchenko, G S

    2015-08-01

    The effects of 2 variants of the method of musical EEG neurofeedback, in which the dominant spectral components of subject's EEG (EEG oscillators) are online converted to music-like signals similar by timbre to flute sounds, have been studied. In the first case, these music-like signals were smoothly varying by the pitch and intensity in accordance with the current amplitude of the EEG oscillator. In the second case, the same variations of flute-like sound were accompanied by such musical element as rhythm. After the single exposure, the modifications of subject's brain activity and positive changes in psycho-physiological state of the subject have been found. Particularly pronounced effects were observed under rhythmically organized music-like stimuli.

  10. An Ultrasonic Caliper Device for Measuring Acoustic Nonlinearity

    NASA Astrophysics Data System (ADS)

    Hunter, Christopher; Sapozhnikov, Oleg A.; Maxwell, Adam D.; Khokhlova, Vera A.; Wang, Yak-Nam; MacConaghy, Brian; Kreider, Wayne

    In medical and industrial ultrasound, it is often necessary to measure the acoustic properties of a material. A specific medical application requires measurements of sound speed, attenuation, and nonlinearity to characterize livers being evaluated for transplantation. For this application, a transmission-mode caliper device is proposed in which both transmit and receive transducers are directly coupled to a test sample, the propagation distance is measured with an indicator gage, and receive waveforms are recorded for analysis. In this configuration, accurate measurements of nonlinearity present particular challenges: diffraction effects can be considerable while nonlinear distortions over short distances typically remain small. To enable simple estimates of the nonlinearity coeffcient from a quasi-linear approximation to the lossless Burgers' equation, the calipers utilize a large transmitter and plane waves are measured at distances of 15-50 mm. Waves at 667 kHz and pressures between 0.1 and 1 MPa were generated and measured in water at different distances; the nonlinearity coeffcient of water was estimated from these measurements with a variability of approximately 10%. Ongoing efforts seek to test caliper performance in other media and improve accuracy via additional transducer calibrations.

  11. Asymptotic theory of intermediate- and high-degree solar acoustic oscillations

    NASA Technical Reports Server (NTRS)

    Brodsky, M.; Vorontsov, S. V.

    1993-01-01

    A second-order asymptotic approximation is developed for adiabatic nonradial p-modes of a spherically symmetric star. The exact solutions of adiabatic oscillations are assumed in the outermost layers, where the asymptotic description becomes invalid, which results in a eigenfrequency equation with model-dependent surface phase shift. For lower degree modes, the phase shift is a function of frequency alone; for high-degree modes, its dependence on the degree is explicitly taken into account.

  12. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  13. Boundary conditions for simulations of oscillating bubbles using the non-linear acoustic approximation

    NASA Astrophysics Data System (ADS)

    King, J. R. C.; Ziolkowski, A. M.; Ruffert, M.

    2015-03-01

    We have developed a new boundary condition for finite volume simulations of oscillating bubbles. Our method uses an approximation to the motion outside the domain, based on the solution at the domain boundary. We then use this approximation to apply boundary conditions by defining incoming characteristic waves at the domain boundary. Our boundary condition is applicable in regions where the motion is close to spherically symmetric. We have tested our method on a range of one- and two-dimensional test cases. Results show good agreement with previous studies. The method allows simulations of oscillating bubbles for long run times (5 ×105 time steps with a CFL number of 0.8) on highly truncated domains, in which the boundary condition may be applied within 0.1% of the maximum bubble radius. Conservation errors due to the boundary conditions are found to be of the order of 0.1% after 105 time steps. The method significantly reduces the computational cost of fixed grid finite volume simulations of oscillating bubbles. Two-dimensional results demonstrate that highly asymmetric bubble features, such as surface instabilities and the formation of jets, may be captured on a small domain using this boundary condition.

  14. Prediction and Measurement of the Vibration and Acoustic Radiation of Panels Subjected to Acoustic Loading

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Rizzi, Stephen A.

    1995-01-01

    Interior noise and sonic fatigue are important issues in the development and design of advanced subsonic and supersonic aircraft. Conventional aircraft typically employ passive treatments, such as constrained layer damping and acoustic absorption materials, to reduce the structural response and resulting acoustic levels in the aircraft interior. These techniques require significant addition of mass and only attenuate relatively high frequency noise transmitted through the fuselage. Although structural acoustic coupling is in general very important in the study of aircraft fuselage interior noise, analysis of noise transmission through a panel supported in an infinite rigid baffle (separating two semi-infinite acoustic domains) can be useful in evaluating the effects of active/adaptive materials, complex loading, etc. Recent work has been aimed at developing adaptive and/or active methods of controlling the structural acoustic response of panels to reduce the transmitted noise1. A finite element formulation was recently developed to study the dynamic response of shape memory alloy (SMA) hybrid composite panels (conventional composite panel with embedded SMA fibers) subject to combined acoustic and thermal loads2. Further analysis has been performed to predict the far-field acoustic radiation using the finite element dynamic panel response prediction3. The purpose of the present work is to validate the panel vibration and acoustic radiation prediction methods with baseline experimental results obtained from an isotropic panel, without the effect of SMA.

  15. Precision Measurement of Neutrino Oscillation Parameters with KamLAND

    SciTech Connect

    O'Donnell, Thomas

    2011-12-01

    This dissertation describes a measurement of the neutrino oscillation parameters m2 21, θ12 and constraints on θ13 based on a study of reactor antineutrinos at a baseline of ~ 180 km with the KamLAND detector. The data presented here was collected between April 2002 and November 2009, and amounts to a total exposure of 2.64 ± 0.07 × 1032 proton-years. For this exposure we expect 2140 ± 74(syst) antineutrino candidates from reactors, assuming standard model neutrino behavior, and 350±88(syst) candidates from background. The number observed is 1614. The ratio of background-subtracted candidates observed to expected is (NObs - NBkg)/ (NExp) = 0.59 ± 0.02(stat) ± 0.045(syst) which confirms reactor neutrino disappearance at greater than 5σ significance. Interpreting this deficit as being due to neutrino oscillation, the best-fit oscillation parameters from a three-flavor analysis are m2 21= 7.60+0.20 -0.19×10-5eV2, θ12 = 32.5 ± 2.9 degrees and sin2 θ13 = 0.025+0.035 -0.035, the 95% confidence-level upper limit on sin2 θ13 is sin2 θ13 < 0.083. Assuming CPT invariance, a combined analysis of KamLAND and solar neutrino data yields best-fit values: m2 21 = 7.60+0.20 -0.20 × 10-5eV2, θ12 = 33.5+1.0 -1.1 degrees, and sin2 θ13 = 0.013 ± 0.028 or sin2 θ13 < 0.06 at the 95% confidence level.

  16. Umbral oscillations measured in the Stokes-V inversion point

    NASA Astrophysics Data System (ADS)

    Balthasar, H.; Wiehr, E.

    1984-08-01

    The inversion point of the circular Zeeman polarization profile (V-Stokes) parameter is used to observe umbral Doppler oscillations free from disturbing influences of parasitic light. In a second step, purely umbral lines are used to avoid remaining influences from the V-profile of the (oscillating) penumbra. Among a total of nine sunspot umbrae, three exhibit oscillations within the various 1.5 to 2.5 hr samples. The periods differ significantly from 300 s, vary with time, and occur within time intervals of high tranquility thus explaining the lack of oscillations in the remaining sunspots.

  17. Application of acoustic doppler velocimeters for streamflow measurements

    USGS Publications Warehouse

    Rehmel, M.

    2007-01-01

    The U.S. Geological Survey (USGS) principally has used Price AA and Price pygmy mechanical current meters for measurement of discharge. New technologies have resulted in the introduction of alternatives to the Price meters. One alternative, the FlowTracker acoustic Doppler velocimeter, was designed by SonTek/YSI to make streamflow measurements in wadeable conditions. The device measures a point velocity and can be used with standard midsection method algorithms to compute streamflow. The USGS collected 55 quality-assurance measurements with the FlowTracker at 43 different USGS streamflow-gaging stations across the United States, with mean depths from 0.05to0.67m, mean velocities from 13 to 60 cm/s, and discharges from 0.02 to 12.4m3/s. These measurements were compared with Price mechanical current meter measurements. Analysis of the comparisons shows that the FlowTracker discharges were not statistically different from the Price meter discharges at a 95% confidence level. ?? 2007 ASCE.

  18. Measurement of ultrasonic power and electro-acoustic efficiency of high power transducers.

    PubMed

    Lin, S; Zhang, F

    2000-01-01

    In this paper, an improved method for the measurement of acoustic power and electro-acoustic efficiency of high power ultrasonic transducers is presented. The measuring principle is described, the experimental results are given. In comparison with traditional methods, the method presented in this paper has the advantages of simplicity, economy and practicality. The most important is that it can measure the output acoustic power and the electro-acoustic efficiency of the transducer under the condition of high power and practical applications, such as ultrasonic cleaning and soldering.

  19. Mechanical Properties of a Primary Cilium Measured by Resonant Oscillation

    NASA Astrophysics Data System (ADS)

    Resnick, Andrew

    Primary cilia are ubiquitous mammalian cellular substructures implicated in an ever-increasing number of regulatory pathways. The well-established `ciliary hypothesis' states that physical bending of the cilium (for example, due to fluid flow) initiates signaling cascades, yet the mechanical properties of the cilium remain incompletely measured, resulting in confusion regarding the biological significance of flow-induced ciliary mechanotransduction. In this work we measure the mechanical properties of a primary cilium by using an optical trap to induce resonant oscillation of the structure. Our data indicate 1), the primary cilium is not a simple cantilevered beam, 2), the base of the cilium may be modeled as a nonlinear rotatory spring, the linear spring constant `k' of the cilium base calculated to be (4.6 +/- 0.62)*10-12 N/rad and nonlinear spring constant ` α' to be (-1 +/- 0.34) *10-10 N/rad2 , and 3) the ciliary base may be an essential regulator of mechanotransduction signalling. Our method is also particularly suited to measure mechanical properties of nodal cilia, stereocilia, and motile cilia, anatomically similar structures with very different physiological functions.

  20. International Congress on Acoustic Intensity Measurement: Measurement Techniques and Applications, 2nd, Senlis, France, September 23-26, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Recent developments in acoustic-intensity measurement are discussed in reviews and reports of theoretical and experimental investigations. Instrumentation, vector acoustics, sound radiation, intensity in the presence of flow, intensity in structures, sound power, source localization, impedance, absorption, and transmission are the fields covered by the contributions. Specific topics addressed include microphone configurations for intensity probes, the rotational structure of intensity fields, acoustic intensity and numerical simulation, sound-power measurement in the presence of background noise, and techniques for measuring the absorption coefficient of acoustic materials. Graphs, drawings, diagrams, tables of numerical data, and photographs of test setups are provided.

  1. Acoustic measurements of a full-scale coaxial helicopter

    NASA Technical Reports Server (NTRS)

    Mosher, M.; Peterson, R. L.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept (ABC) Technology Demonstrator in the NASA Ames 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, noise at various forward speeds, rotor lift coefficients, and rotor shaft angles of attack were investigated. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where it is increased by significant impulsive blade/vortex interactions. The impulsivity appears to depend upon how the lift is distributed between the two rotors. The noise levels measured are shown to be slightly higher than on a modern conventional rotor tested in the same facility.

  2. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  3. Effects of ingested atmospheric turbulence on measured tail rotor acoustics

    NASA Technical Reports Server (NTRS)

    Signor, David B.; Yamauchi, Gloria K.; Mosher, Marianne; Hagen, Martin J.; George, Albert R.

    1992-01-01

    Results from an outdoor hover test of a full-scale Lynx tail rotor are presented. The investigation was designed to further the understanding of the acoustics of an isolated tail rotor hovering out-of-ground effect in atmospheric turbulence, without the effects of the main rotor wake or other helicopter components. Measurements include simultaneous rotor performance, noise, inflow, and far-field atmospheric turbulence. Results with grid-generated inflow turbulence are also presented. The effects of turbulence ingestion on rotor noise are quantified. Turbulence ingestion noise is found to be the dominant noise mechanism at locations near the rotor axis. At these locations, the sound radiated by the hovering rotor increases with both increasing atmospheric wind speed and ingested rms turbulent velocity.

  4. Measurements of atmospheric turbulence effects on tail rotor acoustics

    NASA Technical Reports Server (NTRS)

    Hagen, Martin J.; Yamauchi, Gloria K.; Signor, David B.; Mosher, Marianne

    1994-01-01

    Results from an outdoor hover test of a full-scale Lynx tail rotor are presented. The investigation was designed to further the understanding of the acoustics of an isolated tail rotor hovering out-of-ground effect in atmospheric turbulence, without the effects of the main rotor wake or other helicopter components. Measurements include simultaneous rotor performance, noise, inflow, and far-field atmospheric turbulence. Results with grid-generated inflow turbulence are also presented. The effects of atmospheric turbulence ingestion on rotor noise are quantified. In contradiction to current theories, increasing rotor inflow and rotor thrust were found to increase turbulence ingestion noise. This is the final report of Task 13A--Helicopter Tail Rotor Noise, of the NASA/United Kingdom Defense Research Agency cooperative Aeronautics Research Program.

  5. Pulsed electro-acoustic (PEA) measurements of embedded charge distributions

    NASA Astrophysics Data System (ADS)

    Dennison, J. R.; Pearson, Lee H.

    2013-09-01

    Knowledge of the spatial distribution and evolution of embedded charge in thin dielectric materials has important applications in semiconductor, high-power electronic device, high-voltage DC power cable insulation, high-energy and plasma physics apparatus, and spacecraft industries. Knowing how, where, and how much charge accumulates and how it redistributes and dissipates can predict destructive charging effects. Pulsed Electro-acoustic (PEA) measurements— and two closely related methods, Pressure Wave Propagation (PWP) and Laser Intensity Modulation (LIMM)— nondestructively probe such internal charge distributions. We review the instrumentation, methods, theory and signal processing of simple PEA experiments, as well as the related PPW and LIMM methods. We emphasize system improvements required to achieve high spatial resolution for in vacuo measurements of thin dielectrics charged using electron beam injection.

  6. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  7. Picosecond Acoustic Measurement of Anisotropic Properties of Thin Films

    SciTech Connect

    Perton, M.; Rossignol, C.; Chigarev, N.; Audoin, B.

    2007-03-21

    Properties of thin metallic films have been studied extensively by means of laser-picosecond ultrasonics. Generation of longitudinal and shear waves via thermoelastic mechanism and large source has been only demonstrated for waves vectors along the normal to the interface. However, such measurements cannot provide complete information about elastic properties of films. As it has been already shown for nanosecond ultrasonics, the knowledge of group or phase velocities in several directions for sources with small lateral size allows determining the stiffness tensor coefficients of a sample. The experimental set-up was prepared to obtain the thinnest size for the source to achieve acoustic diffraction. The identification of the stiffness tensor components, based on the inversion of the bulk waves phase velocities, is applied to signals simulated and experimentally recorded for a material with hexagonal properties. First estimation of stiffness tensor coefficients for thin metallic film 2.1 {mu}m has been performed.

  8. Measurement of the Acoustic Nonlinearity Parameter for Biological Media.

    NASA Astrophysics Data System (ADS)

    Cobb, Wesley Nelson

    In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.

  9. Measurement of Bubble Size Distribution Based on Acoustic Propagation in Bubbly Medium

    NASA Astrophysics Data System (ADS)

    Wu, Xiongjun; Hsiao, Chao-Tsung; Choi, Jin-Keun; Chahine, Georges

    2013-03-01

    Acoustic properties are strongly affected by bubble size distribution in a bubbly medium. Measurement of the acoustic transmission becomes increasingly difficulty as the void fraction of the bubbly medium increases due to strong attenuation, while acoustic reflection can be measured more easily with increasing void fraction. The ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright, an instrument for bubble size measurement that is under development tries to take full advantage of the properties of acoustic propagation in bubbly media to extract bubble size distribution. Properties of both acoustic transmission and reflection in the bubbly medium from a range of short single-frequency bursts of acoustic waves at different frequencies are measured in an effort to deduce the bubble size distribution. With the combination of both acoustic transmission and reflection, assisted with validations from photography, the ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright has the potential to measure bubble size distributions in a wider void fraction range. This work was sponsored by Department of Energy SBIR program

  10. Acoustic measurements of F-16 aircraft operating in hush house, NSN 4920-02-070-2721

    NASA Astrophysics Data System (ADS)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-16 aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that no sonic fatigue problems are anticipated with the F-16 aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-16 aircraft water cooled hush house at Hill AFB, but were increased over that measured during ground run up. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment.

  11. Stabilization and Low-Frequency Oscillation of Capillary Bridges with Modulated Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.

    1996-01-01

    In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.

  12. Acoustic and Slow Sausage Oscillations in the Stratified Solar Photosphere: Hinode Observations and Phase Relationships

    NASA Astrophysics Data System (ADS)

    Tsap, Y. T.; Stepanov, A. V.; Kopylova, Y. G.

    2016-11-01

    Based on the linearized magnetohydrodynamic (MHD) equations within the framework of the thin flux tube approximation, the phase relationships between the disturbed quantities of evanescent acoustic and slow sausage MHD modes excited in the adiabatically stratified solar atmosphere are considered. It has been shown that the sign of the phase differences (equal to ±π/2) between the velocity and other disturbed quantities such as pressure, density, magnetic field, and temperature, depends on the wave frequency ω. The obtained phase relationships agree well with SOT/ Hinode observations obtained by Fujimura and Tsuneta ( Astrophys. J. 702, 1443, 2009) when ω≈ωc, where ωc is the cutoff frequency. The role of various modes excited in the solar atmosphere in the light of the chromospheric and coronal heating problems are discussed.

  13. Outcomes Measurement in Voice Disorders: Application of an Acoustic Index of Dysphonia Severity

    ERIC Educational Resources Information Center

    Awan, Shaheen N.; Roy, Nelson

    2009-01-01

    Purpose: The purpose of this experiment was to assess the ability of an acoustic model composed of both time-based and spectral-based measures to track change following voice disorder treatment and to serve as a possible treatment outcomes measure. Method: A weighted, four-factor acoustic algorithm consisting of shimmer, pitch sigma, the ratio of…

  14. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  15. Passive Acoustic Tomography Tested for Measuring Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Kleppe, John

    2004-01-01

    The requirements of higher performance, better fuel economy, and lower emissions place an increasing premium on knowing the internal operating parameters of jet engines. One of the most important is the gas temperature in the post combustor section of the engine. Typically the gas temperature is measured with a thermocouple probe or by some optical technique such as Rayleigh scattering. Probes, while providing valuable information, have several limitations. The probe signal must be corrected for radiation and conduction losses, probes provide only a point measurement, and probes must be constructed of materials whose melting points are lower than the temperature of the environment into which they are inserted. Some of the disadvantages of probes are overcome by various optical techniques. Nothing needs to be inserted into the flow, and the temperature can be directly related to the signal by known physical laws. However, optical techniques require optical access (i.e., a window) and a light source (such as a laser), and they are very sensitive to the presence of particles in the flow. To overcome these problems, researchers from the NASA Glenn Research Center and The University of Nevada are developing a technique that uses sound instead of light to measure gas temperature. Like optical techniques, it is nonintrusive--no probe need be exposed to the combustion environment--and the temperature is directly related to a measured quantity--the speed of sound, which is proportional to the square root of the absolute temperature. The temperature profile inside the engine is constructed from the differences in arrival time between correlated signals from an array of microphones placed around the circumference of the engine. In much the same way as a complete picture of the inside of your body can be constructed from an array of x-ray photographs taken at different angles, the temperature profile in the engine is constructed from the angular array of microphones. It is

  16. Acoustic Measurements of an Uninstalled Spacecraft Cabin Ventilation Fan Prototype

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Brown, Clifford A.; Shook, Tony D.; Winkel, James; Kolacz, John S.; Podboy, Devin M.; Loew, Raymond A.; Mirecki, Julius H.

    2012-01-01

    Sound pressure measurements were recorded for a prototype of a spacecraft cabin ventilation fan in a test in the NASA Glenn Acoustical Testing Laboratory. The axial fan is approximately 0.089 m (3.50 in.) in diameter and 0.223 m (9.00 in.) long and has nine rotor blades and eleven stator vanes. At design point of 12,000 rpm, the fan was predicted to produce a flow rate of 0.709 cu m/s (150 cfm) and a total pressure rise of 925 Pa (3.72 in. of water) at 12,000 rpm. While the fan was designed to be part of a ducted atmospheric revitalization system, no attempt was made to throttle the flow or simulate the installed configuration during this test. The fan was operated at six speeds from 6,000 to 13,500 rpm. A 13-microphone traversing array was used to collect sound pressure measurements along two horizontal planes parallel to the flow direction, two vertical planes upstream of the fan inlet and two vertical planes downstream of the fan exhaust. Measurements indicate that sound at blade passing frequency harmonics contribute significantly to the overall audible noise produced by the fan at free delivery conditions.

  17. Unrestrained acoustic plethysmograph for measuring tidal volume in mice.

    PubMed

    Reynolds, Jeffrey S; Frazer, David G

    2006-09-01

    The traditional method for measurement of tidal volume in unrestrained mice relies on pressure changes induced by a freely respiring animal in a whole body plethysmograph. These changes have been assumed to be the result of thermo-hygrometric differences between respired air and gas within the chamber. It is known, however, that gas compression in the lung can also contribute significantly to changes in plethysmograph pressure. This study describes an acoustic plethysmograph for mice that is capable of measuring the tidal volume time series without the errors associated with the traditional method. The plethysmograph was designed as a resonating cavity at a fixed frequency. It had a sharp resonant peak and was tuned so that changes in body volume produced nearly linear changes in sound amplitude. The plethysmograph was tested with a water filled balloon connected to a syringe pump. The volume of the balloon was varied as a triangle wave with an amplitude of 250 microL. The RMS error between measured and delivered volume was 4.43 microL. A volume step test, performed to assess the response time of the system, showed that the plethysmograph responded in less than one millisecond.

  18. The application of acoustic emission technique to fatigue crack measurement. [in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Crews, J. H., Jr.

    1974-01-01

    The applicability of acoustic emission technique to measure fatigue cracks in aluminum alloy specimens was investigated. There are several variables, such as the metallurgical and the physical treatment of the specimen, that can affect the level of acoustic activity of a fatigue specimen. It is therefore recommended that the acoustic emission technique be supplemented by other nondestructive evaluation methods to obtain quantitative data on crack growth.

  19. Experimental and Theoretical Measurements of Concentration Distributions in Acoustic Focusing Devices

    SciTech Connect

    Rose, K A; Fisher, K; Jung, B; Ness, K; Mariella Jr., R P

    2008-06-16

    We describe a modeling approach to capture the particle motion within an acoustic focusing microfluidic device. Our approach combines finite element models for the acoustic forces with analytical models for the fluid motion and uses these force fields to calculate the particle motion in a Brownian dynamics simulation. We compare results for the model with experimental measurements of the focusing efficiency within a microfabricated device. The results show good qualitative agreement over a range of acoustic driving voltages and particle sizes.

  20. Evaluation of acoustic emission technique for crack growth measurement in aeronautical structures

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.

    1974-01-01

    An investigation has been conducted concerning the possibility to use the acoustic emission technique for the measurement of fatigue crack growth in aluminum alloy specimens. Two types of aluminum alloys were tested in the investigation. It was found that the acoustic emission technique provides a reliable indication of changes in the crack dimensions over relatively short periods of time. The level of acoustic activity serves as an indicator of the size of the cracks.

  1. Convergence of oscillator spectral estimators for counted-frequency measurements.

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1972-01-01

    A common intermediary connecting frequency-noise calibration or testing of an oscillator to useful applications is the spectral density of the frequency-deviating process. In attempting to turn test data into predicts of performance characteristics, one is naturally led to estimation of statistical values by sample-mean and sample-variance techniques. However, sample means and sample variances themselves are statistical quantities that do not necessarily converge (in the mean-square sense) to actual ensemble-average means and variances, except perhaps for excessively large sample sizes. This is especially true for the flicker noise component of oscillators. This article shows, for the various types of noises found in oscillators, how sample averages converge (or do not converge) to their statistical counterparts. The convergence rate is shown to be the same for all oscillators of a given spectral type.

  2. Measurement of transmission loss characteristics using acoustic intensity techniques at the KU-FRL Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1983-01-01

    The transmission loss characteristics of panels using the acoustic intensity technique is presented. The theoretical formulation, installation of hardware, modifications to the test facility, and development of computer programs and test procedures are described. A listing of all the programs is also provided. The initial test results indicate that the acoustic intensity technique is easily adapted to measure transmission loss characteristics of panels. Use of this method will give average transmission loss values. The fixtures developed to position the microphones along the grid points are very useful in plotting the intensity maps of vibrating panels.

  3. Solar Oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas

    2004-01-01

    Oscillations were first detected in the solar photosphere in 1962 by Leighton and students. In 1970 it was calculated that these oscillations, with a period near five minutes, were the manifestations of acoustic waves trapped in the interior. The subsequent measurements of the frequencies of global oscillation modes from the spatio-temporal power spectrum of the waves made possible the refinement of solar interior models. Over the years, increased understanding of the nuclear reaction rates, the opacity, the equation of state, convection, and gravitational settling have resulted. Mass flows shift the frequencies of modes leading to very accurate measurements of the interior rotation as a function of radius and latitude. In recent years, analogues of terrestrial seismology have led to a tomography of the interior, including measurements of global north-south flows and flow and wave speed measurements below features such as sunspots. The future of helioseismology seems bright with the approval of NASA's Solar Dynamics Observatory mission, to be launched in 2008.

  4. Resonant Acoustic Measurement of Vapor Phase Transport Phenomenon

    NASA Astrophysics Data System (ADS)

    Schuhmann, R. J.; Garrett, S. L.; Matson, J. V.

    2002-12-01

    A major impediment to accurate non steady-state diffusion measurements is the ability to accurately measure and track a rapidly changing gas concentration without disturbing the system. Non-destructive methods that do not interfere with system dynamics have been developed in the past. These methods, however, have tended to be cumbersome or inaccurate at low concentrations. A new experimental approach has been developed to measure gaseous diffusion in free air and through porous materials. The method combines the traditional non steady-state laboratory methodology with resonant acoustic gas analysis. A phase-locked-loop (PLL) resonance frequency tracker is combined with a thermally insulated copper resonator. A piston sealed with a metal bellows excites the fundamental standing wave resonance of the resonator. The PLL maintains a constant phase difference (typically 90§) between the accelerometer mounted on the piston and a microphone near the piston to track the resonance frequency in real time. A capillary or glass bead filled core is fitted into an o-ring sealed opening at the end of the resonator opposite the bellows. The rate at which the tracer gas is replaced by air within the resonator is controlled by the diffusion coefficient of the gas in free air through the capillary (DA) or by the effective diffusion coefficient of the gas through the core (De). The mean molecular weight of the gas mixture in the resonator is directly determined six times each minute from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Average system stability (temperature divided by frequency squared) is better than 350 ppm. DA values for a 0.3-inch diameter capillary were in excellent agreement with published values. De values for porous media samples (0.5 mm glass beads) of four different lengths (1 through 4 inches) using three different tracer gases (He, CH4, Kr) will be reported. Comments will be offered regarding tracer gas

  5. Relationship between acoustic measures and judgments of intelligibility in Parkinson's disease: a within-speaker approach.

    PubMed

    Feenaughty, Lynda; Tjaden, Kris; Sussman, Joan

    2014-11-01

    This study investigated the acoustic basis of within-speaker, across-utterance variation in sentence intelligibility for 12 speakers with dysarthria secondary to Parkinson's disease (PD). Acoustic measures were also obtained for 12 healthy controls for comparison to speakers with PD. Speakers read sentences using their typical speech style. Acoustic measures of speech rate, articulatory rate, fundamental frequency, sound pressure level and F2 interquartile range (F2 IQR) were obtained. A group of listeners judged sentence intelligibility using a computerized visual-analog scale. Relationships between judgments of intelligibility and acoustic measures were determined for individual speakers with PD. Relationships among acoustic measures were also quantified. Although considerable variability was noted, articulatory rate, fundamental frequency and F2 IQR were most frequently associated with within-speaker variation in sentence intelligibility. Results suggest that diversity among speakers with PD should be considered when interpreting results from group analyses.

  6. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    SciTech Connect

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y.; Fourmentel, D.; Destouches, C.; Villard, J.F.

    2015-07-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m{sup -2}.K{sup -1} and 130 μC.N{sup -1} for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in

  7. Acoustic measurements of a liquefied cohesive sediment bed under waves

    NASA Astrophysics Data System (ADS)

    Mosquera, R.; Groposo, V.; Pedocchi, F.

    2014-04-01

    In this article the response of a cohesive sediment deposit under the action of water waves is studied with the help of laboratory experiments and an analytical model. Under the same regular wave condition three different bed responses were observed depending on the degree of consolidation of the deposit: no bed motion, bed motion of the upper layer after the action of the first waves, and massive bed motion after several waves. The kinematic of the upper 3 cm of the deposit were measured with an ultrasound acoustic profiler, while the pore-water pressure inside the bed was simultaneously measured using several pore pressure sensors. A poro-elastic model was developed to interpret the experimental observations. The model showed that the amplitude of the shear stress increased down into the bed. Then it is possible that the lower layers of the deposit experience plastic deformations, while the upper layers present just elastic deformations. Since plastic deformations in the lower layers are necessary for pore pressure build-up, the analytical model was used to interpret the experimental results and to state that liquefaction of a self consolidated cohesive sediment bed would only occur if the bed yield stress falls within the range defined by the amplitude of the shear stress inside the bed.

  8. Optimization of Acoustic Pressure Measurements for Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.

    2007-01-01

    As noise constraints become increasingly stringent, there is continued emphasis on the development of improved acoustic liner concepts to reduce the amount of fan noise radiated to communities surrounding airports. As a result, multiple analytical prediction tools and experimental rigs have been developed by industry and academia to support liner evaluation. NASA Langley has also placed considerable effort in this area over the last three decades. More recently, a finite element code (Q3D) based on a quasi-3D implementation of the convected Helmholtz equation has been combined with measured data acquired in the Langley Grazing Incidence Tube (GIT) to reduce liner impedance in the presence of grazing flow. A new Curved Duct Test Rig (CDTR) has also been developed to allow evaluation of liners in the presence of grazing flow and controlled, higher-order modes, with straight and curved waveguides. Upgraded versions of each of these two test rigs are expected to begin operation by early 2008. The Grazing Flow Impedance Tube (GFIT) will replace the GIT, and additional capabilities will be incorporated into the CDTR. The current investigation uses the Q3D finite element code to evaluate some of the key capabilities of these two test rigs. First, the Q3D code is used to evaluate the microphone distribution designed for the GFIT. Liners ranging in length from 51 to 610 mm are investigated to determine whether acceptable impedance eduction can be achieved with microphones placed on the wall opposite the liner. This analysis indicates the best results are achieved for liner lengths of at least 203 mm. Next, the effects of moving this GFIT microphone array to the wall adjacent to the liner are evaluated, and acceptable results are achieved if the microphones are placed off the centerline. Finally, the code is used to investigate potential microphone placements in the CDTR rigid wall adjacent to the wall containing an acoustic liner, to determine if sufficient fidelity can be

  9. Modeling solar oscillation power spectra. II. Parametric model of spectral lines observed in Doppler-velocity measurements

    SciTech Connect

    Vorontsov, Sergei V.; Jefferies, Stuart M. E-mail: stuartj@ifa.hawaii.edu

    2013-11-20

    We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler-velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements, and extends naturally to the analysis of high-frequency pseudomodes (interference peaks at frequencies above the atmospheric acoustic cutoff).

  10. Experimental study of coaxial nozzle exhaust noise. [acoustic measurements

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.; Stone, J. R.

    1979-01-01

    Experimental results are presented for static acoustic model tests of various geometrical configurations of coaxial nozzles operating over a range of flow conditions. The geometrical configurations consisted of nozzles with coplanar and non-coplanar exit planes and various exhaust area ratios. Primary and secondary nozzle flows were varied independently over a range of nozzle pressure ratios from 1.4 to 3.0 and gas temperatures from 280 to 1100 K. Acoustic data are presented for the conventional mode of coaxial nozzle operation as well as for the inverted velocity profile mode. Comparisons are presented to show the effect of configuration and flow changes on the acoustic characteristics of the nozzles.

  11. The Belt voice: Acoustical measurements and esthetic correlates

    NASA Astrophysics Data System (ADS)

    Bounous, Barry Urban

    This dissertation explores the esthetic attributes of the Belt voice through spectral acoustical analysis. The process of understanding the nature and safe practice of Belt is just beginning, whereas the understanding of classical singing is well established. The unique nature of the Belt sound provides difficulties for voice teachers attempting to evaluate the quality and appropriateness of a particular sound or performance. This study attempts to provide answers to the question "does Belt conform to a set of measurable esthetic standards?" In answering this question, this paper expands on a previous study of the esthetic attributes of the classical baritone voice (see "Vocal Beauty", NATS Journal 51,1) which also drew some tentative conclusions about the Belt voice but which had an inadequate sample pool of subjects from which to draw. Further, this study demonstrates that it is possible to scientifically investigate the realm of musical esthetics in the singing voice. It is possible to go beyond the "a trained voice compared to an untrained voice" paradigm when evaluating quantitative vocal parameters and actually investigate what truly beautiful voices do. There are functions of sound energy (measured in dB) transference which may affect the nervous system in predictable ways and which can be measured and associated with esthetics. This study does not show consistency in measurements for absolute beauty (taste) even among belt teachers and researchers but does show some markers with varying degrees of importance which may point to a difference between our cognitive learned response to singing and our emotional, more visceral response to sounds. The markers which are significant in determining vocal beauty are: (1) Vibrancy-Characteristics of vibrato including speed, width, and consistency (low variability). (2) Spectral makeup-Ratio of partial strength above the fundamental to the fundamental. (3) Activity of the voice-The quantity of energy being produced. (4

  12. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  13. Performance study of Lagrangian methods: reconstruction of large scale peculiar velocities and baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Keselman, J. A.; Nusser, A.

    2017-01-01

    NoAM for "No Action Method" is a framework for reconstructing the past orbits of observed tracers of the large scale mass density field. It seeks exact solutions of the equations of motion (EoM), satisfying initial homogeneity and the final observed particle (tracer) positions. The solutions are found iteratively reaching a specified tolerance defined as the RMS of the distance between reconstructed and observed positions. Starting from a guess for the initial conditions, NoAM advances particles using standard N-body techniques for solving the EoM. Alternatively, the EoM can be replaced by any approximation such as Zel'dovich and second order perturbation theory (2LPT). NoAM is suitable for billions of particles and can easily handle non-regular volumes, redshift space, and other constraints. We implement NoAM to systematically compare Zel'dovich, 2LPT, and N-body dynamics over diverse configurations ranging from idealized high-res periodic simulation box to realistic galaxy mocks. Our findings are (i) Non-linear reconstructions with Zel'dovich, 2LPT, and full dynamics perform better than linear theory only for idealized catalogs in real space. For realistic catalogs, linear theory is the optimal choice for reconstructing velocity fields smoothed on scales {buildrel > over {˜}} 5 h^{-1}{Mpc}.(ii) all non-linear back-in-time reconstructions tested here, produce comparable enhancement of the baryonic oscillation signal in the correlation function.

  14. Dummy head microphone and its application to the measurements of electro-acoustic equipments

    NASA Astrophysics Data System (ADS)

    1984-12-01

    An acoustic measurement system using a dummy head microphone was developed. The system consists of a dummy head microphone and an equipment for digital signal processing, and the system can be used to measure characteristics of hearing aids and headphones. The ear simulator, newly developed for practical use, is terminated in a simple resistance element of 320 cgs acoustic ohms. The dummy head microphone with the ear simulator shows the good agreement with the acoustical characteristics of the averaged human external ear. Several measured results of hearing aids and headphones using the measurement system are shown.

  15. Acoustic measurements of F-15 aircraft operating in hush house, NSN 4920-02-070-2721

    NASA Astrophysics Data System (ADS)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-15 aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that no potential sonic fatigue problems are anticipated with the F-15 aircraft structure during operation in the hush house. However, since these acoustic levels were increased over those measuring during run up on a concrete pad, it is recommended that F-15 equipment qualification levels be checked. The data indicated that the noise field within the hush house is diffuse and that the acoustical energy in the hangar area is radiated from the region between the engine exhaust and the hush house muffler front edge toward the forward part of the hangar.

  16. A fast full frequency range measurement of nonlinear distortions in the vibration of acoustic transducers and acoustically driven membranes

    NASA Astrophysics Data System (ADS)

    Aerts, J. R. M.; Dirckx, J. J. J.

    2007-11-01

    Recently, a new method was proposed to measure nonlinear distortions in weak nonlinear systems using specially designed broadband excitation signals (odd random phase multisines). During one single experiment, the output response level, the noise level and the level of the nonlinear distortions are simultaneously measured. We implement this method in an opto-acoustic set-up which allows us to measure vibrations with high accuracy. To demonstrate the method, we present results obtained on the membrane of an earphone speaker and a latex membrane. On the earphone good agreement is found between measurements of the produced sound field and the actual membrane vibration using heterodyne interferometry. The results show that heterodyne vibrometry can be used to detect nonlinear distortions which are up to 80 dB below the output level in an acoustically driven system.

  17. Oscillating drop/bubble tensiometry: effect of viscous forces on the measurement of interfacial tension.

    PubMed

    Freer, E M; Wong, H; Radke, C J

    2005-02-01

    The oscillating drop/bubble technique is increasingly popular for measuring the interfacial dilatational properties of surfactant/polymer-laden fluid/fluid interfaces. A caveat of this technique, however, is that viscous forces are important at higher oscillation frequencies or fluid viscosities; these can affect determination of the interfacial tension. Here, we experimentally quantify the effect of viscous forces on the interfacial-tension measurement by oscillating 100 and 200 cSt poly(dimethylsiloxane) (PDMS) droplets in water at small amplitudes and frequencies ranging between 0.01 and 1 Hz. Due to viscous forces, the measured interfacial tension oscillates sinusoidally with the same frequency as the oscillation of the drop volume. The tension oscillation precedes that of the drop volume, and the amplitude varies linearly with Capillary number, Ca=DeltamuomegaDeltaV/gammaa(2), where Deltamu=mu(D)-mu is the difference between the bulk Newtonian viscosities of the drop and surrounding continuous fluid, omega is the oscillation frequency of the drop, DeltaV is the amplitude of volume oscillation, gamma is the equilibrium interfacial tension between the PDMS drop and water, and a is the radius of the capillary. A simplified model of a freely suspended spherical oscillating-drop well explains these observations. Viscous forces distort the drop shape at Ca>0.002, although this criterion is apparatus dependent.

  18. Effects of Various Architectural Parameters on Six Room Acoustical Measures in Auditoria.

    NASA Astrophysics Data System (ADS)

    Chiang, Wei-Hwa

    The effects of architectural parameters on six room acoustical measures were investigated by means of correlation analyses, factor analyses and multiple regression analyses based on data taken in twenty halls. Architectural parameters were used to estimate acoustical measures taken at individual locations within each room as well as the averages and standard deviations of all measured values in the rooms. The six acoustical measures were Early Decay Time (EDT10), Clarity Index (C80), Overall Level (G), Bass Ratio based on Early Decay Time (BR(EDT)), Treble Ratio based on Early Decay Time (TR(EDT)), and Early Inter-aural Cross Correlation (IACC80). A comprehensive method of quantifying various architectural characteristics of rooms was developed to define a large number of architectural parameters that were hypothesized to effect the acoustical measurements made in the rooms. This study quantitatively confirmed many of the principles used in the design of concert halls and auditoria. Three groups of room architectural parameters such as the parameters associated with the depth of diffusing surfaces were significantly correlated with the hall standard deviations of most of the acoustical measures. Significant differences of statistical relations among architectural parameters and receiver specific acoustical measures were found between a group of music halls and a group of lecture halls. For example, architectural parameters such as the relative distance from the receiver to the overhead ceiling increased the percentage of the variance of acoustical measures that was explained by Barron's revised theory from approximately 70% to 80% only when data were taken in the group of music halls. This study revealed the major architectural parameters which have strong relations with individual acoustical measures forming the basis for a more quantitative method for advancing the theoretical design of concert halls and other auditoria. The results of this study provide

  19. Measurement resolution of noise directivity patterns from acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Conner, David A.

    1989-01-01

    The measurement resolution of noise directivity patterns from acoustic flight tests was investigated. Directivity angle resolution is affected by the data reduction parameters, the aircraft velocity and flyover altitude, and by deviations of the aircraft from the desired flight path. Equations are developed which determine bounds for the lateral and longitudinal directivity angle resolution as a function of the nominal directivity angle. The equations are applied to a flight test data base and the effects of several flight conditions and data reduction parameters on the directivity angle resolution are presented. The maximum directivity angle resolution typically occurs when the aircraft is at or near the overhead position. In general, directivity angle resolution improves with decreasing velocity, increasing altitude, increasing sampling rate, decreasing block size, and decreasing block averages. Deviations from the desired ideal flight path will increase the resolution. For the flight experiment considered in this study, an average of two flyovers were required at each test condition to obtain an acceptable flight path. The ability of the pilot to maintain the flight track improved with decreasing altitude, decreasing velocity, and practice. Due to the prevailing wind conditions, yaw angles of as much as 20 deg were required to maintain the desired flight path.

  20. Hydro-acoustic and tsunami waves generated by the 2012 Haida Gwaii earthquake: Modeling and in situ measurements

    NASA Astrophysics Data System (ADS)

    Abdolali, Ali; Cecioni, Claudia; Bellotti, Giorgio; Kirby, James T.

    2015-02-01

    Detection of low-frequency hydro-acoustic waves as precursor components of destructive tsunamis can enhance the promptness and the accuracy of Tsunami Early Warning Systems (TEWS). We reconstruct the hydro-acoustic wave field generated by the 2012 Haida Gwaii tsunamigenic earthquake using a 2-D horizontal numerical model based on the integration over the depth of the compressible fluid wave equation and considering a mild sloped rigid seabed. Spectral analysis of the wave field obtained at different water depths and distances from the source revealed the frequency range of low-frequency elastic oscillations of sea water. The resulting 2-D numerical model gave us the opportunity to study the hydro-acoustic wave propagation in a large-scale domain with available computers and to support the idea of deep-sea observatory and data interpretation. The model provides satisfactory results, compared with in situ measurements, in the reproduction of the long-gravitational waves. Differences between numerical results and field data are probably due to the lack of exact knowledge of sea bottom motion and to the rigid seabed approximation, indicating the need for further study of poro-elastic bottom effects.

  1. Influence of Architectural Features and Styles on Various Acoustical Measures in Churches

    NASA Astrophysics Data System (ADS)

    Carvalho, Antonio Pedro Oliveira De.

    This work reports on acoustical field measurements made in a major survey of 41 Catholic churches in Portugal that were built in the last 14 centuries. A series of monaural and binaural acoustical measurements was taken at multiple source/receiver positions in each church using the impulse response with noise burst method. The acoustical measures were Reverberation Time (RT), Early Decay Time (EDT), Clarity (C80), Definition (D), Center Time (TS), Loudness (L), Bass Ratios based on the Reverberation Time and Loudness rm (BR_-RT and rm BR_-L), Rapid Speech Transmission Index (RASTI), and the binaural Coherence (COH). The scope of this research is to investigate how the acoustical performance of Catholic churches relates to their architectural features and to determine simple formulas to predict acoustical measures by the use of elementary architectural parameters. Prediction equations were defined among the acoustical measures to estimate values at individual locations within each room as well as the mean values in each church. Best fits with rm R^2~0.9 were not uncommon among many of the measures. Within and interchurch differences in the data for the acoustical measures were also analyzed. The variations of RT and EDT were identified as much smaller than the variations of the other measures. The churches tested were grouped in eight architectural styles, and the effect of their evolution through time on these acoustical measures was investigated. Statistically significant differences were found regarding some architectural styles that can be traced to historical changes in Church history, especially to the Reformation period. Prediction equations were defined to estimate mean acoustical measures by the use of fifteen simple architectural parameters. The use of the Sabine and Eyring reverberation time equations was tested. The effect of coupled spaces was analyzed, and a new algorithm for the application of the Sabine equation was developed, achieving an average of

  2. A combined view of sterile-neutrino constraints from CMB and neutrino oscillation measurements

    NASA Astrophysics Data System (ADS)

    Bridle, Sarah; Elvin-Poole, Jack; Evans, Justin; Fernandez, Susana; Guzowski, Pawel; Söldner-Rembold, Stefan

    2017-01-01

    We perform a comparative analysis of constraints on sterile neutrinos from the Planck experiment and from current and future neutrino oscillation experiments (MINOS, IceCube, SBN). For the first time, we express joint constraints on Neff and meffsterile from the CMB in the Δm2, sin2 ⁡ 2 θ parameter space used by oscillation experiments. We also show constraints from oscillation experiments in the Neff, meffsterile cosmology parameter space. In a model with a single sterile neutrino species and using standard assumptions, we find that the Planck 2015 data and the oscillation experiments measuring muon-neutrino (νμ) disappearance have similar sensitivity.

  3. Relative measurement of acoustic nonlinear parameters and comparison of sensitivity to thermal aging

    NASA Astrophysics Data System (ADS)

    Seo, Hogeon; Ren, Gang; Kim, Jongbeom; Jhang, Kyung-Young

    2015-03-01

    The acoustic nonlinearity measurement of ultrasonic waves are being extensively researched as a promising nondestructive evaluation element. In the condition of constant propagation distance and wave number, many researchers have measured the second-order relative acoustic nonlinear parameter, β', that can be simply defined as the ratio of the amplitude of the second harmonic frequency component to the amplitude squared of the fundamental frequency component and compared them in order to identify the acoustic nonlinearity variation according to material degradation. In this study, we extended this concept to the third-order relative acoustic nonlinear parameter, γ', by defining it as the ratio of the amplitude of the third harmonic frequency component to the amplitude cubed of the fundamental frequency component. To investigate its effectiveness as a nondestructive evaluation element for the material property degradation, both the second-order acoustic relative nonlinear parameter and the third-order relative acoustic nonlinear parameter were measured for the aluminum specimens processed by heat treatment for the different times and then contrasted each other. From the experimental results, the third-order acoustic relative nonlinear parameter was more sensitive than the second-order relative acoustic nonlinear parameter that has been widely used although the amplitude of the third harmonic frequency component was lower than the amplitude of the second harmonic frequency component.

  4. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.

    PubMed

    Shou, Wende; Huang, Xiaowei; Duan, Shimei; Xia, Rongmin; Shi, Zhonglong; Geng, Xiaoming; Li, Faqi

    2006-12-22

    How to measure the acoustic power of HIFU is one of the most important tasks in its medical application. In the paper a whole series of formula for calculating the radiation force related to the acoustic power radiated by a single element focusing transducer and by the focusing transducer array were given. Various system of radiation force balance (RFB) to measure the acoustic power of HIFU in medicine were designed and applied in China. In high power experiments, the dependence of radiation force acting the absorbing target on the target position at the beam axis of focusing transducer was fined. There is a peak value of "radiation force" acting the absorbing target in the focal region when the acoustic power through the focal plane exceeds some threshold. In order to avoid this big measurement error caused by the 'peak effect' in focal region, the distance between the absorbing target of RFB and the focusing transducer or transducer array was defined to be equal to or less than 0.7 times of the focal length in the National Standard of China for the measurements of acoustic power and field characteristics of HIFU. More than six different therapeutic equipments of HIFU have been examined by RFB for measuring the acoustic power since 1998. These results show that RFB with the absorbing target is valid in the acoustic power range up to 500W with good linearity for the drive voltage squared of focusing transducer or array. The uncertainty of measurement is within +/-15%.

  5. Calibration of an acoustic system for measuring 2-D temperature distribution around hydrothermal vents.

    PubMed

    Fan, Wei; Chen, Chen-Tung Arthur; Chen, Ying

    2013-04-01

    One of the fundamental purposes of quantitative acoustic surveys of seafloor hydrothermal vents is to measure their 2-D temperature distributions. Knowing the system latencies and the acoustic center-to-center distances between the underwater transducers in an acoustic tomography system is fundamental to the overall accuracy of the temperature reconstruction. However, commercial transducer sources typically do not supply the needed data. Here we present a novel calibration algorithm to automatically determine the system latencies and the acoustic center-to-center distances. The possible system latency error and the resulting temperature error are derived and analyzed. We have also developed the experimental setup for calibration. To validate the effectiveness of the proposed calibration method, an experimental study was performed on acoustic imaging of underwater temperature fields in Lake Qiezishan, located at Longling County, Yunnan Province, China. Using the calibrated data, the reconstructed temperature distributions closely resemble the actual distributions measured with thermocouples, thus confirming the effectiveness of our algorithm.

  6. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    SciTech Connect

    Kilcher, Levi; Thomson, Jim; Talbert, Joe; DeKlerk, Alex

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  7. Probing large-scale structure with large samples of X-ray selected AGN. I. Baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Hütsi, Gert; Gilfanov, Marat; Kolodzig, Alexander; Sunyaev, Rashid

    2014-12-01

    We investigate the potential of large X-ray-selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is (i) to find the requirements needed for the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of σ0 = 10-2 at z = 1 and the catastrophic failure rate of ffail ≲ 30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts (σ0 = 10-3 and ffail ~ 0) will boost the confidence level of the BAO detection by a factor of ~2. For meaningful detection of BAO, X-ray surveys of moderate depth of Flim ~ few 10-15 erg s-1/cm2 covering sky area from a few hundred to ~ten thousand square degrees are required. The optimal strategy for the BAO detection does not necessarily require full sky coverage. For example, in a 1000 day-long survey by an eROSITA type telescope, an optimal strategy would be to survey a sky area of ~9000 deg2, yielding a ~16σ BAO detection. A similar detection will be achieved by ATHENA+ or WFXT class telescopes in a survey with a duration of 100 days, covering a similar sky area. XMM-Newton can achieve a marginal BAO detection in a 100-day survey covering ~400 deg2. These surveys would demand a moderate-to-high cost in terms the optical follow-ups, requiring determination of redshifts of ~105 (XMM-Newton) to ~3 × 106 objects (eROSITA, ATHENA+, and WFXT) in these sky areas.

  8. Acoustic and manual measurements of methane ebullition in peatlands

    NASA Astrophysics Data System (ADS)

    Varner, R. K.; Palace, M. W.; Lennartz, J. M.; Wik, M.; Crill, P. M.; Ewing, S. A.; Harden, J. W.; Turetsky, M. R.

    2013-12-01

    Controls on the magnitude and frequency of methane (CH4) release through ebullition (bubbling) in water saturated ecosystems such as bogs, fens and lakes are important to both the atmospheric and ecosystems science community. In order to understand the response of these ecosystems to future climate forcing, we need to systematically monitor ebullition from these ecosystems over many seasons and across a multitude of landscape morphologies. We have developed and field tested an inexpensive array of sampling/monitoring instruments to identify the frequency and magnitude of bubbling events which allows us to correlate bubble data with potential drivers such as changes in hydrostatic pressure, wind and temperature. The instrument consists of a nested, inverted funnel design with a hydrophone for detecting bubbles that rise through the peat. The design offers a way to sample the gas collected in the funnels to determine the concentration of CH4. Laboratory calibration of the instrument resulted in an equation that relates frequency of bubbles hitting the hydrophone with bubble volume. Audio data was recorded continuously using a digital audio recorder attached to two ebullition sensors and could be deployed remotely for up to 20 days. Time, fundamental frequency, and estimated bubble size were determined using MATLAB code. Manual bubble flux measurements were also made for comparison to the acoustically sensed ebullition. Instruments were deployed in summers 2011-2013 at a temperate fen (Sallie's Fen, NH, USA) and a subarctic mire (Stordalen, Abisko, Sweden). We also recorded ebullition at two locations in subarctic Alaska (APEX Research Site, Fairbanks, AK and Innoko National Wildlife Refuge) during summer 2011. Ebullition was observed at all sites with highest daily rates in fen versus bog sites. Observed distributions of bubble events correlate with published models of ebullition based on peat density.

  9. Acoustic bubble traps

    NASA Astrophysics Data System (ADS)

    Geisler, Reinhard; Kurz, Thomas; Lauterborn, Werner

    2000-07-01

    A small, oscillating bubble in a liquid can be trapped in the antinode of an acoustic standing wave field. Bubble stability is required for the study of single bubble sonoluminescence (SBSL). The properties of the acoustic resonator are essential for the stable trapping of sonoluminescing bubbles. Resonators can be chosen according to the intended application: size and geometry can be varied in a wide range. In this work, the acoustic responses of different resonators were measured by means of holographic interferometry, hydrophones and a laser vibrometer. Also, high-speed photography was used to observe the bubble dynamics. Several single, stable sonoluminescent bubbles were trapped simultaneously within an acoustic resonator in the pressure antinodes of a higher harmonic mode (few bubble sonoluminescence, FBSL).

  10. Imaging and detection of mines from acoustic measurements

    NASA Astrophysics Data System (ADS)

    Witten, Alan J.; DiMarzio, Charles A.; Li, Wen; McKnight, Stephen W.

    1999-08-01

    A laboratory-scale acoustic experiment is described where a buried target, a hockey puck cut in half, is shallowly buried in a sand box. To avoid the need for source and receiver coupling to the host sand, an acoustic wave is generated in the subsurface by a pulsed laser suspended above the air-sand interface. Similarly, an airborne microphone is suspended above this interface and moved in unison with the laser. After some pre-processing of the data, reflections for the target, although weak, could clearly be identified. While the existence and location of the target can be determined by inspection of the data, its unique shape can not. Since target discrimination is important in mine detection, a 3D imaging algorithm was applied to the acquired acoustic data. This algorithm yielded a reconstructed image where the shape of the target was resolved.

  11. The Autonomous Cryocooled Sapphire Oscillator: A Reference for Frequency Stability and Phase Noise Measurements

    NASA Astrophysics Data System (ADS)

    Giordano, V.; Grop, S.; Fluhr, C.; Dubois, B.; Kersalé, Y.; Rubiola, E.

    2016-06-01

    The Cryogenic Sapphire Oscillator (CSO) is the microwave oscillator which feature the highest short-term stability. Our best units exhibit Allan deviation σy (τ) of 4.5x10-16 at 1s, ≈ 1.5x10-16 at 100 s ≤ t ≤ 5,000 s (floor), and ≤ 5x10-15 at one day. The use of a Pulse-Tube cryocooler enables full two year operation with virtually no maintenance. Starting with a short history of the CSO in our lab, we go through the architecture and we provide more details about the resonator, the cryostat, the oscillator loop, and the servo electronics. We implemented three similar oscillators, which enable the evaluation of each with the three- cornered hat method, and provide the potential for Allan deviation measurements at parts of 10-17 level. One of our CSOs (ULISS) is transportable, and goes with a small customized truck. The unique feature of ULISS is that its σy (τ) can be validated at destination by measuring before and after the roundtrip. To this extent, ULISS can be regarded as a traveling standard of frequency stability. The CSOs are a part of the Oscillator IMP project, a platform dedicated to the measurement of noise and short-term stability of oscillators and devices in the whole radio spectrum (from MHz to THz), including microwave photonics. The scope spans from routine measurements to the research on new oscillators, components, and measurement methods.

  12. Unsteady Pressure Measurements on Oscillating Models in European Wind Tunnels.

    DTIC Science & Technology

    1980-03-01

    EFFECTIVE TUBE DIAMETER 1.5 * EXPERIMENT 0j 1. 0. Frequency ,Hz 50 100 1*50 200 1500 2000 Figure 1 Experimental and Theoretical Results for a Single i...NORA 17 III CONCLUDING REMARKS 18* IV REFERENCES 19 P7 ,.-- ii i 7 LIST OF ILLUSTRATIONS FIGURE PAGE 1 Experimental and Theoretical Results for a...and Experimental Centerline Pressures in Chordwise Bending 71 48 Rigid Wing with Oscillating Control Surface 72 49 Supersonic Pressure Due to Control

  13. Low-frequency oscillations in total ozone measurements

    NASA Technical Reports Server (NTRS)

    Gao, X. H.; Stanford, J. L.

    1990-01-01

    Low frequency oscillations with periods of approximately one to two months are found in eight years of global grids of total ozone data from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The low frequency oscillations corroborate earlier analyses based on four years of data. In addition, both annual and seasonal one-point correlation maps based on the 8-year TOMS data are presented. The results clearly show a standing dipole in ozone perturbations, oscillating with 35 to 50 day periods over the equatorial Indian Ocean-west Pacific region. This contrasts with the eastward moving dipole reported in other data sets. The standing ozone dipole appears to be a dynamical feature associated with vertical atmospheric motions. Consistent with prior analyses based on lower stratospheric temperature fields, large-scale standing patterns are also found in the extratropics of both hemispheres, correlated with ozone fluctuations over the equatorial west Pacific. In the Northern Hemisphere, a standing pattern is observed extending from the tropical Indian Ocean to the north Pacific, across North America, and down to the equatorial Atlantic Ocean region. This feature is most pronounced in the NH summer.

  14. Acoustic Measurement and Model Predictions for the Aural Nondetectability of Two Night-Vision Goggles

    DTIC Science & Technology

    2013-11-01

    Acoustic Measurement and Model Predictions for the Aural Nondetectability of Two Night - Vision Goggles by Jeremy Gaston, Tim Mermagen, and...SUBTITLE Acoustic Measurement and Model Predictions for the Aural Nondetectability of Two Night - Vision Goggles 5a. CONTRACT NUMBER 5b. GRANT NUMBER...13. SUPPLEMENTARY NOTES 14. ABSTRACT This study evaluates two different night - vision goggles (NVGs) to determine if the devices meet level II

  15. Underwater hybrid near-field acoustical holography based on the measurement of vector hydrophone array

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu

    2010-06-01

    Hybrid near-field acoustical holography (NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH, we combine statistically optimized near-field acoustical holography (SONAH) and broadband acoustical holography from intensity measurements (BAHIM) to reconstruct the underwater cylindrical source field. First, the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary, and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal, and the measurement array can be smaller than the source, thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then, an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement, as well as the identification and localization of noise sources.

  16. Identification of vibration excitations from acoustic measurements using near field acoustic holography and the force analysis technique

    NASA Astrophysics Data System (ADS)

    Pézerat, C.; Leclère, Q.; Totaro, N.; Pachebat, M.

    2009-10-01

    This study presents a method of using acoustic holography and the force analysis technique to identify vibration sources from radiated noise measurements. The structure studied is a plate excited by a shaker on which three measurements were performed: the first is a reference measurement of plate velocity obtained by scanning laser vibrometry, the second is based on sound pressure measurements in the near field of the structure, and the third is the measurement of normal acoustic velocities by using a p-U probe recently developed by Microflown Technologies. This was followed by the application of classical NAH, known as pressure-to-velocity holography and velocity-to-velocity holography to predict the plate velocity field from acoustic measurements at distances of 1 and 5 cm. Afterwards, the force analysis technique, also known as the RIFF technique, is applied with these five data sets. The principle is to inject the displacement field of the structure into its equation of motion and extract the resulting force distribution. This technique requires regularization done by a low-pass filter in the wavenumber domain. Apart from pressure-to-velocity holography at 5 cm, the reconstructed force distribution allows localizing the excitation point in the measurement area. FAT regularization is also shown to improve results as its cutoff wavenumber is optimized with the natural wavenumber of the plate. Lastly, quantitative force values are extracted from force distributions at all frequencies of the band 0-4 kHz studied and compared with the force spectrum measured directly by a piezoelectric sensor.

  17. Intense and exciting: current and future accelerator-based measurements of neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Whitehead, Lisa

    2017-01-01

    Accelerator-based experiments have been crucial in our understanding of neutrino oscillations. In this talk, I will give an overview of current accelerator-based neutrino oscillation experiments, which have observed electron neutrino appearance and made precision measurements of the parameters governing muon neutrino disappearance. I will discuss what the current set of experiments can contribute to the remaining questions in neutrino oscillation physics, including measuring the CP violating phase, determining the mass hierarchy, resolving the θ23 octant, and searching for sterile neutrinos. Finally, I will describe the plans and physics goals for future accelerator-based neutrino experiments.

  18. Measurement and calculation for real-time oscillation frequency and phase of the slab caster mold

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin; Cai, Qizhong

    2006-11-01

    This paper presents the methods in designing and implementing real-time measurement system of oscillation parameter, based on the oscillation orderliness using in slab caster mold. From practical operation, the software can be manipulated easily and steadily. Using the software, the measurement, calculation, display, alarm and storage of oscillation state can be finished fleetly and accurately under different drawing speed. The gist is put forward in order to improve quality and quantity of slab using slab caster, judge the abrasion of drive system, the warp of leading system and other system failure.

  19. Fish Acoustics: Physics-Based Modeling and Measurement

    DTIC Science & Technology

    2011-01-01

    physical scattering mechanisms. To demonstrate this point, the target strength of a canonical gas-filled sphere is computed using a standard...high-frequency sound scattering by swimbladdered fish,” Journal of the Acoustical Society of America, Vol. 78, pp. 688-700 (1985). 9. Gauss , R. C

  20. Instrumental Dimensioning of Normal and Pathological Phonation Using Acoustic Measurements

    ERIC Educational Resources Information Center

    Putzer, Manfred; Barry, William J.

    2008-01-01

    The present study deals with the dimensions of normal and pathological phonation. Separation of normal voices from pathological voices is tested under different aspects. Using a new parametrization of voice-quality properties in the acoustic signal, the vowel productions of 534 speakers (267 M, 267 F) without any reported voice pathology and the…

  1. Acoustic measurements of soil-pipeflow and internal erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal erosion of soil pipes can lead to embankment failures, landslides, and gully erosion. Therefore, non-intrusive methods are needed to detect and monitor soil pipeflow and the resulting internal erosion. This paper presents a laboratory study using both active and passive acoustic techniques ...

  2. Acoustic measurements of soil pipeflow and internal erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal erosion of soil pipes can lead to embankment failures, landslides, and gully erosion therefore non-intrusive methods are needed to detect and monitor soil pipeflow and the resulting internal erosion. This paper presents a laboratory study using both active and passive acoustic techniques to...

  3. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  4. Measured acoustic characteristics of ducted supersonic jets at different model scales

    NASA Technical Reports Server (NTRS)

    Jones, R. R., III; Ahuja, K. K.; Tam, Christopher K. W.; Abdelwahab, M.

    1993-01-01

    A large-scale (about a 25x enlargement) model of the Georgia Tech Research Institute (GTRI) hardware was installed and tested in the Propulsion Systems Laboratory of the NASA Lewis Research Center. Acoustic measurements made in these two facilities are compared and the similarity in acoustic behavior over the scale range under consideration is highlighted. The study provide the acoustic data over a relatively large-scale range which may be used to demonstrate the validity of scaling methods employed in the investigation of this phenomena.

  5. The use of electro-acoustic impedance measurements in detecting early clinical otosclerosis.

    PubMed

    Van Wagoner, R S; Campbell, J D

    1976-02-01

    The first evidence that sodium fluoride (NaFl) can stop the otosclerotic process was recently presented. This development has placed new emphasis on the early detection of clinical otosclerosis. Electro-acoustic impedance measurements often detect minute changes in absolute impedance and compliance of the ossicular chain. The most valuable diagnostic information, however, is a negative on-off (biphasic) type of acoustic reflex. These results are often evident prior to the detection of positive clinical signs of otosclerosis. The negative on-off acoustic reflex is reviewed in this paper along with case discussions involving medical/surgical management of early otosclerosis.

  6. Acoustic Response of Underwater Munitions near a Sediment Interface: Measurement Model Comparisons and Classification Schemes

    DTIC Science & Technology

    2015-04-23

    FINAL REPORT Acoustic Response of Underwater Munitions near a Sediment Interface: Measurement Model Comparisons and Classification Schemes SERDP...6 Figure 2. Effect of fish on acoustic color templates during GULFEX12 …………… 8 Figure 3. Selection of targets deployed during TREX13 and BAYEX14...deployed during TREX13 and BAYEX14 …… 29 Figure 16. Ray diagrams for the acoustic ray model …………………………… 29 Figure 17. Model-model and data-model

  7. The Ability to Structure Acoustic Material as a Measure of Musical Aptitude. 4. Experiences with Modifications of the Acoustic Structuring Test. Research Bulletin. No. 51.

    ERIC Educational Resources Information Center

    Karma, Kai

    Four new versions of an acoustic structuring test were developed, administered, and analyzed in order to produce better tests and to contribute to better understanding of the abilities measured by these tests. The tests consist of tape recordings of patterns of musical notes played on an electric organ or an acoustic guitar. Item analyses and…

  8. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  9. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1985-09-03

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas. 5 figs.

  10. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1985-01-01

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  11. Experimental Acoustic Velocity Measurements in a Tidally Affected Stream

    USGS Publications Warehouse

    Storm, J.B.; ,

    2002-01-01

    The U.S. Geological Survey (USGS) constructed a continuous steamgaging station on the tidally affected Escatawpa River at Interstate 10 near Orange Grove, Mississippi, in August 2001. The gage collects water quantity parameters of stage and stream velocity, and water quality parameters of water temperature, specific conductance, and salinity. Data are transmitted to the local USGS office via the GOES satellite and are presented on a near real-time web page. Due to tidal effects, the stream has multiple flow regimes which include downstream, bi-directional, and reverse flows. Advances in acoustic technology have made it possible to gage streams of this nature where conventional methods have been unsuccessful. An experimental mount was designed in an attempt to recognize, describe, and quantify these flow regimes by using acoustic Doppler equipment.

  12. Measuring the Kuroshio Current with ocean acoustic tomography.

    PubMed

    Taniguchi, Naokazu; Huang, Chen-Fen; Kaneko, Arata; Liu, Cho-Teng; Howe, Bruce M; Wang, Yu-Huai; Yang, Yih; Lin, Ju; Zhu, Xiao-Hua; Gohda, Noriaki

    2013-10-01

    Ocean current profiling using ocean acoustic tomography (OAT) was conducted in the Kuroshio Current southeast of Taiwan from August 20 to September 15, 2009. Sound pulses were transmitted reciprocally between two acoustic stations placed near the underwater sound channel axis and separated by 48 km. Based on the result of ray simulation, the received signals are divided into multiple ray groups because it is difficult to resolve the ray arrivals for individual rays. The average differential travel times from these ray groups are used to reconstruct the vertical profiles of currents. The currents are estimated with respect to the deepest water layer via two methods: An explicit solution and an inversion with regularization. The strong currents were confined to the upper 200 m and rapidly weakened toward 500 m in depth. Both methods give similar results and are consistent with shipboard acoustic Doppler current profiler results in the upper 150 m. The observed temporal variation demonstrates a similar trend to the prediction from the Hybrid Coordinate Ocean Model.

  13. Displacement measurement using an optoelectronic oscillator with an intra-loop Michelson interferometer.

    PubMed

    Lee, Jehyun; Park, Sooyoung; Seo, Dae Han; Yim, Sin Hyuk; Yoon, Seokchan; Cho, D

    2016-09-19

    We report on measurement of small displacements with sub-nanometer precision using an optoelectronic oscillator (OEO) with an intra-loop Michelson interferometer. In comparison with conventional homodyne and heterodyne detection methods, where displacement appears as a power change or a phase shift, respectively, in the OEO detection, the displacement produces a shift in the oscillation frequency. In comparison with typical OEO sensors, where the frequency shift is proportional to the OEO oscillation frequency in radio-frequency domain, the frequency shift in our method with an intra-loop interferometer is proportional to an optical frequency. We constructed a hybrid apparatus and compared characteristics of the OEO and heterodyne detection methods.

  14. Intensive sound speed monitoring in ocean and its impact on the GPS/acoustic seafloor geodetic measurement

    NASA Astrophysics Data System (ADS)

    Kido, Motoyuki

    2016-04-01

    GPS/acoustic (GPS/A) technique, based on GPS positioning and acoustic ranging, is now getting a popular tool to measure seafloor crustal movement. Several groups in the world have been intensively conducted campaign surveys in the region of scientifically interest. As the technology of measurement has been matured and plenty of data are accumulated, researchers are now aware of the limit of its precision mainly due to unexpected undulation of sound speed in ocean, which significantly degrades acoustic ranging. If sound speed structure keeps its figure during survey period, e.g., more than a couple of hours, it can be estimated by a moving survey to get sufficient paths from various directions to illustrate the structure. However the sound speed structure often varies quickly with in a hour due to internal gravitational wave excited by interaction of tidal current and seafloor topography. In this case one cannot separate temporal and spatial variations. We revisited our numerous sound speed profile data derived from numbers of XBT measurements, which were concurrently carried out with GPS/A survey along the Nankai Trough and Japan Trench. Among the measurements, we found notably short-period variation in sound speed profile through intensive XBT survey repeatedly cast every 6 minutes for one hour, which also appeared in residuals in traveltime of acoustic ranging. The same feature is also found in more moderate rate for semidiurnal undulation, in which vertical oscillation of the middle of the profile can be clearly seen rather than variation of absolute sound speed. This also reflects traveltime residuals in the GPS/A measurement. These typical frequencies represent dominant wavelengths of spatial sound speed variation. In the latter, local horizontal variation can be negligible in the vicinity of a point survey area and the traditional analysis can be applicable that assumes time-varying stratified sound speed structure. In the former case, on the contrary, local

  15. Comparison between psycho-acoustics and physio-acoustic measurement to determine optimum reverberation time of pentatonic angklung music concert hall

    NASA Astrophysics Data System (ADS)

    Sudarsono, Anugrah S.; Merthayasa, I. G. N.; Suprijanto

    2015-09-01

    This research tried to compare psycho-acoustics and Physio-acoustic measurement to find the optimum reverberation time of soundfield from angklung music. Psycho-acoustic measurement was conducted using a paired comparison method and Physio-acoustic measurement was conducted with EEG Measurement on T3, T4, FP1, and FP2 measurement points. EEG measurement was conducted with 5 persons. Pentatonic angklung music was used as a stimulus with reverberation time variation. The variation was between 0.8 s - 1.6 s with 0.2 s step. EEG signal was analysed using a Power Spectral Density method on Alpha Wave, High Alpha Wave, and Theta Wave. Psycho-acoustic measurement on 50 persons showed that reverberation time preference of pentatonic angklung music was 1.2 second. The result was similar to Theta Wave measurement on FP2 measurement point. High Alpha wave on T4 measurement gave different results, but had similar patterns with psycho-acoustic measurement

  16. Forced oscillation measurements of seismic attenuation in fluid saturated sandstone

    NASA Astrophysics Data System (ADS)

    Subramaniyan, Shankar; Quintal, Beatriz; Saenger, Erik H.

    2017-02-01

    Adopting the method of forced oscillation, attenuation was studied in Fontainebleau sandstone (porosity 10%, permeability 10 mD) at seismic frequencies (1-100 Hz). Confining pressures of 5, 10, and 15 MPa were chosen to simulate reservoir conditions. First, the strain effect on attenuation was investigated in the dry sample for 11 different strains across the range 1 × 10-6-8 × 10-6, at the confining pressure of 5 MPa. The comparison showed that a strain of at least 5 × 10-6 is necessary to obtain a good signal to noise ratio. These results also indicate that nonlinear effects are absent for strains up to 8 × 10-6. For all the confining pressures, attenuation in the dry rock was low, while partial (90%) and full (100%) saturation with water yielded a higher magnitude and frequency dependence of attenuation. The observed high and frequency dependent attenuation was interpreted as being caused by squirt flow.

  17. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    PubMed

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  18. Acoustic Measurements of a Large Civil Transport Main Landing Gear Model

    NASA Technical Reports Server (NTRS)

    Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.

    2016-01-01

    Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.

  19. Quantum oscillations in magnetothermopower measurements of topological insulator Bi2Te3

    DOE PAGES

    Qu, Dong -Xia; Hor, Y. S.; Cava, R. J.

    2012-12-10

    We report the magnetothermopower measurements of the nonmetallic topological insulator Bi2Te3 in magnetic fields up to 35 T. Quantum oscillations arising from surface states are observed in both thermoelectric and conductivity tensors. The inferred surface thermopower has a peak magnitude ~1 mV/K possibly as a result of surface electron and bulk phonon interaction. At the n = 1 Landau level, we resolve additional quantum oscillations signaling Landau sublevels.

  20. High Q Miniature Sapphire Acoustic Resonator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, R. L.

    2010-01-01

    We have demonstrated high Q measurements in a room temperature Miniature Sapphire Acoustic Resonator (MSAR). Initial measurements of bulk acoustic modes in room temperature sapphire at 39 MHz have demonstrated a Q of 8.8 x 10(exp 6). The long term goal of this work is to integrate such a high Q resonator with small, low noise quartz oscillator electronics, providing a fractional frequency stability better than 1 x 10(exp -14) @ 1s.

  1. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect

    Parra, Jorge O.; Hackert, Chris L.; Collier, Hughbert A.; Bennett, Michael

    2002-01-29

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate NMR techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This is accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging are being linked with a balanced petrographical analysis of the core and theoretical model.

  2. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect

    Parra, Ph.D., Jorge O.

    2002-06-10

    The objective of the project was to develop an advanced imaging method, including pore scale imaging, to integrate nuclear magnetic resonance (NMR) techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This will be accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging were linked with a balanced petrographical analysis of cores and theoretical modeling.

  3. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect

    Parra, J.O.

    2001-01-26

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate magnetic resonance (MR) techniques and acoustic measurements to improve predictability of the pay zone in two hydrocarbon reservoirs. This was accomplished by extracting the fluid property parameters using MR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurements were compared with petrographic analysis results to determine the relative roles of petrographic elements such as porosity type, mineralogy, texture, and distribution of clay and cement in creating permeability heterogeneity.

  4. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  5. Measurement of the nonadiabatically-induced coherent time evolution of a single-electron wavefunction in a surface acoustic wave dynamic quantum dot

    NASA Astrophysics Data System (ADS)

    Thorn, Adam; Kataoka, Masaya; Astley, Michael; Oi, Daniel; Barnes, Crispin; Ford, Chris; Anderson, Dave; Jones, Geb; Farrer, Ian; Ritchie, Dave; Pepper, Michael

    2009-03-01

    Observation of coherent single-electron dynamics is severely limited by experimental bandwidth. We present a method to overcome this using moving quantum dots defined by surface acoustic waves. Each dot holds a single electron, and travels through a static potential landscape. When the dot moves abruptly between regions of different confinement, the electron is excited into a superposition of states, and oscillates unitarily from side to side. These oscillations are measured almost non-invasively, by allowing a small amount of tunnelling out of the dot each time the wavefunction approaches a tunnel barrier. We have modelled this in detail by solving the single-particle time-dependent Schr"odinger equation for a realistic potential, and find good agreement between the measurements and the simulations.

  6. An objective method and measuring equipment for noise control and acoustic diagnostics of motorcars. [acoustic diagnostics on automobile engines

    NASA Technical Reports Server (NTRS)

    Kacprowski, J.; Motylewski, J.; Miazga, J.

    1974-01-01

    An objective method and apparatus for noise control and acoustic diagnostics of motorcar engines are reported. The method and apparatus let us know whether the noisiness of the vehicle under test exceeds the admissible threshold levels given by appropriate standards and if so what is the main source of the excessive noise. The method consists in measuring both the overall noise level and the sound pressure levels in definite frequency bands while the engine speed is controlled as well and may be fixed at prescribed values. Whenever the individually adjusted threshold level has been exceeded in any frequency band, a self-sustaining control signal is sent.

  7. Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests).

    PubMed

    Horoshenkov, Kirill V; Khan, Amir; Bécot, François-Xavier; Jaouen, Luc; Sgard, Franck; Renault, Amélie; Amirouche, Nesrine; Pompoli, Francesco; Prodi, Nicola; Bonfiglio, Paolo; Pispola, Giulio; Asdrubali, Francesco; Hübelt, Jörn; Atalla, Noureddine; Amédin, Celse K; Lauriks, Walter; Boeckx, Laurens

    2007-07-01

    This paper reports the results of reproducibility experiments on the interlaboratory characterization of the acoustical properties of three types of consolidated porous media: granulated porous rubber, reticulated foam, and fiberglass. The measurements are conducted in several independent laboratories in Europe and North America. The studied acoustical characteristics are the surface complex acoustic impedance at normal incidence and plane wave absorption coefficient which are determined using the standard impedance tube method. The paper provides detailed procedures related to sample preparation and installation and it discusses the dispersion in the acoustical material property observed between individual material samples and laboratories. The importance of the boundary conditions, homogeneity of the porous material structure, and stability of the adopted signal processing method are highlighted.

  8. ATK Launch Vehicle (ALV-X1) Liftoff Acoustic Environments: Prediction vs. Measurement

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, Douglas; Kenny, Jeremy; Murphy, John

    2009-01-01

    The ATK Launch Vehicle (ALV-X1) provided an opportunity to measure liftoff acoustic noise data. NASA Marshall Space Flight Center (MSFC) engineers were interested in the ALV-X1 launch because the First Stage motor and launch pad conditions, including a relativity short deflector ducting, provide a potential analogue to future Ares I launches. This paper presents the measured liftoff acoustics on the vehicle and tower. Those measured results are compared to predictions based upon the method described in NASA SP-8072 "Acoustic Loads Generated by the Propulsion System" and the Vehicle Acoustic Environment Prediction Program (VAEPP) which was developed by MSFC acoustics engineers. One-third octave band sound pressure levels will be presented. This data is useful for the ALV-X1 in validating the pre-launch environments and loads predictions. Additionally, the ALV-X1 liftoff data can be scaled to define liftoff environments for the NASA Constellation program Ares vehicles. Vehicle liftoff noise is caused by the supersonic jet flow interaction with surrounding atmosphere or more simply, jet noise. As the vehicle's First Stage motor is ignited, an acoustic noise field is generated by the exhaust. This noise field persists due to the supersonic jet noise and reflections from the launch pad and tower, then changes as the vehicle begins to liftoff from the launch pad. Depending on launch pad and adjacent tower configurations, the liftoff noise is generally very high near the nozzle exit and decreases rapidly away from the nozzle. The liftoff acoustic time range of interest is typically 0 to 20 seconds after ignition. The exhaust plume thermo-fluid mechanics generates sound at approx.10 Hz to 20 kHz. Liftoff acoustic noise is usually the most severe dynamic environment for a launch vehicle or payload in the mid to high frequency range (approx.50 to 2000 Hz). This noise environment can induce high-level vibrations along the external surfaces of the vehicle and surrounding

  9. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    USGS Publications Warehouse

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  10. Numerical Simulation of the Self-Oscillations of the Vocal Folds and of the Resulting Acoustic Phenomena in the Vocal Tract

    NASA Astrophysics Data System (ADS)

    Švancara, P.; Horáček, J.; Švec, J. G.

    The study presents a three-dimensional (3D) finite element (FE) model of the flow-induced self-oscillation of the human vocal folds in interaction with acoustics of simplified vocal tract models. The 3D vocal tract models of the acoustic spaces shaped for simulation of phonation of Czech vowels [a:], [i:] and [u:] were created by converting the data from the magnetic resonance images (MRI). For modelling of the fluid-structure interaction, explicit coupling scheme with separated solvers for fluid and structure domain was utilized. The FE model comprises vocal folds pretension before starting phonation, large deformations of the vocal fold tissue, vocal-fold collisions, fluid-structure interaction, morphing the fluid mesh according to the vocal-fold motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation. The developed FE model enables to study the relationship between flow-induced vibrations of the vocal folds and acoustic wave propagation in the vocal tract and can also be used to simulate for example pathological changes in the vocal fold tissue and their influence on the voice production.

  11. Preparation of a second station for the measurement of solar oscillations of low degree 'l'

    NASA Technical Reports Server (NTRS)

    Cacciani, A.; Fabbri, F.; Ricci, D.; Rosati, P.; Marquedant, R.; Smith, E.

    1990-01-01

    An observing station to detect low-degree global solar oscillations is already operational at the Jet Propulsion Laboratory. A second station for continuative measurements of such oscillations has recently been installed and successfully tested in Rome. The high transmission and stability of the magneto-optical filter (MOF) coupled with the lock-in amplifier technique allow analog and real-time detection of oscillation modes with a noise level of only a few cm/s. Observing runs and estimates of the signal-to-noise ratio are shown in time and frequency domains. Routine observations will establish whether the MOF sensitivity and stability are suitable for the detection of stellar oscillations.

  12. Measurement of a broadband negative index with space-coiling acoustic metamaterials.

    PubMed

    Xie, Yangbo; Popa, Bogdan-Ioan; Zigoneanu, Lucian; Cummer, Steven A

    2013-04-26

    We report the experimental demonstration of a broadband negative refractive index obtained in a labyrinthine acoustic metamaterial structure. Two different approaches were employed to prove the metamaterial negative index nature: one-dimensional extractions of effective parameters from reflection and transmission measurements and two-dimensional prism-based measurements that convincingly show the transmission angle corresponding to negative refraction. The transmission angles observed in the latter case also agree very well with the refractive index obtained in the one-dimensional measurements and numerical simulations. We expect this labyrinthine metamaterial to become the unit cell of choice for practical acoustic metamaterial devices that require broadband and significantly negative indices of refraction.

  13. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  14. Near field acoustic holography measurements of carbon nanotube thin film speakers.

    PubMed

    Asgarisabet, Mahsa; Barnard, Andrew R; Bouman, Troy M

    2016-12-01

    Carbon nanotube (CNT) thin film speakers produce sound with the thermoacoustic effect. Better understanding of the physical acoustic properties of these speakers will drive future design improvements. Measuring acoustic properties at the surface of the CNT thin film is difficult because the films, themselves, do not vibrate, are fragile and have a high surface temperature. In order to measure the surface particle velocity and sound pressure level (SPL), near field acoustic holography (NAH) has been used by employing probe microphones. NAH images the acoustic quantities of the source system using the set of acoustic pressure measurements on a hologram parallel to the source surface. It is shown that the particle velocity at the surface of an open-air, double-sided speaker is nominally zero, as expected. However, the SPL distribution is not uniform on the source surface, contrary to common lumped parameter model assumptions. Also, particle velocity and sound intensity distributions on the hologram have been obtained in this study. Finally, measured directivity patterns of the planar CNT speaker are reported.

  15. Wideband Acoustic Immittance: Normative Study and Test-Retest Reliability of Tympanometric Measurements in Adults

    ERIC Educational Resources Information Center

    Sun, Xiao-Ming

    2016-01-01

    Purpose: The purpose of this study was to present normative data of tympanometric measurements of wideband acoustic immittance and to characterize wideband tympanograms. Method: Data were collected in 84 young adults with strictly defined normal hearing and middle ear status. Energy absorbance (EA) was measured using clicks for 1/12-octave…

  16. Acoustic measurement of suspensions of clay and silt particles using single frequency attenuation and backscatter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of ultrasonic acoustic technology to measure the concentration of fine suspended sediments has the potential to greatly increase the temporal and spatial resolution of sediment measurements while reducing the need for personnel to be present at gauging stations during storm events. The conv...

  17. Final Report: Geothermal dual acoustic tool for measurement of rock stress

    SciTech Connect

    Normann, Randy A.

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  18. Final Report. Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    SciTech Connect

    Normann, Randy A

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  19. Measurement of Aqueous Foam Rheology by Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    McDaniel, J. Gregory; Holt, R. Glynn; Rogers, Rich (Technical Monitor)

    2000-01-01

    An experimental technique is demonstrated for acoustically levitating aqueous foam drops and exciting their spheroidal modes. This allows fundamental studies of foam-drop dynamics that provide an alternative means of estimating the viscoelastic properties of the foam. One unique advantage of the technique is the lack of interactions between the foam and container surfaces, which must be accounted for in other techniques. Results are presented in which a foam drop with gas volume fraction phi = 0.77 is levitated at 30 kHz and excited into its first quadrupole resonance at 63 +/- 3 Hz. By modeling the drop as an elastic sphere, the shear modulus of the foam was estimated at 75 +/- 3 Pa.

  20. Comparison of cosmology and seabed acoustics measurements using statistical inference from maximum entropy

    NASA Astrophysics Data System (ADS)

    Knobles, David; Stotts, Steven; Sagers, Jason

    2012-03-01

    Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.

  1. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    PubMed

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  2. a Rayleigh Wave Technique to Measure the Acoustic Nonlinearity Parameter of Materials

    NASA Astrophysics Data System (ADS)

    Shui, G.; Jacobs, L. J.; Qu, J.; Wang, Y. S.; Kim, J.-Y.

    2008-02-01

    Nonlinear ultrasonic techniques have shown great potential for evaluating accumulated damage early in the fatigue life, and ultimately for predicting remaining lifetime of a structural component. The acoustic nonlinearity parameter, a direct measure of the accumulated fatigue damage, is determined from the second harmonic amplitude in finite amplitude sinusoidal ultrasonic waves transmitted through the material. An absolute determination of the acoustic nonlinear parameter is notoriously difficult for several reasons. In this paper, a new experimental technique based on Rayleigh surface waves is presented for determining the absolute acoustic nonlinearity parameter of a relatively thin material specimen. Rayleigh waves are efficiently generated in a specimen by exciting at its edge, and the surface normal velocity of the propagating Rayleigh waves is measured with a laser interferometer system. The high efficiency of the excitation method allows us to drive the transmitting piezoelectric transducer as low as 60 Vpp, and thus to avoid the inherent harmonic distortion from the transducer. The absolute acoustic nonlinearity parameter is then determined from the measured magnitudes of the fundamental and second harmonic surface normal velocities. This technique is applied to determining the acoustic nonlinearity parameters of aluminum alloys 2024 and 6061; the results are compared with those available in the literature. The present technique is especially well-suited for relatively thin components, and much simpler and efficient than the traditional longitudinal wave technique.

  3. Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A method for measuring the acoustic velocity in a thin sheet of a graphite epoxy composite (GEC) material was investigated. This method uses two identical acoustic-emission (AE) sensors, one to transmit and one to receive. The delay time as a function of distance between sensors determines a bulk velocity. A lightweight fixture (balsa wood in the current implementation) provides a consistent method of positioning the sensors, thus providing multiple measurements of the time delay between sensors at different known distances. A linear fit to separation, x, versus delay time, t, will yield an estimate of the velocity from the slope of the line.

  4. Use of Acoustic Doppler Instruments for Measuring Discharge in Streams with Appreciable Sediment Transport

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2002-01-01

    The use of Acoustic Doppler current profilers (ADCP) for measuring discharge in streams with sediment transport was discussed. The studies show that the acoustic frequency of an ADCP in combination with the sediment transport characteristics in a river causes the ADCP bottom-tracking algorithms to detect a moving bottom. A moving bottom causes bottom-tracking-referenced water velocities and discharges to be biased low. The results also show that the use of differential global positioning system (DGPS) data allows accurate measurement of water velocities and discharges in such cases.

  5. On the measurement of time for the quantum harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Shepard, Scott R.

    1992-01-01

    A generalization of previous treatments of quantum phase is presented. Restrictions on the class of realizable phase statistics are thereby removed; thus, permitting 'phase wavefunction collapse' (and other advantages). This is accomplished by exciting the auxiliary mode of the measurement apparatus in a time-reversed fashion. The mathematical properties of this auxiliary mode are studied in the hope that they will lead to an identification of a physical apparatus which can realize the quantum phase measurement.

  6. Oscillating streaming potential measurement system for macroscopic surfaces

    NASA Astrophysics Data System (ADS)

    Reischl, Martin; Köstler, Stefan; Kellner, Gerhard; Stana-Kleinschek, Karin; Ribitsch, Volker

    2008-11-01

    A method and instrumentation is described capable of streaming potential measurements of various macroscopic surfaces. It differs from other approaches due to the creation of an oscillatory flow of electrolyte solutions through or alongside the sample. This technique offers a wide range of applied flow frequency and amplitude resulting in a fast and highly accurate measurement. This enables the streaming potential detection at rather high ionic strength and in a short time regime, which allows the monitoring of adsorption processes. Streaming potential and applied pressure are measured simultaneously, together with the specific conductivity of the bulk solution, pH value, and temperature. Combining these data, the zeta potential (ζ ) for many different material types (fibers, films, foils, granules, and particles) can be calculated. The apparatus comprises reliable and robust measurements, simple handling, a high degree of automation, and advanced software control. With this setup, automated pH and concentration dependent ζ-potential measurements are possible for a variety of analytes and adsorbing species (e.g., ionic strength, surfactants, polyelectrolytes, and proteins); time-resolved measurements are facilitated down to the seconds time scale. The device allows the necessary sample preparation and equilibration outside the instrument using exchangeable sample holders. This offers the opportunity of high sample throughput.

  7. Compensating measured intra-wafer ring oscillator stage delay with intra-wafer exposure dose corrections

    NASA Astrophysics Data System (ADS)

    Verhaegen, Staf; Nackaerts, Axel; Dusa, Mircea; Carpaij, Rene; Vandenberghe, Geert; Finders, Jo

    2006-03-01

    The purpose of this paper is to use measurements on real working devices to derive more information than typically measured by the classic line-width measurement techniques. The first part of the paper will discuss the principle of the measurements with a ring oscillator, a circuit used to measure the speed of elementary logic gates. These measurements contribute to the understanding of the exact timing dependencies in circuits, which is of utmost importance for the design and simulation of these circuits. When connecting an odd number of digital inverting stages in a ring, the circuit has no stable digital state but acts as an analog oscillator with the oscillation frequency dependent on the analog propagation delay of the signals through the stages. By varying some conditions during a litho step, the delay change caused by the process condition change can be measured very accurately. The response of the ring oscillator delay to exposure dose is measured and presented in this paper together with a comparison of measured line-width values of the poly gate lines. The second part of the paper will focus on improving the intra-wafer variation of the stage delay. A number of ring oscillators are put in a design at different slit and scan locations. 200mm wafers are processed with 48 full dies present. From the intra-wafer delay fingerprint and the dose sensitivity of the delay an intra-wafer dose correction, also called a dose recipe, is calculated. This dose recipe is used on the scanner to compensate for effects that are the root cause for the delay profile; including reticle and processing such as track, etch and annealing.

  8. Acoustic speed and attenuation coefficient in sheep aorta measured at 5-9 MHz.

    PubMed

    Fraser, Katharine H; Poepping, Tamie L; McNeilly, Alan; Megson, Ian L; Hoskins, Peter R

    2006-06-01

    B-mode ultrasound (US) images from blood vessels in vivo differ significantly from vascular flow phantom images. Phantoms with acoustic properties more closely matched to those of in vivo arteries may give better images. A method was developed for measuring the speed and attenuation coefficient of US over the range 5 to 9 MHz in samples of sheep aorta using a pulse-echo technique. The times-of-flight method was used with envelope functions to identify the reference points. The method was tested with samples of tissue-mimicking material of known acoustic properties. The tissue samples were stored in Krebs physiologic buffer solution and measured over a range of temperatures. At 37 degrees C, the acoustic speed and attenuation coefficient as a function of frequency in MHz were 1600 +/- 50 ms(-1) and 1.5 +/- 4f(0.94 +/- 1.3) dB cm(-1), respectively.

  9. Guidelines for Acoustical Measurements Inside Historical Opera Houses: Procedures and Validation

    NASA Astrophysics Data System (ADS)

    POMPOLI, ROBERTO; PRODI, NICOLA

    2000-04-01

    The acoustics of Italian historical theatres is to be regarded as a cultural heritage, which is to be preserved and studied. These actions are imperative for handing down the heritage to future generations and to avoid its loss. In this paper, the technical means for scientific quantification of the acoustical heritage are presented in the form of operative guidelines for acoustical measurements inside historical theatres. The document includes the advice of international experts and is being employed during an extended measurement campaign inside renaissance and baroque historical theatres. A relevant part of the paper deals with the experimental validation of the recommendations given in the guidelines, achieved by a dedicated test session inside the Municipal Theatre of Ferrara.

  10. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  11. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Solar Dynamics Observatory-Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    NASA Technical Reports Server (NTRS)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, Thomas L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2010-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time - distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time - distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference traveltime perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among

  12. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements

    PubMed Central

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-01-01

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface. PMID:28327510

  13. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements.

    PubMed

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-03-22

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.

  14. Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices

    NASA Astrophysics Data System (ADS)

    Su, J.; Rupp, J.; Garmory, A.; Carrotte, J. F.

    2015-09-01

    The response of orifices to incident acoustic waves, which is important for many engineering applications, is investigated with an approach combining both experimental measurements and numerical simulations. This paper presents experimental data on acoustic impedance of orifices, which is subsequently used for validation of a numerical technique developed for the purpose of predicting the acoustic response of a range of geometries with moderate computational cost. Measurements are conducted for orifices with length to diameter ratios, L/D, of 0.5, 5 and 10. The experimental data is obtained for a range of frequencies using a configuration in which a mean (or bias) flow passes from a duct through the test orifices before issuing into a plenum. Acoustic waves are provided by a sound generator on the upstream side of the orifices. Computational fluid dynamics (CFD) calculations of the same configuration have also been performed. These have been undertaken using an unsteady Reynolds averaged Navier-Stokes (URANS) approach with a pressure based compressible formulation with appropriate characteristic based boundary conditions to simulate the correct acoustic behaviour at the boundaries. The CFD predictions are in very good agreement with the experimental data, predicting the correct trend with both frequency and orifice L/D in a way not seen with analytical models. The CFD was also able to successfully predict a negative resistance, and hence a reflection coefficient greater than unity for the L / D = 0.5 case.

  15. Radio acoustic measurement of temperature profile in the troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Matuura, N.; Masuda, Y.; Inuki, H.; Kato, S.; Fukao, S.; Sato, T.; Tsuda, T.

    1986-10-01

    The radio acoustic sounding system (RASS) uses radar to measure the temperature profile in the atmosphere. In the standard technique of atmospheric radar, the radar backscatter results from electrical permittivity variations due to natural phenomena such as turbulence and precipitation. In the RASS technique, the radar backscatter results from periodical permittivity variations due to density/temperature variations imposed on the atmosphere by an acoustic wave artificially generated in such a way that the acoustic wavelength is half the radar (electromagnetic) wavelength. This `Bragg condition' is necessary for efficient backscattering. The backscatter echo of the RASS is affected by the Doppler frequency shift arising both from the speed at which the longitudinal acoustic perturbations propagate (the sound speed), and from the radial bulk velocity in the common volume of the atmosphere-the latter can be measured by the standard technique of turbulence scatter. The observed sound speed is reduced to give the local atmospheric temperature. Here we report an experiment using the RASS, carried out on 1-3 August 1985, which consisted of a high-power, very-high-frequency (VHF) Doppler radar at Shigaraki, Shiga, Japan and a movable high-power acoustic transmitter, and which gave the first experimental proof of the possibility of temperature profiling in the troposphere and stratosphere up to an altitude of ~20 km.

  16. Comparison of Simulated and Measured Fluid-Surface Oscillation Frequencies in a Channel

    NASA Astrophysics Data System (ADS)

    Trapuzzano, Matthew; Pierre, Kiesha; Tufekcioglu, Emre; Guldiken, Rasim; Tejada-Martinez, Andres; Crane, Nathan

    2016-11-01

    Many important processes from agriculture to manufacturing depend on the wetting of fluids on rough or textured surfaces. This has traditionally been studied from a macro-perspective. The effects of these surface features can be dramatically altered by vibrations that overcome energy barriers to contact line motion caused by surface roughness. In order to study these effects in confined geometries and at different length scales, a validated model is required. This presentation will compare the measured and simulated frequencies of capillary vibrations in a cylindrical glass tube. Fluid surface vibrations are excited externally through deformation of the interface. The resulting surface oscillations are observed with a high speed video camera and the dominant oscillation frequencies are calculated. The measured oscillation frequencies are compared to predictions from transient CFD simulations across a range of interface diameters from 400 um to 1.5 mm. These results may be used to inform studies of wetting under vibration. NSF CMMI-1361919.

  17. Long Term Statistical Measurements of Environmental Acoustics Parameters in the Arctic. AEAS Report Number 2. Low Frequency Transmission Loss Measurements in the Central Arctic Ocean.

    DTIC Science & Technology

    2014-09-26

    RD-RI56 576 LONG TERM STATISTICAL MEASUREMENTS OF ENVIRONMENTAL 1/2 ACOUSTICS PRAMETERS I..(U) POLRR RESEARCH LAB INC CARPINTERIA CA B M BUCK 15 JAN...BUREAU Of STANDARDS-1963-A I l I E ".-.’ .’ In :j: Lona Term Statistical Measurements of Environmental Acoustics Parameters in the Arctic - AEAS...No - Lo Frequency Transmission ’>:--’.-’- , .- ’ ,. ’.*- Lona Term Statistical Measurements ofcean Environmental Acoustics Parameters ,..-’, in the

  18. Laser velocimetry measurements of oscillating airfoil dynamic stall flow field

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Ahmed, S.

    1991-01-01

    Ensemble-averaged two-component velocity measurements over an airfoil experiencing oscillatory dynamic stall under compressibility conditions were obtained. The measurements show the formation of a separation bubble over the airfoil that persists till angles of attack close to when the dynamic stall vortex forms and convects. The fluid attains mean velocities as large as 1.6 times the free stream velocity with instantaneous values of 1.8 times the free stream velocity. The airfoil motion induces these large velocities in regions that are far removed from the surface.

  19. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    SciTech Connect

    Toner, Ruth B.

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  20. Sub-pg mass sensing and measurement with an optomechanical oscillator.

    PubMed

    Liu, Fenfei; Alaie, Seyedhamidreza; Leseman, Zayd C; Hossein-Zadeh, Mani

    2013-08-26

    Mass sensing based on mechanical oscillation frequency shift in micro/nano scale mechanical oscillators is a well-known and widely used technique. Piezo-electric, electronic excitation/detection and free-space optical detection are the most common techniques used for monitoring the minute frequency shifts induced by added mass. The advent of optomechanical oscillator (OMO), enabled by strong interaction between circulating optical power and mechanical deformation in high quality factor optical microresonators, has created new possibilities for excitation and interrogation of micro/nanomechanical resonators. In particular, radiation pressure driven optomechanical oscillators (OMOs) are excellent candidates for mass detection/measurement due to their simplicity, sensitivity and all-optical operation. In an OMO, a high quality factor optical mode simultaneously serves as an efficient actuator and a sensitive probe for precise monitoring of the mechanical eigen-frequencies of the cavity structure. Here, we show the narrow linewidth of optomechanical oscillation combined with harmonic optical modulation generated by nonlinear optical transfer function, can result in sub-pg mass sensitivity in large silica microtoroid OMOs. Moreover by carefully studying the impact of mechanical mode selection, device dimensions, mass position and noise mechanisms we explore the performance limits of OMO both as a mass detector and a high resolution mass measurement system. Our analysis shows that femtogram level resolution is within reach even with relatively large OMOs.

  1. Low-cost precise measurement of oscillator frequency instability based on GNSS carrier observation

    NASA Astrophysics Data System (ADS)

    Kou, Yanhong; Jiao, Yue; Xu, Dongyang; Zhang, Meng; Liu, Ya; Li, Xiaohui

    2013-03-01

    Global navigation satellite systems (GNSS) receivers can be used in time and frequency metrology by exploiting stable GNSS time scales. This paper proposes a low-cost method for precise measurement of oscillator frequency instability using a single-frequency software GNSS receiver. The only required hardware is a common radio frequency (RF) data collection device driven by the oscillator under test (OUT). The receiver solves the oscillator frequency error in high time resolution using the carrier Doppler observation and the broadcast ephemeris from one of the available satellites employing the onboard reference atomic frequency standard that is more stable than the OUT. Considering the non-stable and non-Gaussian properties of the frequency error measurement, an unbiased finite impulse response (FIR) filter is employed to obtain robust estimation and filter out measurement noise. The effects of different filter orders and convolution lengths are further discussed. The frequency error of an oven controlled oscillator (OCXO) is measured using live Beidou-2/Compass signals. The results are compared with the synchronous measurement using a specialized phase comparator with the standard coordinated universal time (UTC) signal from the master clock H226 in the national time service center (NTSC) of China as its reference. The Allan deviation (ADEV) estimates using the two methods have a 99.9% correlation coefficient and a 0.6% mean relative difference over 1-1000 s intervals. The experiment demonstrates the effectiveness and high precision of the software receiver method.

  2. Impulse source versus dodecahedral loudspeaker for measuring parameters derived from the impulse response in room acoustics.

    PubMed

    San Martín, Ricardo; Arana, Miguel; Machín, Jorge; Arregui, Abel

    2013-07-01

    This study investigates the performance of dodecahedral and impulse sources when measuring acoustic parameters in enclosures according to ISO 3382-1 [Acoustics-Measurement of room acoustic parameters. Part 1: Performance spaces (International Organization for Standardization, Geneva, Switzerland, 2009)]. In general, methods using speakers as a sound source are limited by their frequency response and directivity. On the other hand, getting impulse responses from impulse sources typically involves a lack of repeatability, and it is usually necessary to average several measurements for each position. Through experiments in different auditoriums that recreate typical situations in which the measurement standard is applied, it is found that using impulse sources leads to greater variation in the results, especially at low frequencies. However, this prevents subsequent dispersions due to variables that this technique does not require, such as the orientation of the emitting source. These dispersions may be relevant at high frequencies exceeding the established tolerance criteria for certain parameters. Finally, a new descriptor for dodecahedral sources reflecting the influence their lack of omnidirectionality produces on measuring acoustic parameters is proposed.

  3. Acoustic measurements of F100-PW-100 engine operating in hush house NSN 4920-02-070-2721

    NASA Astrophysics Data System (ADS)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly AFB Texas during operation of the F100-PW-100 engine to ensure that engine structural acoustic design limits were not exceeded. The acoustic measurements showed that no sonic fatigue problems are anticipated with the F100-PW-100 engine structure during operation in the hush house. The measured acoustic levels were less than those measured in an existing F100-PW-100 engine wet-cooled noise suppressor, but were increased over that measured during operation on an open test stand. It was recommended that the acoustic load increases measured in this program should be specified in the structural design criteria for engines which will be subjected to hush house operation or defining requirements for associated equipment.

  4. Acoustic measurements of F-4E aircraft operating in hush house, NSN 4920-02-070-2721

    NASA Astrophysics Data System (ADS)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The primary purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-4E aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that sonic fatigue problems are anticipated with the F-4E aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-4E aircraft water cooled hush house at Hill AFB in the lower frequencies, but were increased over that measured during ground run up on some areas of the aircraft. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment. Recommendations were also made to increase the fatigue life of the aft fuselage.

  5. Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie

    2009-01-01

    Lift-off acoustic environments generated by the future Ares I launch vehicle are assessed by the NASA Marshall Space Flight Center (MSFC) acoustics team using several prediction tools. This acoustic environment is directly caused by the Ares I First Stage booster, powered by the five-segment Reusable Solid Rocket Motor (RSRMV). The RSRMV is a larger-thrust derivative design from the currently used Space Shuttle solid rocket motor, the Reusable Solid Rocket Motor (RSRM). Lift-off acoustics is an integral part of the composite launch vibration environment affecting the Ares launch vehicle and must be assessed to help generate hardware qualification levels and ensure structural integrity of the vehicle during launch and lift-off. Available prediction tools that use free field noise source spectrums as a starting point for generation of lift-off acoustic environments are described in the monograph NASA SP-8072: "Acoustic Loads Generated by the Propulsion System." This monograph uses a reference database for free field noise source spectrums which consist of subscale rocket motor firings, oriented in horizontal static configurations. The phrase "subscale" is appropriate, since the thrust levels of rockets in the reference database are orders of magnitude lower than the current design thrust for the Ares launch family. Thus, extrapolation is needed to extend the various reference curves to match Ares-scale acoustic levels. This extrapolation process yields a subsequent amount of uncertainty added upon the acoustic environment predictions. As the Ares launch vehicle design schedule progresses, it is important to take every opportunity to lower prediction uncertainty and subsequently increase prediction accuracy. Never before in NASA s history has plume acoustics been measured for large scale solid rocket motors. Approximately twice a year, the RSRM prime vendor, ATK Launch Systems, static fires an assembled RSRM motor in a horizontal configuration at their test facility

  6. Acoustic absorption measurement of human hair and skin within the audible frequency range.

    PubMed

    Katz, B F

    2000-11-01

    Utilizing the two-microphone impedance tube method, the acoustic absorption of human skin and hair is measured in the frequency range 1-6 kHz. Various locations on a number of human subjects are measured to determine if the presence of bone or an air pocket affects the acoustic absorption of human skin. The absorption coefficient of human hair is also measured. Additional techniques are utilized to minimize errors due to sample mounting methods. Techniques are employed to minimize potential errors in sensor and sample locations. The results of these measurements are compared to relevant historical papers on similar investigations. Results for skin measurements compare well with previous work. Measured hair absorption data do not agree with previous work in the area but do coincide with expected trends, which previous works do not.

  7. Preliminary Measurement of Neutrino Oscillation Parameters By NuMI/MINOS and Calibration Studies for Improving this Measurement

    SciTech Connect

    Symes, Philip Andrew

    2005-11-01

    This thesis explains the origins of neutrinos and their interactions, and the phenomenon of neutrino oscillations. Experiments for measuring neutrino oscillations are mentioned and the experiment investigated in this thesis, the ''Main Injector Neutrino Oscillation Search'', and its neutrino beam, the Fermi National Accelerator Laboratory's ''Neutrinos At The Main Injector'', are described. MINOS is a long baseline (735 km) neutrino oscillation experiment with a near and a far detector, intended to make precision measurements of the atmospheric sector neutrino oscillation parameters. A measurement is made of the ''atmospheric'' neutrino oscillation parameters, Δm$2\\atop{23}$ and sin2(2θ23), using neutrinos from the NuMI beam. The results of this analysis are compared to measurements at MINOS using neutrinos from the atmosphere and with other experiments. A more detailed method of beam neutrino analysis is discussed, and the extra calibrations needed to perform that analysis properly are described, with special attention paid to two aspects of the calibration, which comprise the bulk of work for this thesis. The light injection calibration system uses LEDs to illuminate the detector readout and provides a normalization of the stability of the detector over time. The hardware and different modi operandi of the system are described. There is a description of installation and commissioning of the system at one of the MINOS detectors. The response normalization of each detector with cosmic ray muons is described. Special attention is paid to the explanation of necessary corrections that must be made to the muon sample in order for the sample to be used to calibrate each detector to the specified accuracy. The performance of the calibration is shown.

  8. Use of acoustic intensity measurements in the characterization of jet noise sources

    NASA Astrophysics Data System (ADS)

    Musafir, R. E.; Slama, J. G.; Zindeluk, M.

    The usefulness of two-microphone acoustic-intensity (AI) measurements for characterizing the acoustic field of a jet flow is investigated by means of numerical simulations. The theoretical principles and data basis for the simulations are explained, and the intensity patterns generated by the simulation are presented graphically. It is found that the vector information in AI data from the near field are useful in understanding complex sources, but that far-field intensity charts cannot locate separate sources and may be misleading if not analyzed in terms of a sound physical model.

  9. A Void Fraction Characterisation by Low Frequency Acoustic Velocity Measurements in Microbubble Clouds

    NASA Astrophysics Data System (ADS)

    Cavaro, Matthieu

    Low frequency acoustic velocity measurements have been applied for the characterization of microbubble clouds generated in water. This method, based on the Wood's model (1941) links the acoustic velocity throughout a two-phase medium to its void fraction value. Low frequency means below resonance frequencies of the bubbles inside the cloud. An original bench was developed to allow the qualification of this method. The experiments conducted allowed us to characterize void fraction values between 10-3 and 10-7. The radii of the studied microbubbles are between a few micrometers and a hundred micrometers.

  10. Molecular recognition in gas sensing: Results from acoustic wave and in-situ FTIR measurements

    SciTech Connect

    Hierlemann, A.; Ricco, A.J.; Bodenhoefer, K.; Goepel, W.

    1998-06-01

    Surface acoustic wave (SAW) measurements were combined with direct, in-situ molecular spectroscopy to understand the interactions of surface-confined sensing films with gas-phase analytes. This was accomplished by collecting Fourier-transform infrared external-reflectance spectra (FTIR-ERS) on operating SAW devices during dosing of their specifically coated surfaces with key analytes.

  11. A Multidimensional Investigation of Children's /r/ Productions: Perceptual, Ultrasound, and Acoustic Measures

    ERIC Educational Resources Information Center

    Klein, Harriet B.; McAllister Byun, Tara; Davidson, Lisa; Grigos, Maria I.

    2013-01-01

    Purpose: This study explored relationships among perceptual, ultrasound, and acoustic measurements of children's correct and misarticulated /r/ sounds. Longitudinal data documenting changes across these parameters were collected from 2 children who acquired /r/ over a period of intervention and were compared with data from children with typical…

  12. Effect of Foreshortening on Center-to-Limb Variations of Measured Acoustic Travel Times

    NASA Astrophysics Data System (ADS)

    Zhao, Junwei; Stejko, Andrey; Chen, Ruizhu

    2016-03-01

    We use data observed near the solar disk center by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) to mimic observations at high-latitude areas after applying geometric transform and projection. These data are then used to study how foreshortening affects the time-distance measurements of acoustic travel times. We find that foreshortening reduces the measured mean travel-times through altering the acoustic-power weighting in different harmonic degrees, but the level of reduction and the latitude dependence are not as strong as those measured from the observation data at the same latitude. Foreshortening is not found to be accountable for the systematic center-to-limb effect in the measured acoustic travel-time differences, which is an essential factor for a reliable inference of the Sun's meridional-circulation profile. The differences in the acoustic power spectrum between the mimicked data and the observation data in high-latitude areas suggest that the optical spectrum-line formation height or convection cells in these areas may be the primary cause of the center-to-limb effect in helioseismic analyses.

  13. An all fiber-optic sensor for surface acoustic wave measurements

    NASA Technical Reports Server (NTRS)

    Bowers, J. E.; Jungerman, R. L.; Khuri-Yakub, B. T.; Kino, G. S.

    1983-01-01

    A surface acoustic wave (SAW) sensor constructed from single-mode fiber-optic components is described. An analysis of reciprocal and nonreciprocal modes of operation of the sensor is presented. Results from measurements on a variety of SAW devices illustrate the use of the sensor. The amplitude sensitivity is 0.0003 A for an integration time of 0.1 s.

  14. Deriving content-specific measures of room acoustic perception using a binaural, nonlinear auditory model.

    PubMed

    van Dorp Schuitman, Jasper; de Vries, Diemer; Lindau, Alexander

    2013-03-01

    Acousticians generally assess the acoustic qualities of a concert hall or any other room using impulse response-based measures such as the reverberation time, clarity index, and others. These parameters are used to predict perceptual attributes related to the acoustic qualities of the room. Various studies show that these physical measures are not able to predict the related perceptual attributes sufficiently well under all circumstances. In particular, it has been shown that physical measures are dependent on the state of occupation, are prone to exaggerated spatial fluctuation, and suffer from lacking discrimination regarding the kind of acoustic stimulus being presented. Accordingly, this paper proposes a method for the derivation of signal-based measures aiming at predicting aspects of room acoustic perception from content specific signal representations produced by a binaural, nonlinear model of the human auditory system. Listening tests were performed to test the proposed auditory parameters for both speech and music. The results look promising; the parameters correlate with their corresponding perceptual attributes in most cases.

  15. Feasibility of using nonlinear guided waves to measure acoustic nonlinearity of aluminum

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn H.; Kim, Jin-Yeon; Jacobs, Laurence J.; Qu, Jianmin

    2011-04-01

    This research investigates the feasibility of measuring acoustic nonlinearity in aluminum with different ultrasonic guided wave modes. Acoustic nonlinearity is manifested by generation of a second harmonic component in an originally monochromatic ultrasonic wave signal, and previous research has shown this correlates to an intrinsic material property. This parameter has been shown to increase with accumulated material damage - specifically in low- and high-cycle fatigue - prior to crack initiation, whereas other ultrasonic nondestructive evaluation (NDE) techniques measuring linear parameters are unable to detect damage prior to crack initiation. In structural components such as jet engines and aircraft structures subjected to fatigue damage, crack initiation does not occur until ~80% of a component's life. Thus, there is a need for structural health monitoring (SHM) techniques that can characterize material damage state prior to crack initiation, and therefore nonlinear ultrasonic techniques have the potential to be powerful NDE and SHM tools. Experimental results using Rayleigh and Lamb guided wave modes to measure acoustic nonlinearity in undamaged aluminum 6061 samples are presented, and a comparison of the efficiency of these modes to measure acoustic nonlinearity is given.

  16. Acoustic sounder system design for measurement of optical turbulence and wind profiles

    NASA Astrophysics Data System (ADS)

    Miller, Judith E.; Eaton, Frank D.; Stokes, Sheldon S.

    2000-07-01

    An Acoustic Sounder System has been installed on the side of the cliff at North Oscura Peak, WSMR to provide important refractive index structure parameter, Cn2 data for laser propagation tests. The acoustic sounder system records echo information that is used to provide 3D wind and optical turbulence profiles. The received signal is the product of the interaction of the transmitted acoustic pulse with the small scale atmospheric temperature variations. This information is displayed as a time-height display of the signal intensity. The frequency of the received signals are processed and converted into time histories of the horizontal wind field. The data from the Acoustic Sounder is calibrated with the hot-wire anemometer temperature structure parameter (Ct2) data, and meteorological data measured locally to produce the Cn2 profile. The design and location of the Acoustic Sounder System will be discussed along with the methodology of extracting the turbulence. Many days of data have been collected and representative data will be shown.

  17. Determination of delayed neutrons source in the frequency domain based on in-pile oscillation measurements

    SciTech Connect

    Yedvab, Y.; Reiss, I.; Bettan, M.; Harari, R.; Grober, A.; Ettedgui, H.; Caspi, E. N.

    2006-07-01

    A method for determining delayed neutrons source in the frequency domain based on measuring power oscillations in a non-critical reactor is presented. This method is unique in the sense that the delayed neutrons source is derived from the dynamic behavior of the reactor, which serves as the measurement system. An algorithm for analyzing power oscillation measurements was formulated, which avoids the need for a multi-parameter non-linear fit process used by other methods. Using this algorithm results of two sets of measurements performed in IRR-I and IRR-II (Israeli Research Reactors I and II) are presented. The agreement between measured values from both reactors and calculated values based on Keepin (and JENDL-3.3) group parameters is very good. (authors)

  18. Evaluation of Acoustic Doppler Current Profiler measurements of river discharge

    USGS Publications Warehouse

    Morlock, S.E.

    1996-01-01

    The standard deviations of the ADCP measurements ranged from approximately 1 to 6 percent and were generally higher than the measurement errors predicted by error-propagation analysis of ADCP instrument performance. These error-prediction methods assume that the largest component of ADCP discharge measurement error is instrument related. The larger standard deviations indicate that substantial portions of measurement error may be attributable to sources unrelated to ADCP electronics or signal processing and are functions of the field environment.

  19. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  20. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p < 0.05) differences in oscillation power between LS and REM were observed. However, the period of VLF oscillations around 8 mHz increased in REM sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  1. Low-cost FM oscillator for capacitance type of blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Barranger, John P.

    1987-01-01

    The frequency-modulated (FM) oscillator described is part of a blade tip clearance measurement system that meets the needs of a wide class of fans, compressors, and turbines. As a result of advancements in the technology of ultra-high-frequency operational amplifiers, the FM oscillator requires only a single low-cost integrated circuit. Its carrier frequency is 42.8 MHz when it is used with an integrated probe and connecting cable assembly consisting of a 0.81 cm diameter engine-mounted capacitance probe and a 61 cm long hermetically sealed coaxial cable. A complete circuit analysis is given, including amplifier negative resistance characteristics. An error analysis of environmentally induced effects is also derived, and an error-correcting technique is proposed. The oscillator can be calibrated in the static mode and has a negative peak frequency deviation of 400 kHz for a rotor blade thickness of 1.2 mm. High-temperature performance tests of the probe and 13 cm of the adjacent cable show good accuracy up to 600 C, the maximum permissible seal temperature. The major source of error is the residual FM oscillator noise, which produces a clearance error of + or - 10 microns at a clearance of 0.5 mm. The oscillator electronics accommodates the high rotor speeds associated with small engines, the signals from which may have frequency components as high as 1 MHz.

  2. Methods of measuring characteristics of oscillations and waves in micromechanics (A review)

    NASA Astrophysics Data System (ADS)

    Simonov, I. V.

    2010-11-01

    Methods of recording the electric signals generated during wave oscillations and wave propagation and the results of experiments on determination of dynamic characteristics of thin fibers and films are reviewed. New experimental setups have been developed. A possibility of studying the spectra of fiber oscillations is demonstrated, and a method for determining nonlinear stress-strain diagrams based on variations in the frequencies of transverse oscillations of this fibers as strings is proposed. The effect of sharp deceleration of dispersal of a charge being coated on the specimen surface in case of a damaged glass fiber is discovered. A complex method for measuring wave and mass velocities of elastic waves and instant elasticity moduli of a fiber during simultaneous high-speed photography and recording of electromagnetic radiation is developed. The dependences of these quantities on the wave intensity are given, and the scale effect is revealed. Application of this method for studying wave processes in thin polymer films is demonstrated.

  3. Temporal acoustic measures distinguish primary progressive apraxia of speech from primary progressive aphasia.

    PubMed

    Duffy, Joseph R; Hanley, Holly; Utianski, Rene; Clark, Heather; Strand, Edythe; Josephs, Keith A; Whitwell, Jennifer L

    2017-02-07

    The purpose of this study was to determine if acoustic measures of duration and syllable rate during word and sentence repetition, and a measure of within-word lexical stress, distinguish speakers with primary progressive apraxia of speech (PPAOS) from nonapraxic speakers with the agrammatic or logopenic variants of primary progressive aphasia (PPA), and control speakers. Results revealed that the PPAOS group had longer durations and reduced rate of syllable production for most words and sentences, and the measure of lexical stress. Sensitivity and specificity indices for the PPAOS versus the other groups were highest for longer multisyllabic words and sentences. For the PPAOS group, correlations between acoustic measures and perceptual ratings of AOS were moderately high to high. Several temporal measures used in this study may aid differential diagnosis and help quantify features of PPAOS that are distinct from those associated with PPA in which AOS is not present.

  4. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions within the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center, in partnership with GE Aviation, is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to develop a scaling methodology for using data obtained from small- and moderate-scale experiments which exhibits the independence of the jet sizes to the measured noise levels. The experimental results presented in this thesis have shown reasonable agreement between small-scale and moderate-scale jet acoustic data, as well as between heated jets and heat-simulated ones. As the scaling methodology is validated, it will be extended to using acoustic data measured with small-scale supersonic model jets to the prediction of the most important components of full-scale engine noise. When comparing the measured acoustic spectra with a microphone array set at different radial locations, the characteristics of the jet noise source distribution may induce subtle inaccuracies, depending on the conditions of jet operation. A close look is taken at the details of the noise generation region in order to better understand the mismatch between spectra measured at various acoustic field radial locations. A processing methodology was developed to correct the effect of the noise source distribution and efficiently compare near-field and far-field spectra with unprecedented accuracy. This technique then demonstrates that the measured noise levels in the physically restricted space of an anechoic chamber can be appropriately

  5. An optical motion measuring system for laterally oscillated fatigue tests

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping; Murri, Gretchen B.; Sharpe, Scott

    1993-01-01

    This paper describes an optical system developed for materials testing laboratories at NASA Langley Research Center (LaRC) for high resolution monitoring of the transverse displacement and angular rotation of a test specimen installed in an axial-tension bending machine (ATB) during fatigue tests. It consists of a small laser, optics, a motorized mirror, three photodiodes, electronic detection and counting circuits, a data acquisition system, and a personal computer. A 3-inch by 5-inch rectangular plate attached to the upper grip of the test machine serves as a target base for the optical system. The personal computer automates the fatigue test procedure, controls data acquisition, performs data reduction, and provides user displays. The data acquisition system also monitors signals from up to 16 strain gages mounted on the test specimen. The motion measuring system is designed to continuously monitor and correlate the amplitude of the oscillatory motion with the strain gage signals in order to detect the onset of failure of the composite test specimen. A prototype system has been developed and tested which exceeds the design specifications of +/- 0.01 inch displacement accuracy, and +/- 0.25 deg angular accuracy at a sampling rate of 100 samples per second.

  6. Measurement-based control of a mechanical oscillator at its thermal decoherence rate

    NASA Astrophysics Data System (ADS)

    Wilson, D. J.; Sudhir, V.; Piro, N.; Schilling, R.; Ghadimi, A.; Kippenberg, T. J.

    2015-08-01

    In real-time quantum feedback protocols, the record of a continuous measurement is used to stabilize a desired quantum state. Recent years have seen successful applications of these protocols in a variety of well-isolated micro-systems, including microwave photons and superconducting qubits. However, stabilizing the quantum state of a tangibly massive object, such as a mechanical oscillator, remains very challenging: the main obstacle is environmental decoherence, which places stringent requirements on the timescale in which the state must be measured. Here we describe a position sensor that is capable of resolving the zero-point motion of a solid-state, 4.3-megahertz nanomechanical oscillator in the timescale of its thermal decoherence, a basic requirement for real-time (Markovian) quantum feedback control tasks, such as ground-state preparation. The sensor is based on evanescent optomechanical coupling to a high-Q microcavity, and achieves an imprecision four orders of magnitude below that at the standard quantum limit for a weak continuous position measurement--a 100-fold improvement over previous reports--while maintaining an imprecision-back-action product that is within a factor of five of the Heisenberg uncertainty limit. As a demonstration of its utility, we use the measurement as an error signal with which to feedback cool the oscillator. Using radiation pressure as an actuator, the oscillator is cold damped with high efficiency: from a cryogenic-bath temperature of 4.4 kelvin to an effective value of 1.1 +/- 0.1 millikelvin, corresponding to a mean phonon number of 5.3 +/- 0.6 (that is, a ground-state probability of 16 per cent). Our results set a new benchmark for the performance of a linear position sensor, and signal the emergence of mechanical oscillators as practical subjects for measurement-based quantum control.

  7. Spontaneous oscillation of tension and sarcomere length in skeletal myofibrils. Microscopic measurement and analysis.

    PubMed Central

    Anazawa, T; Yasuda, K; Ishiwata, S

    1992-01-01

    We have devised a simple method for measuring tension development of single myofibrils by micromanipulation with a pair of glass micro-needles. The tension was estimated from the deflection of a flexible needle under an inverted phase-contrast microscope equipped with an image processor, so that the tension development is always accompanied by the shortening of the myofibril (auxotonic condition) in the present setup. The advantage of this method is that the measurement of tension (1/30 s for time resolution and about 0.05 micrograms for accuracy of tension measurement; 0.05 microns as a spatial resolution for displacement of the micro-needle) and the observation of sarcomere structure are possible at the same time, and the technique to hold myofibrils, even single myofibrils, is very simple. This method has been applied to study the tension development of glycerinated skeletal myofibrils under the condition where spontaneous oscillation of sarcomeres is induced, i.e., the coexistence of MgATP, MgADP and inorganic phosphate without free Ca2+. Under this condition, we found that the tension of myofibrils spontaneously oscillates accompanied by the oscillation of sarcomere length with a main period of a few seconds; the period was lengthened and shortened with stretch and release of myofibrils. A possible mechanism of the oscillation is discussed. Images FIGURE 4 PMID:1600075

  8. Measurement and mathematical simulation of acoustic characteristics of an artificially lengthened vocal tract

    NASA Astrophysics Data System (ADS)

    Radolf, Vojtěch; Horáček, Jaromír; Dlask, Pavel; Otčenášek, Zdeněk; Geneid, Ahmed; Laukkanen, Anne-Maria

    2016-03-01

    Phonation into tubes is used for voice training and therapy. In the present study, the formant frequencies were estimated from measurements of the acoustic pressure and the acoustic input impedance for a plexiglass model of the vocal tract (VT) prolonged by a glass tube. Similar transfer function measurements were performed with a human VT in vivo. The experimental results matched the mathematical modelling and confirmed the legitimacy of assuming rigid walls in mathematical simulations of the acoustic characteristics of an artificial VT model prolonged by a tube. However, this study also proved a considerable influence from soft tissues in the yielding walls of human VT cavities on the first formant frequency, F1. The measured F1 for the VT model corresponded to the computed value of 78 Hz. The experiments in a human instead resulted in a much higher value of F1: about 200 Hz. The results confirm that a VT model with yielding walls must be considered for mathematical modelling of the occluded or semi-occluded human vocal tract, e.g. prolonged by tubes or straws. This is explained by an acoustic-structural interaction of the vocal tract cavities with a mechanical low-frequency resonance of the soft tissue in the larynx.

  9. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    NASA Astrophysics Data System (ADS)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  10. Analysis of Generator Oscillation Characteristics Based on Multiple Synchronized Phasor Measurements

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Takuhei; Yoshimoto, Masamichi; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro

    In recent years, there has been considerable interest in the on-line measurement, such as observation of power system dynamics and evaluation of machine parameters. On-line methods are particularly attractive since the machine’s service need not be interrupted and parameter estimation is performed by processing measurements obtained during the normal operation of the machine. Authors placed PMU (Phasor Measurement Unit) connected to 100V outlets in some Universities in the 60Hz power system and examine oscillation characteristics in power system. PMU is synchronized based on the global positioning system (GPS) and measured data are transmitted via Internet. This paper describes an application of PMU for generator oscillation analysis. The purpose of this paper is to show methods for processing phase difference and to estimate damping coeffcient and natural angular frequency from phase difference at steady state.

  11. Appearance and disappearance of motional sideband asymmetry in measurement-based control of a mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Sudhir, Vivishek; Wilson, Dalziel; Schilling, Ryan; Schuetz, Hendrik; Nunnenkamp, Andreas; Kippenberg, Tobias

    Measurement-based feedback provides an avenue to study the delicate interplay between the quantum correlations established during the process of measurement, and their progressive obfuscation when exposed to uncorrelated noise in the form of fundamental quantum fluctuations in the feedback path. Here we demonstrate this tradeoff using a feedback strategy whose objective is to cool a nano-mechanical oscillator close to its ground state. The correlations established due to the measurement are revealed in the appearance of motional sideband asymmetry. The latter, faithfully measured using an optical heterodyne interferometer with an imprecision ~17 dB below that at the standard quantum limit, increases to 6% as the oscillator is feedback cooled to an occupation of 15 phonons. Further increase in the gain of the feedback loop leads to a decrease in the asymmetry. This is due to the addition of unavoidable quantum fluctuations in a feedback amplifier - photon shot-noise amplified by a homodyne detector in our case.

  12. Tethered acoustic doppler current profiler platforms for measuring streamflow

    USGS Publications Warehouse

    Rehmel, Michael S.; Stewart, James A.; Morlock, Scott E.

    2003-01-01

    A tethered-platform design with a trimaran hull and 900-megahertz radio modems is now commercially available. Continued field use has resulted in U.S. Geological Survey procedures for making tethered-platform discharge measurements, including methods for tethered-boat deployment, moving-bed tests, and measurement of edge distances.

  13. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500-2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  14. Cesium oscillator strengths measured with a multiple-path-length absorption cell

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1976-01-01

    Absorption-oscillator-strength measurements for the principal series in cesium were measured using a multiple-path-length cell. The optical arrangement included a movable transverse path for checking the uniformity of the alkali density along the length of the cell and which also allowed strength measurements to be made simultaneously on both strong and weak lines. The strengths measured on the first 10 doublets indicate an increasing trend in the doublet ratio. The individual line strengths are in close agreement with the high resolution measurements of Pichler (1974) and with the calculations of Norcross (1973).

  15. Numerical investigation and electro-acoustic modeling of measurement methods for the in-duct acoustical source parameters.

    PubMed

    Jang, Seung-Ho; Ih, Jeong-Guon

    2003-02-01

    It is known that the direct method yields different results from the indirect (or load) method in measuring the in-duct acoustic source parameters of fluid machines. The load method usually comes up with a negative source resistance, although a fairly accurate prediction of radiated noise can be obtained from any method. This study is focused on the effect of the time-varying nature of fluid machines on the output results of two typical measurement methods. For this purpose, a simplified fluid machine consisting of a reservoir, a valve, and an exhaust pipe is considered as representing a typical periodic, time-varying system and the measurement situations are simulated by using the method of characteristics. The equivalent circuits for such simulations are also analyzed by considering the system as having a linear time-varying source. It is found that the results from the load method are quite sensitive to the change of cylinder pressure or valve profile, in contrast to those from the direct method. In the load method, the source admittance turns out to be predominantly dependent on the valve admittance at the calculation frequency as well as the valve and load admittances at other frequencies. In the direct method, however, the source resistance is always positive and the source admittance depends mainly upon the zeroth order of valve admittance.

  16. Pressure transducer for measuring acoustic radiation force based on a magnetic sensor

    NASA Astrophysics Data System (ADS)

    Kamimura, H. A. S.; Pavan, T. Z.; Almeida, T. W. J.; Pádua, M. L. A.; Baggio, A. L.; Fatemi, M.; Carneiro, A. A. O.

    2011-01-01

    This work presents a pressure transducer based on a magnetic sensor to measure acoustic radiation force (ARF) and small displacements. The methodology presented in this paper allowed this transducer to be calibrated for use as an acoustic pressure and intensity meter. It can control the acoustic intensity emitted by ultrasound used, for example, in ARF impulse imaging, vibro-acoustography and high-intensity focused ultrasound techniques. The device comprises a magnet, a membrane, a magnetoresistive sensor and a coil to cancel the external magnetic field. When ARF is applied to the membrane, the magnetic field on the sensor changes due to the magnetic target displacement. The variation of the output signal from the magnetic transducer is proportional to the acoustic pressure applied to the membrane. A focused ultrasound transducer with a central frequency of 3 MHz was used to apply a continuous ARF. The sensitivities of the magnetic transducer as an acoustic pressure and intensity meter, evaluated in water, were respectively 0.597 µV MPa-1 and 0.073 µV (W cm-2)-1/2, while those of the needle hydrophone (Onda model HNP-0400) used in the magnetic transducer calibration were respectively, 0.5024 mV MPa-1 and 6.153 mV (W cm-2)-1/2. The transducer resolution to displacement is 5 nm and 6 dB of signal attenuation occurs for 7° of misalignment. The transducer responded well to acoustic pressure in water above 200 kPa.

  17. Surface acoustical intensity measurements on a diesel engine

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.; Crocker, M. J.

    1980-01-01

    The use of surface intensity measurements as an alternative to the conventional selective wrapping technique of noise source identification and ranking on diesel engines was investigated. A six cylinder, in line turbocharged, 350 horsepower diesel engine was used. Sound power was measured under anechoic conditions for eight separate parts of the engine at steady state operating conditions using the conventional technique. Sound power measurements were repeated on five separate parts of the engine using the surface intensity at the same steady state operating conditions. The results were compared by plotting sound power level against frequency and noise source rankings for the two methods.

  18. Laser and acoustic Doppler techniques for the measurement of fluid velocities

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.

    1975-01-01

    An overview of current laser and acoustic Doppler techniques is presented. Results obtained by Doppler anemometry and conventional sensors are compared. Comparisons include simultaneous velocity measurements by hot wire and a three-dimensional laser anemometer made in a gaseous pipe flow as well as direct comparisons of atmospheric velocities measured with propeller and cup anemometry. Scanning techniques are also discussed. Conclusions and recommendations for future work are presented.

  19. Optimization of Measurement Points Choice in Preparation of Green Areas Acoustic Map

    NASA Astrophysics Data System (ADS)

    Sztubecka, Małgorzata; Bujarkiewicz, Adam; Sztubecki, Jacek

    2016-12-01

    The aim of the article is to analyze the selection of measuring points of sustainable sound level in the spa park. A set of points should allow to make on their basis an acoustic climate map for the park at certain times of day by usage available tools. Practical part contains a comparative analysis of developed noise maps, taking into account different variants of the distribution and number of measuring points on the selected area of the park.

  20. A fully integrated oven controlled microelectromechanical oscillator – Part II. Characterization and measurement

    SciTech Connect

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tens of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.

  1. Monte Carlo uncertainty estimation for an oscillating-vessel viscosity measurement

    SciTech Connect

    K. Horne; H. Ban; R. Fielding; R. Kennedy

    2012-08-01

    This paper discusses the initial design and evaluation of a high temperature viscosity measurement system with the focus on the uncertainty assessment. Numerical simulation of the viscometer is used to estimate viscosity uncertainties through the Monte Carlo method. The simulation computes the system response for a particular set of inputs (viscosity, moment of inertia, spring constant and hysteretic damping), and the viscosity is calculated using two methods: the Roscoe approximate solution and a numerical-fit method. For numerical fitting, a residual function of the logarithmic decay of oscillation amplitude and oscillation period is developed to replace the residual function of angular oscillation, which is mathematically stiff. The results of this study indicate that the method using computational solution of the equations and fitting for the parameters should be used, since it almost always out-performs the Roscoe approximation in uncertainty. The hysteretic damping and spring stiffness uncertainties translate into viscosity uncertainties almost directly, whereas the moment of inertial and vessel-height uncertainties are magnified approximately two-fold. As the hysteretic damping increases, so does the magnification of its uncertainty, therefore it should be minimized in the system design. The result of this study provides a general guide for the design and application of all oscillation-vessel viscosity measurement systems.

  2. A fully integrated oven controlled microelectromechanical oscillator – Part II. Characterization and measurement

    DOE PAGES

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tensmore » of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.« less

  3. Measurement of Atmospheric Neutrino Oscillations with IceCube/DeepCore in its 79-string Configuration

    NASA Astrophysics Data System (ADS)

    Euler, Sebastian

    With its low-energy extension DeepCore, the IceCube Neutrino Observatory at the Amundsen-Scott South Pole Station is able to detect neutrino events with energies as low as 10 GeV. This permits the investigation of flavor oscillations of atmospheric muon neutrinos in an energy range not covered by other experiments, opening a new window on the physics of atmospheric neutrino oscillations. The oscillation probability depends on the observed neutrino zenith angle and energy. Maximum disappearance is expected for vertically upward moving muon neutrinos at around 25 GeV. A recent analysis has rejected the non-oscillation hypothesis with a significance of about 5 σ based on data obtained with IceCube while it was operating in its 79-string configuration [1]. The analysis presented here uses data from the same detector configuration, but implements a more powerful approach for the event selection, which yields a dataset with an order of magnitude higher statistics (more than 8 000 events). We present new results based on a likelihood analysis of the two observables zenith angle and energy. The non-oscillation hypothesis is rejected with a significance32 of about 5.7 σ. In the 2-flavor approximation, our best-fit oscillation parameters are Δm2 = (2.2 ± 0.5) · 10-3eV2 and0.14 sin2 (2θ23) = 1.0+0-0.14, in good agreement with measurements at lower energy.

  4. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    PubMed

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties.

  5. A novel instrument to measure acoustic resonances of the vocal tract during phonation

    NASA Astrophysics Data System (ADS)

    Epps, J.; Smith, J. R.; Wolfe, J.

    1997-10-01

    Acoustic resonances of the vocal tract give rise to formants (broad bands of acoustic power) in the speech signal when the vocal tract is excited by a periodic signal from the vocal folds. This paper reports a novel instrument which uses a real-time, non-invasive technique to measure these resonances accurately during phonation. A broadband acoustic current source is located just outside the mouth of the subject and the resulting acoustic pressure is measured near the lips. The contribution of the speech signal to the pressure spectrum is then digitally suppressed and the resonances are calculated from the input impedance of the vocal tract as a function of the frequency. The external excitation signal has a much smaller harmonic spacing than does the periodic signal from the vocal folds and consequently the resonances are determined much more accurately due to the closer sampling. This is particularly important for higher pitched voices and we demonstrate that this technique can be markedly superior to the curve-fitting technique of linear prediction. The superior frequency resolution of this instrument which results from external vocal tract excitation can provide the precise, stable, effective, articulatory feedback considered essential for some language-learning and speech-therapy applications.

  6. Integration of Acoustic Radiation Force and Optical Imaging for Blood Plasma Clot Stiffness Measurement

    PubMed Central

    Wang, Caroline W.; Perez, Matthew J.; Helmke, Brian P.; Viola, Francesco; Lawrence, Michael B.

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  7. The acoustic environment of intensive care wards based on long period nocturnal measurements.

    PubMed

    Xie, Hui; Kang, Jian

    2012-01-01

    The patients in the Intensive Care Units are often exposed to excessive levels of noise and activities. They can suffer from sleep disturbance, especially at night, but they are often too ill to cope with the poor environment. This article investigates the acoustic environment of typical intensive care wards in the UK, based on long period nocturnal measurements, and examines the differences between singlebed and multibed wards, using statistical analysis. It has been shown that the acoustic environment differs significantly every night. There are also significant differences between the noise levels in the singlebed and multibed wards, where acoustic ceilings are present. Despite the similar background noises in both ward types, more intrusive noises tend to originate from the multibed wards, while more extreme sounds are likely to occur in the single wards. The sound levels in the measured wards for each night are in excess of the World Health Organization's (WHO) guide levels by at least 20 dBA, dominantly at the middle frequencies. Although the sound level at night varies less than that in the daytime, the nocturnal acoustic environment is not dependant on any specific time, thus neither the noisiest nor quietest period can be determined. It is expected that the statistical analysis of the collected data will provide essential information for the development of relevant guidelines and noise reduction strategies.

  8. Multimodal brain imaging with magnetoencephalography: A method for measuring blood pressure and cardiorespiratory oscillations.

    PubMed

    Myllylä, Teemu; Zacharias, Norman; Korhonen, Vesa; Zienkiewicz, Aleksandra; Hinrichs, Hermann; Kiviniemi, Vesa; Walter, Martin

    2017-12-01

    Studies with magnetoencephalography (MEG) are still quite rarely combined simultaneously with methods that can provide a metabolic dimension to MEG investigations. In addition, continuous blood pressure measurements which comply with MEG compatibility requirements are lacking. For instance, by combining methods reflecting neurovascular status one could obtain more information on low frequency fluctuations that have recently gained increasing interest as a mediator of functional connectivity within brain networks. This paper presents a multimodal brain imaging setup, capable to non-invasively and continuously measure cerebral hemodynamic, cardiorespiratory and blood pressure oscillations simultaneously with MEG. In the setup, all methods apart from MEG rely on the use of fibre optics. In particular, we present a method for measuring of blood pressure and cardiorespiratory oscillations continuously with MEG. The potential of this type of multimodal setup for brain research is demonstrated by our preliminary studies on human, showing effects of mild hypercapnia, gathered simultaneously with the presented modalities.

  9. Acoustic Measurements of Residual Stresses and Grain Sizes in Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fisher, Martin John

    The theory of acoustoelasticity relates the velocity of an acoustic wave in a solid to the elastic stress state in that solid. This thesis presents new theories, measurement techniques, and methodologies related to the use of longitudinal wave acoustoelasticity in aluminum alloys. A one-dimensional model has been developed to provide a simple understanding of the acoustoelastic effect. A new acoustic device for accurately measuring relative thickness variations has been designed and built. This device is used--in conjunction with a pulse-echo phase measurement device and a computer controlled scanning system--to measure acoustic velocity variations in plastically deformed and non-flat-and-parallel samples. Acoustic velocity variations from point to point in an unstressed sample can sometimes be on the same order as velocity changes due to applied or residual stresses, and this can make stress measurements difficult. A statistical theory has been developed to relate these unstressed velocity variations to the average grain size in the sample and to the active area of the acoustic transducer used. Large transducers and small grain sizes will minimize these variations. This relationship has been verified by tests on a number of aluminum alloys and a new method for non-destructive grain size determination has been suggested. A systematic methodology has been developed and tested for studying the influence of uniaxial plastic deformation on the acoustoelastic response. Samples have been plastically deformed in four-point bending to produce elastic-plastic and residual stress states. Acoustic measurements of these stresses have then been compared directly to theoretical predictions based on the materials' stress-strain curves and simple beam theory. In the aluminum alloys tested (2024-T351 and 7075-T651), the acoustoelastic constants are shown to be virtually unchanged by uniaxial plastic strains of less than 2.5%. Thus, the acoustoelastic technique can be reliably

  10. On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress

    SciTech Connect

    Bocko, M.F.; Onofrio, R.

    1996-07-01

    Several high-precision physics experiments are approaching a level of sensitivity at which the intrinsic quantum nature of the experimental apparatus is the dominant source of fluctuations limiting the sensitivity of the measurements. This quantum limit is embodied by the Heisenberg uncertainty principle, which prohibits arbitrarily precise simultaneous measurements of two conjugate observables of a system but allows one-time measurements of a single observable with any precision. The dynamical evolution of a system immediately following a measurement limits the class of observables that may be measured repeatedly with arbitrary precision, with the influence of the measurement apparatus on the system being confined strictly to the conjugate observables. Observables having this feature, and the corresponding measurements performed on them, have been named quantum nondemolition or back-action evasion observables. In a previous review (Caves {ital et} {ital al}., 1980, Rev. Mod. Phys. {bold 52}, 341) a quantum-mechanical analysis of quantum nondemolition measurements of a harmonic oscillator was presented. The present review summarizes the experimental progress on quantum nondemolition measurements and the classical models developed to describe and guide the development of practical implementations of quantum nondemolition measurements. The relationship between the classical and quantum theoretical models is also reviewed. The concept of quantum nondemolition and back-action evasion measurements originated in the context of measurements on a macroscopic mechanical harmonic oscillator, though these techniques may be useful in other experimental contexts as well, as is discussed in the last part of this review. {copyright} {ital 1996 The American Physical Society.}

  11. Acoustic measurements through analysis of binaural recordings of speech and music

    NASA Astrophysics Data System (ADS)

    Griesinger, David

    2004-10-01

    This paper will present and demonstrate some recent work on the measurement of acoustic properties from binaural recordings of live performances. It is found that models of the process of stream formation can be used to measure intelligibility, and, when combined with band-limited running cross-correlation, can be used to measure spaciousness and envelopment. Analysis of the running cross correlation during sound onsets can be used to measure the accuracy of azimuth perception. It is additionally found that the ease of detecting fundamental pitch from the upper partials of speech and music can be used as a measure of sound quality, particularly for solo instruments and singers.

  12. Measurement of ultrasonic nonlinear parameter by using electromagnetic acoustic transducer

    NASA Astrophysics Data System (ADS)

    Cai, Zhichao; Liu, Suzhen; Zhang, Chuang

    2017-02-01

    The nonlinear ultrasonic technology is generally known as an effective method for the microcrack detection. However, most of the previous experimental studies were limited by a contact nonlinearity method. Since measurement by the contact method is affected by the coupling conditions, additional nonlinear coefficient are lead into the measurement. This research presents a novel technique for nonlinear ultrasonic wave measurements that uses a non-contact electromagnetic ultrasonic transducer (EMAT). And for a better understanding and a more in-depth analysis of the macroscopic nonlinear behavior of microcrack, the developed FEM modeling approach was built to simulate microcrack induced nonlinearities manifested in electromagnetic ultrasonic waves and validated experimentally. This study has yielded a quantitative characterization strategy for microcrack using EMAT, facilitating deployment of structural health monitoring by noncontact electromagnetic nondestructive testing.

  13. Accurate measurements of the acoustical physical constants of synthetic alpha-quartz for SAW devices.

    PubMed

    Kushibiki, Juin-ichi; Takanaga, Izumi; Nishiyama, Shouichi

    2002-01-01

    Accurate measurements of the acoustical physical constants (elastic constants, piezoelectric constants, dielectric constants, and density) of commercially available and widely used surface acoustic wave (SAW)-grade synthetic a-quartz are reported. The propagation directions and modes of bulk waves optimal for accurately determining the constants were selected through numerical calculations, and three principal X-, Y-, and Z-cut specimens and several rotated Y-cut specimens were prepared from a single crystal ingot to determine the constants and to confirm their accuracy. All of the constants were determined through highly accurate measurements of the longitudinal velocities, shear velocities, dielectric constants, and density. The velocity values measured for the specimens that were not used to determine the constants agreed well with those calculated from the determined constants, within a difference of +/- 0.20 m/s (+/- 0.004%).

  14. The effect of artificial rain on backscattered acoustic signal: first measurements

    NASA Astrophysics Data System (ADS)

    Titchenko, Yuriy; Karaev, Vladimir; Meshkov, Evgeny; Goldblat, Vladimir

    The problem of rain influencing on a characteristics of backscattered ultrasonic and microwave signal by water surface is considered. The rain influence on backscattering process of electromagnetic waves was investigated in laboratory and field experiments, for example [1-3]. Raindrops have a significant impact on backscattering of microwave and influence on wave spectrum measurement accuracy by string wave gauge. This occurs due to presence of raindrops in atmosphere and modification of the water surface. For measurements of water surface characteristics during precipitation we propose to use an acoustic system. This allows us obtaining of the water surface parameters independently on precipitation in atmosphere. The measurements of significant wave height of water surface using underwater acoustical systems are well known [4, 5]. Moreover, the variance of orbital velocity can be measure using these systems. However, these methods cannot be used for measurements of slope variance and the other second statistical moments of water surface that required for analyzing the radar backscatter signal. An original design Doppler underwater acoustic wave gauge allows directly measuring the surface roughness characteristics that affect on electromagnetic waves backscattering of the same wavelength [6]. Acoustic wave gauge is Doppler ultrasonic sonar which is fixed near the bottom on the floating disk. Measurements are carried out at vertically orientation of sonar antennas towards water surface. The first experiments were conducted with the first model of an acoustic wave gauge. The acoustic wave gauge (8 mm wavelength) is equipped with a transceiving antenna with a wide symmetrical antenna pattern. The gauge allows us to measure Doppler spectrum and cross section of backscattered signal. Variance of orbital velocity vertical component can be retrieved from Doppler spectrum with high accuracy. The result of laboratory and field experiments during artificial rain is presented

  15. Developing a confocal acoustic holography microscope for non-invasive 3D temperature and composition measurements.

    PubMed

    Herring, Rodney A; Jacquemin, Peter; Sawicka, Barbara D; Atalick, Stefan

    2009-06-01

    A confocal acoustic holography microscope (CAHM) has been designed, simulated and partially verified experimentally to take holograms for non-invasive, three-dimensional measurements of a specimen's refractive indices from one view point. The designed and simulated prototype CAHM used a frequency of 2.25 MHz and measured sound speed changes of 16 m/s, temperature changes of 5 degrees C and had a spatial resolution of 660 microm. With future improvements utilizing the latest technologies such as two-dimensional array detectors, Micro-Electro-Mechanical Systems (MEMS), and acoustic lenses, resolutions of 1m/s, 0.5 degrees C, and 150 microm are expected. The CAHM is expected to have many useful applications, including non-invasive mass and heat transfer measurements in fluids and materials and as a medical diagnostic tool to non-intrusively visualize compositions and temperatures within the human body.

  16. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    NASA Technical Reports Server (NTRS)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  17. Acoustic input impedance of the avian inner ear measured in ostrich (Struthio camelus).

    PubMed

    Muyshondt, Pieter G G; Aerts, Peter; Dirckx, Joris J J

    2016-09-01

    In both mammals and birds, the mechanical behavior of the middle ear structures is affected by the mechanical impedance of the inner ear. In this study, the aim was to quantify the acoustic impedance of the avian inner ear in the ostrich, which allows us to determine the effect on columellar vibrations and middle ear power flow in future studies. To determine the inner ear impedance, vibrations of the columella were measured for both the quasi-static and acoustic stimulus frequencies. In the frequency range of 0.3-4 kHz, we used electromagnetic stimulation of the ossicle and a laser Doppler vibrometer to measure the vibration response. At low frequencies, harmonic displacements were imposed on the columella using piezo stimulation and the resulting force response was measured with a force sensor. From these measurement data, the acoustic impedance of the inner ear could be determined. A simple RLC model in series of the impedance measurements resulted in a stiffness reactance of KIE = 0.20·10(12) Pa/m³, an inertial impedance of MIE = 0.652·10(6) Pa s(2)/m³, and a resistance of RIE = 1.57·10(9) Pa s/m. We found that values of the inner ear impedance in the ostrich are one to two orders in magnitude smaller than what is found in mammal ears.

  18. In situ measurements of sediment acoustic properties in Currituck Sound and comparison to models.

    PubMed

    Lee, Kevin M; Ballard, Megan S; McNeese, Andrew R; Muir, Thomas G; Wilson, Preston S; Costley, R Daniel; Hathaway, Kent K

    2016-11-01

    In situ measurements of compressional and shear wave speed and attenuation were collected 30 cm below the water-sediment interface in Currituck Sound, North Carolina at two field locations having distinctly different sediment types: medium-to-fine-grained sand and fine-grained sand with approximately 10% mud content. Shear wave measurements were performed with bimorph transducers to generate and receive horizontally polarized shear waves in the 300 Hz to 1 kHz band, and compressional wave measurements were performed using hydrophones operated in the 5 kHz to 100 kHz band. Sediment samples were collected at both measurement sites and later analyzed in the laboratory to characterize the sediment grain size distribution for each field location. Compressional and shear wave speed and attenuation were estimated from the acoustic measurements, and preliminary comparisons to the extended Biot model by Chotiros and Isakson [J. Acoust. Soc. 135, 3264-3279 (2014)] and the viscous grain-shearing theory by Buckingham [J. Acoust. Soc. 136, 2478-2488 (2014)] were performed.

  19. The relationship between VHI scores and specific acoustic measures of mildly disordered voice production.

    PubMed

    Wheeler, Karen M; Collins, Savita P; Sapienza, Christine M

    2006-06-01

    This study was designed to examine the relationship between the Voice Handicap Index (VHI) and acoustic measures of voice samples common in clinical practice. Fifty participants, 38 women and 12 men, ranging in age from 19 to 80 years, with a mean age of 49 years, served as participants. Of these 50 participants, 17 participants could be included in the acoustic analysis of voice based on measures of error calculated with the TF32 software. All participants completed the VHI and provided voice samples including three trials of the sustained vowel /A/ at a comfortable loudness level as well as a connected speech sample consisting of the Zoo Passage. Acoustic measures were made with TF32 and Cool Edit software and included fundamental frequency, jitter %, shimmer %, signal-to-noise ratio, mean root-mean-square intensity, fundamental frequency standard deviation, aphonic periods, and breath groups. Results indicate that these measures were not predictive of overall VHI score, and no cohesive or predictable pattern was identified when comparing individual measures with overall VHI or with each subscale item. Likely contributions to this lack of correlation and subsequent clinical implications are discussed, as well as the direction for further research.

  20. Direct Measurements of Edge Diffraction from Soft Underwater Acoustic Panels

    DTIC Science & Technology

    1994-06-01

    kokmenna". SOd nMn de thub essifetos•’ an urde aspect of d0OW *81brde e ehn to Nevleee. 0’"t’rate fmr Infoem•Mdoun OPe-dohs end ReprSt. 1211 Jeffe.n. Sthe...finite sample- in Fi.9(b). The multiple internal contributions are ap- ae effects in transmitted-wave measurements made on multilayer un. derwater