Science.gov

Sample records for acoustic oscillation scale

  1. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    PubMed

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  2. On measuring the absolute scale of baryon acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Sutherland, Will

    2012-10-01

    The baryon acoustic oscillation (BAO) feature in the distribution of galaxies provides a fundamental standard ruler which is widely used to constrain cosmological parameters. In most analyses, the comoving length of the ruler is inferred from a combination of cosmic microwave background (CMB) observations and theory. However, this inferred length may be biased by various non-standard effects in early universe physics; this can lead to biased inferences of cosmological parameters such as H0, Ωm and w, so it would be valuable to measure the absolute BAO length by combining a galaxy redshift survey and a suitable direct low-z distance measurement. One obstacle is that low-redshift BAO surveys mainly constrain the ratio rS/DV(z), where DV is a dilation scale which is not directly observable by standard candles. Here, we find a new approximation DV(z)≃34DL(43z)(1+43z)-1(1-0.02455 z3+0.0105 z4) which connects DV to the standard luminosity distance DL at a somewhat higher redshift; this is shown to be very accurate (relative error <0.2 per cent) for all Wilkinson Microwave Anisotropy Probe compatible Friedmann models at z < 0.4, with very weak dependence on cosmological parameters H0, Ωm, Ωk, w. This provides a route to measure the absolute BAO length using only observations at z ≲ 0.3, including Type Ia supernovae, and potentially future H0-free physical distance indicators such as gravitational lenses or gravitational wave standard sirens. This would provide a zero-parameter check of the standard cosmology at 103 ≲ z ≲ 105, and can constrain the number of relativistic species Neff with fewer degeneracies than the CMB.

  3. Small scale aspects of warm dark matter: Power spectra and acoustic oscillations

    SciTech Connect

    Boyanovsky, Daniel; Wu Jun

    2011-02-15

    We provide a semianalytic derivation of approximate evolution equations for density perturbations of warm dark matter candidates that decoupled while relativistic with arbitrary distribution functions, their solutions at small scales, and a simple numerical implementation that yields their transfer functions and power spectra. Density perturbations evolve through three stages: radiation domination when the particle is relativistic and nonrelativistic and matter domination. An early integrated Sachs-Wolfe effect during the first stage leads to an enhancement of density perturbations and a plateau in the transfer function for k < or approx. k{sub fs}, the free-streaming wave vector. An effective fluid description emerges at small scales which includes the effects of free streaming in initial conditions and inhomogeneities. The transfer function features warm dark matter acoustic oscillations at scales k > or approx. 2k{sub fs}. A simple analytic interpolation of the power spectra between large and small scales and a numerical implementation valid for arbitrary distribution functions is provided. As an application we study the power spectra for two models of sterile neutrinos with m{approx}keV produced nonresonantly and compare our results to those obtained from Boltzmann codes.

  4. Improved Forecasts for the Baryon Acoustic Oscillations and Cosmological Distance Scale

    NASA Astrophysics Data System (ADS)

    Seo, Hee-Jong; Eisenstein, Daniel J.

    2007-08-01

    We present the cosmological distance errors achievable using the baryonic acoustic oscillations as a standard ruler. We begin from a Fisher matrix formalism that is upgraded from earlier Seo and Eisenstein work. We isolate the information from the baryonic peaks by excluding distance information from other less robust sources. Meanwhile, we accommodate the Lagrangian displacement distribution into the Fisher matrix calculation to reflect the gradual loss of information in scale and in time due to nonlinear growth, nonlinear bias, and nonlinear redshift distortions. We then show that we can contract the multidimensional Fisher matrix calculations into a two-dimensional or even one-dimensional formalism with physically motivated approximations. We present the resulting fitting formula for the cosmological distance errors from galaxy redshift surveys as a function of survey parameters and nonlinearity, which saves us going through the 12 dimensional Fisher matrix calculations. Finally, we show excellent agreement between the distance error estimates from the revised Fisher matrix and the precision on the distance scale recovered from N-body simulations.

  5. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P. Oshkai; M. Geveci; D. Rockwell; M. Pollack

    2002-12-12

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of,these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  6. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P Oshkai; M Geveci; D Rockwell; M Pollack

    2004-05-24

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe, which give rise to flow tones, are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  7. Performance study of Lagrangian methods: reconstruction of large scale peculiar velocities and baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Keselman, J. A.; Nusser, A.

    2017-01-01

    NoAM for "No Action Method" is a framework for reconstructing the past orbits of observed tracers of the large scale mass density field. It seeks exact solutions of the equations of motion (EoM), satisfying initial homogeneity and the final observed particle (tracer) positions. The solutions are found iteratively reaching a specified tolerance defined as the RMS of the distance between reconstructed and observed positions. Starting from a guess for the initial conditions, NoAM advances particles using standard N-body techniques for solving the EoM. Alternatively, the EoM can be replaced by any approximation such as Zel'dovich and second order perturbation theory (2LPT). NoAM is suitable for billions of particles and can easily handle non-regular volumes, redshift space, and other constraints. We implement NoAM to systematically compare Zel'dovich, 2LPT, and N-body dynamics over diverse configurations ranging from idealized high-res periodic simulation box to realistic galaxy mocks. Our findings are (i) Non-linear reconstructions with Zel'dovich, 2LPT, and full dynamics perform better than linear theory only for idealized catalogs in real space. For realistic catalogs, linear theory is the optimal choice for reconstructing velocity fields smoothed on scales {buildrel > over {˜}} 5 h^{-1}{Mpc}.(ii) all non-linear back-in-time reconstructions tested here, produce comparable enhancement of the baryonic oscillation signal in the correlation function.

  8. Surface acoustic wave stabilized oscillators

    NASA Technical Reports Server (NTRS)

    Parker, T. E.

    1978-01-01

    A number of 401.2 MHz surface acoustic wave (SAW) controlled oscillators were built and tested. The performance of these oscillators was evaluated for possible use as stable oscillators in communication systems. A short term frequency stability of better than 1 x 10 to the minus 9th power for one second was measured for the SAW oscillators. Long term frequency drift was measured and was found to be dependent on SAW design and packaging. Drift rates ranging from 15 ppm in twenty weeks to 2.5 ppm in twenty weeks were observed. Some further improvement was required. The temperature dependence of the saw oscillators was evaluated and it was concluded that some form of temperature compensation will be necessary to meet the requirements of some communication systems.

  9. Acoustic loading effects on oscillating rod bundles

    SciTech Connect

    Lin, W.H.

    1980-01-01

    An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed.

  10. Probing large-scale structure with large samples of X-ray selected AGN. I. Baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Hütsi, Gert; Gilfanov, Marat; Kolodzig, Alexander; Sunyaev, Rashid

    2014-12-01

    We investigate the potential of large X-ray-selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is (i) to find the requirements needed for the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of σ0 = 10-2 at z = 1 and the catastrophic failure rate of ffail ≲ 30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts (σ0 = 10-3 and ffail ~ 0) will boost the confidence level of the BAO detection by a factor of ~2. For meaningful detection of BAO, X-ray surveys of moderate depth of Flim ~ few 10-15 erg s-1/cm2 covering sky area from a few hundred to ~ten thousand square degrees are required. The optimal strategy for the BAO detection does not necessarily require full sky coverage. For example, in a 1000 day-long survey by an eROSITA type telescope, an optimal strategy would be to survey a sky area of ~9000 deg2, yielding a ~16σ BAO detection. A similar detection will be achieved by ATHENA+ or WFXT class telescopes in a survey with a duration of 100 days, covering a similar sky area. XMM-Newton can achieve a marginal BAO detection in a 100-day survey covering ~400 deg2. These surveys would demand a moderate-to-high cost in terms the optical follow-ups, requiring determination of redshifts of ~105 (XMM-Newton) to ~3 × 106 objects (eROSITA, ATHENA+, and WFXT) in these sky areas.

  11. PRSA hydrogen tank thermal acoustic oscillation study

    NASA Technical Reports Server (NTRS)

    Riemer, D. H.

    1979-01-01

    The power reactant storage assembly (PRSA) hydrogen tank test data were reviewed. Two hundred and nineteen data points illustrating the effect of flow rate, temperature ratio and configuration were identified. The test data were reduced to produce the thermal acoustic oscillation parameters. Frequency and amplitude were determined for model correlation. A comparison of PRSA hydrogen tank test data with the analytical models indicated satisfactory agreement for the supply and poor agreement for the full line.

  12. Cosmological implications of baryon acoustic oscillation measurements

    SciTech Connect

    Aubourg, Eric

    2015-12-01

    Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H0=67.3±1.1 km s-1 Mpc-1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ωm=0.301±0.008 and curvature Ωk=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species,

  13. Cosmological implications of baryon acoustic oscillation measurements

    DOE PAGES

    Aubourg, Eric

    2015-12-01

    Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibratedmore » physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H0=67.3±1.1 km s-1 Mpc-1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ωm=0.301±0.008 and curvature Ωk=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Σmν<0.56 eV (95% confidence), improving to Σmν<0.25 eV if we include

  14. Damping of thermal acoustic oscillations in hydrogen systems

    NASA Technical Reports Server (NTRS)

    Gu, Youfan; Timmerhaus, Klaus D.

    1991-01-01

    Acoustic waves initiated by a large temperature gradient along a tube are defined as thermal acoustic oscillations (TAOs). These oscillations have been damped by introducing such sound absorbing techniques as acoustic filters, resonators, etc.. These devices serve as an acoustic sink that is used to absorb or dissipate the acoustic energy thereby eliminating or damping such oscillations. Several empirical damping techniques, such as attaching a resonator as a side branch or inserting a wire in the tube, have been developed in the past and have provided reasonable success. However, the effect of connecting tube radius, length, and resonator volume on the damping of thermal acoustic oscillations has not been evaluated quantitatively. Further, these methods have not been effective when the oscillating tube radius was relatively large. Detailed theoretical analyses of these techniques including a newly developed method for damping oscillations in a tube of relatively large radius are provided in this presentation.

  15. Baryon acoustic oscillation intensity mapping of dark energy.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  16. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  17. Investigation of acoustic streaming patterns around oscillating sharp edges

    PubMed Central

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2014-01-01

    Oscillating sharp edges have been employed to achieve rapid and homogeneous mixing in microchannels using acoustic streaming. Here we use a perturbation approach to study the flow around oscillating sharp edges in a microchannel. This work extends prior experimental studies to numerically characterize the effect of various parameters on the acoustically induced flow. Our numerical results match well with the experimental results. We investigated multiple device parameters such as the tip angle, oscillation amplitude, and channel dimensions. Our results indicate that, due to the inherent nonlinearity of acoustic streaming, the channel dimensions could significantly impact the flow patterns and device performance. PMID:24903475

  18. Suppression of Spontaneous Gas Oscillations by Acoustic Self-Feedback

    NASA Astrophysics Data System (ADS)

    Biwa, Tetsushi; Sawada, Yoshiki; Hyodo, Hiroaki; Kato, Soichiro

    2016-10-01

    This paper demonstrates a method of acoustical self-feedback to suppress spontaneous gas oscillations such as those observed in combustors of gas-turbine engines. Whereas a conventional feedback system consists of electromechanical devices, the present method achieves acoustical self-feedback with a hollow tube that connects two positions of the oscillation system. A model oscillator of combustion-driven gas oscillations is designed and built to demonstrate the applicability of the self-feedback concept. Stability analysis through measurements of Q values (quality factor) of oscillations shows that the desired delay time and gain are obtained when the tube length is equal to the odd integer times half the wavelength of the anticipated acoustic oscillations.

  19. Behaviour of a Premixed Flame Subjected to Acoustic Oscillations

    PubMed Central

    Qureshi, Shafiq R.; Khan, Waqar A.; Prosser, Robert

    2013-01-01

    In this paper, a one dimensional premixed laminar methane flame is subjected to acoustic oscillations and studied. The purpose of this analysis is to investigate the effects of acoustic perturbations on the reaction rates of different species, with a view to their respective contribution to thermoacoustic instabilities. Acoustically transparent non reflecting boundary conditions are employed. The flame response has been studied with acoustic waves of different frequencies and amplitudes. The integral values of the reaction rates, the burning velocities and the heat release of the acoustically perturbed flame are compared with the unperturbed case. We found that the flame's sensitivity to acoustic perturbations is greatest when the wavelength is comparable to the flame thickness. Even in this case, the perturbations are stable with time. We conclude that acoustic fields acting on the chemistry do not contribute significantly to the emergence of large amplitude pressure oscillations. PMID:24376501

  20. Thermal acoustic oscillations, volume 2. [cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Sims, W. H.; Fan, C.

    1975-01-01

    A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions.

  1. Coupling between ion-acoustic waves and neutrino oscillations.

    PubMed

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2017-01-01

    The work investigates the coupling between ion-acoustic waves and neutrino flavor oscillations in a nonrelativistic electron-ion plasma under the influence of a mixed neutrino beam. Neutrino oscillations are mediated by the flavor polarization vector dynamics in a material medium. The linear dispersion relation around homogeneous static equilibria is developed. When resonant with the ion-acoustic mode, the neutrino flavor oscillations can transfer energy to the plasma exciting a new fast unstable mode in extreme astrophysical scenarios. The growth rate and the unstable wavelengths are determined in typical type II supernova parameters. The predictions can be useful for a new indirect probe on neutrino oscillations in nature.

  2. Coupling between ion-acoustic waves and neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2017-01-01

    The work investigates the coupling between ion-acoustic waves and neutrino flavor oscillations in a nonrelativistic electron-ion plasma under the influence of a mixed neutrino beam. Neutrino oscillations are mediated by the flavor polarization vector dynamics in a material medium. The linear dispersion relation around homogeneous static equilibria is developed. When resonant with the ion-acoustic mode, the neutrino flavor oscillations can transfer energy to the plasma exciting a new fast unstable mode in extreme astrophysical scenarios. The growth rate and the unstable wavelengths are determined in typical type II supernova parameters. The predictions can be useful for a new indirect probe on neutrino oscillations in nature.

  3. Thermal Acoustic Oscillation: Causes, Detection, Analysis and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Hartwig, Jason W.

    2014-01-01

    The presentation discusses the causes of Thermal Acoustic Oscillations, how it can be detected, analyzed and prevented. It also discusses where it can occur, where it doesn't occur and practical mitigation techniques.

  4. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  5. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Vargas, Magda B.

    2013-01-01

    Subscale rocket acoustic data is used to predict acoustic environments for full scale rockets. Over the last several years acoustic data has been collected during horizontal tests of solid rocket motors. Space Launch System (SLS) Scale Model Acoustic Test (SMAT) was designed to evaluate the acoustics of the SLS vehicle including the liquid engines and solid rocket boosters. SMAT is comprised of liquid thrusters scalable to the Space Shuttle Main engines (SSME) and Rocket Assisted Take Off (RATO) motors scalable to the 5-segment Reusable Solid Rocket Motor (RSTMV). Horizontal testing of the liquid thrusters provided an opportunity to collect acoustic data from liquid thrusters to characterize the acoustic environments. Acoustic data was collected during the horizontal firings of a single thruster and a 4-thruster (Quad) configuration. Presentation scope. Discuss the results of the single and 4-thruster acoustic measurements. Compare the measured acoustic levels of the liquid thrusters to the Solid Rocket Test Motor V - Nozzle 2 (SRTMV-N2).

  6. Acoustic resonances in cylinder bundles oscillating in a compressibile fluid

    SciTech Connect

    Lin, W.H.; Raptis, A.C.

    1984-12-01

    This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determined from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.

  7. Acoustic Bloch oscillations in a two-dimensional phononic crystal

    NASA Astrophysics Data System (ADS)

    He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou

    2007-11-01

    We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.

  8. Efficient construction of mock catalogs for baryon acoustic oscillation surveys

    NASA Astrophysics Data System (ADS)

    Sunayama, Tomomi; Padmanabhan, Nikhil; Heitmann, Katrin; Habib, Salman; Rangel, Esteban

    2016-05-01

    Precision measurements of the large scale structure of the Universe require large numbers of high fidelity mock catalogs to accurately assess, and account for, the presence of systematic effects. We introduce and test a scheme for generating mock catalogs rapidly using suitably derated N-body simulations. Our aim is to reproduce the large scale structure and the gross properties of dark matter halos with high accuracy, while sacrificing the details of the halo's internal structure. By adjusting global and local time-steps in an N-body code, we demonstrate that we recover halo masses to better than 0.5% and the power spectrum to better than 1% both in real and redshift space for k=1hMpc-1, while requiring a factor of 4 less CPU time. We also calibrate the redshift spacing of outputs required to generate simulated light cones. We find that outputs separated by Δ z=0.05 allow us to interpolate particle positions and velocities to reproduce the real and redshift space power spectra to better than 1% (out to k=1hMpc-1). We apply these ideas to generate a suite of simulations spanning a range of cosmologies, motivated by the Baryon Oscillation Spectroscopic Survey (BOSS) but broadly applicable to future large scale structure surveys including eBOSS and DESI. As an initial demonstration of the utility of such simulations, we calibrate the shift in the baryonic acoustic oscillation peak position as a function of galaxy bias with higher precision than has been possible so far. This paper also serves to document the simulations, which we make publicly available.

  9. Study of multilayered insulation pipe penetration. Thermal acoustic oscillation

    NASA Technical Reports Server (NTRS)

    Lovin, J. K.

    1974-01-01

    Tests were conducted to determine the net heat leak to a source of liquid nitrogen caused by a metal penetration through the blanket of multilayer insulation. The conditions under which the tests were conducted are described. A graph of the theoretical and experimental temperature distribution is developed for comparison. The variables involved in the computer program to process the data are defined. A study was conducted to develop analytical methods for predicting the effect and magnitudes of thermoacoustic oscillations on the penetration heat leak to cryogens. The oscillations develop as a result of large thermal gradients imposed on a compressible fluid. The predominant amplitudes and frequencies of the thermal acoustic oscillations were investigated.

  10. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  11. Acoustic gas oscillations in coaxial tubes

    NASA Astrophysics Data System (ADS)

    Semenova, E. V.; Larionov, V. M.; Iovleva, O. V.

    2017-01-01

    Pulsating combustion is one of the possible solutions to improve energy efficiency of combustors that use hydrocarbon fuels. In this paper analysis of gas oscillations in coaxial tubes is provided. An influence of geometric parameters of the combustion chamber and the resonance tube on the installation frequency is considered.

  12. MASS-DEPENDENT BARYON ACOUSTIC OSCILLATION SIGNAL AND HALO BIAS

    SciTech Connect

    Wang Qiao; Zhan Hu

    2013-05-10

    We characterize the baryon acoustic oscillations (BAO) feature in halo two-point statistics using N-body simulations. We find that nonlinear damping of the BAO signal is less severe for halos in the mass range we investigate than for dark matter. The amount of damping depends weakly on the halo mass. The correlation functions show a mass-dependent drop of the halo clustering bias below roughly 90 h {sup -1} Mpc, which coincides with the scale of the BAO trough. The drop of bias is 4% for halos with mass M > 10{sup 14} h {sup -1} M{sub Sun} and reduces to roughly 2% for halos with mass M > 10{sup 13} h {sup -1} M{sub Sun }. In contrast, halo biases in simulations without BAO change more smoothly around 90 h {sup -1} Mpc. In Fourier space, the bias of M > 10{sup 14} h {sup -1} M{sub Sun} halos decreases smoothly by 11% from wavenumber k = 0.012 h Mpc{sup -1} to 0.2 h Mpc{sup -1}, whereas that of M > 10{sup 13} h {sup -1} M{sub Sun} halos decreases by less than 4% over the same range. By comparing the halo biases in pairs of otherwise identical simulations, one with and the other without BAO, we also observe a modulation of the halo bias. These results suggest that precise calibrations of the mass-dependent BAO signal and scale-dependent bias on large scales would be needed for interpreting precise measurements of the two-point statistics of clusters or massive galaxies in the future.

  13. Measuring baryon acoustic oscillations from the clustering of voids

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhao, Cheng; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2016-07-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal from voids, based on galaxy redshift catalogues. To this end, we study the dependence of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale-dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the methodology on an additional set of 1000 realistic mock galaxy catalogues reproducing the SDSS-III/BOSS CMASS DR11 data, to control the impact of sky mask and radial selection function. Our solution is based on generating voids from randoms including the same survey geometry and completeness, and a post-processing cleaning procedure in the holes and at the boundaries of the survey. The methodology and optimal selection of void populations validated in this work have been used to perform the first BAO detection from voids in observations, presented in a companion paper.

  14. Vertical vibration and shape oscillation of acoustically levitated water drops

    SciTech Connect

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  15. A numerical method for acoustic oscillations in tubes

    NASA Technical Reports Server (NTRS)

    Gary, John M.

    1988-01-01

    A numerical method to obtain the neutral curve for the onset of acoustic oscillations in a helium-filled tube is described. Such oscillations can cause a serious heat loss in the plumbing associated with liquid helium dewars. The problem is modelled by a second-order, ordinary differential eigenvalue problem for the pressure perturbation. The numerical method to find the eigenvalues and track the resulting points along the neutral curve is tailored to this problem. The results show that a tube with a uniform temperature gradient along it is much more stable than one where the temperature suddenly jumps from the cold to the hot value in the middle of the tube.

  16. Magnetophonon oscillations caused by acoustic phonons in bulk conductors

    NASA Astrophysics Data System (ADS)

    Raichev, O. E.

    2016-09-01

    The interaction of electrons with acoustic phonons under a magnetic field leads to a remarkable kind of magnetophonon oscillation of transport coefficients, recently discovered in two-dimensional electron systems. The present study shows that similar oscillations exist in bulk conductors and provides a theory of this phenomenon for the case of spherical Fermi surfaces. The resonance peaks occur when the product of the Fermi surface diameter by the sound velocity is a multiple of the cyclotron frequency. Theoretical predictions may facilitate the experimental observation of the phenomenon.

  17. How does non-linear dynamics affect the baryon acoustic oscillation?

    SciTech Connect

    Sugiyama, Naonori S.; Spergel, David N. E-mail: dns@astro.princeton.edu

    2014-02-01

    We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do not guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.

  18. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, V.

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  19. On Mode Correlation of Solar Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Chang, Heon-Young

    2009-09-01

    In helioseismology it is normally assumed that p-mode oscillations are excited in a statistically independent fashion. Unfortunately, however, this issue is not clearly settled down in that two experiments exist, which apparently look in discrepancy. That is, Appourchaux et al.~(2000) looked at bin-to-bin correlation and found no evidence that the assumption is invalid. On the other hand, Roth (2001) reported that p-mode pairs with nearby frequencies tend to be anti-correlated, possibly by a mode-coupling effect. This work is motivated by an idea that one may test if there exists an excess of anticorrelated power variations of pairs of solar p-modes. We have analyzed a 72-day MDI spherical-harmonic time series to examine temporal variations of p-mode power and their correlation. The power variation is computed by a running-window method after the previous study by Roth (2001), and then distribution function of power correlation between mode pairs is produced. We have confirmed Roth's result that there is an excess of anti-correlated p-mode pairs with nearby frequencies. On the other hand, the amount of excess was somewhat smaller than the previous study. Moreover, the distribution function does not exhibit significant change when we paired modes with non-nearby frequencies, implying that the excess is not due to mode coupling. We conclude that the origin of this excess of anticorrelations may not be a solar physical process, by pointing out the possibility of statistical bias playing the central role in producing the excess.

  20. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    NASA Astrophysics Data System (ADS)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  1. The Acoustic Simple Harmonic Oscillator: Experimental Verification and Applications

    NASA Astrophysics Data System (ADS)

    Matteson, Sam

    2009-04-01

    In his famous volume, The Sensations of Tone, published in 1877, Hermann Helmholtz introduced a resonator that was central to his investigations of acoustics. This talk revisits the device that Helmholtz described and examines it as a manifestation of an acoustic simple harmonic oscillator (SHO). The presentation demonstrates that an enclosed volume which communicates with the outside world via a narrow tube exhibits a single strong frequency response in analogy to a mechanical SHO, along with weaker resonances of the air in the short pipe that comprises the ``neck.'' The investigations, furthermore, report results of a straightforward experiment that confirms the SHO model (with damping) and that is very accessible to undergraduate students using inexpensive equipment and internet-obtainable freeware. The current work also extends the analysis to include applications of the Helmholtz Resonator to several folk instruments, namely, the ocarina, whistling, and the ``bottle band.''

  2. Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, R. J.; Hartwig, J. W.

    2014-01-01

    Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.

  3. Nonlinear ultrafast acoustics at the nano scale.

    PubMed

    van Capel, P J S; Péronne, E; Dijkhuis, J I

    2015-02-01

    Pulsed femtosecond lasers can generate acoustic pulses propagating in solids while displaying either diffraction, attenuation, nonlinearity and/or dispersion. When acoustic attenuation and diffraction are negligible, shock waves or solitons can form during propagation. Both wave types are phonon wavepackets with characteristic length scales as short as a few nanometer. Hence, they are well suited for acoustic characterization and manipulation of materials on both ultrafast and ultrashort scales. This work presents an overview of nonlinear ultrasonics since its first experimental demonstration at the beginning of this century to the more recent developments. We start by reviewing the main properties of nonlinear ultrafast acoustic propagation based on the underlying equations. Then we show various results obtained by different groups around the world with an emphasis on recent work. Current issues and directions of future research are discussed.

  4. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  5. Investigation of micromixing by acoustically oscillated sharp-edges.

    PubMed

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-03-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel.

  6. Investigation of micromixing by acoustically oscillated sharp-edges

    PubMed Central

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-01-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel. PMID:27158292

  7. Measuring the speed of light with baryon acoustic oscillations.

    PubMed

    Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth

    2015-03-13

    In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.

  8. Acoustic Oscillations in Main-Sequence Stars: HD155543

    NASA Astrophysics Data System (ADS)

    Belmonte, J. A.; Pérez Hernández, F.; Roca Cortés, T.

    High-speed photometric techniques have been found useful as a way to study the acoustic mode signature in low main sequence stars. In this work, the discovery of solar-like oscillations associated to the presence of acoustic modes of pulsation in the F2V star HD155543, located outside of the instability strip, is reported. This finding has been obtained through an analysis of a long series of data (184 hours) obtained in 20 nights of observation with two twin three channel photometers attached to two 1.5 m telescopes sited at two observatories, simultaneously: Teide (OT) at Tenerife (Spain) and San Pedro Mártir (SPM) at Baja California Norte (Mexico). The major results yielded have been: the range of frequencies where p-modes signal is present (1 to 3 mHz); an upper limit of 20 µmag for the amplitude of the modes; the mean spacing between modes of equal degree l and consecutive order n, v o = 97.3 ± 0.6 µHz and two possible values of D o, 1.4 or 1.8 µHz. The values of these parameters agree, within the resolution, with those yielded by standard computed models of main sequence stars compatible with the luminosity and effective temperature already known for HD155543. These results open new perspectives for astero-seismology in the near future.

  9. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  10. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding.

    PubMed

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  11. Effects of acoustic wave resonance oscillation on immobilized enzyme

    NASA Astrophysics Data System (ADS)

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-03-01

    In aiming at developing a new method to artificially activate enzyme catalysts immobilized on surface, the effects of resonance oscillation of bulk acoustic waves were studied. Glucose oxidase (GOD) was immobilized by a covalent coupling method on a ferroelectric lead zirconate titanate (PZT) device that was able to generate thickness-extensional resonance oscillation (TERO). Glucose oxidation by the GOD enzyme was studied in a microreactor. The generation of TERO immediately increased the catalytic activity of immobilized GOD by a factor of 2-3. With turn-off of TERO, no significant activity decrease occurred, and 80-90% of the enhanced activity was maintained while the reaction proceeded. The almost complete reversion of the activity to the original low level before TERO generation was observed when the immobilized GOD was exposed to a glucose substrate-free solution. These results indicated that the presence of glucose substrate was essential for TERO-induced GOD activation and preservation of the increased activity level. The influences of reaction temperature, glucose concentration, pH, and rf electric power on the TERO activation showed that TERO strengthened the interactions of the immobilized enzyme with glucose substrate and hence promoted the formation of an activation complex.

  12. Measuring the distance-redshift relation with the baryon acoustic oscillations of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Veropalumbo, A.; Marulli, F.; Moscardini, L.; Moresco, M.; Cimatti, A.

    2016-05-01

    We analyse the largest spectroscopic samples of galaxy clusters to date, and provide observational constraints on the distance-redshift relation from baryon acoustic oscillations. The cluster samples considered in this work have been extracted from the Sloan Digital Sky Survey at three median redshifts, z = 0.2, 0.3 and 0.5. The number of objects is 12 910, 42 215 and 11 816, respectively. We detect the peak of baryon acoustic oscillations for all the three samples. The derived distance constraints are rs/DV(z = 0.2) = 0.18 ± 0.01, rs/DV(z = 0.3) = 0.124 ± 0.004 and rs/DV(z = 0.5) = 0.080 ± 0.002. Combining these measurements with the sound horizon scale measured from the cosmic microwave background, we obtain robust constraints on cosmological parameters. Our results are in agreement with the standard Λ cold dark matter (ΛCDM) model. Specifically, we constrain the Hubble constant in a ΛCDM model, H_0 = 64_{-8}^{+17} km s^{-1} Mpc^{-1} , the density of curvature energy, in the oΛCDM context, Ω _K = -0.01_{-0.33}^{+0.34}, and finally the parameter of the dark energy equation of state in the wCDM case, w = -1.06_{-0.52}^{+0.49}. This is the first time the distance-redshift relation has been constrained using only the peak of baryon acoustic oscillations of galaxy clusters.

  13. Nonlinear effects of dark energy clustering beyond the acoustic scales

    SciTech Connect

    Anselmi, Stefano; Sefusatti, Emiliano E-mail: dlopez_n@ictp.it

    2014-07-01

    We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available.

  14. Local oscillator phase noise limitation on the resolution of acoustic delay line wireless passive sensor measurement

    NASA Astrophysics Data System (ADS)

    Chrétien, N.; Friedt, J.-M.; Martin, G.

    2014-06-01

    The role of the phase noise of a local oscillator driving a pulsed-mode RADAR used for probing surface acoustic wave sensors is investigated. The echo delay, representative of the acoustic velocity, and hence the physical quantity probed by the sensor, is finely measured as a phase. Considering that the intrinsic oscillator phase fluctuation defines the phase noise measurement resolution, we experimentally and theoretically assess the relation between phase noise, measurement range, and measurand resolution.

  15. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Zhang, Yuning; Li, Shengcai

    2017-03-01

    The multi-frequency acoustic excitation has been employed to enhance the effects of oscillating bubbles in sonochemistry for many years. In the present paper, nonlinear dynamic oscillations of bubble under dual-frequency acoustic excitation are numerically investigated within a broad range of parameters. By investigating the power spectra and the response curves of oscillating bubbles, two unique features of bubble oscillations under dual-frequency excitation (termed as "combination resonance" and "simultaneous resonance") are revealed and discussed. Specifically, the amplitudes of the combination resonances are quantitatively compared with those of other traditional resonances (e.g. main resonances, harmonics). The influences of several paramount parameters (e.g., the bubble radius, the acoustic pressure amplitude, the energy allocation between two component waves) on nonlinear bubble oscillations are demonstrated.

  16. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas; Houston, Janice

    2012-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I liftoff acoustic environments and to determine the acoustic reduction gained by using an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model and Mobile Launcher with tower. Acoustic and pressure data were measured by over 200 instruments. The ASMAT results are compared to Ares I-X flight data.

  17. Experimental and theoretical demonstration of acoustic Bloch oscillations in porous silicon structures

    SciTech Connect

    Lazcano, Z.; Arriaga, J.; Aliev, G. N.

    2014-04-21

    We report the theoretical calculations and the experimental demonstration of acoustic Bloch oscillations and Wannier-Stark ladders in linear tilted multilayer structures based on porous silicon. The considered structures consist of layers with constant porosity alternated by layers with a linear gradient in the parameter η=1/v{sub L}{sup 2} along the growth direction in order to tilt the acoustic band gap. The purpose of this gradient is to mimic the tilted electronic miniband structure of a superlattice semiconductor under an external electric field. In this way, acoustic Wannier-Stark ladders of equidistant modes are formed and they were experimentally confirmed in the transmission spectrum around 1.2 GHz. Their frequency separation defines the period of the acoustic Bloch oscillations. We fabricated three different structures with the same thicknesses but different values in the η parameter to observe the effect on the period of the Bloch oscillations. We measured the acoustic transmission spectra in the frequency domain, and by using the Fourier transform, we obtained the transmission in the time domain. The transmission spectra of the fabricated samples show acoustic Bloch oscillations with periods of 27, 24, and 19 ns. The experimental results are in good agreement with the transfer matrix calculations. The observed phenomenon is the acoustic counterpart of the well known electronic Bloch oscillations.

  18. The BOSS-WiggleZ overlap region - I. Baryon acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Blake, Chris; Koda, Jun; Marín, Felipe A.; Seo, Hee-Jong; Cuesta, Antonio J.; Schneider, Donald P.

    2016-01-01

    We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We calculate the auto-correlation and cross-correlation functions in the overlap region of the two data sets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO measurement from the cross-correlation function represents the first such detection between two different galaxy surveys. After applying density-field reconstruction we report distance-scale measurements D_V r_s^fid / r_s = (1970 ± 45, 2132 ± 65, 2100 ± 200) Mpc from CMASS, the cross-correlation and WiggleZ, respectively. The distance scales derived from the two data sets are consistent, and are also robust against switching the displacement fields used for reconstruction between the two surveys. We use correlated mock realizations to calculate the covariance between the three BAO constraints. This approach can be used to construct a correlation matrix, permitting for the first time a rigorous combination of WiggleZ and CMASS BAO measurements. Using a volume-scaling technique, our result can also be used to combine WiggleZ and future CMASS DR12 results. Finally, we show that the relative velocity effect, a possible source of systematic uncertainty for the BAO technique, is consistent with zero for our samples.

  19. Baryon acoustic oscillations from the SDSS DR10 galaxies angular correlation function

    NASA Astrophysics Data System (ADS)

    Carvalho, G. C.; Bernui, A.; Benetti, M.; Carvalho, J. C.; Alcaniz, J. S.

    2016-01-01

    The 2-point angular correlation function w (θ ) (2PACF), where θ is the angular separation between pairs of galaxies, provides the transversal baryon acoustic oscillation (BAO) signal almost model independently. In this paper we use 409 337 luminous red galaxies in the redshift range z =[0.440 ,0.555 ] obtained from the tenth data release of the Sloan Digital Sky Survey (SDSS DR10) to estimate θBAO(z ) from the 2PACF at six redshift shells. Since noise and systematics can hide the BAO signature in the w -θ plane, we also discuss some criteria to localize the acoustic bump. We identify two sources of model dependence in the analysis, namely, the value of the acoustic scale from cosmic microwave background (CMB) measurements and the correction in the θBAO(z ) position due to projection effects. Constraints on the dark energy equation-of-state parameter w (z ) from the θBAO(z ) diagram are derived, as well as from a joint analysis with current CMB measurements. We find that the standard Λ CDM model as well as some of its extensions are in good agreement with these θBAO(z ) measurements.

  20. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations

    SciTech Connect

    Font-Ribera, Andreu; Kirkby, David; Blomqvist, Michael; Busca, Nicolas; Aubourg, Éric; Bautista, Julian; Ross, Nicholas P.; Bailey, Stephen; Beutler, Florian; Carithers, Bill; Slosar, Anže; Rich, James; Delubac, Timothée; Bhardwaj, Vaishali; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, Jon; Brownstein, Joel R.; Dawson, Kyle S.; and others

    2014-05-01

    We measure the large-scale cross-correlation of quasars with the Lyα forest absorption, using over 164,000 quasars from Data Release 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We extend the previous study of roughly 60,000 quasars from Data Release 9 to larger separations, allowing a measurement of the Baryonic Acoustic Oscillation (BAO) scale along the line of sight c/(H(z = 2.36)r{sub s}) = 9.0±0.3 and across the line of sight D{sub A}(z = 2.36)/r{sub s} = 10.8±0.4, consistent with CMB and other BAO data. Using the best fit value of the sound horizon from Planck data (r{sub s} = 147.49 Mpc), we can translate these results to a measurement of the Hubble parameter of H(z = 2.36) = 226±8 km s{sup −1} Mpc{sup −1} and of the angular diameter distance of D{sub A}(z = 2.36) = 1590±60 Mpc. The measured cross-correlation function and an update of the code to fit the BAO scale (baofit) are made publicly available.

  1. The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.

    PubMed

    Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh

    2015-07-01

    Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry.

  2. SLS Scale Model Acoustic Test Liftoff Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, Douglas; Giacomoni, Clothilde

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible design phase test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments.

  3. Cosmological implications of different baryon acoustic oscillation data

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Hu, YaZhou; Li, Miao

    2017-04-01

    In this work, we explore the cosmological implications of different baryon acoustic oscillation (BAO) data, including the BAO data extracted by using the spherically averaged one-dimensional galaxy clustering (GC) statistics (hereafter BAO1) and the BAO data obtained by using the anisotropic two-dimensional GC statistics (hereafter BAO2). To make a comparison, we also take into account the case without BAO data (hereafter NO BAO). Firstly, making use of these BAO data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we give the cosmological constraints of the ΛCDM, the wCDM, and the Chevallier-Polarski-Linder (CPL) model. Then, we discuss the impacts of different BAO data on cosmological consquences, including its effects on parameter space, equation of state (EoS), figure of merit (FoM), deceleration-acceleration transition redshift, Hubble parameter H( z), deceleration parameter q( z), statefinder hierarchy S 3 (1)( z), S 4 (1)( z) and cosmic age t( z). We find that: (1) NO BAO data always give a smallest fractional matter density Ω m0, a largest fractional curvature density Ωk0 and a largest Hubble constant h; in contrast, BAO1 data always give a largest Ω m0, a smallest Ω k0 and a smallest h. (2) For the wCDM and the CPL model, NO BAO data always give a largest EoS w; in contrast, BAO2 data always give a smallest w. (3) Compared with the case of BAO1, BAO2 data always give a slightly larger FoM, and thus can give a cosmological constraint with a slightly better accuracy. (4) The impacts of different BAO data on the cosmic evolution and the comic age are very small, and cannot be distinguished by using various dark energy diagnoses and the cosmic age data.

  4. Acoustic Treatment Design Scaling Methods. Phase 2

    NASA Technical Reports Server (NTRS)

    Clark, L. (Technical Monitor); Parrott, T. (Technical Monitor); Jones, M. (Technical Monitor); Kraft, R. E.; Yu, J.; Kwan, H. W.; Beer, B.; Seybert, A. F.; Tathavadekar, P.

    2003-01-01

    The ability to design, build and test miniaturized acoustic treatment panels on scale model fan rigs representative of full scale engines provides not only cost-savings, but also an opportunity to optimize the treatment by allowing multiple tests. To use scale model treatment as a design tool, the impedance of the sub-scale liner must be known with confidence. This study was aimed at developing impedance measurement methods for high frequencies. A normal incidence impedance tube method that extends the upper frequency range to 25,000 Hz. without grazing flow effects was evaluated. The free field method was investigated as a potential high frequency technique. The potential of the two-microphone in-situ impedance measurement method was evaluated in the presence of grazing flow. Difficulties in achieving the high frequency goals were encountered in all methods. Results of developing a time-domain finite difference resonator impedance model indicated that a re-interpretation of the empirical fluid mechanical models used in the frequency domain model for nonlinear resistance and mass reactance may be required. A scale model treatment design that could be tested on the Universal Propulsion Simulator vehicle was proposed.

  5. Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics

    NASA Technical Reports Server (NTRS)

    Buffum, D. H.; Fleeter, S.

    1994-01-01

    The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes, which have detrimental effects on the experimental results. Acoustic treatment is proposed to rectify this problem.

  6. Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1993-01-01

    The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes which have detrimental effects on the experimental data. Acoustic treatment is proposed to rectify this problem.

  7. Cosmic sound: Measuring the Universe with baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Hütsi, Gert

    2006-05-01

    matter power spectrum one is able to put constraints on several cosmological parameters. In this thesis we have investigated the prospects for the future wide-field SZ cluster surveys to detect the acoustic scale in the matter power spectrum, specifically concentrating on the possibilities for constraining the properties of the DE. The core part of the thesis is concerned with a power spectrum analysis of the SDSS Luminous Red Galaxy (LRG) sample. We have been able to detect acoustic features in the redshift-space power spectrum of LRGs down to scales of ~ 0.2 hMpc^{-1}, which approximately corresponds to the seventh peak in the CMB angular spectrum. Using this power spectrum measurement along with the measured size of the sound horizon, we have carried out the maximum likelihood cosmological parameter estimation using Markov chain Monte Carlo techniques. The precise measurement of the low redshift sound horizon in combination with the CMB data has enabled us to measure, under some simplifying assumptions, the Hubble constant with a high precision: H_0 = 70.8 {+1.9} {-1.8} km/s/Mpc. Also we have shown that a decelerating expansion of the Universe is ruled out at more than 5-sigma confidence level.

  8. Galaxy bias and its effects on the Baryon acoustic oscillations measurements

    SciTech Connect

    Mehta, Kushal T.; Seo, Hee -Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Metchnik, Marc; Pinto, Philip; Xu, Xiaoying

    2011-05-31

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. (2009). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.

  9. Numerical investigation of amplitude-dependent dynamic response in acoustic metamaterials with nonlinear oscillators.

    PubMed

    Manimala, James M; Sun, C T

    2016-06-01

    The amplitude-dependent dynamic response in acoustic metamaterials having nonlinear local oscillator microstructures is studied using numerical simulations on representative discrete mass-spring models. Both cubically nonlinear hardening and softening local oscillator cases are considered. Single frequency, bi-frequency, and wave packet excitations at low and high amplitude levels were used to interrogate the models. The propagation and attenuation characteristics of harmonic waves in a tunable frequency range is found to correspond to the amplitude and nonlinearity-dependent shifts in the local resonance bandgap for such nonlinear acoustic metamaterials. A predominant shift in the propagated wave spectrum towards lower frequencies is observed. Moreover, the feasibility of amplitude and frequency-dependent selective filtering of composite signals consisting of individual frequency components which fall within propagating or attenuating regimes is demonstrated. Further enrichment of these wave manipulation mechanisms in acoustic metamaterials using different combinations of nonlinear microstructures presents device implications for acoustic filters and waveguides.

  10. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  11. Acoustic characteristics of 1/20-scale model helicopter rotors

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.; Kohlhepp, Fred W.; Leighton, Kenneth P.

    1986-01-01

    A wind tunnel test to study the effects of geometric scale on acoustics and to investigate the applicability of very small scale models for the study of acoustic characteristics of helicopter rotors was conducted in the United Technologies Research Center Acoustic Research Tunnel. The results show that the Reynolds number effects significantly alter the Blade-Vortex-Interaction (BVI) Noise characteristics by enhancing the lower frequency content and suppressing the higher frequency content. In the time domain this is observed as an inverted thickness noise impulse rather than the typical positive-negative impulse of BVI noise. At higher advance ratio conditions, in the absence of BVI, the 1/20 scale model acoustic trends with Mach number follow those of larger scale models. However, the 1/20 scale model acoustic trends appear to indicate stall at higher thrust and advance ratio conditions.

  12. THE BARYON ACOUSTIC OSCILLATION BROADBAND AND BROAD-BEAM ARRAY: DESIGN OVERVIEW AND SENSITIVITY FORECASTS

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; McQuinn, Matthew; Ali, Zaki; DeBoer, David R.; McDonald, Patrick; Aguirre, James E.; Bradley, Richard F.; Chang, Tzu-Ching; Morales, Miguel F.

    2013-03-15

    This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z {approx} 10. At z {approx} 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z {approx} 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from {approx}0.5 to 1.5.

  13. Theoretical Estimation of the Acoustic Energy Generation and Absorption Caused by Jet Oscillation

    NASA Astrophysics Data System (ADS)

    Takahashi, Kin'ya; Iwagami, Sho; Kobayashi, Taizo; Takami, Toshiya

    2016-04-01

    We investigate the energy transfer between the fluid field and acoustic field caused by a jet driven by an acoustic particle velocity field across it, which is the key to understanding the aerodynamic sound generation of flue instruments, such as the recorder, flute, and organ pipe. Howe's energy corollary allows us to estimate the energy transfer between these two fields. For simplicity, we consider the situation such that a free jet is driven by a uniform acoustic particle velocity field across it. We improve the semi-empirical model of the oscillating jet, i.e., exponentially growing jet model, which has been studied in the field of musical acoustics, and introduce a polynomially growing jet model so as to apply Howe's formula to it. It is found that the relative phase between the acoustic oscillation and jet oscillation, which changes with the distance from the flue exit, determines the quantity of the energy transfer between the two fields. The acoustic energy is mainly generated in the downstream area, but it is consumed in the upstream area near the flue exit in driving the jet. This theoretical examination well explains the numerical calculation of Howe's formula for the two-dimensional flue instrument model in our previous work [http://doi.org/10.1088/0169-5983/46/6/061411, Fluid Dyn. Res. 46, 061411 (2014)] as well as the experimental result of Yoshikawa et al. [http://doi.org/10.1016/j.jsv.2012.01.026, J. Sound Vib. 331, 2558 (2012)].

  14. Design Guidelines for Avoiding Thermo-Acoustic Oscillations in Helium Piping Systems

    SciTech Connect

    Gupta, Prabhat Kumar; Rabehl, Roger

    2014-01-01

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.2 K), and the closed ends of these tubes are connected to the high temperature (300K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This work also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location.

  15. Fine Structure of Solar Acoustic Oscillations Due to Rotation

    NASA Technical Reports Server (NTRS)

    Goode, P. R.; Dziembowski, W.

    1984-01-01

    The nature of the fine structure of high order, low degree five minute period solar oscillations following from various postulated forms of spherical rotation is predicted. The first and second order effects of rotation are included.

  16. Application of acoustic feedback to target detection in a waveguide: experimental demonstration at the ultrasonic scale.

    PubMed

    Roux, Philippe; Marandet, Christian; La Rizza, Patrick; Kuperman, W A

    2011-07-01

    People are familiar with the acoustic feedback phenomenon, which results in a loud sound that is heard when a musician plays an electric instrument directly into a speaker. Acoustic feedback occurs when a source and a receiver are connected both acoustically through the propagation medium and electrically through an amplifier, such that the amplified received signal is continuously re-emitted by the source. The acoustic feedback can be initiated from a continuous sine wave. When the emitter and the receiver are in phase, resonance is obtained, which appears to be highly sensitive to any fluctuation of the propagation medium. Another procedure consists in initiating the acoustic feedback from a continuous loop of ambient noise. It then generates an unstable self-sustained feedback oscillator (SFO) that is tested here as a method for monitoring temperature fluctuations of a shallow-water oceanic environment. The goal of the present study is to reproduce and study the SFO at the laboratory scale in an ultrasonic waveguide. The experimental results demonstrate the potential applications of the SFO for the detection of a target in the framework of the acoustic-barrier problem in shallow-water acoustics.

  17. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.

    PubMed

    Doinikov, Alexander A; Combriat, Thomas; Thibault, Pierre; Marmottant, Philippe

    2016-09-01

    A theoretical model is developed for acoustic streaming generated by a cylindrical bubble confined in a fluid channel between two planar elastic walls. The bubble is assumed to undergo volume and translational oscillations. The volume oscillation is caused by an imposed acoustic pressure field and generates the bulk scattered wave in the fluid gap and Lamb-type surface waves propagating along the fluid-wall interfaces. The translational oscillation is induced by the velocity field of an external sound source such as another bubble or an oscillatory fluid flow. The acoustic streaming is assumed to result from the interaction of the volume and the translational modes of the bubble oscillations. The general solutions for the linear equations of fluid motion and the equations of acoustic streaming are calculated with no restrictions on the ratio between the viscous penetration depth and the bubble size. Approximate solutions for the limit of low viscosity are provided as well. Simulations of streamline patterns show that the geometry of the streaming resembles flows generated by a source dipole, while the vortex orientation is governed by the driving frequency, bubble size, and the distance of the bubble from the source of translational excitation. Experimental verification of the developed theory is performed using data for streaming generated by bubble pairs.

  18. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.; Combriat, Thomas; Thibault, Pierre; Marmottant, Philippe

    2016-09-01

    A theoretical model is developed for acoustic streaming generated by a cylindrical bubble confined in a fluid channel between two planar elastic walls. The bubble is assumed to undergo volume and translational oscillations. The volume oscillation is caused by an imposed acoustic pressure field and generates the bulk scattered wave in the fluid gap and Lamb-type surface waves propagating along the fluid-wall interfaces. The translational oscillation is induced by the velocity field of an external sound source such as another bubble or an oscillatory fluid flow. The acoustic streaming is assumed to result from the interaction of the volume and the translational modes of the bubble oscillations. The general solutions for the linear equations of fluid motion and the equations of acoustic streaming are calculated with no restrictions on the ratio between the viscous penetration depth and the bubble size. Approximate solutions for the limit of low viscosity are provided as well. Simulations of streamline patterns show that the geometry of the streaming resembles flows generated by a source dipole, while the vortex orientation is governed by the driving frequency, bubble size, and the distance of the bubble from the source of translational excitation. Experimental verification of the developed theory is performed using data for streaming generated by bubble pairs.

  19. Resonant mode interactions and the bifurcation of combustion-driven acoustic oscillations in resonance tubes

    SciTech Connect

    Margolis, S.B. . Combustion Research Facility)

    1994-12-01

    Acoustic oscillations in practical combustion devices such as pulse combustors and rocket motors, whether desirable or not, are properly interpreted as combustion instabilities. A nonlinear stability analysis of the corresponding fluid motions than shows that the nonsteady behavior is governed by infinitely coupled systems of nonlinear evolution equations for the amplitudes of the classical acoustic modes. However, under certain conditions, it has been conjectured that relatively low-order truncations can give qualitatively correct physical results. In the present work, one particular model of a pulse combustor is considered, and a parameter regime in the neighborhood of a primary acoustic bifurcation where either one or a pair of purely longitudinal acoustic modes achieves a positive linear growth rate is focused upon. In the first case, it is formally shown that a decoupling occurs such that a two-mode approximation consisting of the linearly unstable mode and its first resonant harmonic completely determines the dynamics of the oscillation. In the later case, it is again demonstrated that a decoupling occurs, and although mode interactions require the retention of additional modes besides the two linearly unstable modes and their first resonant harmonics, a relatively low-order dynamical system still governs the bifurcation behavior. The presence of two linearly unstable modes is then shown to lead to more complicated dynamics, including the stable secondary bifurcation of a multiperiodic acoustic oscillation from one of the single-period primary branches.

  20. The Alcock Paczy'nski test with Baryon Acoustic Oscillations: systematic effects for future surveys

    NASA Astrophysics Data System (ADS)

    Lepori, Francesca; Di Dio, Enea; Viel, Matteo; Baccigalupi, Carlo; Durrer, Ruth

    2017-02-01

    We investigate the Alcock Paczy'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, causing different values of galaxy bias to induce offsets up to 1% in the AP test. On the other hand, we find that the lensing correction around the BAO scale modifies the amplitude but not the shape of the correlation function and therefore does not introduce any systematic effect. Furthermore, we investigate in details how the AP test is sensitive to redshift binning: a window function in transverse direction suppresses correlations and shifts the peak position toward smaller angular scales. We determine the correction that should be applied in order to account for this effect, when performing the test with data from three future planned galaxy redshift surveys: Euclid, the Dark Energy Spectroscopic Instrument (DESI) and the Square Kilometer Array (SKA).

  1. Baryon acoustic oscillations in 2D. II. Redshift-space halo clustering in N-body simulations

    NASA Astrophysics Data System (ADS)

    Nishimichi, Takahiro; Taruya, Atsushi

    2011-08-01

    We measure the halo power spectrum in redshift space from cosmological N-body simulations, and test the analytical models of redshift distortions particularly focusing on the scales of baryon acoustic oscillations. Remarkably, the measured halo power spectrum in redshift space exhibits a large-scale enhancement in amplitude relative to the real-space clustering, and the effect becomes significant for the massive or highly biased halo samples. These findings cannot be simply explained by the so-called streaming model frequently used in the literature. By contrast, a physically motivated perturbation theory model developed in the previous paper reproduces the halo power spectrum very well, and the model combining a simple linear scale-dependent bias can accurately characterize the clustering anisotropies of halos in two dimensions, i.e., line-of-sight and its perpendicular directions. The results highlight the significance of nonlinear coupling between density and velocity fields associated with two competing effects of redshift distortions, i.e., Kaiser and Finger-of-God effects, and a proper account of this effect would be important in accurately characterizing the baryon acoustic oscillations in two dimensions.

  2. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  3. Helioseismology and asteroseismology: looking for gravitational waves in acoustic oscillations

    SciTech Connect

    Lopes, Ilídio; Silk, Joseph E-mail: ilopes@uevora.pt

    2014-10-10

    Current helioseismology observations allow the determination of the frequencies and surface velocity amplitudes of solar acoustic modes with exceptionally high precision. In some cases, the frequency accuracy is better than one part in a million. We show that there is a distinct possibility that quadrupole acoustic modes of low order could be excited by gravitational waves (GWs), if the GWs have a strain amplitude in the range 10{sup –20} h {sub –20} with h {sub –20} ∼ 1 or h {sub –20} ∼ 10{sup 3}, as predicted by several types of GW sources, such as galactic ultracompact binaries or extreme mass ratio inspirals and coalescence of black holes. If the damping rate at low order is 10{sup –3}η {sub N} μHz, with η {sub N} ∼ 10{sup –3}-1, as inferred from the theory of stellar pulsations, then GW radiation will lead to a maximum rms surface velocity amplitude of quadrupole modes of the order of h{sub −20}η{sub N}{sup −1}∼ 10{sup –9}-10{sup –3} cm s{sup –1}, on the verge of what is currently detectable via helioseismology. The frequency and sensitivity range probed by helioseismological acoustic modes overlap with, and complement, the capabilities of eLISA for the brightest resolved ultracompact galactic binaries.

  4. Scaling and dimensional analysis of acoustic streaming jets

    NASA Astrophysics Data System (ADS)

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.; Garandet, J.-P.

    2014-09-01

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  5. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  6. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    SciTech Connect

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This work also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.

  7. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    DOE PAGES

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This workmore » also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.« less

  8. Coherent acoustic oscillations of nanoscale Au triangles and pyramids: influence of size and substrate

    NASA Astrophysics Data System (ADS)

    Taubert, R.; Hudert, F.; Bartels, A.; Merkt, F.; Habenicht, A.; Leiderer, P.; Dekorsy, T.

    2007-10-01

    We investigate the impulsively excited acoustic dynamics of nanoscale Au triangles of different sizes and thicknesses on silicon and glass substrates. We employ high-speed asynchronous optical sampling in order to study the damping of the acoustic vibrations with high sensitivity in the time domain. From the observed damping dynamics we deduce the reflection coefficient of acoustic energy from the gold-substrate interface. The observed damping times of coherent acoustic vibrations are found to be significantly longer than expected from the acoustic impedance mismatch for an ideal gold-substrate interface, hence pointing towards a reduced coupling strength. The strength of the coupling can be determined quantitatively. For Au triangles with large lateral size-to-thickness ratio, i.e. a small aspect ratio, the acoustic dynamics is dominated by a thickness oscillation similar to that of a closed film. For triangles with large aspect ratio the coherent acoustic excitation consists of a superposition of different three-dimensional modes which exhibit different damping times.

  9. Perception of acoustic scale and size in musical instrument sounds

    PubMed Central

    van Dinther, Ralph; Patterson, Roy D.

    2010-01-01

    There is size information in natural sounds. For example, as humans grow in height, their vocal tracts increase in length, producing a predictable decrease in the formant frequencies of speech sounds. Recent studies have shown that listeners can make fine discriminations about which of two speakers has the longer vocal tract, supporting the view that the auditory system discriminates changes on the acoustic-scale dimension. Listeners can also recognize vowels scaled well beyond the range of vocal tracts normally experienced, indicating that perception is robust to changes in acoustic scale. This paper reports two perceptual experiments designed to extend research on acoustic scale and size perception to the domain of musical sounds: The first study shows that listeners can discriminate the scale of musical instrument sounds reliably, although not quite as well as for voices. The second experiment shows that listeners can recognize the family of an instrument sound which has been modified in pitch and scale beyond the range of normal experience. We conclude that processing of acoustic scale in music perception is very similar to processing of acoustic scale in speech perception. PMID:17069313

  10. Surface Acoustic Wave Microwave Oscillator and Frequency Synthesizer.

    DTIC Science & Technology

    1980-06-01

    AD-A086 336 TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/ A /5 SURFACE ACOUSTIC WAVE MICROWA VE OSC ILLATOR AND FR EQUENCY SYNTME--ETC(U...DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703 HISAŕ 78 UNCLASSIFIED 6 URTSfaceIO A si WHS ae Micowvef scilltr nermepteOt󈧫 BEFORE COEPETINFOR RE~~~ a ...D OKUI UBRj~ ~~n SpaReT ParkWCAIO OP T05HIS A .11eu.0t13..... IINCLASSTFTF[ gCUNTY CLASSIFICATION OF THIS PAOI(Whin DEla AIRIm Fminimum frequency step

  11. Acoustic oscillations and elastic moduli of single gold nanorods.

    PubMed

    Zijlstra, Peter; Tchebotareva, Anna L; Chon, James W M; Gu, Min; Orrit, Michel

    2008-10-01

    We present the first acoustic vibration measurements of single gold nanorods with well-characterized dimensions and crystal structure. The nanorods have an average size of 90 nm x 30 nm and display two vibration modes, the breathing mode and the extensional mode. Correlation between the dimensions obtained from electron microscope images and the vibrational frequencies of the same particle allows us to determine the elastic moduli for each individual nanorod. Contrary to previous reports on ensembles of gold nanorods, we find that the single particle elastic moduli agree well with bulk values.

  12. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    SciTech Connect

    Mazumdar, A.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Ballot, J.; Antia, H. M.; Basu, S.; Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Mathur, S.; García, R. A.; Verner, G. A.; Chaplin, W. J.; Sanderfer, D. T.; Seader, S. E.; Smith, J. C.

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  13. Supernova and baryon acoustic oscillation constraints on (new) polynomial dark energy parametrizations: current results and forecasts

    NASA Astrophysics Data System (ADS)

    Sendra, Irene; Lazkoz, Ruth

    2012-05-01

    In this work we introduce two new polynomial parametrizations of dark energy and explore their correlation properties. The parameters to fit are the equation-of-state values at z= 0 and z= 0.5, which have naturally low correlation and have already been shown to improve the popular Chevallier-Polarski-Linder (CPL) parametrization. We test our models with low-redshift astronomical probes: type Ia supernovae and baryon acoustic oscillations (BAO), in the form of both current and synthetic data. Specifically, we present simulations of measurements of the radial and transversal BAO scales similar to those expected in a BAO high-precision spectroscopic redshift survey such as EUCLID. According to the Bayesian deviance information criterion (DIC), which penalizes large errors and correlations, we show that our models perform better than the CPL reparametrization proposed by Wang (in terms of z= 0 and z= 0.5). This is due to the combination of lower correlation and smaller relative errors. The same holds for a frequentist perspective: the figure-of-merit is larger for our parametrizations.

  14. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    SciTech Connect

    Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.

  15. Shallow Bulk Acoustic Wave (SBAW) Devices and Oscillators.

    DTIC Science & Technology

    1982-11-01

    millimeter adapter for the automatic network analyzer. The two phase-locked sources would be implemented as SBAW phase-locked oscillators at 7 GHz, followed ...GHz device was designed with the parameters shown in Fig. 4-18s to be replicated as devices using a Shipley resist on AT quartz, followed by ion milling...Width 0.4 um Aperture Width 100 x Number of Fingers/Transducer 1001 Center-to-Center Separation of Transducers 1000 1m Distance Between Transducers 200

  16. Frequency effects on the scale and behavior of acoustic streaming.

    PubMed

    Dentry, Michael B; Yeo, Leslie Y; Friend, James R

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U∼P1/2∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers-and hence low jet Reynolds numbers ReJ-where a linear relationship between the beam power and streaming velocity exists: U∼P∼ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  17. Frequency effects on the scale and behavior of acoustic streaming

    NASA Astrophysics Data System (ADS)

    Dentry, Michael B.; Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U ˜P1/2˜ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers—and hence low jet Reynolds numbers ReJ—where a linear relationship between the beam power and streaming velocity exists: U ˜P˜ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  18. EFFECT OF MODEL-DEPENDENT COVARIANCE MATRIX FOR STUDYING BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Labatie, A.; Starck, J. L.

    2012-12-01

    Large-scale structures in the universe are a powerful tool to test cosmological models and constrain cosmological parameters. A particular feature of interest comes from baryon acoustic oscillations (BAOs), which are sound waves traveling in the hot plasma of the early universe that stopped at the recombination time. This feature can be observed as a localized bump in the correlation function at the scale of the sound horizon r{sub s} . As such, it provides a standard ruler and a lot of constraining power in the correlation function analysis of galaxy surveys. Moreover, the detection of BAOs at the expected scale gives strong support to cosmological models. Both of these studies (BAO detection and parameter constraints) rely on a statistical modeling of the measured correlation function {xi}-circumflex. Usually {xi}-circumflex is assumed to be Gaussian, with a mean {xi}{sub {theta}} depending on the cosmological model and a covariance matrix C generally approximated as a constant (i.e., independent of the model). In this article, we study whether a realistic model-dependent C {sub {theta}} changes the results of cosmological parameter constraints compared to the approximation of a constant covariance matrix C. For this purpose, we use a new procedure to generate lognormal realizations of the luminous red galaxy sample of the Sloan Digital Sky Survey Data Release 7 to obtain a model-dependent C {sub {theta}} in a reasonable time. The approximation of C {sub {theta}} as a constant creates small changes in the cosmological parameter constraints on our sample. We quantify this modeling error using a lot of simulations and find that it only has a marginal influence on cosmological parameter constraints for current and next-generation galaxy surveys. It can be approximately taken into account by extending the 1{sigma} intervals by a factor Almost-Equal-To 1.3.

  19. On the dynamics and acoustics of cloud cavitation on an oscillating hydrofoil

    SciTech Connect

    McKenney, E.A.; Brennen, C.E.

    1994-12-31

    Observations have been made of the growth and collapse of surface and cloud cavitation on a finite aspect ratio hydrofoil oscillating in pitch. The cavitation was recorded using both still and high-speed motion picture photography, and the variations with cavitation number and reduced frequency of oscillation were investigated. The noise generated by the cavity collapse was also measured and analyzed. The acoustic signals associated with individual cavity collapse events have been synchronized with the motion pictures, providing insights into the correspondence between the flow structures involved in the cavity collapse process and the sound generated by them.

  20. Oscillating bubble as a sensor of low frequency electro-acoustic signals in electrolytes.

    PubMed

    Tankovsky, N; Baerner, K; Barey, Dooa Abdel

    2006-08-16

    Small air-bubble deformations, caused by electro-acoustic signals generated in electrolytic solutions have been detected by angle-modulation of a refracted He-Ne laser beam. The observed electromechanical resonance at low frequency, below 100 Hz, has proved to be directly related to the oscillations of characteristic ion-doped water structures when driven by an external electric field. The presence of structure-breaking or structure-making ions modifies the water structure, which varies the mechanical losses of the oscillating system and can be registered as changes in the width of the observed resonance curves.

  1. FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation

    NASA Astrophysics Data System (ADS)

    Švancara, Pavel; Horáček, J.; Hrůza, V.

    The flow induced self-oscillation of the human vocal folds in interaction with acoustic processes in the simplified vocal tract model was explored by three-dimensional (3D) finite element (FE) model. Developed FE model includes vocal folds pretension before phonation, large deformations of the vocal fold tissue, vocal folds contact, fluid-structure interaction, morphing the fluid mesh according the vocal folds motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. Iterative partitioned approach is used for modelling the fluid-structure interaction. Computed results prove that the developed model can be used for simulation of the vocal folds self-oscillation and resulting acoustic waves. The developed model enables to numerically simulate an influence of some pathological changes in the vocal fold tissue on the voice production.

  2. Effect of acoustic radiation on the stability of spherical bubble oscillations

    NASA Astrophysics Data System (ADS)

    Gumerov, Nail A.

    1998-07-01

    A recent analysis of the stability of spherical bubble oscillations shows that the high order shape modes are parametrically unstable with respect to small but finite perturbations [Z. C. Feng and L. G. Leal, J. Fluid Mech. 266, 209 (1994)]. Using a heuristic approach it is shown here that the acoustic radiation due to the liquid compressibility plays an important role in stabilization of the high frequency modes and overall stability of the bubble spherical shape.

  3. An Acoustic Levitation Technique for the Study of Nonlinear Oscillations of Gas Bubbles in Liquids.

    DTIC Science & Technology

    1983-08-15

    alcohol and a mixture of glycerine and water (33-1/3% glycerine by volume) were the two liquids used in this research. Bubbles were levitated near the...bubble can be trapped over a - -range of positions near a pressure antinode as a result of the balancing of these two forces. * The acoustic...then used to investigate the nonlinear oscillations of the bubble over a range of sizes. The bubbles were studied in two liq- uids: isopropyl alcohol

  4. Surface Acoustic-Wave-Induced Magnetoresistance Oscillations in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Robinson, John P.; Kennett, Malcolm P.; Cooper, Nigel R.; Fal'Ko, Vladimir I.

    2004-07-01

    We study the geometrical commensurability oscillations imposed on the resistivity of 2D electrons in a perpendicular magnetic field by a propagating surface acoustic wave (SAW). We show that, for ω<ωc, this effect contains an anisotropic dynamical classical contribution increasing the resistivity and a nonequilibrium quantum contribution isotropically decreasing the resistivity, and we predict zero-resistance states associated with geometrical commensurability at large SAW amplitude.

  5. Acoustic Studies of the Large Scale Ocean Circulation

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  6. Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators

    NASA Astrophysics Data System (ADS)

    Manimala, James Mathew

    Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation

  7. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Koroleva, I.; Manevitch, L. I.; Bergman, L. A.; Vakakis, A. F.

    2016-09-01

    We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "N L pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the

  8. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice.

    PubMed

    Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F

    2016-09-01

    We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the

  9. Frequency-shift vibro-acoustic modulation driven by low-frequency broadband excitations in a bistable cantilever oscillator

    NASA Astrophysics Data System (ADS)

    He, Qingbo; Xu, Yanyan; Lu, Siliang; Shao, Yong

    2017-03-01

    This paper reports a frequency-shift vibro-acoustic modulation (VAM) effect in a bistable microcracked cantilever oscillator. Low-frequency broadband excitations induced a VAM effect with a shifted modulation frequency through involving a microcracked metal beam in a bistable oscillator model. We used nonlinear dynamics equations and principles to describe the mechanism of a bistable oscillator whose natural frequency varied as the oscillation amplitude increased. We demonstrated this frequency-shift VAM effect using a prototype bistable oscillator model designed to efficiently detect microcracks in solid materials via the VAM effect using ambient vibration excitations.

  10. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  11. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    PubMed

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  12. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    PubMed Central

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-01-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process. PMID:26223474

  13. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    NASA Astrophysics Data System (ADS)

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-07-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process.

  14. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  15. THE CORRELATION FUNCTION OF GALAXY CLUSTERS AND DETECTION OF BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-10

    We calculate the correlation function of 13,904 galaxy clusters of z {<=} 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model {xi}(r) = (r/R{sub 0}){sup -{gamma}} on the scales of 10 h{sup -1} Mpc {<=} r {<=} 50 h{sup -1} Mpc, with a larger correlation length of R{sub 0} = 18.84 {+-} 0.27 h{sup -1} Mpc for clusters with a richness of R {>=} 15 and a smaller length of R{sub 0} = 16.15 {+-} 0.13 h{sup -1} Mpc for clusters with a richness of R {>=} 5. The power-law index of {gamma} = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r {approx} 110 h{sup -1} Mpc with a significance of {approx}1.9{sigma}. By analyzing the correlation function in the range of 20 h{sup -1} Mpc {<=} r {<=} 200 h{sup -1} Mpc, we find that the constraints on distance parameters are D{sub v} (z{sub m} = 0.276) = 1077 {+-} 55(1{sigma}) Mpc and h = 0.73 {+-} 0.039(1{sigma}), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density {Omega}{sub m} h{sup 2} = 0.093 {+-} 0.0077(1{sigma}), which deviates from the WMAP7 result by more than 3{sigma}. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  16. The Correlation Function of Galaxy Clusters and Detection of Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-01

    We calculate the correlation function of 13,904 galaxy clusters of z <= 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model ξ(r) = (r/R 0)-γ on the scales of 10 h -1 Mpc <= r <= 50 h -1 Mpc, with a larger correlation length of R 0 = 18.84 ± 0.27 h -1 Mpc for clusters with a richness of R >= 15 and a smaller length of R 0 = 16.15 ± 0.13 h -1 Mpc for clusters with a richness of R >= 5. The power-law index of γ = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r ~ 110 h -1 Mpc with a significance of ~1.9σ. By analyzing the correlation function in the range of 20 h -1 Mpc <= r <= 200 h -1 Mpc, we find that the constraints on distance parameters are Dv (zm = 0.276) = 1077 ± 55(1σ) Mpc and h = 0.73 ± 0.039(1σ), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density Ω m h 2 = 0.093 ± 0.0077(1σ), which deviates from the WMAP7 result by more than 3σ. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  17. Baryonic acoustic oscillations from 21 cm intensity mapping: the Square Kilometre Array case

    NASA Astrophysics Data System (ADS)

    Villaescusa-Navarro, Francisco; Alonso, David; Viel, Matteo

    2017-04-01

    We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21 cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometre Array (SKA) instrument, makes it undetectable at redshifts z ≳ 1. We however demonstrate that the BAO peak can still be detected in the radial 21 cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21 cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21 cm power spectrum. We systematically investigate the signal to noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected noise levels of SKA would degrade the final BAO errors by ∼5 per cent with respect to the cosmic-variance limited case at low redshifts, but that the effect grows up to ∼65 per cent at z ∼ 2-3. Furthermore, we find that the radial BAO signature is robust against foreground systematics, and that the main effect is an increase of ∼20 per cent in the final uncertainty on the standard ruler caused by the contribution of foreground residuals as well as the reduction in sky area needed to avoid high-foreground regions. We also find that it should be possible to detect the radial BAO signature with high significance in the full redshift range. We conclude that a 21 cm experiment carried out by the SKA should be able to make direct measurements of the expansion rate H(z) with measure the expansion with competitive per cent level precision on redshifts z ≲ 2.5.

  18. Amplitudes of solar-like oscillations: a new scaling relation

    NASA Astrophysics Data System (ADS)

    Kjeldsen, H.; Bedding, T. R.

    2011-05-01

    Solar-like oscillations are excited by near-surface convection and are being observed in growing numbers of stars using ground- and space-based telescopes. We have previously suggested an empirical scaling relation to predict their amplitudes. This relation has found widespread use but it predicts amplitudes in F-type stars that are higher than observed. Here we present a new scaling relation that is based on the postulate that the power in velocity fluctuations due to p-mode oscillations scales with stellar parameters in the same way as the power in velocity fluctuations due to granulation. The new relation includes a dependence on the damping rate via the mode lifetime and should be testable using observations from the CoRoT and Kepler missions. We also suggest scaling relations for the properties of the background power due to granulation and argue that both these and the amplitude relations should be applicable to red giant stars.

  19. Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames

    SciTech Connect

    Durox, D.; Schuller, T.; Noiray, N.; Birbaud, A.L.; Candel, S.

    2008-11-15

    Instabilities of confined combustion systems are often discussed in terms of the Rayleigh criterion, which provides a necessary condition for unstable operation and is commonly used to distinguish driving and damping regions. The analysis is also carried out in some cases by making use of an acoustic energy balance in which the Rayleigh term acts as a source. The case of unconfined flames is less well documented but of importance in practical systems used in heating and drying. This study is motivated by problems of self-sustained oscillations of radiant burners for domestic or industrial processes and of various other types of open flames. Application of the Rayleigh criterion and of the balance of acoustic energy to oscillations arising in such unconfined systems is examined. The objective is to see if the Rayleigh condition is fulfilled and to show how the different perturbed variables are linked to each other to develop an unstable oscillation. These issues are investigated by experiments in two geometries. The first case relates to a single ''V''- or ''M''-shaped flame formed by a burner behaving like a Helmholtz resonator. The second geometry features a collection of conical flames (CCF) established by a multipoint injector. This system is fed by a manifold that features a set of plane modes and resonates like an organ pipe at frequencies corresponding to odd multiples of the quarter wave. The Rayleigh criterion and a related result written in the form of an acoustic energy balance are used to define conditions of instability. A link is established between the pressure signal radiated by the burner and the total heat release rate perturbation yielding the phase lag between these two variables and providing conditions for unstable operation. Systematic experiments carried out in the two burner geometries and model predictions are in good agreement indicating that the Rayleigh source term is positive and that the criterion is well fulfilled by the wavefield

  20. Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames

    SciTech Connect

    Durox, D.; Schuller, T.; Noiray, N.; Birbaud, A.L.; Candel, S.

    2009-01-15

    Instabilities of confined combustion systems are often discussed in terms of the Rayleigh criterion, which provides a necessary condition for unstable operation and is commonly used to distinguish driving and damping regions. The analysis is also carried out in some cases by making use of an acoustic energy balance in which the Rayleigh term acts as a source. The case of unconfined flames is less well documented but of importance in practical systems used in heating and drying. This study is motivated by problems of self-sustained oscillations of radiant burners for domestic or industrial processes and of various other types of open flames. Application of the Rayleigh criterion and of the balance of acoustic energy to oscillations arising in such unconfined systems is examined. The objective is to see if the Rayleigh condition is fulfilled and to show how the different perturbed variables are linked to each other to develop an unstable oscillation. These issues are investigated by experiments in two geometries. The first case relates to a single ''V''- or ''M''-shaped flame formed by a burner behaving like a Helmholtz resonator. The second geometry features a collection of conical flames (CCF) established by a multipoint injector. This system is fed by a manifold that features a set of plane modes and resonates like an organ pipe at frequencies corresponding to odd multiples of the quarter wave. The Rayleigh criterion and a related result written in the form of an acoustic energy balance are used to define conditions of instability. A link is established between the pressure signal radiated by the burner and the total heat release rate perturbation yielding the phase lag between these two variables and providing conditions for unstable operation. Systematic experiments carried out in the two burner geometries and model predictions are in good agreement indicating that the Rayleigh source term is positive and that the criterion is well fulfilled by the wavefield

  1. The measurement of geodesic acoustic mode magnetic field oscillations in J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Lan, T.; Wu, J.; Shen, H. G.; Deng, T. J.; Liu, A. D.; Xie, J. L.; Li, H.; Liu, W. D.; Yu, C. X.; Sun, Y.; Liu, H.; Chen, Z. P.; Zhuang, G.

    2014-10-01

    Geodesic acoustic mode (GAM) magnetic field oscillations have been investigated using three-dimension magnetic probe and Langmuir probe arrays in the edge of J-TEXT tokamak. The probe arrays are placed on the two top windows of tokamak, separated toroidally. Inside the LCFS, GAM shows apparent oscillations in floating potential. In contrast, GAM magnetic field oscillations are not significant in raw magnetic fields signals. Using toroidal correlation technique, the GAM magnetic field oscillations are distinguished from ambient magnetic field. The amplitudes of three dimension GAM magnetic field fluctuations, as well as the dependence with local plasma parameters such as safety factor and plasma beta, are coincident with theoretical predictions. And its toroidal symmetry mode structure, i.e. n = 0, is identified. Furthermore, the GAM current sheet, in which GAM oscillates, is firstly verified with magnetic probes arrays in different radial positions, which may help us to understand the radial structure of GAM. Supported by NNSFC (Nos. 10990210, 10990211, 10335060, 10905057 and 11375188), CPSF (No. 20080440104), YIF (No. WK2030040019) and KIPCAS (No. kjcx-yw-n28).

  2. Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing.

    PubMed

    Doelling, Keith B; Arnal, Luc H; Ghitza, Oded; Poeppel, David

    2014-01-15

    A growing body of research suggests that intrinsic neuronal slow (<10 Hz) oscillations in auditory cortex appear to track incoming speech and other spectro-temporally complex auditory signals. Within this framework, several recent studies have identified critical-band temporal envelopes as the specific acoustic feature being reflected by the phase of these oscillations. However, how this alignment between speech acoustics and neural oscillations might underpin intelligibility is unclear. Here we test the hypothesis that the 'sharpness' of temporal fluctuations in the critical band envelope acts as a temporal cue to speech syllabic rate, driving delta-theta rhythms to track the stimulus and facilitate intelligibility. We interpret our findings as evidence that sharp events in the stimulus cause cortical rhythms to re-align and parse the stimulus into syllable-sized chunks for further decoding. Using magnetoencephalographic recordings, we show that by removing temporal fluctuations that occur at the syllabic rate, envelope-tracking activity is reduced. By artificially reinstating these temporal fluctuations, envelope-tracking activity is regained. These changes in tracking correlate with intelligibility of the stimulus. Together, the results suggest that the sharpness of fluctuations in the stimulus, as reflected in the cochlear output, drive oscillatory activity to track and entrain to the stimulus, at its syllabic rate. This process likely facilitates parsing of the stimulus into meaningful chunks appropriate for subsequent decoding, enhancing perception and intelligibility.

  3. Suppressed Alpha Oscillations Predict Intelligibility of Speech and its Acoustic Details

    PubMed Central

    Weisz, Nathan

    2012-01-01

    Modulations of human alpha oscillations (8–13 Hz) accompany many cognitive processes, but their functional role in auditory perception has proven elusive: Do oscillatory dynamics of alpha reflect acoustic details of the speech signal and are they indicative of comprehension success? Acoustically presented words were degraded in acoustic envelope and spectrum in an orthogonal design, and electroencephalogram responses in the frequency domain were analyzed in 24 participants, who rated word comprehensibility after each trial. First, the alpha power suppression during and after a degraded word depended monotonically on spectral and, to a lesser extent, envelope detail. The magnitude of this alpha suppression exhibited an additional and independent influence on later comprehension ratings. Second, source localization of alpha suppression yielded superior parietal, prefrontal, as well as anterior temporal brain areas. Third, multivariate classification of the time–frequency pattern across participants showed that patterns of late posterior alpha power allowed best for above-chance classification of word intelligibility. Results suggest that both magnitude and topography of late alpha suppression in response to single words can indicate a listener's sensitivity to acoustic features and the ability to comprehend speech under adverse listening conditions. PMID:22100354

  4. NONLINEAR BEHAVIOR OF BARYON ACOUSTIC OSCILLATIONS IN REDSHIFT SPACE FROM THE ZEL'DOVICH APPROXIMATION

    SciTech Connect

    McCullagh, Nuala; Szalay, Alexander S.

    2015-01-10

    Baryon acoustic oscillations (BAO) are a powerful probe of the expansion history of the universe, which can tell us about the nature of dark energy. In order to accurately characterize the dark energy equation of state using BAO, we must understand the effects of both nonlinearities and redshift space distortions on the location and shape of the acoustic peak. In a previous paper, we introduced a novel approach to second order perturbation theory in configuration space using the Zel'dovich approximation, and presented a simple result for the first nonlinear term of the correlation function. In this paper, we extend this approach to redshift space. We show how to perform the computation and present the analytic result for the first nonlinear term in the correlation function. Finally, we validate our result through comparison with numerical simulations.

  5. An optoacoustic point source for acoustic scale model measurements.

    PubMed

    Bolaños, Javier Gómez; Pulkki, Ville; Karppinen, Pasi; Hæggström, Edward

    2013-04-01

    A massless acoustic source is proposed for scale model work. This source is generated by focusing a pulsed laser beam to rapidly heat the air at the focal point. This produces an expanding small plasma ball which generates a sonic impulse that may be used as an acoustic point source. Repeatability, frequency response, and directivity of the source were measured to show that it can serve as a massless point source. The impulse response of a rectangular space was determined using this type of source. A good match was found between the predicted and the measured impulse responses of the space.

  6. Location and acoustic scale cues in concurrent speech recognition1

    PubMed Central

    Ives, D. Timothy; Vestergaard, Martin D.; Kistler, Doris J.; Patterson, Roy D.

    2010-01-01

    Location and acoustic scale cues have both been shown to have an effect on the recognition of speech in multi-speaker environments. This study examines the interaction of these variables. Subjects were presented with concurrent triplets of syllables from a target voice and a distracting voice, and asked to recognize a specific target syllable. The task was made more or less difficult by changing (a) the location of the distracting speaker, (b) the scale difference between the two speakers, and∕or (c) the relative level of the two speakers. Scale differences were produced by changing the vocal tract length and glottal pulse rate during syllable synthesis: 32 acoustic scale differences were used. Location cues were produced by convolving head-related transfer functions with the stimulus. The angle between the target speaker and the distracter was 0°, 4°, 8°, 16°, or 32° on the 0° horizontal plane. The relative level of the target to the distracter was 0 or −6 dB. The results show that location and scale difference interact, and the interaction is greatest when one of these cues is small. Increasing either the acoustic scale or the angle between target and distracter speakers quickly elevates performance to ceiling levels. PMID:20550271

  7. Acoustic oscillation phenomena in low-velocity steady flow with heating

    NASA Technical Reports Server (NTRS)

    Liburdy, J. A.; Wofford, J. L.

    1980-01-01

    Thermally driven acoustic oscillations in low-velocity mean flows are investigated. A criterion is developed for marginal stability with respect to a fluid temperature increase; a cylindrical geometry is chosen for flow in a constant-area tube where any circumferential variation is neglected. The range of parameters of concern is limited to conditions resembling cryogenic storage designs proposed for long-term space missions; helium was chosen as the fluid in order to allow comparison with zero flow rate results in half-open tubes.

  8. A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles

    NASA Astrophysics Data System (ADS)

    Huang, Po-Hsun; Ian Lapsley, Michael; Ahmed, Daniel; Chen, Yuchao; Wang, Lin; Jun Huang, Tony

    2012-10-01

    Merging acoustofluidic mixing with optofluidic integration, we have demonstrated a single-layer, planar, optofluidic switch that is driven by acoustically excited oscillating microbubbles. The device was found to have a switching speed of 5 Hz, an insertion loss of 6.02 dB, and an extinction ratio of 28.48 dB. With its simplicity, low fluid consumption, and compatibility with other microfluidic devices, our design could lead to a line of inexpensive, yet effective optical switches for many lab-on-a-chip applications.

  9. Scaling of membrane-type locally resonant acoustic metamaterial arrays.

    PubMed

    Naify, Christina J; Chang, Chia-Ming; McKnight, Geoffrey; Nutt, Steven R

    2012-10-01

    Metamaterials have emerged as promising solutions for manipulation of sound waves in a variety of applications. Locally resonant acoustic materials (LRAM) decrease sound transmission by 500% over acoustic mass law predictions at peak transmission loss (TL) frequencies with minimal added mass, making them appealing for weight-critical applications such as aerospace structures. In this study, potential issues associated with scale-up of the structure are addressed. TL of single-celled and multi-celled LRAM was measured using an impedance tube setup with systematic variation in geometric parameters to understand the effects of each parameter on acoustic response. Finite element analysis was performed to predict TL as a function of frequency for structures with varying complexity, including stacked structures and multi-celled arrays. Dynamic response of the array structures under discrete frequency excitation was investigated using laser vibrometry to verify negative dynamic mass behavior.

  10. Overview of the Ares I Scale Model Acoustic Test Program

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2011-01-01

    Launch environments, such as lift-off acoustic (LOA) and ignition overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. LOA environments are used directly in the development of vehicle vibro-acoustic environments and IOP is used in the loads assessment. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe for component survivability, reduction of the environment itself is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the Ares I LOA and IOP environments for the vehicle and ground systems including the Mobile Launcher (ML) and tower. An additional objective was to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. ASMAT was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116 (TS 116). The ASMAT program is described in this presentation.

  11. Solar cycle variations in the powers and damping rates of low-degree solar acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Broomhall, A.-M.; Pugh, C. E.; Nakariakov, V. M.

    2015-12-01

    Helioseismology uses the Sun's natural resonant oscillations to study the solar interior. The properties of the solar oscillations are sensitive to the Sun'2019;s magnetic activity cycle. Here we examine variations in the powers, damping rates, and energy supply rates of the most prominent acoustic oscillations in unresolved, Sun-as-a-star data, obtained by the Birmingham Solar Oscillations Network (BiSON) during solar cycles 22, 23, and the first half of 24. The variations in the helioseismic parameters are compared to the 10.7 cm flux, a well-known global proxy of solar activity. As expected the oscillations are most heavily damped and the mode powers are at a minimum at solar activity maximum. The 10.7 cm flux was linearly regressed using the fractional variations of damping rates and powers observed during cycle 23. In general, good agreement is found between the damping rates and the 10.7 cm flux. However, the linearly regressed 10.7 cm flux and fractional variation in powers diverge in cycles 22 and 24, indicating that the relationship between the mode powers and the 10.7 cm flux is not consistent from one cycle to the next. The energy supply rate of the oscillations, which is usually approximately constant, also decreases at this time. We have determined that this discrepancy is not because of the first-order bias introduced by an increase in the level of background noise or gaps in the data. Although we cannot categorically rule out an instrumental origin, the divergence observed in cycle 24, when the data were of high quality and the data coverage was over 80%, raises the possibility that the effect may be solar in origin.

  12. Asymptotic solutions for shocked resonant acoustic oscillations between concentric spheres and coaxial cylinders

    NASA Astrophysics Data System (ADS)

    Seymour, Brian R.; Mortell, Michael P.; Amundsen, David E.

    2012-02-01

    For resonant oscillations of a gas in a straight tube with a closed end, shocks form and all harmonics are generated, see Chester ["Resonant oscillations in a closed tube," J. Fluid Mech. 18, 44 (1964)], 10.1017/S0022112064000040. When the gas is confined between two concentric spheres or coaxial cylinders, the radially symmetric resonant oscillations may be continuous or shocked. For a fixed small Mach number of the input, the flow is continuous for sufficiently small L, defined as the ratio of the inner radius to the difference of the radii, see Seymour et al. ["Resonant oscillations of an inhomogeneous gas between concentric spheres," Proc. R. Soc. London, Ser. A 467, 2149 (2011)], 10.1098/rspa.2010.0576. However, shocks appear in the resonant flow for either larger values of L or larger input Mach number. A nonlinear geometric acoustics approximation is used to analyse the shocked motion of the gas when L ≫ 1. This approximation and the exact numerical solution are compared for the shocked wave profiles and shock strengths, and the approximation is valid for surprisingly small values of L. The flow in the plane wave case for a straight tube is recovered in the limit L → ∞ for both the spherical and cylindrical cases, providing a check on the results. The shocked solutions given here complement those continuous solutions previously derived from a dominant first mode approximation.

  13. Acoustic saturation in bubbly cavitating flow adjacent to an oscillating wall

    NASA Astrophysics Data System (ADS)

    Colonius, T.; d'Auria, F.; Brennen, C. E.

    2000-11-01

    Bubbly cavitating flow generated by the normal oscillation of a wall bounding a semi-infinite domain of fluid is computed using a continuum two-phase flow model. Bubble dynamics are computed, on the microscale, using the Rayleigh-Plesset equation. A Lagrangian finite volume scheme and implicit adaptive time marching are employed to accurately resolve bubbly shock waves and other steep gradients in the flow. The one-dimensional, unsteady computations show that when the wall oscillation frequency is much smaller than the bubble natural frequency, the power radiated away from the wall is limited by an acoustic saturation effect (the radiated power becomes independent of the amplitude of vibration), which is similar to that found in a pure gas. That is, for large enough vibration amplitude, nonlinear steepening of the generated waves leads to shocking of the wave train, and the dissipation associated with the jump conditions across each shock limits the radiated power. In the model, damping of the bubble volume oscillations is restricted to a simple "effective" viscosity. For wall oscillation frequency less than the bubble natural frequency, the saturation amplitude of the radiated field is nearly independent of any specific damping mechanism. Finally, implications for noise radiation from cavitating flows are discussed.

  14. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults.

    PubMed

    Papalambros, Nelly A; Santostasi, Giovanni; Malkani, Roneil G; Braun, Rosemary; Weintraub, Sandra; Paller, Ken A; Zee, Phyllis C

    2017-01-01

    Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60-84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses ("ON interval") was followed by a pause of approximately equal length ("OFF interval"). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity.

  15. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults

    PubMed Central

    Papalambros, Nelly A.; Santostasi, Giovanni; Malkani, Roneil G.; Braun, Rosemary; Weintraub, Sandra; Paller, Ken A.; Zee, Phyllis C.

    2017-01-01

    Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60–84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses (“ON interval”) was followed by a pause of approximately equal length (“OFF interval”). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity. PMID:28337134

  16. Acoustic resonance in MEMS scale cylindrical tubes with side branches

    NASA Astrophysics Data System (ADS)

    Schill, John F.; Holthoff, Ellen L.; Pellegrino, Paul M.; Marcus, Logan S.

    2014-05-01

    Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace gas detection. This method routinely exhibits detection limits at the parts-per-million (ppm) or parts-per-billion (ppb) level for gaseous samples. PAS also possesses favorable detection characteristics when the system dimensions are scaled to a microelectromechanical system (MEMS) design. One of the central issues related to sensor miniaturization is optimization of the photoacoustic cell geometry, especially in relationship to high acoustical amplification and reduced system noise. Previous work relied on a multiphysics approach to analyze the resonance structures of the MEMS scale photo acoustic cell. This technique was unable to provide an accurate model of the acoustic structure. In this paper we describe a method that relies on techniques developed from musical instrument theory and electronic transmission line matrix methods to describe cylindrical acoustic resonant cells with side branches of various configurations. Experimental results are presented that demonstrate the ease and accuracy of this method. All experimental results were within 2% of those predicted by this theory.

  17. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Beutler, Florian; Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Seo, Hee-Jong; Vargas-Magaña, Mariana; Cuesta, Antonio J.; Percival, Will J.; Burden, Angela; Sánchez, Ariel G.; Grieb, Jan Niklas; Reid, Beth; Brownstein, Joel R.; Dawson, Kyle S.; Eisenstein, Daniel J.; Ho, Shirley; Kitaura, Francisco-Shu; Nichol, Robert C.; Olmstead, Matthew D.; Prada, Francisco; Rodríguez-Torres, Sergio A.; Saito, Shun; Salazar-Albornoz, Salvador; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Wang, Yuting; White, Martin; Zhao, Gong-bo

    2017-01-01

    We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 deg2, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on BAO scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

  18. Surface acoustic BLOCH oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling in a solid.

    PubMed

    de Lima, M M; Kosevich, Yu A; Santos, P V; Cantarero, A

    2010-04-23

    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.

  19. Nanolitre-scale crystallization using acoustic liquid-transfer technology

    SciTech Connect

    Villaseñor, Armando G.; Wong, April; Shao, Ada; Garg, Ankur; Donohue, Timothy J.; Kuglstatter, Andreas; Harris, Seth F.

    2012-08-01

    Acoustic droplet ejection achieves precise, tipless, non-invasive transfer of diverse aqueous solutions, enabling nanolitre-scale crystallization trials. The rapid and scalable technique demonstrated successful crystal growth with diverse targets in drop volumes as small as 20 nl. Focused acoustic energy allows accurate and precise liquid transfer on scales from picolitre to microlitre volumes. This technology was applied in protein crystallization, successfully transferring a diverse set of proteins as well as hundreds of precipitant solutions from custom and commercial crystallization screens and achieving crystallization in drop volumes as small as 20 nl. Only higher concentrations (>50%) of 2-methyl-2, 4-pentanediol (MPD) appeared to be systematically problematic in delivery. The acoustic technology was implemented in a workflow, successfully reproducing active crystallization systems and leading to the discovery of crystallization conditions for previously uncharacterized proteins. The technology offers compelling advantages in low-nanolitre crystallization trials by providing significant reagent savings and presenting seamless scalability for those crystals that require larger volume optimization experiments using the same vapor-diffusion format.

  20. Ares I Scale Model Acoustic Test Overpressure Results

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Alvord, D. A.; McDaniels, D. M.

    2011-01-01

    A summary of the overpressure environment from the 5% Ares I Scale Model Acoustic Test (ASMAT) and the implications to the full-scale Ares I are presented in this Technical Memorandum. These include the scaled environment that would be used for assessing the full-scale Ares I configuration, observations, and team recommendations. The ignition transient is first characterized and described, the overpressure suppression system configuration is then examined, and the final environment characteristics are detailed. The recommendation for Ares I is to keep the space shuttle heritage ignition overpressure (IOP) suppression system (below-deck IOP water in the launch mount and mobile launcher and also the crest water on the main flame deflector) and the water bags.

  1. Ares I Scale Model Acoustic Test Above Deck Water Sound Suppression Results

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program test matrix was designed to determine the acoustic reduction for the Liftoff acoustics (LOA) environment with an above deck water sound suppression system. The scale model test can be used to quantify the effectiveness of the water suppression system as well as optimize the systems necessary for the LOA noise reduction. Several water flow rates were tested to determine which rate provides the greatest acoustic reductions. Preliminary results are presented.

  2. Cosmic distance-duality relation test using type Ia supernovae and the baryon acoustic oscillation

    NASA Astrophysics Data System (ADS)

    Wu, Puxun; Li, Zhengxiang; Liu, Xiaoliang; Yu, Hongwei

    2015-07-01

    A check of the validity of the distance-duality relation (DDR) is necessary since a violation of one of the assumptions underlying this relation might be possible. In this paper, we test the DDR by combining the Union2.1 type Ia supernovae (SNIa) and five angular diameter distance data from the baryonic acoustic oscillation (BAO) measurements. We find that the DDR is consistent with the observations at the 2 σ confidence level (CL) for the case of the Hubble constant h =0.7 , and the consistency is improved to be 1 σ CL when h =0.7 is replaced by the latest constraint from the Planck satellite, i.e., h =0.678 , or h is marginalized. Our results show that the BAO measurement is a very powerful tool to test the DDR. With more and more BAO data being released in the future, we are expecting a better validity check of the DDR.

  3. Prediction of thermal acoustic oscillations (TAOs) in the CLAES solid CO2/neon system

    NASA Technical Reports Server (NTRS)

    Spradley, I. E.; Yuan, S. W. K.

    1991-01-01

    Results are presented of a study initiated to investigate the possibility that the existence of thermal acoustic oscillations (TAOs) in the Cryogenic Limb Atmospheric Etalon Spectrometer (CLAES) neon plumbing system ground configuration could be the cause of higher-than-predicted heat rates measured during thermal ground testing. Tests were conducted between warm boundary temperatures ranging from 40 to 100 K, which simulated the actual test conditions of the CLAES CO2/neon system. TAOs were observed between 6 and 106 Torr, which agreed with the analytical predictions, and verified the possible existence of TAOs in the CLAES system during ground testing. The presence of TAOs was eventually confirmed in the CLAES system during a subsequent thermal test and were determined to have caused the higher heat rates measured during the prior thermal test.

  4. Experimental and analytical study of thermal acoustic oscillations. [in the transfer and storage of cryogens

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Dean, W. G.; Karu, Z. S.

    1976-01-01

    The thermal acoustic oscillations (TAO) data base was expanded by running a large number of tubes over a wide range of parameters known to affect the TAO phenomenon. These parameters include tube length, wall thickness, diameter, material, insertion length and length-to-diameter ratio. Emphasis was placed on getting good boiloff data. A large quantity of data was obtained, reduced, correlated and analyzed and is presented. Also presented are comparisons with previous types of correlations. These comparisons show that the boiloff data did not correlate with intensity. The data did correlate in the form used by Rott, that is boiloff versus TAO pressure squared times frequency to the one-half power. However, this latter correlation required a different set of correlation constants, slope and intercept, for each tube tested.

  5. Long-Lived, Coherent Acoustic Phonon Oscillations in GaN Single Crystals

    SciTech Connect

    Wu, S.; Geiser, P.; Jun, J.; Karpinski, J.; Park, J.-R.; Sobolewski, R.

    2006-01-31

    We report on coherent acoustic phonon (CAP) oscillations studied in high-quality bulk GaN single crystals with a two-color femtosecond optical pump-probe technique. Using a far-above-the-band gap ultraviolet excitation (~270 nm wavelength) and a near-infrared probe beam (~810 nm wavelength), the long-lived, CAP transients were observed within a 10 ns time-delay window between the pump and probe pulses, with a dispersionless (proportional to the probe-beam wave vector) frequency of ~45 GHz. The measured CAP attenuation corresponded directly to the absorption of the probe light in bulk GaN, indicating that the actual (intrinsic) phonon-wave attenuation in our crystals was significantly smaller than the measured 65.8 cm^-1 value. The velocity of the phonon propagation was equal to the velocity of sound in GaN.

  6. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    NASA Astrophysics Data System (ADS)

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  7. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints.

    PubMed

    Hinton, Samuel R; Kazin, Eyal; Davis, Tamara M; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J; Drinkwater, Michael J; Glazebrook, Karl; Jurek, Russell J; Parkinson, David; Pimbblet, Kevin A; Poole, Gregory B; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ω c  h(2), H(z), and DA (z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  8. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    PubMed Central

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2016-01-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey. PMID:28066154

  9. ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES

    SciTech Connect

    Seo, Hee-Jong; Ho, Shirley; White, Martin; Reid, Beth; Schlegel, David J.; Cuesta, Antonio J.; Padmanabhan, Nikhil; Ross, Ashley J.; Percival, Will J.; Nichol, Robert C.; Saito, Shun; De Putter, Roland; Eisenstein, Daniel J.; Xu Xiaoying; Skibba, Ramin; Schneider, Donald P.; Verde, Licia; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J.; and others

    2012-12-10

    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over {approx}10,000 deg{sup 2} between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D{sub A} (z)/r{sub s} = 9.212{sup +0.416}{sub -{sub 0.404}} at z = 0.54, and therefore D{sub A} (z) = 1411 {+-} 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D{sub A} (z) is 1.4{sigma} higher than what is expected for the concordance {Lambda}CDM, in accordance to the trend of other spectroscopic BAO measurements for z {approx}> 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.

  10. Experimental investigation of acoustic self-oscillation influence on decay process for underexpanded supersonic jet in submerged space

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. Yu.; Arefyev, K. Yu.; Ilchenko, M. A.

    2016-07-01

    Intensification of mixing between the gaseous working body ejected through a jet nozzle with ambient medium is an important scientific and technical problem. Effective mixing can increase the total efficiency of power and propulsion apparatuses. The promising approach, although poorly studied, is generation of acoustic self-oscillation inside the jet nozzle: this impact might enhance the decay of a supersonic jet and improve the mixing parameters. The paper presents peculiar properties of acoustic self-excitation in jet nozzle. The paper presents results of experimental study performed for a model injector with a set of plates placed into the flow channel, enabling the excitation of acoustic self-oscillations. The study reveals the regularity of under-expanded supersonic jet decay in submerged space for different flow modes. Experimental data support the efficiency of using the jet nozzle with acoustic self-oscillation in application to the systems of gas fuel supply. Experimental results can be used for designing new power apparatuses for aviation and space industry and for process plants.

  11. Dynamically Scaled Glottal Flow Through Symmetrically Oscillating Vocal Fold Models

    NASA Astrophysics Data System (ADS)

    Halvorson, Lori; Baitinger, Andrew; Sherman, Erica; Krane, Michael; Zhang, Lucy; Wei, Timothy

    2011-11-01

    Experimental results derived from DPIV measurements in a scaled up dynamic human vocal fold model are presented. The 10x scale vocal fold model is a new design that incorporates key features of vocal fold oscillatory motion. This includes coupling of down/upstream rocking as well as the oscillatory open/close motions. Experiments were dynamically scaled to examine a range of frequencies, 100 - 200 Hz, corresponding to the male and female voice. By using water as the working fluid, very high resolution, both spatial and temporal resolution, was achieved. Time resolved movies of flow through symmetrically oscillating vocal folds will be presented. Both individual realizations as well as phase-averaged data will be shown. Key features, such as randomness and development time of the Coanda effect, vortex shedding, and volume flow rate data will be shown. In this talk, effects associated with paralysis of one vocal fold will be discussed. This talk provides the baseline fluid dynamics for the vocal fold paralysis study presented in Sherman, et al. Supported by the NIH.

  12. Resolving the source of the solar acoustic oscillations: What will be possible with DKIST?

    NASA Astrophysics Data System (ADS)

    Rast, Mark; Martinez Pillet, Valentin

    2016-05-01

    The solar p-modes are likely excited by small-scale convective dynamics in the solar photosphere, but the detailed source properties are not known. Theoretical models differ and observations are yet unable to differentiate between them. Resolving the underlying source events is more than a curiosity. It is important to the veracity of global helioseismic measurements (including local spectral methods such as ring diagram analysis) because global p-mode line shapes and thus accurate frequency determinations depend critically on the relationship between intensity and velocity during the excitation events. It is also fundamental to improving the accuracy of the local time-distance measurements because in these kernel calculations depend on knowledge of the source profile and the properties of the excitation noise. The Daniel K. Inouye Solar Telescope (DKIST) will have the spatial resolution and spectral range needed to resolve the solar acoustic excitation events in both time and space (horizontally and with height) using multi-wavelength observations. Inversions to determine the dynamic and thermodynamic evolution of the discrete small-scale convective events that serve as acoustic sources may also be possible, though determination of the pressure fluctuations associated with the sources is a challenge. We describe the DKIST capabilities anticipated and the preliminary work needed to prepare for them.

  13. Redshift weights for baryon acoustic oscillations: application to mock galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Zhu, Fangzhou; Padmanabhan, Nikhil; White, Martin; Ross, Ashley J.; Zhao, Gongbo

    2016-09-01

    Large redshift surveys capable of measuring the baryon acoustic oscillation (BAO) signal have proven to be an effective way of measuring the distance-redshift relation in cosmology. Building off the work in Zhu et al., we develop a technique to directly constrain the distance-redshift relation from BAO measurements without splitting the sample into redshift bins. We apply the redshift weighting technique in Zhu et al. to the clustering of galaxies from 1000 Quick particle mesh (QPM) mock simulations after reconstruction and achieve a 0.75 per cent measurement of the angular diameter distance DA at z = 0.64 and the same precision for Hubble parameter H at z = 0.29. These QPM mock catalogues mimic the clustering and noise level of the Baryon Oscillation Spectroscopic Survey Data Release 12 (DR12). We compress the correlation functions in the redshift direction on to a set of weighted correlation functions. These estimators give unbiased DA and H measurements across the entire redshift range of the combined sample. We demonstrate the effectiveness of redshift weighting in improving the distance and Hubble parameter estimates. Instead of measuring at a single `effective' redshift as in traditional analyses, we report our DA and H measurements at all redshifts. The measured fractional error of DA ranges from 1.53 per cent at z = 0.2 to 0.75 per cent at z = 0.64. The fractional error of H ranges from 0.75 per cent at z = 0.29 to 2.45 per cent at z = 0.7. Our measurements are consistent with a Fisher forecast to within 10-20 per cent depending on the pivot redshift. We further show the results are robust against the choice of fiducial cosmologies, galaxy bias models, and redshift-space distortions streaming parameters.

  14. Constraint on the growth factor of the cosmic structure from the damping of the baryon acoustic oscillation signature

    SciTech Connect

    Nakamura, Gen; Sato, Takahiro; Yamamoto, Kazuhiro; Huetsi, Gert

    2009-12-15

    We determine a constraint on the growth factor by measuring the damping of the baryon acoustic oscillations in the matter power spectrum using the Sloan digital sky survey luminous red galaxy sample. We obtain an effective upper limit on {sigma}{sub 8}D{sub 1}(z=0.3) using the damping of the baryon acoustic oscillation signature, where {sigma}{sub 8} is the root mean square overdensity in a sphere of radius 8h{sup -1} Mpc and D{sub 1}(z) is the growth factor at redshift z. The above result assumes that other parameters are fixed and the cosmology is taken to be a spatially flat cold dark matter universe with the cosmological constant.

  15. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    PubMed

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  16. Acoustic measurements of a full-scale coaxial helicopter

    NASA Technical Reports Server (NTRS)

    Mosher, M.; Peterson, R. L.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept (ABC) Technology Demonstrator in the NASA Ames 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, noise at various forward speeds, rotor lift coefficients, and rotor shaft angles of attack were investigated. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where it is increased by significant impulsive blade/vortex interactions. The impulsivity appears to depend upon how the lift is distributed between the two rotors. The noise levels measured are shown to be slightly higher than on a modern conventional rotor tested in the same facility.

  17. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Liever, Peter A.

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  18. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  19. Strong New Evidence for Oscillation of the Cosmological Scale Factor Observed in the Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Ringermacher, Harry I.; Mead, Lawrence R.

    2017-01-01

    We have analyzed SDSSIII-BOSS, DR9 galaxy number count data using 2 independent approaches, a relativistic expanding space model based on work by Ostriker and direct Fourier analysis, and found incontrovertible evidence for a scale factor oscillation at 7 Hubble-Hertz (HHz) in both methods, where we define 1 HHz as 1 cycle over 1 Hubble-time. The number count of galaxies on these scales should be relatively smooth. However, a DR9 plot of galaxy number count per 0.01 redshift bin as a function of redshift shows significant bumps to redshift 0.5. We take the SDSSIII data (about ¼ of the sky) to be a fair representation of the entire sky when using number count. Our model fits essentially all bumps at a 99.8% R-squared goodness level if and only if the 7 HHz oscillation ( plus 2nd and 3rd harmonics at 14 HHz and 21 HHz) is included. These are the same frequencies observed by us in AJ 149, 137 (2015) using SNe data. Since the SDSSIII data set only goes to redshift 0.8, only one cycle of oscillation is included compared to 2-3 in our earlier work. Thus a Fourier analysis performed on the SDSS redshift data converted to equal-time binning leaves a broadened spectrum over the range where harmonics would normally reside but nevertheless peaked at 7 HHz. A scalar field model presented in the AJ paper describes the oscillation and enters the Friedmann equations by replacing the LCDM dark matter density parameter with the scalar field density. Thus, LCDM dark matter is the median of the wave which appears to act like a fluid with a changing equation-of-state. The oscillation may be a longitudinal gravitational wave originating with the Big Bang and requiring a massive graviton. 7 HHz is consistent with a graviton mass of 10^ -32 eV.

  20. Acoustic streaming jets: A scaling and dimensional analysis

    SciTech Connect

    Botton, V. Henry, D.; Millet, S.; Ben-Hadid, H.; Garandet, J. P.

    2015-10-28

    We present our work on acoustic streaming free jets driven by ultrasonic beams in liquids. These jets are steady flows generated far from walls by progressive acoustic waves. As can be seen on figure 1, our set-up, denominated AStrID for Acoustic Streaming Investigation Device, is made of a water tank in which a 29 mm plane source emits continuous ultrasonic waves at typically 2 MHz. Our approach combines an experimental characterization of both the acoustic pressure field (hydrophone) and the obtained acoustic streaming velocity field (PIV visualization) on one hand, with CFD using an incompressible Navier-Stokes solver on the other hand.

  1. Acoustic streaming jets: A scaling and dimensional analysis

    NASA Astrophysics Data System (ADS)

    Botton, V.; Moudjed, B.; Henry, D.; Millet, S.; Ben-Hadid, H.; Garandet, J. P.

    2015-10-01

    We present our work on acoustic streaming free jets driven by ultrasonic beams in liquids. These jets are steady flows generated far from walls by progressive acoustic waves. As can be seen on figure 1, our set-up, denominated AStrID for Acoustic Streaming Investigation Device, is made of a water tank in which a 29 mm plane source emits continuous ultrasonic waves at typically 2 MHz. Our approach combines an experimental characterization of both the acoustic pressure field (hydrophone) and the obtained acoustic streaming velocity field (PIV visualization) on one hand, with CFD using an incompressible Navier-Stokes solver on the other hand.

  2. Super ENSO and global climate oscillations at millennial time scales.

    PubMed

    Stott, Lowell; Poulsen, Christopher; Lund, Steve; Thunell, Robert

    2002-07-12

    The late Pleistocene history of seawater temperature and salinity variability in the western tropical Pacific warm pool is reconstructed from oxygen isotope (delta18O) and magnesium/calcium composition of planktonic foraminifera. Differentiating the calcite delta18O record into components of temperature and local water delta18O reveals a dominant salinity signal that varied in accord with Dansgaard/Oeschger cycles over Greenland. Salinities were higher at times of high-latitude cooling and were lower during interstadials. The pattern and magnitude of the salinity variations imply shifts in the tropical Pacific ocean/atmosphere system analogous to modern El Niño-Southern Oscillation (ENSO). El Niño conditions correlate with stadials at high latitudes, whereas La Niña conditions correlate with interstadials. Millennial-scale shifts in atmospheric convection away from the western tropical Pacific may explain many paleo-observations, including lower atmospheric CO2, N2O, and CH4 during stadials and patterns of extratropical ocean variability that have tropical source functions that are negatively correlated with El Niño.

  3. Cylindrical acoustical holography applied to full-scale jet noise.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M

    2014-09-01

    Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated.

  4. Measured acoustic characteristics of ducted supersonic jets at different model scales

    NASA Technical Reports Server (NTRS)

    Jones, R. R., III; Ahuja, K. K.; Tam, Christopher K. W.; Abdelwahab, M.

    1993-01-01

    A large-scale (about a 25x enlargement) model of the Georgia Tech Research Institute (GTRI) hardware was installed and tested in the Propulsion Systems Laboratory of the NASA Lewis Research Center. Acoustic measurements made in these two facilities are compared and the similarity in acoustic behavior over the scale range under consideration is highlighted. The study provide the acoustic data over a relatively large-scale range which may be used to demonstrate the validity of scaling methods employed in the investigation of this phenomena.

  5. Distance, Growth Factor, and Dark Energy Constraints from Photometric Baryon Acoustic Oscillation and Weak Lensing Measurements

    NASA Astrophysics Data System (ADS)

    Zhan, Hu; Knox, Lloyd; Tyson, J. Anthony

    2009-01-01

    Baryon acoustic oscillations (BAOs) and weak lensing (WL) are complementary probes of cosmology. We explore the distance and growth factor measurements from photometric BAO and WL techniques, and investigate the roles of the distance and growth factor in constraining dark energy. We find for WL that the growth factor has a great impact on dark energy constraints, but is much less powerful than the distance. Dark energy constraints from WL are concentrated in considerably fewer distance eigenmodes than those from BAO, with the largest contributions from modes that are sensitive to the absolute distance. Both techniques have some well-determined distance eigenmodes that are not very sensitive to the dark energy equation-of-state parameters w0 and wa, suggesting that they can accommodate additional parameters for dark energy and for the control of systematic uncertainties. A joint analysis of BAO and WL is far more powerful than either technique alone, and the resulting constraints on the distance and growth factor will be useful for distinguishing dark energy and modified gravity models. The Large Synoptic Survey Telescope (LSST) will yield both WL and angular BAO over a sample of several billion galaxies. Joint LSST BAO and WL can yield 0.5% level precision on ten comoving distances evenly spaced in log(1 + z) between redshift 0.3 and 3 with cosmic microwave background priors from Planck. In addition, since the angular diameter distance, which directly affects the observables, is linked to the comoving distance solely by the curvature radius in the Friedmann-Robertson-Walker metric solution, the LSST can achieve a pure metric constraint of 0.017 on the mean curvature parameter Ω k of the universe simultaneously with the constraints on the comoving distances.

  6. Distinguishing interacting dark energy from wCDM with CMB, lensing, and baryon acoustic oscillation data

    SciTech Connect

    Väliviita, Jussi; Palmgren, Elina E-mail: elina.palmgren@helsinki.fi

    2015-07-01

    We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological wCDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, ω{sub c}, allowing a large interaction rate |Γ| ∼ H{sub 0}. However, as has been known for a while, the BAO data break this degeneracy. Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift z ∼ 2 and is very sensitive to the growth of structure, and hence one of the tools for discerning between the ΛCDM model and its alternatives. However, we find that in the non-phantom models (w{sub de}>−1), the constraints remain unchanged by the inclusion of the lensing data and consistent with zero interaction, −0.14 < Γ/H{sub 0} < 0.02 at 95% CL. On the contrary, in the phantom models (w{sub de}<−1), energy transfer from dark energy to dark matter is moderately favoured over the non-interacting model; 0−0.57 < Γ/H{sub 0} < −0.1 at 95% CL with CMB+BAO, while addition of the lensing data shifts this to −0.46 < Γ/H{sub 0} < −0.01.

  7. MODEL-INDEPENDENT EVIDENCE FOR DARK ENERGY EVOLUTION FROM BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Sahni, V.; Shafieloo, A.; Starobinsky, A. A. E-mail: arman@apctp.org

    2014-10-01

    Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s{sup –1} Mpc{sup –1} at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh {sup 2} from SDSS DR9 and DR11 data, namely, Omh {sup 2} ≈ 0.122 ± 0.01, which is equivalent to Ω{sub 0m} h {sup 2} for the spatially flat ΛCDM model, is in tension with the value Ω{sub 0m} h {sup 2} = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.

  8. Model-independent Evidence for Dark Energy Evolution from Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Sahni, V.; Shafieloo, A.; Starobinsky, A. A.

    2014-10-01

    Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s-1 Mpc-1 at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh 2 from SDSS DR9 and DR11 data, namely, Omh 2 ≈ 0.122 ± 0.01, which is equivalent to Ω0m h 2 for the spatially flat ΛCDM model, is in tension with the value Ω0m h 2 = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.

  9. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    NASA Astrophysics Data System (ADS)

    Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi; Tsai, Yuhsinz

    2016-12-01

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

  10. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  11. Influence of sound absorbing surfaces on acoustic oscillations and flame acceleration in hydrogen-air mixture

    NASA Astrophysics Data System (ADS)

    Korobov, A. E.; Volodin, V. V.; Golovastov, S. V.

    2016-11-01

    The frequency spectrum of acoustic disturbances that are emitted by accelerating flame front in an air-hydrogen mixture within an axially symmetric channel with a uniform cross section is experimentally determined. The effect of acoustic disturbances that are reflected from the closed end of the combustion chamber on the flame front acceleration is studied. It is revealed that the frequency spectrum of generated acoustic disturbances under experiment conditions has maximums at frequencies close to 250, 800, and 1500 Hz.

  12. Drive Rig Mufflers for Model Scale Engine Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2010-01-01

    Testing of air breathing propulsion systems in the 9x15 foot wind tunnel at NASA Glenn Research Center depends on compressed air turbines for power. The drive rig turbines exhaust directly to the wind tunnel test section, and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the model being tested. In order to mitigate this acoustic contamination, a muffler can be attached downstream of the drive rig turbine. The modern engine designs currently being tested produce much less noise than traditional engines, and consequently a lower noise floor is required of the facility. An acoustic test of a muffler designed to mitigate this extraneous noise is presented, and a noise reduction of 8 dB between 700 Hz and 20 kHz was documented, significantly improving the quality of acoustic measurements in the facility.

  13. Aerodynamic and acoustic test of a United Technologies model scale rotor at DNW

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Liu, Sandy R.; Jordan, Dave E.; Landgrebe, Anton J.; Lorber, Peter F.; Pollack, Michael J.; Martin, Ruth M.

    1990-01-01

    The UTC model scale rotors, the DNW wind tunnel, the AFDD rotary wing test stand, the UTRC and AFDD aerodynamic and acoustic data acquisition systems, and the scope of test matrices are discussed and an introduction to the test results is provided. It is pointed out that a comprehensive aero/acoustic database of several configurations of the UTC scaled model rotor has been created. The data is expected to improve understanding of rotor aerodynamics, acoustics, and dynamics, and lead to enhanced analytical methodology and design capabilities for the next generation of rotorcraft.

  14. Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations

    PubMed Central

    Hardstone, Richard; Poil, Simon-Shlomo; Schiavone, Giuseppina; Jansen, Rick; Nikulin, Vadim V.; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus

    2012-01-01

    Recent years of research have shown that the complex temporal structure of ongoing oscillations is scale-free and characterized by long-range temporal correlations. Detrended fluctuation analysis (DFA) has proven particularly useful, revealing that genetic variation, normal development, or disease can lead to differences in the scale-free amplitude modulation of oscillations. Furthermore, amplitude dynamics is remarkably independent of the time-averaged oscillation power, indicating that the DFA provides unique insights into the functional organization of neuronal systems. To facilitate understanding and encourage wider use of scaling analysis of neuronal oscillations, we provide a pedagogical explanation of the DFA algorithm and its underlying theory. Practical advice on applying DFA to oscillations is supported by MATLAB scripts from the Neurophysiological Biomarker Toolbox (NBT) and links to the NBT tutorial website http://www.nbtwiki.net/. Finally, we provide a brief overview of insights derived from the application of DFA to ongoing oscillations in health and disease, and discuss the putative relevance of criticality for understanding the mechanism underlying scale-free modulation of oscillations. PMID:23226132

  15. Acoustic characteristics of large-scale STOL models at forward speed

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aoyagi, K.; Koenig, D. G.

    1972-01-01

    Wind-tunnel investigations of the acoustic characteristics of the externally blown jet flap (EBF) and augmentor wing STOL concepts are discussed. The large-scale EBF model was equipped with a triple-slotted flap blown by four JT15D turbofan engines with circular, coannular exhaust nozzles. The large-scale augmentor wing model was equipped with an unlined augmentor blown by a slot primary nozzle. The effects of airspeed and angle of attack on the acoustics of the EBF were small. Flap deflection had a greater effect on the acoustics of the augmentor wing than did airspeed. The total sound power was also significantly higher for landing indicating that turning in the augmentor generated acoustic energy. Airspeed produced a small aft shift in acoustic directivity with no significant change in the peak perceived noise levels or sound power levels. Small-scale research of the acoustics for the augmentor wing has shown that by blowing an acoustically treated augmentor with a lobed primary nozzle, the 95-PNdb noise level goal can be achieved or surpassed.

  16. Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development

    NASA Technical Reports Server (NTRS)

    Putnam, G. C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.

  17. Acoustic fluidization and the scale dependence of impact crater morphology

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Gaffney, E. S.

    1983-01-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.

  18. Acoustic fluidization and the scale dependence of impact crater morphology

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.; Gaffney, E. S.

    1983-11-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.

  19. Acoustic Performance of Drive Rig Mufflers for Model Scale Engine Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David, B.

    2013-01-01

    Aircraft engine component testing at the NASA Glenn Research Center (GRC) includes acoustic testing of scale model fans and propellers in the 9- by15-Foot Low Speed Wind Tunnel (LSWT). This testing utilizes air driven turbines to deliver power to the article being studied. These air turbines exhaust directly downstream of the model in the wind tunnel test section and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the engine model being tested. This report describes an acoustic test of a muffler designed to mitigate the extraneous turbine noise. The muffler was found to provide acoustic attenuation of at least 8 dB between 700 Hz and 20 kHz which significantly improves the quality of acoustic measurements in the facility.

  20. Acoustic Treatment Design Scaling Methods. Volume 3; Test Plans, Hardware, Results, and Evaluation

    NASA Technical Reports Server (NTRS)

    Yu, J.; Kwan, H. W.; Echternach, D. K.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The ability to design, build, and test miniaturized acoustic treatment panels on scale-model fan rigs representative of the full-scale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. To be able to use scale model treatment as a full-scale design tool, it is necessary that the designer be able to reliably translate the scale model design and performance to an equivalent full-scale design. The primary objective of the study presented in this volume of the final report was to conduct laboratory tests to evaluate liner acoustic properties and validate advanced treatment impedance models. These laboratory tests include DC flow resistance measurements, normal incidence impedance measurements, DC flow and impedance measurements in the presence of grazing flow, and in-duct liner attenuation as well as modal measurements. Test panels were fabricated at three different scale factors (i.e., full-scale, half-scale, and one-fifth scale) to support laboratory acoustic testing. The panel configurations include single-degree-of-freedom (SDOF) perforated sandwich panels, SDOF linear (wire mesh) liners, and double-degree-of-freedom (DDOF) linear acoustic panels.

  1. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas T.; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  2. Preliminary investigation of acoustic oscillations in an H2-O2 fired Hall generator

    NASA Technical Reports Server (NTRS)

    Phillips, B.

    1981-01-01

    Burner pressure oscillations and interelectrode voltage oscillations measured in an open-cycle supersonic flow Hall generator are presented. The ionized gas for the channel was supplied by seeding the approximately 1 lb/sec of hydrogen-oxygen combustion products with cesium. Since both the burner and the channel were located within magnetic fields exceeding 4 Tesla during operation, an infinite probe pressure measurement technique was used to measure burner pressure oscillations. Calibration of the burner pressure transducer using a resonance tube technique is presented. Evidence is presented for the existence of the first longitudinal mode of oscillations (5000 Hz) within the burner. Interelectrode voltage oscillations were simultaneously measured at two separate axial stations. The magnitude change and the phase shift between the two signals was interpreted as a decaying magnetoacoustic wave driven by the burner that propagates at local gas plus sonic velocities. The amplitude of the electrical voltage oscillations at the start of the power producing region of the channel varied with the magnetic field. This variation is compared with the results of a simple perturbation analysis. Arguments are presented for using an unsteady model for analyzing wave processes in channels.

  3. Acoustic Survey of a 3/8-Scale Automotive Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Romberg, Gary; Hansen, Larry; Lutz, Ron

    1996-01-01

    An acoustic survey that consists of insertion loss and flow noise measurements was conducted at key locations around the circuit of a 3/8-scale automotive acoustic wind tunnel. Descriptions of the test, the instrumentation, and the wind tunnel facility are included in the current report, along with data obtained in the test in the form of 1/3-octave-band insertion loss and narrowband flow noise spectral data.

  4. Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators.

    PubMed

    Chan, H B; Stambaugh, C

    2007-08-10

    We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscillators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.

  5. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars

    SciTech Connect

    Delubac, Timothée; Bautista, Julian E.; Rich, James; Kirkby, David; Bailey, Stephen; Font-Ribera, Andreu; Slosar, Anže; Lee, Khee-Gan; Pieri, Matthew M.; Hamilton, Jean-Christophe; Bovy, Jo; Brinkmann, Jon; Carithers, William; Dawson, Kyle S.; Eisenstein, Daniel J.; Gontcho A Gontcho, Satya; Kneib, Jean-Paul; Margala, Daniel; Miralda-Escudé, Jordi; Myers, Adam D.; Nichol, Robert C.; Noterdaeme, Pasquier; O’Connell, Ross; Olmstead, Matthew D.; Palanque-Delabrouille, Nathalie; Pâris, Isabelle; Petitjean, Patrick; Ross, Nicholas P.; Rossi, Graziano; Schlegel, David J.; Schneider, Donald P.; Weinberg, David H.; Yèche, Christophe; York, Donald G.

    2015-01-26

    We report a detection of the baryon acousticoscillation (BAO) feature in the flux-correlation function of the Lyα forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range 2.1 ≤ z ≤ 3.5 from the data release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, DA(z = 2.34) and expansion rate, H(z = 2.34), both on a scale set by the sound horizon at the drag epoch, rd. We find DA/rd = 11.28 ± 0.65(1σ)$+2.8\\atop{-1.2}$(2σ) and DH/rd = 9.18 ± 0.28(1σ) ± 0.6(2σ) where DH = c/H. The optimal combination, ~D$0.7\\atop{H}$ D$0.3\\atop{A}/rd is determined with a precision of ~2%. For the value rd = 147.4 Mpc, consistent with the cosmic microwave background power spectrum measured by Planck, we find DA(z = 2.34) = 1662 ± 96(1σ) Mpc and H(z = 2.34) = 222 ± 7(1σ) km s-1 Mpc-1. Tests with mock catalogs and variations of our analysis procedure have revealed no systematic uncertainties comparable to our statistical errors. Our results agree with the previously reported BAO measurement at the same redshift using the quasar-Lyα forest cross-correlation. The autocorrelation and cross-correlation approaches are complementary because of the quite different impact of redshift-space distortion on the two measurements. The combined constraints from the two correlation functions imply values of DA/rd that are 7% lower and 7% higher for DH/rd than the predictions of a flat ΛCDM cosmological model with the best-fit Planck parameters. With our estimated statistical errors, the significance of this discrepancy is ≈2.5σ.

  6. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars

    DOE PAGES

    Delubac, Timothée; Bautista, Julian E.; Busca, Nicolás G.; ...

    2015-01-26

    We report a detection of the baryon acousticoscillation (BAO) feature in the flux-correlation function of the Lyα forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range 2.1 ≤ z ≤ 3.5 from the data release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, DA(z = 2.34) and expansion rate, H(z = 2.34), both on a scale set by the sound horizon at the drag epoch, rd. We find DA/rd = 11.28 ± 0.65(1σ)more » $$+2.8\\atop{-1.2}$$(2σ) and DH/rd = 9.18 ± 0.28(1σ) ± 0.6(2σ) where DH = c/H. The optimal combination, ~D$$0.7\\atop{H}$$ D$0.3\\atop{A}/rd is determined with a precision of ~2%. For the value rd = 147.4 Mpc, consistent with the cosmic microwave background power spectrum measured by Planck, we find DA(z = 2.34) = 1662 ± 96(1σ) Mpc and H(z = 2.34) = 222 ± 7(1σ) km s-1 Mpc-1. Tests with mock catalogs and variations of our analysis procedure have revealed no systematic uncertainties comparable to our statistical errors. Our results agree with the previously reported BAO measurement at the same redshift using the quasar-Lyα forest cross-correlation. The autocorrelation and cross-correlation approaches are complementary because of the quite different impact of redshift-space distortion on the two measurements. The combined constraints from the two correlation functions imply values of DA/rd that are 7% lower and 7% higher for DH/rd than the predictions of a flat ΛCDM cosmological model with the best-fit Planck parameters. With our estimated statistical errors, the significance of this discrepancy is ≈2.5σ.« less

  7. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Fourier space

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Seo, Hee-Jong; Ross, Ashley J.; McDonald, Patrick; Saito, Shun; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Percival, Will J.; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A.; Ross, Nicholas P.; Salazar-Albornoz, Salvador; Sánchez, Ariel G.; Schneider, Donald P.; Slosar, Anže; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.

    2017-01-01

    We analyse the baryon acoustic oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in the Fourier space, using the power spectrum monopole and quadrupole. The data set includes 1198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this data set into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as ˜1000 MultiDark-Patchy mock catalogues that mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line of sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H(z) separately. We obtain two independent 1.6 and 1.5 per cent constraints on DA(z) and 2.9 and 2.3 per cent constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1 and 0.9 per cent constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski effect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within Λ cold dark matter. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

  8. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space

    SciTech Connect

    Beutler, Florian; Seo, Hee -Jong; Ross, Ashley J.; McDonald, Patrick; Saito, Shun; Bolton, Adam S.; Joel R. Brownstein; Chuang, Chia -Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco -Shu; Modi, Chirag; Nichol, Robert C.; Percival, Will J.; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A.; Ross, Nicholas P.; Salazar-Albornoz, Salvador; Sanchez, Ariel G.; Schneider, Donald P.; Slosar, Anze; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Vazquez, Jose A.

    2016-07-13

    Here, we analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes 1 198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this dataset into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as 1000 MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density eld reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can sep-arate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H ( z ) separately. We obtain two independent 1 : 6% and 1 : 5% constraints on DA(z) and 2.9% and 2.3% constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1% and 0.9% constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski e ect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.

  9. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space

    DOE PAGES

    Beutler, Florian; Seo, Hee -Jong; Ross, Ashley J.; ...

    2016-07-13

    Here, we analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes 1 198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this dataset into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as 1000 MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density eld reconstruction to enhance themore » BAO signal-to-noise ratio. By including the power spectrum quadrupole we can sep-arate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H ( z ) separately. We obtain two independent 1 : 6% and 1 : 5% constraints on DA(z) and 2.9% and 2.3% constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1% and 0.9% constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski e ect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.« less

  10. Full-Field Imaging of Acoustic Motion at Nanosecond Time and Micron Length Scales

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Cottle, David Lynn; Larson III, John D.

    2002-10-01

    A full-field view laser ultrasonic imaging method has been developed that measures acoustic motion at a surface without scanning. Images are recorded at normal video frame rates by employing dynamic holography using photorefractive interferometric detection. By extending the approach to ultra high frequencies, an acoustic microscope has been developed capable of operation on the nanosecond time and micron length scales. Both acoustic amplitude and phase are recorded allowing full calibration and determination of phases to within a single arbitrary constant. Results are presented of measurements at frequencies at 800-900 MHz illustrating a multitude of normal mode behavior in electrically driven thin film acoustic resonators. Coupled with microwave electrical impedance measurements, this imaging mode provides an exceptionally fast method for evaluation of electric to acoustic coupling and performance of these devices. Images of 256x240 pixels are recorded at 18Hz rates synchronized to obtain both in-phase and quadrature detection of the acoustic motion. Simple averaging provides sensitivity to the subnanometer level calibrated over the image using interferometry. Identification of specific acoustic modes and their relationship to electrical impedance characteristics show the advantages and overall high speed of the technique.

  11. The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Davis, Tamara; Poole, Gregory B.; Parkinson, David; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J.; Li, I.-Hui; Madore, Barry; Martin, D. Christopher; Pimbblet, Kevin; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, H. K. C.

    2011-08-01

    We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z= 0.6, using the distribution of N= 132 509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. The results are mutually consistent, corresponding to a 4.0 per cent measurement of the cosmic distance-redshift relation at z= 0.6 [in terms of the acoustic parameter 'A(z)' introduced by Eisenstein et al., we find A(z= 0.6) = 0.452 ± 0.018]. Both BAOs and power spectrum shape information contribute towards these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2σ. The ratios of our distance measurements to those obtained using BAOs in the distribution of luminous red galaxies at redshifts z= 0.2 and 0.35 are consistent with a flat Λ cold dark matter model that also provides a good fit to the pattern of observed fluctuations in the cosmic microwave background radiation. The addition of the current WiggleZ data results in a ≈30 per cent improvement in the measurement accuracy of a constant equation of state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < -1/3) is required with a probability of 99.8 per cent, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ survey data set is complete.

  12. Acoustic fluidization and the scale dependence of impact crater morphology.

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.; Gaffney, E. S.

    1983-02-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. The Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials.

  13. Properties of the Solar Acoustic Source Inferred from Nonadiabatic Oscillation Spectra

    NASA Astrophysics Data System (ADS)

    Wachter, R.; Kosovichev, A. G.

    2005-07-01

    Severino et al. suggested in 2001 that observed power and cross spectra of medium-degree p-modes in velocity and intensity can be described by splitting the solar background noise into correlated, coherent, and uncoherent components. We account for the nonadiabatic nature of solar oscillations by including the perturbations of the radiative energy flux in our model for the oscillations. Our calculations show the potential to explain the observations without the ad hoc phase differences between velocity and intensity oscillations introduced in the model of Severino et al. The phases and amplitudes of the correlated noise components are obtained by fitting our nonadiabatic model to the SOHO MDI power and cross spectra. These parameters provide information about the p-mode excitation process. We show that the type and location of the source can not be uniquely determined by the properties of the resonant p-modes in power and cross spectra of velocity and intensity oscillations. However, we obtain estimates for the phases and amplitudes of the correlated noise, which we interpret in terms of isolated rapid downdrafts in intergranular lanes. This idea is supported by three-dimensional simulations of the upper solar convection zone.

  14. Suppression of nonlinear oscillations in combustors with partial length acoustic liners

    NASA Technical Reports Server (NTRS)

    Espander, W. R.; Mitchell, C. E.; Baer, M. R.

    1975-01-01

    An analytical model is formulated for a three-dimensional nonlinear stability problem in a rocket motor combustion chamber. The chamber is modeled as a right circular cylinder with a short (multi-orifice) nozzle, and an acoustic linear covering an arbitrary portion of the cylindrical periphery. The combustion is concentrated at the injector and the gas flow field is characterized by a mean Mach number. The unsteady combustion processes are formulated using the Crocco time lag model. The resulting equations are solved using a Green's function method combined with numerical evaluation techniques. The influence of acoustic liners on the nonlinear waveforms is predicted. Nonlinear stability limits and regions where triggering is possible are also predicted for both lined and unlined combustors in terms of the combustion parameters.

  15. Nonlinear Resonant Oscillations of Gas in Optimized Acoustical Resonators and the Effect of Central Blockage

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Finkbeiner, Joshua; Raman, Ganesh; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    Optimizing resonator shapes for maximizing the ratio of maximum to minimum gas pressure at an end of the resonator is investigated numerically. It is well known that the resonant frequencies and the nonlinear standing waveform in an acoustical resonator strongly depend on the resonator geometry. A quasi-Newton type scheme was used to find optimized axisymmetric resonator shapes achieving the maximum pressure compression ratio with an acceleration of constant amplitude. The acoustical field was solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects were obtained through an automation scheme based on continuation method. Results are presented for optimizing three types of geometry: a cone, a horn-cone and a half cosine-shape. For each type, different optimized shapes were found when starting with different initial guesses. Further, the one-dimensional model was modified to study the effect of an axisymmetric central blockage on the nonlinear standing wave.

  16. Graviton creation by small scale factor oscillations in an expanding universe

    NASA Astrophysics Data System (ADS)

    Schiappacasse, Enrico D.; Ford, L. H.

    2016-10-01

    We treat quantum creation of gravitons by small scale factor oscillations around the average of an expanding universe. Such oscillations can arise in standard general relativity due to oscillations of a homogeneous, minimally coupled scalar field. They can also arise in modified gravity theories with a term proportional to the square of the Ricci scalar in the gravitational action. The graviton wave equation is different in the two cases, leading to somewhat different creation rates. Both cases are treated using a perturbative method due to Birrell and Davies, involving an expansion in a conformal coupling parameter to calculate the number density and energy density of the created gravitons. Cosmological constraints on the present graviton energy density and the dimensionless amplitude of the oscillations are discussed. We also discuss decoherence of quantum systems produced by the spacetime geometry fluctuations due to such a graviton bath.

  17. Time scales of spike-train correlation for neural oscillators with common drive.

    PubMed

    Barreiro, Andrea K; Shea-Brown, Eric; Thilo, Evan L

    2010-01-01

    We examine the effect of the phase-resetting curve on the transfer of correlated input signals into correlated output spikes in a class of neural models receiving noisy superthreshold stimulation. We use linear-response theory to approximate the spike correlation coefficient in terms of moments of the associated exit time problem and contrast the results for type I vs type II models and across the different time scales over which spike correlations can be assessed. We find that, on long time scales, type I oscillators transfer correlations much more efficiently than type II oscillators. On short time scales this trend reverses, with the relative efficiency switching at a time scale that depends on the mean and standard deviation of input currents. This switch occurs over time scales that could be exploited by downstream circuits.

  18. [EFFECTS OF MUSIC-ACOUSTIC SIGNALS, ONLINE CONTROLLED BY EEG OSCILLATORS OF THE SUBJECT].

    PubMed

    Fedotchev, A I; Bondar, A T; Bakhchina, A V; Parin, S B; Polevaya, S A; Radchenko, G S

    2015-08-01

    The effects of 2 variants of the method of musical EEG neurofeedback, in which the dominant spectral components of subject's EEG (EEG oscillators) are online converted to music-like signals similar by timbre to flute sounds, have been studied. In the first case, these music-like signals were smoothly varying by the pitch and intensity in accordance with the current amplitude of the EEG oscillator. In the second case, the same variations of flute-like sound were accompanied by such musical element as rhythm. After the single exposure, the modifications of subject's brain activity and positive changes in psycho-physiological state of the subject have been found. Particularly pronounced effects were observed under rhythmically organized music-like stimuli.

  19. Asymptotic theory of intermediate- and high-degree solar acoustic oscillations

    NASA Technical Reports Server (NTRS)

    Brodsky, M.; Vorontsov, S. V.

    1993-01-01

    A second-order asymptotic approximation is developed for adiabatic nonradial p-modes of a spherically symmetric star. The exact solutions of adiabatic oscillations are assumed in the outermost layers, where the asymptotic description becomes invalid, which results in a eigenfrequency equation with model-dependent surface phase shift. For lower degree modes, the phase shift is a function of frequency alone; for high-degree modes, its dependence on the degree is explicitly taken into account.

  20. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  1. Boundary conditions for simulations of oscillating bubbles using the non-linear acoustic approximation

    NASA Astrophysics Data System (ADS)

    King, J. R. C.; Ziolkowski, A. M.; Ruffert, M.

    2015-03-01

    We have developed a new boundary condition for finite volume simulations of oscillating bubbles. Our method uses an approximation to the motion outside the domain, based on the solution at the domain boundary. We then use this approximation to apply boundary conditions by defining incoming characteristic waves at the domain boundary. Our boundary condition is applicable in regions where the motion is close to spherically symmetric. We have tested our method on a range of one- and two-dimensional test cases. Results show good agreement with previous studies. The method allows simulations of oscillating bubbles for long run times (5 ×105 time steps with a CFL number of 0.8) on highly truncated domains, in which the boundary condition may be applied within 0.1% of the maximum bubble radius. Conservation errors due to the boundary conditions are found to be of the order of 0.1% after 105 time steps. The method significantly reduces the computational cost of fixed grid finite volume simulations of oscillating bubbles. Two-dimensional results demonstrate that highly asymmetric bubble features, such as surface instabilities and the formation of jets, may be captured on a small domain using this boundary condition.

  2. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions within the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center, in partnership with GE Aviation, is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to develop a scaling methodology for using data obtained from small- and moderate-scale experiments which exhibits the independence of the jet sizes to the measured noise levels. The experimental results presented in this thesis have shown reasonable agreement between small-scale and moderate-scale jet acoustic data, as well as between heated jets and heat-simulated ones. As the scaling methodology is validated, it will be extended to using acoustic data measured with small-scale supersonic model jets to the prediction of the most important components of full-scale engine noise. When comparing the measured acoustic spectra with a microphone array set at different radial locations, the characteristics of the jet noise source distribution may induce subtle inaccuracies, depending on the conditions of jet operation. A close look is taken at the details of the noise generation region in order to better understand the mismatch between spectra measured at various acoustic field radial locations. A processing methodology was developed to correct the effect of the noise source distribution and efficiently compare near-field and far-field spectra with unprecedented accuracy. This technique then demonstrates that the measured noise levels in the physically restricted space of an anechoic chamber can be appropriately

  3. Reheating the universe once more: the dissipation of acoustic waves as a novel probe of primordial inhomogeneities on even smaller scales.

    PubMed

    Nakama, Tomohiro; Suyama, Teruaki; Yokoyama, Jun'ichi

    2014-08-08

    We provide a simple but robust bound on the primordial curvature perturbation in the range 10(4)  Mpc(-1)scales dissipate the energy of their acoustic oscillations by the Silk damping after primordial nucleosynthesis but before the redshift z∼2×10(6) and reheat the photon bath without invoking cosmic microwave background distortions. This acoustic reheating results in the decrease of the baryon-photon ratio. By combining independent measurements probing the nucleosynthesis era and around the recombination epoch, we find an upper bound on the amplitude of the curvature perturbation over the above wave number range as P(ζ)<0.06. Implications for supermassive black holes are also discussed.

  4. Acoustic characteristics of large-scale STOL model at forward speed

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aoyagi, K.; Koenig, D. G.

    1972-01-01

    Wind-tunnel investigations of the acoustic characteristics of the externally blown jet flap (EBF) and augmentor wing STOL concepts are dicussed. The large-scale EBF model was equipped with a triple-slotted blown by four JT15D turbofan engines with circular, coannular exhaust nozzles. The large-scale augmentor wing model was equipped with an unlined augmentor blown by a slot primary nozzle. The effects of airspeed and angle of attack on the acoustics of the EBF were small. At a forward speed of 60 knots, the impingement noise of the landing flap was approximately 2 db lower than in the static tests. Angle of attack increased the impingement noise approximately 0.1 decibels per degree. Flap deflection had a greater effect on the acoustics of the augmentor wing than did airspeed. For a nozzle pressure ratio of 1.9, the peak perceived noise level of the landing flap was 3 to 5 PNdb higher than that of the takeoff flap. The total sound power was also significantly higher for landing indicating that turning in the augmentor generated acoustic energy. Airspeed produced a small aft shift in acoustic directivity with no significant change in the peak perceived noise levels or sound power levels.

  5. Comparison of cellular oscillations driven by noise or deterministic mechanisms under cell-size scaling

    NASA Astrophysics Data System (ADS)

    He, Chong; Chiam, Keng-Hwee; Chew, Lock Yue

    2016-10-01

    Ultradian cycles are frequently observed in biological systems. They serve important roles in regulating, for example, cell fate and the development of the organism. Many mathematical models have been developed to analyze their behavior. Generally, these models can be classified into two classes: Deterministic models that generate oscillatory behavior by incorporating time delays or Hopf bifurcations, and stochastic models that generate oscillatory behavior by noise driven resonance. However, it is still unclear which of these two mechanisms applies to cellular oscillations. In this paper, we show through theoretical analysis and numerical simulation that we can distinguish which of these two mechanisms govern cellular oscillations, by measuring statistics of oscillation amplitudes for cells of different sizes. We found that, for oscillations driven deterministically, the normalized average amplitude is constant with respect to cell size, while the coefficient of variation of the amplitude scales with cell size with an exponent of -0.5 . On the other hand, for oscillations driven stochastically, the coefficient of variation of the amplitude is constant with respect to cell size, while the normalized average amplitude scales with cell size with an exponent of -0.5 . Our results provide a theoretical basis to discern whether a particular oscillatory behavior is governed by a deterministic or stochastic mechanism.

  6. Millennial-scale oscillations between sea ice and convective deep water formation

    NASA Astrophysics Data System (ADS)

    Saha, Raj

    2015-11-01

    During the last ice age there were several quasiperiodic abrupt warming events. The climatic effects of the so-called Dansgaard-Oeschger (D-O) events were felt globally, although the North Atlantic experienced the largest and most abrupt temperature anomalies. Similar but weaker oscillations also took place during the interglacial period. This paper proposes an auto-oscillatory mechanism between sea ice and convective deep water formation in the North Atlantic as the source of the persistent cycles. A simple dynamical model is constructed by coupling and slightly modifying two existing models of ocean circulation and sea ice. The model exhibits mixed mode oscillations, consisting of decadal-scale small-amplitude oscillations and a large-amplitude relaxation fluctuation. The decadal oscillations occur due to the insulating effect of sea ice and leads to periodic ventilation of heat from the polar ocean. Gradually, an instability builds up in the polar column and results in an abrupt initiation of convection and polar warming. The unstable convective state relaxes back to the small-amplitude oscillations from where the process repeats in a self-sustained manner. Freshwater pulses mimicking Heinrich events cause the oscillations to be grouped into packets of progressively weaker fluctuations, as observed in proxy records. Modulation of this stable oscillation mechanism by freshwater and insolation variations could account for the distribution and pacing of D-O and Bond events. Physical aspects of the system such as sea ice extent and oceanic advective flow rates could determine the characteristic 1500 year time scale of D-O events. The model results with respect to the structure of the water column in the Nordic seas during stadial and interstadial phases are in agreement with paleoproxy observations.

  7. Small-scale field-aligned currents and ionospheric disturbances induced by vertical acoustic resonance during the 2015 eruption of Chile's Calbuco volcano

    NASA Astrophysics Data System (ADS)

    Aoyama, T.; Iyemori, T.; Nakanishi, K.; Nishioka, M.

    2015-12-01

    Wave packet structure of small-scale magnetic fluctuations were observed by SWARM satellites just above the volcano and it's magnetic conjugate point after the eruption of Chile's Calbuco volcano on April 22, 2015. These magnetic fluctuations in low and middle latitudes generated by small-scale field aligned currents (FACs), and have about 10-30 seconds period along the satellites' orbit [Nakanishi et al., 2014] and about 200 (340) seconds temporal scale for meridional (longitudinal) magnetic components [Iyemori et al., 2015]. We also observed ionospheric disturbances and ground geomagnetic fluctuations just after the eruption. The 4-min period oscillations of total electron content (TEC) were observed by GPS receivers near the volcano. The 260 and 215 seconds spectral peaks in D component of ground based geomagnetic observation were found. Such oscillations and spectral peaks didn't exist before the eruption. All of these observations may have the same origin, i.e., vertical acoustic resonance between the ionosphere and the ground. In this presentation, we estimate the propagation velocity of the TEC oscillations and the spatial scale of the disturbance region in the E-layer where the FACs are generated by the ionospheric dynamo.

  8. Stabilization and Low-Frequency Oscillation of Capillary Bridges with Modulated Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.

    1996-01-01

    In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.

  9. Acoustic and Slow Sausage Oscillations in the Stratified Solar Photosphere: Hinode Observations and Phase Relationships

    NASA Astrophysics Data System (ADS)

    Tsap, Y. T.; Stepanov, A. V.; Kopylova, Y. G.

    2016-11-01

    Based on the linearized magnetohydrodynamic (MHD) equations within the framework of the thin flux tube approximation, the phase relationships between the disturbed quantities of evanescent acoustic and slow sausage MHD modes excited in the adiabatically stratified solar atmosphere are considered. It has been shown that the sign of the phase differences (equal to ±π/2) between the velocity and other disturbed quantities such as pressure, density, magnetic field, and temperature, depends on the wave frequency ω. The obtained phase relationships agree well with SOT/ Hinode observations obtained by Fujimura and Tsuneta ( Astrophys. J. 702, 1443, 2009) when ω≈ωc, where ωc is the cutoff frequency. The role of various modes excited in the solar atmosphere in the light of the chromospheric and coronal heating problems are discussed.

  10. MICRO-SCALE CFD MODELING OF OSCILLATING FLOW IN A REGENERATOR

    SciTech Connect

    Cheadle, M. J.; Nellis, G. F.; Klein, S. A.

    2010-04-09

    Regenerator models used by designers are macro-scale models that do not explicitly consider interactions between the fluid and the solid matrix. Rather, the heat transfer coefficient and pressure drop are calculated using correlations for Nusselt number and friction factor. These correlations are typically based on steady flow data. The error associated with using steady flow correlations to characterize the oscillatory flow that is actually present in the regenerator is not well understood. Oscillating flow correlations based on experimental data do exist in the literature; however, these results are often conflicting. This paper uses a micro-scale computational fluid dynamic (CFD) model of a unit-cell of a regenerator matrix to determine the conditions for which oscillating flow affects friction factor. These conditions are compared to those found in typical pulse tube regenerators to determine whether oscillatory flow is of practical importance. CFD results clearly show a transition Valensi number beyond which oscillating flow significantly increases the friction factor. This transition Valensi number increases with Reynolds number. Most practical pulse tube regenerators will operate below this Valensi transition number and therefore this study suggests that the effect of flow oscillation on pressure drop can be neglected in macro-scale regenerator models.

  11. Acoustic Resonators for Far-Field Control of Sound on a Subwavelength Scale

    NASA Astrophysics Data System (ADS)

    Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2011-08-01

    We prove experimentally that broadband sounds can be controlled and focused at will on a subwavelength scale by using acoustic resonators. We demonstrate our approach in the audible range with soda cans, that is, Helmholtz resonators, and commercial computer speakers. We show that diffraction-limited sound fields convert efficiently into subdiffraction modes in the collection of cans that can be controlled coherently in order to obtain focal spots as thin as 1/25 of a wavelength in air. We establish that subwavelength acoustic pressure spots are responsible for a strong enhancement of the acoustic displacement at focus, which permits us to conclude with a visual experiment exemplifying the interest of our concept for subwavelength sensors and actuators.

  12. Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron

    PubMed Central

    Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913

  13. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  14. Acoustic Treatment Design Scaling Methods. Volume 1; Overview, Results, and Recommendations

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.

    1999-01-01

    Scale model fan rigs that simulate new generation ultra-high-bypass engines at about 1/5-scale are achieving increased importance as development vehicles for the design of low-noise aircraft engines. Testing at small scale allows the tests to be performed in existing anechoic wind tunnels, which provides an accurate simulation of the important effects of aircraft forward motion on the noise generation. The ability to design, build, and test miniaturized acoustic treatment panels on scale model fan rigs representative of the fullscale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. The primary objective of this study was to develop methods that will allow scale model fan rigs to be successfully used as acoustic treatment design tools. The study focuses on finding methods to extend the upper limit of the frequency range of impedance prediction models and acoustic impedance measurement methods for subscale treatment liner designs, and confirm the predictions by correlation with measured data. This phase of the program had as a goal doubling the upper limit of impedance measurement from 6 kHz to 12 kHz. The program utilizes combined analytical and experimental methods to achieve the objectives.

  15. Micro/meso scale fatigue damage accumulation monitoring using nonlinear acoustic vibro-modulation measurements

    NASA Astrophysics Data System (ADS)

    Zagrai, Andrei; Donskoy, Dimitri; Chudnovsky, Alexander; Golovin, Edward; Agarwala, Vinod S.

    2006-03-01

    Monitoring the incipient damage at the earliest possible stage is essential for predicting structural performance and remaining life of structural components. Existing prognostic methodologies incorporate conventional SHM and NDE techniques responsive to cracks and delaminations resulted from the irreversible material fracture and disintegration at the macro-scale. There is an increasing need for technologies that could allow for monitoring material degradation at the micro/meso scale before the onset of the macro-scale fracture. In this contribution, we report results of the real-time monitoring of the material micro/meso scale degradation using the nonlinear acoustic vibro-modulation technique. The technique explores nonlinear acoustic interaction of high frequency ultrasound and low frequency structural vibration at the site of the incipient damage. The indicator of the damage severity, nonlinear acoustic damage index (DI), was measured in real time during the strain-controlled three-point bending fatigue test of aluminum and steel specimens. Nondestructively, degradation of the specimen was revealed through the increase in the DI, which correlated well with the respective decrease in the specimen's stiffness. Destructive SEM examination confirmed sensitivity of the DI to the incipient micro/meso scale damage and advocated for utilizing the vibro-modulation approach for assessment of material degradation before fracture.

  16. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions.

    PubMed

    Chen, Chong; Liu, Song; Shi, Xia-Qing; Chaté, Hugues; Wu, Yilin

    2017-02-09

    Collective oscillatory behaviour is ubiquitous in nature, having a vital role in many biological processes from embryogenesis and organ development to pace-making in neuron networks. Elucidating the mechanisms that give rise to synchronization is essential to the understanding of biological self-organization. Collective oscillations in biological multicellular systems often arise from long-range coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we report the discovery of a weak synchronization mechanism that does not require long-range coupling or inherent oscillation of individual cells. We find that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individual cells move in an erratic manner, without obvious periodic motion but with frequent, abrupt and random directional changes. So erratic are individual trajectories that uncovering the collective oscillations of our micrometre-sized cells requires individual velocities to be averaged over tens or hundreds of micrometres. On such large scales, the oscillations appear to be in phase and the mean position of cells typically describes a regular elliptic trajectory. We found that the phase of the oscillations is organized into a centimetre-scale travelling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations, suggesting that self-organized collective oscillatory motion results from spontaneous chiral and rotational symmetry breaking. These findings reveal a previously unseen type of long-range order in active matter systems (those in which energy is spent locally to produce non-random motion). This mechanism of collective oscillation may

  17. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Liu, Song; Shi, Xia-Qing; Chaté, Hugues; Wu, Yilin

    2017-01-01

    Collective oscillatory behaviour is ubiquitous in nature, having a vital role in many biological processes from embryogenesis and organ development to pace-making in neuron networks. Elucidating the mechanisms that give rise to synchronization is essential to the understanding of biological self-organization. Collective oscillations in biological multicellular systems often arise from long-range coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we report the discovery of a weak synchronization mechanism that does not require long-range coupling or inherent oscillation of individual cells. We find that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individual cells move in an erratic manner, without obvious periodic motion but with frequent, abrupt and random directional changes. So erratic are individual trajectories that uncovering the collective oscillations of our micrometre-sized cells requires individual velocities to be averaged over tens or hundreds of micrometres. On such large scales, the oscillations appear to be in phase and the mean position of cells typically describes a regular elliptic trajectory. We found that the phase of the oscillations is organized into a centimetre-scale travelling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations, suggesting that self-organized collective oscillatory motion results from spontaneous chiral and rotational symmetry breaking. These findings reveal a previously unseen type of long-range order in active matter systems (those in which energy is spent locally to produce non-random motion). This mechanism of collective oscillation may

  18. Madden-Julian oscillation and sea surface temperature interactions in a multi-scale framework

    NASA Astrophysics Data System (ADS)

    Zhou, Lei

    2009-12-01

    The ocean-atmosphere coupling can play a role in initiating and sustaining the Madden-Julian Oscillations (MJOs), which are the major intraseasonal oscillations in the atmosphere. In this thesis, the oceanic influence on MJOs is studied with reanalysis products, numerical models, and idealized theoretical models. The energy sources for MJOs are calculated with NCEP reanalysis. The perturbed potential energy is found to be the most important energy source for most MJO events. In some MJO events, the sea surface is warmed due to the reduced latent heat flux during the suppressed phase of MJOs. As a result, warm sea surface temperature anomalies (SSTAs) occur, which appear to prolong the life time of these MJO events. In a minority of the MJO events, warm SSTAs can drive the atmosphere actively and trigger MJO events. In these events, the warm SSTAs are attributable to the internal oceanic processes influenced by the warm Indonesian Throughflow (ITF), which spreads from the southeastern Indian Ocean to the western Indian Ocean and modifies the subtle balance between stratification and mixing in the western Indian Ocean. In addition, during the transit period between monsoon seasons, a few MJO events are sustained by the energy obtained from the mean kinetic energy. Since the MJO events have different energy sources, their mechanisms should be considered in the context of these energy sources. While the spatial scale of the SSTAs in the Indian Ocean is only of order 100 km, the scale of MJOs is of order 1000 km, raising the potential for interactions between the oceanic and the atmospheric oscillations with different scales and this is demonstrated to be possible with analytical solutions to idealized linear governing equations. With a reasonable choice of parameters, the meso-scale oceanic and the large-scale atmospheric oscillations can interact with each other and lead to unstable waves in the intraseasonal band in this linear coupled model. The coupling and

  19. A comparison of linear acoustic theory with experimental noise data for a small-scale hovering rotor

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Morris, C. E. K., Jr.; Nystrom, P. A.

    1979-01-01

    Linear acoustic calculations based on full aerodynamic data as input are presented and compared with measured cases reported by Boxwell et al. (1978). The full aerodynamic data are obtained using three programs giving radial loading, chordwise loading, and chordwise position of transition. It is shown that in the theoretical results the most significant noise source mechanism is due to blade thickness. Thus the conclusions of Boxwell et al. as to the importance of nonlinearities around the blades are upheld. These conclusions concern the width, shape and the level of the acoustic pressure calculated from linear acoustic theory. Some of the approximations involved in the application of acoustic analogy using quadrupole sources are discussed. It is necessary that the near- and far-field problems of rotating blades be treated together as shown for the case of an oscillating sphere.

  20. Electrodynamic soil plate oscillator: Modeling nonlinear mesoscopic elastic behavior and hysteresis in nonlinear acoustic landmine detection

    NASA Astrophysics Data System (ADS)

    Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.

    2015-10-01

    An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit

  1. Assessing the persistence of millennial-scale oscillations during the penultimate glacial phase in southern Europe

    NASA Astrophysics Data System (ADS)

    Wilson, Graham; Frogley, Mick; Jones, Tim; Leng, Melanie

    2016-04-01

    There is growing evidence that millennial-scale climate oscillations are a pervasive feature of glacial intervals. During the last glaciation (Marine Isotope Stage (MIS) 2-4), incursions of cold water into the North Atlantic appeared to coincide with abrupt reductions in southern European tree populations (Tzedakis et al., 2004: Geology 32, 109-112), suggesting down-stream impacts on continental temperature and hydroclimate. Ice-rafting into the North Atlantic during the penultimate glacial (MIS 6) is thought to be less extensive than at times during MIS 2-4, perhaps resulting in more subdued climate oscillations. Published pollen data from Lake Ioannina core I-284 (Epirus, NW Greece) suggest pronounced oscillations in tree population extent during early MIS 6 (185-155 ka), followed by much-reduced tree populations and subdued oscillations throughout late MIS 6 (155-135 ka) (Roucoux et al., 2011: Journal of Quaternary Science 26, 616-626). Previous studies of the diatom and isotope records from the MIS 7/6, 6/5e and 2/1 transitions, and from MIS 5e and 1 in Lake Ioannina core I-284 demonstrate the sensitivity of these proxies to changes in regional climate. Here we apply a combined diatom and stable isotope (carbon and oxygen) approach to evaluate the influence of millennial-scale oscillations on southern Europe hydroclimate during MIS 6. The new isotope data from Lake Ioannina core I-284 demonstrates higher precipitation / evaporation (P/E) ratios between c. 178 and 164 ka, associated with peak insolation during MIS 6e, and episodes of planktonic diatom expansion likely reflecting the interstadials of the 6e complex. Close correspondence between diatom planktonic frequencies, arboreal pollen and regional sea-surface temperatures together provide strong evidence for millennial-scale oscillations in regional precipitation at times during the early‒mid MIS 6. The isotope data suggest overall cooler and drier conditions during the mid-late MIS 6, consistent with

  2. Observation of Discrete Oscillations in the Plot of Cosmological Scale Factor vs. Lookback Time

    NASA Astrophysics Data System (ADS)

    Ringermacher, Harry I.; Mead, Lawrence R

    2014-06-01

    We have observed damped longitudinal cosmological-scale oscillations in a unique model-independent plot of scale factor against lookback time. We measured 2 full, constant frequency, oscillations with a period of 0.15 Hubble times. This period corresponds to a fundamental frequency of approximately 7 cycles over the age of the universe, which we term 7 “Hubble-Hertz” (HHz). Transition-z values quoted in the literature generally fall near these oscillation minima and may explain the reported spread and deviation from the predicted ΛCDM value of approximately z = 0.77. We also observe second and third harmonics of the fundamental consistent with the spectrum of a sawtooth waveform. We propose a cosmological scalar field damped simple harmonic oscillator model for the observation - which fits well. On this time scale, the scalar field particle mass is extraordinarily small at 10^ -32 ev. Particles on this scale have been suggested in the literature as being associated with massive gravitons, in which case we may be observing longitudinal mode gravitational waves. A multiverse 5-D brane collision scenario is one possible source for the scalar field and waves. This scenario enables an estimate of the compacted 5th dimension radius at approximately 1,000,000 ly - the size of a galaxy dark matter halo. Our scalar field density parameter precisely replaces the ΛCDM dark matter density parameter in the Friedmann equations, resulting in identical data fits, and its present value matches the Planck value. We therefore posit that this scalar field manifests itself as the dark matter.

  3. Assessment at full scale of exhaust nozzle to wing size on STOL-OTW acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Grosbeck, D.

    1979-01-01

    On the basis of static aero/acoustic data obtained at model scale, the effect of exhaust nozzle size on flyover noise is evaluated at full scale for different STOL-OTW nozzle configurations. Three types of nozzles are evaluated: a circular/deflector nozzle mounted above the wing; a slot/deflector nozzle mounted on the wing; and a slot nozzle mounted on the wing. The nozzle exhaust plane location, measured from the wing leading edge, was varied from 10 to 46 percent of the wing chord (flaps retracted). Flap angles of 20 deg (takeoff) and 60 deg (approach) are included in the study. Initially, perceived noise levels (PNL) are calculated as a function flyover distance at 152m altitude. From these plots, static EPNL values (defined as flyover relative noise levels), are obtained as functions of nozzle size for equal aerodynamic performance (lift and thrust). The acoustic benefits attributable to nozzle size relative to a given wing chord size are assessed.

  4. Classical chaos and the sensitivity of the acoustic field to small-scale ocean structure

    NASA Astrophysics Data System (ADS)

    Palmer, D. R.; Georges, T. M.; Jones, R. M.

    1991-04-01

    Ray theory is usually the basis of data inversion schemes for acoustic remote sensing of the ocean. Chaotic ray paths are expected to be present whenever the ocean environment possesses small-scale, range-dependent structure. We are studying the implications of their presence for data inversion schemes. Using numerical simulations we consider ray-path characteristics for acoustic remote sensing of the Florida Current. We find small-scale bathymetric structure results in chaotic ray paths and an exponential proliferation of eigenrays. As a result, for each feature in the time-of-arrival pattern, there is associated not a single eigenray but a group, thereby limiting the spatial resolution of a remote sensing system.

  5. Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale

    PubMed Central

    Monaco, Giulio; Mossa, Stefano

    2009-01-01

    The low-temperature thermal properties of dielectric crystals are governed by acoustic excitations with large wavelengths that are well described by plane waves. This is the Debye model, which rests on the assumption that the medium is an elastic continuum, holds true for acoustic wavelengths large on the microscopic scale fixed by the interatomic spacing, and gradually breaks down on approaching it. Glasses are characterized as well by universal low-temperature thermal properties that are, however, anomalous with respect to those of the corresponding crystalline phases. Related universal anomalies also appear in the low-frequency vibrational density of states and, despite a longstanding debate, remain poorly understood. By using molecular dynamics simulations of a model monatomic glass of extremely large size, we show that in glasses the structural disorder undermines the Debye model in a subtle way: The elastic continuum approximation for the acoustic excitations breaks down abruptly on the mesoscopic, medium-range-order length scale of ≈10 interatomic spacings, where it still works well for the corresponding crystalline systems. On this scale, the sound velocity shows a marked reduction with respect to the macroscopic value. This reduction turns out to be closely related to the universal excess over the Debye model prediction found in glasses at frequencies of ≈1 THz in the vibrational density of states or at temperatures of ≈10 K in the specific heat. PMID:19805115

  6. Thermal oscillation smoothing of DT solid layers for HAPL and NIF scale targets

    SciTech Connect

    Sheliak, John D; Geller, Drew A; Hoffer, James K

    2009-01-01

    Deuterium-Tritium (D-T) solid fuel layers must meet stringent roughness specifications for both the ICF and IFE laser fusion programs and native beta-layering alone is unable to provide sufficient solid layer smoothing to meet these specifications at 18.3 K or below. Consequently, several supplemental smoothing options have been proposed to resolve this issue, including a technique called 'Thermal Breathing'. This technique consists of oscillating the temperature of the solid D-T layer about its equilibration temperature for a period of one to several hours. Recently, thermal oscillations have been used to successfully smooth rough solid D{sub 2} in spherical targets. In order to study this particular smoothing technique, we examined the effects of thermal oscillations on equilibrated D-T solid layers, using both ICF and IFE scale layering cells and layer thicknesses. The D-T solid layers that were Subjected to thermal breathing in these studies were equilibrated at temperatures ranging from 16.0 K to 19.25 K, followed by 1.5 to 2 hours of temperature oscillations. During the HAPL scale experiments the amplitude and period of the oscillations were both varied to examine parametric effects of these variables on final layer roughness. In both sets of experiments, once the oscillations completed we allowed the layers to 'relax' at their initial equilibration temperature for another 1 to 2 hours, to observe any 'rebounding' or re-roughening that might occur. The rCF scale experiments were performed using a 2 mm beryllium torus, for which the layer was free from optical distortions that were observed in our IFE scale cell (a 4 mm dia. sapphire sphere-cylinder). Our results showed a temperature dependent smoothing effect ofthe DT solid layer ranging from 20% to 35% over the temperature range of 17.3 K to 19.0 K for the rCF-scale, 2-mm celL The final RMS roughness for layers grown in this 2-mm Be torus was on average less than 1 /lm for modes 7 and above. Results for the

  7. Delayed Alumina Scale Spallation on Rene'n5+y: Moisture Effects and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Morscher, Gregory N.

    2001-01-01

    The single crystal superalloy Rene'N5 (with or without Y-doping and hydrogen annealing) was cyclically oxidized at 1150 C for 1000 hours. After considerable scale growth (>= 500 hours), even the adherent alumina scales formed on Y-doped samples exhibited delayed interfacial spallation during subsequent water immersion tests, performed up to one year after oxidation. Spallation was characterized by weight loss, the amount of spalled area, and acoustic emission response. Hydrogen annealing (prior to oxidation) reduced spallation both before and after immersion, but without measurably reducing the bulk sulfur content of the Y-doped alloys. The duration and frequency of sequential, co-located acoustic emission events implied an interfacial crack growth rate at least 10(exp -3) m/s, but possibly higher than 10(exp 2) m/s. This is much greater than classic moisture-assisted slow crack growth rates in bulk alumina (10(exp -6) to 10(exp -3) m/s), which may still have occurred undetected by acoustic emission. An alternative failure sequence is proposed: an incubation process for preferential moisture ingress leads to a local decrease in interfacial toughness, thus allowing fast fracture driven by stored strain energy.

  8. Testing and verification of a scale-model acoustic propagation system.

    PubMed

    Sagers, Jason D; Ballard, Megan S

    2015-12-01

    This paper discusses the design and operation of a measurement apparatus used to conduct scale-model underwater acoustic propagation experiments, presents experimental results for an idealized waveguide, and compares the measured results to data generated by two-dimensional (2D) and three-dimensional (3D) numerical models. The main objective of this paper is to demonstrate the capability of the apparatus for a simple waveguide that primarily exhibits 2D acoustic propagation. The apparatus contains a computer-controlled positioning system that accurately moves a receiving transducer in the water layer above a scale-model bathymetry while a stationary source transducer emits broadband pulsed waveforms. Experimental results are shown for a 2.133 m × 1.219 m bathymetric part possessing a flat-bottom bathymetry with a translationally invariant wedge of 10° slope along one edge. Beamformed results from a synthetic horizontal line array indicate the presence of strong in-plane arrivals along with weaker diffracted and horizontally refracted arrivals. A simulated annealing inversion method is applied to infer values for five waveguide parameters with the largest measurement uncertainty. The inferred values are then used in a 2D method of images model and a 3D adiabatic normal-mode model to simulate the measured acoustic data.

  9. Validation of High-Fidelity CFD/CAA Framework for Launch Vehicle Acoustic Environment Simulation against Scale Model Test Data

    NASA Technical Reports Server (NTRS)

    Liever, Peter A.; West, Jeffrey S.

    2016-01-01

    A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.

  10. Validation of High-Fidelity CFD/CAA Framework for Launch Vehicle Acoustic Environment Simulation against Scale Model Test Data

    NASA Technical Reports Server (NTRS)

    Liever, Peter A.; West, Jeffrey S.; Harris, Robert E.

    2016-01-01

    A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate Discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured mesh Discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.

  11. An eighth-scale speech source for subjective assessments in acoustic models

    NASA Astrophysics Data System (ADS)

    Orlowski, R. J.

    1981-08-01

    The design of a source is described which is suitable for making speech recordings in eighth-scale acoustic models of auditoria. An attempt was made to match the directionality of the source with the directionality of the human voice using data reported in the literature. A narrow aperture was required for the design which was provided by mounting an inverted conical horn over the diaphragm of a high frequency loudspeaker. Resonance problems were encountered with the use of a horn and a description is given of the electronic techniques adopted to minimize the effect of these resonances. Subjective and objective assessments on the completed speech source have proved satisfactory. It has been used in a modelling exercise concerned with the acoustic design of a theatre with a thrust-type stage.

  12. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Jing; Cui, Ling-Li; Chen, Dao-Yun

    2016-04-01

    Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains. One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment. In this work, we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum (MPS) through a multi-scale morphology analysis procedure. The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves. Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.

  13. Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; Williams, B.; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.

  14. Picosecond acoustics in vegetal cells: non-invasive in vitro measurements at a sub-cell scale.

    PubMed

    Audoin, B; Rossignol, C; Chigarev, N; Ducousso, M; Forget, G; Guillemot, F; Durrieu, M C

    2010-02-01

    A 100 fs laser pulse passes through a single transparent cell and is absorbed at the surface of a metallic substrate. Picosecond acoustic waves are generated and propagate through the cell in contact with the metal. Interaction of the high frequency acoustic pulse with a probe laser light gives rise to Brillouin oscillations. The measurements are thus made with lasers for both the opto-acoustic generation and the acousto-optic detection, and acoustic frequencies as high as 11 GHz can be detected, as reported in this paper. The technique offers perspectives for single cell imaging. The in-plane resolution is limited by the pump and probe spot sizes, i.e. approximately 1 microm, and the in-depth resolution is provided by the acoustic frequencies, typically in the GHz range. The effect of the technique on cell safety is discussed. Experiments achieved in vegetal cells illustrate the reproducibility and sensitivity of the measurements. The acoustic responses of cell organelles are significantly different. The results support the potentialities of the hypersonic non-invasive technique in the fields of bio-engineering and medicine.

  15. Acoustic Performance Of New Designs Of Traffic Noise Barriers: Full Scale Tests

    NASA Astrophysics Data System (ADS)

    Watts, G. R.; Crombie, D. H.; Hothersall, D. C.

    1994-10-01

    Full scale tests of acoustical performance are reported on a range of promising traffic noise barrier shapes which had previously been identified by mathematical and scale modelling work. The designs chosen for testing were T-shaped, multiple edge barriers and double barriers. A test facility was established at the Transport Research Laboratory (TRL) in order to examine effectiveness under full scale conditions. This consisted of a 20 m length of noise barrier with interchangeable barrier panels, a large flat asphalt surface and a transportable speaker system capable of sufficient output to represent typical traffic noise. Screening performance was measured up to 80 m behind the barriers over a flat grassland area and at heights above the ground of 1·5 and 4·5 m. It was concluded that the average increase in acoustic screening of 2 m high T-shaped, multiple edge and double barriers compared with a simple plane reflecting barrier of identical overall height ranged from 1·4 to 3·6dB(A) depending on detailed design. It was suggested that a full scale test of a promising design should be carried out at a suitable highway location in order to validate fully these test results.

  16. Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators

    NASA Astrophysics Data System (ADS)

    Rosin, David P.; Rontani, Damien; Haynes, Nicholas D.; Schöll, Eckehard; Gauthier, Daniel J.

    2014-09-01

    We study networks of nonlocally coupled electronic oscillators that can be described approximately by a Kuramoto-like model. The experimental networks show long complex transients from random initial conditions on the route to network synchronization. The transients display complex behaviors, including resurgence of chimera states, which are network dynamics where order and disorder coexists. The spatial domain of the chimera state moves around the network and alternates with desynchronized dynamics. The fast time scale of our oscillators (on the order of 100ns) allows us to study the scaling of the transient time of large networks of more than a hundred nodes, which has not yet been confirmed previously in an experiment and could potentially be important in many natural networks. We find that the average transient time increases exponentially with the network size and can be modeled as a Poisson process in experiment and simulation. This exponential scaling is a result of a synchronization rate that follows a power law of the phase-space volume.

  17. Characterization of the Scale Model Acoustic Test Overpressure Environment using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The pressure waves that propagate from the mobile launcher (ML) exhaust hole are defined as the ignition overpressure (IOP), while the portion of the pressure waves that exit the duct or trench are the duct overpressure (DOP). Distinguishing the IOP and DOP in scale model test data has been difficult in past experiences and in early SMAT results, due to the effects of scaling the geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs in full scale. However, the SMAT geometry is twenty times smaller, allowing the pressure waves to move down the exhaust hole, through the trench and duct, and impact the vehicle model much faster than occurs at full scale. The DOP waves impact portions of the vehicle at the same time as the IOP waves, making it difficult to distinguish the different waves and fully understand the data. To better understand the SMAT data, a computational fluid dynamics (CFD) analysis was performed with a fictitious geometry that isolates the IOP and DOP. The upper and lower portions of the domain were segregated to accomplish the isolation in such a way that the flow physics were not significantly altered. The Loci/CHEM CFD software program was used to perform this analysis.

  18. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    PubMed

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  19. Shelf-Scale Mapping of Fish Distribution Using Active and Passive Acoustics

    NASA Astrophysics Data System (ADS)

    Wall, Carrie C.

    Fish sound production has been associated with courtship and spawning behavior. Acoustic recordings of fish sounds can be used to identify distribution and behavior. Passive acoustic monitoring (PAM) can record large amounts of acoustic data in a specific area for days to years. These data can be collected in remote locations under potentially unsafe seas throughout a 24-hour period providing datasets unattainable using observer-based methods. However, the instruments must withstand the caustic ocean environment and be retrieved to obtain the recorded data. This can prove difficult due to the risk of PAMs being lost, stolen or damaged, especially in highly active areas. In addition, point-source sound recordings are only one aspect of fish biogeography. Passive acoustic platforms that produce low self-generated noise, have high retrieval rates, and are equipped with a suite of environmental sensors are needed to relate patterns in fish sound production to concurrently collected oceanographic conditions on large, synoptic scales. The association of sound with reproduction further invokes the need for such non-invasive, near-real time datasets that can be used to enhance current management methods limited by survey bias, inaccurate fisher reports, and extensive delays between fisheries data collection and population assessment. Red grouper (Epinephelus morio) exhibit the distinctive behavior of digging holes and producing a unique sound during courtship. These behaviors can be used to identify red grouper distribution and potential spawning habitat over large spatial scales. The goal of this research was to provide a greater understanding of the temporal and spatial distribution of red grouper sound production and holes on the central West Florida Shelf (WFS) using active sonar and passive acoustic recorders. The technology demonstrated here establishes the necessary methods to map shelf-scale fish sound production. The results of this work could aid resource

  20. Development of an Acoustic Signal Analysis Tool “Auto-F” Based on the Temperament Scale

    NASA Astrophysics Data System (ADS)

    Modegi, Toshio

    The MIDI interface is originally designed for electronic musical instruments but we consider this music-note based coding concept can be extended for general acoustic signal description. We proposed applying the MIDI technology to coding of bio-medical auscultation sound signals such as heart sounds for retrieving medical records and performing telemedicine. Then we have tried to extend our encoding targets including vocal sounds, natural sounds and electronic bio-signals such as ECG, using Generalized Harmonic Analysis method. Currently, we are trying to separate vocal sounds included in popular songs and encode both vocal sounds and background instrumental sounds into separate MIDI channels. And also, we are trying to extract articulation parameters such as MIDI pitch-bend parameters in order to reproduce natural acoustic sounds using a GM-standard MIDI tone generator. In this paper, we present an overall algorithm of our developed acoustic signal analysis tool, based on those research works, which can analyze given time-based signals on the musical temperament scale. The prominent feature of this tool is producing high-precision MIDI codes, which reproduce the similar signals as the given source signal using a GM-standard MIDI tone generator, and also providing analyzed texts in the XML format.

  1. Acoustic characteristics of a large-scale augmentor wing model at forward speed

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Koenig, D. G.

    1973-01-01

    The augmentor wing concept is being studied as one means of attaining short takeoff and landing (STOL) performance in turbofan powered aircraft. Because of the stringent noise requirements for STOL operation, the acoustics of the augmentor wing are undergoing extensive research. The results of a wind tunnel investigation of a large-scale swept augmentor model at forward speed are presented. The augmentor was not acoustically treated, although the compressor supplying the high pressure primary air was treated to allow the measurement of only the augmentor noise. Installing the augmentor flap and shroud on the slot primary nozzle caused the acoustic dependence on jet velocity to change from eighth power to sixth power. Deflecting the augmentor at constant power increased the perceived noise level in the forward quadrant. The effect of airspeed was small. A small aft shift in perceived noise directivity was experienced with no significant change in sound power. Sealing the lower augmentor slot at a flap deflection of 70 deg reduced the perceived noise level in the aft quadrant. The seal prevented noise from propagating through the slot.

  2. Acoustic measurements of a full-scale coaxial hingeless rotor helicopter

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Mosher, M.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept Technology Demonstrator in the 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, and noise at various forward speeds, rotor lift coefficients and rotor shaft angles of attack were investigated. The noise data were acquired over an isolated rotor lift coefficient range of 0.024 to 0.162, an advance ratio range of 0.23 to 0.45 corresponding to tunnel wind speeds of 89 to 160 knots, and angles of attack from 0 deg to 10 deg. Acoustic data are presented for seven microphone locations for all run conditions where the model noise is above the background noise. Model test configuration and performance information are also listed. Acoustic waveforms, dBA, and 1/3-octave spectra as functions of operating condition for selected data points and microphones are presented. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where significant impulsive blade/vortex interactions increase noise levels.

  3. Comparison of the acoustic characteristics of large-scale models of several propulsive-lift concepts

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aiken, T. N.; Aoyagi, K.; Koenig, D. G.

    1974-01-01

    Wind-tunnel acoustic investigations were performed to determine the acoustic characteristics and the effect of forward speed on the over-the-wing externally blown jet flap (OTW), the under-the-wing externally blown jet flap (UTW), the internally blown jet flap (IBF), and the augmentor wing (AW). The data presented represent the basic noise generated by the powered-lift system without acoustic treatment, assuming all other noise sources, such as the turbofan compressor noise, have been suppressed. Under these conditions, when scaled to a 100,000-lb aircraft, the OTW concept exhibited the lowest perceived noise levels, because of dominant low-frequency noise and wing shielding of the high-frequency noise. The AW was the loudest configuration, because of dominant high-frequency noise created by the high jet velocities and small nozzle dimensions. All four configurations emitted noise 10 to 15 PNdB higher than the noise goal of 95 PNdB at 500 ft.

  4. A case-study comparison of computer modeling and scale modeling in acoustics consulting

    NASA Astrophysics Data System (ADS)

    Calamia, Paul T.

    2002-05-01

    As an alternate or compliment to computer models, acoustics consultants often make use of scale models to evaluate the efficacy of architectural designs. The intention of this paper is to compare the two modeling approaches, using one or more case studies, to explore the pros and cons of each. Topics of comparison will include cost, geometric representations, effective bandwidths, propagation phenomena (e.g., diffraction), simulation of material properties, and auralization. Where possible, measured data from existing spaces will be presented to provide a reference for the modeled data.

  5. Multi-Scale Entrainment of Coupled Neuronal Oscillations in Primary Auditory Cortex

    PubMed Central

    O’Connell, M. N.; Barczak, A.; Ross, D.; McGinnis, T.; Schroeder, C. E.; Lakatos, P.

    2015-01-01

    Earlier studies demonstrate that when the frequency of rhythmic tone sequences or streams is task relevant, ongoing excitability fluctuations (oscillations) of neuronal ensembles in primary auditory cortex (A1) entrain to stimulation in a frequency dependent way that sharpens frequency tuning. The phase distribution across A1 neuronal ensembles at time points when attended stimuli are predicted to occur reflects the focus of attention along the spectral attribute of auditory stimuli. This study examined how neuronal activity is modulated if only the temporal features of rhythmic stimulus streams are relevant. We presented macaques with auditory clicks arranged in 33 Hz (gamma timescale) quintets, repeated at a 1.6 Hz (delta timescale) rate. Such multi-scale, hierarchically organized temporal structure is characteristic of vocalizations and other natural stimuli. Monkeys were required to detect and respond to deviations in the temporal pattern of gamma quintets. As expected, engagement in the auditory task resulted in the multi-scale entrainment of delta- and gamma-band neuronal oscillations across all of A1. Surprisingly, however, the phase-alignment, and thus, the physiological impact of entrainment differed across the tonotopic map in A1. In the region of 11–16 kHz representation, entrainment most often aligned high excitability oscillatory phases with task-relevant events in the input stream and thus resulted in response enhancement. In the remainder of the A1 sites, entrainment generally resulted in response suppression. Our data indicate that the suppressive effects were due to low excitability phase delta oscillatory entrainment and the phase amplitude coupling of delta and gamma oscillations. Regardless of the phase or frequency, entrainment appeared stronger in left A1, indicative of the hemispheric lateralization of auditory function. PMID:26696866

  6. The necessity of cloud feedback for a basin-scale Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Brown, Patrick T.; Lozier, M. Susan; Zhang, Rong; Li, Wenhong

    2016-04-01

    The Atlantic Multidecadal Oscillation (AMO), characterized by basin-scale multidecadal variability in North Atlantic sea surface temperatures (SSTs), has traditionally been interpreted as the surface signature of variability in oceanic heat convergence (OHC) associated with the Atlantic Meridional Overturning Circulation (AMOC). This view has been challenged by recent studies that show that AMOC variability is not simultaneously meridionally coherent over the North Atlantic and that AMOC-induced low-frequency variability of OHC is weak in the tropical North Atlantic. Here we present modeling evidence that the AMO-related SST variability over the extratropical North Atlantic results directly from anomalous OHC associated with the AMOC but that the emergence of the coherent multidecadal SST variability over the tropical North Atlantic requires cloud feedback. Our study identifies atmospheric processes as a necessary component for the existence of a basin-scale AMO, thus amending the canonical view that the AMOC-AMO connection is solely attributable to oceanic processes.

  7. Role of nonlinear scale interactions in limiting dynamical prediction of lower tropospheric boreal summer intraseasonal oscillations

    NASA Astrophysics Data System (ADS)

    de, S.

    2010-11-01

    Dominant scale of tropical boreal summer intraseasonal oscillations (BSISOs) being in the range of wave numbers 1-4, dynamical extended range prediction of BSISO is limited by rapid buildup of errors in ultra-long/planetary waves in almost all prediction models. While the initial errors are largely on the small scales, within 3-5 days of forecasts maximum errors appear in the ultra-long waves such as the tropical convergence zone. Spectral decomposition of errors with forecast lead time indicate that the initial error in the small scales is already close to its saturation value at these scales, whereas that in ultra-long waves is about two orders of magnitude smaller than their saturation values. Such an increase of errors in ultra-long waves cannot be explained as growth of initial errors. It is proposed that the fast growth of errors in the planetary waves is due to continuous generation of errors in the small scales (due to inadequacy of the physical parameterizations such as formulation of cumulus clouds) and upscale propagation of these errors through the process of scale interactions. Basic systematic error kinetic energy and the scale interactions in terms of the wave-wave exchanges among nonlinear triads are formulated and the above hypothesis is tested through a diagnostic analysis of the error energetics in two different model predictions at the lower troposphere. It has been revealed that nonlinear triad interactions lead to advection of errors from short and synoptic waves (wave number > 10) to long waves (wave numbers 5-10) and from long waves to ultra-long waves (wave numbers 1-4) and are responsible for the rapid growth of errors in the planetary waves. Unraveling the exact mechanism through which upscale transfer of errors take place may help us in devising a method to inhibit the mingling of small-scale error with the error in prediction of tropical intraseasonal oscillations and improve extended range prediction of the lower tropospheric BSISOs.

  8. HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME

    SciTech Connect

    Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Mehta, Kushal; Metchnik, Marc; Padmanabhan, Nikhil; Pinto, Phillip; Takahashi, Ryuichi; White, Martin; Xu, Xiaoying

    2010-09-10

    We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5-sigma for shift values from different simulations and derive shift alpha(z) -1 = (0.300\\pm 0.015)% [D(z)/D(0)]^{2} using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations: after reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the low and the initial redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compared with Zeldovich approximation and the shifts measured from the chi^2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations: we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 (Gpc/h)^3 of cosmological PM simulations from Takahashi et al. (2009). (abridged)

  9. High-throughput screening and scale-up of cocrystals using resonant acoustic mixing.

    PubMed

    Nagapudi, Karthik; Umanzor, Evelyn Yanez; Masui, Colin

    2017-02-14

    This paper explores the effectiveness of resonant acoustic mixing RAM for screening and scale up of cocrystals. 16 cocrystal systems were selected as test cases based on previous literature precedent. A 96 well plate set up in conjunction with zirconia beads was used for cocrystal screening using RAM. A success rate of 80% was obtained in the screen for plates containing solvent or solvent plus Zirconia beads. A proof of concept production of hydrated and anhydrous cocrystals of 1:1 Theophylline Citric acid system at a 400mg scale was demonstrated using solvent and bead assisted RAM. Finally the parameters affecting the scale up of 2:1 Theophylline Oxalic acid cocrystals was explored in a systematic fashion using a Design of Experiments DOE approach. The RAM parameters of acceleration and mixing time were optimized using the DOE approach. A quantitative XRPD method was developed to determine the extent of conversion to the cocrystal when using RAM Mixing time of 2h and an acceleration of 60G were determined to be optimal. The optimized parameters were used to demonstrate scale up of 2:1 Theophylline Oxalic acid cocrystals at an 80 gram scale with a net yield of 94%. RAM is thus established as an environmentally friendly mechanochemical technique for both high throughput screening and scaled up production of cocrystals.

  10. Numerical Simulation of the Self-Oscillations of the Vocal Folds and of the Resulting Acoustic Phenomena in the Vocal Tract

    NASA Astrophysics Data System (ADS)

    Švancara, P.; Horáček, J.; Švec, J. G.

    The study presents a three-dimensional (3D) finite element (FE) model of the flow-induced self-oscillation of the human vocal folds in interaction with acoustics of simplified vocal tract models. The 3D vocal tract models of the acoustic spaces shaped for simulation of phonation of Czech vowels [a:], [i:] and [u:] were created by converting the data from the magnetic resonance images (MRI). For modelling of the fluid-structure interaction, explicit coupling scheme with separated solvers for fluid and structure domain was utilized. The FE model comprises vocal folds pretension before starting phonation, large deformations of the vocal fold tissue, vocal-fold collisions, fluid-structure interaction, morphing the fluid mesh according to the vocal-fold motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation. The developed FE model enables to study the relationship between flow-induced vibrations of the vocal folds and acoustic wave propagation in the vocal tract and can also be used to simulate for example pathological changes in the vocal fold tissue and their influence on the voice production.

  11. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-01

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad2/Hz at 1 kHz offset and -150 dB rad2/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10-9 at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10-11 τ-1/2 up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  12. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    SciTech Connect

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-15

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2–4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be −23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is −105 dB rad{sup 2}/Hz at 1 kHz offset and −150 dB rad{sup 2}/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10{sup −9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10{sup −11} τ{sup −1/2} up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  13. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Xia, K.; Young, R.

    2013-12-01

    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder

  14. Software sensor design considering oscillating conditions as present in industrial scale fed-batch cultivations.

    PubMed

    Lyubenova, V; Junne, S; Ignatova, M; Neubauer, P

    2013-07-01

    Investigations of inhomogeneous dynamics in industrial-scale bioreactors can be realized in laboratory simulators. Such studies will be improved by on line observation of the growth of microorganisms and their product synthesis at oscillating substrate availability which represents the conditions in industrial-scale fed-batch cultivations. A method for the kinetic monitoring of such processes, supported by on line measurements accessible in industrial practice, is proposed. It consists of a software sensor (SS) system composed of a cascade structure. Process kinetics are simulated in models with a structure including time-varying yield coefficients. SSs for measured variable kinetics have classical structures. The SS design of unmeasured variables is realized after a linear transformation using a logarithmic function. For these software sensors, a tuning procedure is proposed, at which an arbitrary choice of one tuning parameter value that guarantees stability of the monitoring system allows the calculation of the optimal values of six parameters. The effectiveness of the proposed monitoring approach is demonstrated with experimental data from a glucose-limited fed-batch process of Bacillus subtilis in a laboratory two-compartment scale down reactor which tries to mimic the conditions present in industrial scale nutrient-limited fed-batch cultivations.

  15. Large scale climate oscillations and mesoscale surface meteorological variability in the Apalachicola-Chattahoochee-Flint River Basin

    NASA Astrophysics Data System (ADS)

    Stevens, Kelly A.; Ruscher, Paul H.

    2014-09-01

    The “water wars” between Alabama, Georgia, and Florida over water restrictions and allocation in the Apalachicola-Chattahoochee-Flint River Basin (ACF) stem, in part, from the occurrence of several droughts in the 1980s, the dramatic increase in water use in the northern basin around Atlanta, and increased agricultural usage in the central basin. This study examines relationships between available surface climatological variables connected to evapotranspiration and climatic oscillations using canonical correlation analysis (CCA). Canonical loadings and cross loadings from CCA are evaluated in two tests using temperature and precipitation data and four climate oscillations - the Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). In the first test, the six-month Standardized Precipitation Index (SPI) and all four seasons of the four climate oscillations from every subbasin in the ACF are evaluated, revealing relationships mostly with the AMO and NAO, and primarily with temperatures. In order to focus more on precipitation and the variance among the different temporal scales of the SPI, Test Two looks at the relationship between all four SPI variations and all four seasons of the climate oscillations from the extreme northern and southern subbasins. Test Two shows the twenty-four month SPI has the largest loadings and variance explained, which may be contributed to the longer frequencies in the AMO and PDO. The southern part of the basin is largely influenced by SOI, while the northern subbasin the AMO and PDO. Concurrent relationships between the same season of the climate oscillation and meteorological variable confirm previously researched directions of the relationships between the oscillation and precipitation or temperature in both Test One and Test Two.

  16. Experimental studies of scale effects on oscillating airfoils at transonic speeds

    NASA Technical Reports Server (NTRS)

    Davis, S. S.

    1980-01-01

    Experimental data are presented on the effect of Reynolds number on unsteady pressures induced by the pitching motion of an oscillating airfoil. Scale effects are discussed with reference to a conventional airfoil (NACA 64A010) and a supercritical airfoil (NLR 7301) at mean-flow conditions that support both weak and strong shock waves. During the experiment the Reynolds number was varied from 3,000,000 to 12,000,000 at a Mach number and incidence necessary to induce the required flow. Both fundamental frequency and complete time history data are presented over the range of reduced frequencies that is important in aeroelastic applications. The experimental data show that viscous effects are important in the case of the supercritical airfoil at all flow conditions and in the case of the conventional airfoil under strong shock-wave conditions. Some frequency-dependent viscous effects were also observed.

  17. Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks

    PubMed Central

    Llor, Jesús; Malumbres, Manuel Perez

    2013-01-01

    In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation), we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc.), an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc.). PMID:23396190

  18. Acoustic characteristics of a large scale wind-tunnel model of a jet flap aircraft

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aiken, T. N.; Aoyagi, K.

    1975-01-01

    The expanding-duct jet flap (EJF) concept is studied to determine STOL performance in turbofan-powered aircraft. The EJF is used to solve the problem of ducting the required volume of air into the wing by providing an expanding cavity between the upper and lower surfaces of the flap. The results are presented of an investigation of the acoustic characteristics of the EJF concept on a large-scale aircraft model powered by JT15D engines. The noise of the EJF is generated by acoustic dipoles as shown by the sixth power dependence of the noise on jet velocity. These sources result from the interaction of the flow turbulence with flap of internal and external surfaces and the trailing edges. Increasing the trailing edge jet from 70 percent span to 100 percent span increased the noise 2 db for the equivalent nozzle area. Blowing at the knee of the flap rather than the trailing edge reduced the noise 5 to 10 db by displacing the jet from the trailing edge and providing shielding from high-frequency noise. Deflecting the flap and varying the angle of attack modified the directivity of the underwing noise but did not affect the peak noise. A forward speed of 33.5 m/sec (110 ft/sec) reduced the dipole noise less than 1 db.

  19. Passive acoustic methods for fine-scale tracking of harbour porpoises in tidal rapids.

    PubMed

    Macaulay, Jamie; Gordon, Jonathan; Gillespie, Douglas; Malinka, Chloë; Northridge, Simon

    2017-02-01

    The growing interest in generating electrical power from tidal currents using tidal turbine generators raises a number of environmental concerns, including the risk that marine mammals might be injured or killed through collision with rotating turbine blades. To understand this risk, information on how marine mammals use tidal rapid habitats and in particular, their underwater movements and dive behaviour is required. Porpoises, which are the most abundant small cetacean at most European tidal sites, are difficult animals to tag, and the limited size of tidal habitats means that any telemetered animal would be likely to spend only a small proportion of time within them. Here, an alternative approach is explored, whereby passive acoustic monitoring (PAM) is used to obtain fine scale geo-referenced tracks of harbour porpoises in tidal rapid areas. Large aperture hydrophone arrays are required to obtain accurate locations of animals from PAM data and automated algorithms are necessary to process the large quantities of acoustic data collected on such systems during a typical survey. Methods to automate localisation, including a method to match porpoise detections on different hydrophones and separate different vocalising animals, and an assessment of the localisation accuracy of the large aperture hydrophone array are presented.

  20. Acoustic emissions (AE) monitoring of large-scale composite bridge components

    NASA Astrophysics Data System (ADS)

    Velazquez, E.; Klein, D. J.; Robinson, M. J.; Kosmatka, J. B.

    2008-03-01

    Acoustic Emissions (AE) has been successfully used with composite structures to both locate and give a measure of damage accumulation. The current experimental study uses AE to monitor large-scale composite modular bridge components. The components consist of a carbon/epoxy beam structure as well as a composite to metallic bonded/bolted joint. The bonded joints consist of double lap aluminum splice plates bonded and bolted to carbon/epoxy laminates representing the tension rail of a beam. The AE system is used to monitor the bridge component during failure loading to assess the failure progression and using time of arrival to give insight into the origins of the failures. Also, a feature in the AE data called Cumulative Acoustic Emission counts (CAE) is used to give an estimate of the severity and rate of damage accumulation. For the bolted/bonded joints, the AE data is used to interpret the source and location of damage that induced failure in the joint. These results are used to investigate the use of bolts in conjunction with the bonded joint. A description of each of the components (beam and joint) is given with AE results. A summary of lessons learned for AE testing of large composite structures as well as insight into failure progression and location is presented.

  1. Subjective scaling of spatial room acoustic parameters influenced by visual environmental cues

    PubMed Central

    Valente, Daniel L.; Braasch, Jonas

    2010-01-01

    Although there have been numerous studies investigating subjective spatial impression in rooms, only a few of those studies have addressed the influence of visual cues on the judgment of auditory measures. In the psychophysical study presented here, video footage of five solo music∕speech performers was shown for four different listening positions within a general-purpose space. The videos were presented in addition to the acoustic signals, which were auralized using binaural room impulse responses (BRIR) that were recorded in the same general-purpose space. The participants were asked to adjust the direct-to-reverberant energy ratio (D∕R ratio) of the BRIR according to their expectation considering the visual cues. They were also directed to rate the apparent source width (ASW) and listener envelopment (LEV) for each condition. Visual cues generated by changing the sound-source position in the multi-purpose space, as well as the makeup of the sound stimuli affected the judgment of spatial impression. Participants also scaled the direct-to-reverberant energy ratio with greater direct sound energy than was measured in the acoustical environment. PMID:20968367

  2. Chip Scale Atomic Resonator Frequency Stabilization System With Ultra-Low Power Consumption for Optoelectronic Oscillators.

    PubMed

    Zhao, Jianye; Zhang, Yaolin; Lu, Haoyuan; Hou, Dong; Zhang, Shuangyou; Wang, Zhong

    2016-07-01

    We present a long-term chip scale stabilization scheme for optoelectronic oscillators (OEOs) based on a rubidium coherent population trapping (CPT) atomic resonator. By locking a single mode of an OEO to the (85)Rb 3.035-GHz CPT resonance utilizing an improved phase-locked loop (PLL) with a PID regulator, we achieved a chip scale frequency stabilization system for the OEO. The fractional frequency stability of the stabilized OEO by overlapping Allan deviation reaches 6.2 ×10(-11) (1 s) and  ∼ 1.45 ×10 (-11) (1000 s). This scheme avoids a decrease in the extra phase noise performance induced by the electronic connection between the OEO and the microwave reference in common injection locking schemes. The total physical package of the stabilization system is [Formula: see text] and the total power consumption is 400 mW, which provides a chip scale and portable frequency stabilization approach with ultra-low power consumption for OEOs.

  3. Investigating the relationship between North Atlantic Oscillation and flood losses at the European scale

    NASA Astrophysics Data System (ADS)

    Zanardo, Stefano; Jewson, Steve; Nicotina, Ludovico; Hilberts, Arno

    2016-04-01

    The North Atlantic Oscillation (NAO) is Europe's dominant mode of climate variability. As a consequence, the interconnections between NAO and hydrologic extremes in the European continent have long been observed and analysed. Some of this research has been focusing on the relationship between NAO and catastrophic floods, however, the lack of extensive data-sets restricts these studies to relatively small spatial and temporal scales. This is an obvious limitation when dealing with flood risk; indeed, the highly non-linear relationships among the different physical and anthropogenic controls are responsible for strong spatial and temporal correlations that cannot be accounted for at the local scale alone. The goal of this work is to explore the relationship between the NAO signal and economic flood losses at the European scale through long term stochastic simulations. For this study we use the European flood model recently developed by RMS (Risk Management Solution Ltd). The model combines 50000 years of rainfall-runoff-inundation simulations with a high definition exposure/vulnerability model to produce simulated flood losses in 13 European countries. The correlation between rainfall fields and NAO signal is based on the last 50 years of data and discretized at the monthly level. We found significant correlations between the NAO signal and both the average annual loss (AAL) and the average seasonal loss (ASL), for all the countries analysed. Noticeably, ASL-NAO trends were always negative for summer, spring and fall seasons, while could be either positive or negative for winter seasons, depending on the country.

  4. Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    "Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.

  5. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  6. Small scale model static acoustic investigation of hybrid high lift systems combining upper surface blowing with the internally blown flap

    NASA Technical Reports Server (NTRS)

    Cole, T. W.; Rathburn, E. A.

    1974-01-01

    A static acoustic and propulsion test of a small radius Jacobs-Hurkamp and a large radius Flex Flap combined with four upper surface blowing (USB) nozzles was performed. Nozzle force and flow data, flap trailing edge total pressure survey data, and acoustic data were obtained. Jacobs-Hurkamp flap surface pressure data, flow visualization photographs, and spoiler acoustic data from the limited mid-year tests are reported. A pressure ratio range of 1.2 to 1.5 was investigated for the USB nozzles and for the auxiliary blowing slots. The acoustic data were scaled to a four-engine STOL airplane of roughly 110,000 kilograms or 50,000 pounds gross weight, corresponding to a model scale of approximately 0.2 for the nozzles without deflector. The model nozzle scale is actually reduced to about .17 with deflector although all results in this report assume 0.2 scale factor. Trailing edge pressure surveys indicated that poor flow attachment was obtained even at large flow impingement angles unless a nozzle deflector plate was used. Good attachment was obtained with the aspect ratio four nozzle with deflector, confirming the small scale wind tunnel tests.

  7. Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data

    NASA Astrophysics Data System (ADS)

    Huber, D.; Bedding, T. R.; Stello, D.; Hekker, S.; Mathur, S.; Mosser, B.; Verner, G. A.; Bonanno, A.; Buzasi, D. L.; Campante, T. L.; Elsworth, Y. P.; Hale, S. J.; Kallinger, T.; Silva Aguirre, V.; Chaplin, W. J.; De Ridder, J.; García, R. A.; Appourchaux, T.; Frandsen, S.; Houdek, G.; Molenda-Żakowicz, J.; Monteiro, M. J. P. F. G.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Kawaler, S. D.; Kjeldsen, H.; Broomhall, A. M.; Corsaro, E.; Salabert, D.; Sanderfer, D. T.; Seader, S. E.; Smith, J. C.

    2011-12-01

    We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν), and oscillation amplitudes. We show that the difference of the Δν-νmax relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M) s scaling nor the revised scaling relation by Kjeldsen & Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of ~25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.

  8. Towards an optimal reconstruction of baryon oscillations

    SciTech Connect

    Tassev, Svetlin; Zaldarriaga, Matias E-mail: matiasz@ias.edu

    2012-10-01

    The Baryon Acoustic Oscillations (BAO) in the large-scale structure of the universe leave a distinct peak in the two-point correlation function of the matter distribution. That acoustic peak is smeared and shifted by bulk flows and non-linear evolution. However, it has been shown that it is still possible to sharpen the peak and remove its shift by undoing the effects of the bulk flows. We propose an improvement to the standard acoustic peak reconstruction. Contrary to the standard approach, the new scheme has no free parameters, treats the large-scale modes consistently, and uses optimal filters to extract the BAO information. At redshift of zero, the reconstructed linear matter power spectrum leads to a markedly improved sharpening of the reconstructed acoustic peak compared to standard reconstruction.

  9. Use of large-scale acoustic monitoring to assess anthropogenic pressures on Orthoptera communities.

    PubMed

    Penone, Caterina; Le Viol, Isabelle; Pellissier, Vincent; Julien, Jean-François; Bas, Yves; Kerbiriou, Christian

    2013-10-01

    Biodiversity monitoring at large spatial and temporal scales is greatly needed in the context of global changes. Although insects are a species-rich group and are important for ecosystem functioning, they have been largely neglected in conservation studies and policies, mainly due to technical and methodological constraints. Sound detection, a nondestructive method, is easily applied within a citizen-science framework and could be an interesting solution for insect monitoring. However, it has not yet been tested at a large scale. We assessed the value of a citizen-science program in which Orthoptera species (Tettigoniidae) were monitored acoustically along roads. We used Bayesian model-averaging analyses to test whether we could detect widely known patterns of anthropogenic effects on insects, such as the negative effects of urbanization or intensive agriculture on Orthoptera populations and communities. We also examined site-abundance correlations between years and estimated the biases in species detection to evaluate and improve the protocol. Urbanization and intensive agricultural landscapes negatively affected Orthoptera species richness, diversity, and abundance. This finding is consistent with results of previous studies of Orthoptera, vertebrates, carabids, and butterflies. The average mass of communities decreased as urbanization increased. The dispersal ability of communities increased as the percentage of agricultural land and, to a lesser extent, urban area increased. Despite changes in abundances over time, we found significant correlations between yearly abundances. We identified biases linked to the protocol (e.g., car speed or temperature) that can be accounted for ease in analyses. We argue that acoustic monitoring of Orthoptera along roads offers several advantages for assessing Orthoptera biodiversity at large spatial and temporal extents, particularly in a citizen science framework.

  10. Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales

    NASA Astrophysics Data System (ADS)

    Han, Zhenlai; Sun, Shurong; Shi, Bao

    2007-10-01

    By means of Riccati transformation technique, we establish some new oscillation criteria for the second-order Emden-Fowler delay dynamic equationsx[Delta][Delta](t)+p(t)x[gamma]([tau](t))=0 on a time scale ; here [gamma] is a quotient of odd positive integers with p(t) real-valued positive rd-continuous functions defined on . To the best of our knowledge nothing is known regarding the qualitative behavior of these equations on time scales. Our results in this paper not only extend the results given in [R.P. Agarwal, M. Bohner, S.H. Saker, Oscillation of second-order delay dynamic equations, Can. Appl. Math. Q. 13 (1) (2005) 1-18] but also unify the oscillation of the second-order Emden-Fowler delay differential equation and the second-order Emden-Fowler delay difference equation.

  11. 5 Percent Ares I Scale Model Acoustic Test: Overpressure Characterization and Analysis

    NASA Technical Reports Server (NTRS)

    Alvord, David; Casiano, Matthew; McDaniels, Dave

    2011-01-01

    During the ignition of a ducted solid rocket motor (SRM), rapid expansion of injected hot gases from the motor into a confined volume causes the development of a steep fronted wave. This low frequency transient wave propagates outward from the exhaust duct, impinging the vehicle and ground structures. An unsuppressed overpressure wave can potentially cause modal excitation in the structures and vehicle, subsequently leading to damage. This presentation details the ignition transient f indings from the 5% Ares I Scale Model Acoustic Test (ASMAT). The primary events of the ignition transient environment induced by the SRM are the ignition overpressure (IOP), duct overpressure (DOP), and source overpressure (SOP). The resulting observations include successful knockdown of the IOP environment through use of a Space Shuttle derived IOP suppression system, a potential load applied to the vehicle stemming from instantaneous asymmetrical IOP and DOP wave impingement, and launch complex geometric influences on the environment. The results are scaled to a full-scale Ares I equivalent and compared with heritage data including Ares I-X and both suppressed and unsuppressed Space Shuttle IOP environments.

  12. Zonal scales of Madden-Julian Oscillation in model experiments with and without continents

    NASA Astrophysics Data System (ADS)

    Das, Surajit; Sengupta, Debasis; Chakraborty, Arindam; Sukhatme, Jai; Murtugudde, Raghu

    2015-04-01

    The low-frequency eastward propagating Madden-Julian Oscillation (MJO) impacts weather and climate around the globe. MJO has zonal wavenumber 1-5, but the reason why these characteristic spatial scales arise are not clearly understood. We use the aquaplanet version of the Community Atmospheric Model (CAM-5), with perpetual spring equinox forcing and zonally symmetric sea surface temperature (SST), to study tropical intraseasonal oscillations (ISO), including MJO. In the first two experiments, we specify zonally symmetric SST profiles that mimic observed climatological July and January conditions. In the January SST simulation, we find a zonal wavenumber 1 mode with dominant period of 60 days, moving east at about 6 m/s. This mode, which resembles the Madden-Julian Oscillation (MJO), is absent when the model was forced by July SST. This shows the importance of the meridional gradient of SST on generation of MJO in this model. For further investigation of the influence of tropical SST on ISO and convectively coupled equatorial waves (CCEW), we conduct experiments with idealized symmetric SST profiles having different widths of warm ocean centered at the equator. When the latitudinal extent of warm SST is comparable to or larger than the equatorial Rossby radius, we find a dominant low frequency (50-80 days) eastward mode that resembles the MJO, as in the January SST experiment. Our study shows that wider, meridionally symmetric SST profiles are necessary for a stronger MJO-like mode. In contrast to many other aquaplanet studies, a significant finding is the existence of westward propagating 30-120 day Rossby waves with zonal wavenumber 1 to 3, and meridional wavenumber 1, 3 and 5. However, in all the aquaplanet simulations, the MJO variance occurs at zonal wavenumber one. To understand the role of land-sea distribution on zonal wavenumber of MJO, we perform a third set of experiments by introducing continents with realistic orography in the model. These experiments

  13. The Response of African Land Surface Phenology to Large Scale Climate Oscillations

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; de Beurs, Kirsten; Vrieling, Anton

    2010-01-01

    Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the African continent. Analysis of changes in phenology can provide quantitative information on the effect of climate variability on growing seasons in agricultural regions. Using a robust statistical methodology, we describe the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), and the Multivariate ENSO Index (MEI). We map the most significant positive and negative correlation for the four climate indices in Eastern, Western and Southern Africa between two phenological metrics and the climate indices. Our objective is to provide evidence of whether climate variability captured in the four indices has had a significant impact on the vegetative productivity of Africa during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by large scale variations in climate. The particular climate index and the timing showing highest correlation depended heavily on the region examined. In Western Africa the cumulative NDVI correlates with PDO in September-November. In Eastern Africa the start of the June-October season strongly correlates with PDO in March-May, while the PDO in December-February correlates with the start of the February-June season. The cumulative NDVI over this last season relates to the MEI of March-May. For Southern Africa, high correlations exist between SOS and NAO of September-November, and cumulative NDVI and MEI of March-May. The research shows that climate indices can be used to anticipate late start and variable vigor in the growing season of sensitive agricultural regions in Africa.

  14. REGARDING THE LINE-OF-SIGHT BARYONIC ACOUSTIC FEATURE IN THE SLOAN DIGITAL SKY SURVEY AND BARYON OSCILLATION SPECTROSCOPIC SURVEY LUMINOUS RED GALAXY SAMPLES

    SciTech Connect

    Kazin, Eyal A.; Blanton, Michael R.; Scoccimarro, Roman; McBride, Cameron K.; Berlind, Andreas A.

    2010-08-20

    We analyze the line-of-sight baryonic acoustic feature in the two-point correlation function {xi} of the Sloan Digital Sky Survey luminous red galaxy (LRG) sample (0.16 < z < 0.47). By defining a narrow line-of-sight region, r{sub p} < 5.5 h {sup -1} Mpc, where r{sub p} is the transverse separation component, we measure a strong excess of clustering at {approx}110 h {sup -1} Mpc, as previously reported in the literature. We also test these results in an alternative coordinate system, by defining the line of sight as {theta} < 3{sup 0}, where {theta} is the opening angle. This clustering excess appears much stronger than the feature in the better-measured monopole. A fiducial {Lambda}CDM nonlinear model in redshift space predicts a much weaker signature. We use realistic mock catalogs to model the expected signal and noise. We find that the line-of-sight measurements can be explained well by our mocks as well as by a featureless {xi} = 0. We conclude that there is no convincing evidence that the strong clustering measurement is the line-of-sight baryonic acoustic feature. We also evaluate how detectable such a signal would be in the upcoming Baryon Oscillation Spectroscopic Survey (BOSS) LRG volume. Mock LRG catalogs (z < 0.6) suggest that (1) the narrow line-of-sight cylinder and cone defined above probably will not reveal a detectable acoustic feature in BOSS; (2) a clustering measurement as high as that in the current sample can be ruled out (or confirmed) at a high confidence level using a BOSS-sized data set; (3) an analysis with wider angular cuts, which provide better signal-to-noise ratios, can nevertheless be used to compare line-of-sight and transverse distances, and thereby constrain the expansion rate H(z) and diameter distance D{sub A}(z).

  15. Scaling of Harmonic Oscillator Eigenfunctions and Their Nodal Sets Around the Caustic

    NASA Astrophysics Data System (ADS)

    Hanin, Boris; Zelditch, Steve; Zhou, Peng

    2017-03-01

    We study the scaling asymptotics of the eigenspace projection kernels Π_{hbar, E}(x,y) of the isotropic Harmonic Oscillator {hat{H}_{hbar} = - hbar^2 Δ +|x|^2} of eigenvalue {E = hbar(N + d/2)} in the semi-classical limit {hbar to 0} . The principal result is an explicit formula for the scaling asymptotics of Π_{hbar, E}(x,y) for x, y in a {hbar^{2/3}} neighborhood of the caustic C_E as {hbar → 0.} The scaling asymptotics are applied to the distribution of nodal sets of Gaussian random eigenfunctions around the caustic as {hbar to 0} . In previous work we proved that the density of zeros of Gaussian random eigenfunctions of {hat{H}_{hbar}} have different orders in the Planck constant {hbar} in the allowed and forbidden regions: In the allowed region the density is of order {hbar^{-1}} while it is {hbar^{-1/2}} in the forbidden region. Our main result on nodal sets is that the density of zeros is of order {hbar^{-2/3}} in an {hbar^{2/3}} -tube around the caustic. This tube radius is the `critical radius'. For annuli of larger inner and outer radii {hbar^{α}} with {0 < α < 2/3} we obtain density results that interpolate between this critical radius result and our prior ones in the allowed and forbidden region. We also show that the Hausdorff ( d-2)-dimensional measure of the intersection of the nodal set with the caustic is of order {hbar^{- 2/3}}.

  16. Dynamics of Large-Scale Convective Onset in the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Powell, Scott Wayne

    The role of large-scale circulation anomalies in the convective onset of the Madden-Julian Oscillation (MJO) over the Indian Ocean during the Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign, conducted Oct. 2011--Feb. 2012, is explained using radar and rawinsonde observations, reanalysis, and regional model simulations. Convective onset was characterized by two episodic and rapid increases in the vertical growth of the cumuliform cloud population over the Indian Ocean: First, the areal coverage of moderately deep (~5 km) convection increased; about 1 week later, the areal coverage of deep (up to the tropopause) convection increased rapidly. Deep tropospheric wavenumber 1 anomalies in zonal wind and vertical velocity circumnavigated the tropics repeatedly during DYNAMO. MJO convective onset occurred when the upward branch of this wavenumber 1 circulation arrived over the Indian Ocean because a reduction in large-scale subsidence cooled the troposphere and steepened the lapse rate below 500 hPa. This made the environment more conducive to development of moderately deep convection. The moderately deep convection moistened the environment during week-long transition periods by transporting moisture vertically from the boundary layer to the free troposphere and detraining it into the clear-air environment, particularly between 650--850 mb. Regional cloud-permitting model simulations of convection during MJO onsets reproduced the distinct transition periods. The modeling results confirmed that rapid cooling of the environment enhanced the areal coverage of, and thus total vertical transport of water within, moderately deep convection at the beginning of transition periods. Evaporation of cloud condensate via entrainment or dissipation of clouds was directly responsible for environmental moistening. Cooling of the climatologically stable layer between 700--850 mb was particularly important because it allowed a greater number of cumulus elements growing

  17. Acoustic Surveys of a Scaled-Model CESTOL Transport Aircraft in Static and Forward Speed Conditions

    NASA Technical Reports Server (NTRS)

    Burnside, Nathan; Horne, Clifton

    2012-01-01

    An 11% scale-model of a Cruise-Efficient Short Take-off and Landing (CESTOL) scalemodel test was recently completed. The test was conducted in the AEDC National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The model included two over-wing pod-mounted turbine propulsion simulators (TPS). The hybrid blended wing-body used a circulation control wing (CCW) with leadingand trailing-edge blowing. The bulk of the test matrix included three forward velocities (40 kts, 60 kts, and 100kts), angle-of-attack variation between -5 and 25 , and CCW mass flow variation. Seven strut-mounted microphones outboard of the left wing provided source directivity. A phased microphone array was mounted outboard of the right wing for source location. The goal of this paper is to provide a preliminary look at the acoustic data acquired during the Advanced Model for Extreme Lift and Improved Aeroacoustics (AMELIA) test for 0 angle-of-attack and 0 sideslip conditions. Data presented provides a good overview of the test conditions and the signal-to-noise quality of the data. TPS height variation showed a difference of 2 dB to 3 dB due to wing shielding. Variation of slot mass flow showed increases of 12 dB to 26 dB above the airframe noise and the TPS increased the overall levels an additional 5 dB to 10 dB.

  18. The Universal “Heartbeat” Oscillations in Black Hole Systems Across the Mass-scale

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Czerny, Bozena; Grzedzielski, Mikolaj; Janiuk, Agnieszka; Gu, Wei-Min; Dong, Ai-jun; Cao, Xiao-Feng; You, Bei; Yan, Zhen; Sun, Mou-Yuan

    2016-12-01

    The hyperluminous X-ray source (HLX-1, peak X-ray luminosity ˜ {10}42 {erg} {{{s}}}-1) near the spiral galaxy ESO 243-49, which underwent recurrent outbursts within a period of ˜400 days, is possibly the best candidate for an intermediate mass black hole (IMBH). The physical reason for this quasiperiodic variability is still unclear. We explore the possibility of radiation-pressure instability in the accretion disk by modeling the light curve of HLX-1, and find that it can roughly reproduce the duration, period, and amplitude of the recurrent outbursts in HLX-1 with an IMBH of ˜ {10}5 {M}⊙ . Our result provides a possible mechanism to explain the recurrent outbursts in HLX-1. We further find a universal correlation between the outburst duration and the bolometric luminosity for the black hole (BH) sources with a very broad mass range (e.g., X-ray binaries, HLX-1, and active galactic nuclei), which is roughly consistent with the prediction of radiation-pressure instability of the accretion disk. These results imply that “heartbeat” oscillations triggered by radiation-pressure instability may appear in different-scale BH systems.

  19. From intracellular signaling to population oscillations: bridging size- and time-scales in collective behavior

    PubMed Central

    Sgro, Allyson E; Schwab, David J; Noorbakhsh, Javad; Mestler, Troy; Mehta, Pankaj; Gregor, Thomas

    2015-01-01

    Collective behavior in cellular populations is coordinated by biochemical signaling networks within individual cells. Connecting the dynamics of these intracellular networks to the population phenomena they control poses a considerable challenge because of network complexity and our limited knowledge of kinetic parameters. However, from physical systems, we know that behavioral changes in the individual constituents of a collectively behaving system occur in a limited number of well-defined classes, and these can be described using simple models. Here, we apply such an approach to the emergence of collective oscillations in cellular populations of the social amoeba Dictyostelium discoideum. Through direct tests of our model with quantitative in vivo measurements of single-cell and population signaling dynamics, we show how a simple model can effectively describe a complex molecular signaling network at multiple size and temporal scales. The model predicts novel noise-driven single-cell and population-level signaling phenomena that we then experimentally observe. Our results suggest that like physical systems, collective behavior in biology may be universal and described using simple mathematical models. PMID:25617347

  20. Large-scale Ising spin network based on degenerate optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Inagaki, Takahiro; Inaba, Kensuke; Hamerly, Ryan; Inoue, Kyo; Yamamoto, Yoshihisa; Takesue, Hiroki

    2016-06-01

    Solving combinatorial optimization problems is becoming increasingly important in modern society, where the analysis and optimization of unprecedentedly complex systems are required. Many such problems can be mapped onto the ground-state-search problem of the Ising Hamiltonian, and simulating the Ising spins with physical systems is now emerging as a promising approach for tackling such problems. Here, we report a large-scale network of artificial spins based on degenerate optical parametric oscillators (DOPOs), paving the way towards a photonic Ising machine capable of solving difficult combinatorial optimization problems. We generate >10,000 time-division-multiplexed DOPOs using dual-pump four-wave mixing in a highly nonlinear fibre placed in a cavity. Using those DOPOs, a one-dimensional Ising model is simulated by introducing nearest-neighbour optical coupling. We observe the formation of spin domains and find that the domain size diverges near the DOPO threshold, which suggests that the DOPO network can simulate the behaviour of low-temperature Ising spins.

  1. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit.

    PubMed

    Bezaire, Marianne J; Raikov, Ivan; Burk, Kelly; Vyas, Dhrumil; Soltesz, Ivan

    2016-12-23

    The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations.

  2. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit

    PubMed Central

    Bezaire, Marianne J; Raikov, Ivan; Burk, Kelly; Vyas, Dhrumil; Soltesz, Ivan

    2016-01-01

    The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations. DOI: http://dx.doi.org/10.7554/eLife.18566.001 PMID:28009257

  3. Precipitation Producing Synoptic-Scale Flow and El Niño-Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Svoma, B. M.

    2014-12-01

    The differences in winter synoptic-scale flow during precipitation events between phases of El Niño-Southern Oscillation are established for the coastal southwest United States. Principal component analysis in T-mode with Varimax rotation was performed on fields of 500-hPa, 700-hPa, and 850-hPa geopotential height and specific humidity (from the North American Regional Reanalysis) during days with precipitation. These precipitation days were grouped through a k-means cluster analysis of the loadings on the extracted components from all atmospheric variables. Eight clusters were ultimately analyzed based on separation and cohesion statistics. Analyses of cluster membership and cluster composite maps reveal synoptic-scale patterns that are most common during particular phases of ENSO. Distinctly El Niño patterns are charactized by a broad offshore upper level trough with relatively moist low-level onshore flow. Distinctly La Niña patterns display a deep southwest-northeast oriented trough over the western United States with drier low-level onshore flow. Analysis of 250-hPa potential vorticity suggests that the La Niña (El Niño) patterns are linked to anticyclonic (cyclonic) baroclinic wave breaking events. This agrees with a recent line of investigations which find anticyclonic (cyclonic) wave breaking in the Pacific North American region to be more common during La Niña (El Niño) events. Knowledge of interannual variability in winter precipitation event characteristics can improve seasonal runoff forecasts and advance understanding of interdecadal variability and the effects of climate change in the western United States.

  4. An Experimental Study of Cyclic Foam Oscillation: Unveiling the Time-Scale of Foam Collapse

    NASA Astrophysics Data System (ADS)

    Spina, L.; Arciniega-Ceballos, A.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    A defined periodicity in eruptive activity has been reported for different volcanoes. Lava lakes, for example are often characterized by periodic short-time scale fluctuations of the surface which has been termed "gas piston activity" (Swanson et al., 1971), as well as long-term periodical overturns. The latter have been also reported in extra-terrestrial volcanoes (e.g. Loki, Rathbun et al., 2002). This cyclic nature of volcanic eruptive activity, together with its characteristic time-scale, carries fundamental information on the degassing dynamics, and is thus more than worthy of further investigation. To this end, we have performed decompression experiments using Argon-saturated silicon oil, with viscosities of 10 to 1000 Pa s, as analogue for volatile-bearing mafic to intermediate magmas. The analogue samples were held to saturate in Argon in a shock tube for 72 hours, and then decompressed. In response to decompression, bubbles were nucleated and a foam layer developed at the top of the sample. Vigorous oscillations and periodical disruptions at the surface of the foam were observed, followed by foam restoration via bubble addition from below. This regime of periodical foam collapse and renewal was investigated through a monochromatic light-sensitive video camera. Also, in order to reconstruct the elastic energy due to the excitation mechanisms related to the foam collapse, 7 high-dynamic piezoelectric sensors (LDT Series, Measurement Specialties, Inc.) were distributed along of the shock tube. By tracking the flow front height trough time, joined with the observation of the micro-seismic signatures related to the foam disruption and growth, we were able to assess the time scale of foam collapse under dynamics conditions, and compare it to previous models (e.g. Proussevitch et al., 1993) and published data on natural cyclic phenomena in open conduit volcanoes. The laboratory investigation of bubbles coalescence and foam collapse in analogue materials

  5. Influence of El Niño Southern Oscillation on global scale flood and drought risk

    NASA Astrophysics Data System (ADS)

    Ward, Philip; Jongman, Brenden; Veldkamp, Ted; Kummu, Matti; Dettinger, Michael; Sperna Weiland, Frederiek; Winsemius, Hessel

    2015-04-01

    In this contribution we demonstrate the influence of climate variability on flood and drought risk. El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability, and has a strong influence on climate over large parts of the world. In turn, it strongly influences many extreme hazards and their resulting socioeconomic impacts, including economic damage and loss of life. Whilst ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of either floods or droughts. To address this, we developed new modelling frameworks to assess ENSO's influence on both flood risk and drought risk at the global scale. Flood risk is expressed in terms of annual expected damages and annual affected population. Drought risk is expressed in terms of water shortage and water stress. We show that ENSO exerts strong and widespread influences on flood hazard and risk, as well as drought risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth's land surface. Significant correlations between ENSO and water scarcity conditions were found for 43% of the global land area, meaning that more than half of the global population is effectively affected by water shortage and stress events under 2010 conditions. Our results show that climate variability, especially from ENSO, should be incorporated into disaster risk analyses and policies. Since ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this could imply changes in flood and drought risk variations across almost half of the world's terrestrial regions. The flood part of

  6. Target detection and localization in shallow water: an experimental demonstration of the acoustic barrier problem at the laboratory scale.

    PubMed

    Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme

    2011-01-01

    This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.

  7. Long-Period Oscillations of Hydraulic Fractures: Attenuation, Scaling Relationships, and Flow Stability

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2013-12-01

    Long-period seismicity due to the excitation of hydraulic fracture normal modes is thought to occur in many geological systems, including volcanoes, glaciers and ice sheets, and hydrocarbon reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluid within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis that accounts for quasi-dynamic elasticity of the fracture wall, as well as fluid drag, inertia, and compressibility. We consider symmetric perturbations and neglect the effects of stratification and gravity. In the long-wavelength or thin-fracture limit, dispersive guided waves known as crack waves propagate with phase velocity cw=√(G*|k|w/ρ), where G* = G/(1-υ) for shear modulus G and Poisson ratio υ, w is the crack half-width, k is the wavenumber, and ρ is the fluid density. Restoring forces from elastic wall deformation drive wave motions. In the opposite, short-wavelength limit, guided waves are simply sound waves within the fluid and little seismic excitation occurs due to minimal fluid-solid coupling. We focus on long-wavelength crack waves, which, in the form of standing wave modes in finite-length cracks, are thought to be a common mechanism for long-period seismicity. The dispersive nature of crack waves implies several basic scaling relations that might be useful when interpreting statistics of long-period events. Seismic observations may constrain a characteristic frequency f0 and seismic moment M0~GδwR2, where δw is the change in crack width and R is the crack dimension. Resonant modes of a fluid-filled crack have associated frequencies f~cw/R. Linear elasticity provides a link between pressure changes δp in the crack and the induced opening δw: δp~G δw/R. Combining these, and assuming that pressure changes have no variation with crack dimension, leads to the scaling law relating seismic moment and oscillation frequency, M0~(Gwδp/ρ)f0

  8. Gaseous bubble oscillations in anisotropic non-Newtonian fluids under influence of high-frequency acoustic field

    NASA Astrophysics Data System (ADS)

    Golykh, R. N.

    2016-06-01

    Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.

  9. Local perturbations of the upper layers of a sun-like star: The impact on the acoustic oscillation spectrum

    SciTech Connect

    Brito, Ana; Lopes, Ilídio E-mail: ilidio.lopes@ist.utl.pt

    2014-02-10

    In the last decade, the quality and the amount of observational asteroseismic data that has been made available by space based missions had a tremendous upgrowth. The determination of asteroseismic parameters to estimate the fundamental physical processes occurring in stars' interiors can be done today in a way that has never been possible before. In this work, we propose to compute the seismic observable β, which is a proxy of the phase shift of the acoustic modes propagating in the envelope of the Sun-like stars. This seismic parameter β can be used to identify rapid variation regions usually known as glitches. We show that a small variation in the structure, smaller than 1% in the sound speed, produces a glitch in the acoustic potential that could explain the oscillatory character of β. This method allows us to determine the location and the thickness of the glitch with precision. We applied this idea to the Sun-like star α Centauri A and found a glitch located at approximately 0.94 R (1400 s) and with a thickness of 0.2% of the stars' radius. This is fully consistent with the data and also validates other seismic tests.

  10. Acoustic and aerodynamic testing of a scale model variable pitch fan

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Kazin, S. B.

    1974-01-01

    A fully reversible pitch scale model fan with variable pitch rotor blades was tested to determine its aerodynamic and acoustic characteristics. The single-stage fan has a design tip speed of 1160 ft/sec (353.568 m/sec) at a bypass pressure ratio of 1.5. Three operating lines were investigated. Test results show that the blade pitch for minimum noise also resulted in the highest efficiency for all three operating lines at all thrust levels. The minimum perceived noise on a 200-ft (60.96 m) sideline was obtained with the nominal nozzle. At 44% of takeoff thrust, the PNL reduction between blade pitch and minimum noise blade pitch is 1.8 PNdB for the nominal nozzle and decreases with increasing thrust. The small nozzle (6% undersized) has the highest efficiency at all part thrust conditions for the minimum noise blade pitch setting; although, the noise is about 1.0 PNdB higher for the small nozzle at the minimum noise blade pitch position.

  11. Performance assessment and calibration of a profiling lab-scale acoustic Doppler velocimeter for application over mixed sand-gravel beds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic Doppler velocimetry has made high-resolution turbulence measurements in sediment-laden flows possible. Recent developments have resulted in a commercially available lab-scale acoustic Doppler profiling device, a Nortek Vectrino II, that allows for three-dimensional velocity data to be colle...

  12. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  13. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    PubMed

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range.

  14. Thermospheric wind oscillations during the propagation of large-scale traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Yakovets, A. F.; Vodyannikov, V. V.; Gordienko, G. I.; Litvinov, Yu. G.

    2014-07-01

    The parameters of meridional thermospheric wind oscillations during the propagation of largescale traveling ionospheric disturbances, obtained based on the nighttime observations in the ionospheric F region performed at the Institute of the Ionosphere (Almaty, 76°55' E, 43°15' N) in 2000-2007 using a digital ionosonde, have been analyzed. The processing of ionospheric sounding data made it possible to obtain electron density time variations N( t) at fixed altitudes and variations in the altitudes of the F region maximum ( h m F) and bottom ( h bot F). During the indicated period, 1166 observation sessions were performed, and 581 sessions were characterized by wave activity. Sessions with a relative amplitude of N( t) variations larger than 25% were selected for analysis. The total number of such sessions was 63. The expression for calculating the meridional wind oscillation amplitudes was obtained based on the measured amplitudes of h bot F oscillations. It was indicated that increased amplitudes of thermospheric wind oscillations are obtained when this expression for h m F is used. The diffusion term, which causes increased h m F oscillation amplitudes as compared to the h bot F oscillation amplitudes, was estimated using the regression expression.

  15. On the acoustic properties of vaporized submicron perfluorocarbon droplets.

    PubMed

    Reznik, Nikita; Lajoinie, Guillaume; Shpak, Oleksandr; Gelderblom, Erik C; Williams, Ross; de Jong, Nico; Versluis, Michel; Burns, Peter N

    2014-06-01

    The acoustic characteristics of microbubbles created from vaporized submicron perfluorocarbon droplets with fluorosurfactant coating are examined. Utilizing ultra-high-speed optical imaging, the acoustic response of individual microbubbles to low-intensity diagnostic ultrasound was observed on clinically relevant time scales of hundreds of milliseconds after vaporization. It was found that the vaporized droplets oscillate non-linearly and exhibit a resonant bubble size shift and increased damping relative to uncoated gas bubbles due to the presence of coating material. Unlike the commercially available lipid-coated ultrasound contrast agents, which may exhibit compression-only behavior, vaporized droplets may exhibit expansion-dominated oscillations. It was further observed that the non-linearity of the acoustic response of the bubbles was comparable to that of SonoVue microbubbles. These results suggest that vaporized submicron perfluorocarbon droplets possess the acoustic characteristics necessary for their potential use as ultrasound contrast agents in clinical practice.

  16. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 3; Aero-Acoustic Analyses and Experimental Validation

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Graham, Jason S.; McVay, Greg P.; Langford, Lester L.

    2008-01-01

    A unique assessment of acoustic similarity scaling laws and acoustic analogy methodologies in predicting the far-field acoustic signature from a sub-scale altitude rocket test facility at the NASA Stennis Space Center was performed. A directional, point-source similarity analysis was implemented for predicting the acoustic far-field. In this approach, experimental acoustic data obtained from "similar" rocket engine tests were appropriately scaled using key geometric and dynamic parameters. The accuracy of this engineering-level method is discussed by comparing the predictions with acoustic far-field measurements obtained. In addition, a CFD solver was coupled with a Lilley's acoustic analogy formulation to determine the improvement of using a physics-based methodology over an experimental correlation approach. In the current work, steady-state Reynolds-averaged Navier-Stokes calculations were used to model the internal flow of the rocket engine and altitude diffuser. These internal flow simulations provided the necessary realistic input conditions for external plume simulations. The CFD plume simulations were then used to provide the spatial turbulent noise source distributions in the acoustic analogy calculations. Preliminary findings of these studies will be discussed.

  17. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, David; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  18. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Contra-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, Dave; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  19. Outer scales of temperature turbulence and dynamic turbulence from the data of acoustic sounding of the atmosphere

    NASA Astrophysics Data System (ADS)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2014-11-01

    The outer scale of turbulence plays an important role in the theory of atmospheric turbulence. It specifies the lowfrequency boundary of the inertial subrange of fluctuation spectra of the atmospheric meteorological parameters, is used to construct models of the atmospheric turbulence and to estimate the excess turbulent attenuation of waves in the atmosphere. Outer scales of the wind velocity, temperature, humidity, and ozone concentration were previously determined, in particular, from direct airborne measurements of the spectral power density of these parameters, and their dependences on the altitude above the underlying surface, its properties, and type of the atmospheric stratification were demonstrated. For optical radiation propagating in the surface layer, the outer scale of temperature turbulence was determined from measurements of the variance of phase fluctuations of optical waves propagating along the near-ground paths. Unlike the optical waves, the acoustic wave propagation in the atmospheric boundary layer is influenced simultaneously by the temperature fluctuations caused by thermal convection and by the velocity fluctuations (dynamic turbulence caused by the wind shear). Their relative contributions depend on the ratio of the outer scales of the dynamic turbulence and temperature turbulence. In the present work, a method of simultaneous acoustic sounding of the outer scales of dynamic turbulence and temperature turbulence is suggested, and combined influence of these parameters on the acoustic wave propagation is estimated. Temporal dynamics of vertical profiles of the outer scales of dynamic turbulence and temperature turbulence is analyzed. The efficiency of the suggested method is confirmed by the results of comparison with the data of laser sensing of these parameters and their theoretical estimates, which demonstrate their good agreement.

  20. A mixed time integration method for large scale acoustic fluid-structure interaction

    SciTech Connect

    Christon, M.A.; Wineman, S.J.; Goudreau, G.L.; Foch, J.D.

    1994-07-18

    The transient, coupled, interaction of sound with structures is a process in which an acoustic fluid surrounding an elastic body contributes to the effective inertia and elasticity of the body. Conversely, the presence of an elastic body in an acoustic medium influences the behavior of propagating disturbances. This paper details the application of a mixed explicit-implicit time integration algorithm to the fully coupled acoustic fluidstructure interaction problem. Based upon a dispersion analysis of the semi-discrete wave equation a second-order, explicit scheme for solving the wave equation is developed. The combination of a highly vectorized, explicit, acoustic fluid solver with an implicit structural code for linear elastodynamics has resulted in a simulation tool, PING, for acoustic fluid-structure interaction. PING`s execution rates range from 1{mu}s/Element/{delta}t for rigid scattering to 10{mu}s/Element/{delta}t for fully coupled problems. Several examples of PING`s application to 3-D problems serve in part to validate the code, and also to demonstrate the capability to treat complex geometry, acoustic fluid-structure problems which require high resolution meshes.

  1. Multiple-scale dynamics in neural systems: learning, synchronization and network oscillations

    NASA Astrophysics Data System (ADS)

    Zhigulin, Valentin P.

    Many dynamical processes that take place in neural systems involve interactions between multiple temporal and/or spatial scales which lead to the emergence of new dynamical phenomena. Two of them are studied in this thesis: learning-induced robustness and enhancement of synchronization in small neural circuits; and emergence of global spatio-temporal dynamics from local interactions in neural networks.Chapter 2 presents the study of synchronization of two model neurons coupled through a synapse with spike-timing dependent plasticity (STDP). It shows that this form of learning leads to the enlargement of frequency locking zones and makes synchronization much more robust to noise than classical synchronization mediated by non-plastic synapses. A simple discrete-time map model is presented that enables deep understanding of this phenomenon and demonstrates its generality. Chapter 3 extends these results by demonstrating enhancement of synchronization in a hybrid circuit with living postsynaptic neuron. The robustness of STDP-mediated synchronization is further confirmed with simulations of stochastic plasticity.Chapter 4 studies the entrainment of a heterogeneous network of electrically coupled neurons by periodic stimulation. It demonstrates that, when compared to the case of non-plastic input synapses, inputs with STDP enhance coherence of network oscillations and improve robustness of synchronization to the variability of network properties. The observed mechanism may play a role in synchronization of hippocampal neural ensembles.Chapter 5 proposes a new type of artificial synaptic connection that combines fast reaction of an electrical synapse with plasticity of a chemical synapse. It shows that such synapse mediates regularization of chaos in a circuit of two chaotic bursting neurons and leads to structural stability of the regularized state. Such plastic electrical synapse may be used in the development of robust neural prosthetics.Chapter 6 suggests a new

  2. Large-scale oscillation of structure-related DNA sequence features in human chromosome 21

    NASA Astrophysics Data System (ADS)

    Li, Wentian; Miramontes, Pedro

    2006-08-01

    Human chromosome 21 is the only chromosome in the human genome that exhibits oscillation of the (G+C) content of a cycle length of hundreds kilobases (kb) ( 500kb near the right telomere). We aim at establishing the existence of a similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi- and tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10- or 11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting or unwinding, stiffness, and a putative tendency for nucleosome formation.

  3. Frequency Scaling for Evaluation of Shale and Mudstone Properties from Acoustic Velocities

    NASA Astrophysics Data System (ADS)

    Suarez-Rivera, R.; Willson, S. M.; Nakagawa, S.; Magnar-Ness, O.

    2001-12-01

    In subsurface oil and gas exploration, seismic wave (stress wave) measurement is one of the most important tools for determining the properties of overburden and predicting reservoir conditions such as pore pressure, fracture gradient, and stress distribution. To achieve detailed and reliable knowledge of the reservoir, an integrated analysis can be performed on the seismic properties of rocks measured at different scales ranging from laboratory core, boreholes (well logging) and reservoir itself (surface seismic). However, particularly for sedimentary rocks containing a large amount of clay minerals, such integration is not a straightforward task because of velocity dispersion that makes waves of different frequencies travel at different velocities. The ultimate goal of this study is to devise a methodology for frequency scaling based on laboratory measurements of wave propagation at different frequency ranges. To this end, we have examined the mechanical and acoustic (seismic) properties of strongly dispersive sedimentary rocks. Shales were selected as principal rocks of interest for their predominance in the overburden and the direct impact on the well construction cost. Two types of shales were cored from outcrops(Pierre I and Mancos) and tested under varying conditions of loading (hydrostatic versus uniaxial-strain), orientation to bedding (parallel, perpendicular and oblique). Wave measurements were conducted under four ranges of frequency: Static and quasi-static (seismic frequency, approximately 7 Hz) data was obtained from high-accuracy, low-speed stress-strain measurements, and sonic data (0.4 kHz-9 kHz) was obtained from gas-confined resonant bar tests. For ultrasonic data (150 kHz-1 MHz), a frequency-domain phase analysis was applied to compute frequency-dependent phase and group velocities. Over these ranges, both Pierre and Mancos shales showed a smooth and monotonic increase in compressional and shear wave velocities with frequency. Strong velocity

  4. Low variance energy estimators for systems of quantum Drude oscillators: treating harmonic path integrals with large separations of time scales.

    PubMed

    Whitfield, Troy W; Martyna, Glenn J

    2007-02-21

    In the effort to develop atomistic models capable of accurately describing nanoscale systems with complex interfaces, it has become clear that simple treatments with rigid charge distributions and dispersion coefficients selected to generate bulk properties are insufficient to predict important physical properties. The quantum Drude oscillator model, a system of one-electron pseudoatoms whose "pseudoelectrons" are harmonically bound to their respective "pseudonuclei," is capable of treating many-body polarization and dispersion interactions in molecular systems on an equal footing due to the ability of the pseudoatoms to mimic the long-range interactions that characterize real materials. Using imaginary time path integration, the Drude oscillator model can, in principle, be solved in computer operation counts that scale linearly with the number of atoms in the system. In practice, however, standard expressions for the energy and pressure, including the commonly used virial estimator, have extremely large variances that require untenably long simulation times to generate converged averages. In this paper, low-variance estimators for the internal energy are derived, in which the large zero-point energy of the oscillators does not contribute to the variance. The new estimators are applicable to any system of harmonic oscillators coupled to one another (or to the environment) via an arbitrary set of anharmonic interactions. The variance of the new estimators is found to be much smaller than standard estimators in three example problems, a one-dimensional anharmonic oscillator and quantum Drude models of the xenon dimer and solid (fcc) xenon, respectively, yielding 2-3 orders of magnitude improvement in computational efficiency.

  5. Experimental Hingeless Rotor Characteristics at Full Scale First Flap Mode Frequencies (including Rotor Frequency Response to Shaft Oscillations), Phase 3

    NASA Technical Reports Server (NTRS)

    Kuczynski, W. A.

    1972-01-01

    The completion of the High Advance Ratio Research Program is reported. The primary objectives of the program were to experimentally determine the rotor frequency response to shaft pitching and rolling oscillations and to acquire steady response and frequency response data at high advance ratios for hingeless rotors with typical, full-scale, first flap mode natural frequencies. Secondary objectives of the program included the further evaluation of both the hub moment feedback control system and the simplified rigid blade flapping theory with respect to shaft oscillations. The bulk of the text is devoted to the presentation and examination of representative experimental results. All the analyzed test data are documented in tabular and/or graphical formats.

  6. Impacts of large-scale oscillations on pan-Arctic terrestrial net primary production

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Kimball, John S.; McDonald, Kyle C.; Cassano, John J.; Running, Steven W.

    2007-11-01

    Analyses of regional climate oscillations and satellite remote sensing derived net primary production (NPP) and growing season dynamics for the pan-Arctic region indicate that the oscillations influence NPP by regulating seasonal patterns of low temperature and moisture constraints to photosynthesis. Early-spring (Feb-Apr) patterns of the Arctic Oscillation (AO) are proportional to growing season onset (r = -0.653 P = 0.001), while growing season patterns of the Pacific Decadal Oscillation (PDO) are proportional to plant-available moisture constraints to NPP (I m ) (r = -0.471 P = 0.023). Relatively strong, negative PDO phases from 1988-1991 and 1998-2002 coincided with prolonged regional droughts indicated by a standardized moisture stress index. These severe droughts resulted in widespread reductions in NPP, especially for relatively drought prone boreal forest and grassland/cropland ecosystems. The influence of AO and PDO patterns on northern vegetation productivity appears to be decreasing and increasing, respectively, as low temperature constraints to plant growth relax and NPP becomes increasingly limited by available water supply under a warming climate.

  7. Nonlinear Scale Interaction: A possible mechanism of up-scale error transport attributing to the inadequate predictability of Intra-seasonal Oscillations

    NASA Astrophysics Data System (ADS)

    De, Saumyendu; Sahai, Atul Kumar; Nath Goswami, Bhupendra

    2013-04-01

    One of the fundamental science questions raised by the Year of Tropical Convection (YOTC) group was that under what circumstances and via what mechanisms water vapor, energy and momentum were transferred across scales ranging from meso-scale to the large (or planetary scale) (The YOTC Science Plan, 2008)? This study has partially addressed the above broad science question by exploring a probable mechanism of error energy transfer across scales in relation to the predictability studies of Intra-seasonal oscillations (ISOs). The predictability of ISOs being in the dominant planetary scales of wavenumbers 1 - 4 is restricted by the rapid growth and the large accumulation of errors in these planetary / ultra-long waves in almost all medium range forecast models (Baumhefner et al.1978, Krishnamurti et al. 1990). Understanding the rapid growth and enormous build-up of error is, therefore, imperative for improving the forecast of ISOs. It is revealed that while the initial errors are largely on the small scales, maximum errors are appeared in the ultra-long waves (around the tropical convergence zone) within 3-5 days of forecasts. The wavenumber distribution of error with the forecast lead time shows that the initial error in the small scales has already attained its saturation value at these scales within 6-hr forecast lead, whereas that in ultra-long scales is about two order of magnitude smaller than their saturation value. This much amount of error increase in planetary waves cannot be explained simply as a growth of the initial error unless it has been transported from smaller scales. Hence, it has been proposed that the fast growth of errors in the planetary waves is due to continuous generation of errors in the small scales attributing to the inadequacy in representing different physical processes such as formulation of cumulus clouds in the model and upscale propagation of these errors through the process of scale interactions. Basic systematic error kinetic

  8. Centennial-scale vegetation and North Atlantic Oscillation changes during the Late Holocene in the southern Iberia

    NASA Astrophysics Data System (ADS)

    Ramos-Román, M. J.; Jiménez-Moreno, G.; Anderson, R. S.; García-Alix, A.; Toney, J. L.; Jiménez-Espejo, F. J.; Carrión, J. S.

    2016-07-01

    High-reso CE to lution pollen analysis, charcoal, non-pollen palynomorphs and magnetic susceptibility have been analyzed in the sediment record of a peat bog in Sierra Nevada in southern Iberia. The study of these proxies provided the reconstruction of vegetation, climate, fire and human activity of the last ∼4500 cal yr BP. A progressive trend towards aridification during the late Holocene is observed in this record. This trend is interrupted by millennial- and centennial-scale variability of relatively more humid and arid periods. Arid conditions are recorded between ∼4000 and 3100 cal yr BP, being characterized by a decline in arboreal pollen and with a spike in magnetic susceptibility. This is followed by a relatively humid period from ∼3100 to 1600 cal yr BP, coinciding partially with the Iberian-Roman Humid Period, and is indicated by the increase of Pinus and the decrease in xerophytic taxa. The last 1500 cal yr BP are characterized by several centennial-scale climatic oscillations. Generally arid conditions from ∼450 to 1300 CE, depicted by a decrease in Pinus and an increase in Artemisia, comprise the Dark Ages and the Medieval Climate Anomaly. Since ∼ 1300 to 1850 CE pronounced oscillations occur between relatively humid and arid conditions. Four periods depicted by relatively higher Pinus coinciding with the beginning and end of the Little Ice Age are interrupted by three arid events characterized by an increase in Artemisia. These alternating arid and humid shifts could be explained by centennial-scale changes in the North Atlantic Oscillation and solar activity.

  9. Modeling and Scaling of oscillating or pulsating heat transfer devices subjected to earth gravity and to high acceleration levels

    NASA Astrophysics Data System (ADS)

    Delil, A. A. M.

    2001-02-01

    The discussions, presented in this article, suppose that the reader is familiar with the contents of the accompanying article ``Thermal-Gravitational Modeling and Scaling of Two-Phase Heat Transport Systems from Micro-Gravity to Super-Gravity Levels.'' The latter article describes the history of this particular research at NLR, the approach (based on dimension analysis and similarity considerations), the derivation of constitutive equations for (annular) two-phase flow and heat transfer, the identification of thermal-gravitational scaling possibilities, condensation length issues, and the impact of the magnitude of super-gravity and its direction relative to the flow direction. But the discussions are restricted to ``classical'' two-phase loops. The most recent part of the research is discussed in this follow-up article. It concerns the extension of the research to the modelling, scaling and testing of the steady and transient performance of various types of oscillating or pulsating single-phase and two-phase heat transfer devices. This extension was opportune, as it turned out to be essential to properly support the research and development of such oscillating or pulsating heat transfer devices. For these devices several very promising applications have been identified, not only to cool commercial electronics, but also for cooling high-power electronics in spinning satellites and in military combat aircraft. In such applications, the electronics can be exposed to steady and transient accelerations up to levels around 120 m/s2. .

  10. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing.

    PubMed

    Giocomo, Lisa M; Zilli, Eric A; Fransén, Erik; Hasselmo, Michael E

    2007-03-23

    Grid cells in layer II of rat entorhinal cortex fire to spatial locations in a repeating hexagonal grid, with smaller spacing between grid fields for neurons in more dorsal anatomical locations. Data from in vitro whole-cell patch recordings showed differences in frequency of subthreshold membrane potential oscillations in entorhinal neurons that correspond to different positions along the dorsal-to-ventral axis, supporting a model of physiological mechanisms for grid cell responses.

  11. Middle and high latitude Southern Hemispheric oscillations on the 35-60 day time scale

    NASA Technical Reports Server (NTRS)

    Graves, Charles E.; Stanford, John L.

    1989-01-01

    The low-frequency geopotential height fluctuations in the Southern Hemisphere were examined on the basis of one-point correlation maps. Results indicate that the 35-60 day fluctuations in the Southern-Hemisphere geopotential heights exhibit wavetrainlike characteristics. Correlations between a midlatitude reference point and tropical microwave temperature data were found to be weak, suggesting that the midlatitude wavetrain is not strongly coupled to the Madden and Julian (1971) 40-50 day oscillation.

  12. Scale Model Acoustic Test Validation of IOP-SS Water Prediction using Loci-STREAM-VoF

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). SMAT consists of a 5% scale representation of the ignition overpressure sound-suppression system (IOP-SS) that is being tested to quantify the water flow and induced air entrainment in and around the mobile launcher exhaust hole. This data will be compared with computational fluid dynamics (CFD) simulations using the newly developed Loci-STREAM Volume of Fluid (VoF) methods. Compressible and incompressible VoF methods have been formulated, and are currently being used to simulate the water flow of SMAT IOP-SS. The test data will be used to qualitatively and quantitatively assess and validate the VoF methods.

  13. Genomic Evidence of Rapid and Stable Adaptive Oscillations over Seasonal Time Scales in Drosophila

    PubMed Central

    Bergland, Alan O.; Behrman, Emily L.; O'Brien, Katherine R.; Schmidt, Paul S.; Petrov, Dmitri A.

    2014-01-01

    In many species, genomic data have revealed pervasive adaptive evolution indicated by the fixation of beneficial alleles. However, when selection pressures are highly variable along a species' range or through time adaptive alleles may persist at intermediate frequencies for long periods. So called “balanced polymorphisms” have long been understood to be an important component of standing genetic variation, yet direct evidence of the strength of balancing selection and the stability and prevalence of balanced polymorphisms has remained elusive. We hypothesized that environmental fluctuations among seasons in a North American orchard would impose temporally variable selection on Drosophila melanogaster that would drive repeatable adaptive oscillations at balanced polymorphisms. We identified hundreds of polymorphisms whose frequency oscillates among seasons and argue that these loci are subject to strong, temporally variable selection. We show that these polymorphisms respond to acute and persistent changes in climate and are associated in predictable ways with seasonally variable phenotypes. In addition, our results suggest that adaptively oscillating polymorphisms are likely millions of years old, with some possibly predating the divergence between D. melanogaster and D. simulans. Taken together, our results are consistent with a model of balancing selection wherein rapid temporal fluctuations in climate over generational time promotes adaptive genetic diversity at loci underlying polygenic variation in fitness related phenotypes. PMID:25375361

  14. Assessment at full scale of nozzle/wing geometry effects on OTW aero-acoustic characteristics. [short takeoff aircraft noise

    NASA Technical Reports Server (NTRS)

    Groesbeck, D.; Vonglahn, U.

    1979-01-01

    The effects on acoustic characteristics of nozzle type and location on a wing for STOL engine over-the-wing configurations are assessed at full scale on the basis of model-scale data. Three types of nozzle configurations are evaluated: a circular nozzle with external deflector mounted above the wing, a slot nozzle with external deflector mounted on the wing and a slot nozzle mounted on the wing. Nozzle exhaust plane locations with respect to the wing leading edge are varied from 10 to 46 percent chord (flaps retracted) with flap angles of 20 (takeoff altitude) and 60 (approach attitude). Perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots, static EPNL values, defined as flyover relative noise levels, are calculated and plotted as a function of lift and thrust ratios. From such plots the acoustic benefits attributable to variations in nozzle/deflector/wing geometry at full scale are assessed for equal aerodynamic performance.

  15. Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.

    2012-01-01

    The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories

  16. The Large-Scale Oscillations Influence Over the Interdecadal Climate Variability in Mexico's Central Region

    NASA Astrophysics Data System (ADS)

    Jofre, R.; Brito-Castillo, L.; Tereshchenko, I.; Atmospheric Sciences Climatology Climate Variability

    2013-05-01

    Climate in the highlands of Mexico displays high variability due to its complex terrain and elevation. The knowledge to elucidate the principal forcings of these variations can be useful for forecasting annual and seasonal temperature and precipitation over this area. Due to its complexity a small area in the highlands was delimited with defined physical boundaries, encompassing several states of Mexico. The study area was defined as Mexico's Central Region (MCR), which is located between 19.5 ° - 22.5 ° N and 98.5 ° - 104 ° W. Most of this area overlies the plateau of Anahuac, whose physical boundaries extend to the north from the "Sierras Transversales" (composed by the "Sierra de Zacatecas", the "Sierra de la "Breña" and the "Sierra de San Luis") to the "Eje Neovolcánico" to the south; east and west boundaries are confined by the "Sierra Madre Oriental" and the "Sierra Madre Occidental", respectively. Daily data of maximum and minimum temperature and precipitation series from a total of 112 weather stations were obtained from CLICOM and ERICIII databases. Several climatic indices with average periods of phase oscillations greater than five years, such as the Pacific Decadal Oscillation (PDOI), the Atlantic Multidecadal Oscillation (AMOI), The Arctic Oscillation (AOI), the North Atlantic Oscillation (NAOI), and Aleutian Low Pressure (ALPI) on a monthly basis for all series, except the ALPI series which is on annual rate, were also used in this study. Indices data were obtained from the web site http://www.cicimar.ipn.mx/oacis/Indices_Climaticos.php/. The common period of all series was 1961-2000. We applied Principal Component Analysis to precipitation and temperature series to identify the principal modes of variation of the series. The first mode explained more than 68% of the variance in the original series and corresponds to annual variations. Contour maps were useful to elucidate that temperature variations are highly correlated with the terrain

  17. A Three-Axis Acoustic Current Meter for Small Scale Turbulence,

    DTIC Science & Technology

    1975-01-01

    correct the phase error of El free of the problems associated with threshold de- (crystal VCO) and, consequently, the phase errorbe- tectian of pulses...00614v radicls 4 Refrring to Figure 2, E Is derived from . LA-Aul Thus, the zero offset term Is equivalent to a velo- crystal controlled oscillator

  18. Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Von Glahn, U.; Groesbeck, D.

    1979-01-01

    On the basis of static zero/acoustic data obtained at model scale, the effect of exhaust nozzle size on flyover noise is evaluated at full scale for different STOL-OTW nozzle configurations. Three types of nozzles are evaluated: a circular/deflector nozzle mounted above the wing, a slot/deflector nozzle mounted on the wing, and a slot nozzle mounted on the wing. The nozzle exhaust plane location, measured from the wing leading edge was varied from 10 to 46 percent of the wing chord (flaps retracted). Flap angles of 20 deg (takeoff) and 60 deg (approach) are included in the study. Initially, perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots static EPNL values, defined as flyover relative noise levels, then are obtained as functions of nozzle size for equal aerodynamic performance (lift and thrust). On the basis of these calculations, the acoustic benefits attributable to nozzle size relative to a given wing chord size are assessed.

  19. Validation of the facial dysfunction domain of the Penn Acoustic Neuroma Quality-of-Life (PANQOL) Scale.

    PubMed

    Lodder, Wouter L; Adan, Guleed H; Chean, Chung S; Lesser, Tristram H; Leong, Samuel C

    2017-04-08

    The objective of this study is to evaluate the strength of content validity within the facial dysfunction domain of the Penn Acoustic Neuroma Quality-of-Life (PANQOL) Scale and to compare how it correlates with a facial dysfunction-specific QOL instrument (Facial Clinimetric Evaluation, FaCE). The study design is online questionnaire survey. Members of the British Acoustic Neuroma Association received both PANQOL questionnaires and the FaCE scale. 158 respondents with self-identified facial paralysis or dysfunction had completed PANQOL and FaCE data sets for analysis. The mean composite PANQOL score was 53.5 (range 19.2-93.5), whilst the mean total FaCE score was 50.9 (range 10-95). The total scores of the PANQOL and FaCE correlated moderate (r = 0.48). Strong correlation (r = 0.63) was observed between the PANQOL's facial dysfunction domain and the FaCE total score. Of all the FaCE domains, social function was strongly correlated with the PANQOL facial dysfunction domain (r = 0.66), whilst there was very weak-to-moderate correlation (range 0.01-0.43) to the other FaCE domains. The current study has demonstrated a strong correlation between the facial dysfunction domains of PANQOL with a facial paralysis-specific QOL instrument.

  20. Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chylek, Petr; Folland, Chris K.; Dijkstra, Henk A.; Lesins, Glen; Dubey, Manvendra K.

    2011-07-01

    Using five ice core data sets combined into a single time series, we provide for the first time strong observational evidence for two distinct time scales of Arctic temperature fluctuation that are interpreted as variability associated with the Atlantic Multidecadal Oscillation (AMO). The dominant and the only statistically significant multidecadal signal has a time scale of about 20 years. The longer multidecadal variability of 45-85 years is not well defined and none of the time scales in this band is statistically significant. We compare these observed temperature fluctuations with results of coupled climate model simulations (HadCM3 and GFDL CM2.1). Both the 20-25 year and a variable longer AMO time scale are prominent in the models' long control runs. This periodicity supports our conjecture that the observed ice core fluctuations are a signature of the AMO. The robustness of this short time scale period in both observations and model simulations has implications for understanding the dominant AMO mechanisms in climate.

  1. Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia?

    PubMed Central

    Lisman, John

    2011-01-01

    What causes the positive, negative, and cognitive symptoms of schizophrenia? The importance of circuits is underscored by the finding that no single gene contributes strongly to the disease. Thus, some circuit abnormality to which many proteins can contribute is the likely cause. There are several major hypotheses regarding the circuitry involved: 1) a change in the balance of excitation/inhibition in the PFC; 2) abnormal EEG oscillations in the gamma range; 3) an increase in theta/delta EEG power related to changes in the thalamus (particularly midline nuclei); 4) hyperactivity in the hippocampus and consequent dopamine hyperfunction; or 5) deficits in corollary discharge. Evidence for these hypotheses will be reviewed. PMID:22079494

  2. Validation and Simulation of Ares I Scale Model Acoustic Test - 2 - Simulations at 5 Foot Elevation for Evaluation of Launch Mount Effects

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Putman, Gabriel C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the direction of the launch tower. These tests have been performed without water suppression and have compared the acoustic emissions for launch structures with and without launch mounts. In addition, simulation results have also been compared to acoustic and imagery data collected from similar live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic environment experienced by the vehicle and the formation of highly directed acoustic waves moving across the platform deck. Comparisons of simulation results to live-fire test data showed good amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths showed qualitative capture of all plume and pressure wave evolution features.

  3. Long-period quasi-periodic oscillations of a small-scale magnetic structure on the Sun

    NASA Astrophysics Data System (ADS)

    Kolotkov, D. Y.; Smirnova, V. V.; Strekalova, P. V.; Riehokainen, A.; Nakariakov, V. M.

    2017-01-01

    Aims: Long-period quasi-periodic variations of the average magnetic field in a small-scale magnetic structure on the Sun are analysed. The structure is situated at the photospheric level and is involved in a facula formation in the chromosphere. Methods: The observational signal obtained from the SDO/HMI line-of-sight magnetograms of the target structure has a non-stationary behaviour, and is therefore processed with the Hilbert-Huang Transform spectral technique. Results: The empirical decomposition of the original signal and subsequent testing of the statistical significance of its intrinsic modes reveal the presence of the white and pink noisy components for the periods shorter and longer than 10 min, respectively, and a significant oscillatory mode. The oscillation is found to have a non-stationary period growing from approximately 80 to 230 min and an increasing relative amplitude, while the mean magnetic field in the oscillating structure is seen to decrease. The observed behaviour could be interpreted either by the dynamical interaction of the structure with the boundaries of supergranula cells in the region of interest or in terms of the vortex shedding appearing during the magnetic flux emergence.

  4. Subpilot-scale testing of acoustically enhanced cyclone collectors. Final report, September 1988--September 1994

    SciTech Connect

    Galica, M.A.; Campbell, A.H.; Rawlins, D.C.

    1994-08-01

    Gas turbines are used to recover energy from high temperature exhaust gases in coal-fired pressurized-fluidized bed, combined-cycle power generation systems. However, prior to entering the turbine hot-section, the majority of the fly ash must be removed in order to protect the turbine components from erosion, corrosion, and deposition of the ash. The U.S. Department of Energy under the direction of the Morgantown Energy Technology Center (METC) sponsored the development of an acoustically enhanced cyclone collector which offers the potential of achieving environmental control standards under Pressurized Fluid Bed Combustors (PFBC) conditions without the need for post-turbine particulate control. Pulse combustors developed by Manufacturing and Technology Conversation International, Inc. (MTCI) produced the acoustic power necessary to agglomerate ash particles into sizes large enough to be collected in a conventional cyclone system. A hot gas cleanup system that meets both turbine protection and emissions requirements without post-turbine particulate controls would also have improved overall system economics.

  5. A case study of the intraseasonal oscillation traversing the TOGA-COARE LSD. [large-scale domain

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; Schrage, Jon M.; Sliwinski, L. D.

    1993-01-01

    The paper presents examination of tree intraseasonal (30-60 day) oscillations (ISOs) that occurred during the southern summer season (December 1, 1985 - February 28, 1986) traversing the Large-Scale Domain (LSD) TOGA-COARE, the region which also plays an important role in ENSO, Australian monsoon, and extratropical circulations. Data presented include Hovmoeller diagrams of 5-day running means of 250-mb velocity potential anomalies and OLR anomalies; graphs of five-day running means of OLR in precipitable water (W) per sq m, averaged over 10 x 10 deg boxes centered on 5 S and (1) 145 E, (2) 155 E, (3) 165 E, and (4) 165 D, indicating the midpoint of each ISO; and vertical profiles of zonal wind in m/s averaged over the time period that each ISO spends in the 10 x 10 deg box centered at 5 S, and 175 E and 145 E.

  6. Does El Niño-Southern Oscillation affect the precipitation in Korea on seasonal time scales?

    NASA Astrophysics Data System (ADS)

    Ho, Chang-Hoi; Choi, Woosuk; Kim, Jinwon; Kim, Maeng-Ki; Yoo, Hee-Dong

    2016-08-01

    A number of studies in the past two decades have attempted to find the relationship between the precipitation in Korea and the El Niño-Southern Oscillation (ENSO) on various time scales. Comprehensive analyses of station precipitation data in Korea for the 61-year period, 1954-2014, in this study show that the effects of ENSO on the seasonal precipitation in Korea are practically negligible. The correlation between summer precipitation and ENSO is insignificant regardless of the intensity, type (e.g., eastern-Pacific or central-Pacific), and stage (e.g., developing, mature, or decaying) of ENSO. Somewhat meaningful correlation between ENSO and precipitation in Korea occurs only in the ENSO-developing fall. Because summer rainfall accounts for over half of the annual total and fall is a dry season in Korea, the overall effects of ENSO on precipitation in Korea are practically nonexistent.

  7. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    SciTech Connect

    Huang, Jun-Lin; Zhou, Ke-Yi Xu, Jian-Qun; Wang, Xin-Meng; Tu, Yi-You

    2014-07-28

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  8. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Lin; Zhou, Ke-Yi; Wang, Xin-Meng; Tu, Yi-You; Xu, Jian-Qun

    2014-07-01

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  9. Optimal input experiment design and parameter estimation in core-scale pressure oscillation experiments

    NASA Astrophysics Data System (ADS)

    Potters, M. G.; Mansoori, M.; Bombois, X.; Jansen, J. D.; Van den Hof, P. M. J.

    2016-03-01

    This paper considers Pressure Oscillation (PO) experiments for which we find the minimum experiment time that guarantees user-imposed parameter variance upper bounds and honours actuator limits. The parameters permeability and porosity are estimated with a classical least-squares estimation method for which an expression of the covariance matrix of the estimates is calculated. This expression is used to tackle the optimization problem. We study the Dynamic Darcy Cell experiment set-up (Heller et al., 2002) and focus on data generation using square wave actuator signals, which, as we shall prove, deliver shorter experiment times than sinusoidal ones. Parameter identification is achieved using either inlet pressure/outlet pressure measurements (Heller et al., 2002) or actuator position/outlet pressure measurements, where the latter is a novel approach. The solution to the optimization problem reveals that for both measurement methods an optimal excitation frequency, an optimal inlet volume, and an optimal outlet volume exist. We find that under the same parameter variance bounds and actuator constraints, actuator position/outlet pressure measurements result in required experiment times that are a factor fourteen smaller compared to inlet pressure/outlet pressure measurements. This result is analysed in detail and we find that the dominant effect driving this difference originates from an identifiability problem when using inlet-outlet pressure measurements for joint estimation of permeability and porosity. We illustrate our results with numerical simulations, and show excellent agreement with theoretical expectations.

  10. RKKY oscillations in the spin relaxation rates of atomic-scale nanomagnets

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Fernández-Rossier, J.

    2017-02-01

    Exchange interactions with itinerant electrons are known to act as a relaxation mechanism for individual local spins. The same exchange interactions induce the so-called RKKY indirect exchange interaction between two otherwise decoupled local spins. Here, we show that both the spin relaxation and the RKKY coupling can be seen as the dissipative and reactive response to the coupling of the local spins with the itinerant electrons. We thereby predict that the spin relaxation rates of magnetic nanostructures of exchanged coupled local spins, such as nanoengineered spin chains, have an oscillatory dependence on kFd , where kF is the Fermi wave number and d is the interspin distance, very much like the celebrated oscillations in the RKKY interaction. We demonstrate that both T1 and T2 can be enhanced or suppressed, compared to the single-spin limit, depending on the interplay between the Fermi surface and the nanostructure geometrical arrangement. Our results open a route to engineer spin relaxation and decoherence in atomically designed spin structures.

  11. Seminal role of stratiform clouds in large-scale aggregation of tropical rain in boreal summer monsoon intraseasonal oscillations

    NASA Astrophysics Data System (ADS)

    Kumar, Siddharth; Arora, Anika; Chattopadhyay, R.; Hazra, Anupam; Rao, Suryachandra A.; Goswami, B. N.

    2016-04-01

    Modification of the vertical structure of non-adiabatic heating by significant abundance of the stratiform rain in the tropics has been known to influence the large-scale circulation. However, the role of the stratiform rain on the space-time evolution of the observed Boreal summer monsoon intraseasonal oscillations (MISO) has so far been ignored. In the present study, we unravel a feedback mechanism through which the stratiform component of the rain leads to aggregation (organization) of rain on the MISO scale, making it an indispensable component of the MISO evolution dynamics. Using TRMM 3A25 monthly mean data (between 1998 and 2013), the ratio between convective and stratiform rain (RCS) is shown to be strongly related to the total rainfall. Further, composites of rainfall and circulation anomalies corresponding to high (low) values of RCS over the Central India or over the Equatorial Indian Ocean show spatial structures remarkably similar to that associated with the MISOs. Analyzing lead-lag relationship between the convective rain, the stratiform rain and the large scale moisture convergence with respect to peak active (break) spells from daily modern era retrospective-analysis for research and applications data, we unravel that the initial isolated convective elements spawn the stratiform rain which in turn modifies the vertical distribution of heating and leads to stronger large scale moisture convergence thereby producing more convective elements and more stratiform rain ultimately leading to aggregation of rain on the MISO scale. Our finding indicates that large and persisting systematic biases in simulating the summer monsoon rainfall over the Asian monsoon region by climate models are likely to be related to the systematic biases in simulating the MISOs which in turn are related to the serious underestimation of stratiform rain in most climate models.

  12. Seminal role of stratiform clouds in large-scale aggregation of tropical rain in boreal summer monsoon intraseasonal oscillations

    NASA Astrophysics Data System (ADS)

    Kumar, Siddharth; Arora, Anika; Chattopadhyay, R.; Hazra, Anupam; Rao, Suryachandra A.; Goswami, B. N.

    2017-02-01

    Modification of the vertical structure of non-adiabatic heating by significant abundance of the stratiform rain in the tropics has been known to influence the large-scale circulation. However, the role of the stratiform rain on the space-time evolution of the observed Boreal summer monsoon intraseasonal oscillations (MISO) has so far been ignored. In the present study, we unravel a feedback mechanism through which the stratiform component of the rain leads to aggregation (organization) of rain on the MISO scale, making it an indispensable component of the MISO evolution dynamics. Using TRMM 3A25 monthly mean data (between 1998 and 2013), the ratio between convective and stratiform rain (RCS) is shown to be strongly related to the total rainfall. Further, composites of rainfall and circulation anomalies corresponding to high (low) values of RCS over the Central India or over the Equatorial Indian Ocean show spatial structures remarkably similar to that associated with the MISOs. Analyzing lead-lag relationship between the convective rain, the stratiform rain and the large scale moisture convergence with respect to peak active (break) spells from daily modern era retrospective-analysis for research and applications data, we unravel that the initial isolated convective elements spawn the stratiform rain which in turn modifies the vertical distribution of heating and leads to stronger large scale moisture convergence thereby producing more convective elements and more stratiform rain ultimately leading to aggregation of rain on the MISO scale. Our finding indicates that large and persisting systematic biases in simulating the summer monsoon rainfall over the Asian monsoon region by climate models are likely to be related to the systematic biases in simulating the MISOs which in turn are related to the serious underestimation of stratiform rain in most climate models.

  13. Multi scale analysis by acoustic emission of damage mechanisms in natural fibre woven fabrics/epoxy composites.

    NASA Astrophysics Data System (ADS)

    Bonnafous, C.; Touchard, F.; Chocinski-Arnault, L.

    2010-06-01

    This paper proposes to develop an experimental program to characterize the type and the development of damage in composite with complex microstructure. A multi-scale analysis by acoustic emission has been developed and applied to hemp fibre woven fabrics/epoxy composite. The experimental program consists of tensile tests performed on single yarn, neat epoxy resin and composite materials to identify their AE amplitude signatures. A statistical analysis of AE amplitude signals has been realised and correlated with microscopic observations. Results have enabled to identify three types of damage in composites and their associated AE amplitudes: matrix cracking, interfacial debonding and reinforcement damage and fracture. Tracking of these damage mechanisms in hemp/epoxy composites has been performed to show the process of damage development in natural fibre reinforced composites.

  14. Solar Oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas

    2004-01-01

    Oscillations were first detected in the solar photosphere in 1962 by Leighton and students. In 1970 it was calculated that these oscillations, with a period near five minutes, were the manifestations of acoustic waves trapped in the interior. The subsequent measurements of the frequencies of global oscillation modes from the spatio-temporal power spectrum of the waves made possible the refinement of solar interior models. Over the years, increased understanding of the nuclear reaction rates, the opacity, the equation of state, convection, and gravitational settling have resulted. Mass flows shift the frequencies of modes leading to very accurate measurements of the interior rotation as a function of radius and latitude. In recent years, analogues of terrestrial seismology have led to a tomography of the interior, including measurements of global north-south flows and flow and wave speed measurements below features such as sunspots. The future of helioseismology seems bright with the approval of NASA's Solar Dynamics Observatory mission, to be launched in 2008.

  15. Annual flood sensitivities to El Niño-Southern Oscillation at the global scale

    USGS Publications Warehouse

    Ward, Philip J.; Eisner, S.; Flörke, M.; Dettinger, Michael D.; Kummu, M.

    2013-01-01

    Floods are amongst the most dangerous natural hazards in terms of economic damage. Whilst a growing number of studies have examined how river floods are influenced by climate change, the role of natural modes of interannual climate variability remains poorly understood. We present the first global assessment of the influence of El Niño–Southern Oscillation (ENSO) on annual river floods, defined here as the peak daily discharge in a given year. The analysis was carried out by simulating daily gridded discharges using the WaterGAP model (Water – a Global Assessment and Prognosis), and examining statistical relationships between these discharges and ENSO indices. We found that, over the period 1958–2000, ENSO exerted a significant influence on annual floods in river basins covering over a third of the world's land surface, and that its influence on annual floods has been much greater than its influence on average flows. We show that there are more areas in which annual floods intensify with La Niña and decline with El Niño than vice versa. However, we also found that in many regions the strength of the relationships between ENSO and annual floods have been non-stationary, with either strengthening or weakening trends during the study period. We discuss the implications of these findings for science and management. Given the strong relationships between ENSO and annual floods, we suggest that more research is needed to assess relationships between ENSO and flood impacts (e.g. loss of lives or economic damage). Moreover, we suggest that in those regions where useful relationships exist, this information could be combined with ongoing advances in ENSO prediction research, in order to provide year-to-year probabilistic flood risk forecasts.

  16. Annual flood sensitivities to El Niño-Southern Oscillation at the global scale

    NASA Astrophysics Data System (ADS)

    Ward, P. J.; Eisner, S.; Flörke, M.; Dettinger, M. D.; Kummu, M.

    2014-01-01

    Floods are amongst the most dangerous natural hazards in terms of economic damage. Whilst a growing number of studies have examined how river floods are influenced by climate change, the role of natural modes of interannual climate variability remains poorly understood. We present the first global assessment of the influence of El Niño-Southern Oscillation (ENSO) on annual river floods, defined here as the peak daily discharge in a given year. The analysis was carried out by simulating daily gridded discharges using the WaterGAP model (Water - a Global Assessment and Prognosis), and examining statistical relationships between these discharges and ENSO indices. We found that, over the period 1958-2000, ENSO exerted a significant influence on annual floods in river basins covering over a third of the world's land surface, and that its influence on annual floods has been much greater than its influence on average flows. We show that there are more areas in which annual floods intensify with La Niña and decline with El Niño than vice versa. However, we also found that in many regions the strength of the relationships between ENSO and annual floods have been non-stationary, with either strengthening or weakening trends during the study period. We discuss the implications of these findings for science and management. Given the strong relationships between ENSO and annual floods, we suggest that more research is needed to assess relationships between ENSO and flood impacts (e.g. loss of lives or economic damage). Moreover, we suggest that in those regions where useful relationships exist, this information could be combined with ongoing advances in ENSO prediction research, in order to provide year-to-year probabilistic flood risk forecasts.

  17. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  18. The Effect of Nasal Obstruction after Different Nasal Surgeries Using Acoustic Rhinometry and Nasal Obstruction Symptom Evaluation Scale

    PubMed Central

    Kahraman, Erkan; Cil, Yakup; Incesulu, Armagan

    2016-01-01

    BACKGROUND The efficiency of nasal surgeries can be determined by objective or subjective methods. We have assessed the effect of nasal obstruction after different nasal surgeries using Acoustic Rhinometry (AR) and Nasal Obstruction Symptom Evaluation (NOSE) Scale. METHODS Between May 2011 and May 2012, 40 young adult patients and 10 healthy volunteers as control group who referred to Otorhinolaryngology Clinic in Eskisehir Military Hospital due to nasal obstruction were enrolled. Depending on operation, patients were divided into four equal groups. Group 1: Septoplasty, Group 2: Septoplasty with sprader graft, Group 3: Septorinoplasty and Group 4: Septorhinoplasty with spreader graft. The patients completed NOSE scale, 1 week before and 1 month after the surgery and AR measurements. RESULTS There were a significant improvement in mean NOSE scores of patients and statistical difference was found between pre and post-operational values for each group. There was a statistically significant change of the mean minimal cross section areas (MCA) of the deviated side of nasal passages measured by AR between pre and postoperative period. CONCLUSION In patients with nasal obstruction, functional nasal surgeries which were performed after appropriate medical examination and with right operation methods had a positive impact on quality of life and patient satisfaction. We observed that nasal findings were correlated with NOSE scores and MCA values. So, we suggest that NOSE scale and AR to be used for evaluation of the efficiency of functional nasal surgeries. PMID:27853686

  19. Influence of the Madden–Julian oscillation on Tibetan Plateau snow cover at the intraseasonal time-scale

    PubMed Central

    Li, Wenkai; Guo, Weidong; Hsu, Pang-chi; Xue, Yongkang

    2016-01-01

    The Tibetan Plateau (TP), known as the third pole of the Earth, has snow cover with intraseasonal to decadal variability that affects weather and climate both inside and outside the TP. However, the factors that generate the TP snow cover (TPSC) anomalies at the intraseasonal time-scale are unclear. This report reveals the influence of the Madden‒Julian oscillation (MJO), which is the most dominant component of the tropical intraseasonal variability, on TPSC. We focus on wintertime snow cover over the central and eastern TP, where the intraseasonal variability is large. TPSC increases/decreases in the MJO phases 8‒1/4–5, when the eastward-propagating MJO suppressed/enhanced convection locates over the Maritime Continent. Such a change in TPSC leads to the most dominant positive/negative anomalies of TPSC in the following phases 2‒3/6‒7 due to the non-significant change of TPSC in these phases. There is anomalous moisture advection over the upstream of the TP caused by MJO-excited large-scale atmospheric circulation. The advection process generates the low-frequency eastward-propagating anomalous water vapour from upstream to the TP that influences precipitation and, eventually, TPSC. PMID:27464569

  20. Spatially Oscillating Activity and Microbial Succession of Mercury-Reducing Biofilms in a Technical-Scale Bioremediation System

    PubMed Central

    von Canstein, Harald; Li, Ying; Leonhäuser, Johannes; Haase, Elke; Felske, Andreas; Deckwer, Wolf-Dieter; Wagner-Döbler, Irene

    2002-01-01

    Mercury-contaminated chemical wastewater of a mercury cell chloralkali plant was cleaned on site by a technical-scale bioremediation system. Microbial mercury reduction of soluble Hg(II) to precipitating Hg(0) decreased the mercury load of the wastewater during its flow through the bioremediation system by up to 99%. The system consisted of a packed-bed bioreactor, where most of the wastewater's mercury load was retained, and an activated carbon filter, where residual mercury was removed from the bioreactor effluent by both physical adsorption and biological reduction. In response to the oscillation of the mercury concentration in the bioreactor inflow, the zone of maximum mercury reduction oscillated regularly between the lower and the upper bioreactor horizons or the carbon filter. At low mercury concentrations, maximum mercury reduction occurred near the inflow at the bottom of the bioreactor. At high concentrations, the zone of maximum activity moved to the upper horizons. The composition of the bioreactor and carbon filter biofilms was investigated by 16S-23S ribosomal DNA intergenic spacer polymorphism analysis. Analysis of spatial biofilm variation showed an increasing microbial diversity along a gradient of decreasing mercury concentrations. Temporal analysis of the bioreactor community revealed a stable abundance of two prevalent strains and a succession of several invading mercury-resistant strains which was driven by the selection pressure of high mercury concentrations. In the activated carbon filter, a lower selection pressure permitted a steady increase in diversity during 240 days of operation and the establishment of one mercury-sensitive invader. PMID:11916716

  1. Probabilistic Prediction of Precipitation Deficits using Large-scale Circulation Indices as Precursors - The Role of The Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Khedun, C. P.; Mishra, A. K.; Giardino, J. R.; Singh, V. P.

    2012-12-01

    Climate variability patterns are the most common cause for atmospheric droughts. Precipitation in the southern US is influenced by two large scale circulation patterns: the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Positive (negative) precipitation anomalies are generally associated with El Niños (La Niñas). The recent record drought in 2011 for example was strongly influenced by La Niña conditions. Moreover, PDO, when in phase with ENSO, tend to enhance the effect of El Niños or La Niñas. We hypothesize that the state of ENSO and PDO can be used to conditionally predict precipitation anomalies. We use copulas to (1) investigate the relationship between precipitation anomalies and ENSO and PDO and (2) use the information to predict precipitation anomalies based on the projected state of these climate patterns. Copulas offer a viable alternative for this study as marginals from different families can be combined into joint distributions. We first use bivariate copula to model the relationship between ENSO and precipitation anomalies and then extend to include PDO in a trivariate model. We choose from ten different copulas, belonging to the elliptical and Archimedian families, and found that the copula modeling the dependence structure changes across climate regions. The prediction capability of the bivariate model is compared to that of the trivariate model to assess if PDO can hone prediction capabilities. The proposed methodology is applied to the state of Texas, which has ten climate divisions exhibiting varying climatic conditions. The outcome of the study can provide advanced warning on the expected state of precipitation, based on projected ENSO and PDO conditions. Such warning may help trigger drought management plans in the state. The methodology developed in this research can be easily extended and applied to different regions.

  2. Acoustic testing of a supersonic tip speed fan with acoustic treatment and rotor casting slots. Quiet engine program scale model fan C

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.

    1973-01-01

    Acoustic tests were conducted on a high tip speed (1550 ft/sec, 472.44 m/sec) single stage fan with varying amounts of wall acoustic treatment and with circumferential slots over the rotor blade tips. The slots were also tested with acoustic treatment placed behind the slots. The wall treatment results show that the inlet treatment is more effective at high fan speeds and aft duct treatment is more effective at low fan speeds. Maximum PNL's on a 200-foot (60.96 m) sideline show the untreated slots to have increased the rear radiated noise at approach. However, when the treatment was added to the slots inlet radiated noise was decreased, resulting in little change relative to the solid casing on an EPNL basis.

  3. Numerical methods for large eddy simulation of acoustic combustion instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton T.

    Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion

  4. An evaluation of acoustic seabed classification techniques for marine biotope monitoring over broad-scales (>1 km 2) and meso-scales (10 m 2-1 km 2)

    NASA Astrophysics Data System (ADS)

    van Rein, H.; Brown, C. J.; Quinn, R.; Breen, J.; Schoeman, D.

    2011-07-01

    Acoustic seabed classification is a useful tool for monitoring marine benthic habitats over broad-scales (>1 km 2) and meso-scales (10 m 2-1 km 2). Its utility in this context was evaluated using two approaches: by describing natural changes in the temporal distribution of marine biotopes across the broad-scale (4 km 2), and by attempting to detect specific experimentally-induced changes to kelp-dominated biotopes across the meso-scale (100 m 2). For the first approach, acoustic backscatter mosaics were constructed using sidescan sonar and multibeam echosounder data collected from Church Bay (Rathlin Island, Northern Ireland) in 1999, 2008 and 2009. The mosaics were manually segmented into acoustic facies, which were ground-truthed using a drop-video camera. Biotopes were classified from the video by multivariate exploratory analysis and cross-tabulated with the acoustic facies, showing a positive correlation. These results were integrated with bathymetric data to map the distribution of seven unique biotopes in Church Bay. Kappa analysis showed the biotope distribution was highly similar between the biotope maps, possibly due to the stability of bedforms shaped by the tidal regime around Rathlin Island. The greatest biotope change in this approach was represented by seasonal and annual changes in the growth of the seagrass, Zostera marina. In the second approach, sidescan sonar data were collected before and after the removal of 100 m 2 of kelp from three sites. Comparison of the data revealed no differences between the high-resolution backscatter imagery. It is concluded that acoustic seabed classification can be used to monitor change over broad- and meso-scales but not necessarily for all biotopes; its success depends on the type of acoustic system employed and the biological characteristics of the target biotope.

  5. Outcrop-scale acoustic facies analysis and latest Quaternary development of Hueneme and Dume submarine fans, offshore California

    USGS Publications Warehouse

    Piper, D.J.W.; Hiscott, R.N.; Normark, W.R.

    1999-01-01

    The uppermost Quaternary deposits of the Hueneme and Dume submarine fans in the Santa Monica Basin have been investigated using a closed-spaced grid of boomer seismic-reflection profiles, which give vertical resolution of a few tens of centimetres with acoustic penetration to 50 m. Acoustic facies integrated with geometry define six architectural elements, some with discrete subelements that are of a scale that can be recognized in outcrops of ancient turbidite systems. In the Santa Monica Basin, the relationship of these elements to fan morphology, stratigraphy and sediment source is precisely known. The width of upper Hueneme fan valley has been reduced from 5 km since the last glacial maximum to 1 km at present by construction of laterally confined sandy levees within the main valley. The middle fan comprises three main subelements: thick sand deposits at the termination of the fan valley, low-gradient sandy lobes typically 5 km long and < 10 m thick, and scoured lobes formed of alternating sand and mud beds with many erosional depressions. The site of thickest lobe sediment accumulation shifts through time, with each sand bed deposited in a previous bathymetric low (i.e. compensation cycles). The lower fan and basin plain consists of sheet-like alternations of sand and mud with shallow channels and lenses. Variations in the rate of late Quaternary sea level rise initiated changes in sediment facies distribution. At lowstand, and during the approximately 11 ka stillstand in sea level, the Hueneme Fan was fed largely by hyperpycnal flow from the Santa Clara River delta, depositing high sediment waves on the right hand levee and thick sandy lobes on the middle fan. At highstand of sea level, most turbidity currents were generated by failure of silty prodelta muds. In contrast, the smaller Dume Fan was apparently always fed from littoral drift of sand through a single-canyon point source.

  6. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  7. A simple violin oscillator

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  8. Acoustic absorption by sunspots

    NASA Technical Reports Server (NTRS)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  9. Acoustic Treatment Design Scaling Methods. Volume 5; Analytical and Experimental Data Correlation

    NASA Technical Reports Server (NTRS)

    Chien, W. E.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The primary purpose of the study presented in this volume is to present the results and data analysis of in-duct transmission loss measurements. Transmission loss testing was performed on full-scale, 1/2-scale, and 115-scale treatment panel samples. The objective of the study was to compare predicted and measured transmission loss for full-scale and subscale panels in an attempt to evaluate the variations in suppression between full- and subscale panels which were ostensibly of equivalent design. Generally, the results indicated an unsatisfactory agreement between measurement and prediction, even for full-scale. This was attributable to difficulties encountered in obtaining sufficiently accurate test results, even with extraordinary care in calibrating the instrumentation and performing the test. Test difficulties precluded the ability to make measurements at frequencies high enough to be representative of subscale liners. It is concluded that transmission loss measurements without ducts and data acquisition facilities specifically designed to operate with the precision and complexity required for high subscale frequency ranges are inadequate for evaluation of subscale treatment effects.

  10. Validation of the Penn Acoustic Neuroma Quality-of-Life Scale (PANQOL) for Spanish-Speaking Patients.

    PubMed

    Medina, Maria Del Mar; Carrillo, Alvaro; Polo, Ruben; Fernandez, Borja; Alonso, Daniel; Vaca, Miguel; Cordero, Adela; Perez, Cecilia; Muriel, Alfonso; Cobeta, Ignacio

    2017-04-01

    Objective To perform translation, cross-cultural adaptation, and validation of the Penn Acoustic Neuroma Quality-of-Life Scale (PANQOL) to the Spanish language. Study Design Prospective study. Setting Tertiary neurotologic referral center. Subjects and Methods PANQOL was translated and translated back, and a pretest trial was performed. The study included 27 individuals diagnosed with vestibular schwannoma. Inclusion criteria were adults with untreated vestibular schwannoma, diagnosed in the past 12 months. Feasibility, internal consistency, test-retest reliability, construct validity, and ceiling and floor effects were assessed for the present study. Results The mean overall score of the PANQOL was 69.21 (0-100 scale, lowest to highest quality of life). Cronbach's α was 0.87. Intraclass correlation coefficient was performed for each item, with an overall score of 0.92. The κ coefficient scores were between moderate and almost perfect in more than 92% of patients. Anxiety and energy domains of the PANQOL were correlated with both physical and mental components of the SF-12. Hearing, balance, and pain domains were correlated with the SF-12 physical component. Facial and general domains were not significantly correlated with any component of the SF-12. Furthermore, the overall score of the PANQOL was correlated with the physical component of the SF-12. Conclusion Feasibility, internal consistency, reliability, and construct validity outcomes in the current study support the validity of the Spanish version of the PANQOL.

  11. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  12. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.

  13. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  14. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  15. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  16. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  17. Acoustic actuation of bioinspired microswimmers.

    PubMed

    Kaynak, Murat; Ozcelik, Adem; Nourhani, Amir; Lammert, Paul E; Crespi, Vincent H; Huang, Tony Jun

    2017-01-31

    Acoustic actuation of bioinspired microswimmers is experimentally demonstrated. Microswimmers are fabricated in situ in a microchannel. Upon acoustic excitation, the flagellum of the microswimmer oscillates, which in turn generates linear or rotary movement depending on the swimmer design. The speed of these bioinspired microswimmers is tuned by adjusting the voltage amplitude applied to the acoustic transducer. Simple microfabrication and remote actuation are promising for biomedical applications.

  18. The Acoustic Signature of Woodford Shale and Upscale Relationship from Nano-Scale Mechanical Properties and Mineralogy

    NASA Astrophysics Data System (ADS)

    Tran, M. H.; Abousleiman, Y. N.; Hoang, S. K.; Ortega, A. J.; Bobko, C.; Ulm, F.

    2007-12-01

    The complex composition of shale, the most encountered and problematic lithology in the Earth's crust, has puzzled many researchers attempting to find the key for understanding their micro- and macro-scale acoustic and mechanical signatures. Recent advances in nano-technology, in particular the progress of the Atomic Force Microscope (AFM) base indentation technique, have made it possible to mechanically study porous material at a nano scale (10-9 m) and consequently have allowed linking shale mechanical properties to intrinsic micro- and macro-properties such as porosity, packing density, and mineralogy. Based on more than 20,000 nano- indentation tests conducted on a number of shales with varying physical properties, a GeoGenomeTM model was developed to upscale macroscopic shale mechanical parameters from mineralogy composition, porosity, and packing density. In this work, the mechanical properties such as the elastic stiffness coefficients, Cij, and the anisotropic Biot's Pore Pressure Coefficients, αij, of the Woodford shale, were acquired using sonic log data and Ultra-Sonic Pulse Velocity (UPV) measurements conducted on preserved retrieved shale core samples from a 200-ft well drilled in the Woodford formation, in Oklahoma. Furthermore, the dependency of the Cij and αij, on applied stresses and the relationship between the dynamic moduli and the quasi-static moduli were also investigated using an array of piezoelectric crystals mounted around the samples while subjecting the samples to different applied stress states using a series of tri-axial tests. X-Ray Diffraction (XRD) and mercury injection tests were also performed on the retrieved core samples to obtain mineralogy composition and porosity of the shale at different depths. Comparison of the simulated mechanical and poromechanical properties and stiffness coefficients using the Quantitative GeoGenomeTM Mineralogy Simulator (QGGMSTM) with field and acoustic lab measurements showed excellent agreement

  19. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    SciTech Connect

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; Percival, Will J.; Tinker, Jeremy; Tojeiro, Rito; White, Marin; Daniel J. Einstein; Maraston, Claudia; Ross, Ashley J.; Sanchez, Ariel G.; Schlegel, David; Sheldon, Erin; Strauss, Michael A.; Thomas, Daniel; Wake, David; Beutler, Florian; Bizyaev, Dmitry; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia -Hsun; Dawson, Kyle; Harding, Paul; Kitaura, Francisco -Shu; Leauthaud, Alexie; Masters, Karen; McBride, Cameron K.; More, Surhud; Olmstead, Matthew D.; Oravetz, Daniel; Nuza, Sebastian E.; Pan, Kaike; Parejko, John; Pforr, Janine; Prada, Francisco; Rodriguez-Torres, Sergio; Salazar-Albornoz, Salvador; Samushia, Lado; Schneider, Donald P.; Scoccola, Claudia G.; Simmons, Audrey; Vargas-Magana, Mariana

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.

  20. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    DOE PAGES

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; ...

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets formore » which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.« less

  1. Tempo and scale of biogenic effects on high-frequency acoustic propagation near the marine sediment-water interface in shallow water

    NASA Astrophysics Data System (ADS)

    Jumars, Peter

    2003-04-01

    Organisms have natural scales, such as lifetimes, body sizes, frequencies of movement to new locations, and residence times of material in digestive systems, and each scale has potential implications for acoustic effects. The effects of groups of organisms, like organisms themselves, aggregate in space and time. This review, including an assortment of unpublished information, examines examples of such aggregations, many of them documented acoustically. Light synchronizes many activities. Macroscopic animals forage primarily under cover of darkness. This phasing applies both to animals that extend appendages above the sediment-water interface and to animals that leave the seabed at night. Whereas their bottom-modifying activities are concentrated in nocturnal or crepuscular fashion, the bottom-modifying activities of the visual feeders follow a different phasing and often dominate the rate of change in acoustic backscatter from the interface. Light also acts through its effects on primary production, often concentrated in a very thin surficial layer atop the seabed. The supersaturation of oxygen does, and microbubble nucleation may, result. Where tidal velocities are large, light-set patterns are often tidally modulated. Activities of animals living below the seabed, however, remain a mystery, whose primary hope for solution is acoustic. [Work supported by ONR and DEPSCoR.

  2. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  3. Large-scale Advanced Propfan (LAP) performance, acoustic and weight estimation, January, 1984

    NASA Technical Reports Server (NTRS)

    Parzych, D.; Shenkman, A.; Cohen, S.

    1985-01-01

    In comparison to turbo-prop applications, the Prop-Fan is designed to operate in a significantly higher range of aircraft flight speeds. Two concerns arise regarding operation at very high speeds: aerodynamic performance and noise generation. This data package covers both topics over a broad range of operating conditions for the eight (8) bladed SR-7L Prop-Fan. Operating conditions covered are: Flight Mach Number 0 - 0.85; blade tip speed 600-800 ft/sec; and cruise power loading 20-40 SHP/D2. Prop-Fan weight and weight scaling estimates are also included.

  4. Periodic Partial Extinction Regime in Acoustically Coupled Fuel Droplet Combustion

    NASA Astrophysics Data System (ADS)

    Plascencia Quiroz, Miguel; Bennewitz, John; Vargas, Andres; Sim, Hyung Sub; Smith, Owen; Karagozian, Ann

    2016-11-01

    This experimental study investigates the response of burning liquid fuel droplets exposed to standing acoustic waves, extending prior studies quantifying mean and temporal flame response to moderate acoustic excitation. This investigation explores alternative fuels exposed to a range of acoustic forcing conditions (frequencies and amplitudes), with a focus on ethanol and JP-8. Three fundamental flame regimes are observed: sustained oscillatory combustion, periodic partial extinction and reignition (PPER), and full extinction. Phase-locked OH* chemiluminescence imaging and local temporal pressure measurements allow quantification of the combustion-acoustic coupling through the local Rayleigh index G. As expected, PPER produces negative G values, despite having clear flame oscillations. PPER is observed to occur at low-frequency, high amplitude excitation, where the acoustic time scales are large compared with kinetic/reaction times scales for diffusion-limited combustion processes. These quantitative differences in behavior are determined to depend on localized fluid mechanical strain created by the acoustic excitation as well as reaction kinetics. Supported by AFOSR Grant FA9550-15-1-0339.

  5. Evaluation of a scale-model experiment to investigate long-range acoustic propagation

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Mcaninch, Gerry L.; Carlberg, Ingrid A.

    1987-01-01

    Tests were conducted to evaluate the feasibility of using a scale-model experiment situated in an anechoic facility to investigate long-range sound propagation over ground terrain. For a nominal scale factor of 100:1, attenuations along a linear array of six microphones colinear with a continuous-wave type of sound source were measured over a wavelength range from 10 to 160 for a nominal test frequency of 10 kHz. Most tests were made for a hard model surface (plywood), but limited tests were also made for a soft model surface (plywood with felt). For grazing-incidence propagation over the hard surface, measured and predicted attenuation trends were consistent for microphone locations out to between 40 and 80 wavelengths. Beyond 80 wavelengths, significant variability was observed that was caused by disturbances in the propagation medium. Also, there was evidence of extraneous propagation-path contributions to data irregularities at more remote microphones. Sensitivity studies for the hard-surface and microphone indicated a 2.5 dB change in the relative excess attenuation for a systematic error in source and microphone elevations on the order of 1 mm. For the soft-surface model, no comparable sensitivity was found.

  6. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  7. The normal modes of a resonant cavity containing discrete inhomogeneities - The influence of fibril magnetic fields on the solar acoustic oscillations

    NASA Technical Reports Server (NTRS)

    Bogdan, Thomas J.; Cattaneo, Fausto

    1989-01-01

    Motivated by considerations of the interaction between fibril magnetic fields and solar p-modes, the acoustic spectrum of a cylindrical cavity filled with ideal gas in which a number of magnetic flux tubes are embedded is studied. A formalism, based on the T-matrix approach to acoustic scattering, is developed which can be used to determine the eigenfrequencies and eigenfunctions for any arbitrary distribution of flux tubes. For weak scatterers, the frequency shifts and velocity eigenfunctions are calculated using perturbation theory for the cases of a single flux tube and a random distribution of up to 100 flux tubes. The results of this 'exact' approach are used to give a critical appraisal of the predictions of theories based on some form of averaging, such as the one discussed recently by Bogdan and Zweibel (1987).

  8. The energy scaling in a side-pumped ultra-low-magnification unstable resonator by employing a compact master oscillator power amplifier

    NASA Astrophysics Data System (ADS)

    Cho, C. Y.; Huang, Y. P.; Su, K. W.

    2016-10-01

    The energy scaling for a diode-side-pumped passively Q-switched Nd:YAG laser in an ultra-low-magnification unstable convex-concave resonator is investigated. Theoretical analysis and experimental results indicate the fact that the energy scaling is restricted by the increasing of side-pumping sources inside the resonator because of the significant pump-to-mode size mismatching. It is verified that employing the master oscillation power amplifier can effectively enlarge the output pulse energy and improve the beam quality. Up to 60-mJ pulse energy with 17-MW peak power is obtained at a pump energy of 520 mJ. A 1573-nm eye-safe laser emission with pulse energy up to 25 mJ is further attended via the extracavity optical parametric oscillator.

  9. Late Holocene climate change in the western Mediterranean: centennial-scale vegetation and North Atlantic Oscillation variability

    NASA Astrophysics Data System (ADS)

    Ramos Román, M. J.; Jimenez-Moreno, G.; Anderson, R. S.; García-Alix, A.; Toney, J. L.; Jiménez-Espejo, F. J. J.; Carrión, J. S.

    2015-12-01

    Sediments from alpine peat bogs and lakes from the Sierra Nevada in southeastern Spain (western Mediterranean area) have been very informative in terms of how vegetation and wetland environments were impacted by past climate change. Recently, many studies try to find out the relationship between solar activity, atmosphere and ocean dynamics and changes in the terrestrial environments. The Mediterranean is a very sensitive area with respect to atmospheric dynamics due to (1) its location, right in the boundary between subtropical and temperate climate systems and (2) the North Atlantic Oscillation (NAO) is one of the main mechanism that influence present climate in this area. Here we present a multi-proxy high-resolution study from Borreguil de la Caldera (BdlC), a peat bog that records the last ca. 4500 cal yr BP of vegetation, fire, human impact and climate history from the Sierra Nevada. The pollen, charcoal and non-pollen palynomorphs (NPPs) reconstruction in the BdlC-01 record evidence relative humidity changes in the last millennia interrupting the late Holocene aridification trend. This study shows a relative arid period between ca. 4000 and 3100 cal yr BP; the Iberian Roman humid period (ca. 2600 to 1600 cal yr BP); a relative arid period during the Dark Ages (from ca. AD 500 to AD 900) and Medieval Climate Anomaly (from ca. AD 900 to ca. AD 1300) and predominantly wetter conditions corresponding with The Little Ice Age period (from ca. AD 1300 to AD 1850). This climate variability could be explained by centennial scale changes in the NAO and solar activity.

  10. Analysis of a micro-scale pump which uses controlled acoustic streaming for fluid locomotion

    SciTech Connect

    Dohner, J.L.

    1998-01-01

    In this report the analysis of a micro-scale pump is described. This micro-pump uses active control to produce a distributed body force in a fluid micro-channel. The desired effect of this body force is to drive fluid through the channel. Limitations, assumptions, and design parameters are discussed. The mathematical analysis of pump dynamics is explained in detail. A perturbation analysis is used on the equations of mass, momentum and state to produce equations of motion for first and second order effects. The first order effects are described by linear wave motion in the fluid and are found by using integral equation methods. The second order effects are driven by body forces resulting from first order effects. Thus, by controlling the production of wave motion in the channel, second order excitation can also be controlled. This report is all theory and therefore needs experimental validation. Although many of the assumptions used in this report have been used elsewhere in the literature and have been found to be sufficient, there are many aspects of the problem which have been left unresolved. In particular, flow separation in the fluid channel is a critical problem. If the fluid does not separate, pumping will occur through the channel, however, if internal or external forces are not sufficient to stop separation, this type of pump will not function.

  11. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2016-04-30

    OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-043016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to...improve our understanding. During the past few years, the physics effects studied have been three-dimensional propagation on global scales, deep water

  12. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  13. Generation of Acoustic-Gravity Waves in Ionospheric HF Heating Experiments: Simulating Large-Scale Natural Heat Sources

    NASA Astrophysics Data System (ADS)

    Pradipta, Rezy

    In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence in the ionospheric layer. The main hypothesis is that, the thermal gradients associated with the heat wave fronts could act as a source of powerful AGW capable of triggering ionospheric plasma turbulence over extensive areas. In our investigations, first we are going to examine a case study of the summer 2006 North American heat wave event. Our examination of GPS-derived total electron content (TEC) data over the North American sector reveals a quite noticeable increase in the level of daily plasma density fluctuations during the summer 2006 heat wave period. Comparison with the summer 2005 and summer 2007 data further confirms that the observed increase of traveling ionospheric disturbances (TIDs) during the summer 2006 heat wave period was not simply a regular seasonal phenomenon. Furthermore, a series of field experiments had been carried out at the High-frequency Active Auroral Research Program (HAARP) facility in order to physically simulate the process of AGW/TID generation by large-scale thermal gradients in the ionosphere. In these ionospheric HF heating experiments, we create some time-varying artificial thermal gradients at an altitude of 200--300 km above the Earth's surface using vertically-transmitted amplitude-modulated 0-mode HF heater waves. For our experiments, a number of radio diagnostic instruments had been utilized to detect the characteristic signatures of heater-generated AGW/TID. So far, we have been able to obtain several affirmative indications that some artificial AGW/TID are indeed being radiated out from the heated plasma volume during the HAARP-AGW experiments. Based on the experimental evidence, we may conclude that it is certainly quite plausible for large-scale thermal gradients associated with severe heat wave

  14. UNIVERSAL SCALING OF THE 3:2 TWIN-PEAK QUASI-PERIODIC OSCILLATION FREQUENCIES WITH BLACK HOLE MASS AND SPIN REVISITED

    SciTech Connect

    Zhou, Xin-Lin; Yuan, Weimin; Pan, Hai-Wu; Liu, Zhu

    2015-01-01

    We discuss further observational support of an idea formulated a decade ago by Abramowicz, Kluźniak, McClintock and Remillard. They demonstrated that the 3:2 pairs of frequencies of the twin-peak black hole (BH) high-frequency quasi-periodic oscillations (QPOs) scale inversely with the BH masses and that the scaling covers the entire range from stellar to supermassive BHs. For this reason, they believed that the QPOs may be used for accurate measurements of masses and spins of BHs.

  15. Impact of multi-scale oscillations at high and low latitudes on two persistent heavy rainfall events in the middle and lower reaches of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Hui, Pinhong; Fang, Juan

    2016-08-01

    To investigate the multi-scale features in two persistent heavy rainfall (PHR) events in the middle and lower reaches of the Yangtze River (MLRYR) in June of 1982 and 1998, this study examines the impact of multi-scale oscillations in the north and south of 30°N on the PHR events by performing sensitivity experiments with the Weather Research and Forecast (WRF) model. It is found that the 60-day lowpass perturbation made a trivial contribution to the MLRYR precipitation during the PHR event in 1982. This PHR event resulted mainly from the combined effects of 30-60-day oscillation at low latitudes and 10-30-day oscillation at both high and low latitudes. The southwesterly anomalies associated with the 30-60-day anticyclonic anomaly over the northwestern Pacific facilitated moisture transport from the ocean to the MLRYR and enhanced the low-level convergence and ascending motion in the MLRYR. This similarly occurred in the 10-30-day oscillation as well. Moreover, the 10-30-day anomalies at high latitudes played a role in strengthening the large-scale low-level convergence over the MLRYR. The PHR event in 1998 was mainly related to the 60-day oscillation at both high and low latitudes and 30-60-day oscillation at low latitudes. The 60-day low-pass filtered anomalous cyclone at high latitudes in the north of 30°N contributed to the development of low-level convergence and ascending motion in northern MLRYR while the anomalous anticyclone at low latitudes in the south of 30°N not only increased the moisture in the MLRYR but also preconditioned the dynamical factors favorable for PHR over the whole area. The 30-60-day perturbations located north and south of 30°N worked together producing positive moisture anomaly in the MLRYR. In addition, the anomalous circulation in the south of 30°N tended to favor the development of ascending motion and low-level convergence in the MLRYR.

  16. Theoretical description based on general and exact nonextensive dispersion relations of plasma oscillation data and verification of new acoustic plasma waves

    SciTech Connect

    Ebrahimi, V.; Esfandyari-Kalejahi, A.

    2014-09-15

    In this paper, first we represent the differences between spatial and temporal dispersions and their dependence on the measurement techniques for electrostatic waves in unmagnetized collisionless plasma. Then, three different experimental data are compared to the solutions of exact nonextensive dispersion relations for electron-ion and pair plasma. The results confirm the existence of new acoustic plasma waves. Furthermore, these comparisons yield a Maxwellian and a nonextensive plasma with nonextensive parameter q larger than one, and a Maxwellian plasma with some abnormal dispersion properties.

  17. Acoustic bubble traps

    NASA Astrophysics Data System (ADS)

    Geisler, Reinhard; Kurz, Thomas; Lauterborn, Werner

    2000-07-01

    A small, oscillating bubble in a liquid can be trapped in the antinode of an acoustic standing wave field. Bubble stability is required for the study of single bubble sonoluminescence (SBSL). The properties of the acoustic resonator are essential for the stable trapping of sonoluminescing bubbles. Resonators can be chosen according to the intended application: size and geometry can be varied in a wide range. In this work, the acoustic responses of different resonators were measured by means of holographic interferometry, hydrophones and a laser vibrometer. Also, high-speed photography was used to observe the bubble dynamics. Several single, stable sonoluminescent bubbles were trapped simultaneously within an acoustic resonator in the pressure antinodes of a higher harmonic mode (few bubble sonoluminescence, FBSL).

  18. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.

    PubMed

    Colosi, John A

    2008-09-01

    While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.

  19. Aerodynamic flow quality and acoustic characteristics of the 40- by 80-foot test section circuit of the National Full-Scale Aerodynamic Complex

    NASA Technical Reports Server (NTRS)

    Olson, Lawrence E.; Zell, Peter T.; Soderman, Paul T.; Falarski, Michael D.; Corsiglia, Victor R.; Edenborough, H. Kipling

    1988-01-01

    The 40- by 80-foot wind tunnel circuit of the National Full-Scale Aerodynamic Complex (NFAC) has recently undergone major modifications and subsequently completed final acceptance testing. The initial testing and calibration of the wind tunnel are described and in many cases these results are compared with predictions derived from model tests and theoretical analyses. The wind tunnel meets or exceeds essentially all performance objectives. The facility runs smoothly and routinely at its maximum test-section velocity of 300 knots (Mach number = 0.45). An effective cooling air exchange system enables the wind tunnel to operate indefinitely at this maximum power condition. Throughout the operating envelope of the wind tunnel the test-section dynamic pressure is uniform to within + or - 0.5 deg, and the axial component of turbulence is generally less than 0.5 percent. Acoustic measurements indicate that, due to the low noise fans and acoustic treatment in the wind-tunnel circuit and test section, the background noise level in the test section is comparable to other large-scale acoustic wind tunnels in the United States and abroad.

  20. Validation and Simulation of Ares I Scale Model Acoustic Test - 3 - Modeling and Evaluating the Effect of Rainbird Water Deluge Inclusion

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Putman, Gabriel C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Building on dry simulations of the ASMAT tests with the vehicle at 5 ft. elevation (100 ft. real vehicle elevation), wet simulations of the ASMAT test setup have been performed using the Loci/CHEM computational fluid dynamics software to explore the effect of rainbird water suppression inclusion on the launch platform deck. Two-phase water simulation has been performed using an energy and mass coupled lagrangian particle system module where liquid phase emissions are segregated into clouds of virtual particles and gas phase mass transfer is accomplished through simple Weber number controlled breakup and boiling models. Comparisons have been performed to the dry 5 ft. elevation cases, using configurations with and without launch mounts. These cases have been used to explore the interaction between rainbird spray patterns and launch mount geometry and evaluate the acoustic sound pressure level knockdown achieved through above-deck rainbird deluge inclusion. This comparison has been anchored with validation from live-fire test data which showed a reduction in rainbird effectiveness with the presence of a launch mount.

  1. Computational studies of the effects of acoustics and chemistry on the flow field in an axisymmetric ramjet combustor

    NASA Astrophysics Data System (ADS)

    Kailasanath, K.; Gardner, J. H.; Oran, E. S.; Boris, J. P.

    1986-10-01

    A potentially important source of large pressure oscillations in compact ramjets is a combustion instability induced by the interaction of large-scale vortex structures with acoustic modes in the combustion chamber. To study these interactions numerical simulations were performed using the Flux Corrected Transport technique. The highlights are presented of the work to date on the chemical-acoustic-vortex interactions in an idealized axisymmetric ramjet combustor. The results of a number of cold flow calculations are presented in which the length of the combustion chamber and the acoustic forcing function were systematically varied. These simulations indicate a strong coupling between the acoustic modes and the frequency of formation of large vortical structures near the entrance to the combustion chamber. They also show the presence of a low frequency oscillation which does not directly depend on the acoustics of the combustor but depends on the acoustics of the inlet. The effects of energy release from chemical reactions on the flow field in the combustor and the low frequecy oscillations are discussed.

  2. Acoustic Neuroma

    MedlinePlus

    ... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...

  3. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H.; Fleming, James G.; Tuck, Melanie R.

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  4. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  5. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  6. Continuous Monitoring of Fish Population and Behavior by Instantaneous Continental-Shelf-Scale Imaging with Ocean-Waveguide Acoustics

    DTIC Science & Technology

    2008-01-01

    Nero, Mike Jech, Olav Rune Godø, Sunwoong Lee, Purnima Ratilal, and Nicholas Makris, “Ocean Acoustic Waveguide Remote Sensing (OAWRS) of Marine...Srinivasan Jagannathan, Deanelle Symonds, Ioannis Bertsatos, Tianrun Chen, Hector Pena, Ruben Patel, Olav Rune Godø, Redwood W. 6 7 Nero, J

  7. High-resolution multi-proxy evidence for millennial- and centennial-scale climate oscillations during the last deglaciation in Jeju Island, South Korea

    NASA Astrophysics Data System (ADS)

    Park, Jungjae; Lim, Hyoun Soo; Lim, Jaesoo; Park, Yong-Hee

    2014-12-01

    Millennial- and centennial-scale climate and vegetation changes during the last deglaciation from Hanon Maar paleolake on Jeju Island, South Korea were reconstructed by high-resolution multi-proxy data (pollen, Anhysteretic Remanent Magnetization [ARM], Total Organic Carbon [TOC], Total Nitrogen [TN], Carbon/Nitrogen [C/N] ratio, carbon and nitrogen isotope compositions (δ15N and δ13C), major element geochemistry, and sediment grain size). The resolution of our multi-proxy data was sufficiently high to enable the detection of millennial- and even centennial-scale climate change in the study area during the last deglacial transition. We found centennial-scale cold reversals between 14,650 and 12,900 cal yr BP, possibly corresponding to the Bølling-Allerød [BA] oscillations. Hanon pollen data implied that climate amelioration around 11,900 cal yr BP terminated the Younger Dryas [YD] in the study area and that a cold event around 11,300 cal yr BP probably correlated with the Pre-Boreal Oscillation [PBO] cooling event. Our results indicate that rising summer insolation and northward expanding low-latitudinal warm currents exerted a strong influence on climatological teleconnection via westerlies between the North Atlantic and the East Asian region during the last deglaciation, presumably causing a decoupling between temperature and East Asian Summer Monsoon [EASM] precipitation during the last deglaciation.

  8. Acoustic scaling of anisotropic flow in shape-engineered events: implications for extraction of the specific shear viscosity of the quark gluon plasma

    NASA Astrophysics Data System (ADS)

    Lacey, Roy A.; Reynolds, D.; Taranenko, A.; Ajitanand, N. N.; Alexander, J. M.; Liu, Fu-Hu; Gu, Yi; Mwai, A.

    2016-10-01

    It is shown that the acoustic scaling patterns of anisotropic flow for different event shapes at a fixed collision centrality (shape-engineered events), provide robust constraints for the event-by-event fluctuations in the initial-state density distribution from ultrarelativistic heavy ion collisions. The empirical scaling parameters also provide a dual-path method for extracting the specific shear viscosity {(η /s)}{QGP} of the quark-gluon plasma (QGP) produced in these collisions. A calibration of these scaling parameters via detailed viscous hydrodynamical model calculations, gives {(η /s)}{QGP} estimates for the plasma produced in collisions of Au + Au (\\sqrt{{s}{NN}}=0.2 {TeV}) and Pb + Pb (\\sqrt{{s}{NN}}=2.76 {TeV}). The estimates are insensitive to the initial-state geometry models considered.

  9. Asymptotic analysis of dipolar mixed modes of oscillations in red giant stars

    NASA Astrophysics Data System (ADS)

    Takata, Masao

    2016-12-01

    Dipolar modes of solar-like oscillations of red giant stars are analyzed asymptotically. Because of the high mass concentration in the helium core, the oscillations of the stars are composed of internal gravity waves in the core and acoustic waves in the envelope. The two types of oscillations interact with each other through a thin intermediate evanescent region to form an eigenmode of the mixed character. The process of the eigenmode formation is analyzed by assuming that the wavelength of the oscillations is much shorter than the scale height of the equilibrium stellar structure. Special care is paid to the following two points: (1) the effect of the perturbation to the gravitational potential is fully taken into account; (2) the interaction between the gravity waves in the core and the acoustic waves in the envelope can be strong. The condition that every eigenfrequency of the oscillations should satisfy is formulated. Also discussed are the amplitude ratio between the core and the envelope, and the transmission and reflection of the progressive-wave solutions at the intermediate evanescent region. The analysis should be of fundamental use in the interpretation of the observed solar-like oscillations in red giant stars.

  10. 25-Day Period Large-Scale Oscillations in the Argentine Basin Revealed by the TOPEX/POSEIDON Altimeter

    NASA Technical Reports Server (NTRS)

    Fu, L-L.; Cheng, B.; Qiu, B.

    1999-01-01

    The measurement of global sea surface height made by the TOPEX/POSEIDON satellite has provided the first synoptic view of large-scale oceanic variability at the intraseasonal scales from weeks to months.

  11. Topographic and Acoustic Estimates of Grain-Scale Roughness from High-Resolution Multibeam Echo-Sounder: Examples from the Colorado River in Marble and Grand Canyons.

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Grams, P. E.

    2014-12-01

    High-frequency (several hundred kilohertz) multibeam echo-sounder (MBES) systems have the potential to provide complete coverage of large areas (km2) of the bed, rapidly (mins to hrs), at high resolution (cm2), and with high positional accuracy (cm). Here, we explore the use of MBES data to estimate grain-scale roughness of submerged riverbed sediment. There are two broad approaches: 1) using digital elevation models constructed from depth soundings, and 2) using acoustic backscatter. We discuss the relative merits of both approaches using examples from data collected on the Colorado River in Marble and Grand Canyons, Arizona, USA. The primary advantage of acoustic backscatter over topography from soundings, for the purposes of sediment classification, is the potential to distinguish between sediment at a higher resolution. This is because soundings are point measurements, whereas a recorded backscatter magnitude is the integral of backscattered sound from all scatterers in the insonified area. In addition, this acoustic return contains information about both the roughness and the hardness/impedance of the sediment. The statistics of backscatter magnitudes alone are found to be a poor discriminator between sediment types perhaps because, using our 400 kHz system, the scattering regime changes from Rayleigh (sound scattering by particles smaller than the sound wavelength) for fine sand, to geometric (scattering by larger-than-sound-wavelength particles) for substrates coarser than sand. However, simple measures derived from backscatter power spectra (namely, the variance, integral lengthscale, and the intercept and slope from a power-law form - see Figure) are found to distinguish between patches of sand, gravel, cobbles and boulders. Using this dependence, we present a new data-driven approach to classify grain-scale roughness, developed by comparing the spectral properties of backscatter with bed-sediment observations using geo-referenced underwater video.

  12. Combustor oscillating pressure stabilization and method

    DOEpatents

    Gemmen, Randall S.; Richards, George A.; Yip, Mui-Tong Joseph; Robey, Edward H.; Cully, Scott R.; Addis, Richard E.

    1998-01-01

    High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time.

  13. Combustor oscillating pressure stabilization and method

    DOEpatents

    Gemmen, R.S.; Richards, G.A.; Yip, M.T.J.; Robey, E.H.; Cully, S.R.; Addis, R.E.

    1998-08-11

    High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time. 7 figs.

  14. Acoustic Resonators

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2012-11-01

    Recently my collection of historical physics teaching apparatus was given a group of 19th-century tuning forks on resonant boxes. Figure 1 shows the smallest fork sitting on the largest one. The large tuning fork oscillates at 128 Hz and has a resonator that is 57.9 cm long. The small fork has a frequency 10 times higher, but its resonator has a length of 11.0 cm instead of the 5.8 cm that simple scaling would suggest. How is this possible?

  15. Wave velocity dispersion and attenuation in media exhibiting internal oscillations

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Steeb, Holger; Schmalholz, Stefan M.

    2010-05-01

    Understanding the dynamical and acoustical behavior of porous and heterogeneous rocks is of great importance in geophysics, e.g. earthquakes, and for various seismic engineering applications, e.g. hydrocarbon exploration. Within a heterogeneous medium oscillations with a characteristic resonance frequency, depending on the mass and internal length of the heterogeneity, can occur. When excited, heterogeneities can self-oscillate with their natural frequency. Another example of internal oscillations is the dynamical behavior of non-wetting fluid blobs or fluid patches in residually saturated pore spaces. Surface tension forces or capillary forces act as the restoring force that drives the oscillation. Whatever mechanism is involved, an oscillatory phenomena within a heterogeneous medium will have an effect on acoustic or seismic waves propagating through such a medium, i.e. wave velocity dispersion and frequency-dependent attenuation. We present two models for media exhibiting internal oscillations and discuss the frequency-dependent wave propagation mechanism. Both models give similar results: (1) The low-frequency (i.e. quasi-static) limit for the phase velocity is identical with the Gassmann-Wood limit and the high-frequency limit is larger than this value and (2) Around the resonance frequency a very strong phase velocity change and the largest attenuation occurs. (1) Model for a homogeneous medium exhibiting internal oscillations We present a continuum model for an acoustic medium exhibiting internal damped oscillations. The obvious application of this model is water containing oscillating gas bubbles, providing the material and model parameters for this study. Two physically based momentum interaction terms between the two inherent constituents are used: (1) A purely elastic term of oscillatory nature that scales with the volume of the bubbles and (2) A viscous term that scales with the specific surface of the bubble. The model is capable of taking into account

  16. 2-D steering and propelling of acoustic bubble-powered microswimmers.

    PubMed

    Feng, Jian; Yuan, Junqi; Cho, Sung Kwon

    2016-06-21

    This paper describes bi-directional (linear and rotational) propelling and 2-D steering of acoustic bubble-powered microswimmers that are achieved in a centimeter-scale pool (beyond chip level scale). The core structure of a microswimmer is a microtube with one end open in which a gaseous bubble is trapped. The swimmer is propelled by microstreaming flows that are generated when the trapped bubble is oscillated by an external acoustic wave. The bubble oscillation and thus propelling force are highly dependent on the frequency of the acoustic wave and the bubble length. This dependence is experimentally studied by measuring the resonance behaviors of the testing pool and bubble using a laser Doppler vibrometer (LDV) and by evaluating the generated streaming flows. The key idea in the present 2-D steering is to utilize this dependence. Multiple bubbles with different lengths are mounted on a single microswimmer with a variety of arrangements. By controlling the frequency of the acoustic wave, only frequency-matched bubbles can strongly oscillate and generate strong propulsion. By arranging multiple bubbles of different lengths in parallel but with their openings opposite and switching the frequency of the acoustic wave, bi-directionally linear propelling motions are successfully achieved. The propelling forces are calculated by a CFD analysis using the Ansys Fluent® package. For bi-directional rotations, a similar method but with diagonal arrangement of bubbles on a rectangular swimmer is also applied. The rotation can be easily reversed when the frequency of the acoustic wave is switched. For 2-D steering, short bubbles are aligned perpendicular to long bubbles. It is successfully demonstrated that the microswimmer navigates through a T-junction channel under full control with and without carrying a payload. During the navigation, the frequency is the main control input to select and resonate targeted bubbles. All of these operations are achieved by a single

  17. Climate and polar motion during the GRACE observing period: 2002-2015: Implications for decadal scale oscillations during the 20th Century

    NASA Astrophysics Data System (ADS)

    Ivins, Erik; Adhikari, Surendra; Larour, Eric

    2016-04-01

    The motion of the Earth's pole in space has been observed with great accuracy for the last 115 years. The angular variations of the pole position away from its mean are a well explained at annual and 434-day periods. Variations at annual periods are caused by changes in the mass and angular momentum forced by all Earth surface changes that have near seasonality. The 434-day period is explained as a resonance between the cumulative driving forces having periods near the Chandler wobble free eigenmode of the Earth and is well understood theoretically. The Earth also has a longer-term drift that is explained primarily as a response to the ice age changes in the moments of inertial of the Earth. However, there has been a long-standing search for the origins of pole variations that have a period near 10 years. Using GRACE space gravimetry we show that ice mass losses from Greenland and Antarctica, and when combined with changes in continental hydrology, explain almost all the main features of interannual time scale polar wander. The discovery has broad interdisciplinary implications, as we show that decadal scale pole variations are directly linked to global changes continental water. The energy sources for these pole position changes are, therefore, likely to be associated with decadal scale ocean and atmospheric oscillations that also drive 20th Century on-land wet-dry oscillations at decadal-scale across the globe. Variability in pole position, therefore, offers a tool for assessing past stability of our climate, and for the future, now faced with an increased intensity in the water cycle and more vulnerable to ice sheet instability.

  18. Acoustic metamaterial with negative modulus.

    PubMed

    Lee, Sam Hyeon; Park, Choon Mahn; Seo, Yong Mun; Wang, Zhi Guo; Kim, Chul Koo

    2009-04-29

    We present experimental and theoretical results on an acoustic metamaterial that exhibits a negative effective modulus in a frequency range from 0 to 450 Hz. A one-dimensional acoustic metamaterial with an array of side holes on a tube was fabricated. We observed that acoustic waves above 450 Hz propagated well in this structure, but no sound below 450 Hz passed through. The frequency characteristics of the metamaterial has the same form as that of the permittivity in metals due to the plasma oscillation. We also provide a theory to explain the experimental results.

  19. Method and means for measuring acoustic emissions

    DOEpatents

    Renken, Jr., Claus J.

    1976-01-06

    The detection of acoustic emissions emanating from an object is achieved with a capacitive transducer coupled to the object. The capacitive transducer is charged and then allowed to discharge with the rate of discharge being monitored. Oscillations in the rate of discharge about the normally exponential discharge curve for the capacitive transducer indicate the presence of acoustic emissions.

  20. Comparison of pilot and industrial scale atmospheric pressure glow discharge systems including a novel electro-acoustic technique for process monitoring

    NASA Astrophysics Data System (ADS)

    Tynan, J.; Law, V. J.; Ward, P.; Hynes, A. M.; Cullen, J.; Byrne, G.; Daniels, S.; Dowling, D. P.

    2010-02-01

    A comparison of a pilot and industrial scale atmospheric pressure polymer processing plasma system has been carried out using process-monitoring diagnostic tools during treatment of amorphous polyethylene terephthalate. These systems have been compared using optical emission spectroscopy (OES), photodiode (PD) analysis and multi-variate analysis of the applied electrical and emitted electro-acoustic signals to facilitate scale up operations from the pilot to the industrial scale system. The voltage, current, electro-acoustic intensity and frequency of the plasma systems were found to change systematically with an increase in applied plasma power and addition of oxygen (O2) into a helium (He) plasma. The plasma drive frequency was pulled by the plasma reactance from approximately 26 to 16 kHz on the pilot system and from approximately 36 to 32 kHz on the industrial system, for an increase in applied plasma power and addition of O2. The OES analysis revealed a number of peaks associated with nitrogen (N2) species between 250 and 450 nm due to the presence of air within the He plasma. Temporally resolved analysis of the discharge emission carried out using a PD showed an increase in the number of discharge events per power cycle with an increase in power and a decrease in emission intensity for addition of O2 into the He plasma for both the pilot and industrial scale systems. Using these diagnostic tools both plasma stability and run to run variations were assessed. A visual analysis of the 1.2 m wide plasma was also carried out where a more homogeneous plasma was observed at higher powers.

  1. X6.9-CLASS FLARE-INDUCED VERTICAL KINK OSCILLATIONS IN A LARGE-SCALE PLASMA CURTAIN AS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Srivastava, A. K.; Goossens, M.

    2013-11-01

    We present rare observational evidence of vertical kink oscillations in a laminar and diffused large-scale plasma curtain as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The X6.9-class flare in active region 11263 on 2011 August 9 induces a global large-scale disturbance that propagates in a narrow lane above the plasma curtain and creates a low density region that appears as a dimming in the observational image data. This large-scale propagating disturbance acts as a non-periodic driver that interacts asymmetrically and obliquely with the top of the plasma curtain and triggers the observed oscillations. In the deeper layers of the curtain, we find evidence of vertical kink oscillations with two periods (795 s and 530 s). On the magnetic surface of the curtain where the density is inhomogeneous due to coronal dimming, non-decaying vertical oscillations are also observed (period ≈ 763-896 s). We infer that the global large-scale disturbance triggers vertical kink oscillations in the deeper layers as well as on the surface of the large-scale plasma curtain. The properties of the excited waves strongly depend on the local plasma and magnetic field conditions.

  2. Acoustically driven photon antibunching in nanowires.

    PubMed

    Hernández-Mínguez, A; Möller, M; Breuer, S; Pfüller, C; Somaschini, C; Lazić, S; Brandt, O; García-Cristóbal, A; de Lima, M M; Cantarero, A; Geelhaar, L; Riechert, H; Santos, P V

    2012-01-11

    The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited carriers, as well as to spatially control exciton recombination in GaAs-based nanowires (NWs) on a subns time scale. The experiments are carried out in core-shell NWs transferred to a SAW delay line on a LiNbO(3) crystal. Carriers generated in the NW by a focused laser spot are acoustically transferred to a second location, leading to the remote emission of subns light pulses synchronized with the SAW phase. The dynamics of the carrier transport, investigated using spatially and time-resolved photoluminescence, is well-reproduced by computer simulations. The high-frequency contactless manipulation of carriers by SAWs opens new perspectives for applications of NWs in opto-electronic devices operating at gigahertz frequencies. The potential of this approach is demonstrated by the realization of a high-frequency source of antibunched photons based on the acoustic transport of electrons and holes in (In,Ga)As NWs.

  3. Aerodynamic and Acoustic Tests of a 1/15 Scale Model Dry Cooled Jet Aircraft Runup Noise Suppression System,

    DTIC Science & Technology

    1975-10-01

    Temperature Contours for the Obround Augmenter with the Jet Centered (Position a, yp = 1.0) and Deflected Downward 3.60 165 Figure 7.3- 16 . Maximum Mixed...Acoustic Tests -8- r7 FLUIDYNE ENGINEERING CORPORATION I 2.0.3 Aero-Thermal Testing (Test Series 13 through 16 ) I The aero-thermal testing, Figure...Excessive Augmenter Exit Flow Noise Noise One Engine at Two Engines at Criteria Max. RPM Max. RPM at 250 ft. AA/ANT a AA/A NT 95 dBA 18 16 85 dBA 24

  4. Millennial scale oscillations in bulk δ15N and δ13C over the Mid- to Late Holocene seen in proteinaceous corals from the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Glynn, D. S.; Mccarthy, M. D.; McMahon, K.; Guilderson, T. P.

    2014-12-01

    The North Pacific Subtropical Gyre (NPSG) is the largest continuous ecosystem on this planet and is an important regulator of biogeochemical cycling and carbon sequestration. With evidence of its expansion in a warming climate, it is necessary to develop a more complete understanding of the variability in productivity and nutrient dynamics in this important ecosystem through time. We constructed a long-term, high resolution record of bulk record of stable nitrogen (δ15N) and carbon isotopes (δ13C) from multiple proteinaceous deep sea corals around Hawaii extending back ~5300 years with few gaps. Our data confirms the decreasing trend in δ15N since the Little Ice Age (1850s), which matches previously published results in part attributed to anthropogenic climate change (e.g. Sherwood et al. 2014). However, while the rate of change since the Little Ice Age (δ15N declines ~1‰ over ~150yrs) remains by far the most rapid throughout the longer record, there also appear to be longer-term (near-millennial scale) climatic oscillations of even greater magnitude (δ15N shifts ~1.5-2‰ over ~1000yrs). After removal of the Seuss Effect, δ13C values also declined ~1.5‰ since the Little Ice Age. Furthermore, there also appear to be oscillations in δ13C of ~1-2‰ over millennial timescales. These results reveal the existence of previously unrecognized long-term oscillations in NPSG biogeochemical cycles, which are likely linked to changes in phytoplankton species composition, food web dynamics, and/or variability in source nutrients and productivity possibly caused by changes in climate. This study provides insight into nutrient dynamics in the NPSG over the past five millennia, and offers a historical baseline to better analyze the effects of current anthropogenic climate forcing.

  5. Unsteady hydrodynamics of blade forces and acoustic responses of a model scaled submarine excited by propeller's thrust and side-forces

    NASA Astrophysics Data System (ADS)

    Wei, Yingsan; Wang, Yongsheng

    2013-04-01

    This study presents the unsteady hydrodynamics of the excitations from a 5-bladed propeller at two rotating speeds running in the wake of a small-scaled submarine and the behavior of the submarine's structure and acoustic responses under the propeller excitations. Firstly, the propeller flow and submarine flows are independently validated. The propulsion of the hull-propeller is simulated using computational fluid dynamics (CFD), so as to obtain the transient responses of the propeller excitations. Finally, the structure and acoustic responses of the submarine under propeller excitations are predicted using a finite element/boundary element model in the frequency domain. Results show that (1) the propeller excitations are tonal at the propeller harmonics, and the propeller transversal force is bigger than vertical force. (2) The structure and acoustic responses of the submarine hull is tonal mainly at the propeller harmonics and the resonant mode frequencies of the hull, and the breathing mode in axial direction as well as the bending modes in vertical and transversal directions of the hull can generate strong structure vibration and underwater noise. (3) The maximum sound pressure of the field points increases with the increasing propeller rotating speed at structure resonances and propeller harmonics, and the rudders resonant mode also contributes a lot to the sound radiation. Lastly, the critical rotating speeds of the submarine propeller are determined, which should be carefully taken into consideration when match the propeller with prime mover in the propulsion system. This work shows the importance of the propeller's tonal excitation and the breathing mode plus the bending modes in evaluating submarine's noise radiation.

  6. Don't forget the porpoise: acoustic monitoring reveals fine scale temporal variation between bottlenose dolphin and harbour porpoise in Cardigan Bay SAC.

    PubMed

    Nuuttila, Hanna K; Courtene-Jones, Winnie; Baulch, Sarah; Simon, Malene; Evans, Peter G H

    2017-01-01

    Populations of bottlenose dolphin and harbour porpoise inhabit Cardigan Bay, which was designated a Special Area of Conservation (SAC), with bottlenose dolphin listed as a primary feature for its conservation status. Understanding the abundance, distribution and habitat use of species is fundamental for conservation and the implementation of management. Bottlenose dolphin and harbour porpoise usage of feeding sites within Cardigan Bay SAC was examined using passive acoustic monitoring. Acoustic detections recorded with calibrated T-PODs (acoustic data loggers) indicated harbour porpoise to be present year round and in greater relative abundance than bottlenose dolphin. Fine-scale temporal partitioning between the species occurred at three levels: (1) seasonal differences, consistent between years, with porpoise detections peaking in winter months and dolphin detections in summer months; (2) diel variation, consistent across sites, seasons and years, with porpoise detections highest at night and dolphin detections highest shortly after sunrise; and (3) tidal variation was observed with peak dolphin detections occurring during ebb at the middle of the tidal cycle and before low tide, whereas harbour porpoise detections were highest at slack water, during and after high water with a secondary peak recorded during and after low water. General Additive Models (GAMs) were applied to better understand the effects of each covariate. The reported abundance and distribution of the two species, along with the temporal variation observed, have implications for the design and management of protected areas. Currently, in the UK, no SACs have been formally designated for harbour porpoise while three exist for bottlenose dolphins. Here, we demonstrate a need for increased protection and species-specific mitigation measures for harbour porpoise.

  7. InP/GaAsSb/InP DHBTs with f T = 300 GHz and high maximum oscillation frequencies: the effect of scaling on device performance

    NASA Astrophysics Data System (ADS)

    Liu, H. G.; Disanto, D. W.; Watkins, S. P.; Bolognesi, C. R.

    2006-03-01

    The overall microwave performance of heterostructure bipolar transistors (HBTs) depends on transistor feature sizes, and in particular on the collector to emitter area ratio. Whereas several properties associated with the InP/GaAsSb material system would suggest that NpN InP/GaAsSb/InP DHBTs should scale very well, initial results in aggressively scaled devices defined by electron beam lithography led to depressed maximum oscillation frequencies such that f MAX f T. In the present work we report the first results achieved at SFU for devices patterned by electron beam lithography: our DHBTs are based on standard uniform layers (i.e. structures do not incorporate any performance-enhancing schemes such as compositional or impurity gradients) so as to establish performance benchmarks in the development of a new generation of epitaxial layers for aggressively scaled InP/GaAsSb DHBTs. We show that attractive performance levels are attainable in well-scaled devices based on nonetheless simple epitaxial structures.

  8. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels.

    PubMed

    Muller, Peter Barkholt; Bruus, Henrik

    2015-12-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance with a quality factor Q, the amplitude of the oscillating second-order velocity component is Q times larger than the usual second-order steady time-averaged velocity component. Consequently, the well-known criterion v(1)≪c(s) for the validity of the perturbation expansion is replaced by the more restrictive criterion v(1)≪c(s)/Q. Our numerical model is available as supplemental material in the form of comsol model files and matlab scripts.

  9. On the importance of reduced scale Ariane 5 P230 solid rocket motor models in the comprehension and prevention of thrust oscillations

    NASA Astrophysics Data System (ADS)

    Hijlkema, J.; Prévost, M.; Casalis, G.

    2011-09-01

    Down-scaled solid propellant motors are a valuable tool in the study of thrust oscillations and the underlying, vortex-shedding-induced, pressure instabilities. These fluctuations, observed in large segmented solid rocket motors such as the Ariane 5 P230, impose a serious constraint on both structure and payload. This paper contains a survey of the numerous configurations tested at ONERA over the last 20 years. Presented are the phenomena searched to reproduce and the successes and failures of the different approaches tried. The results of over 130 experiments have contributed to numerous studies aimed at understanding the complicated physics behind this thorny problem, in order to pave the way to pressure instability reduction measures. Slowly but surely our understanding of what makes large segmented solid boosters exhibit this type of instabilities will lead to realistic modifications that will allow for a reduction of pressure oscillations. A "quieter" launcher will be an important advantage in an ever more competitive market, giving a easier ride to payload and designers alike.

  10. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  11. Acoustic characteristics of a large-scale wind tunnel model of an upper-surface blown flap transport having two engines

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aoyagi, K.; Koenig, D. G.

    1973-01-01

    The upper-surface blown (USB) flap as a powered-lift concept has evolved because of the potential acoustic shielding provided when turbofan engines are installed on a wing upper surface. The results from a wind tunnel investigation of a large-scale USB model powered by two JT15D-1 turbofan engines are-presented. The effects of coanda flap extent and deflection, forward speed, and exhaust nozzle configuration were investigated. To determine the wing shielding the acoustics of a single engine nacelle removed from the model were also measured. Effective shielding occurred in the aft underwing quadrant. In the forward quadrant the shielding of the high frequency noise was counteracted by an increase in the lower frequency wing-exhaust interaction noise. The fuselage provided shielding of the opposite engine noise such that the difference between single and double engine operation was 1.5 PNdB under the wing. The effects of coanda flap deflection and extent, angle of attack, and forward speed were small. Forward speed reduced the perceived noise level (PNL) by reducing the wing-exhaust interaction noise.

  12. The ion acoustic decay instability in a large scale, hot plasma relevant to direct drive laser fusion -- Application to a critical surface diagnostic. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S.; Estabrook, K.G.

    1996-08-01

    The authors have studied the ion acoustic decay instability in a large ({approximately} 1 mm) scale, hot ({approximately} 1 keV) plasma, which is relevant to a laser fusion reactor target. They have shown that the instability threshold is low. They have developed a novel collective Thomson scattering diagnostic at a 90{degree} scattering angle. The scattering is nonetheless coherent, because of the modest ratio of the frequency of the probe laser to that of the pump laser, such that even for such a large angle, (k{lambda}{sub De}){sup 2} is much less than one. With this system they have measured the electron plasma wave excited by the ion acoustic decay instability near the critical density (n{sub e} {approximately} 0.86 n{sub c}). This allows them to use the frequency of the detected wave to measure the electron temperature in the interaction region, obtaining a result reasonably close to that predicted by the SAGE computer code.

  13. Acoustic Seaglider

    DTIC Science & Technology

    2008-03-07

    a national naval responsibility. Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial...problem and acoustic navigation and communications within the context of distributed autonomous persistent undersea surveillance sensor networks...Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial coherence and the description of ambient

  14. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  15. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  16. Trans-Atlantic responses of Calanus finmarchicus populations to basin-scale forcing associated with the North Atlantic Oscillation [review article

    NASA Astrophysics Data System (ADS)

    Greene, C. H.; Pershing, A. J.; Conversi, A.; Planque, B.; Hannah, C.; Sameoto, D.; Head, E.; Smith, P. C.; Reid, P. C.; Jossi, J.; Mountain, D.; Benfield, M. C.; Wiebe, P. H.; Durbin, E.

    2003-08-01

    Populations of the copepod species Calanus finmarchicus often dominate the springtime biomass and secondary production of shelf ecosystems throughout the North Atlantic Ocean. Recently, it has been hypothesised that interannual to interdecadal fluctuations observed in such populations are driven primarily by climate-associated changes in ocean circulation. Here, we compare evidence from the North Sea and Gulf of Maine/Western Scotian Shelf (GoM/WSS) linking fluctuations in C. finmarchicus abundance to changes in ocean circulation associated with the North Atlantic Oscillation (NAO). A particularly striking contrast emerges from this Trans-Atlantic comparison: whereas the North Sea C. finmarchicus population exhibits a negative correlation with the NAO index, the GoM/WSS population exhibits a more complex, positive association with the index. The physical processes underlying these contrasting population responses are discussed in the context of regional- to basin-scale circulation changes associated with the NAO.

  17. Cloud regime evolution in the Indian monsoon intraseasonal oscillation: Connection to large-scale dynamical conditions and the atmospheric water budget

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wong, Sun; Fetzer, Eric J.

    2015-11-01

    We examine the intraseasonal oscillation (ISO) of the Indian summer monsoon to establish the connections of cloud regimes to large-scale dynamical states defined by dynamical convergence and moisture advection. Over the Indian subcontinent, the developing phase toward ISO peaks (rainfall maximum) is associated with positive anomalies of moisture advection leading in 4-6 days to positive anomalies of dynamical convergence, triggering abrupt transitions from shallow cumulus to deep convections in 1-2 days. The decaying phase toward ISO troughs (rainfall minima) is associated with negative anomalies of moisture advection and decreasing dynamical convergence, accompanying opposite transitions in cloud regimes. Due to northward propagation of anomalies, processes over the Indian Ocean are similar but lead those over the subcontinent by ~10 days. During the transitions cirrus clouds always accompany but lag deep convective clouds by ~10 days. Over the equatorial Indian Ocean cirrus clouds are modulated by equatorial waves.

  18. Co-emergence of multi-scale cortical activities of irregular firing, oscillations and avalanches achieves cost-efficient information capacity.

    PubMed

    Yang, Dong-Ping; Zhou, Hai-Jun; Zhou, Changsong

    2017-02-01

    The brain is highly energy consuming, therefore is under strong selective pressure to achieve cost-efficiency in both cortical connectivities and activities. However, cost-efficiency as a design principle for cortical activities has been rarely studied. Especially it is not clear how cost-efficiency is related to ubiquitously observed multi-scale properties: irregular firing, oscillations and neuronal avalanches. Here we demonstrate that these prominent properties can be simultaneously observed in a generic, biologically plausible neural circuit model that captures excitation-inhibition balance and realistic dynamics of synaptic conductance. Their co-emergence achieves minimal energy cost as well as maximal energy efficiency on information capacity, when neuronal firing are coordinated and shaped by moderate synchrony to reduce otherwise redundant spikes, and the dynamical clusterings are maintained in the form of neuronal avalanches. Such cost-efficient neural dynamics can be employed as a foundation for further efficient information processing under energy constraint.

  19. Co-emergence of multi-scale cortical activities of irregular firing, oscillations and avalanches achieves cost-efficient information capacity

    PubMed Central

    Zhou, Hai-Jun; Zhou, Changsong

    2017-01-01

    The brain is highly energy consuming, therefore is under strong selective pressure to achieve cost-efficiency in both cortical connectivities and activities. However, cost-efficiency as a design principle for cortical activities has been rarely studied. Especially it is not clear how cost-efficiency is related to ubiquitously observed multi-scale properties: irregular firing, oscillations and neuronal avalanches. Here we demonstrate that these prominent properties can be simultaneously observed in a generic, biologically plausible neural circuit model that captures excitation-inhibition balance and realistic dynamics of synaptic conductance. Their co-emergence achieves minimal energy cost as well as maximal energy efficiency on information capacity, when neuronal firing are coordinated and shaped by moderate synchrony to reduce otherwise redundant spikes, and the dynamical clusterings are maintained in the form of neuronal avalanches. Such cost-efficient neural dynamics can be employed as a foundation for further efficient information processing under energy constraint. PMID:28192429

  20. Acoustic characterization of flame blowout phenomenon

    NASA Astrophysics Data System (ADS)

    Nair, Suraj

    Combustor blowout is a very serious concern in modern land-based and aircraft engine combustors. The ability to sense blowout precursors can provide significant payoffs in engine reliability and life. The objective of this work is to characterize the blowout phenomenon and develop a sensing methodology which can detect and assess the proximity of a combustor to blowout by monitoring its acoustic signature, thus providing early warning before the actual blowout of the combustor. The first part of the work examines the blowout phenomenon in a piloted jet burner. As blowout was approached, the flame detached from one side of the burner and showed increased flame tip fluctuations, resulting in an increase in low frequency acoustics. Work was then focused on swirling combustion systems. Close to blowout, localized extinction/re-ignition events were observed, which manifested as bursts in the acoustic signal. These events increased in number and duration as the combustor approached blowout, resulting an increase in low frequency acoustics. A variety of spectral, wavelet and thresholding based approaches were developed to detect precursors to blowout. The third part of the study focused on a bluff body burner. It characterized the underlying flame dynamics near blowout in greater detail and related it to the observed acoustic emissions. Vorticity was found to play a significant role in the flame dynamics. The flame passed through two distinct stages prior to blowout. The first was associated with momentary strain levels that exceed the flame's extinction strain rate, leading to flame "holes". The second was due to large scale alteration of the fluid dynamics in the bluff body wake, leading to violent flapping of the flame front and even larger straining of the flame. This led to low frequency acoustic oscillations, of the order of von Karman vortex shedding. This manifested as an abrupt increase in combustion noise spectra at 40-100 Hz very close to blowout. Finally, work

  1. The acoustic emissions of cavitation bubbles in stretched vortices.

    PubMed

    Chang, Natasha A; Ceccio, Steven L

    2011-11-01

    Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner.

  2. Quiet Clean Short-Haul Experimental Engine (QCSEE) acoustic and aerodynamic tests on a scale model over-the-wing thrust reverser and forward thrust nozzle

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1978-01-01

    An acoustic and aerodynamic test program was conducted on a 1/6.25 scale model of the Quiet, Clean, Short-Haul Experimental Engine (QCSEE) forward thrust over-the-wing (OTW) nozzle and OTW thrust reverser. In reverse thrust, the effect of reverser geometry was studied by parametric variations in blocker spacing, blocker height, lip angle, and lip length. Forward thrust nozzle tests determined the jet noise levels of the cruise and takeoff nozzles, the effect of opening side doors to achieve takeoff thrust, and scrubbing noise of the cruise and takeoff jet on a simulated wing surface. Velocity profiles are presented for both forward and reverse thrust nozzles. An estimate of the reverse thrust was made utilizing the measured centerline turning angle.

  3. Investigations of detail design issues for the high speed acoustic wind tunnel using a 60th scale model tunnel. Part 1: Tests with open circuits

    NASA Technical Reports Server (NTRS)

    Barna, P. Stephen

    1991-01-01

    This report summarizes the tests on the 1:60 scale model of the High Speed Acoustic Wind Tunnel (HSAWT) performed during the period of November 1989 to December 1990. Throughout the testing the tunnel was operated in the 'open circuit mode', that is when the airflow was induced by a powerful exhaust fan located outside the tunnel circuit. The tests were first performed with the closed test section and were subsequently repeated with the open test section. While operating with the open test section, a novel device, called the 'nozzle-diffuser,' was also tested in order to establish its usefulness of increasing pressure recovery in the first diffuser. The tests established the viability of the tunnel design. The flow distribution in each tunnel component was found acceptable and pressure recovery in the diffusers were found satisfactory. The diffusers appeared to operate without flow separation. All tests were performed at NASA LaRC.

  4. Multispectral photoacoustic microscopy based on an optical–acoustic objective

    PubMed Central

    Cao, Rui; Kilroy, Joseph P.; Ning, Bo; Wang, Tianxiong; Hossack, John A.; Hu, Song

    2015-01-01

    We have developed reflection-mode multispectral photoacoustic microscopy (PAM) based on a novel optical–acoustic objective that integrates a customized ultrasonic transducer and a commercial reflective microscope objective into one solid piece. This technical innovation provides zero chromatic aberration and convenient confocal alignment of the optical excitation and acoustic detection. With a wavelength-tunable optical-parametric-oscillator laser, we have demonstrated multispectral PAM over an ultrabroad spectral range of 270–1300 nm. A near-constant lateral resolution of ∼2.8 μm is achieved experimentally. Capitalizing on the consistent performance over the ultraviolet, visible, and near-infrared range, multispectral PAM enables label-free concurrent imaging of cell nucleus (DNA/RNA contrast at 270 nm), blood vessel (hemoglobin contrast at 532 nm), and sebaceous gland (lipid contrast at 1260 nm) at the same spatial scale in a living mouse ear. PMID:26236641

  5. Multispectral photoacoustic microscopy based on an optical-acoustic objective.

    PubMed

    Cao, Rui; Kilroy, Joseph P; Ning, Bo; Wang, Tianxiong; Hossack, John A; Hu, Song

    2015-06-01

    We have developed reflection-mode multispectral photoacoustic microscopy (PAM) based on a novel optical-acoustic objective that integrates a customized ultrasonic transducer and a commercial reflective microscope objective into one solid piece. This technical innovation provides zero chromatic aberration and convenient confocal alignment of the optical excitation and acoustic detection. With a wavelength-tunable optical-parametric-oscillator laser, we have demonstrated multispectral PAM over an ultrabroad spectral range of 270-1300 nm. A near-constant lateral resolution of ∼2.8 μm is achieved experimentally. Capitalizing on the consistent performance over the ultraviolet, visible, and near-infrared range, multispectral PAM enables label-free concurrent imaging of cell nucleus (DNA/RNA contrast at 270 nm), blood vessel (hemoglobin contrast at 532 nm), and sebaceous gland (lipid contrast at 1260 nm) at the same spatial scale in a living mouse ear.

  6. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  7. Probabilistic Prediction Of Intraseasonal Oscillations Of Indian Summer Monsoon Rainfall In Extended-range Scale Using A Self-organizing Map Based Ensemble Forecasting Technique

    NASA Astrophysics Data System (ADS)

    Borah, N.; Sahai, A. K.; Chattopadhyay, R.; Joseph, S.; Goswami, B.

    2012-12-01

    The long-range prediction of the seasonal mean monsoon at least one season in advance is important but may not be very useful and meaningful when the mean is close to normal. This is because the spatio-temporal distribution of rainfall anomalies is very inhomogeneous even when the all India mean is close to normal. In such cases or otherwise, the Extended range prediction of active and break spells of the monsoon with 3-4 weeks in advance would be very useful for sowing, harvesting and water resources management and to anticipate and mitigate disasters associated with monsoon variability. The prediction of monsoon in the extended range time scale is a major challenge to the meteorological research community owing to its complexity. Efforts had been made to explore the potential for the extended-range prediction of monsoon ISO but became inconclusive. The comparable amplitude of Intraseasonal Variability to that of the seasonal cycle now provides optimism for extended range prediction. The empirical prediction of rainfall on the extended range largely relies on the evolution of the large scale dynamical parameters. Based on the relationship of the large scale parameters and their past temporal evolution with rainfall an analog technique has been defined to separate various shades of intraseasonal oscillations from past data. For the prediction purpose analogs of the present ISO is being identified from the past database and the future is being predicted from the evolution of the past analog. Having proved this hypothesis in Chattopadhyay, Sahai and Goswami (JAS 2008) we have developed a non-linear statistical technique based on this for large ensemble of extended range empirical prediction and generation of probabilistic forecast of summer monsoon rainfall on regional and sub divisional scale over India from a large pool of parameters constructed depending on the variability on different regions and using a nonlinear pattern recognition technique known as Self

  8. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  9. Offset timing of climate oscillations during the last two glacial-interglacial transitions connected with large-scale freshwater perturbation

    NASA Astrophysics Data System (ADS)

    Jiménez-Amat, Patricia; Zahn, Rainer

    2015-06-01

    Multidecadal to centennial planktic δ18O and Mg/Ca records were generated at Ocean Drilling Program Site 976 (ODP976) in the Alboran Sea. The site is in the flow path of Atlantic inflow waters entering the Mediterranean and captured North Atlantic signals through the surface inflow and the atmosphere. The records reveal similar climatic oscillations during the last two glacial-to-interglacial transitions, albeit with a different temporal pacing. Glacial termination 1 (T1) was marked by Heinrich event 1 (H1), post-H1 Bølling/Allerød warming, and Younger Dryas (YD) cooling. During T2 the H11 δ18O anomaly was twice as high and lasted 30% longer than during H1. The post-H11 warming marked the start of MIS5e while the subsequent YD-style cooling occurred during early MIS5e. The post-H11 temperature increase at ODP976 matched the sudden Asian Monsoon Termination II at 129 ka B.P. Extending the 230Th-dated speleothem timescale to ODP976 suggests glacial conditions in the Northeast Atlantic region were terminated abruptly and interglacial warmth was reached in less than a millennium. The early-MIS5e cooling and freshening at ODP976 coincided with similar changes at North Atlantic sites suggesting this was a basin-wide event. By analogy with T1, we argue that this was a YD-type event that was shifted into the early stages of the last interglacial period. This scenario is consistent with evidence from northern North Atlantic and Nordic Sea sites that the continuing disintegration of the large Saalian Stage (MIS6) ice sheet in Eurasia delayed the advection of warm North Atlantic waters and full-strength convective overturn until later stages of MIS5e.

  10. Heavy precipitation in the southwest of Iran: association with the Madden-Julian Oscillation and synoptic scale analysis

    NASA Astrophysics Data System (ADS)

    Jafar Nazemosadat, M.; Shahgholian, K.

    2017-01-01

    Some important characteristics of the November-April heavy precipitation in southwestern parts of Iran and their linkages to the Madden-Julian Oscillation (MJO) were assessed for the period of 1975-2011. Daily precipitation data in nine meteorological stations spread in various parts of the study area and the corresponding MJO indices were analyzed. For each station, precipitation data were sorted in descending order and those values that fell within 5% of the highest records were categorized as the heavy precipitation. Besides this, the 10% threshold was also analyzed as an axillary assessment. The considered heavy precipitation data (5% threshold) accounted from about 26-35% of total annual precipitation. About half of the heavy precipitation occurred during December-January period and the other half distributed within the months of March, February, November and April by about 17, 14, 13and 6%, respectively. The highest frequency of heavy precipitation was related to the MJO phase 8. After this, the more frequent precipitation events were respectively associated to the phases 2, 7, 1, 6, 5 and 4 of the MJO. For the phases 1, 2, 7 and 8 frequency of the heavy precipitation statistically increased when the MJO amplitude was greater than unity. In contrast, for phases 4 and 5, heavy precipitation was generally linked to the spells that the amplitude size was lower than unity. Formation of a strong north-south oriented cold front mainly in Saudi Arabia and west-east oriented warm fronts in the southwest of Iran were realized as the key elements for initiating heavy precipitation over the study area. Although development of the Mediterranean-based cyclonic circulation is essential for the formation of these fronts, moisture transport mostly originates from northern parts of the Arabian Sea, southern parts of the Red Sea and the Persian Gulf.

  11. Evolution of ion-acoustic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.

    1986-03-01

    The evolution of ion-acoustic turbulence is studied on the basis of a numerical solution of the nonstationary equation for in-acoustic waves. Consideration is given to conditions under which the excitation threshold of long-wave ion-acoustic oscillations is exceeded as the result of instability saturation due to quasi-linear relaxation of electrons on turbulent pulsations and the induced scattering of ions by the ion sound. Distributed spectra of ion-acoustic turbulence are established in the plasma under these conditions.

  12. Entraining synthetic genetic oscillators

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Buldú, Javier M.; Sanjuán, Miguel A. F.; de Luis, Oscar; Izquierdo, Adriana; Coloma, Antonio

    2009-09-01

    We propose a new approach for synchronizing a population of synthetic genetic oscillators, which consists in the entrainment of a colony of repressilators by external modulation. We present a model where the repressilator dynamics is affected by periodic changes in temperature. We introduce an additional plasmid in the bacteria in order to correlate the temperature variations with the enhancement of the transcription rate of a certain gene. This can be done by introducing a promoter that is related to the heat shock response. This way, the expression of that gene results in a protein that enhances the overall oscillations. Numerical results show coherent oscillations of the population for a certain range of the external frequency, which is in turn related to the natural oscillation frequency of the modified repressilator. Finally we study the transient times related with the loss of synchronization and we discuss possible applications in biotechnology of large-scale production coupled to synchronization events induced by heat shock.

  13. Geodesic Acoustic Propagation and Ballooning Mode Formalism

    NASA Astrophysics Data System (ADS)

    Li, M. B.; Diamond, P. H.; Young, G. G.; Arakawa, M.

    2005-10-01

    Relevance of ballooning formalism (BMF) in nonlinear interaction of toroidal electromagnetic drift waves in the presence of zonal flows and Geodesic Acoustic Oscillation (GAO) is critically examined from a physical argument of radial propagation of wave packets. To achieve the quasi-translational invariance of poloidal harmonics which is necessary for the BMF, the geodesic curvature induced transfer [1] of fluctuation energy in radial direction should occur faster than the time scale of physical interest. Of course, this does not happen necessarily in drift-Alfven (DALF) turbulence simulations [2]. This observation casts considerable doubts on the applicability of various codes based on the BMF concept to nonlinear electromagnetic problems. [1] B. Scott, Phys. Letters A 320 (2003) 53. [2] B. Scott, New J. Phys 7 (2005) 92.

  14. Scaling properties of the harmonic oscillator basis calculations for N = Z nuclei in the infrared limit with the JISP16 potential

    NASA Astrophysics Data System (ADS)

    Constantinou, Chrysovalantis; Caprio, Mark A.; Vary, James P.; Maris, Pieter

    2014-03-01

    It has recently been found that when no-core configuration interaction (NCCI) calculations of low-mass nuclei are plotted against an infrared momentum cutoff λsc (scaling cutoff), a universal curve is obtained for the energy and the RMS radius. The plotted results must have an ultraviolet (UV) cutoff ΛUV greater than or equal to the intrinsic cutoff ΛNN of the interaction. This assures that UV convergence is reached. The scaling property then allows for the performance of extrapolations in the IR limit. Here we conduct NCCI calculations in the harmonic oscillator basis with the JISP16 potential. In the IR limit we obtain universal curves for N = Z nuclei up to and including 8Be . An extrapolation in the IR limit for the ground state energy and the RMS radius is performed, and extrapolated results are obtained. Supported by US DOE (DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, DE-FG02-87ER40371), US NSF (0904782), and Research Corporation for Science Advancement (Cottrell Scholar Award). Computational resources provided by NERSC (US DOE DE-AC02-05CH11231).

  15. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

    DOE PAGES

    Imam, Neena; Barhen, Jacob

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less

  16. Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal

    PubMed Central

    2015-01-01

    Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis) to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The ‘classical’ features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions). Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum) enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired) speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the ‘classical’ aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception performance between

  17. Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats

    NASA Astrophysics Data System (ADS)

    De Clippele, L. H.; Gafeira, J.; Robert, K.; Hennige, S.; Lavaleye, M. S.; Duineveld, G. C. A.; Huvenne, V. A. I.; Roberts, J. M.

    2017-03-01

    Cold-water corals form substantial biogenic habitats on continental shelves and in deep-sea areas with topographic highs, such as banks and seamounts. In the Atlantic, many reef and mound complexes are engineered by Lophelia pertusa, the dominant framework-forming coral. In this study, a variety of mapping approaches were used at a range of scales to map the distribution of both cold-water coral habitats and individual coral colonies at the Mingulay Reef Complex (west Scotland). The new ArcGIS-based British Geological Survey (BGS) seabed mapping toolbox semi-automatically delineated over 500 Lophelia reef `mini-mounds' from bathymetry data with 2-m resolution. The morphometric and acoustic characteristics of the mini-mounds were also automatically quantified and captured using this toolbox. Coral presence data were derived from high-definition remotely operated vehicle (ROV) records and high-resolution microbathymetry collected by a ROV-mounted multibeam echosounder. With a resolution of 0.35 × 0.35 m, the microbathymetry covers 0.6 km2 in the centre of the study area and allowed identification of individual live coral colonies in acoustic data for the first time. Maximum water depth, maximum rugosity, mean rugosity, bathymetric positioning index and maximum current speed were identified as the environmental variables that contributed most to the prediction of live coral presence. These variables were used to create a predictive map of the likelihood of presence of live cold-water coral colonies in the area of the Mingulay Reef Complex covered by the 2-m resolution data set. Predictive maps of live corals across the reef will be especially valuable for future long-term monitoring surveys, including those needed to understand the impacts of global climate change. This is the first study using the newly developed BGS seabed mapping toolbox and an ROV-based microbathymetric grid to explore the environmental variables that control coral growth on cold-water coral

  18. Acoustic thermometry time series in the North Pacific

    NASA Astrophysics Data System (ADS)

    Dushaw, B. D.; Howe, B. M.; Mercer, J. A.; Worcester; Npal Group*, P. F.

    2002-12-01

    Acoustic measurements of large-scale, depth-averaged temperatures are continuing in the North Pacific as a follow on to the Acoustic Thermometry of Ocean Climate (ATOC) project. An acoustic source is located just north of Kauai. It transmits to six receivers to the east at 1-4-Mm ranges and one receiver to the northwest at about 4-Mm range. The transmission schedule is six times per day at four-day intervals. The time series were obtained from 1998 through 1999 and, after a two-year interruption because of permitting issues, began again in January 2002 to continue for at least another five years. The intense mesoscale thermal variability around Hawaii is evident in all time series; this variability is much greater than that observed near the California coast. The paths to the east, particularly those paths to the California coast, show cooling this year relative to the earlier data. The path to the northwest shows a modest warming. The acoustic rays sample depths below the mixed layer near Hawaii and to the surface as they near the California coast or extend north of the sub-arctic front. The temperatures measured acoustically are compared with those inferred from TOPEX altimetry, ARGO float data, and with ECCO (Estimating the Circulation and Climate of the Ocean) model output. This on-going data collection effort, to be augmented over the next years with a more complete observing array, can be used for, e.g., separating whole-basin climate change from low-mode spatial variability such as the Pacific Decadal Oscillation (PDO). [*NPAL (North Pacific Acoustic Laboratory) Group: J. A. Colosi, B. D. Cornuelle, B. D. Dushaw, M. A. Dzieciuch, B. M. Howe, J. A. Mercer, R. C. Spindel, and P. F. Worcester. Work supported by the Office of Naval Research.

  19. Acoustic testing of a 1.5 pressure ratio low tip speed fan with a serrated rotor (QEP fan B scale model). [reduction of engine noise

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Paas, J. E.; Minzner, W. R.

    1973-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a serrated rotor leading edge to determine its effects on noise generation. The serrated rotor was produced by cutting teeth into the leading edge of the nominal rotor blades. The effects of speed and exhaust nozzle area on the scale models noise characteristics were investigated with both the nominal rotor and serrated rotor. Acoustic results indicate the serrations reduced front quadrant PNL's at takeoff power. In particular, the 200 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdb at 40 deg for nominal and large nozzle operation. However, the rear quadrant maximum sideline PNL's were increased 1.5 to 3 PNdb at approach thust and up to 2 PNdb at takeoff thust with these serrated rotor blades. The configuration with the serrated rotor produced the lowest maximum 200 foot (61.0 m) sideline PNL for any given thust when the large nozzle (116% of design area) was employed.

  20. Acoustic metamaterial with negative parameter

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Yan, Fei; Gu, Hao; Li, Ying

    2014-03-01

    In this paper we present theoretical results on an acoustic metamaterial beam and a bar that exhibit negative effective mass and negative effective stiffness. A one-dimensional acoustic metamaterial with an array of spring-mass subsystems was fabricated. The frequency of the acoustic one dimensional metamaterial structure has the same form as that of the permittivity in metals due to the plasma oscillation. We also provide a theory to explain the simulation results. And we use the concept of conventional mechanical vibration absorbers to reveal the actual working mechanism of the acoustic metamaterials. We explain the two vibrate modes which are optical mode and acoustic mode in detail. When the incoming elastic wave in the acoustic metamaterials to resonate the integrated spring-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the beam and stop the wave propagation. Moreover, we explain the negative parameter in acoustic metamaterials.

  1. Large-Scale Oceanic Variability Associated with the Madden-Julian Oscillation during the CINDY/DYNAMO Field Campaign from Satellite Observations

    DTIC Science & Technology

    2013-04-29

    dynamical ocean feedback mechanism for the Madden- Julian oscillation. Quart. J. Roy. Meteorol. Soc. 2010,136, 740-754. 42. McCreary , J.P.; Kundu, P.K...Variability Associated with the Madden- Julian Oscillation During the CINDY/DYNAMO Field Campaign from Satellite Observations 5a. CONTRACT NUMBER 5b...measurements based on the comparison with in-situ observations. 15. SUBJECT TERMS Indian Ocean, Madden- Julian Oscillation, CINDY/DYNAMO, aquarius

  2. Internal Acoustics of a Pintle Valve with Supercritical Helium Flow

    NASA Technical Reports Server (NTRS)

    Fishbach, Sean R.; Davis, R. Benjamin

    2010-01-01

    Large amplitude flow unsteadiness is a common phenomenon within the high flow rate ducts and valves associated with propulsion systems. Boundary layer noise, shear layers and vortex shedding are a few of the many sources of flow oscillations. The presence of lightly damped acoustic modes can organize and amplify these sources of flow perturbation, causing undesirable loading of internal parts. The present study investigates the self-induced acoustic environment within a pintle valve subject to high Reynolds Number flow of helium gas. Experiments were conducted to measure the internal pressure oscillations of the Ares I Launch Abort System (LAS) Attitude Control Motor (ACM) valve. The AGM consists of a solid propellant gas generator with eight pintle valves attached to the aft end. The pintle valve is designed to deliver variable upstream conditions to an attache( converging diverging nozzle. In order to investigate the full range of operating conditions 28 separate tests were conducted with varying pintle position and upstream pressure. Helium gas was utilized in order to closely mimic the speed of sound of the gas generator exhaust, minimizing required scaling during data analysis. The recordec pressure measurements were interrogated to multiple ends. The development of root mean square (RMS) value! versus Reynolds Number and Pintle position are important to creating bounding unsteady load curves for valve internal parts. Spectral analysis was also performed, helping to identify power spectral densities (PSD) of acoustic natural frequencies and boundary layer noise. An interesting and unexpected result was the identification of an acoustic mode within the valve which does not respond until the valve was over 60% open. Further, the response amplitude around this mode can be as large or larger than those associated with lower frequency modes.

  3. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  4. A New Neutrino Oscillation

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background

  5. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  6. Acoustically enhanced heat exchange and drying apparatus

    DOEpatents

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  7. Acoustic measurements of a full-scale rotor with four tip shapes. Volume 2: Appendices C, D, E and F

    NASA Technical Reports Server (NTRS)

    Mosher, M.

    1984-01-01

    A full scale helicopter with four different blade tip geometries is tested in a 40- by 80-foot wind tunnel. Performance, loads, and noise are measured. The four tip shapes tested were rectangular, tapered, swept, and swept/tapered. The noise data include measurements of the sound pressure levels in decibels dB, decibels adjusted dBA, and tone-corrected PNdB, for all of the conditions tested. Also included are the detailed measurements, 1/3 octave spectra and time histories for some selected data, and plots of dBA as function of test condition. Some performance measurements are included to aid interpretation of the noise data.

  8. Acoustic testing of a 1.5 pressure ratio low tip speed fan with casing tip bleed (QEP Fan B scale model)

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Minzner, W. R.; Paas, J. E.

    1971-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a rotor tip casing bleed slot to determine its effects on noise generation. The bleed slot was located 1/2 inch (1.3 cm) upstream of the rotor leading edge and was configured to be a continuous opening around the circumference. The bleed manifold system was operated over a range of bleed rates corresponding to as much as 6% of the fan flow at approach thrust and 4.25% of the fan flow at takeoff thrust. Acoustic results indicate that a bleed rate of 4% of the fan flow reduces the fan maximum approach 200 foot (61.0 m) sideline PNL 0.5 PNdB and the corresponding takeoff thrust noise 1.1 PNdB below the level with zero bleed. However, comparison of the standard casing (no bleed slot) and the slotted bleed casing with zero bleed shows that the bleed slot itself caused a noise increase.

  9. Investigations of detail design issues for the high speed acoustic wind tunnel using a 60th scale model tunnel. Part 2: Tests with the closed circuit

    NASA Technical Reports Server (NTRS)

    Barna, P. Stephen

    1991-01-01

    This report summarizes the tests on the 1:60 scale model of the High Speed Acoustic Wind Tunnel (HSAWT) performed during the period June - August 1991. Throughout the testing the tunnel was operated in the 'closed circuit mode,' that is when the airflow was set up by an axial flow fan, which was located inside the tunnel circuit and was directly driven by a motor. The tests were first performed with the closed test section and were subsequently repeated with the open test section, the latter operating with the nozzle-diffuser at its optimum setting. On this subject, reference is made to the report (1) issued January 1991, under contract 17-GFY900125, which summarizes the result obtained with the tunnel operating in the 'open circuit mode.' The tests confirmed the viability of the tunnel design, and the flow distributions in most of the tunnel components were considered acceptable. There were found, however, some locations where the flow distribution requires improvement. This applies to the flow upstream of the fan where the flow was found skewed, thus affecting the flow downstream. As a result of this, the flow appeared separated at the end of the large diffuser at the outer side. All tests were performed at NASA LaRC.

  10. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    SciTech Connect

    Dai, Xiwen; Jing, Xiaodong Sun, Xiaofeng

    2015-05-15

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  11. High Q Miniature Sapphire Acoustic Resonator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, R. L.

    2010-01-01

    We have demonstrated high Q measurements in a room temperature Miniature Sapphire Acoustic Resonator (MSAR). Initial measurements of bulk acoustic modes in room temperature sapphire at 39 MHz have demonstrated a Q of 8.8 x 10(exp 6). The long term goal of this work is to integrate such a high Q resonator with small, low noise quartz oscillator electronics, providing a fractional frequency stability better than 1 x 10(exp -14) @ 1s.

  12. Acoustic measurements of a full-scale rotor with four tip shapes. Volume 1: Text, appendices A and B

    NASA Technical Reports Server (NTRS)

    Mosher, M.

    1984-01-01

    A full-scale helicopter with four different blade-tip geometries was tested in the 40- by 80-foot wind tunnel at Ames Research Center. Performance, loads, and noise were measured. The four tip shapes tested were rectangular, tapered, swept, and swept-tapered. Noise measurements from that test are presented in the form of tables and plots. The noise data include measurements of the sound pressure level in dB, dBA, and tone-corrected PNdB, for all of the conditions tested. Detailed measurements, 1/3-octave spectra and time-histories for some selected data are included as well as plots of dBA as function of test condition. Some performance measurements are given to aid interpretation of the noise data.

  13. Oscillating Filaments. I. Oscillation and Geometrical Fragmentation

    NASA Astrophysics Data System (ADS)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas

    2017-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  14. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  15. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  16. Investigation of scaling characteristics for defining design environments due to transient ground winds and near-field, nonlinear acoustic fields

    NASA Technical Reports Server (NTRS)

    Shih, C. C.

    1973-01-01

    In order to establish a foundation of scaling laws for the highly nonlinear waves associated with the launch vehicle, the basic knowledge of the relationships among the paramaters pertinent to the energy dissipation process associated with the propagation of nonlinear pressure waves in thermoviscous media is required. The problem of interest is to experimentally investigate the temporal and spacial velocity profiles of fluid flow in a 3-inch open-end pipe of various lengths, produced by the propagation of nonlinear pressure waves for various diaphragm burst pressures of a pressure wave generator. As a result, temporal and spacial characteristics of wave propagation for a parametric set of nonlinear pressure waves in the pipe containing air under atmospheric conditions were determined. Velocity measurements at five sections along the pipes of up to 210 ft. in length were made with hot-film anemometers for five pressure waves produced by a piston. The piston was derived with diaphragm burst pressures at 20, 40, 60, 80 and 100 psi in the driver chamber of the pressure wave generator.

  17. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  18. Present and future connection of Asian-Pacific Oscillation to large-scale atmospheric circulations and East Asian rainfall: results of CMIP5

    NASA Astrophysics Data System (ADS)

    Zhou, Botao; Xu, Ying; Shi, Ying

    2017-03-01

    The summer Asian-Pacific oscillation (APO), one of the major modes of climate variability over the Asian-Pacific sector, has a pronounced effect on variations of large-scale atmospheric circulations and climate. This study evaluated the capability of 30 state-of-the-art climate models among the Coupled Model Intercomparison Project Phase 5 (CMIP5) in simulating its association with the atmospheric circulations over the Asian-Pacific region and the precipitation over East Asia. Furthermore, their future connections under the RCP8.5 scenario were examined. The evaluation results show that 5 out of 30 climate models can well capture the observed APO-related features in a comprehensive way, including the strengthened South Asian high (SAH), deepened North Pacific trough (NPT) and northward East Asian jet (EAJ) in the upper troposphere; an intensification of the Asian low and the North Pacific subtropical high (NPSH) as well as a northward shift of the western Pacific subtropical high (WPSH) in the lower troposphere; and a decrease in East Asian summer rainfall (EASR) under the positive APO phase. Based on the five CMIP5 models' simulations, the dynamic linkages of the APO to the SAH, NPT, AL, and NPSH are projected to maintain during the second half of the twenty-first century. However, its connection with the EASR tends to reduce significantly. Such a reduction might result from the weakening of the linkage of the APO to the meridional displacement of the EAJ and WPSH as a response to the warming scenario.

  19. On Full Two-Scale Expansion of the Solutions of Nonlinear Periodic Rapidly Oscillating Problems and Higher-Order Homogenised Variational Problems

    NASA Astrophysics Data System (ADS)

    Cherednichenko, Kirill D.; Smyshlyaev, Valery P.

    2004-12-01

    We consider a scalar quasilinear equation in the divergence form with periodic rapid oscillations, which may be a model of, e.g., nonlinear conducting, dielectric, or deforming in a restricted way hardening elastic-plastic composites, with “outer” periodicity conditions of a fixed large period. Under some natural growth assumptions on the stored-energy function, we construct for uniformly elliptic problems a full two-scale asymptotic expansion, which has a precise “double-series” structure, separating the slow and the fast variables “in all orders”, so that its “slowly varying” part solves asymptotically an “infinite-order homogenised equation” (cf. Bakhvalov, N.S., Panasenko, G.P.: Homogenisation: Averaging Processes in Periodic Media. Nauka, Moscow, 1984 (in Russian); English translation: Kluwer, 1989), and whose higher-order terms depend on the higher gradients of the slowly varying part. We prove the error bound, i.e., that the truncated asymptotic expansion is “higher-order” close to the actual solution in appropriate norms. The approach is extended to a non-uniformly elliptic case: for two-dimensional power-law potentials we prove the “non-degeneracy” using topological index methods. Examples and explicit formulae for the higher-order terms are given. In particular, we prove that the first term in the higher-order homogenised equations is related to the first-order corrector to the “mean” flux, and has in general the form of a fully nonlinear operator which is quadratic with respect to its highest (second) derivative being a linear combination of the second minors of the Hessian with coefficients depending on the first gradient, and in dimension two is of Monge-Ampère type. We show that this term is present at least for some examples (three-phase power-law laminates).

  20. Far-Field Acoustic Power Level and Performance Analyses of F31/A31 Open Rotor Model at Simulated Scaled Takeoff, Nominal Takeoff, and Approach Conditions: Technical Report I

    NASA Technical Reports Server (NTRS)

    Sree, Dave

    2015-01-01

    Far-field acoustic power level and performance analyses of open rotor model F31/A31 have been performed to determine its noise characteristics at simulated scaled takeoff, nominal takeoff, and approach flight conditions. The nonproprietary parts of the data obtained from experiments in 9- by 15-Foot Low-Speed Wind Tunnel (9?15 LSWT) tests were provided by NASA Glenn Research Center to perform the analyses. The tone and broadband noise components have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, angle of attack, thrust, and input shaft power have been presented and discussed. The effect of an upstream pylon on the noise levels of the model has been addressed. Empirical equations relating model's acoustic power level, thrust, and input shaft power have been developed. The far-field acoustic efficiency of the model is also determined for various simulated flight conditions. It is intended that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.

  1. Stable local oscillator microcircuit.

    SciTech Connect

    Brocato, Robert Wesley

    2006-10-01

    This report gives a description of the development of a Stable Local Oscillator (StaLO) Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. The StaLO uses a comb generator followed by surface acoustic wave (SAW) filters. The comb generator creates a set of harmonic components of the 100MHz input signal. The SAW filters are narrow bandpass filters that are used to select the desired component and reject all others. The resulting circuit has very low sideband power levels and low phase noise (both less than -40dBc) that is limited primarily by the phase noise level of the input signal.

  2. Acoustic Characteristics of Simulated Respiratory-Induced Vocal Tremor

    ERIC Educational Resources Information Center

    Lester, Rosemary A.; Story, Brad H.

    2013-01-01

    Purpose: The purpose of this study was to investigate the relation of respiratory forced oscillation to the acoustic characteristics of vocal tremor. Method: Acoustical analyses were performed to determine the characteristics of the intensity and fundamental frequency (F[subscript 0]) for speech samples obtained by Farinella, Hixon, Hoit, Story,…

  3. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado

    NASA Astrophysics Data System (ADS)

    Nishioka, Michi; Tsugawa, Takuya; Kubota, Minoru; Ishii, Mamoru

    2013-11-01

    We detected clear concentric waves and short-period oscillations in the ionosphere after an Enhanced Fujita scale (EF)5 tornado hit Moore, Oklahoma, U.S., on 20 May 2013 using dense wide-coverage ionospheric total electron content (TEC) observations in North America. These concentric waves were nondispersive, with a horizontal wavelength of ~120 km and a period of ~13 min. They were observed for more than 7 h throughout North America. TEC oscillations with a period of ~4 min were also observed to the south of Moore for more than 8 h. A comparison between the TEC observations and infrared cloud image from the GOES satellite indicates that the concentric waves and short-period oscillations are caused by supercell-induced atmospheric gravity waves and acoustic resonances, respectively. This observational result provides the first clear evidence of a severe meteorological event causing atmospheric waves propagating upward in the upper atmosphere and reaching the ionosphere.

  4. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  5. A high-resolution record of Holocene millennial-scale oscillations of surface water, foraminiferal paleoecology and sediment redox chemistry in the SE Brazilian margin

    NASA Astrophysics Data System (ADS)

    Dias, B. B.; Barbosa, C. F.; Albuquerque, A. L.; Piotrowski, A. M.

    2014-12-01

    Holocene millennial-scale oscillations and Bond Events (Bond et al. 1997) are well reported in the North Atlantic as consequence of fresh water input and weaking of the Atlantic Meridional Overturning Circulation (AMOC). It has been hypothesized that the effect of weaking of AMOC would lead to warming in the South Atlantic due to "heat piracy", causing surface waters to warm and a reorganization of surface circulation. There are few reconstructions of AMOC strength in the South Atlantic, and none with a high resolution Holocene record of changes of productivity and the biological pump. We reconstruct past changes in the surface water mass hydrography, productivity, and sediment redox changes in high-resolution in the core KCF10-01B, located 128 mbsl water depth off Cabo Frio, Brazil, a location where upwelling is strongly linked to surface ocean hydrography. We use Benthic Foraminiferal Accumulation Rate (BFAR) to reconstruct productivity, which reveals a 1.3kyr cyclicity during the mid- and late-Holocene. The geochemistry of trace and rare earth elements on foraminiferal Fe-Mn oxide coatings show changes in redox-sensitive elements indicating that during periods of high productivity there were more reducing conditions in sediment porewaters, producing a Ce anomaly and reduction and re-precipitation of Mn oxides. Bond events 1-7 were identified by a productivity increase along with reducing sediment conditions which was likely caused by Brazil Current displacement offshore allowing upwelling of the nutritive bottom water South Atlantic Central Waters (SACW) to the euphotic zone and a stronger local biological pump. In a global context, correlation with other records show that this occurred during weakened AMOC and southward displacement of the ITCZ. We conclude that Bond climatic events and millennial-scale variability of AMOC caused sea surface hydrographic changes off the Brazilian Margin leading to biological and geochemical changes recorded in coastal records

  6. Micro-Scale Thermoacoustics

    NASA Astrophysics Data System (ADS)

    Offner, Avshalom; Ramon, Guy Z.

    2016-11-01

    Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).

  7. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    of basin-wide sound speed ( temperature ) fields obtained by the combination of acoustic, altimetry, and other data types with ocean general...GOALS The ultimate limitations to the performance of long-range sonar are due to ocean sound speed perturbations and the characteristics of the...receptions. 5. To improve basin-scale ocean sound -speed predictions via assimilation of acoustic travel-time and other data into numerical ocean

  8. Feedback control of combustion oscillations in combustion chambers

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wang, Jing; Li, Dong-hai; Zhu, Min; Xue, Ya-li

    2010-11-01

    Model-based algorithms are generally employed in active control of combustion oscillations. Since practical combustion processes consist of complex thermal and acoustic couplings, their accurate models and parameters may not be obtained in advance economically, a model free controller is necessary for the control of thermoacoustic instabilities. Active compensation based control algorithm is applied in the suppression of combustion instabilities. Tuning the controller parameters on line, the amplitudes of the acoustic waves can be modulated to desired values. Simulations performed on a control oriented, typical longitudinal oscillations combustor model illustrate the controllers' capability to attenuate combustion oscillations.

  9. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  10. Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals

    NASA Astrophysics Data System (ADS)

    Wang, Jincheng; Guo, Chunlei

    2007-05-01

    We employ a surface plasmon technique to resolve the dynamics of femtosecond-laser-induced coherent acoustic phonons in noble metals. Clear acoustic oscillations are observed in our experiments. We further study the dependence of the initial phase of the oscillations on pump fluence, and we find that the initial phase decreases linearly with pump fluence. Our model calculations show that hot electrons instantaneously excited by femtosecond pulses contribute to the generation of coherent acoustic phonons in metals.

  11. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to

  12. Propagation of solar oscillations to secondary cosmic radiation

    NASA Astrophysics Data System (ADS)

    Haley, C.; Thomson, D. J.

    2013-12-01

    Neutron monitor data show periodic modulation of cosmic rays entering Earth's atmosphere from the 11-year solar cycle. However, neutron data is peculiar for a counting process because on shorter time scales their variance is less than the average. We investigate neutron monitor spectra for evidence that solar modes, systematic solar oscillations of the sun's interior, contribute to periodic variability in cosmic ray intensity on Earth. Accurate modal frequencies are given in Broomhall, MNRAS. 396 (2009). Though the interplanetary medium is widely accepted as turbulent, Thomson et al. [1] have shown that signatures of the solar normal modes of oscillation coexist with turbulence in interplanetary charged particle flux data from the Ulysses and Voyager spacecraft. Subsequent studies have strengthened these claims [2]. We show peaks in Bartol Research Institute neutron monitor spectra which agree with candidate mode frequencies in the p-mode band (250-5100μHz) and exhibit characteristic mode splittings due to solar rotation. The figure shows part of the spectrum of 10-s neutron count data from July-September 2005. This spectrum has 48 peaks above the 99.9% significance level in the band, whereas for random data one expects ~2.2 peaks. Additionally, we find significant peaks with modal splittings above the 5100μHz acoustic cutoff. [1] Thomson et al., Propagation of solar oscillations through the interplanetary medium, Nature. 376 (1995). [2] Thomson et al., Solar modal structure of the engineering environment, IEEE. 95 (2007).

  13. Large amplitude drop shape oscillations

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G.

    1982-01-01

    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.

  14. Photoacoustic elastic oscillation and characterization.

    PubMed

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin

    2015-08-10

    Photoacoustic imaging and sensing have been studied extensively to probe the optical absorption of biological tissue in multiple scales ranging from large organs to small molecules. However, its elastic oscillation characterization is rarely studied and has been an untapped area to be explored. In literature, photoacoustic signal induced by pulsed laser is commonly modelled as a bipolar "N-shape" pulse from an optical absorber. In this paper, the photoacoustic damped oscillation is predicted and modelled by an equivalent mass-spring system by treating the optical absorber as an elastic oscillator. The photoacoustic simulation incorporating the proposed oscillation model shows better agreement with the measured signal from an elastic phantom, than conventional photoacoustic simulation model. More interestingly, the photoacoustic damping oscillation effect could potentially be a useful characterization approach to evaluate biological tissue's mechanical properties in terms of relaxation time, peak number and ratio beyond optical absorption only, which is experimentally demonstrated in this paper.

  15. Coupled oscillators on evolving networks

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Bagarti, Trilochan

    2016-12-01

    In this work we study coupled oscillators on evolving networks. We find that the steady state behavior of the system is governed by the relative values of the spread in natural frequencies and the global coupling strength. For coupling strong in comparison to the spread in frequencies, the system of oscillators synchronize and when coupling strength and spread in frequencies are large, a phenomenon similar to amplitude death is observed. The network evolution provides a mechanism to build inter-oscillator connections and once a dynamic equilibrium is achieved, oscillators evolve according to their local interactions. We also find that the steady state properties change by the presence of additional time scales. We demonstrate these results based on numerical calculations studying dynamical evolution of limit-cycle and van der Pol oscillators.

  16. The application of the photoacoustic transmittance oscillations for determining elastic constants in gallium and indium selenides

    NASA Astrophysics Data System (ADS)

    Ferrer, Ch.; Segura, A.; Andrés, M. V.; Muñoz, V.; Pellicer, J.

    1996-03-01

    Transmittance periodic oscillations are observed in GaSe and InSe on excitation with optical pulses. Such oscillations are explained in terms of photoacoustic generation of dilatational waves, which become resonant within the crystal. Spectral analysis of those oscillations in samples of different thickness has led to an accurate determination of the longitudinal acoustic-wave velocity along the crystallographic axis c.

  17. Nonlinear dynamics of plasma oscillations modeled by an anharmonic oscillator

    SciTech Connect

    Enjieu Kadji, H. G.; Nana Nbendjo, B. R.; Chabi Orou, J. B.; Talla, P. K.

    2008-03-15

    This paper considers nonlinear dynamics of plasma oscillations modeled by an anharmonic oscillator. These plasma oscillations are described by a nonlinear differential equation of the form xe+{epsilon}(1+x{sup 2})x+x+{kappa}x{sup 2}+{delta}x{sup 3}=F cos {omega}t. The amplitudes of the forced harmonic, superharmonic, and subharmonic oscillatory states are obtained using the harmonic balance technique and the multiple time scales method. Admissible values of the amplitude of the external strength are derived. Bifurcation sequences displayed by the model for each type of oscillatory states are performed numerically through the fourth-order Runge-Kutta scheme.

  18. RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK

    SciTech Connect

    MartInez, Vicent J.; Arnalte-Mur, Pablo; De la Cruz, Pablo; Saar, Enn; Tempel, Elmo; Pons-BorderIa, MarIa Jesus

    2009-05-01

    The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies of the Sloan Digital Sky Survey (SDSS). Recently, the final release (DR7) of the SDSS has been made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift-space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn from the Two-Degree Field Redshift Survey. We test the reliability of the detection of the acoustic peak at about 100 h {sup -1} Mpc and the behavior of the correlation function at larger scales by means of careful estimation of errors. We confirm the presence of the peak in the latest data although broader than in previous detections.

  19. Acoustic response of compliable microvessels containing ultrasound contrast agents.

    PubMed

    Qin, Shengping; Ferrara, Katherine W

    2006-10-21

    The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble's oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than the UCA diameter. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA's oscillation and the microvessel's acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 microm vessel with a peak negative pressure of 0.1 MPa and a centre frequency of 1 MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with a diameter equal to or greater than 8 microm, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless of the vessel diameter; however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a centre frequency of 1 MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 microm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease; however the

  20. Acoustic response of compliable microvessels containing ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Qin, Shengping; Ferrara, Katherine W.

    2006-10-01

    The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble's oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than the UCA diameter. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA's oscillation and the microvessel's acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 µm vessel with a peak negative pressure of 0.1 MPa and a centre frequency of 1 MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with a diameter equal to or greater than 8 µm, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless of the vessel diameter; however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a centre frequency of 1 MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 µm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease; however the

  1. Acoustic response of compliable microvessels containing ultrasound contrast agents

    PubMed Central

    Qin, Shengping; Ferrara, Katherine W.

    2010-01-01

    The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble’s oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than UCA size. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA’s oscillation and the microvessel’s acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 micron vessel with a peak negative pressure of 0.1MPa and a center frequency of 1MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with the range of diameters considered in this work, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless the vessel diameter, however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a center frequency of 1MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 μm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease, however the

  2. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    SciTech Connect

    Xie, Jin-Han Vanneste, Jacques

    2014-10-15

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, and viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.

  3. Method and apparatus for generating acoustic energy

    DOEpatents

    Guerrero, Hector N.

    2002-01-01

    A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.

  4. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  5. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  6. Hemispheric Asymmetry of Endogenous Neural Oscillations in Young Children: Implications for Hearing Speech In Noise

    PubMed Central

    Thompson, Elaine C.; Woodruff Carr, Kali; White-Schwoch, Travis; Tierney, Adam; Nicol, Trent; Kraus, Nina

    2016-01-01

    Speech signals contain information in hierarchical time scales, ranging from short-duration (e.g., phonemes) to long-duration cues (e.g., syllables, prosody). A theoretical framework to understand how the brain processes this hierarchy suggests that hemispheric lateralization enables specialized tracking of acoustic cues at different time scales, with the left and right hemispheres sampling at short (25 ms; 40 Hz) and long (200 ms; 5 Hz) periods, respectively. In adults, both speech-evoked and endogenous cortical rhythms are asymmetrical: low-frequency rhythms predominate in right auditory cortex, and high-frequency rhythms in left auditory cortex. It is unknown, however, whether endogenous resting state oscillations are similarly lateralized in children. We investigated cortical oscillations in children (3–5 years; N = 65) at rest and tested our hypotheses that this temporal asymmetry is evident early in life and facilitates recognition of speech in noise. We found a systematic pattern of increasing leftward asymmetry for higher frequency oscillations; this pattern was more pronounced in children who better perceived words in noise. The observed connection between left-biased cortical oscillations in phoneme-relevant frequencies and speech-in-noise perception suggests hemispheric specialization of endogenous oscillatory activity may support speech processing in challenging listening environments, and that this infrastructure is present during early childhood. PMID:26804355

  7. FEL Oscillators

    SciTech Connect

    George Neil

    2003-05-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.

  8. STABILIZED OSCILLATOR

    DOEpatents

    Jessen, P.L.; Price, H.J.

    1958-03-18

    This patent relates to sine-wave generators and in particular describes a generator with a novel feedback circuit resulting in improved frequency stability. The generator comprises two triodes having a common cathode circuit connected to oscillate at a frequency and amplitude at which the loop galn of the circutt ls unity, and another pair of triodes having a common cathode circuit arranged as a conventional amplifier. A signal is conducted from the osciliator through a frequency selective network to the amplifier and fed back to the osciliator. The unique feature of the feedback circuit is the amplifier operates in the nonlinear portion of its tube characteristics thereby providing a relatively constant feedback voltage to the oscillator irrespective of the amplitude of its input signal.

  9. Synchronization of an Array of Miniature Acoustic Engines

    NASA Astrophysics Data System (ADS)

    Kwon, Young Sang; Symko, Orest G.

    2004-03-01

    In the development of miniature arrays of acoustic engines for energy conversion, phase-locking of the array ensemble was investigated. As the individual acoustic devices are independent resonant elements, maximum output can be achieved by a coherent summation of the elements of the array. They have small variations in resonant frequency and they have different phases as they are non-linear self-sustained oscillators and their phases depend on the initial conditions. The acoustic engines are based on thermoacoustics, where heat is converted to sound in a resonator by applying a temperature gradient across a stack of high surface area elements. In the experiments described here, the devices oscillate in the frequency range of 3 kHz and they are assembled into arrays of 5 elements and 9 elements. When the array is activated with heat, the acoustic power output is not coherent; it contains all sorts of beats and frequency mixtures produced by each independent oscillator. However, coherence is achieved by the introduction of a relatively weak signal from a separate resonator which phase-locks all the self-sustained acoustic oscillators and causes coherent summation of oscillations. Such approach provides a high intensity acoustic signal which can be used in energy conversion of heat to electricity.

  10. Stimulus Phase Locking of Cortical Oscillations for Rhythmic Tone Sequences in Rats

    PubMed Central

    Noda, Takahiro; Amemiya, Tomoki; Shiramatsu, Tomoyo I.; Takahashi, Hirokazu

    2017-01-01

    Humans can rapidly detect regular patterns (i.e., within few cycles) without any special attention to the acoustic environment. This suggests that human sensory systems are equipped with a powerful mechanism for automatically predicting forthcoming stimuli to detect regularity. It has recently been hypothesized that the neural basis of sensory predictions exists for not only what happens (predictive coding) but also when a particular stimulus occurs (predictive timing). Here, we hypothesize that the phases of neural oscillations are critical in predictive timing, and these oscillations are modulated in a band-specific manner when acoustic patterns become predictable, i.e., regular. A high-density microelectrode array (10 × 10 within 4 × 4 mm2) was used to characterize spatial patterns of band-specific oscillations when a random-tone sequence was switched to a regular-tone sequence. Increasing the regularity of the tone sequence enhanced phase locking in a band-specific manner, notwithstanding the type of the regular sound pattern. Gamma-band phase locking increased immediately after the transition from random to regular sequences, while beta-band phase locking gradually evolved with time after the transition. The amplitude of the tone-evoked response, in contrast, increased with frequency separation with respect to the prior tone, suggesting that the evoked-response amplitude encodes sequence information on a local scale, i.e., the local order of tones. The phase locking modulation spread widely over the auditory cortex, while the amplitude modulation was confined around the activation foci. Thus, our data suggest that oscillatory phase plays a more important role than amplitude in the neuronal detection of tone sequence regularity, which is closely related to predictive timing. Furthermore, band-specific contributions may support recent theories that gamma oscillations encode bottom-up prediction errors, whereas beta oscillations are involved in top

  11. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  12. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    PubMed

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing.

  13. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  14. Pattern-formation under acoustic driving forces

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgi