Science.gov

Sample records for acoustic power density

  1. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1985-01-01

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  2. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1985-09-03

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas. 5 figs.

  3. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  4. Ultrasonic acoustic health monitoring of ball bearings using neural network pattern classification of power spectral density

    NASA Astrophysics Data System (ADS)

    Kirchner, William; Southward, Steve; Ahmadian, Mehdi

    2010-03-01

    This paper presents a generic passive non-contact based approach using ultrasonic acoustic emissions (UAE) to facilitate the neural network classification of bearing health, and more specifically the bearing operating condition. The acoustic emission signals used in this study are in the ultrasonic range (20-120 kHz). A direct benefit of microphones capable of measurements in this frequency range is their inherent directionality. Using selected bands from the UAE power spectrum signature, it is possible to pose the health monitoring problem as a multi-class classification problem, and make use of a single neural network to classify the ultrasonic acoustic emission signatures. Artificial training data, based on statistical properties of a significantly smaller experimental data set is used to train the neural network. This specific approach is generic enough to suggest that it is applicable to a variety of systems and components where periodic acoustic emissions exist.

  5. Design and Modeling of High Power Density Acoustic Transducer Materials for Autonomous Undersea Vehicles

    NASA Astrophysics Data System (ADS)

    Heitmann, Adam Arthur

    Advances in piezocrystal transducer materials technology has opened new avenues to impact the size, weight, and power consumption of sonar systems for deployment in autonomous undersea vehicles (AUVs). Although piezocrystals exhibit exceptional electromechanical properties, they have low ferroelectric Curie temperatures, small electrical coercivities, and exhibit temperature, electrical field, and/or stress induced phase transitions between ferroelectric phases with differing electromechanical properties. New piezocrystal materials are required that can provide the compositional tailoring capability needed to increase the Curie temperature and coercive field, ameliorate the deleterious effects of ferroelectric-ferroelectric phase transitions, and enable property optimization for specific transducer applications. Currently, new piezocrystal systems and compositions are selected almost exclusively by empirical 'make and measure' approaches guided by past experiences. These empirical processes can be time and labor intensive and as a result there exists only limited predictive capability for finding new piezocrystal compositions even in known piezocrystal systems. In this study we seek to develop a comprehensive phenomenological theory and a unified parameterization scheme applicable to binary and ternary ferroelectric solid solution systems in order to enable the accelerated development and characterization of new piezocrystal systems for optimized transducer performance. A modified form of the classical Ginzburg-Landau-Devonshire theory of weak first-order transitions is applied to perovskite-structured ferroelectric systems based on the ternary oxide compounds, barium titanate and lead titanate, which places special emphasis on the role played by the crystallographic anisotropy of polarization. It is shown that the theory produces excellent qualitative agreement with the experimentally measured phase diagram topologies, crystal lattice parameters, and

  6. Bird population density estimated from acoustic signals

    USGS Publications Warehouse

    Dawson, D.K.; Efford, M.G.

    2009-01-01

    Many animal species are detected primarily by sound. Although songs, calls and other sounds are often used for population assessment, as in bird point counts and hydrophone surveys of cetaceans, there are few rigorous methods for estimating population density from acoustic data. 2. The problem has several parts - distinguishing individuals, adjusting for individuals that are missed, and adjusting for the area sampled. Spatially explicit capture-recapture (SECR) is a statistical methodology that addresses jointly the second and third parts of the problem. We have extended SECR to use uncalibrated information from acoustic signals on the distance to each source. 3. We applied this extension of SECR to data from an acoustic survey of ovenbird Seiurus aurocapilla density in an eastern US deciduous forest with multiple four-microphone arrays. We modelled average power from spectrograms of ovenbird songs measured within a window of 0??7 s duration and frequencies between 4200 and 5200 Hz. 4. The resulting estimates of the density of singing males (0??19 ha -1 SE 0??03 ha-1) were consistent with estimates of the adult male population density from mist-netting (0??36 ha-1 SE 0??12 ha-1). The fitted model predicts sound attenuation of 0??11 dB m-1 (SE 0??01 dB m-1) in excess of losses from spherical spreading. 5.Synthesis and applications. Our method for estimating animal population density from acoustic signals fills a gap in the census methods available for visually cryptic but vocal taxa, including many species of bird and cetacean. The necessary equipment is simple and readily available; as few as two microphones may provide adequate estimates, given spatial replication. The method requires that individuals detected at the same place are acoustically distinguishable and all individuals vocalize during the recording interval, or that the per capita rate of vocalization is known. We believe these requirements can be met, with suitable field methods, for a significant

  7. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - a response surface approach.

    PubMed

    González-Centeno, María Reyes; Knoerzer, Kai; Sabarez, Henry; Simal, Susana; Rosselló, Carmen; Femenia, Antoni

    2014-11-01

    Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120kHz), ultrasonic power density (50, 100, 150W/L) and extraction time (5, 15, 25min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (p<0.05). The Box-Behnken Design (BBD) generated satisfactory mathematical models which accurately explain the behavior of the system; allowing to predict both the extraction yield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40kHz, a power density of 150W/L and 25min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31mg GA/100g fw for total phenolics and 2.04mg quercetin/100g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66mg Trolox/100g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors' knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published. PMID:24548543

  8. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  9. Estimating animal population density using passive acoustics

    PubMed Central

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-01-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds

  10. Estimating animal population density using passive acoustics.

    PubMed

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-05-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds

  11. Acoustic measurements of gas density

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1990-01-01

    Sound transmission through gases in an enclosure is considered. Analytical results are given in terms of geometrical parameters, wave numbers, and source type for simple model problems, and are compared with data obtained by Haran (1983). It is concluded that density measurements can be made in a gas contained in an enclosure by measuring the sound pressure level at a receiver located near a dipole source driven at a constant velocity amplitude at low frequencies.

  12. Acoustic levitation methods for density measurements

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Hsu, C. J.

    1986-12-01

    The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.

  13. Acoustic levitation methods for density measurements

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Hsu, C. J.

    1986-01-01

    The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.

  14. Origin of negative density and modulus in acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Lee, Sam H.; Wright, Oliver B.

    2016-01-01

    This paper provides a review and fundamental physical interpretation for the effective densities and moduli of acoustic metamaterials. We introduce the terminology of hidden force and hidden source of volume: the effective density or modulus is negative when the hidden force or source of volume is larger than, and operates in antiphase to, respectively, the force or volume change that would be obtained in their absence. We demonstrate this ansatz for some established acoustic metamaterials with elements based on membranes, Helmholtz resonators, springs, and masses. The hidden force for membrane-based acoustic metamaterials, for instance, is the force from the membrane tension. The hidden source for a Helmholtz-resonator-based metamaterial is the extra air volume injected from the resonator cavity. We also explain the analogous concepts for pure mass-and-spring systems, in which case, hidden forces can arise from masses and springs fixed inside other masses, whereas hidden sources—more aptly termed hidden expanders of displacement in this case—can arise from light rigid trusses coupled to extra degrees of freedom for mechanical motion such as the case of coupling to masses that move at right angles to the wave-propagation direction. This overall picture provides a powerful tool for conceptual understanding and design of new acoustic metamaterials, and avoids common pitfalls involved in determining the effective parameters of such materials.

  15. High power density targets

    NASA Astrophysics Data System (ADS)

    Pellemoine, Frederique

    2013-12-01

    In the context of new generation rare isotope beam facilities based on high-power heavy-ion accelerators and in-flight separation of the reaction products, the design of the rare isotope production targets is a major challenge. In order to provide high-purity beams for science, high resolution is required in the rare isotope separation. This demands a small beam spot on the production target which, together with the short range of heavy ions in matter, leads to very high power densities inside the target material. This paper gives an overview of the challenges associated with this high power density, discusses radiation damage issues in targets exposed to heavy ion beams, and presents recent developments to meet some of these challenges through different projects: FAIR, RIBF and FRIB which is the most challenging. Extensive use of Finite Element Analysis (FEA) has been made at all facilities to specify critical target parameters and R&D work at FRIB successfully retired two major risks related to high-power density and heavy-ion induced radiation damage.

  16. Acoustic methods to monitor sliver linear density and yarn strength

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    Methods and apparatus are provided for monitoring sliver and yarn characteristics. Transverse waves are generated relative to the sliver or yarn. At least one acoustic sensor is in contact with the sliver or yarn for detecting waves coupled to the sliver or yarn and for generating a signal. The generated signal is processed to identify the predefined characteristics including sliver or yarn linear density. The transverse waves can be generated with a high-powered acoustic transmitter spaced relative to the sliver or yarn with large amplitude pulses having a central frequency in a range between 20 KHz and 40 KHz applied to the transmitter. The transverse waves can be generated by mechanically agitating the sliver or yarn with a tapping member.

  17. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  18. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.

    PubMed

    Ahmed, Suzanne; Wang, Wei; Bai, Lanjun; Gentekos, Dillon T; Hoyos, Mauricio; Mallouk, Thomas E

    2016-04-26

    Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave end of these rods is inconsistent with a scattering mechanism that we proposed earlier for acoustic propulsion, but is consistent with an acoustic streaming model developed more recently by Nadal and Lauga ( Phys. Fluids 2014 , 26 , 082001 ). Longer rods were slower at constant power, and their speed was proportional to the square of the power density, in agreement with the acoustic streaming model. The streaming model was further supported by a correlation between the disassembly of spinning chains of rods and a sharp decrease in the axial speed of autonomously moving motors within the levitation plane of the cylindrical acoustic cell. However, with bimetallic rods containing metals of different densities, a consistent polarity of motion was observed with the lighter metal end leading. Speed comparisons between single-metal rods of different densities showed that those of lower density are propelled faster. So far, these density effects are not explained in the streaming model. The directionality of bimetallic rods in acoustic fields is intriguing and offers some new possibilities for designing motors in which shape, material, and chemical asymmetry might be combined for enhanced functionality. PMID:26991933

  19. Density-dependent acoustic properties of PBX 9502

    SciTech Connect

    Brown, Geoffrey W; Thompson, Darla G; Deluca, Racci; Hartline, Ernest L; Hagelberg, Stephanie I

    2009-07-31

    We have measured the longitudinal and shear acoustic velocities of PBX 9502 as a function of density for die-pressed samples over the range 1.795 g/cc to 1.888 g/cc. The density dependence of the velocities is linear. Thermal cycling of PBX 9502 is known to induce irreversible volume growth. We have measured this volume growth dependence on density for a subset of the pressed parts and find that the most growth occurs for the samples with lowest initial density. The acoustic velocity changes due to the volume growth are significant and reflect damage in the samples.

  20. Power absorption in acoustically driven ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Labanowski, D.; Jung, A.; Salahuddin, S.

    2016-01-01

    Surface acoustic waves (SAWs) have recently been used to drive ferromagnetic resonance by exploiting the coupling between strain and magnetization in magnetostrictive materials in a technique called acoustically driven ferromagnetic resonance (ADFMR). In this work, we quantitatively examine the power absorbed by the magnetic elements in such systems. We find that power absorption scales exponentially with the length of the magnetic element in the direction of SAW propagation, with the rate of scaling set by the thickness of magnetic material. In addition, we find that ADFMR behaves consistently across a wide range of input power values (>65 dB). Our results indicate that devices such as filters, oscillators, and sensors can be designed that operate with very low power, yet provide high tunability.

  1. Improved efficiency and power density for thermoacoustic coolers

    NASA Astrophysics Data System (ADS)

    Hofler, Thomas J.

    1994-06-01

    Research on improving the efficiency, cooling power, and cooling power density of thermoacoustic refrigerators is described. A heuristic analysis of short thermoacoustic heat exchangers in a high amplitude sound field is given. A heat exchanger experiment, utilizing a very high amplitude thermoacoustic prime-mover, shows some agreement with the heuristic analysis. This indicates that acoustic losses in the heat exchanger can be drastically reduced in high amplitude engines, while maintaining good thermal effectiveness. Other related, but more applied, research is briefly discussed. This includes the design and construction of a compact, portable, air-cooled, thermoacoustic refrigerator for the purpose of producing frost at a lecture demonstration. This design has roughly the same temperature span (40 deg C) as required by shipboard applications. Also, two new electrodynamic acoustic drivers have been designed and one design has been constructed. These designs offer high efficiency, good power density, and low cost and are probably scalable up to significantly higher acoustic power levels.

  2. Hybrid CFx–Ag2V4O11 as a high-energy, power density cathode for application in an underwater acoustic microtransmitter

    SciTech Connect

    Meduri, Praveen; Chen, Honghao; Chen, Xilin; Xiao, Jie; Gross, Mark E.; Carlson, Thomas J.; Zhang, Jiguang; Deng, Zhiqun

    2011-12-01

    This study demonstrates the excellent electrochemical performance of the hybrid carbon fluoride(CFx)/silver vanadium oxide(SVO)/graphene(G) cathode and its potential utilization in Acoustic Telemetry System Transmitter (ATST). The impedance increase issue caused by LiF formation from CFx is effectively addressed by the deposition of conductive silver metal from the reduction of SVO aided by the coexistence of graphene additive thus a prolonged operation voltage is observed with enhanced electronic conductivity throughout the whole discharge process. In particular, the hybrid shows capacity retention of {approx}462 mAhg-1 at 5C rate and 661 mAhg-1 at 1C rate. The peak current delivered from the as-designed hybrid cathode is improved compared with that of commercial Zn/Ag2O batteries suggesting the possibility of the further reduction on the size/weight of the micro batteries which is critical for the transmitters.

  3. A probability density function method for acoustic field uncertainty analysis

    NASA Astrophysics Data System (ADS)

    James, Kevin R.; Dowling, David R.

    2005-11-01

    Acoustic field predictions, whether analytical or computational, rely on knowledge of the environmental, boundary, and initial conditions. When knowledge of these conditions is uncertain, acoustic field predictions will also be uncertain, even if the techniques for field prediction are perfect. Quantifying acoustic field uncertainty is important for applications that require accurate field amplitude and phase predictions, like matched-field techniques for sonar, nondestructive evaluation, bio-medical ultrasound, and atmospheric remote sensing. Drawing on prior turbulence research, this paper describes how an evolution equation for the probability density function (PDF) of the predicted acoustic field can be derived and used to quantify predicted-acoustic-field uncertainties arising from uncertain environmental, boundary, or initial conditions. Example calculations are presented in one and two spatial dimensions for the one-point PDF for the real and imaginary parts of a harmonic field, and show that predicted field uncertainty increases with increasing range and frequency. In particular, at 500 Hz in an ideal 100 m deep underwater sound channel with a 1 m root-mean-square depth uncertainty, the PDF results presented here indicate that at a range of 5 km, all phases and a 10 dB range of amplitudes will have non-negligible probability. Evolution equations for the two-point PDF are also derived.

  4. Selectively manipulable acoustic-powered microswimmers

    PubMed Central

    Ahmed, Daniel; Lu, Mengqian; Nourhani, Amir; Lammert, Paul E.; Stratton, Zak; Muddana, Hari S.; Crespi, Vincent H.; Huang, Tony Jun

    2015-01-01

    Selective actuation of a single microswimmer from within a diverse group would be a first step toward collaborative guided action by a group of swimmers. Here we describe a new class of microswimmer that accomplishes this goal. Our swimmer design overcomes the commonly-held design paradigm that microswimmers must use non-reciprocal motion to achieve propulsion; instead, the swimmer is propelled by oscillatory motion of an air bubble trapped within the swimmer's polymer body. This oscillatory motion is driven by the application of a low-power acoustic field, which is biocompatible with biological samples and with the ambient liquid. This acoustically-powered microswimmer accomplishes controllable and rapid translational and rotational motion, even in highly viscous liquids (with viscosity 6,000 times higher than that of water). And by using a group of swimmers each with a unique bubble size (and resulting unique resonance frequencies), selective actuation of a single swimmer from among the group can be readily achieved. PMID:25993314

  5. Low power acoustic harvesting of aerosols

    SciTech Connect

    Kaduchak, G.; Sinha, D. N.

    2001-01-01

    A new acoustic device for levitation and/or concentration of aerosols and sniall liquid/solid samples (up to several millimeters in diameter) in air has been developed. The device is inexpensive, low-power, and, in its simplest embodiment, does not require accurate alignmen1 of a resonant cavity. It is constructed from a cylindrical PZT tube of outside diameter D = 19.0 mm and thickness-to-radius ratio h/a - 0.03. The lowest-order breathing mode of the tube is tuned to match a resonant mode of the interior air-filled cylindrical cavity. A high Q cavity results that can be driven efficiently. An acoustic standing wave is created in the inteirior cavity of the cylindrical shell where particle concrmtration takes place at the nodal planes of the field. It is shown that drops of water in excess of 1 mm in diameter may be levitated against the force of gravity for approxirnately 100 mW of input electrical power. The main objective of the research is to implement this lowpower device to concentrate and harvest aerosols in a flowing system. Several different cavity geonietries iwe presented for efficient collection of 1 he conaartratetl aerosols. Concentraiion factors greater than 40 iue demonstrated for particles of size 0.7 1.1 in a flow volume of 50 L/minute.

  6. Density can be misleading for low-density species: benefits of passive acoustic monitoring.

    PubMed

    Rogers, Tracey L; Ciaglia, Michaela B; Klinck, Holger; Southwell, Colin

    2013-01-01

    Climate-induced changes may be more substantial within the marine environment, where following ecological change is logistically difficult, and typically expensive. As marine animals tend to produce stereotyped, long-range signals, they are ideal for repeatable surveying. In this study we illustrate the potential for calling rates to be used as a tool for determining habitat quality by using an Antarctic pack-ice seal, the leopard seal, as a model.With an understanding of the vocal behavior of a species, their seasonal and diurnal patterns, sex and age-related differences, an underwater passive-acoustic survey conducted alongside a visual survey in an arc of 4,225 km across the Davis Sea, Eastern Antarctica, showed that while acoustic and visual surveys identified similar regions as having high densities, the acoustic surveys surprisingly identified the opposite regions as being 'critical' habitats. Density surveys of species that cannot be differentiated into population classes may be misleading because overall density can be a negative indicator of habitat quality.Under special circumstances acoustics can offer enormous advantage over traditional techniques and open up monitoring to regions that are remote, difficult and expensive to work within, no longer restricting long-term community assessment to resource-wealthy communities. As climatic change affects a broad range of organisms across geographic boundaries we propose that capitalizing on the significant advances in passive acoustic technology, alongside physical acoustics and population modeling, can help in addressing ecological questions more broadly. PMID:23326339

  7. Density Can Be Misleading for Low-Density Species: Benefits of Passive Acoustic Monitoring

    PubMed Central

    Rogers, Tracey L.; Ciaglia, Michaela B.; Klinck, Holger; Southwell, Colin

    2013-01-01

    Climate-induced changes may be more substantial within the marine environment, where following ecological change is logistically difficult, and typically expensive. As marine animals tend to produce stereotyped, long-range signals, they are ideal for repeatable surveying. In this study we illustrate the potential for calling rates to be used as a tool for determining habitat quality by using an Antarctic pack-ice seal, the leopard seal, as a model.With an understanding of the vocal behavior of a species, their seasonal and diurnal patterns, sex and age-related differences, an underwater passive-acoustic survey conducted alongside a visual survey in an arc of 4,225 km across the Davis Sea, Eastern Antarctica, showed that while acoustic and visual surveys identified similar regions as having high densities, the acoustic surveys surprisingly identified the opposite regions as being ‘critical’ habitats. Density surveys of species that cannot be differentiated into population classes may be misleading because overall density can be a negative indicator of habitat quality.Under special circumstances acoustics can offer enormous advantage over traditional techniques and open up monitoring to regions that are remote, difficult and expensive to work within, no longer restricting long-term community assessment to resource-wealthy communities. As climatic change affects a broad range of organisms across geographic boundaries we propose that capitalizing on the significant advances in passive acoustic technology, alongside physical acoustics and population modeling, can help in addressing ecological questions more broadly. PMID:23326339

  8. On the relationship between acoustic energy density flux near the jet and far field acoustic intensity

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    1973-01-01

    The relationship between the distribution of the outflow of acoustic energy over the jet boundary and the far-field directivity and intensity distribution is established by measurement and analysis. The numerical and experimental procedures involved have been checked out by using a known source. The results indicate that the acoustic power output per unit length of the jet, in the region from which the sound emanates, peaks at approximately 9 diameters downstream. The acoustic emission for a jet Strouhal number of about 0.3 exceeds the emission for all other Strouhal numbers nearly everywhere along the measurement plane. However, the far-field peak intensity distribution obtained from the contribution of each station was found to depend on the spatial extent of the region where sound emanates from the jet, which, in turn, depends more on the far-field angle than on the Strouhal number. The implications of these results for sound suppression techniques are discussed.

  9. Optimizing thermoacoustic regenerators for maximum amplification of acoustic power.

    PubMed

    Holzinger, Tobias; Emmert, Thomas; Polifke, Wolfgang

    2014-11-01

    Identifying optimum design parameters and operating conditions of thermoacoustic engines or refrigerators is crucial for the further development of such devices. This publication proposes an optimization criterion for the stack of a thermoacoustic device with the objective of maximizing the amplification of acoustic energy by the stack. For this purpose, the stack is described as an acoustic multi-port, represented mathematically by its scattering matrix. It is shown how the scattering matrix may be deduced from the standard thermo-acoustic governing equations. Then an acoustic power balance is deduced from the scattering matrix. The spectral norm and the eigenvectors of the scattering matrix identify optimal acoustic states. Stack design operating parameters and frequencies with maximum amplification of acoustic power are identified for various stack configurations. The corresponding acoustic states are interpreted physically. PMID:25373945

  10. 76 FR 52734 - Underwater Locating Devices (Acoustic) (Self-Powered)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ...This notice announces the planned revocation of all Technical Standard Order authorizations (TSOA) issued for the production of Underwater Locating Devices (Acoustic) (Self-Powered) manufactured to the TSO-C121 and TSO-C121a specifications. These actions are necessary because the planned issuance of TSO-C121b, Underwater Locating Devices (Acoustic) (Self-Powered), with a minimum performance......

  11. 77 FR 13174 - Underwater Locating Devices (Acoustic) (Self-Powered)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ...This is a confirmation notice for the planned revocation of all Technical Standard Order authorizations issued for the production of Underwater Locating Devices (Acoustic) (Self-Powered) manufactured to the TSO-C121 and TSO-C121a specifications. These actions are necessary because the planned issuance of TSO-C121b, Underwater Locating Devices (Acoustic) (Self-Powered), minimum performance......

  12. Acoustic metamaterial with negative mass density in water

    SciTech Connect

    Chen, Huaijun; Zhai, Shilong; Ding, Changlin; Luo, Chunrong; Zhao, Xiaopeng

    2015-09-07

    A two-dimensional (2D) acoustic metamaterial (AM) with negative effective mass density in water is designed by periodically arranging hollow tube “meta-atoms.” Experimental and simulated results demonstrate that transmission dips accompanied with inverse phases are presented in the transmission spectra of the 2D AM at the ultrasonic frequency band. Effective parameters extracted from the experimental measured transmission and reflection coefficients of the 2D AM show that the effective mass density and refractive index are negative near the dip frequency range of 35.31–35.94 kHz. The simulation also shows the negative response in the 2D AM. Due to the excellent properties, the 2D AM is appealing for the potential applications in areas such as subwavelength imaging, ultrasonic cloaking in water, and so on.

  13. High power density spray cooling

    NASA Astrophysics Data System (ADS)

    Tilton, Donald E.; Pais, Martin R.; Chow, Louis C.

    1989-07-01

    The research reported describes experimental and theoretical investigations of high power density evaporative spray cooling. Preliminary experiments demonstrating heat fluxes greater than 1,000 W/sq cm were conducted. Extensive laser phase Doppler measurements of spray characteristics were also taken. These measurements provided valuable insight into the heat transfer process. An in-depth analysis was conducted to determine the mechanisms responsible for critical heat flux. Theoretical modeling was also conducted to determine the most desirable heat transfer conditions. After analysis of these results, an improved experimental apparatus was designed and fabricated. The new apparatus provided greater experimental control and improve accuracy. New tests were conducted in which the critical heat flux was increased, and the heat transfer efficiency was greatly improved. These results are compared to those of previous researchers, and indicated substantial improvement.

  14. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    NASA Astrophysics Data System (ADS)

    Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.

    2016-03-01

    The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman's approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  15. Acoustical power amplification and damping by temperature gradients.

    PubMed

    Biwa, Tetsushi; Komatsu, Ryo; Yazaki, Taichi

    2011-01-01

    Ceperley proposed a concept of a traveling wave heat engine ["A pistonless Stirling engine-The traveling wave heat engine," J. Acoust. Soc. Am. 66, 1508-1513 (1979).] that provided a starting point of thermoacoustics today. This paper verifies experimentally his idea through observation of amplification and strong damping of a plane acoustic traveling wave as it passes through axial temperature gradients. The acoustic power gain is shown to obey a universal curve specified by a dimensionless parameter ωτα; ω is the angular frequency and τα is the relaxation time for the gas to thermally equilibrate with channel walls. As an application of his idea, a three-stage acoustic power amplifier is developed, which attains the gain up to 10 with a moderate temperature ratio of 2.3. PMID:21302995

  16. High-frequency multi-wavelength acoustic power maps

    NASA Astrophysics Data System (ADS)

    Hill, Frank; Ladenkov, Oleg; Ehgamberdiev, Shuhrat; Chou, Dean-Yi

    2001-01-01

    Acoustic power maps have been constructed using SOHO/MDI velocity and intensity data in Ni I 6768; NSO High-L Helioseismometer (HLH) Ca K intensity; and Taiwan Oscillation Network (TON) intensity in Ca K. The HLH data provides maps up to a frequency of 11.9 mHz, substantially higher than the usual 8.33 mHz. The Ca K observations show a surprising strong enhancement of power within a sunspot at all temporal frequencies, while the Ni I data show the well-known suppression of power. Tests suggest that this apparent acoustic enhancement is the result of strong intensity gradients observed through terrestrial seeing.

  17. Measurement of the total acoustic output power of HITU transducers

    NASA Astrophysics Data System (ADS)

    Jenderka, Klaus-V.; Beissner, Klaus

    2010-03-01

    The majority of High Intensity Therapeutic Ultrasound (HITU) applications use strongly focused ultrasound fields generating very high local intensities in the focal region. The metrology of these high-power ultrasound fields is a challenge for the established measurement procedures and devices. This paper describes the results of measurements by means of the radiation force for a total acoustic output power up to 400 W at 1.5 MHz and up to 200 W at 2.45 MHz. For this purpose, a radiation force balance set-up was adapted for the determination of large acoustic output powers. For two types of HITU transducers, the relationship between the total acoustic output power and the applied net electrical power was determined at close transducer-target distance. Further, dependence of the measured electro-acoustic radiation conductance on the transducer-target distance was investigated at reduced power levels, considering the appearance of focal anomalies. Concluding, a list of the main uncertainty contributions, and an estimate of the uncertainty for the used radiation force balance set-up is given for measurements at high power levels.

  18. Ultrasonic waveguide sensor for acoustic monitoring of nuclear power plants

    SciTech Connect

    Mel'nikov, V.I.; Khokhlov, V.N.; Duntsev, A.V.

    1988-02-01

    Waveguide sensors are being increasingly used for acoustic emission monitoring of equipment in nuclear power plants and in systems for acoustic diagnostics of the coolant. In this paper we examine the construction of a waveguide sensor for acoustic monitoring for the example of an impedance sensor for the steam content of water coolant, intended for use in the active emission-reception mode. The dynamic properties of the sensor are determined by the construction and the dimensions of the transducer, and are usually represented by its amplitude-frequency characteristic, which, as a rule, is of the resonance type. The longitudinal-wave waveguide, made from steel wire 0.8-1.2 mm in diameter, can transmit signals in the band 50-1000 kHz. To increase the reliability and the ease of maintenance of the monitoring system the transducer and the waveguide are connected in a detachable manner.

  19. High power density molten carbonate fuel cells

    SciTech Connect

    Bloom, I.; Johnson, S.A.; Geyer, H.K.; Roche, M.F.; Krumpelt, M.; Myles, K.M.

    1995-07-01

    Our results to date indicate that the specific power of the MCFC can be increased from 1200 W/m{sup 2} to above 2000W/m{sup 2} through the use of advanced components such as the double doped LiFeO{sub 2} cathode and pressurized operation. Its volumetric power density can also be increased by an additional 60% by multiple manifolding. Therefore, MCFCs with two to three times the power density of the current generation of MCFCs are possible.

  20. Comparison of Comet Enflow and VA One Acoustic-to-Structure Power Flow Predictions

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.

    2010-01-01

    Comet Enflow is a commercially available, high frequency vibroacoustic analysis software based on the Energy Finite Element Analysis (EFEA). In this method the same finite element mesh used for structural and acoustic analysis can be employed for the high frequency solutions. Comet Enflow is being validated for a floor-equipped composite cylinder by comparing the EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) results from the commercial software program VA One from ESI Group. Early in this program a number of discrepancies became apparent in the Enflow predicted response for the power flow from an acoustic space to a structural subsystem. The power flow anomalies were studied for a simple cubic, a rectangular and a cylindrical structural model connected to an acoustic cavity. The current investigation focuses on three specific discrepancies between the Comet Enflow and the VA One predictions: the Enflow power transmission coefficient relative to the VA One coupling loss factor; the importance of the accuracy of the acoustic modal density formulation used within Enflow; and the recommended use of fast solvers in Comet Enflow. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 16 Hz to 4000 Hz.

  1. Enhanced output power by eigenfrequency shift in acoustic energy harvester

    NASA Astrophysics Data System (ADS)

    Li, Bin; You, Jeong Ho

    2014-04-01

    In our previous studies, multiple piezoelectric cantilever plates were placed inside a quarter-wavelength straight tube resonator to harvest low frequency acoustic energy. To investigate the modification of eigenmodes in the tube resonator due to the presence of piezoelectric plates, the eigenfrequency shift properties by introducing single and multiple rectangular blockages in open-closed ducts are studied by using 1D segmented Helmholtz equations, Webster horn equation, and finite element simulations. The first-mode eigenfrequency of the duct is reduced when the blockage is placed near the open inlet. The decrease of eigenfrequency leads to the enhancement of absorbed acoustic power in the duct. Furthermore, the first half of the tube resonator possesses high pressure gradient resulting in larger driving forces for the vibration motion of piezoelectric plates. Therefore, in our harvesters, it is better to place the piezoelectric plates in the first half of the tube resonator to obtain high output voltage and power.

  2. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  3. High power density carbonate fuel cell

    SciTech Connect

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J.

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  4. Power cepstrum technique with application to model helicopter acoustic data

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Burley, C. L.

    1986-01-01

    The application of the power cepstrum to measured helicopter-rotor acoustic data is investigated. A previously applied correction to the reconstructed spectrum is shown to be incorrect. For an exact echoed signal, the amplitude of the cepstrum echo spike at the delay time is linearly related to the echo relative amplitude in the time domain. If the measured spectrum is not entirely from the source signal, the cepstrum will not yield the desired echo characteristics and a cepstral aliasing may occur because of the effective sample rate in the frequency domain. The spectral analysis bandwidth must be less than one-half the echo ripple frequency or cepstral aliasing can occur. The power cepstrum editing technique is a useful tool for removing some of the contamination because of acoustic reflections from measured rotor acoustic spectra. The cepstrum editing yields an improved estimate of the free field spectrum, but the correction process is limited by the lack of accurate knowledge of the echo transfer function. An alternate procedure, which does not require cepstral editing, is proposed which allows the complete correction of a contaminated spectrum through use of both the transfer function and delay time of the echo process.

  5. An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia

    PubMed Central

    Kidney, Darren; Rawson, Benjamin M.; Borchers, David L.; Stevenson, Ben C.; Marques, Tiago A.; Thomas, Len

    2016-01-01

    Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers’ estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method

  6. An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.

    PubMed

    Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len

    2016-01-01

    Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method

  7. Klamath Falls: High-Power Acoustic Well Stimulation Technology

    SciTech Connect

    Black, Brian

    2006-07-24

    Acoustic well stimulation (AWS) technology uses high-power sonic waves from specific frequency spectra in an attempt to stimulate production in a damaged or low-production wellbore. AWS technology is one of the most promising technologies in the oil and gas industry, but it has proven difficult for the industry to develop an effective downhole prototype. This collaboration between Klamath Falls Inc. and the Rocky Mountain Oilfield Testing Center (RMOTC) included a series of tests using high-power ultrasonic tools to stimulate oil and gas production. Phase I testing was designed and implemented to verify tool functionality, power requirements, and capacity of high-power AWS tools. The purpose of Phase II testing was to validate the production response of wells with marginal production rates to AWS stimulation and to capture and identify any changes in the downhole environment after tool deployment. This final report presents methodology and results.

  8. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  9. Evaluation of human middle ear function via an acoustic power assessment.

    PubMed

    Allen, Jont B; Jeng, Patricia S; Levitt, Harry

    2005-01-01

    Measurements of middle ear (ME) acoustic power flow (power reflectance, power absorption, and transmittance) and normalized impedance (acoustic resistance, acoustic reactance, and impedance magnitude) were compared for their utility in clinical applications. Transmittance, a measure of the acoustic power absorbed by the ME, was found to have several important advantages over other measures of acoustic power flow. In addition to its simple and audiologically relevant physical interpretation (absorbed power), the normal transmittance curve has a simple shape that is visually similar to the ME transfer function. The acoustic impedance measures (resistance and reactance) provided important additional information about ME status and supplemented transmittance measurements. Together these measurements can help identify unusual conditions such as eardrum perforations. While this article is largely a review of the development of a commercial power reflectance measurement system, previously unpublished experimental results are presented. PMID:16470465

  10. Relationship between input power and power density of SMA spring

    NASA Astrophysics Data System (ADS)

    Park, Cheol Hoon; Ham, Sang Yong; Son, Young Su

    2016-04-01

    The important required characteristics of an artificial muscle for a human arm-like manipulator are high strain and high power density. From this viewpoint, an SMA (shape memory alloy) spring is a good candidate for the actuator of a robotic manipulator that utilizes an artificial muscle. In this study, the maximum power density of an SMA spring was evaluated with respect to the input power. The spring samples were fabricated from SMA wires of different diameters ranging between 0.1 and 0.3 mm. For each diameter, two types of wires with different transition temperatures were used. The relationship between the transition temperature and maximum power density was also evaluated. Each SMA spring was stretched downward by an attached weight and the temperature was increased through the application of an electric current. The displacement, velocity, and temperature of the SMA spring were measured by laser displacement sensors and a thermocouple. Based on the experimental data, it was determined that the maximum power densities of the different SMA springs ranged between 1,300 and 5,500 W/kg. This confirmed the applicability of an SMA spring to human arm-like robotic manipulators. The results of this study can be used as reference for design.

  11. Acoustic power of a moving point source in a moving medium

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Sarris, I. I.

    1976-01-01

    The acoustic power output of a moving point-mass source in an acoustic medium which is in uniform motion and infinite in extent is examined. The acoustic medium is considered to be a homogeneous fluid having both zero viscosity and zero thermal conductivity. Two expressions for the acoustic power output are obtained based on a different definition cited in the literature for the average energy-flux vector in an acoustic medium in uniform motion. The acoustic power output of the source is found by integrating the component of acoustic intensity vector in the radial direction over the surface of an infinitely long cylinder which is within the medium and encloses the line of motion of the source. One of the power expressions is found to give unreasonable results even though the flow is uniform.

  12. A radioisotope-powered surface acoustic wave transponder

    NASA Astrophysics Data System (ADS)

    Tin, S.; Lal, A.

    2009-09-01

    We demonstrate a 63Ni radioisotope-powered pulse transponder that has a SAW (surface acoustic wave) device as the frequency transmission frequency selector. Because the frequency is determined by a SAW device, narrowband detection with an identical SAW device enables the possibility for a long-distance RF-link. The SAW transponders can be buried deep into structural constructs such as steel and concrete, where changing batteries or harvesting vibration or EM energy is not a reliable option. RF-released power to radioisotope- released power amplification is 108, even when regulatory safe amounts of 63Ni are used. Here we have achieved an 800 µW pulse (315 MHz, 10 µs pause) across a 50 Ω load every 3 min, using a 1.5 milli-Ci 63Ni source.

  13. Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation

    PubMed Central

    Adamchic, Ilya; Toth, Timea; Hauptmann, Christian; Tass, Peter Alexander

    2014-01-01

    Acoustic Coordinated Reset (CR) neuromodulation is a patterned stimulation with tones adjusted to the patient's dominant tinnitus frequency, which aims at desynchronizing pathological neuronal synchronization. In a recent proof-of-concept study, CR therapy, delivered 4–6 h/day more than 12 weeks, induced a significant clinical improvement along with a significant long-lasting decrease of pathological oscillatory power in the low frequency as well as γ band and an increase of the α power in a network of tinnitus-related brain areas. As yet, it remains unclear whether CR shifts the brain activity toward physiological levels or whether it induces clinically beneficial, but nonetheless abnormal electroencephalographic (EEG) patterns, for example excessively decreased δ and/or γ. Here, we compared the patients' spontaneous EEG data at baseline as well as after 12 weeks of CR therapy with the spontaneous EEG of healthy controls by means of Brain Electrical Source Analysis source montage and standardized low-resolution brain electromagnetic tomography techniques. The relationship between changes in EEG power and clinical scores was investigated using a partial least squares approach. In this way, we show that acoustic CR neuromodulation leads to a normalization of the oscillatory power in the tinnitus-related network of brain areas, most prominently in temporal regions. A positive association was found between the changes in tinnitus severity and the normalization of δ and γ power in the temporal, parietal, and cingulate cortical regions. Our findings demonstrate a widespread CR-induced normalization of EEG power, significantly associated with a reduction of tinnitus severity. PMID:23907785

  14. Pinning Loss Power Density in Superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, Teruo

    2015-03-01

    The pinning loss power density is theoretically derived based on the resistive energy dissipation when the flux lines are driven by the Lorentz force in a superconductor. The obtained loss power density does not depend on the viscosity or flow resistivity, but is proportional to the pinning force density only, and it possesses the nature of hysteresis loss, as commonly measured in experiments. These features are predicted by the critical state model, which was recently proved theoretically. The obtained pinning force density is consistent with the prediction of the coherent potential approximation theory, a kind of statistical summation theory, for flux pinning. Thus, the irreversible properties associated with the flux pinning can be comprehensively described by these flux pinning theories. The irreversible flux pinning in the superconductor is compared with similar irreversible phenomena such as the motion of magnetic domain walls in ferromagnetic materials and the friction in mechanical systems. The possibility is also discussed for a general theoretical description of these irreversible phenomena in which the hysteresis loss occurs.

  15. Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system.

    PubMed

    Gong, Yanming; Radachowsky, Sage E; Wolf, Michael; Nielsen, Mark E; Girguis, Peter R; Reimers, Clare E

    2011-06-01

    Supported by the natural potential difference between anoxic sediment and oxic seawater, benthic microbial fuel cells (BMFCs) promise to be ideal power sources for certain low-power marine sensors and communication devices. In this study a chambered BMFC with a 0.25 m(2) footprint was used to power an acoustic modem interfaced with an oceanographic sensor that measures dissolved oxygen and temperature. The experiment was conducted in Yaquina Bay, Oregon over 50 days. Several improvements were made in the BMFC design and power management system based on lessons learned from earlier prototypes. The energy was harvested by a dynamic gain charge pump circuit that maintains a desired point on the BMFC's power curve and stores the energy in a 200 F supercapacitor. The system also used an ultralow power microcontroller and quartz clock to read the oxygen/temperature sensor hourly, store data with a time stamp, and perform daily polarizations. Data records were transmitted to the surface by the acoustic modem every 1-5 days after receiving an acoustic prompt from a surface hydrophone. After jump-starting energy production with supplemental macroalgae placed in the BMFC's anode chamber, the average power density of the BMFC adjusted to 44 mW/m(2) of seafloor area which is better than past demonstrations at this site. The highest power density was 158 mW/m(2), and the useful energy produced and stored was ≥ 1.7 times the energy required to operate the system. PMID:21545151

  16. Empirical and quadrature approximation of acoustic field and array response probability density functions.

    PubMed

    Hayward, Thomas J; Oba, Roger M

    2013-07-01

    Numerical methods are presented for approximating the probability density functions (pdf's) of acoustic fields and receiver-array responses induced by a given joint pdf of a set of acoustic environmental parameters. An approximation to the characteristic function of the random acoustic field (the inverse Fourier transform of the field pdf) is first obtained either by construction of the empirical characteristic function (ECF) from a random sample of the acoustic parameters, or by application of generalized Gaussian quadrature to approximate the integral defining the characteristic function. The Fourier transform is then applied to obtain an approximation of the pdf by a continuous function of the field variables. Application of both the ECF and generalized Gaussian quadrature is demonstrated in an example of a shallow-water ocean waveguide with two-dimensional uncertainty of sound speed and attenuation coefficient in the ocean bottom. Both approximations lead to a smoother estimate of the field pdf than that provided by a histogram, with generalized Gaussian quadrature providing a smoother estimate at the tails of the pdf. Potential applications to acoustic system performance quantification and to nonparametric acoustic signal processing are discussed. PMID:23862782

  17. On the relationship between acoustic energy density flux near the jet axis and far field acoustic intensity

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    1973-01-01

    By measurement and analysis, the relationship between the distribution of the outflow of acoustic energy over the jet boundary and the far-field intensity is considered. The physical quantity used is the gradient of the pressure evaluated on a geometrical plane at the smallest possible radial distance from the jet axis, but outside the vortical region, in the area where the homogeneous wave equation is reasonably well satisfied. The numerical and experimental procedures involved have been checked out by using a known source. Results indicate that the acoustic power output per unit length of the jet, in the region from which the sound emanates, peaks at approximately 9 diameters downstream. The acoustic emission for a jet Strouhal number of about 0.3 exceeds the emission for all other Strouhal numbers nearly everywhere along the measurement plane. However, the far-field peak intensity distribution obtained from the contribution of each station was found to depend on the spatial extent of the region where sound emanates from the jet, which, in turn, depends more on the far-field angle than on the Strouhal number.

  18. Acoustic logging on ultralow density cement bonded quality evaluation in cased hole

    NASA Astrophysics Data System (ADS)

    Wang, H.; Shang, X.; Chen, T.; Tao, G.

    2011-12-01

    Cementing operation after drilling boreholes ensures oil and gas to be extracted effectively and avoids oil spill events such as BP Mexico oil leakage events. However, the loss of cement in deep formation due to its high density happens and raises issues. In order to overcome this problem, ultralow density cement or gas-based cements are used more and more commonly in recent years. Current acoustic evaluation tools, used to determine the cement bond quality, are designed for conventional high density cement. Therefore, they are not capable to image the ultralow density cement, whose acoustic properties are similar to borehole drilling mud. In this paper, a new acoustic technique is developed to image the ultralow density cement behind case. Finite difference method and analytical methods are used to simulate the wave-field of cased borehole which ultralow density cement bonded on. Based on the simulations, the optimal parameters of the evaluation tool design are proposed including spacing (from source to the nearest receiver and between the two neighboring receiver), frequency of source.

  19. High Density Power Converters for Photovoltaic Power Management

    NASA Astrophysics Data System (ADS)

    Sangwan, Rahul

    In typical photovoltaic systems, PV cells are connected in series to achieve high output voltages, which decreases conduction losses and helps the downstream power electronics operate at higher efficiencies. A series connection means that the current through the string is limited by the worst case cell, substring, or module, which can result in suboptimal operation of the rest of the string. Given how even small shading can have a large effect on performance, there has been growing interest in the use of distributed power management architectures to mitigate losses from variation in PV systems. In particular, partial power processing converters have gained traction as a means to improve the performance of PV arrays with small, distributed converters that configure in parallel with PV cells. These converters can use low voltage components, only process a fraction of the total power allowing them to achieve higher efficiencies and power density and also have higher reliability. This work details the design and operation of a partial power processing converter implemented as a Resonant Switched Capacitor (ReSC) converter. An integrated circuit (IC) is designed in 0.18 mum CMOS process. Operation at high frequencies (20-50 MHz) allows high levels of integration with air core inductors directly attached to the die through a gold bump, solder reflow process. Test results for the IC are presented with power density and efficiency metrics. The IC is then used as a partial power processing converter to implement equalization with a specially constructed PV panel. The converter is shown to mitigate power loss due to mismatch.

  20. Engineering science research issues in high power density transmission dynamics for aerospace applications. [rotorcraft geared rotors

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.

    1993-01-01

    This paper discusses analytical and experimental approaches that will be needed to understand dynamic, vibro-acoustic and design characteristics of high power density rotorcraft transmissions. Complexities associated with mathematical modeling of such systems will be discussed. An overview of research work planned during the next several years will be presented, with emphasis on engineering science issues such as gear contact mechanics, multi-mesh drive dynamics, parameter uncertainties, vibration transmission through bearings, and vibro-acoustic characteristics of geared rotor systems and housing-mount structures. A few examples of work in progress are cited.

  1. Acoustic device and method for measuring gas densities

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy (Inventor); Kwack, Eug Y. (Inventor); Back, Lloyd (Inventor)

    1992-01-01

    Density measurements can be made in a gas contained in a flow through enclosure by measuring the sound pressure level at a receiver or microphone located near a dipole sound source which is driven at constant velocity amplitude at low frequencies. Analytical results, which are provided in terms of geometrical parameters, wave numbers, and sound source type for systems of this invention, agree well with published data. The relatively simple designs feature a transmitter transducer at the closed end of a small tube and a receiver transducer on the circumference of the small tube located a small distance away from the transmitter. The transmitter should be a dipole operated at low frequency with the kL value preferable less that about 0.3.

  2. Volcanic Lightning, Pyroclastic Density Currents, Ballistic Fall, Vent Tremor, and One Very Loud Blast: Acoustic Analysis of the 14 July 2013 Vulcanian Eruption at Tungurahua, Ecuador.

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J. B.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Hall, M. L.; Ruiz, M. C.

    2014-12-01

    Acoustic recordings reveal a variety of volcanic activities during an exceptionally loud vulcanian eruption at Tungurahua. A period of several months of mild surface activity came to an abrupt end with the emission of a powerful blast wave heard at least 180 km away. Sensors 2080 m from the vent recorded a stepped rise to its maximum overpressure of 1220 Pa (corresponding to a sound pressure level of 156 dB) and its unusually long dominant period of 5.6 s. We discuss source processes that produced the blast wave, considering that wave propagation could be nonlinear near the vent because of high overpressures. More than an hour of acoustic activity was recorded after the blast wave, including sound from falling ballistics, reflections of the blast wave from nearby mountains, pyroclastic density currents, and acoustic tremor at the vent. Glitches in the acoustic records related to plume lightning were also serendipitously observed, although thunder could not be unambiguously identified. We discuss acoustic signatures of falling ballistics and pyroclastic density currents and how array-style deployments and analytic methods can be used to reveal them. Placement of sensors high on the volcano's slopes facilitated resolving these distinct processes. This study demonstrates that near-vent, array-style acoustic installations can be used to monitor various types of volcanic activity.

  3. Infrared divergence of pure Einstein gravity contributions to the cosmological density power spectrum.

    PubMed

    Noh, Hyerim; Jeong, Donghui; Hwang, Jai-Chan

    2009-07-10

    We probe the pure Einstein gravity contributions to the second-order density power spectrum. On the small scale, we discover that Einstein's gravity contribution is negligibly small. This guarantees that Newton's gravity is currently sufficient to handle the baryon acoustic oscillation scale. On the large scale, however, we discover that Einstein's gavity contribution to the second-order power spectrum dominates the linear-order power spectrum. Thus, the pure Einstein gravity contribution appearing in the third-order perturbation leads to an infrared divergence in the power spectrum. PMID:19659195

  4. Acoustic intensity near a high-powered military jet aircraft.

    PubMed

    Stout, Trevor A; Gee, Kent L; Neilsen, Tracianne B; Wall, Alan T; James, Michael M

    2015-07-01

    The spatial variation in vector acoustic intensity has been calculated between 100 and 3000 Hz near a high-performance military aircraft. With one engine of a tethered F-22A Raptor operating at military power, a tetrahedral intensity probe was moved to 27 locations in the geometric near and mid-fields to obtain the frequency-dependent intensity vector field. The angles of the maximum intensity region rotate from aft to sideline with increasing frequency, becoming less directional above 800 Hz. Between 100 and 400 Hz, which are principal radiation frequencies, the ray-traced dominant source region rapidly contracts and moves upstream, approaching nearly constant behavior by 1000 Hz. PMID:26233049

  5. Progress in Acoustic Transmission of Power through Walls

    NASA Technical Reports Server (NTRS)

    Sherrit,Stewart; Coty, Benjamin; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea; Chang, Zensheu

    2008-01-01

    A document presents updated information on implementation of the wireless acoustic-electric feed-through (WAEF) concept, which was reported in Using Piezoelectric Devices To Transmit Power Through Walls (NPO-41157), NASA Tech Briefs, Vol. 32, No. 6 (June 2008), page 70. To recapitulate: In a basic WAEF setup, a transmitting piezoelectric transducer on one side of a wall is driven at resonance to excite ultrasonic vibrations in the wall. A receiving piezoelectric transducer on the opposite side of the wall converts the vibrations back to an ultrasonic AC electric signal, which is then detected and otherwise processed in a manner that depends on the modulation (if any) applied to the signal and whether the signal is used to transmit power, data, or both. The present document expands upon the previous information concerning underlying physical principles, advantages, and potential applications of WAEF. It discusses the design and construction of breadboard prototype piezoelectric transducers for WAEF. It goes on to present results of computational simulations of performance and results of laboratory tests of the prototypes. In one notable test, a 100-W light bulb was lit by WAEF to demonstrate the feasibility of powering a realistic load.

  6. High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-01-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.

  7. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Power flux density limits. 25.208 Section 25... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the power flux density at the Earth's surface produced by emissions from a space station for all conditions...

  8. Power spectral density of subsonic jet noise

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Yu, J. C.

    1985-01-01

    The power-spectrum density (PSD) of the far-field noise of a subsonic unheated axisymmetric jet is investigated by analysis of about 80 sets of published noise spectra and of spectra obtained using 12.7 and 25.4-mm-diameter compressed-air jets at exit velocities 66 and 104 m/s and 67 and 91 m/s, respectively, in the NASA Langley anechoic flow facility. The results are presented in tables and graphs and characterized in detail. Findings reported include Strouhal-number scaling of the PSD at theta = 30 deg or more, scaling with the product of the Helmholtz number and the Doppler factor at theta less than 30 deg, best collapse at source convection Mach number 0.5, variation of PSD amplitude as U to the 6.5th at theta = 90 deg, and no sharp PSD-amplitude variation at any critical Reynolds number.

  9. Features of Propagation of the Acoustic-Gravity Waves Generated by High-Power Periodic Radiation

    NASA Astrophysics Data System (ADS)

    Chernogor, L. F.; Frolov, V. L.

    2013-09-01

    We present the results of the bandpass filtering of temporal variations of the Doppler frequency shift of radio signals from a vertical-sounding Doppler radar located near the city of Kharkov when the ionosphere was heated by high-power periodic (with 10 and 15-min periods) radiation from the Sura facility. The filtering was done in the ranges of periods that are close to the acoustic cutoff period and the Brunt—Väisälä period (4-6, 8-12, and 13-17 min). Oscillations with periods of 4-6 min and amplitudes of 50-100 mHz were not recorded in fact. Oscillations with periods of 8-12 and 13-17 min and amplitudes of 60-100 mHz were detected in almost all the sessions. In the former and the latter oscillations, the time of delay with respect to the heater switch-on was close to 100 min and about 40-50 min, respectively. These values correspond to group propagation velocities of about 160 and 320-400 m/s. The Doppler shift oscillations were caused by the acoustic-gravity waves which led to periodic variations in the electron number density with a relative amplitude of about 0.1-1.0%. It was demonstrated that the acoustic-gravity waves were not recorded when the effective power of the Sura facility was equal to 50 MW and they were confidently observed when the effective power was increased up to 130 MW. It is shown that the period of the wave processes was determined by the period of the heating-pause cycles, and the duration of the wave trains did not depend on the duration of the series of heating-pause cycles. The data suggest that the generation mechanism of recorded wave disturbances is different from the mechanism proposed in 1970-1990.

  10. Small scale aspects of warm dark matter: Power spectra and acoustic oscillations

    SciTech Connect

    Boyanovsky, Daniel; Wu Jun

    2011-02-15

    We provide a semianalytic derivation of approximate evolution equations for density perturbations of warm dark matter candidates that decoupled while relativistic with arbitrary distribution functions, their solutions at small scales, and a simple numerical implementation that yields their transfer functions and power spectra. Density perturbations evolve through three stages: radiation domination when the particle is relativistic and nonrelativistic and matter domination. An early integrated Sachs-Wolfe effect during the first stage leads to an enhancement of density perturbations and a plateau in the transfer function for k < or approx. k{sub fs}, the free-streaming wave vector. An effective fluid description emerges at small scales which includes the effects of free streaming in initial conditions and inhomogeneities. The transfer function features warm dark matter acoustic oscillations at scales k > or approx. 2k{sub fs}. A simple analytic interpolation of the power spectra between large and small scales and a numerical implementation valid for arbitrary distribution functions is provided. As an application we study the power spectra for two models of sterile neutrinos with m{approx}keV produced nonresonantly and compare our results to those obtained from Boltzmann codes.

  11. Acoustic agglomeration of power plant fly ash. Final report

    SciTech Connect

    Reethof, G.; McDaniel, O.H.

    1982-01-01

    The work has shown that acoustic agglomeration at practical acoustic intensities and frequencies is technically and most likely economically viable. The following studies were performed with the listed results: The physics of acoustic agglomeration is complex particularly at the needed high acoustic intensities in the range of 150 to 160 dB and frequencies in the 2500 Hz range. The analytical model which we developed, although not including nonlinear acoustic efforts, agreed with the trends observed. We concentrated our efforts on clarifying the impact of high acoustic intensities on the generation of turbulence. Results from a special set of tests show that although some acoustically generated turbulence of sorts exists in the 150 to 170 dB range with acoustic streaming present, such turbulence will not be a significant factor in acoustic agglomeration compared to the dominant effect of the acoustic velocities at the fundamental frequency and its harmonics. Studies of the robustness of the agglomerated particles using the Anderson Mark III impactor as the source of the shear stresses on the particles show that the agglomerates should be able to withstand the rigors of flow through commercial cyclones without significant break-up. We designed and developed a 700/sup 0/F tubular agglomerator of 8'' internal diameter. The electrically heated system functioned well and provided very encouraging agglomeration results at acoustic levels in the 150 to 160 dB and 2000 to 3000 Hz ranges. We confirmed earlier results that an optimum frequency exists at about 2500 Hz and that larger dust loadings will give better results. Studies of the absorption of acoustic energy by various common gases as a function of temperature and humidity showed the need to pursue such an investigation for flue gas constituents in order to provide necessary data for the design of agglomerators. 65 references, 56 figures, 4 tables.

  12. Gas density does not affect pulmonary acoustic transmission in normal men.

    PubMed

    Mahagnah, M; Gavriely, N

    1995-03-01

    Fremitus, the transmission of sound and vibration from the mouth to the chest wall, has long been used clinically to examine the pulmonary system. Recently, modern technology has become available to measure the acoustic transfer function (TF) and transit times (TT) of the pulmonary system. Because sound speed is inversely proportional to the square root of gas density in free gas, but not in porous media, we measured the effect of air and Heliox (80% He-20% O2) breathing on pulmonary sound transmission in six healthy subjects to investigate the mechanism of sound transmission. Wide-band noise (75-2,000 Hz) was "injected" into the mouth and picked up over the trachea and chest wall. The averaged power spectra, TF, phase, and coherence were calculated using a fast Fourier transform-based algorithm. The phase data were used to calculate TT as a function of frequency. TF was found to consist of a low-pass filter property with essentially flat transmitted energy to 300 Hz and exponential decline to 600 Hz at the anterior right upper lobe (CR) and flat transmission to 100 Hz with exponential decline to 150 Hz at the right posterior base (BR). TF was not affected by breathing Heliox. The average TT values, calculated from the slopes of the averaged phase, were 1.5 +/- 0.5 ms for trachea to CR and 5.2 +/- 0.5 ms for trachea to BR transmission during air breathing. During Heliox breathing, the values of TT were 1.5 +/- 0.5 ms and 4.9 +/- 0.5 ms from the trachea to CR and from the trachea to BR locations, respectively. These results suggest that sound transmission in the respiratory system is dominated by wave propagation through the parenchymal porous structure. PMID:7775338

  13. Generalized acoustic energy density based active noise control in single frequency diffuse sound fields.

    PubMed

    Xu, Buye; Sommerfeldt, Scott D

    2014-09-01

    In a diffuse sound field, prior research has established that a secondary source can theoretically achieve perfect cancellation at an error microphone in the far field of the secondary source. However, the sound pressure level is generally only reduced in a small zone around the error sensor, and at a distance half of a wavelength away from the error sensor, the averaged sound pressure level will be increased by more than 10 dB. Recently an acoustic energy quantity, referred to as the generalized acoustic energy density (GED), has been introduced. The GED is obtained by using a weighting factor in the formulation of total acoustic energy density. Different values of the weighting factor can be chosen for different applications. When minimizing the GED at the error sensor, one can adjust the weighting factor to increase the spatial extent of the "quiet zone" and to achieve a desired balance between the degree of attenuation in the quiet zone and the total energy added into the sound field. PMID:25190386

  14. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  15. REMOVING BARYON-ACOUSTIC-OSCILLATION PEAK SHIFTS WITH LOCAL DENSITY TRANSFORMS

    SciTech Connect

    McCullagh, Nuala; Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan

    2013-01-20

    Large-scale bulk flows in the universe distort the initial density field, broadening the baryon-acoustic-oscillation (BAO) feature that was imprinted when baryons were strongly coupled to photons. Additionally, there is a small shift inward in the peak of the conventional overdensity correlation function, a mass-weighted statistic. This shift occurs when high-density peaks move toward each other. We explore whether this shift can be removed by applying to the density field a transform (such as a logarithm) that gives fairer statistical weight to fluctuations in underdense regions. Using configuration-space perturbation theory in the Zel'dovich approximation, we find that the log-density correlation function shows a much smaller inward shift in the position of the BAO peak at low redshift than is seen in the overdensity correlation function. We also show that if the initial, Lagrangian density of matter parcels could be estimated at their Eulerian positions, giving a displaced-initial-density field, its peak shift would be even smaller. In fact, a transformed field that accentuates underdensities, such as the reciprocal of the density, pushes the peak the other way, outward. In our model, these shifts in the peak position can be attributed to shift terms, involving the derivative of the linear correlation function, that entirely vanish in this displaced-initial-density field.

  16. Mobility power flow analysis of coupled plate structure subjected to mechanical and acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1992-01-01

    The mobility power flow approach that was previously applied in the derivation of expressions for the vibrational power flow between coupled plate substructures forming an L configuration and subjected to mechanical loading is generalized. Using the generalized expressions, both point and distributed mechanical loads on one or both of the plates can be considered. The generalized approach is extended to deal with acoustic excitation of one of the plate substructures. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the plate structure and the acoustic fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure. For a number of coupled plate substrates, the acoustic pressure generated by one substructure will interact with the motion of another substructure. That is, in the case of the L-shaped plate, acoustic interaction exists between the two plate substructures due to the generation of the acoustic waves by each of the substructures. An approach to deal with this phenomena is described.

  17. Acoustic-loads research for powered-lift configurations

    NASA Technical Reports Server (NTRS)

    Schoenster, J. A.; Willis, C. M.; Schroeder, J. C.; Mixson, J. S.

    1976-01-01

    Data presented from large-scale model tests with jet engines having thrusts of 9 kN (2000 lb) and 36 kN (8000 lb) include acoustic loads for an externally blown wing and flap induced by a TF34 jet engine, an upper surface blown (USB) aircraft model in a wind tunnel, and two USB models in static tests. Comparisons of these results with results from acoustic loads studies on configurations of other sizes are made and the implications of these results on interior noise and acoustic fatigue are discussed.

  18. Flute-model acoustic metamaterials with simultaneously negative bulk modulus and mass density

    NASA Astrophysics Data System (ADS)

    Zeng, Hong-Cheng; Luo, Chun-Rong; Chen, Huai-Jun; Zhai, Shi-Long; Ding, Chang-Lin; Zhao, Xiao-Peng

    2013-11-01

    We experimentally constructed a three-dimensional flute-model meta-molecule structure acoustic metamaterial (AM) from a periodic array of perforated hollow steel tubes (PHSTs) and investigated its transmission and reflection behaviors in an impedance tube system. The AM exhibited a peak and dip, and an inverse phase, thus exhibiting the local resonance of the PHSTs. Based on the homogeneous media theory, the effective bulk modulus and mass density of the AM were calculated to be simultaneously negative; the refractive index was also negative. PHST AM slab focusing experiments showed that the medium with a resonant structure exhibited a distinct metamaterial property.

  19. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    SciTech Connect

    Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.

  20. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Article's Absorption During Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    The exposure of a customer's aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facility's available acoustic power capability becomes maximized with the test-article installed during the actual test then the customer's environment requirement may become compromised. In order to understand the risk of not achieving the customer's in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Station's Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.

  1. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Article's Absorption during Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    The exposure of a customers aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facilitys available acoustic power capability becomes maximized with the test-article installed during the actual test then the customers environment requirement may become compromised. In order to understand the risk of not achieving the customers in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Stations Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.

  2. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico

    PubMed Central

    Hildebrand, John A.; Baumann-Pickering, Simone; Frasier, Kaitlin E.; Trickey, Jennifer S.; Merkens, Karlina P.; Wiggins, Sean M.; McDonald, Mark A.; Garrison, Lance P.; Harris, Danielle; Marques, Tiago A.; Thomas, Len

    2015-01-01

    Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010–2013). Beaked whale species detected include: Gervais’ (Mesoplodon europaeus), Cuvier’s (Ziphius cavirostris), Blainville’s (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf — BWG). For Gervais’ and Cuvier’s beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais’ beaked whales were present throughout the monitoring period, but Cuvier’s beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais’ and Cuvier’s beaked whales had a high density throughout the monitoring period. PMID:26559743

  3. Compact transformable acoustic logic gates for broadband complex Boolean operations based on density-near-zero metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Cheng, Ying; Yuan, Bao-Guo; Guo, Jian-Zhong; Liu, Xiao-Jun

    2016-05-01

    The extraordinary transmission in density-near-zero (DNZ) acoustic metamaterials (AMs) provides possibilities to manipulate acoustic signals with extremely large effective phase velocity and wavelength. Here, we report compact transformable acoustic logic gates with a subwavelength size as small as 0.82λ based on DNZ AMs. The basic acoustic logic gates, composed of a tri-port structure filled with space-coiling DNZ AMs, enable precise direct linear interference of input signals with considerably small phase lag and wavefront distortion. We demonstrate both theoretically and experimentally the basic Boolean logic operations such as OR, AND, XOR, and NOT with wide operational frequency ranges and controllability, by adjusting the phase difference between two input signals. More complex logic calculus, such as "I1 + I2 × I3," are also realized by cascading of the basic logic gates. Our proposal provides diverse routes to construct devices for acoustic signal computing and manipulations.

  4. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  5. Meta-atom cluster acoustic metamaterial with broadband negative effective mass density

    SciTech Connect

    Chen, Huaijun; Zhai, Shilong; Ding, Changlin; Liu, Song; Luo, Chunrong; Zhao, Xiaopeng

    2014-02-07

    We design a resonant meta-atom cluster, via which a two-dimensional (2D) acoustic metamaterial (AM) with broadband negative effective mass density from 1560 Hz to 5580 Hz is fabricated. Experimental results confirm that there is only weak interaction among the meta-atoms in the cluster. And then the meta-atoms in the cluster independently resonate, resulting in the cluster becoming equivalent to a broadband resonance unit. Extracted effective refractive indices from reflection and transmission measurements of the 2D AM appear to be negative from 1500 Hz to 5480 Hz. The broadband negative refraction has also been demonstrated by our further experiments. We expect that this meta-atom cluster AM will significantly contribute to the design of broadband negative effective mass density AM.

  6. Experimental analysis of the relationship between reverberant acoustic intensity and energy density inside long rooms.

    PubMed

    Visentin, Chiara; Prodi, Nicola; Valeau, Vincent; Picaut, Judicaël

    2015-07-01

    In this paper, the validity of the Fick's law of diffusion in room acoustics is experimentally investigated inside long rooms. The room-acoustics diffusion model relies on Fick's law stating a proportionality relationship between sound intensity and energy density gradient inside a room through a constant diffusion coefficient. This relationship is investigated in the stationary state for the particular case of long rooms with different amounts of boundary scattering. Measurements were performed inside a 1:16 scale model, using a p-u sound intensity probe (calibrated with digital filters) to collect concurrent data in terms of sound pressure and axial velocity components. Then for each receiver position, sound intensity and energy density gradient were derived. The results show that inside long rooms the diffusion coefficient is not a constant but increases with the distance from the source with a slope depending on the scattering coefficient of the walls. Numerical simulations of the enclosures were performed too by using a sound particle-tracing code; a substantial agreement with the experimental findings is observed. The results imply that for such long enclosures, the diffusion model should consider a space-varying diffusion coefficient to be more consistent with real phenomena. PMID:26233018

  7. High-power acoustic insult to living cultured cells as studied by high-frequency scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Miyasaka, Chiaki; Tittmann, Bernhard R.

    2002-06-01

    A plurality of articles discussing combined effects of acoustic high-pressure (mechanical factor) and heat (thermal factor) caused by acoustic vibration on biological tissues and cells has been published. Herein, we contribute the preliminary results describing the behavior of living human skin cells when separately applying shock waves and thermal insult to them. First, we gradually increased temperature of a culturing medium from 37.5 to 52 degree(s)C using the heat plate with temperature controller, and carried out in-situ observation of the cells grown on a substrate via the medium using a scanning acoustic microscope. Second, we provided the pressure using high power ultrasonic pulses generated by a laser induced ultrasonic shock wave system to the cells, wherein the pressure caused by the pulses was measured by a hydrophone, and wherein temperature was monitored by thermocouples. The cells were observed just after giving the impact. The difference between phenomena indicating cellular insult and injury (e.g., shrinkage or lift-off) were clearly visualized by the scanning acoustic microscope with frequency at 1.0 GHz.

  8. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. PMID:25465962

  9. Stellar acoustic radii, mean densities, and ages from seismic inversion techniques

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Reese, D. R.; Dupret, M. A.; Samadi, R.

    2015-01-01

    Context. Determining stellar characteristics such as the radius, mass or age is crucial when studying stellar evolution or exoplanetary systems, or when characterising stellar populations in the Galaxy. Asteroseismology is the golden path to accurately obtain these characteristics. In this context, a key question is how to make these methods less model-dependent. Aims: Building on the previous work of Daniel Reese, we wish to extend the Substractive Optimally Localized Averages (SOLA) inversion technique to new stellar global characteristics beyond the mean density. The goal is to provide a general framework in which to estimate these characteristics as accurately as possible in low-mass main-sequence stars. Methods: First, we describe our framework and discuss the reliability of the inversion technique and possible sources of error. We then apply this methodology to the acoustic radius, an age indicator based on the sound speed derivative and the mean density, and compare it to estimates based on the average large and small frequency separations. These inversions are carried out for several test cases including various metallicities, different mixing-lengths, non-adiabatic effects, and turbulent pressure. Results: We observe that the SOLA method yields accurate results in all test cases whereas results based on the large and small frequency separations are less accurate and more sensitive to surface effects and structural differences in the models. If we include the surface corrections of Kjeldsen et al. (2008, ApJ, 683, L175), we obtain results of comparable accuracy for the mean density. Overall, the mean density and acoustic radius inversions are more robust than the inversions for the age indicator. Moreover, the current approach is limited to relatively young stars with radiative cores. Increasing the number of observed frequencies improves the reliability and accuracy of the method. Appendices are available in electronic form at http://www.aanda.org

  10. Local Measurement of Electron Density and Temperature in High Temperature Laser Plasma Using the Ion-Acoustic Dispersion

    SciTech Connect

    Froula, D H; Davis, P; Ross, S; Meezan, N; Divol, L; Price, D; Glenzer, S H; Rousseaux, C

    2005-09-20

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas.

  11. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... citations affecting § 25.208, see the List of CFR Sections Affected, which appears in the Finding Aids... 47 Telecommunication 2 2013-10-01 2013-10-01 false Power flux density limits. 25.208 Section 25... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the...

  12. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... propagation conditions. Editorial Note: For Federal Register citations affecting § 25.208, see the List of CFR... 47 Telecommunication 2 2014-10-01 2014-10-01 false Power flux density limits. 25.208 Section 25... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the...

  13. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... dBW/m2/MHz. Editorial Note: For Federal Register citations affecting § 25.208, see the List of CFR... 47 Telecommunication 2 2012-10-01 2012-10-01 false Power flux density limits. 25.208 Section 25... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the...

  14. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... dBW/m2/MHz. Editorial Note: For Federal Register citations affecting § 25.208, see the List of CFR... 47 Telecommunication 2 2011-10-01 2011-10-01 false Power flux density limits. 25.208 Section 25... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the...

  15. Acoustic spectroscopy: A powerful analytical method for the pharmaceutical field?

    PubMed

    Bonacucina, Giulia; Perinelli, Diego R; Cespi, Marco; Casettari, Luca; Cossi, Riccardo; Blasi, Paolo; Palmieri, Giovanni F

    2016-04-30

    Acoustics is one of the emerging technologies developed to minimize processing, maximize quality and ensure the safety of pharmaceutical, food and chemical products. The operating principle of acoustic spectroscopy is the measurement of the ultrasound pulse intensity and phase after its propagation through a sample. The main goal of this technique is to characterise concentrated colloidal dispersions without dilution, in such a way as to be able to analyse non-transparent and even highly structured systems. This review presents the state of the art of ultrasound-based techniques in pharmaceutical pre-formulation and formulation steps, showing their potential, applicability and limits. It reports in a simplified version the theory behind acoustic spectroscopy, describes the most common equipment on the market, and finally overviews different studies performed on systems and materials used in the pharmaceutical or related fields. PMID:26976503

  16. Stabilized Acoustic Levitation of Dense Materials Using a High-Powered Siren

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croonquist, A.; Wang, T. G.

    1982-01-01

    Stabilized acoustic levitation and manipulation of dense (e.g., steel) objects of 1 cm diameter, using a high powered siren, was demonstrated in trials that investigated the harmonic content and spatial distribution of the acoustic field, as well as the effect of sample position and reflector geometries on the acoustic field. Although further optimization is possible, the most stable operation achieved is expected to be adequate for most containerless processing applications. Best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper one. Operation slightly below resonance enhances stability as this minimizes the second harmonic, which is suspected of being a particularly destabilizing influence.

  17. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  18. Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.

  19. Aeroacoustics of volcanic jets: Acoustic power estimation and jet velocity dependence

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Fee, David; Neilsen, Tracianne B.; Gee, Kent L.; Ogden, Darcy E.

    2013-12-01

    A fundamental goal of volcano acoustics is to relate observed infrasonic signals to the eruptive processes generating them. A link between acoustic power Πacoustic analogy theory). We reexamine this approach in the context of the current understanding of jet noise, using data from a laboratory jet, a full-scale military jet aircraft, and a full-scale rocket motor. Accurate estimates of Πacoustic field experiments. Typical volcano acoustic data better represent point measurements of acoustic intensity Iacoustic intensity differ from those for acoustic power and are of the form Iacoustic data and thus requires modification. Quantitative integration of field, numerical, and laboratory studies within a modern aeroacoustics framework will lead to a more accurate relationship between volcanic infrasound and eruption parameters.

  20. Problems in Assessment of Wind Energy Potential and Acoustic Noise Distribution when Designing Wind Power Plants

    NASA Astrophysics Data System (ADS)

    Bezrukovs, Valerijs; Bezrukovs, Vladislavs; Levins, Nikolajs

    2011-01-01

    Interest in the use of renewable energy in Latvia is increasing every year. Government support and availability of large unpopulated areas on the coast makes the use of these lands for the placement of large wind power plants (WPP) attractive. The key factors that determine the choice of the location of WPP are reliable information about distribution of the resource of wind energy in this area and the influence of wind turbines on the environment. The paper presents the results of years-long observations on the density fluctuations of wind energy at heights of 10 to 60 m in the area in the Baltic Sea coast in Ventspils and Ainaži. The velocity observations since 2007 have been gathered by measurements complex of the LOGGER 9200 Symphonie type. The results are presented in the form of tables, bar charts and graphs. Extrapolation results of wind velocity and density mean values on heights up to 150 m for the two areas with different terrain types were shown. The distribution of acoustic noise in the vicinity of the WPP was studied and an assessment of its impact on the environment in accordance with the Latvian government requirements was conducted.

  1. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California

    NASA Astrophysics Data System (ADS)

    Helble, Tyler Adam

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. Automated methods are needed to aid in the analyses of the recorded data. When a mammal vocalizes in the marine environment, the received signal is a filtered version of the original waveform emitted by the marine mammal. The waveform is reduced in amplitude and distorted due to propagation effects that are influenced by the bathymetry and environment. It is important to account for these effects to determine a site-specific probability of detection for marine mammal calls in a given study area. A knowledge of that probability function over a range of environmental and ocean noise conditions allows vocalization statistics from recordings of single, fixed, omnidirectional sensors to be compared across sensors and at the same sensor over time with less bias and uncertainty in the results than direct comparison of the raw statistics. This dissertation focuses on both the development of new tools needed to automatically detect humpback whale vocalizations from single-fixed omnidirectional sensors as well as the determination of the site-specific probability of detection for monitoring sites off the coast of California. Using these tools, detected humpback calls are "calibrated" for environmental properties using the site-specific probability of detection values, and presented as call densities (calls per square kilometer per time). A two-year monitoring effort using these calibrated call densities reveals important biological and ecological information on migrating humpback whales off the coast of California. Call density trends are compared between the monitoring sites and at the same monitoring site over time. Call densities also are compared to several natural and human-influenced variables including season, time of day, lunar illumination, and ocean noise. The results reveal substantial differences in call densities

  2. Acoustic planar hyperlens based on anisotropic density-near-zero metamaterials

    SciTech Connect

    Gu, Yuan; Cheng, Ying Liu, Xiaojun

    2015-09-28

    Based on anisotropic density-near-zero metamaterials, we demonstrate a planar hyperlens with resolution beyond the diffraction limit in both one and two lateral dimensions. In contrast to the cylindrical hyperlens with elliptical dispersions of finite anisotropy, the proposed planar hyperlens is designed with flat near-zero dispersion that supports wave tunneling with extremely high phase velocity for infinite large transverse wave vectors. Therefore, the acoustic evanescent waves immediately concentrate into the designed oblique path till the output surface, leading to a subwavelength resolution. Prototype hyperlens is constructed with a membrane-network by means of equivalent lumped-circuit model, and the subwavelength magnifying performance for a pair of one-dimensional line objects as well as the complex two-dimensional structure is demonstrated. This method provides diverse routes to construct hyperlens operating without the limitation on imaging region in practical applications.

  3. Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method.

    PubMed

    Barnkob, Rune; Iranmanesh, Ida; Wiklund, Martin; Bruus, Henrik

    2012-07-01

    We present a simple and rapid method for measuring the acoustic energy density in microchannel acoustophoresis based on light-intensity measurements of a suspension of particles. The method relies on the assumption that each particle in the suspension undergoes single-particle acoustophoresis. It is validated by the single-particle tracking method, and we show by proper re-scaling that the re-scaled light intensity plotted versus re-scaled time falls on a universal curve. The method allows for analysis of moderate-resolution images in the concentration range encountered in typical experiments, and it is an attractive alternative to particle tracking and particle image velocimetry for quantifying acoustophoretic performance in microchannels. PMID:22522812

  4. On the evaluation of effective density for plate- and membrane-type acoustic metamaterials without mass attached.

    PubMed

    Huang, Tai-Yun; Shen, Chen; Jing, Yun

    2016-08-01

    The effective densities of plate- and membrane-type acoustic metamaterials (AMMs) without mass attached are studied theoretically and numerically. Three models, including the analytic model (based on the plate flexural wave equation and the membrane wave equation), approximate model (under the low frequency approximation), and the finite element method (FEM) model, are first used to calculate the acoustic impedance of square and clamped plates or membranes. The effective density is then obtained using the resulting acoustic impedance and a lumped model. Pressure transmission coefficients of the AMMs are computed using the obtained densities. The effect of the loss from the plate is also taken into account. Results from different models are compared and good agreement is found, particularly between the analytic model and the FEM model. The approximate model is less accurate when the frequency of interest is above the first resonance frequency of the plate or membrane. The approximate model, however, provides simple formulae to predict the effective densities of plate- or membrane-type AMMs and is accurate for the negative density frequency region. The methods presented in this paper are useful in designing AMMs for manipulating acoustic waves. PMID:27586723

  5. First measurement of backscatter dependence on ion acoustic damping in a high density helium/hydrogen laser-plasma

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Williams, E. A.; Lours, L.; Sanchez, J. J.; Berger, R. L.; Collins, G. A.; Decker, C. B.; Divol, L.; Glenzer, S. H.; Hammel, B. A.; Jones, R.; Kirkwood, R. K.; Kruer, W. L.; MacGowan, B. J.; Pipes, J.; Suter, L. J.; Thoe, R.; Unites, W.; Young, P. E.

    2004-05-01

    The dependence of stimulated backward and forward scattered light on ion acoustic damping (νi) is measured for the first time in a long scale length He/H2 composition plasma at a density of 0.08 critical for 351-nm laser light. Both the stimulated Raman and Brillouin backscattering decrease with increasing ion acoustic damping. Modeling of the backward scattering agrees with the measurements when the Langmuir and ion acoustic fluctuations saturate at δn/n=0.01 and 0.001, respectively. These low saturation levels cannot be explained using standard nonlinear wave decay saturation mechanisms and may indicate that other saturation mechanisms are active in this plasma. Modeling of the forward scattering agrees qualitatively with the measurements and provides an estimate of the density fluctuations in the plasma.

  6. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Articles Absorption During Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    It is important to realize that some test-articles may have significant sound absorption that may challenge the acoustic power capabilities of a test facility. Therefore, to mitigate this risk of not being able to meet the customers target spectrum, it is prudent to demonstrate early-on an increased acoustic power capability which compensates for this test-article absorption. This paper describes a concise method to reduce this risk when testing aerospace test-articles which have significant absorption. This method was successfully applied during the SpaceX Falcon 9 Payload Fairing acoustic test program at the NASA Glenn Research Center Plum Brook Stations RATF.

  7. Effect of power density on shrinkage of dental resin materials.

    PubMed

    Oberholzer, Theunis G; Pameijer, Cornelis H; Grobler, Sias R; Rossouw, Roelof J

    2003-01-01

    This study compares volumetric changes and rates of shrinkage during different stages of polymerization of dental resin composites and compomers exposed to the same total energy by using two different combinations of power density and exposure duration. A hybrid composite and its equivalent flowable and a compomer and its equivalent flowable were exposed using a halogen curing unit set at 400 mW/cm2 for 40 seconds and 800 mW/cm2 for 20 seconds: delivering 16 J/cm2 in both cases. Volumetric changes were recorded every 0.5 seconds using a mercury dilatometer. Ten replications per test condition were performed and the data were subjected to ANOVA. Statistically significant differences in shrinkage values and rates among different power densities were determined by means of paired t-tests at a 95% confidence level. Significantly more shrinkage (p<0.05) was found for the higher filled materials, Z250 and Dyract AP, when higher power density was used. However, no significant differences were found between their flowable counterparts when exposed to various power densities. Of the four materials, only Dyract AP exhibited no significant difference in shrinkage rate when various power densities were used. All the other materials exhibited significantly higher rates (p<0.05) at the higher power density. PMID:14531610

  8. Density-velocity equations with bulk modulus for computational hydro-acoustics

    NASA Astrophysics Data System (ADS)

    Lin, Po-Hsien; Chen, Yung-Yu; John Yu, S.-T.

    2014-02-01

    This paper reports a new set of model equations for Computational Hydro Acoustics (CHA). The governing equations include the continuity and the momentum equations. The definition of bulk modulus is used to relate density with pressure. For 3D flow fields, there are four equations with density and velocity components as the unknowns. The inviscid equations are proved to be hyperbolic because an arbitrary linear combination of the three Jacobian matrices is diagonalizable and has a real spectrum. The left and right eigenvector matrices are explicitly derived. Moreover, an analytical form of the Riemann invariants are derived. The model equations are indeed suitable for modeling wave propagation in low-speed, nearly incompressible air and water flows. To demonstrate the capability of the new formulation, we use the CESE method to solve the 2D equations for aeolian tones generated by air flows passing a circular cylinder at Re = 89,000, 46,000, and 22,000. Numerical results compare well with previously published data. By simply changing the value of the bulk modulus, the same code is then used to calculate three cases of water flows passing a cylinder at Re = 89,000, 67,000, and 44,000.

  9. PIII Plasma Density Enhancement by a New DC Power Source

    SciTech Connect

    Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Granda-Gutierrez, E. E.; Piedad-Beneitez, A. de la; Munoz-Castro, A. E.; Valencia A, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pena-Eguiluz, R.

    2006-12-04

    In practical terms, those plasmas produced by a DC voltage power supply do not attain densities above the 108 to 109 cm-3 band. Here we present a power supply, controlled in current and voltage, which has been successfully designed and constructed delivering plasma densities in the orders of 109 - 1010 cm-3. Its experimental performance test was conducted within one toroidal and one cylindrical chambers capable of 29 and 35 litres, respectively, using nitrogen gas. The DC plasma was characterized by a double electric probe. Several physical phenomena present in the PIII process have been keenly investigated including plasma sheath dynamics, interaction of plasma and surface, etc. In this paper we analyze the effect of the implantation voltage, plasma density and pulse time in the PIII average heating power and fluence density.

  10. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  11. Research on power-law acoustic transient signal detection based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Han, Jian-hui; Yang, Ri-jie; Wang, Wei

    2007-11-01

    Aiming at the characteristics of acoustic transient signal emitted from antisubmarine weapon which is being dropped into water (torpedo, aerial sonobuoy and rocket assisted depth charge etc.), such as short duration, low SNR, abruptness and instability, based on traditional power-law detector, a new method to detect acoustic transient signal is proposed. Firstly wavelet transform is used to de-noise signal, removes random spectrum components and improves SNR. Then Power- Law detector is adopted to detect transient signal. The simulation results show the method can effectively extract envelop characteristic of transient signal on the condition of low SNR. The performance of WT-Power-Law markedly outgoes that of traditional Power-Law detection method.

  12. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma

    PubMed Central

    Wan, Guoqiang; Gómez-Casati, Maria E; Gigliello, Angelica R; Liberman, M Charles; Corfas, Gabriel

    2014-01-01

    Neurotrophin-3 (Ntf3) and brain derived neurotrophic factor (Bdnf) are critical for sensory neuron survival and establishment of neuronal projections to sensory epithelia in the embryonic inner ear, but their postnatal functions remain poorly understood. Using cell-specific inducible gene recombination in mice we found that, in the postnatal inner ear, Bbnf and Ntf3 are required for the formation and maintenance of hair cell ribbon synapses in the vestibular and cochlear epithelia, respectively. We also show that supporting cells in these epithelia are the key endogenous source of the neurotrophins. Using a new hair cell CreERT line with mosaic expression, we also found that Ntf3's effect on cochlear synaptogenesis is highly localized. Moreover, supporting cell-derived Ntf3, but not Bbnf, promoted recovery of cochlear function and ribbon synapse regeneration after acoustic trauma. These results indicate that glial-derived neurotrophins play critical roles in inner ear synapse density and synaptic regeneration after injury. DOI: http://dx.doi.org/10.7554/eLife.03564.001 PMID:25329343

  13. Ultrasound tomography for simultaneous reconstruction of acoustic density, attenuation, and compressibility profiles.

    PubMed

    Mojabi, Pedram; LoVetri, Joe

    2015-04-01

    A fast and efficient forward scattering solver is developed for use in ultrasound tomography. The solver is formulated so as to enable the calculation of scattering from large and relatively high-contrast objects with inhomogeneous physical properties that vary simultaneously in acoustic attenuation, compressibility, and density. It is based on the method of moments in conjunction with a novel implementation of the conjugate gradient algorithm which requires the use of the adjoints of the scattering operators. The solver takes advantage of the symmetric block Toeplitz matrix with symmetric Toeplitz blocks property of the Green's function matrix to increase efficiency and only stores the first row of this matrix to reduce memory requirements. This row is then used for the matrix-vector multiplication using the fast Fourier transform technique, thus, resulting in the computational complexity of O(n log n). The marching-on-source technique is also used to provide a good initial guess which allows the conjugate gradient technique to converge faster than initializing with an arbitrary guess. This feature is important in tomographic inversion algorithms which require that the object to be imaged be interrogated via several incident fields. Forward scattering and inversion examples, based on the Conjugate Gradient Least Squares regularized Born Iterative Method, are shown, in two-dimensions, for objects varying in all three physical properties. PMID:25920834

  14. High frequency formulation for the acoustic power spectrum due to cascade-turbulence interaction.

    PubMed

    Cheong, Cheolung; Joseph, Phillip; Lee, Soogab

    2006-01-01

    This paper investigates the noise radiated by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. An analytic formulation for the spectrum of acoustic power of a two-dimensional flat-plate is derived. The main finding of this paper is that the acoustic power spectrum from the cascade of flat airfoils may be split into two distinct frequency regions of low frequency and high frequency, separated by a critical frequency. Below this frequency, cascade effects due to the interaction between neighboring airfoils are shown to be important. At frequencies above the critical frequency, cascade effects are shown to be relatively weak. In this frequency range, acoustic power is shown to be approximately proportional to the number of blades. Based on this finding at high frequencies, an approximate expression is derived for the power spectrum that is valid above the critical frequency and which is in excellent agreement with the exact expression for the broadband power spectrum. The formulation is used to perform a parametric study on the effects on the power spectrum of the blade number, stagger angle, gap-chord ratio, and Mach number. The theory is also shown to provide a close fit to the measured spectrum of rotor-stator interaction. PMID:16454269

  15. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  16. Molten carbonate fuel cell with high power density

    SciTech Connect

    Krumpelt, M.; Roche, M.F.; Bloom, I.; Geyer, H.; Johnson, S.

    1994-08-01

    The objective of this research is a doubling of the current density of the molten carbonate fuel cell (MCFC) from the present value of 1600A/m{sup 2} to 3200 A/m{sup 2} and a similar increase in the volumetric power density. This project is linked to other projects concerning MCFCs (one on the multiply manifolded MCFCs, the other on lithium ferrate and lithium cobaltate cathodes for MCFCs).

  17. Frequency-Preserved Acoustic Diode Model with High Forward-Power-Transmission Rate

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Du, Zongliang; Sun, Zhi; Gao, Huajian; Guo, Xu

    2015-06-01

    The acoustic diode (AD) can provide brighter and clearer ultrasound images by eliminating acoustic disturbances caused by sound waves traveling in two directions at the same time and interfering with each other. Such an AD could give designers new flexibility in making ultrasonic sources like those used in medical imaging or nondestructive testing. However, current AD designs, based on nonlinear effects, only partially fill this role by converting sound to a new frequency and blocking any backward flow of the original frequency. In this work, an AD model that preserves the frequencies of acoustic waves and has a relatively high forward-power-transmission rate is proposed. Theoretical analysis indicates that the proposed AD has forward, reverse, and breakdown characteristics very similar to electrical diodes. The significant rectifying effect of the proposed AD is verified numerically through a one-dimensional example. Possible schemes for experimental realization of this model as well as more complex and efficient AD designs are also discussed.

  18. ACOUSTIC ESTIMATION OF INFESTATIONS AND POPULATION DENSITIES OF WHITE GRUBS (COLEOPTERA: SCARABAEIDAE) IN TURFGRASS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incidental sounds produced by Phyllophaga and Cyclocephala (Coleoptera: Scarabaeidae) grubs were acoustically monitored in turf fields and golf course fairways. A one-sensor acoustic system was used to assess the likelihood of infestation and a four-sensor array was used to facilitate localization ...

  19. Power method for calculating the far acoustic field of the helicopter lift rotor

    NASA Astrophysics Data System (ADS)

    Samokhin, V. F.

    2011-05-01

    A semiempirical method for calculating the far acoustic field of the lift rotor of a helicopter operating in the regime of oblique flow over it is described. The basic parametric relations for the acoustic radiation power of rotor noise components have been obtained on the basis of the Lamb idea that vortex-free motion arises under the action of a periodic force on an infinitely small volume of the medium. All sources of lift rotor noise are subdivided into two groups pertaining, respectively, to the inductive and profile parts of the total power supplied to the rotor. A comparison has been made between the results of calculation of the harmonic components of lift rotor noise made on the basis of the power method and the experimental data for the Mi-28 helicopter.

  20. Self-heating study of bulk acoustic wave resonators under high RF power.

    PubMed

    Ivira, Brice; Fillit, René-Yves; Ndagijimana, Fabien; Benech, Philippe; Parat, Guy; Ancey, Pascal

    2008-01-01

    The present work first provides an experimental technique to study self-heating of bulk acoustic wave (BAW) resonators under high RF power in the gigahertz range. This study is specially focused on film bulk acoustic wave resonators and solidly mounted resonators processed onto silicon wafers and designed for wireless systems. Precisely, the reflection coefficient of a one-port device is measured while up to several watts are applied and power leads to electrical drifts of impedances. In the following, we describe how absorbed power can be determined from the incident one in real time. Therefore, an infrared camera held over the radio frequency micro electromechanical system (RF-MEMS) surface with an exceptional spatial resolution reaching up to 2 microm/pixels gives accurate temperature mapping of resonators after emissivity correction. From theoretical point of view, accurate three-dimensional (3-D) structures for finite-element modeling analyses are carried out to know the best materials and architectures to use for enhancing power handling. In both experimental and theoretical investigations, comparison is made between film bulk acoustic wave resonators and solidly mounted resonators. Thus, the trend in term of material, architecture, and size of device for power application such as in transmission path of a transceiver is clearly identified. PMID:18334320

  1. Relationship between acoustic power and acoustic radiation force on absorbing and reflecting targets for spherically focusing radiators.

    PubMed

    Gélat, Pierre; Shaw, Adam

    2015-03-01

    Total acoustic output power is an important parameter required by standards for most ultrasonic medical equipment including high-intensity focused ultrasound (HIFU) systems. Radiation force balances are routinely used; however, radiation force is not strictly dependent on the ultrasound power but, rather, on the wave momentum resolved in one direction. Consequently, measurements based on radiation force become progressively less accurate as the ultrasound wave deviates further from a true plane wave. HIFU transducers can be very strongly focused with F-numbers less than one: under these conditions, the uncertainty associated with use of the radiation force method becomes very significant. International Standards IEC 61161 and IEC 62555 suggest plane-wave correction factors for unfocused transducers radiating onto an ideal absorbing target and focusing corrections for focused transducers radiating onto ideal absorbing targets and onto conical reflecting targets (IEC 61161). Previous models have relied on calculations based on the Rayleigh integral, which is not strictly correct for curved sources. In the work described here, an approach combining finite element methods with a discretization of the Helmholtz equation was developed, making it possible to model the boundary condition at the structure/fluid interface more correctly. This has been used to calculate the relationship between radiation force and total power for both absorbing and conical reflecting targets for transducers ranging from planar to an F-number of 0.5 (hemispherical) and to compare with the recommendations of IEC 61161 and IEC 62555. PMID:25683223

  2. Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: influence of acoustic energy density and temperature.

    PubMed

    Tao, Yang; Zhang, Zhihang; Sun, Da-Wen

    2014-07-01

    The effects of acoustic energy density (6.8-47.4 W/L) and temperature (20-50 °C) on the extraction yields of total phenolics and tartaric esters during ultrasound-assisted extraction from grape marc were investigated in this study. The ultrasound treatment was performed in a 25-kHz ultrasound bath system and the 50% aqueous ethanol was used as the solvent. The initial extraction rate and final extraction yield increased with the increase of acoustic energy density and temperature. The two site kinetic model was used to simulate the kinetics of extraction process and the diffusion model based on the Fick's second law was employed to determine the effective diffusion coefficient of phenolics in grape marc. Both models gave satisfactory quality of data fit. The diffusion process was divided into one fast stage and one slow stage and the diffusion coefficients in both stages were calculated. Within the current experimental range, the diffusion coefficients of total phenolics and tartaric esters for both diffusion stages increased with acoustic energy density. Meanwhile, the rise of temperature also resulted in the increase of diffusion coefficients of phenolics except the diffusion coefficient of total phenolics in the fast stage, the value of which being the highest at 40 °C. Moreover, an empirical equation was suggested to correlate the effective diffusion coefficient of phenolics in grape marc with acoustic energy density and temperature. In addition, the performance comparison of ultrasound-assisted extraction and convention methods demonstrates that ultrasound is an effective and promising technology to extract bioactive substances from grape marc. PMID:24613646

  3. A safe, high-power-density lithium battery

    NASA Astrophysics Data System (ADS)

    Walsh, F.

    1985-03-01

    The Li/SOCl2 battery has received attention because of its high theoretical energy/power density. However, practical Li/SOCl2 cells have not provided the desired power density and have suffered from concerns with cell safety on discharge. In previous work, ECO has shown that the use of a TAA-type catalyst significantly improves the safety of the Li/S0Cl2 cell at high rate. The objective of this Phase 1 program was to determine whether a stacked disk electrode configuration with TAA-catalyzed cathodes would meet a high power-density design goal. Under the program, the effects of cathode thickness, preparation pressure, electrolyte gap and solute concentration on stacked-electrode cell performance and capacity were measured. The results of the Phase 1 program included the demonstration of stacked-electrode cell performance and capacity at levels suitable to meet a design goal of 400 W/kg with high energy density. Further work in a Phase 2 program will be required to demonstrate in laser-sealed fully-packaged cells that the results of Phase 1 can be practically applied to provide a safe high-rate, energy-dense power source for military applications.

  4. MULTIPLE POWER DENSITY WINDOWS AND THEIR POSSIBLE ORIGIN

    EPA Science Inventory

    We have previously reported that in vitro exposure of chick forebrain tissue to 50-Mz radiofrequency (RF) radiation, amplitude modulated (AM) at 16 Hz, would enhance the efflux of calcium ions only within two power density ranges: one spanning from 1.44 to 1.67 mW/cm2, and the ot...

  5. Design of Low-power Wake-up Circuits in Underwater Acoustic Communication

    NASA Astrophysics Data System (ADS)

    Cuixia, Zhang; Jiaxin, Wu; Yuanxuan, Li

    In underwater acoustic communication, the power consumption of the underwater communication equipments at harsh conditions of marine environment is an important problem. Under that scenario, we propose a design of low-power wake-up circuits based on SCM C8051F020 system. Compare to traditional wake-up circuits which directly judge the energy of received signals, our approach can greatly reduce the misjudgment caused by the environmental disturbance, and the performance of energy conservation is effective. The low-power wake-up circuits possess a promising application prospect in the long-distance wireless underwater communication.

  6. Doubled power density from salinity gradients at reduced intermembrane distance.

    PubMed

    Vermaas, David A; Saakes, Michel; Nijmeijer, Kitty

    2011-08-15

    The mixing of sea and river water can be used as a renewable energy source. The Gibbs free energy that is released when salt and fresh water mix can be captured in a process called reverse electrodialysis (RED). This research investigates the effect of the intermembrane distance and the feedwater flow rate in RED as a route to double the power density output. Intermembrane distances of 60, 100, 200, and 485 μm were experimentally investigated, using spacers to impose the intermembrane distance. The generated (gross) power densities (i.e., generated power per membrane area) are larger for smaller intermembrane distances. A maximum value of 2.2 W/m(2) is achieved, which is almost double the maximum power density reported in previous work. In addition, the energy efficiency is significantly higher for smaller intermembrane distances. New improvements need to focus on reducing the pressure drop required to pump the feedwater through the RED-device using a spacerless design. In that case power outputs of more than 4 W per m(2) of membrane area at small intermembrane distances are envisaged. PMID:21736348

  7. 2-D steering and propelling of acoustic bubble-powered microswimmers.

    PubMed

    Feng, Jian; Yuan, Junqi; Cho, Sung Kwon

    2016-06-21

    This paper describes bi-directional (linear and rotational) propelling and 2-D steering of acoustic bubble-powered microswimmers that are achieved in a centimeter-scale pool (beyond chip level scale). The core structure of a microswimmer is a microtube with one end open in which a gaseous bubble is trapped. The swimmer is propelled by microstreaming flows that are generated when the trapped bubble is oscillated by an external acoustic wave. The bubble oscillation and thus propelling force are highly dependent on the frequency of the acoustic wave and the bubble length. This dependence is experimentally studied by measuring the resonance behaviors of the testing pool and bubble using a laser Doppler vibrometer (LDV) and by evaluating the generated streaming flows. The key idea in the present 2-D steering is to utilize this dependence. Multiple bubbles with different lengths are mounted on a single microswimmer with a variety of arrangements. By controlling the frequency of the acoustic wave, only frequency-matched bubbles can strongly oscillate and generate strong propulsion. By arranging multiple bubbles of different lengths in parallel but with their openings opposite and switching the frequency of the acoustic wave, bi-directionally linear propelling motions are successfully achieved. The propelling forces are calculated by a CFD analysis using the Ansys Fluent® package. For bi-directional rotations, a similar method but with diagonal arrangement of bubbles on a rectangular swimmer is also applied. The rotation can be easily reversed when the frequency of the acoustic wave is switched. For 2-D steering, short bubbles are aligned perpendicular to long bubbles. It is successfully demonstrated that the microswimmer navigates through a T-junction channel under full control with and without carrying a payload. During the navigation, the frequency is the main control input to select and resonate targeted bubbles. All of these operations are achieved by a single

  8. Estimation of the detection range of a hydroacoustic system based on the acoustic power flux receiver

    NASA Astrophysics Data System (ADS)

    Gordienko, V. A.; Krasnopistsev, N. V.; Nasedkin, A. V.; Nekrasov, V. N.

    2007-11-01

    Approaches to estimating the detection range of systems based on vector receivers are considered. The approaches rely on a detailed analysis of the process of signal’s acoustic power flux formation in the presence of ambient sea noise and uncover the signal information parameters at the receiver output that provide the required statistically confident range of weak signal detection under these conditions. Based on the sonar equations and the known fundamental relationships between the outputs of a pressure receiver and a vector receiver for signal and noise, estimates of the maximum possible gain in the detection range of an acoustic power flux receiver are considered as a function of anisotropy of the ambient noise field in the area.

  9. Power law statistics of force and acoustic emission from a slowly penetrated granular bed

    NASA Astrophysics Data System (ADS)

    Matsuyama, K.; Katsuragi, H.

    2014-01-01

    Penetration-resistant force and acoustic emission (AE) from a plunged granular bed are experimentally investigated through their power law distribution forms. An AE sensor is buried in a glass bead bed. Then, the bed is slowly penetrated by a solid sphere. During the penetration, the resistant force exerted on the sphere and the AE signal are measured. The resistant force shows power law relation to the penetration depth. The power law exponent is independent of the penetration speed, while it seems to depend on the container's size. For the AE signal, we find that the size distribution of AE events obeys power laws. The power law exponent depends on grain size. Using the energy scaling, the experimentally observed power law exponents are discussed and compared to the Gutenberg-Richter (GR) law.

  10. Acoustic metafluid with anisotropic mass density and tunable sound speed: An approach based on suspensions of orientable anisotropic particles

    NASA Astrophysics Data System (ADS)

    Seitel, Mark; Tse, Stephen; Shan, Jerry

    2011-11-01

    We investigate liquid suspensions of micron-scale, anisotropic particles as potential acoustic metafluids having anisotropic and actively controllable acoustic properties. The effective mass density (and hence the sound propagation speed) of these metafluids can vary because the added mass of an anisotropic particle suspended in the fluid changes with the particle's orientation relative to the direction of the wave propagation. A suspension with disc-like particles oriented broadside to the direction of wave propagation is thus expected to have higher effective inertia and lower sound speed than a suspension with particles with end-on alignment. To test these predictions, sound speed is measured with a time-of-flight method in suspensions of micron-size nickel flakes suspended in oil, with and without magnetic-field-induced alignment of the particles. The sound speed, relative to the unaligned case, is found to decrease for particles oriented broadside to the sound wave, and increase for edgewise alignment. We also investigate the frequency dependence of the effective sound speed, since the added mass effect is expected to diminish as the flow becomes steady at low frequencies. The experimental results are compared to the predictions of a model proposed by Ahuja & Hardee (J. Acoust. Soc. Am 1978) for the acoustic properties of aligned oblate-spheroid suspensions.

  11. Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Turton, Andrew; Bhattacharyya, Debabrata; Wood, David

    2006-02-01

    A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.

  12. Determining the nominal power transfer coefficient for passive surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Timoshenko, A. N.; Palamarchuk, A. A.; Semenko, A. I.

    1982-05-01

    A method for calculating the nominal power transfer coefficient of passive SAW devices operating in a linear mode is described. Relations of practical importance are obtained, making it possible, on the basis of known characteristics of acousto-electric transducers and acoustic lines, to determine the losses incurred by devices when they are connected to radioelectronic equipment. The relations also permit an assessment of the uniformity of the amplitude-frequency characteristics of the devices.

  13. Correlation of combustor acoustic power levels inferred from internal fluctuating pressure measurements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1978-01-01

    Combustion chamber acoustic power levels inferred from internal fluctuating pressure measurements are correlated with operating conditions and chamber geometries over a wide range. The variables include considerations of chamber design (can, annular, and reverse-flow annular) and size, number of fuel nozzles, burner staging and fuel split, airflow and heat release rates, and chamber inlet pressure and temperature levels. The correlated data include those obtained with combustion component development rigs as well as engines.

  14. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    SciTech Connect

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  15. High Energy Density Sciences with High Power Lasers at SACLA

    NASA Astrophysics Data System (ADS)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  16. A Low Power Density Rectenna for SPS Application

    NASA Astrophysics Data System (ADS)

    Fujino, Yoshiyuki

    2002-01-01

    present launch technology. Due to the satellites low power and small antenna, the power flux density reaching the earth's surface is only 1 W/m2. This is probably insufficient for practical applications, so we investigated the minimum density required for a rectenna to operate. because the input power of the rectifying circuits is lower. We thus developed a rectenna with a larger aperture area that can operate satisfactorily when the power flux density is low because the input power to the rectifying circuits is not reduced. antenna array. Although constructing an antenna array is relatively easy, the substrate material is costly. We thus took the second approach--using a rectenna with a parabolic antenna. power transmission frequency was 5.8 GHz. We designed a center-feed parabolic antenna with a 60-cm diameter using a circular patch antenna as the primary feed. The gain and aperture efficiency were 29 dBi and 62 %, respectively. The 3-dB beam width was 7 degrees. Rectifying circuits were constructed on the reverse side of the patch antenna, and its efficiency was about 75 % at an input power of 300 mW and a load resistance of 300 ohms. Microwave power transmission experiments in an anechoic chamber showed that the efficiency of a rectenna with a parabolic reflector was 50 %. increase the amount of time to receive data from the satellite. Therefore, we changed the length of the two orthogonal directions of the reflector.We propose rectangular reflector rectenna that can arrange without clearance on the whole ground rectenna site. We calculated the directivity of this antenna by using the physical optics method. The major and minor axis length of antenna was 85 x 43 cm, and its 3-dB beam width was 4 and 8 degrees, respectively, and the gain was 30 dBi.The degradation in the aperture efficiency compared to the circular parabolic antenna was about 12 %. power region of its normal site in the SPS. The transmission using microwave power was successful even in a region

  17. LINEAR INVERSION OF TRANSMITTED ACOUSTIC WAVE FIELDS FOR THREE-DIMENSIONAL MODULUS AND DENSITY PERTURBATIONS USING A BORN-TYPE APPROXIMATION.

    USGS Publications Warehouse

    Stauber, Douglas A.

    1985-01-01

    A Born approximation is used to linearize the relationship, in the horizontal-wavenumber and frequency domains, between lateral perturbations of modulus and density in a layered half-space and the acoustic wave field observed at the surface when a plane wave is incident from below. The resulting equations can be used to perform a linear inversion of observed acoustic wave fields to obtain lateral perturbations in modulus and density. Since modulus and density effects are separated, gravity observations can be included in the inversion procedure without any assumptions about the relationship between density and acoustic velocity. Tests with synthetic data sets reveal that the inversion method gives useful results when the spatial scales of the inhomogeneities are smaller than several acoustic wavelengths. Refs.

  18. Effects of nonthermal ions and polarization force on dust-acoustic waves in a density-varying dusty plasma.

    PubMed

    Asaduzzaman, M; Mamun, A A

    2012-07-01

    A rigorous theoretical investigation has been made of the effects of nonthermal ions and polarization force (which arises due to the dust density inhomogeneity) on the propagation of dust-acoustic (DA) waves in a density-varying unmagnetized dusty plasma (consisting of nonthermal ions, Maxwellian electrons, and negatively charged mobile dust) by the normal mode analysis. It has been shown that the dispersion properties of the DA waves are significantly modified by the presence of nonthermal ions and polarization force. It has been also found that the phase speed of the DA waves, as well as the dust density perturbation, increases (decreases) with the increase of nonthermal ions (polarization force), and that the potential associated with the DA waves decreases with the increase of the equilibrium dust number density. The implications of our results in the specific situation of space environments (dust-ion plasma situation) are also briefly discussed. PMID:23005552

  19. Reliability of the power spectral density for photoplethysmography under a pulsed magnetic field stimulus

    NASA Astrophysics Data System (ADS)

    Lee, Jinyong; Lee, Hyun Sook; Kim, Sunghyun; Hwang, Do Guwn

    2012-05-01

    We have compared the aging index of the second derivatives of photoplethysmography (PPG) with the power spectral density (PSD) from PPG signals to investigate the effect of a strong pulsed electromagnetic field (PEMF) on the improvement of vascularization in the capillary vessels of the finger. The PEMF stimulator was composed of an elliptical coil of 10 turns and 12 cm × 5 cm, and its maximum field and transition time were 0.48 T and 0.102 ms, respectively. It is not easy to analyze the stimulus effect of blood vessel from raw signals of PPG, and aging index of vascularization from the second derivatives of PPG. A PSD analysis in the frequency domain was introduced to reduce artifacts due to change in the posture of the subjects, the environment, acoustic noise, etc. For ages in the 50s, the PSD analysis before and after PEMF stimulus was rather more reliable than the second derivatives of the PPG.

  20. High power density reactors based on direct cooled particle beds

    SciTech Connect

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs.

  1. REJUVENATING POWER SPECTRA. II. THE GAUSSIANIZED GALAXY DENSITY FIELD

    SciTech Connect

    Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan

    2011-04-20

    We find that, even in the presence of discreteness noise, a Gaussianizing transform (producing a more Gaussian one-point distribution) reduces nonlinearities in the power spectra of cosmological matter and galaxy density fields, in many cases drastically. Although Gaussianization does increase the effective shot noise, it also increases the power spectrum's fidelity to the linear power spectrum on scales where the shot noise is negligible. Gaussianizing also increases the Fisher information in the power spectrum in all cases and resolutions, although the gains are smaller in redshift space than in real space. We also find that the gain in cumulative Fisher information from Gaussianizing peaks at a particular grid resolution depends on the sampling level.

  2. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  3. An integrated modular power-aware microsensor architecture and application to unattended acoustic vehicle tracking

    NASA Astrophysics Data System (ADS)

    Bajura, Michael; Schott, Brian; Flidr, Jaroslav; Czarnaski, Joe; Worth, Carl; Tho, Tam; Wang, Li

    2005-05-01

    We introduce a truly modular, power-aware, distributed microsensor architecture, capable of seamlessly spanning performance metrics from point-optimized low-power to point-optimized high-power applications. This type of performance is often needed in unattended ground sensor applications such as acoustic sensing and tracking, where long periods of minimal sensing activity are intermixed with short periods of intense sensor processing. The system design and implementation of a microsensor platform based on this architecture are described with experimental results. We show that although building a modular power-aware system requires additional hardware components, it results in system capable of rapid physical hardware and software reconfiguration with module reuse for new applications, while achieving a significant decrease in overall system power.

  4. Super-X divertors and high power density fusion devices

    SciTech Connect

    Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M.; Canik, J.

    2009-05-15

    The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source 'battery' small enough to fit inside a conventional fission blanket.

  5. Magnetocaloric Materials and the Optimization of Cooling Power Density

    NASA Technical Reports Server (NTRS)

    Wikus, Patrick; Canavan, Edgar; Heine, Sarah Trowbridge; Matsumoto, Koichi; Numazawa, Takenori

    2014-01-01

    The magnetocaloric effect is the thermal response of a material to an external magnetic field. This manuscript focuses on the physics and the properties of materials which are commonly used for magnetic refrigeration at cryogenic temperatures. After a brief overview of the magnetocaloric effect and associated thermodynamics, typical requirements on refrigerants are discussed from a standpoint of cooling power density optimization. Finally, a compilation of the most important properties of several common magnetocaloric materials is presented.

  6. Probability density function modeling for sub-powered interconnects

    NASA Astrophysics Data System (ADS)

    Pater, Flavius; Amaricǎi, Alexandru

    2016-06-01

    This paper proposes three mathematical models for reliability probability density function modeling the interconnect supplied at sub-threshold voltages: spline curve approximations, Gaussian models,and sine interpolation. The proposed analysis aims at determining the most appropriate fitting for the switching delay - probability of correct switching for sub-powered interconnects. We compare the three mathematical models with the Monte-Carlo simulations of interconnects for 45 nm CMOS technology supplied at 0.25V.

  7. High-density power management architecture for portable applications

    NASA Astrophysics Data System (ADS)

    Ahsanuzzaman, S. M.

    This thesis introduces a power management architecture (PMA) and its on-chip implementation, designed for battery-powered portable applications. Compared to conventional two-stage PMA architectures, consisting of a front-end inductive converter followed by a set of point-of-load (PoL) buck converters, the presented PMA has improved power density. The new architecture, named MSC-DB, is based on a hybrid converter topology that combines a fixed ratio multi-output switched capacitor converter (MSC) and a set of differential-input buck (DB) converters, to achieve low volume and high power processing efficiency. The front-end switched capacitor stage has a higher power density than the conventionally used inductive converters. The downstream differential-input buck converters enable tight output voltage regulation, and allow for a drastic reduction of output filter inductors without the need for increasing switching frequency, hence limiting switching losses and improving the efficiency of the system. Furthermore, the new PMA provides battery cells balancing feature, not existing in conventional systems. The PMA architecture is implemented both as a discrete prototype and as an application-specific integrated circuit (IC) module. The on-chip implemented architecture is fabricated in a standard 0.13microm CMOS process and operates at 9.3 MHz switching frequency. Experimental comparisons with a conventional two-cell battery input architecture, providing 15 W of total power in three different voltage outputs, demonstrate up to a 50% reduction in the inductances of the downstream converter stages and up to a 53% reduction in losses, equivalent to the improvement of the power processing efficiency of a 12%. Moreover, the fabricated IC module is co-packaged with low-profile thin-film inductors, to demonstrate the effectiveness of the introduced architecture in reducing the volume of PMAs for portable applications and possibly providing complete on-chip implementation of PMAs

  8. Universal fractional noncubic power law for density of metallic glasses.

    PubMed

    Zeng, Qiaoshi; Kono, Yoshio; Lin, Yu; Zeng, Zhidan; Wang, Junyue; Sinogeikin, Stanislav V; Park, Changyong; Meng, Yue; Yang, Wenge; Mao, Ho-Kwang; Mao, Wendy L

    2014-05-01

    As a fundamental property of a material, density is controlled by the interatomic distances and the packing of microscopic constituents. The most prominent atomistic feature in a metallic glass (MG) that can be measured is its principal diffraction peak position (q1) observable by x-ray, electron, or neutron diffraction, which is closely associated with the average interatomic distance in the first shell. Density (and volume) would naturally be expected to vary under compression in proportion to the cube of the one-dimensional interatomic distance. However, by using high pressure as a clean tuning parameter and high-resolution in situ techniques developed specifically for probing the density of amorphous materials, we surprisingly found that the density of a MG varies with the 5/2 power of q1, instead of the expected cubic relationship. Further studies of MGs of different compositions repeatedly produced the same fractional power law of 5/2 in all three MGs we investigated, suggesting a universal feature in MG. PMID:24856706

  9. Moisture estimation in power transformer oil using acoustic signals and spectral kurtosis

    NASA Astrophysics Data System (ADS)

    Leite, Valéria C. M. N.; Veloso, Giscard F. C.; Borges da Silva, Luiz Eduardo; Lambert-Torres, Germano; Borges da Silva, Jonas G.; Onofre Pereira Pinto, João

    2016-03-01

    The aim of this paper is to present a new technique for estimating the contamination by moisture in power transformer insulating oil based on the spectral kurtosis analysis of the acoustic signals of partial discharges (PDs). Basically, in this approach, the spectral kurtosis of the PD acoustic signal is calculated and the correlation between its maximum value and the moisture percentage is explored to find a function that calculates the moisture percentage. The function can be easily implemented in DSP, FPGA, or any other type of embedded system for online moisture monitoring. To evaluate the proposed approach, an experiment is assembled with a piezoelectric sensor attached to a tank, which is filled with insulating oil samples contaminated by different levels of moisture. A device generating electrical discharges is submerged into the oil to simulate the occurrence of PDs. Detected acoustic signals are processed using fast kurtogram algorithm to extract spectral kurtosis values. The obtained data are used to find the fitting function that relates the water contamination to the maximum value of the spectral kurtosis. Experimental results show that the proposed method is suitable for online monitoring system of power transformers.

  10. Incident signal power comparison for localization of concurrent multiple acoustic sources.

    PubMed

    Salvati, Daniele; Canazza, Sergio

    2014-01-01

    In this paper, a method to solve the localization of concurrent multiple acoustic sources in large open spaces is presented. The problem of the multisource localization in far-field conditions is to correctly associate the direction of arrival (DOA) estimated by a network array system to the same source. The use of systems implementing a Bayesian filter is a traditional approach to address the problem of localization in multisource acoustic scenario. However, in a real noisy open space the acoustic sources are often discontinuous with numerous short-duration events and thus the filtering methods may have difficulty to track the multiple sources. Incident signal power comparison (ISPC) is proposed to compute DOAs association. ISPC is based on identifying the incident signal power (ISP) of the sources on a microphone array using beamforming methods and comparing the ISP between different arrays using spectral distance (SD) measurement techniques. This method solves the ambiguities, due to the presence of simultaneous sources, by identifying sounds through a minimization of an error criterion on SD measures of DOA combinations. The experimental results were conducted in an outdoor real noisy environment and the ISPC performance is reported using different beamforming techniques and SD functions. PMID:24701179

  11. Incident Signal Power Comparison for Localization of Concurrent Multiple Acoustic Sources

    PubMed Central

    2014-01-01

    In this paper, a method to solve the localization of concurrent multiple acoustic sources in large open spaces is presented. The problem of the multisource localization in far-field conditions is to correctly associate the direction of arrival (DOA) estimated by a network array system to the same source. The use of systems implementing a Bayesian filter is a traditional approach to address the problem of localization in multisource acoustic scenario. However, in a real noisy open space the acoustic sources are often discontinuous with numerous short-duration events and thus the filtering methods may have difficulty to track the multiple sources. Incident signal power comparison (ISPC) is proposed to compute DOAs association. ISPC is based on identifying the incident signal power (ISP) of the sources on a microphone array using beamforming methods and comparing the ISP between different arrays using spectral distance (SD) measurement techniques. This method solves the ambiguities, due to the presence of simultaneous sources, by identifying sounds through a minimization of an error criterion on SD measures of DOA combinations. The experimental results were conducted in an outdoor real noisy environment and the ISPC performance is reported using different beamforming techniques and SD functions. PMID:24701179

  12. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  13. Electron density power spectrum in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Rickett, B. J.; Spangler, S. R.

    1995-01-01

    Interstellar scintillation (ISS), fluctuations in the amplitude and phase of radio waves caused by scattering in the interstellar medium, is important as a diagnostic of interstellar plasma turbulence. ISS is also of interest because it is noise for other radio astronomical observations. The unifying concern is the power spectrum of the interstellar electron density. Here we use ISS observations through the nearby (less than or approximately =1 kpc) (ISM) to estimate the spectrum. From measurements of angular broadening of pulsars and extragalactic sources, decorrelation bandwidth of pulsars, refractive steering of features in pulsar dynamic spectra, dispersion measured fluctuations of pulsars, and refractive scintillation index measurements, we construct a composite structure function that is approximately power law over 2 x 10(exp 6) m less than scale less than 10(exp 13) m. The data are consistent with the structure function having a logarithmic slope versus baseline less than 2; thus there is a meaningful connection between scales in the radiowave fluctuation field and the scales in the electron density field causing the scattering. The data give an upper limit to the inner scale, l(sub o) less than or approximately 10(exp 8) m and are consistent with much smaller values. We construct a composite electron density spectrum that is approximately power law over at least the approximately = 5 decade wavenumber range 10(exp -13)/m less than wavenumber less than 10(exp -8)/m and that may extend to higher wavenumbers. The average spectral index of electron density over this wavenumber range is approximately = 3.7, very close to the value expected for a Kolmogorov process. The outer scale size, L(sub o), must be greater than or approximately = 10(exp 13) m (determined from dispersion measure fluctuations). When the ISS data are combined with measurements of differential Faraday rotation angle, and gradients in the average electron density, constraints can be put on the

  14. Probabilistic Density Function Method for Stochastic ODEs of Power Systems with Uncertain Power Input

    SciTech Connect

    Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil; Abhyankar, S.; Ghosh, Donetta L.; Smith, Barry; Huang, Zhenyu; Tartakovsky, Alexandre M.

    2015-09-22

    Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.

  15. Aircraft IR/acoustic detection evaluation. Volume 2: Development of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.

    1992-01-01

    The design and performance of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft is described and specified. The acoustic detection system performance criteria will subsequently be used to determine target detection ranges for the subject contract. Although the defined system has never been built and demonstrated in the field, the design parameters were chosen on the basis of achievable technology and overall system practicality. Areas where additional information is needed to substantiate the design are identified.

  16. Dymalloy: A composite substrate for high power density electronic components

    SciTech Connect

    Kerns, J.A.; Colella, N.J.; Makowiecki, D.; Davidson, H.L.

    1995-06-29

    High power density electronic components such as fast microprocessors and power semiconductors must operate below the maximum rated device junction temperature to ensure reliability. function temperatures are determined by the amount of heat generated and the thermal resistance from junction to the ambient thermal environment. Two of the Largest contributions to this thermal resistance are the die attach interface and the package base. A decrease in these resistances can allow increased component packing density in MCMs, reduction of heat sink volume in tightly packed systems, enable the use of higher performance circuit components, and improve reliability. The substrate for high power density devices is the primary thermal link between the junctions and the heat sink. Present high power multichip modules and single chip packages use substrate materials such as silicon nitride or copper tungsten that have thermal conductivity in the range of 200 W/mK. We have developed Dymalloy, a copper-diamond composite, that has a thermal conductivity of 420 W/mK and an adjustable coefficient of thermal expansion, nominally 5.5 ppm/C at 25 C, compatible with silicon and gallium arsenide. Because of the matched coefficient of thermal expansion it is possible to use low thermal resistance hard die attach methods. Dymalloy is a composite material made using micron size Type I diamond powder that has a published thermal conductivity of 600 to 1000 W/mK in a metal matrix that has a thermal conductivity of 350 W/mK. The region of chemical bonding between the matrix material and diamond is limited to approximately 1000 A to maintain a high effective thermal conductivity for the composite. The material may be fabricated in near net shapes. Besides having exceptional thermal properties, the mechanical properties of this material also make it an attractive candidate as an electronic component substrate material.

  17. Biosonar resolving power: echo-acoustic perception of surface structures in the submillimeter range

    PubMed Central

    Simon, Ralph; Knörnschild, Mirjam; Tschapka, Marco; Schneider, Annkathrin; Passauer, Nadine; Kalko, Elisabeth K. V.; von Helversen, Otto

    2014-01-01

    The minimum distance for which two points still can be separated from each other defines the resolving power of a visual system. In an echo-acoustic context, the resolving power is usually measured as the smallest perceivable distance of two reflecting surfaces on the range axis and is found to be around half a millimeter for bats employing frequency modulated (FM) echolocation calls. Only few studies measured such thresholds with physical objects, most often bats were trained on virtual echoes i.e., echoes generated and played back by a computer; moreover, bats were sitting while they received the stimuli. In these studies differences in structure depth between 200 and 340 μm were found. However, these low thresholds were never verified for free-flying bats and real physical objects. Here, we show behavioral evidence that the echo-acoustic resolving power for surface structures in fact can be as low as measured for computer generated echoes and even lower, sometimes below 100 μm. We found this exceptional fine discrimination ability only when one of the targets showed spectral interferences in the frequency range of the bats′ echolocation call while the other target did not. This result indicates that surface structure is likely to be perceived as a spectral quality rather than being perceived strictly in the time domain. Further, it points out that sonar resolving power directly depends on the highest frequency/shortest wavelength of the signal employed. PMID:24616703

  18. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  19. Increased power density from a spiral wound microbial fuel cell.

    PubMed

    Jia, Boyang; Hu, Dawei; Xie, Beizhen; Dong, Kun; Liu, Hong

    2013-03-15

    Using Microbial fuel cell (MFC) to convert organic and inorganic matter into electricity is of great interest for powering portable devices, which is now still limited by the output of MFC. In this study, a spiral wound MFC (SWMFC) with relatively large volume normalized surface area of separator (4.2 cm(2)/ml) was fabricated to enhance power generation. Compared with double-membrane MFC (DMMFC) and conventional double chamber MFC (DCMFC), the power density of SWMFC increased by 42% and 99% resulted from its lower internal resistance. Besides larger separator area, the better performance of SWMFC benefited from its structure sandwiching the cathodes between two separators. This point was proved again by a comparison of another DCMFC and a triple chamber MFC (TCMFC) as well as a simulation using finite element method. Moreover, the feature of SWMFC was more convenient and compact to scale up. Therefore, SWMFC provides a promising configuration for high power output as a portable power source. PMID:23116542

  20. Pulsed power drivers for ICF and high energy density physics

    SciTech Connect

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-12-31

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates {approximately}500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed {approximately}15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

  1. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  2. A novel direct ethanol fuel cell with high power density

    NASA Astrophysics Data System (ADS)

    An, L.; Zhao, T. S.; Chen, R.; Wu, Q. X.

    2011-08-01

    A new type of direct ethanol fuel cell (DEFC) that is composed of an alkaline anode and an acid cathode separated with a charger conducting membrane is developed. Theoretically it is shown that the voltage of this novel fuel cell is 2.52 V, while, experimentally it has been demonstrated that this fuel cell can yield an open-circuit voltage (OCV) of 1.60 V and a peak power density of 240 mW cm-2 at 60 °C, which represent the highest performance of DEFCs that has so far been reported in the open literature.

  3. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    NASA Astrophysics Data System (ADS)

    Long, G. B.; Ou, J. W.; Zheng, Y. G.

    2016-06-01

    In this paper, we employ a stochastic oscillating accretion disk model for the power spectral index and variability of BL Lac object S5 0716+714. In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. We simulate the light curve and the power spectrum density (PSD) at (i) over-damped, (ii) critically damped and (iii) under-damped cases, respectively. Our results show that the simulated PSD curves depend on the intrinsic property of the accretion disk, and it could be produced in a wide interval ranging from 0.94 to 2.05 by changing the friction coefficient in a stochastic oscillating accretion disk model. We argue that accretion disk stochastic oscillating could be a possible interpretation for observed PSD variability.

  4. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    SciTech Connect

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-08-15

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  5. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.

    PubMed

    Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem

    2014-05-01

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low

  6. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-01

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  7. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    SciTech Connect

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  8. Density matrix embedding in an antisymmetrized geminal power bath

    SciTech Connect

    Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy

    2015-07-14

    Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlation energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation.

  9. High Power Density Blanket Design Study for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Huang, J. H.; Zhu, Y. K.; Deng, P. Zh.

    2003-06-01

    A conceptual design study of a high power density blanket has been carried out. The Fusion Experimental Breeder, FEB, is adopted as the reference reactor. The neutron wall loading is 0.5 MW/m2. The blanket is cooled by 10 MPa helium in tube. The concept of LiPb eutectic/transuranium oxide suspension is adopted. The neutronics design is performed to provide the design basis, and it gives an energy multiplication of 37 and a flattened power density distribution with a peak value of 70 W/m3. Multiple cooling panels are introduced to reduce the peak temperature of the blanket. In spite of up to 15 cooling panels, the blanket module is calculated using the ANSYS code and analytically as well. The results are consistent with each other and can meet the thermal criteria. However, structural calculation results from ANSYS did not satisfy the criterion: The blanket structure design is then improved by using curved cooling panels to model the structure in detail. Temperature distribution is obtained using the Pro/Mechanica code. Detailed structural analyses are also done by this code. Some satisfactory results are obtained.

  10. High power density proton exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J.; Hitchens, G. Duncan; Manko, David J.

    1993-01-01

    Proton exchange membrane (PEM) fuel cells use a perfluorosulfonic acid solid polymer film as an electrolyte which simplifies water and electrolyte management. Their thin electrolyte layers give efficient systems of low weight, and their materials of construction show extremely long laboratory lifetimes. Their high reliability and their suitability for use in a microgravity environment makes them particularly attractive as a substitute for batteries in satellites utilizing high-power, high energy-density electrochemical energy storage systems. In this investigation, the Dow experimental PEM (XUS-13204.10) and unsupported high platinum loading electrodes yielded very high power densities, of the order of 2.5 W cm(exp -2). A platinum black loading of 5 mg per cm(exp 2) was found to be optimum. On extending the three-dimensional reaction zone of fuel cell electrodes by impregnating solid polymer electrolyte into the electrode structures, Nafion was found to give better performance than the Dow experimental PEM. The depth of penetration of the solid polymer electrolyte into electrode structures was 50-70 percent of the thickness of the platinum-catalyzed active layer. However, the degree of platinum utilization was only 16.6 percent and the roughness factor of a typical electrode was 274.

  11. Submicron gate InP power MISFET's with improved output power density at 18 and 20 GHz

    NASA Technical Reports Server (NTRS)

    Biedenbender, M. D.; Kapoor, Vik J.; Shalkhauser, K. A.; Messick, L. J.; Nguyen, R.; Schmitz, D.; Juergensen, H.

    1991-01-01

    The microwave characteristics are presented at 18 and 20 GHz of submicron gate indium phosphide (InP) metal-insulator-semiconductor field-effect transistors (MISFET's) for high output power density applications. InP power MISFET's were fabricated and the output power density was investigated as a function of drain-source spacing. The best output power density and gain were obtained for drain-source spacing of 3 microns. The output power density is 2.7 times greater than was previously measured for InP MISFET's at 18 and 20 GHz, and the power-added efficiency also increased.

  12. Submicron gate InP power MISFET's with improved output power density at 18 and 20 GHz

    NASA Technical Reports Server (NTRS)

    Biedenbender, Michael D.; Kapoor, Vik J.; Shalkhauser, Kurt A.; Messick, Louis J.; Nguyen, Richard; Schmitz, Dietmar; Jurgensen, Holger

    1991-01-01

    The microwave characteristics are presented at 18 and 20 GHz of submicron gate indium phosphide (InP) metal-insulator-semiconductor field-effect transistors (MISFETs) for high output power density applications. InP power MISFET's were fabricated and the output power density was investigated as a function of drain-source spacing. The best output power density and gain were obtained for drain-source spacing of 3 micron. The output power density is 2.7 times greater than was previously measured for InP MISFET's at 18 and 20 GHz, and the power-added efficiency also increased.

  13. Monitoring Thermal Fatigue Damage In Nuclear Power Plant Materials Using Acoustic Emission

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Watson, Bruce E.; Pitman, Stan G.; Roosendaal, Timothy J.; Bond, Leonard J.

    2012-04-26

    Proactive aging management of nuclear power plant passive components requires technologies to enable monitoring and accurate quantification of material condition at early stages of degradation (i.e., pre-macrocrack). Acoustic emission (AE) is well-suited to continuous monitoring of component degradation and is proposed as a method to monitor degradation during accelerated thermal fatigue tests. A key consideration is the ability to separate degradation responses from external sources such as water spray induced during thermal fatigue testing. Water spray provides a significant background of acoustic signals, which can overwhelm AE signals caused by degradation. Analysis of AE signal frequency and energy is proposed in this work as a means for separating degradation signals from background sources. Encouraging results were obtained by applying both frequency and energy filters to preliminary data. The analysis of signals filtered using frequency and energy provides signatures exhibiting several characteristics that are consistent with degradation accumulation in materials. Future work is planned to enable verification of the efficacy of AE for thermal fatigue crack initiation detection. While the emphasis has been placed on the use of AE for crack initiation detection during accelerated aging tests, this work also has implications with respect to the use of AE as a primary tool for early degradation monitoring in nuclear power plant materials. The development of NDE tools for characterization of aging in materials can also benefit from the use of a technology such as AE which can continuously monitor and detect crack initiation during accelerated aging tests.

  14. Acoustical Detection of High-Density Krill Demersal Layers in the Submarine Canyons off Georges Bank.

    PubMed

    Greene, C H; Wiebe, P H; Burczynski, J; Youngbluth, M J

    1988-07-15

    High-density demersal layers of krill have been detected in the submarine canyons off Georges Bank by means of a high-frequency, dual-beam bioacoustical technique. Krill densities in these demersal layers were observed to be two to three orders of magnitude greater than the highest densities observed in water-column scattering layers. Such abundances may help explain the unusually high squid and demersal fish production estimates attributed to the Georges Bank ecosystem. PMID:17734865

  15. Power Spectrum Density of Long-Term MAXI Data

    NASA Astrophysics Data System (ADS)

    Sugimoto, Juri; Mihara, Tatehiro; Sugizaki, Mutsumi; Serino, Motoko; Kitamoto, Shunji; Sato, Ryousuke; Ueda, Yoshihiro; Ueno, Shiro

    Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability can be studied by the power spectrum density (PSD) of the X-ray light curves. We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies. For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.

  16. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    SciTech Connect

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  17. PSD computations using Welch's method. [Power Spectral Density (PSD)

    SciTech Connect

    Solomon, Jr, O M

    1991-12-01

    This report describes Welch's method for computing Power Spectral Densities (PSDs). We first describe the bandpass filter method which uses filtering, squaring, and averaging operations to estimate a PSD. Second, we delineate the relationship of Welch's method to the bandpass filter method. Third, the frequency domain signal-to-noise ratio for a sine wave in white noise is derived. This derivation includes the computation of the noise floor due to quantization noise. The signal-to-noise ratio and noise flood depend on the FFT length and window. Fourth, the variance the Welch's PSD is discussed via chi-square random variables and degrees of freedom. This report contains many examples, figures and tables to illustrate the concepts. 26 refs.

  18. Electromagnetic potentials basis for energy density and power flux

    NASA Astrophysics Data System (ADS)

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress–energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  19. Electronic properties of solids excited with intermediate laser power densities

    NASA Astrophysics Data System (ADS)

    Sirotti, Fausto; Tempo Beamline Team

    Intermediate laser power density up to about 100 GW/cm2 is below the surface damage threshold is currently used to induce modification in the physical properties on short time scales. The absorption of a short laser pulse induces non-equilibrium electronic distributions followed by lattice-mediated equilibrium taking place only in the picosecond range. The role of the hot electrons is particularly important in several domains as for example fast magnetization and demagnetization processes, laser induced phase transitions, charge density waves. Angular resolved photoelectron spectroscopy measuring directly energy and momentum of electrons is the most adapted tool to study the electronic excitations at short time scales during and after fast laser excitations. The main technical problem is the space charge created by the pumping laser pulse. I will present angular resolved multiphoton photoemission results obtained with 800 nm laser pulses showing how space charge electrons emitted during fast demagnetization processes can be measured. Unable enter Affiliation: CNRS-SOLEIL Synchrotron L'Orme des Merisiers , Saint Aubin 91192 Gif sur Yvette France.

  20. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches

  1. Specification of optical components using the power spectral density function

    SciTech Connect

    Lawson, J.K.; Wolfe, C.R.; Manes, K.R.; Trenholme, J.B.; Aikens, D.M.; English, R.E. Jr.

    1995-06-20

    This paper describes the use of Fourier techniques to characterize the wavefront of optical components, specifically, the use of the power spectral density, (PSD), function. The PSDs of several precision optical components will be shown. Many of the optical components of interest to us have square, rectangular or irregularly shaped apertures with major dimensions up-to 800 mm. The wavefronts of components with non-circular apertures cannot be analyzed with Zernicke polynomials since these functions are an orthogonal set for circular apertures only. Furthermore, Zernicke analysis is limited to treating low frequency wavefront aberrations; mid-spatial scale and high frequency error are expressed only as ``residuals.`` A more complete and powerful representation of the optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is obtained from the amplitude of frequency components present in the Fourier spectrum. The PSD corresponds to the scattered intensity as a function of scattering angle in the wavefront and can be used to describe the intensity distribution at focus. The shape of a resultant wavefront or the focal spot of a complex multi-component laser system can be calculated and optimized using the PSDs of individual optical components which comprise it.

  2. Nonlinear coupling of acoustic and shear mode in a strongly coupled dusty plasma with a density dependent viscosity

    NASA Astrophysics Data System (ADS)

    Garai, S.; Janaki, M. S.; Chakrabarti, N.

    2016-09-01

    The nonlinear propagation of low frequency waves, in a collisionless, strongly coupled dusty plasma (SCDP) with a density dependent viscosity, has been studied with a proper Galilean invariant generalized hydrodynamic (GH) model. The well known reductive perturbation technique (RPT) has been employed in obtaining the solutions of the longitudinal and transverse perturbations. It has been found that the nonlinear propagation of the acoustic perturbations govern with the modified Korteweg-de Vries (KdV) equation and are decoupled from the sheared fluctuations. In the regions, where transversal gradients of the flow exists, coupling between the longitudinal and transverse perturbations occurs due to convective nonlinearity which is true for the homogeneous case also. The results, obtained here, can have relative significance to astrophysical context as well as in laboratory plasmas.

  3. The subgrid modeling of propagation of acoustic waves in heterogeneous media with multiscale isotropic random elastic stiffness and density

    NASA Astrophysics Data System (ADS)

    Soboleva, O. N.; Kurochkina, E. P.

    2016-01-01

    The effective coefficients in the problem of the acoustic wave propagation have been calculated for a multiscale 3D isotropic medium using a subgrid modeling approach. The density and the elastic stiffness have been represented mathematically by the Kolmogorov multiplicative cascades, which, to date, appear to be the only mechanisms for generating a stationary multifractal fields with a log-stable probability distribution. The fields with the stable distribution are described with the help of linear combination random values ?, ? and weight coefficients ?, ?, which satisfy certain conditions in the nodes of spatial grid ?. The parameters of the stable distribution of the random values ?, ? are equal: ?, ?, ?, ?. The wavelength is assumed to be large as compared with the scale of heterogeneities of the medium. We consider the regime in which the waves propagate over a distance of the typical wave length in source. The theoretical results obtained in this paper are compared with the results of a direct 3D numerical simulation.

  4. Acoustic waveguide technique for sensing incipient faults in underground power-transmission cables: including acousto-optic techniques. Final report

    SciTech Connect

    Harrold, R.T.

    1981-09-01

    The feasibility of using acoustic waveguide techniques for sensing incipient faults in underground power transmission cables was determined. Theoretical and practical studies were made of both the acoustic emission spectrum signatures associated with cable incipient faults, and the attenuation of acoustic waves in waterfilled metal tubes used as waveguides. Based on critical data, it can be estimated that in favorable circumstances, the acoustic waveguide system would only be useful for sensing incipient faults in underground cables of approx. 800 meters (approx. 0.5 miles) or less in length. As underground power transmission cables are often several kilometers in length, it was clear at this stage of the study, that simple acoustic waveguide sensing techniques would not be adequate, and some modification would be needed. With DOE approval it was decided to investigate acousto-optic sensing techniques in order to extend the detection range. In particular, a system in which acoustic emissions from cable incipient faults impinge on a fiber-optic lightguide and locally change its refractive indes, and as a consequence, modulate laser light transmitted along the light guide. Experiments based on this concept were successful, and it has been demonstrated that it is possible to sense acoustic emissions with energy levels below one micro-joule. A practical test of this system in the laboratory using a section of compressed gas-insulated cable with an internal flashover was successfully carried out. Long distance fault sensing with this technique should be feasible as laser light can be transmitted several kilometers in fiber optic lightguides. It is believed that laser-acousto-optic fault sensing is a viable technique which, with development, could be applied for fault sensing in power cables and other apparatus.

  5. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-07-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power (P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  6. Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars

    NASA Astrophysics Data System (ADS)

    Oudich, Mourad; Djafari-Rouhani, Bahram; Pennec, Yan; Assouar, M. Badreddine; Bonello, Bernard

    2014-11-01

    We investigate the elastic wave dispersion by a phononic metamaterial plate containing low frequency resonator stubs arranged periodically over the plate. We show that this system not only provides stop bands for wavelengths much larger than the periodicity but also displays negative behavior of its effective mass density under the homogenization assumption. A numerical method is used to calculate the plate's effective dynamic mass density as function of the frequency where the metamaterial is considered as homogeneous plate for these large wavelengths. Strong anisotropy of the effective mass density matrix is observed around the resonance frequencies where the gaps are opened. In these regions, we demonstrate that the effective matrix density components take negative values. For each of these components, the negative behavior is studied by taking into account the polarization of the involved resonant modes as well as their associated partial band gaps opened for each specific Lamb symmetry modes. We found that coupling between Lamb waves and resonant modes strongly affects the effective density of the whole plate especially in the coupling frequency regions of the gaps.

  7. Simulation of Acoustic Noise Generated by an Airbreathing, Beam-Powered Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Kennedy, W. C.; Van Laak, P.; Scarton, H. A.; Myrabo, L. N.

    2005-04-01

    A simple acoustic model is developed for predicting the noise signature vs. power level for advanced laser-propelled lightcraft — capable of single-stage flights into low Earth orbit. This model predicts the noise levels generated by a pulsed detonation engine (PDE) during the initial lift-off and acceleration phase, for two representative `tractor-beam' lightcraft designs: a 1-place `Mercury' vehicle (2.5-m diameter, 900-kg); and a larger 5-place `Apollo' vehicle (5-m diameter, 5555-kg) — both the subject of an earlier study. The use of digital techniques to simulate the expected PDE noise signature is discussed, and three examples of fly-by noise signatures are presented. The reduction, or complete elimination of perceptible noise from such engines, can be accomplished by shifting the pulse frequency into the supra-audible or sub-audible range.

  8. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  9. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  10. A Novel Device for Total Acoustic Output Measurement of High Power Transducers

    NASA Astrophysics Data System (ADS)

    Howard, S.; Twomey, R.; Morris, H.; Zanelli, C. I.

    2010-03-01

    The objective of this work was to develop a device for ultrasound power measurement applicable over a broad range of medical transducer types, orientations and powers, and which supports automatic measurements to simplify use and minimize errors. Considering all the recommendations from standards such as IEC 61161, an accurate electromagnetic null-balance has been designed for ultrasound power measurements. The sensing element is placed in the water to eliminate errors due to surface tension and water evaporation, and the motion and detection of force is constrained to one axis, to increase immunity to vibration from the floor, water sloshing and water surface waves. A transparent tank was designed so it could easily be submerged in a larger tank to accommodate large transducers or side-firing geometries, and can also be turned upside-down for upward-firing transducers. A vacuum lid allows degassing the water and target in situ. An external control module was designed to operate the sensing/driving loop and to communicate to a local computer for data logging. The sensing algorithm, which incorporates temperature compensation, compares the feedback force needed to cancel the motion for sources in the "on" and "off" states. These two states can be controlled by the control unit or manually by the user, under guidance by a graphical user interface (the system presents measured power live during collection). Software allows calibration to standard weights, or to independently calibrated acoustic sources. The design accommodates a variety of targets, including cone, rubber, brush targets and an oil-filled target for power measurement via buoyancy changes. Measurement examples are presented, including HIFU sources operating at powers from 1 to 100.

  11. Design and Characterization of a High-power Laser-induced Acoustic Desorption (LIAD) Probe Coupled with a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Shea, Ryan C.; Habicht, Steven C.; Vaughn, Weldon E.; Kenttämaa, Hilkka I.

    2008-01-01

    We report here the construction and characterization of a high-power laser-induced acoustic desorption (LIAD) probe designed for Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometers to facilitate analysis of non-volatile, thermally labile compounds. This “next generation” LIAD probe offers significant improvements in sensitivity and desorption efficiency for analytes with larger molecular weights via the use of higher laser irradiances. Unlike the previous probes which utilized a power limiting optical fiber to transmit the laser pulses through the probe, this probe employs a set of mirrors and a focusing lens. At the end of the probe, the energy from the laser pulses propagates through a thin metal foil as an acoustic wave, resulting in desorption of neutral molecules from the opposite side of the foil. Following desorption, the molecules can be ionized by electron impact or chemical ionization. Almost an order of magnitude greater power density (up to 5.0 × 109 W/cm2) is achievable on the backside of the foil with the high-power LIAD probe compared to the earlier LIAD probes (maximum power density ~9.0 × 108 W/cm2). The use of higher laser irradiances is demonstrated not to cause fragmentation of the analyte. The use of higher laser irradiances increases sensitivity since it results in the evaporation of a greater number of molecules per laser pulse. Measurement of the average velocities of LIAD evaporated molecules demonstrates that higher laser irradiances do not correlate with higher velocities of the gaseous analyte molecules. PMID:17319645

  12. Individual power density spectra of Swift gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-05-01

    Context. Timing analysis can be a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. Aims: We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. Methods: We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study the individual PDS of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Results: Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ~1%. Thus, we found no compelling evidence for periodic signal in GRBs. Conclusions: The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects

  13. Individual power density spectra of Swift gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-04-01

    Context. Timing analysis can be a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. Aims: We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. Methods: We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study the individual PDS of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Results: Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ~1%. Thus, we found no compelling evidence for periodic signal in GRBs. Conclusions: The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects

  14. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  15. Noise power spectral density of the Sundstrand QA-2000 accelerometer

    NASA Technical Reports Server (NTRS)

    Peters, Rex; Grindeland, David; Baugher, Charles R. (Editor)

    1990-01-01

    There are no good data on low frequency (less than 0.1 Hz) power spectral density (PSD) for the Q-Flex accelerometer. However, some preliminary stability measurements were made over periods of 12 to 24 hours and demonstrated stability less than 0.5 micro-g over greater than 12 hours. The test data appear to contain significant contributions from temperature variations at that level, so the true sensor contribution may be less than that. If what was seen could be construed as a true random process, it would correspond to about 0.1 micro-g rms over a bandwidth from 10(exp -5) Hz to about 1 Hz. Other studies of low frequency PSD in flexure accelerometers have indicated that material aging effects tend to approximate a first order Markhov process. If we combine such a model with the spectrum obtained at higher frequencies, it suggests the spectrum shown here as a conservative estimate of Q-Flex noise performance.

  16. High power densities from high-temperature material interactions

    SciTech Connect

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  17. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  18. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    PubMed

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys. PMID:27176512

  19. Solar cycle variations in the powers and damping rates of low-degree solar acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Broomhall, A.-M.; Pugh, C. E.; Nakariakov, V. M.

    2015-12-01

    Helioseismology uses the Sun's natural resonant oscillations to study the solar interior. The properties of the solar oscillations are sensitive to the Sun'2019;s magnetic activity cycle. Here we examine variations in the powers, damping rates, and energy supply rates of the most prominent acoustic oscillations in unresolved, Sun-as-a-star data, obtained by the Birmingham Solar Oscillations Network (BiSON) during solar cycles 22, 23, and the first half of 24. The variations in the helioseismic parameters are compared to the 10.7 cm flux, a well-known global proxy of solar activity. As expected the oscillations are most heavily damped and the mode powers are at a minimum at solar activity maximum. The 10.7 cm flux was linearly regressed using the fractional variations of damping rates and powers observed during cycle 23. In general, good agreement is found between the damping rates and the 10.7 cm flux. However, the linearly regressed 10.7 cm flux and fractional variation in powers diverge in cycles 22 and 24, indicating that the relationship between the mode powers and the 10.7 cm flux is not consistent from one cycle to the next. The energy supply rate of the oscillations, which is usually approximately constant, also decreases at this time. We have determined that this discrepancy is not because of the first-order bias introduced by an increase in the level of background noise or gaps in the data. Although we cannot categorically rule out an instrumental origin, the divergence observed in cycle 24, when the data were of high quality and the data coverage was over 80%, raises the possibility that the effect may be solar in origin.

  20. A high-temperature acoustic-electric system for power delivery and data communication through thick metallic barriers

    NASA Astrophysics Data System (ADS)

    Lawry, T. J.; Wilt, K. R.; Roa-Prada, S.; Ashdown, J. D.; Saulnier, G. J.; Scarton, H. A.; Das, P. K.; Gavens, A. J.

    2011-06-01

    In many sensing applications that monitor extreme environmental conditions within sealed metallic vessels, penetrating vessel walls in order to feed through power and data cables is impractical, as this may compromise a vessels structural integrity and its environmental isolation. Frequent servicing of sensing equipment within these environments is costly, so the use of batteries is strongly undesired and power harvesting techniques are preferred. Traditional electromagnetic power delivery and communication techniques, however, are highly ineffective in these applications, due to Faraday shielding effects from the metallic vessel walls. A viable, non-destructive alternative is to use piezoelectric materials to transmit power through thick metallic barriers acoustically. We present critical elements of a high-temperature battery-less sensor system prototype, including power harvesting, voltage regulation, and data communication circuitry able to operate up to 260°C. Power transmission is achieved by coaxially aligning a pair of high-temperature piezoelectric transducers on opposite sides of a thick steel barrier. Continuous-wave excitation of the outside transducer creates an acoustic beam that is captured by the opposite transducer, forming an acoustic-electric link for power harvesting circuitry. Simultaneously, sensor data can be transmitted out of the high-temperature environment by switching the electrical impedance placed across the leads of the inside transducer, creating a reflection-based amplitude modulated signal on the outside transducer. Transducer housing, loading, and alternatives for acoustic couplants are discussed. Measurement results are presented, and it was found that the system can harvest up to 1 watt of power and communicate sensor data up to 50 kbps, while operating at 260°C.

  1. A High Power Density Power System Electronics for NASA's Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, A.; Stone, R.; Travis, J.; Kercheval, B.; Alkire, G.; Ter-Minassian, V.

    2009-01-01

    A high power density, modular and state-of-the-art Power System Electronics (PSE) has been developed for the Lunar Reconnaissance Orbiter (LRO) mission. This paper addresses the hardware architecture and performance, the power handling capabilities, and the fabrication technology. The PSE was developed by NASA s Goddard Space Flight Center (GSFC) and is the central location for power handling and distribution of the LRO spacecraft. The PSE packaging design manages and distributes 2200W of solar array input power in a volume less than a cubic foot. The PSE architecture incorporates reliable standard internal and external communication buses, solid state circuit breakers and LiIon battery charge management. Although a single string design, the PSE achieves high reliability by elegantly implementing functional redundancy and internal fault detection and correction. The PSE has been environmentally tested and delivered to the LRO spacecraft for the flight Integration and Test. This modular design is scheduled to flight in early 2009 on board the LRO and Lunar Crater Observation and Sensing Satellite (LCROSS) spacecrafts and is the baseline architecture for future NASA missions such as Global Precipitation Measurement (GPM) and Magnetospheric MultiScale (MMS).

  2. Studies of acoustic-electric feed-throughs for power transmission through structures

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Doty, Benjamin; Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph; Aldrich, Jack; Chang, Zensheu

    2006-01-01

    There are numerous engineering design problems where the use of wires to transfer power and communicate data thru the walls of a structure is prohibitive or significantly difficult that it may require a complex design. Using physical feedthroughs in such systems may make them susceptible to leakage of chemicals or gasses, loss of pressure or vacuum, as well as difficulties in providing adequate thermal or electrical insulation. Moreover, feeding wires thru a wall of a structure reduces the strength of the structure and makes the structure prone to cracking due to fatigue that can result from cyclic loading and stress concentrations. One area that has already been identified to require a wireless alternative to electrical feedthroughs is the container of the Mars Sample Return Mission, which will need wireless sensors to sense a pressure leak and to avoid potential contamination. The idea of using elastic or acoustic waves to transfer power was suggested recently by [Y. Hu, et al., July 2003]. This system allows for the avoidance of cabling or wiring. The technology is applicable to the transfer of power for actuation, sensing and other tasks inside any sealed container or vacuum/pressure vessel. An alternative approach to the modeling presented previously [Sherrit et a., 2005] used network analysis to solve the same problem in a clear and expandable manner. Experimental tests on three different designs of these devices were performed. The three designs used different methods of coupling the piezoelectric element to the wall. In the first test the piezoelectric material was bolted using a backing structure. In the second test the piezoelectric was clamped after the application of grease and finally the piezoelectric element was attached using a conductive epoxy. The mechanical clamp with grease produced the highest measured efficiency of 53% however this design was the least practical from a fabrication viewpoint. The power transfer efficiency of conductive epoxy

  3. Neutral temperature and electron-density measurements in the lower E region by vertical HF sounding in the presence of an acoustic wave

    NASA Astrophysics Data System (ADS)

    Blanc, E.

    1982-04-01

    It is noted that an acoustic wave generated at ground level and propagating vertically through the lower ionosphere produces partial reflections of radio waves transmitted by a vertical sounder. The Doppler effect of the radio wave produced by the acoustic wave motion depends on the properties of the atmosphere and ionosphere. It is shown that this permits a determination of both the neutral-temperature and the electron-density profiles of the lower E region. The accuracy and the advantages offered by this method are discussed, and some experimental results are compared with those of other measurement techniques.

  4. Digital stroboscopic holographic interferometry for power flow measurements in acoustically driven membranes

    NASA Astrophysics Data System (ADS)

    Keustermans, William; Pires, Felipe; De Greef, Daniël; Vanlanduit, Steve J. A.; Dirckx, Joris J. J.

    2016-06-01

    Despite the importance of the eardrum and the ossicles in the hearing chain, it remains an open question how acoustical energy is transmitted between them. Identifying the transmission path at different frequencies could lead to valuable information for the domain of middle ear surgery. In this work a setup for stroboscopic holography is combined with an algorithm for power flow calculations. With our method we were able to accurately locate the power sources and sinks in a membrane. The setup enabled us to make amplitude maps of the out-of-plane displacement of a vibrating rubber membrane at subsequent instances of time within the vibration period. From these, the amplitude maps of the moments of force and velocities are calculated. The magnitude and phase maps are extracted from this amplitude data, and form the input for the power flow calculations. We present the algorithm used for the measurements and for the power flow calculations. Finite element models of a circular plate with a local energy source and sink allowed us to test and optimize this algorithm in a controlled way and without the present of noise, but will not be discussed below. At the setup an earphone was connected with a thin tube which was placed very close to the membrane so that sound impinges locally on the membrane, hereby acting as a local energy source. The energy sink was a little piece of foam carefully placed against the membrane. The laser pulses are fired at selected instants within the vibration period using a 30 mW HeNe continuous wave laser (red light, 632.8 nm) in combination with an acousto-optic modulator. A function generator controls the phase of these illumination pulses and the holograms are recorded using a CCD camera. We present the magnitude and phase maps as well as the power flow measurements on the rubber membrane. Calculation of the divergence of this power flow map provides a simple and fast way of identifying and locating an energy source or sink. In conclusion

  5. An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks

    PubMed Central

    Sánchez, Antonio; Blanc, Sara; Yuste, Pedro; Perles, Angel; Serrano, Juan José

    2012-01-01

    This paper is focused on the description of the physical layer of a new acoustic modem called ITACA. The modem architecture includes as a major novelty an ultra-low power asynchronous wake-up system implementation for underwater acoustic transmission that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature enables a reduced power dissipation of 10 μW in stand-by mode and registers very low power values during reception and transmission. The modem also incorporates clear channel assessment (CCA) to support CSMA-based medium access control (MAC) layer protocols. The design is part of a compact platform for a long-life short/medium range underwater wireless sensor network. PMID:22969324

  6. Marginal Power Loss Extraction Method for Future High Output Power Density Converter

    NASA Astrophysics Data System (ADS)

    Takao, Kazuto; Adachi, Kazuhiro; Hayashi, Yusuke; Ohashi, Hiromichi

    Novel exact MOSFET switching loss analysis and formulation methods have been proposed for designing high output power density converters. To analyze influences of circuit stray parameters on MOSFET switching loss with experiments, a parameter adjustable circuit board has been fabricated. The circuit board has a function to vary circuit stray inductance and capacitance values like a circuit simulator. Correlations between MOSFET switching loss energies and circuit stray parameters are successfully analyzed with the circuit board. Based on the analysis results, switching loss energies are formulated with empirical equations to establish a exact power loss calculation tool for the converter design. Switching loss energies caused by semiconductor device parameters are modeled by a capacitance charge/discharge model. The procedure to formulate the switching loss energies with empirical equations is presented. Switching loss energies calculated with empirical equations are verified with measurements, and high accuracy of more than 95% has been achieved.

  7. Acoustic energy density distribution and sound intensity vector field inside coupled spaces.

    PubMed

    Meissner, Mirosław

    2012-07-01

    In this paper, the modal expansion method supported by a computer implementation has been used to predict steady-state distributions of the potential and kinetic energy densities, and the active and reactive sound intensities inside two coupled enclosures. The numerical study was dedicated to low-frequency room responses. Calculation results have shown that the distribution of energetic quantities in coupled spaces is strongly influenced by the modal localization. Appropriate descriptors of the localization effect were introduced to identify localized modes. As was evidenced by numerical data, the characteristic objects in the active intensity field are vortices positioned irregularly inside the room. It was found that vortex centers lie exactly on the lines corresponding to zeros of the eigenfunction for a dominant mode. Finally, an impact of the wall impedance on the quantitative relationship between the active and reactive intensities was analyzed and it was concluded that for very small sound damping the behavior of the sound intensity inside the room space is essentially only oscillatory. PMID:22779472

  8. OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES

    SciTech Connect

    K.Krist; O. Spaldon-Stewart; R. Remick

    2004-03-01

    performance life on dry methane with sulfur compounds was much longer than with dry methane alone. The effect of sulfur compounds in these cases appeared to correlate with inhibition of carbon deposition. Mixed results were obtained for the effect of the sulfur compounds on power density. Progress also was made in understanding the mechanisms involved in direct utilization of dry natural gas. Evidence was developed for three possible mechanisms for dry methane utilization in addition to the usually cited mechanism--direct oxidation of methane by oxygen anions. Further work is required at a fundamental level before the knowledge gained here can be translated into higher levels of performance.

  9. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect

    Agamy, Mohammed S; Chi, Song; Elasser, Ahmed; Harfman-Todorovic, Maja; Jiang, Yan; Mueller, Frank; Tao, Fengfeng

    2012-06-01

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  10. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED THERMAL-ACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    SciTech Connect

    Robert C. Brown; Robert J. Weber; Jeffrey J. Swetelitsch

    2005-01-01

    The objective of this project is to explore microwave-excited thermal-acoustic (META) phenomena for quantitative analysis of granular and powdered materials, with the culmination of the research to be an on-line carbon-in-ash monitor for coal-fired power plants. This technique of analyzing unburned carbon in fly ash could be a less tedious and time consuming method as compared to the traditional LOI manual procedure. Phase 1 of the research focused on off-line single-frequency thermal-acoustic measurements where an off-line fly ash monitor was constructed that could operate as analytical tool to explore instrument and methodology parameters for quantifying the microwave-excited thermal-acoustic effect of carbon in fly ash, and it was determined that the off-line thermal-acoustic technique could predict the carbon content of a random collection of fly ashes with a linear correlation constant of R{sup 2} = 0.778. Much higher correlations are expected for fly ashes generated from a single boiler. Phase 2 of the research developing a methodology to generate microwave spectra of various powders, including fly ash, coal, and inorganic minerals, and to determine if these microwave spectra could be used for chemical analyses. Although different minerals produced different responses, higher resolution microwave spectra would be required to be able to distinguish among minerals. Phase 3 of the research focused on the development of an on-line fly ash monitor that could be adapted to measure either a thermal-acoustic or thermal-elastic response to due microwave excitation of fly ash. The thermal-acoustic response was successfully employed for this purpose but the thermal-elastic response was too weak to yield a useful on-line device.

  11. Temperature Measurements on Hot Spots of Power Substations Utilizing Surface Acoustic Wave Sensors

    NASA Astrophysics Data System (ADS)

    Cavaco, M. A. M.; Benedet, M. E.; Neto, L. R.

    2011-12-01

    In several applications in the field of metrology, the direct connection of the sensor element with the respective signal-processing unit of the measurement system is not trivial. It can be mentioned, as an example, the measurement of hot points in electric power substations because of the high electrical potential. To solve that problem, two alternatives were studied, one using active surface acoustic wave (SAW) sensors and other using passive SAW tags. For the passive sensor, a SAW radio-frequency identification (RFID) temperature detector was used. That technology is widely applied for typical transport identification (grain transportation, road traffic control), but its application in the field of metrology is innovative. The variation in temperature makes an alteration in the characteristics of the piezoelectric material of the SAW matrix, changing mostly the resonance frequency. Using SAW-RFID, the problem of measuring temperature basically is directed to the identification of the frequency of resonance of the SAW. The use of active SAW sensors has been demonstrated to be much more satisfactory for the solution of such a problem because of the limitation in the range of the passive sensors.

  12. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.

    PubMed

    Ozeri, Shaul; Shmilovitz, Doron

    2014-09-01

    The advancement and miniaturization of body implanted medical devices pose several challenges to Ultrasonic Transcutaneous Energy Transfer (UTET), such as the need to reduce the size of the piezoelectric resonator, and the need to maximize the UTET link power-transfer efficiency. Accordingly, the same piezoelectric resonator that is used for energy harvesting at the body implant, may also be used for ultrasonic backward data transfer, for instance, through impedance modulation. This paper presents physical considerations and design guidelines of the body implanted transducer of a UTET link with impedance modulation for a backward data transfer. The acoustic matching design procedure was based on the 2×2 transfer matrix chain analysis, in addition to the Krimholtz Leedom and Matthaei KLM transmission line model. The UTET power transfer was carried out at a frequency of 765 kHz, continuous wave (CW) mode. The backward data transfer was attained by inserting a 9% load resistance variation around its matched value (550 Ohm), resulting in a 12% increase in the acoustic reflection coefficient. A backward data transmission rate of 1200 bits/s was experimentally demonstrated using amplitude shift keying, simultaneously with an acoustic power transfer of 20 mW to the implant. PMID:24861424

  13. Investigation of the nature of thermal stimulation of acoustic emission

    SciTech Connect

    Muravin, G.B.; Ship, V.V.; Lezvinskaya, L.M.

    1988-12-01

    The nature of thermal stimulation of acoustic emission was investigated. Data are given on the distribution of the density of the energy of deformation at a crack tip and the parameters of acoustic emission with different combinations of mechanical and thermal action. It was established that thermal stimulation of acoustic emission is related to advance and growth of a crack under the action of thermoelastic shear stresses. An increases in heating power causes an increase in the energy of deformation, shear stresses at the crack edges, and acoustic emission energy. The position of the minimum in the density of the energy of deformation and of the maximum in acoustic emission energy coincides with the direction of crack advance, which with the use of the method of thermally stimulated acoustic emission makes it possible to not only reveal crack-like defects but also to determine potentially dangerous directions of their development.

  14. Structure- and fluid-borne acoustic power sources induced by turbulent flow in 90° piping elbows

    NASA Astrophysics Data System (ADS)

    Hambric, S. A.; Boger, D. A.; Fahnline, J. B.; Campbell, R. L.

    2010-01-01

    The structure- and fluid-borne vibro-acoustic power spectra induced by turbulent fluid flow over the walls of a continuous 90° piping elbow are computed. Although the actual power input to the piping by the wall pressure fluctuations is distributed throughout the elbow, equivalent total power inputs to various structural wavetypes (bending, torsion, axial) and fluid (plane-waves) at the inlet and discharge of the elbow are computed. The powers at the elbow “ports” are suitable inputs to wave- and statistically-based models of larger piping systems that include the elbow. Calculations for several flow and structural parameters, including pipe wall thickness, flow speed, and flow Reynolds number are shown. The power spectra are scaled on flow and structural-acoustic parameters so that levels for conditions other than those considered in the paper may be estimated, subject to geometric similarity constraints (elbow radius/pipe diameter). The approach for computing the powers (called CHAMP - combined hydroacoustic modeling programs), which links computational fluid dynamics, finite element and boundary element modeling, and efficient random analysis techniques, is general, and may be applied to other piping system components excited by turbulent fluid flow, such as U-bends and T-sections.

  15. High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors

    SciTech Connect

    2010-04-01

    Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

  16. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields.

    PubMed

    Xu, Tailin; Soto, Fernando; Gao, Wei; Dong, Renfeng; Garcia-Gradilla, Victor; Magaña, Ernesto; Zhang, Xueji; Wang, Joseph

    2015-02-18

    The collective behavior of biological systems has inspired efforts toward the controlled assembly of synthetic nanomotors. Here we demonstrate the use of acoustic fields to induce reversible assembly of catalytic nanomotors, controlled swarm movement, and separation of different nanomotors. The swarming mechanism relies on the interaction between individual nanomotors and the acoustic field, which triggers rapid migration and assembly around the nearest pressure node. Such on-demand assembly of catalytic nanomotors is extremely fast and reversible. Controlled movement of the resulting swarm is illustrated by changing the frequency of the acoustic field. Efficient separation of different types of nanomotors, which assemble in distinct swarming regions, is illustrated. The ability of acoustic fields to regulate the collective behavior of catalytic nanomotors holds considerable promise for a wide range of practical applications. PMID:25634724

  17. High power density dc/dc converter: Component selection and design

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1989-01-01

    Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.

  18. Wireless acoustic-electric feed-through for power and signal transmission

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor); Doty, Benjamin (Inventor); Badescu, Mircea (Inventor); Chang, Zensheu (Inventor)

    2011-01-01

    An embodiment provides electrical energy from a source on one side of a medium to a load on the other side of the medium, the embodiment including a first piezoelectric to generate acoustic energy in response to electrical energy from the source, and a second piezoelectric to convert the received acoustic energy to electrical energy used by the load. Other embodiments are described and claimed.

  19. VizieR Online Data Catalog: Swift GRBs individual power density spectra (Guidorzi+, 2016)

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-03-01

    Time intervals, redshifts, best-fit parameters of the power density spectra (PDS) for 215 bright long GRBs observed with the Swift Burst Alert Telescope (BAT) from January 2005 to May 2015. Parameters refer to two alternative PDS models: either a power-law (PL) or a bent power-law (BPL) plus a constant background. (5 data files).

  20. Measurement of power density distribution and beam waist simulation for electron beam

    NASA Astrophysics Data System (ADS)

    Shen, Chunlong; Peng, Yong; Wang, Kehong; Zhou, Qi

    2013-02-01

    The study aims to measure the power density distribution of the electron beam (EB) for further estimating its characteristics. A compact device combining deflection signal controller and current signal acquisition circuit of the EB was built. A software modelling framework was developed to investigate structural parameters of the electron beam. With an iterative algorithm, the functional relationship between the electron beam power and its power density was solved and the corresponding contour map of power density distribution was plotted through isoline tracking approach. The power density distribution of various layers of cross-section beam was reconstructed for beam volume by direct volume rendering technique. The further simulation of beam waist with all-known marching cubes algorithm reveals the evolution of spatial appearance and geometry measurement principle was explained in detail. The study provides an evaluation of promising to replace the traditional idea of EB spatial characteristics.

  1. An innovative thermal system approach significantly increases system reliability and power and packaging densities

    SciTech Connect

    Burns, K.K.; Alexander, R.; Burns, J.R.

    1996-12-31

    An innovative self-contained active cooling system for electronic products, which increases power and packaging densities and improves reliability, was investigated. The cooling technology uses low cost, readily available, and reliable components. While this thermal control method can be applied to many applications, a simple power system cooling application will be demonstrated. The application demonstrates increased power density of a common 48 Vdc to 5Vdc high density DC-DC power converter module having standard dimensions of 2.4in.x4.6in.x0.5in. An increase in power density from 50W/in{sup 3} to over 80W/in{sup 3} was realized. In addition, significantly high calculated MTBF, from 300K hours to greater than 3M hours, was realized with low temperature operation.

  2. Density dependent stopping power and muon sticking in muon catalyzed D-T fusion

    SciTech Connect

    Rafelski, H.E.; Mueller, B.

    1988-12-27

    The origin of the experimentally observed (1) density dependence of the muon alpha sticking fraction ..omega../sub s/ in muon catalyzed deuterium- tritium fusion is investigated. We show that the reactivation probability depends sensitively on the target stopping power at low ion velocities. The density dependence of the stopping power for a singly charged projectile in liquid heavy hydrogen is parametrized to simulate possible screening effects and a density dependent effective ionization potential. We find that, in principle, a description of the measured density dependence is possible, but the required parameters appear too large. Also, the discrepancy with observed (He..mu..) X-ray data widens.

  3. Stable formation of ultrahigh power-density 248 nm channels in Xe cluster targets

    SciTech Connect

    Borisov, Alex B.; Racz, Ervin; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Boguta, John; Longworth, James W.; Rhodes, Charles K.

    2012-07-11

    The optimization of relativistic and ponderomotive self-channeling of ultra-powerful 248 nm laser pulses launched in underdense plasmas with an appropriate longitudinal gradient in the electron density profile located at the initial stage of the self-channeling leads to (1) stable channel formation and (2) highly efficient power compression producing power densities in the 10{sup 19}-10{sup 20} W/cm{sup 3} range. The comparison of theoretical studies with experimental results involving the correlation of (a) Thomson images of the electron density with (b) x-ray images of the channel morphology demonstrates that more than 90% of the incident 248 nm power can be trapped in stable channels and that this stable propagation can be extended to power levels significantly exceeding the critical power of the self-channeling process.

  4. Perception of power modulation of light in conjunction with acoustic stimulation

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius F.; Weyer, Cornelia; Gercke-Hahn, Harald; Gutzmann, Holger L.; Brahmann, Andre; Rothe, Hendrik

    2013-09-01

    The present paper is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems of occupational medicine concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects which are interesting in the context of Optics and Music. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we questioned if such coherence is perceivable at all. Concept, experimental set-up and first results are discussed in short.

  5. A high-powered siren for stable acoustic levitation of dense materials in the earth's gravity

    NASA Technical Reports Server (NTRS)

    Gammel, Paul M.; Croonquist, Arvid P.; Wang, Taylor G.

    1988-01-01

    Levitation of large dense samples (e.g., 1-cm diameter steel balls) has been performed in a 1-g environment. A siren was used to study the effects of reflector geometry and variable-frequency operation in order to attain stable acoustic positioning. The harmonic content and spatial distribution of the acoustic field have been investigated. The best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper reflector while operating at a frequency slightly below resonance.

  6. Enhanced power production from microbial fuel cells with high cell density culture.

    PubMed

    Zhai, Dan-Dan; Li, Bing; Sun, Jian-Zhong; Sun, De-Zhen; Si, Rong-Wei; Yong, Yang-Chun

    2016-01-01

    Improvement of power production in a microbial fuel cell (MFC) with a high cell density culture strategy was developed. By using high cell density culture, the voltage output and power density output of the MFC were enhanced about 0.6 and 1.6 times compared to the control, respectively. Further analysis showed that riboflavin concentration in the MFC was dramatically increased from 0.1 mg/L to 1.2 mg/L by high cell density culture. Moreover, the biofilm formation on the anode surface was significantly enhanced by this new strategy. The increased accumulation of electron shuttle (riboflavin) as well as enhanced biofilm formation contributed to the improvement in anodic electrochemical activity and these factors were the underlying mechanism for MFC performance improvement by high cell density culture. This work demonstrated that high cell density culture would be a simple and practical strategy for MFC manipulation. PMID:27148719

  7. Control of plasma density distribution via wireless power transfer in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jin; Lee, Hyo-Chang; Kim, Young-Cheol; Chung, Chin-Wook

    2013-06-01

    With an enlargement of the wafer size, development of large-area plasma sources and control of plasma density distribution are required. To control the spatial distribution of the plasma density, wireless power transfer is applied to an inductively coupled plasma for the first time. An inner powered antenna and an outer resonant coil connected to a variable capacitor are placed on the top of the chamber. As the self-resonance frequency ωr of the resonant coil is adjusted, the power transfer rate from the inner powered coil to the outer resonant coil is changed and the dramatic evolution of the plasma density profile is measured. As ωr of the outer resonant coil changes from the non-resonant condition (where ωr is not the driving angular frequency ωrf) to the resonant condition (where ωr = ωrf), the plasma density profile evolves from a convex shape with maximal plasma density at the radial center into a concave shape with maximal plasma density in the vicinity of the resonant antenna coil. This result shows that the plasma density distribution can be successfully controlled via wireless resonance power transfer.

  8. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2004-01-01

    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  9. The power associated with density fluctuations and velocity fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.

    1974-01-01

    Direct observations from Pioneer 6 of solar-wind-proton fluctuations have been used to obtain the power spectra associated with solar-wind-proton number density and velocity fluctuations in the frequency range of 0.001 to 0.01 Hz, extending previous analyses by an order of magnitude at the higher frequencies. The slopes of the power spectra associated with the density fluctuations and the velocity fluctuations are similar and are in agreement with the shape of the power spectra found at the lower frequencies. The power spectra indicate that the power-law density spectrum observed at lower frequencies extends to at least 0.01 Hz. This smooth variation in the spectrum at these frequencies is consistent with previous extrapolations of both spacecraft and interplanetary scintillation observations.

  10. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    SciTech Connect

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-06-07

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-{micro}s risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001.

  11. Design and implementation of an omni-directional underwater acoustic micro-modem based on a low-power micro-controller unit.

    PubMed

    Won, Tae-Hee; Park, Sung-Joon

    2012-01-01

    For decades, underwater acoustic communication has been restricted to the point-to-point long distance applications such as deep sea probes and offshore oil fields. For this reason, previous acoustic modems were typically characterized by high data rates and long working ranges at the expense of large size and high power consumption. Recently, as the need for underwater wireless sensor networks (UWSNs) has increased, the research and development of compact and low-power consuming communication devices has become the focus. From the consideration that the requisites of acoustic modems for UWSNs are low power consumption, omni-directional beam pattern, low cost and so on, in this paper, we design and implement an omni-directional underwater acoustic micro-modem satisfying these requirements. In order to execute fast digital domain signal processing and support flexible interfaces with other peripherals, an ARM Cortex-M3 is embedded in the micro-modem. Also, for the realization of small and omni-directional properties, a spherical transducer having a resonant frequency of 70 kHz and a diameter of 34 mm is utilized for the implementation. Physical layer frame format and symbol structure for efficient packet-based underwater communication systems are also investigated. The developed acoustic micro-modem is verified analytically and experimentally in indoor and outdoor environments in terms of functionality and performance. Since the modem satisfies the requirements for use in UWSNs, it could be deployed in a wide range of applications requiring underwater acoustic communication. PMID:22438765

  12. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  13. Carbon dioxide laser vaporization: Relationship of scar formation to power density

    SciTech Connect

    Dobry, M.M.; Padilla, R.S.; Pennino, R.P.; Hunt, W.C.

    1989-07-01

    A direct relationship exists between the power density of a carbon dioxide laser and the thickness of scars it produces in rat skin. Statistically significant positive relationships were noted between laser power and scar thickness at days 14, 21, and 32. The slope of the curve increased as the number of days elapsed. At day 32, the ratio of scar thickness to CO/sub 2/ laser power density delivered was 0.3 microns/W-cm/sup 2/. Scar formation took longer for completion at higher wattages of irradiation.

  14. 250 degrees C SiC High Density Power Module Development

    SciTech Connect

    Ning, Puqi; Wang, Fei; Ngo, Khai

    2011-01-01

    Taking full advantage of SiC devices, a team from Oak Ridge National Laboratory, the University of Tennessee and Virginia Polytechnic Institute and State University have designed, developed, and tested a phase-leg power module based on a high temperature wirebond package. Details of the layout, gate drive, and cooling system designs are described. Continuous power tests confirmed that our design process produced a high density power module that operated successfully at high junction temperatures.

  15. The effect of the size of the opening on the acoustic power radiated by a reed woodwind instrument

    NASA Astrophysics Data System (ADS)

    Guilloteau, Alexis; Guillemain, Philippe; Kergomard, Jean; Jousserand, Michael

    2015-05-01

    For a given note, the maker of woodwind instruments can choose between different sizes for the toneholes under the condition that the location is appropriate. The present paper aims at analyzing the consequences of this choice on the power radiated by a hole, which depends on the coupling between the acoustic resonator and the excitation mechanism of the self-sustained oscillation, thus on the blowing pressure. For that purpose a simplified reed instrument is investigated, with a cylindrical pipe and a unique orifice at the pipe termination. The orifice diameter was varied between the pipe diameter and a size such that the instrument did not play. The pipe length was in each case adjusted to keep the resonance frequency constant. A simple analytical model predicts that, for a given mouth pressure of the instrumentalist, the radiated power does not depend on the size of the hole if it is wide enough and if resonator losses are ignored. Numerical solution of a model including losses confirms this result: the difference in radiated power between two diaphragm sizes remains smaller than the difference obtained if the radiated power would be proportional to the orifice cross section area. This is confirmed by experiments using an artificial mouth, but the results show that the linear losses are underestimated, and that significant nonlinear losses occur. The measurements are limited to the acoustic pressure at a given distance of the orifice. Experiments also show that rounding edges of the orifice reduces nonlinear losses resulting in an increase of the power radiated and of the extinction threshold, and resulting in a larger dynamical range.

  16. Unveiling acoustic physics of the CMB using nonparametric estimation of the temperature angular power spectrum for Planck

    SciTech Connect

    Aghamousa, Amir; Shafieloo, Arman; Arjunwadkar, Mihir; Souradeep, Tarun E-mail: shafieloo@kasi.re.kr E-mail: tarun@iucaa.ernet.in

    2015-02-01

    Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the ΛCDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit ΛCDM angular power spectrum to remove foreground contributions from the data at multipoles ℓ ≥50. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to ℓ ∼1850 in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the 95% confidence level. We further show how these reflect the harmonicity of acoustic peaks, and can be used for acoustic scale estimation. Based on this nonparametric formalism, we found the best-fit ΛCDM model to be at 36% confidence distance from the center of the nonparametric confidence set—this is considerably larger than the confidence distance (9%) derived earlier from a similar analysis of the WMAP 7-year data. Another interesting result of our analysis is that at low multipoles, the Planck data do not suggest any upturn, contrary to the expectation based on the integrated Sachs-Wolfe contribution in the best-fit ΛCDM cosmology.

  17. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOEpatents

    Gammel, George M.; Kugel, Henry W.

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  18. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1985-01-01

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. If the receiver requires gratr thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparative low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  19. E→H mode transition density and power in two types of inductively coupled plasma configuration

    SciTech Connect

    Wang, Jian; Du, Yin-chang; Zhang, Xiao; Zheng, Zhe; Liu, Yu; Xu, Liang; Wang, Pi; Cao, Jin-xiang

    2014-07-15

    E → H transition power and density were investigated at various argon pressures in inductively coupled plasma (ICP) in a cylindrical interlaid chamber. The transition power versus the pressure shows a minimum transition power at 4 Pa (ν/ω=1) for argon. Then the transition density hardly changes at low pressures (ν/ω≪1), but it increases clearly when argon pressure exceeds an appropriate value. In addition, both the transition power and transition density are lower in the re-entrant configuration of ICP compared with that in the cylindrical configuration of ICP. The result may be caused from the decrease of stochastic heating in the re-entrant configuration of ICP. This work is useful to understand E → H mode transition and control the transition points in real plasma processes.

  20. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  1. Control of plasma density profile via wireless power transfer in an inductively coupled discharge

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jin; Bang, Jin-Young; Lee, Hyo-Chang; Kim, Young-Cheol; Chung, Chin-Wook

    2012-10-01

    Wireless power transfer via a strongly coupled magnetic resonance was applied to the field of plasma. Two antennas (an inner antenna coil was connected to the RF power and an outer antenna was a resonant antenna with a variable capacitor) were placed on the top of a chamber. The resonant antenna is electrically separated from the inner antenna coil. As the self-resonance frequency of the resonant antenna was adjusted, the power transfer ratio of the inner antenna to the outer antenna was changed and a dramatic evolution of the plasma density profile was measured. The density profiles were changed from a concave shape to a convex shape by varying the self-resonance frequency of the outer antenna. This result shows that the plasma density spatial distribution can be successfully controlled via wireless power transfer.

  2. A novel high-density power energy harvesting methodology for transmission line online monitoring devices

    NASA Astrophysics Data System (ADS)

    Liu, Yadong; Xie, Xiaolei; Hu, Yue; Qian, Yong; Sheng, Gehao; Jiang, Xiuchen; Liu, Yilu

    2016-07-01

    This paper presents a novel energy-harvesting model which takes the primary current, secondary turns, dimension, the magnitude of magnetic flux density B, and the core loss resistance into consideration systematically. The relationship among the potential maximum output power, the dimension of energy harvesting coil (EHC), the load type of EHC, and the secondary turns is predicted by theoretical analysis and further verified by experiments. A high power density harvester is also developed and tested. It is shown that the power density of this novel harvester is 0.7 mW/g at 10 A, which is more than 2 times powerful than the traditional ones. Hence, it could lighten the half weight of the harvester at the same conditions.

  3. Dispersion of interface waves in sediments with power-law shear speed profiles. II. Experimental observations and seismo-acoustic inversions.

    PubMed

    Chapman, D M; Godin, O A

    2001-10-01

    The propagation of seismic interface waves is investigated in soft marine sediments in which the density is constant, the shear modulus is small, and the profile of shear speed c(s) versus depth z is of the power-law form c(s) (z) = c0z(v), in which c0 and v are constants (0< v < 1). Both the phase speed V and the group speed U of interface waves scale with frequency as f(v/(v -1)) and they obey the simple relation U= (1 - v) V. These relations are derived in a simple way using ray theory and the WKB method; a companion paper [O. A. Godin and D. M. F. Chapman, J. Acoust. Soc. Am. 110, 1890 (2001)] rigorously derives the same result from the solutions to the equations of motion. The frequency scaling is shown to exist in experimental data sets of interface wave phase speed and group speed. Approximate analytical formulas for the dispersion relations (phase and group speed versus frequency) enable direct inversion of the profile parameters c0 and v from the experimental data. In cases for which there is multi-mode dispersion data, the water-sediment density ratio can be determined as well. The theory applies to vertically polarized (P-SV) modes as well as to horizontally polarized (SH) modes (that is, Love waves). PMID:11681371

  4. Maximum theoretical power density of lithium-air batteries with mixed electrolyte

    NASA Astrophysics Data System (ADS)

    Mehta, M.; Bevara, V.; Andrei, P.

    2015-07-01

    An analytical model is developed for the discharge voltage of Li-air batteries with mixed organic/aqueous electrolyte and used to analyze the effects of the oxygen dissolution, solubility, pressure, and diffusivity, reaction rates, and internal resistance on the power density of Li-air batteries. By carefully identifying the model parameters using experimental data it is shown that, for discharge currents above 25 mA cm-2 the power of these batteries is mainly limited by the large internal resistance of the membrane and membrane/electrolyte interfaces (which is currently larger than 100 Ω cm2), while for smaller discharge currents the power is limited by the low oxygen concentration at the reaction sites. The maximum power density can be increased by approximately 1.5 times if the internal resistance is decreased from 100 Ω cm2 to 25 Ω cm2. This relatively small increase in the power density is due to the low dissolution rate and solubility of the oxygen in the liquid electrolyte. Finally, when the battery is operated at maximum discharge power, the oxygen diffusion length in the aqueous electrolyte is under 1 μm, which shows that one needs to use partly wet cathodes in order to achieve high power densities in these batteries.

  5. Evaluation of a novel solid-state method for determining the acoustic power generated by physiotherapy ultrasound transducers.

    PubMed

    Zeqiri, Bajram; Barrie, Jill

    2008-09-01

    A new secondary method of determining ultrasound power is presented based on the pyroelectricity of a thin membrane of the piezoelectric polymer, polyvinylidene fluoride (PVDF). In operation, the membrane is backed by a polyurethane-based rubber material that is extremely attenuating to ultrasound, resulting in the majority of the acoustic power applied to the PVDF being absorbed within a short distance of the membrane-backing interface. The resulting rapid heating leads to a pyroelectric voltage being generated across the electrodes of the sensor that, under appropriate conditions, is related to the rate of change of temperature with respect to time. For times immediately after changes in transducer excitation (switching either ON or OFF), the change in the pyroelectric voltage is proportional to the delivered ultrasound power level. This paper describes a systematic evaluation of the measurement concept applied at physiotherapy frequencies and power levels, investigating key aspects such as repeatability, linearity and sensitivity. The research demonstrates the way that heating of the backing material affects the sensor performance, but outlines the potential of the method as a reproducible, rapid, solid-state method of determining power, requiring calibration using a known ultrasound power source. PMID:18440695

  6. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  7. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  8. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  9. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  10. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  11. Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density.

    PubMed

    Zhang, Sui; Chung, Tai-Shung

    2013-09-01

    We have investigated the instant and accumulative effects of salt permeability on the sustainability of high power density in the pressure-retarded osmosis (PRO) process experimentally and theoretically. Thin-film composite (TFC) hollow-fiber membranes were prepared. A critical wall thickness was observed to ensure sufficient mechanical stability and hence a low salt permeability, B. The experimental results revealed that a lower B was essential to enhance the maximum power density from 15.3 W/m(2) to as high as 24.3 W/m(2) when 1 M NaCl and deionized water were feeds. Modeling work showed that a large B not only causes an instant drop in the initial water flux but also accelerates the flux decline at high hydraulic pressures, leading to reduced optimal operating pressure and maximal power density. However, the optimal operating pressure to harvest energy can be greater than one-half of the osmotic pressure gradient across the membrane if one can carefully design a PRO membrane with a large water permeability, small B value, and reasonably small structural parameter. It was also found that a high B accumulates salts in the feed, leads to the oversalinization of the feed, and largely lowers both the water flux and power density along the membrane module. Therefore, a low salt permeability is highly desirable to sustain high power density not only locally but also throughout the whole module. PMID:23941367

  12. Progress in High Power Density SOFC Material Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Sofie, Stephen W.; Setlock, John A.; Misra, Ajay K.

    2004-01-01

    Solid oxide fuel cell (SOFC) systems for aircraft applications require order of magnitude increase in specific power density and long life under aircraft operating conditions. Advanced SOFC materials and fabrication processes are being developed at NASA GRC to increase specific power density and durability of SOFC cell and stack. Initial research efforts for increasing specific power density are directed toward increasing the operating temperature for the SOFC system and reducing the weight of the stack. While significant research is underway to develop anode supported SOFC system operating at temperatures in the range of 650 - 850 C for ground power generation applications, such temperatures may not yield the power densities required for aircraft applications. For electrode-supported cells, SOFC stacks with power densities greater than 1.0 W/sq cm are favorable at temperatures in excess of 900 C. The performance of various commercial and developmental anode supported cells is currently being evaluated in the temperature range of 900 to 1000 C to assess the performance gains and materials reliability. The results from these studies will be presented. Since metal interconnects developed for lower temperature operation are not practical at these high temperatures, advanced perovskite based ceramic interconnects with high electronic conductivity and lower sintering temperatures are being developed. Another option for increasing specific power density of SOFC stacks is to decrease the stack weight. Since the interconnect contributes to a significant portion of the stack weight, considerable weight benefits can be derived by decreasing its thickness. Eliminating the gas channels in the interconnect by engineering the pore structure in both anode and cathode can offer significant reduction in thickness of the ceramic interconnect material. New solid oxide fuel cells are being developed with porous engineered electrode supported structures with a 10 - 20 micron thin

  13. Non-Cubic Power-law Scaling of Density in Metallic Glasses (Invited)

    NASA Astrophysics Data System (ADS)

    Zeng, Q. C.; Kono, Y.; Lin, Y.; Zeng, Z.; Wang, J.; Sinogeikin, S. V.; Park, C.; Meng, Y.; Yang, W.; Mao, W. L.

    2013-12-01

    Understanding structure-property relationships and dimensionality plays a central role in materials science. A cubic power law relationship between the average interatomic distance and the global density is commonly expected in 'disordered' glasses and has been extensively employed in various measurements. However, this relationship has never been rigorously verified which challenges our understanding of glass materials. Here, by using high pressure as a tuning tool, we rigorously demonstrated that the density of metallic glass (MG) varies with the 2.5 power of its fundamental atomic-level length scale (the inverse of the principal diffraction peak position, 1/q1). This falls between the 3-dimensional density and 1-dimensional length instead of the expected cubic power-law relationship. We further demonstrated the 2.5 power-law is universally valid for MGs of different compositions, as well as the same MG at different pressures. This study includes high quality data from multiple techniques which provides compelling evidence of the non-cubic power-law scaling in MGs. It has important implications not only in the practical measurements of density, or any measurement involving a change in length scale under various environments by correcting the extensively employed cubic power-law, but also in understanding the real atomic packing in glasses by providing a critical new constraint on a structure-property relationship.

  14. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2008-09-09

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  15. Power density of piezoelectric transformers improved using a contact heat transfer structure.

    PubMed

    Shao, Wei Wei; Chen, Li Juan; Pan, Cheng Liang; Liu, Yong Bin; Feng, Zhi Hua

    2012-01-01

    Based on contact heat transfer, a novel method to increase power density of piezoelectric transformers is proposed. A heat transfer structure is realized by directly attaching a dissipater to the piezoelectric transformer plate. By maintaining the vibration mode of the transformer and limiting additional energy losses from the contact interface, an appropriate design can improve power density of the transformer on a large scale, resulting from effective suppression of its working temperature rise. A prototype device was fabricated from a rectangular piezoelectric transformer, a copper heat transfer sheet, a thermal grease insulation pad, and an aluminum heat radiator. The experimental results show the transformer maintains a maximum power density of 135 W/cm(3) and an efficiency of 90.8% with a temperature rise of less than 10 °C after more than 36 h, without notable changes in performance. PMID:22293737

  16. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  17. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest

    PubMed Central

    Meneses, Francisco M.; Queirós, Fernanda C.; Montoya, Pedro; Miranda, José G. V.; Dubois-Mendes, Selena M.; Sá, Katia N.; Luz-Santos, Cleber; Baptista, Abrahão F.

    2016-01-01

    Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F(1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F(1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F(1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA. PMID:27540360

  18. Non-power law behavior of the radial profile of phase-space density of halos

    SciTech Connect

    Popolo, A. Del

    2011-07-01

    We study the pseudo phase-space density, ρ(r)/σ{sup 3}(r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ{sup 3}(r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ{sup 3}(r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ{sup 3}(r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)

  19. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest.

    PubMed

    Meneses, Francisco M; Queirós, Fernanda C; Montoya, Pedro; Miranda, José G V; Dubois-Mendes, Selena M; Sá, Katia N; Luz-Santos, Cleber; Baptista, Abrahão F

    2016-01-01

    Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F (1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F (1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F (1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA. PMID:27540360

  20. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    PubMed

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. PMID:27214752

  1. Low density, microcellular, dopable, agar/gelatin foams for pulsed power experiments

    SciTech Connect

    McNamara, W.F.; Aubert, J.H.

    1997-04-01

    Low-density, microcellular foams prepared from the natural polymers agar and gelatin have been developed for pulsed-power physics experiments. Numerous experiments were supported with foams having densities at or below 10 mg/cm{sup 3}. For some of the experiments, the agar/gelatin foam was uniformly doped with metallic elements using soluble salts. Depending on the method of preparation, cell sizes were typically below 10 microns and for one process were below 1.0 micron.

  2. NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl

    2005-01-01

    Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.

  3. Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This paper employees the Multilevel Fast Multipole Method (MLFMM) feature of a commercial electromagnetic tool to model the fairing electromagnetic environment in the presence of an internal transmitter. This work is an extension of the perfect electric conductor model that was used to represent the bare aluminum internal fairing cavity. This fairing model includes typical acoustic blanketing commonly used in vehicle fairings. Representative material models within FEKO were successfully used to simulate the test case.

  4. Raising the Bar: Increased Hydraulic Pressure Allows Unprecedented High Power Densities in Pressure-Retarded Osmosis

    SciTech Connect

    Straub, AP; Yip, NY; Elimelech, M

    2014-01-01

    Pressure-retarded osmosis (PRO) has the potential to generate sustainable energy from salinity gradients. PRO is typically considered for operation with river water and seawater, but a far greater energy of mixing can be harnessed from hypersaline solutions. This study investigates the power density that can be obtained in PRO from such concentrated solutions. Thin-film composite membranes with an embedded woven mesh were supported by tricot fabric feed spacers in a specially designed crossflow cell to maximize the operating pressure of the system, reaching a stable applied hydraulic pressure of 48 bar (700 psi) for more than 10 h. Operation at this increased hydraulic pressure allowed unprecedented power densities, up to 60 W/m(2) with a 3 M (180 g/L) NaCl draw solution. Experimental power densities demonstrate reasonable agreement with power densities modeled using measured membrane properties, indicating high-pressure operation does not drastically alter membrane performance. Our findings exhibit the promise of the generation of power from high-pressure PRO with concentrated solutions.

  5. Power dependence of electron density at various pressures in inductively coupled plasmas

    SciTech Connect

    Kim, June Young; Kim, Dong-Hwan; Kim, Ju Ho; Jeon, Sang-Bum; Cho, Sung-Won; Chung, Chin-Wook

    2014-11-15

    Experimental observation of the electron density variation in inductively coupled plasmas with the electron energy probability function (EEPFs) was performed at various gas pressures at two RF powers (25 W and 200 W). The measured EEPFs at high power discharges (200 W) showed a Maxwellian distribution, while evolution of the EEPFs from a bi-Maxwellian distribution to a Druyvesteyn-like distribution was observed at low RF powers (25 W) with increasing pressure. A discrepancy of the electron density variation between the two RF powers was observed. This difference is explained by the modified collisional loss and the Bohm velocity from the EEPF of the bi-Maxwellian distribution and the Druyvesteyn–like distribution.

  6. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  7. Near-Field Acoustic Power Level Analysis of F31/A31 Open Rotor Model at Simulated Cruise Conditions, Technical Report II

    NASA Technical Reports Server (NTRS)

    Sree, Dave

    2015-01-01

    Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.

  8. The Acoustic Analogy: A Powerful Tool in Aeroacoustics with Emphasis on Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Doty, Michael J.; Hunter, Craig A.

    2004-01-01

    The acoustic analogy introduced by Lighthill to study jet noise is now over 50 years old. In the present paper, Lighthill s Acoustic Analogy is revisited together with a brief evaluation of the state-of-the-art of the subject and an exploration of the possibility of further improvements in jet noise prediction from analytical methods, computational fluid dynamics (CFD) predictions, and measurement techniques. Experimental Particle Image Velocimetry (PIV) data is used both to evaluate turbulent statistics from Reynolds-averaged Navier-Stokes (RANS) CFD and to propose correlation models for the Lighthill stress tensor. The NASA Langley Jet3D code is used to study the effect of these models on jet noise prediction. From the analytical investigation, a retarded time correction is shown that improves, by approximately 8 dB, the over-prediction of aft-arc jet noise by Jet3D. In experimental investigation, the PIV data agree well with the CFD mean flow predictions, with room for improvement in Reynolds stress predictions. Initial modifications, suggested by the PIV data, to the form of the Jet3D correlation model showed no noticeable improvements in jet noise prediction.

  9. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Hunt, Ron

    2013-01-01

    Fluid structural interaction problems that estimate panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. Even when the analyst elects to use a fitted function for the spatial correlation an error may be introduced if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Both qualitative and quantitative illustrations evaluating the adequacy of different patch density assumptions to approximate the fitted spatial correlation function are provided. The actual response of a typical vehicle panel system is then evaluated in a convergence study where the patch density assumptions are varied over the same finite element model. The convergence study results are presented illustrating the impact resulting from a poor choice of patch density. The fitted correlation function used in this study represents a Diffuse Acoustic Field (DAF) excitation of the panel to produce vibration response.

  10. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron

    2013-01-01

    Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.

  11. Power Spectral Density plots inside MRF spots made with a polishing abrasive-free MR fluid

    SciTech Connect

    DeGroote, J.E.; Marino, A.E.; Spencer, K.E.; Jacobs, S.D.

    2005-05-31

    We present power spectral density (PSD) data measured inside magnetorheological finishing (MRF) spots in orthogonal directions. MRF spots exhibit a distinct grooving pattern that varies for each fluid/material combination. This spot analysis may provide new insights on the material removal process. Issues associated with taking orthogonal PSD measurements are also discussed.

  12. The reasons for the high power density of fuel cells fabricated with directly deposited membranes

    NASA Astrophysics Data System (ADS)

    Vierrath, Severin; Breitwieser, Matthias; Klingele, Matthias; Britton, Benjamin; Holdcroft, Steven; Zengerle, Roland; Thiele, Simon

    2016-09-01

    In a previous study, we reported that polymer electrolyte fuel cells prepared by direct membrane deposition (DMD) produced power densities in excess of 4 W/cm2. In this study, the underlying origins that give rise to these high power densities are investigated and reported. The membranes of high power, DMD-fabricated fuel cells are relatively thin (12 μm) compared to typical benchmark, commercially available membranes. Electrochemical impedance spectroscopy, at high current densities (2.2 A/cm2) reveals that mass transport resistance was half that of reference, catalyst-coated-membranes (CCM). This is attributed to an improved oxygen supply in the cathode catalyst layer by way of a reduced propensity of flooding, and which is facilitated by an enhancement in the back diffusion of water from cathode to anode through the thin directly deposited membrane. DMD-fabricated membrane-electrode-assemblies possess 50% reduction in ionic resistance (15 mΩcm2) compared to conventional CCMs, with contributions of 9 mΩcm2 for the membrane resistance and 6 mΩcm2 for the contact resistance of the membrane and catalyst layer ionomer. The improved mass transport is responsible for 90% of the increase in power density of the DMD fuel cell, while the reduced ionic resistance accounts for a 10% of the improvement.

  13. Physics of thermo-acoustic sound generation

    NASA Astrophysics Data System (ADS)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  14. Thulium heat source for high-endurance and high-energy density power systems

    SciTech Connect

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW{sub th} coupled with a power conversion efficiency of {approximately}30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs.

  15. Thulium heat source for high-endurance and high-energy density power systems

    NASA Astrophysics Data System (ADS)

    Walter, C. E.; Kammeraad, J. E.; Vankonynenburg, R.; Vansant, J. H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5 to 50 kW(sub th) coupled with a power conversion efficiency of approximately 30 percent, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered.

  16. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Woo, R.; Armstrong, J. W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2-215 solar radii and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances of about 20 solar radii the equivalent spacecraft-measured one-dimensional density spectrum is well modeled by a single power law in the frequency range 0.0001-0.05 Hz. The flattening of the density spectrum within 20 solar radii is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind.

  17. Acoustic agglomeration of power-plant fly ash. A comprehensive semi-annual progress report

    SciTech Connect

    Reethof, G.

    1980-02-01

    Results obtained during the reporting period are presented. The agglomeration of submicron fly ash particles has been studied as a function of sound pressure level, sound frequency, loading, and exposure time. A second generation model of the agglomeration process is being developed. A high-frequency, high-intensity variable speed siren delivering at least 600 W at frequencies up to 4000 Hz has been developed and tested. Details on the design and operation are presented. The agglomeration chamber has been completely cleaned and the aerosol generating system has been rebuilt. A mathematical model of the acoustics of agglomeration is being developed. Preliminary results of computerized electron microscopic scanning of fly ash particles during agglomeration are presented. (DMC)

  18. Acoustic emission monitoring for inspection of seam-welded hot reheat piping in fossil power plants

    NASA Astrophysics Data System (ADS)

    Rodgers, John M.; Morgan, Bryan C.; Tilley, Richard M.

    1996-11-01

    Although failure of the seam weld on reheat steam piping has been an infrequent occurrence, such failure is still a major safety concern for fossil plant operations. EPRI has provided guidelines for a piping management program base don periodic inspection. More recently, EPRI has also sponsored research to develop inspection techniques to both improve the quality and reduce the cost of piping inspections. Foremost in this research has been the use of acoustic emission (AE) techniques to detect crack damage in seam welds. AE has the substantial cost advantages of both allowing inspection without full removal of the thermal insulation on the reheat piping and making short-re- inspection intervals practical. This paper reviews the EPRI guidelines for performing an AE inspection on seam-welded hot reheat piping.

  19. Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to electromagnetically sensitive spacecraft. This study employs the multilevel fast multipole method (MLFMM) from a commercial electromagnetic tool, FEKO, to model the fairing electromagnetic environment in the presence of an internal transmitter with improved accuracy over industry applied techniques. This fairing model includes material properties representative of acoustic blanketing commonly used in vehicles. Equivalent surface material models within FEKO were successfully applied to simulate the test case. Finally, a simplified model is presented using Nicholson Ross Weir derived blanket material properties. These properties are implemented with the coated metal option to reduce the model to one layer within the accuracy of the original three layer simulation.

  20. Evaluation of Acoustic Doppler Current Profiler to Measure Discharge at New York Power Authority's Niagara Power Project, Niagara Falls, New York

    USGS Publications Warehouse

    Zajd, Henry J., Jr.

    2007-01-01

    The need for accurate real-time discharge in the International Niagara River hydro power system requires reliable, accurate and reproducible data. The U.S. Geological Survey has been widely using Acoustic Doppler Current Profilers (ADCP) to accurately measure discharge in riverine channels since the mid-1990s. The use of the ADCP to measure discharge has remained largely untested at hydroelectric-generation facilities such as the New York Power Authority's (NYPA) Niagara Power Project in Niagara Falls, N.Y. This facility has a large, engineered diversion channel with the capacity of high volume discharges in excess of 100,000 cubic feet per second (ft3/s). Facilities such as this could benefit from the use of an ADCP, if the ADCP discharge measurements prove to be more time effective and accurate than those obtained from the flow-calculation techniques that are currently used. Measurements of diversion flow by an ADCP in the 'Pant Leg' diversion channel at the Niagara Power Project were made on November 6, 7, and 8, 2006, and compared favorably (within 1 percent) with those obtained concurrently by a conventional Price-AA current-meter measurement during one of the ADCP measurement sessions. The mean discharge recorded during each 2-hour individual ADCP measurement session compared favorably with (3.5 to 6.8 percent greater than) the discharge values computed by the flow-calculation method presently in use by NYPA. The use of ADCP technology to measure discharge could ultimately permit increased power-generation efficiency at the NYPA Niagara Falls Power Project by providing improved predictions of the amount of water (and thus the power output) available.

  1. Particle visualization in high-power impulse magnetron sputtering. II. Absolute density dynamics

    SciTech Connect

    Britun, Nikolay Palmucci, Maria; Konstantinidis, Stephanos; Snyders, Rony

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. The present, second, paper of the study is related to the discharge characterization in terms of the absolute density of species using resonant absorption spectroscopy. The results on the time-resolved density evolution of the neutral and singly-ionized Ti ground state atoms as well as the metastable Ti and Ar atoms during the discharge on- and off-time are presented. Among the others, the questions related to the inversion of population of the Ti energy sublevels, as well as to re-normalization of the two-dimensional density maps in terms of the absolute density of species, are stressed.

  2. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGESBeta

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; Martin-Martinez, Sergio; Zhang, Jie; Hodge, Bri -Mathias; Molina-Garcia, Angel

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  3. Frequency modulation of the ion-acoustic instability.

    PubMed

    Klostermann, H; Pierre, T

    2000-06-01

    In a double-plasma device with a negatively biased grid separating source and target chamber, the ion-acoustic instability is recorded during the injection of an ion beam whose velocity is chosen between the ion-acoustic velocity and twice this value. The observed broad power spectra of the density fluctuations are found to be related to a strong modulation of the frequency inside the bursts of unstable waves. This modulation is interpreted as being a consequence of the existence of propagating strongly nonlinear coherent structures that arise in the course of the nonlinear spatiotemporal evolution of the ion-acoustic instability. PMID:11088398

  4. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    SciTech Connect

    Banerjee, Gadadhar; Maitra, Sarit

    2015-04-15

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted.

  5. A point acoustic device based on aluminum nanowires.

    PubMed

    Xie, Qian-Yi; Ju, Zhen-Yi; Tian, He; Xue, Qing-Tang; Chen, Yuan-Quan; Tao, Lu-Qi; Mohammad, Mohammad Ali; Zhang, Xue-Yue; Yang, Yi; Ren, Tian-Ling

    2016-03-14

    A point Electrical Thermal Acoustic (ETA) device based on aluminum nanowire contacts is designed and fabricated. Interdigitated structural aluminum nanowires are released from the substrate by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE). By releasing the interdigitated structure, the nanowires contact each other at approximately 1 mm above the wafer, forming a Point Contact Structure (PCS). It is found that the PCS acoustic device realizes high efficiency when a biased AC signal is applied. The PCS acoustic device reaches a sound pressure level as high as 67 dB at a distance of 1 cm with 74 mW AC input. The power spectrum is flat, ranging from 2 kHz to 20 kHz with a less than ±3 dB fluctuation. The highest normalized Sound Pressure Level (SPL) of the point contact structure acoustic device is 18 dB higher than the suspended aluminum wire acoustic device. Comparisons between the PCS acoustic device and the Suspended Aluminum Nanowire (SAN) acoustic device illustrate that the PCS acoustic device has a flatter power spectrum within the 20 kHz range, and enhances the SPL at a lower frequency. Enhancing the response at lower frequencies is extremely useful, which may enable earphone and loudspeaker applications within the frequency range of the human ear with the help of pulse density modulation. PMID:26787399

  6. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis

    SciTech Connect

    Yip, NY; Elimelech, M

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the

  7. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.

    PubMed

    Yip, Ngai Yin; Elimelech, Menachem

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the

  8. Low power underwater acoustic DPSK detection: Theoretical prediction and experimental results

    NASA Astrophysics Data System (ADS)

    Dunne, Andrew

    This thesis presents two methods of analyzing the effectiveness of a prototype differential phase-shift keying (DPSK) detection circuit. The first method is to make modifications to the existing hardware to reliably output and record the cross-correlation values of the DPSK detection process. The second method is to write a MATLAB detection algorithm which accurately simulates the detection results of the hardware system without the need of any electronics. These two systems were tested and verified with a bench test using computer generated DPSK signals. The hardware system was tested using real acoustic data from shallow and deep water at-sea tests to determine the effectiveness of the DPSK detection circuit in different ocean environments. The hydrophone signals from the tests were recorded so that the cross-correlation values could be verified using the MATLAB detector. As a result of this study, these two systems provided more insight into how well the DPSK detection prototype works and helped to identify ways of improving the detection reliability and overall performance of the prototype DPSK detection circuit.

  9. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  10. Effects of motor programming on the power spectral density function of finger and wrist movements.

    PubMed

    Van Galen, G P; Van Doorn, R R; Schomaker, L R

    1990-11-01

    Power spectral density analysis was applied to the frequency content of the acceleration signal of pen movements in line drawing. The relative power in frequency bands between 1 and 32 Hz was measured as a function of motoric and anatomic task demands. Results showed a decrease of power at the lower frequencies (1-4 Hz) of the spectrum and an increase in the middle (9-12 Hz), with increasing motor demands. These findings evidence the inhibition of visual control and the disinhibition of physiological tremor under conditions of increased programming demands. Adductive movements displayed less power than abductive movements in the lower end of the spectrum, with a simultaneous increase at the higher frequencies. The relevance of the method for the measurement of neuromotor noise as a possible origin of delays in motor behavior is discussed. PMID:2148590

  11. High excitation power photoluminescence studies of ultra-low density GaAs quantum dots

    SciTech Connect

    Sonnenberg, D.; Graf, A.; Paulava, V.; Heyn, Ch.; Hansen, W.

    2013-12-04

    We fabricate GaAs epitaxial quantum dots (QDs) by filling of self-organized nanoholes in AlGaAs. The QDs are fabricated under optimized process conditions and have ultra-low density in the 10{sup 6} cm{sup −2} regime. At low excitation power the optical emission of single QDs exhibit sharp excitonic lines, which are attributed to the recombination of excitonic and biexcitonic states. High excitation power measurements reveal surprisingly broad emission lines from at least six QD shell states.

  12. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage

    SciTech Connect

    Wang, Ruxi; Wang, Fei; Boroyevich, Dushan; Burgos, Rolando; Lai, Rixin; Ning, Puqi; Rajashekara, Kaushik

    2011-01-01

    It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.

  13. Computed lateral power spectral density response of conventional and STOL airplanes to random atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.

    1974-01-01

    A method of computing the power spectral densities of the lateral response of airplanes to random atmospheric turbulence was adapted to an electronic digital computer. By use of this program, the power spectral densities of the lateral roll, yaw, and sideslip angular displacement of several conventional and STOL airplanes were computed. The results show that for the conventional airplanes, the roll response is more prominent than that for yaw or sideslip response. For the STOL airplanes, on the other hand, the yaw and sideslip responses were larger than the roll response. The response frequency of the STOL airplanes generally is higher than that for the conventional airplanes. This combination of greater sensitivity of the STOL airplanes in yaw and sideslip and the frequency at which they occur could be a factor causing the poor riding qualities of this class of airplanes.

  14. An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator

    SciTech Connect

    Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

  15. Enhanced current and power density of micro-scale microbial fuel cells with ultramicroelectrode anodes

    NASA Astrophysics Data System (ADS)

    Ren, Hao; Rangaswami, Sriram; Lee, Hyung-Sool; Chae, Junseok

    2016-09-01

    We present a micro-scale microbial fuel cell (MFC) with an ultramicroelectrode (UME) anode, with the aim of creating a miniaturized high-current/power-density converter using carbon-neutral and renewable energy sources. Micro-scale MFCs have been studied for more than a decade, yet their current and power densities are still an order of magnitude lower than those of their macro-scale counterparts. In order to enhance the current/power densities, we engineer a concentric ring-shaped UME, with a width of 20 μm, to facilitate the diffusion of ions in the vicinity of the micro-organisms that form biofilm on the UME. The biofilm extends approximately 15 μm from the edge of the UME, suggesting the effective biofilm area increases. Measured current/power densities per the effective area and the original anode area are 7.08  ±  0.01 A m‑2 & 3.09  ±  0.04 W m‑2 and 17.7  ±  0.03 A m‑2 & 7.72  ±  0.09 W m‑2, respectively. This is substantially higher than any prior work in micro-scale MFCs, and very close, or even higher, to that of macro-scale MFCs. A Coulombic efficiency, a measure of how efficiently an MFC harvests electrons from donor substrate, of 70%, and an energy conversion efficiency of 17% are marked, highlighting the micro-scale MFC as an attractive alternative within the existing energy conversion portfolio.

  16. Particle visualization in high-power impulse magnetron sputtering. I. 2D density mapping

    SciTech Connect

    Britun, Nikolay Palmucci, Maria; Konstantinidis, Stephanos; Snyders, Rony

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. This paper deals with two-dimensional density mapping in the discharge volume obtained by laser-induced fluorescence imaging. The time-resolved density evolution of Ti neutrals, singly ionized Ti atoms (Ti{sup +}), and Ar metastable atoms (Ar{sup met}) in the area above the sputtered cathode is mapped for the first time in this type of discharges. The energetic characteristics of the discharge species are additionally studied by Doppler-shift laser-induced fluorescence imaging. The questions related to the propagation of both the neutral and ionized discharge particles, as well as to their spatial density distributions, are discussed.

  17. A high power density miniaturized microbial fuel cell having carbon nanotube anodes

    NASA Astrophysics Data System (ADS)

    Ren, Hao; Pyo, Soonjae; Lee, Jae-Ik; Park, Tae-Jin; Gittleson, Forrest S.; Leung, Frederick C. C.; Kim, Jongbaeg; Taylor, André D.; Lee, Hyung-Sool; Chae, Junseok

    2015-01-01

    Microbial fuel cells (MFCs) are a promising technology capable of directly converting the abundant biomass on the planet into electricity. Prior studies have adopted a variety of nanostructured materials with high surface area to volume ratio (SAV), yet the current and power density of these nanostructured materials do not deliver a significant leap over conventional MFCs. This study presents a novel approach to implement a miniaturized MFC with a high SAV of 4000 m-1 using three different CNT-based electrode materials: Vertically Aligned CNT (VACNT), Randomly Aligned CNT (RACNT), and Spin-Spray Layer-by-Layer (SSLbL) CNT. These CNT-based electrodes show unique biofilm morphology and thickness. The study of performance parameters of miniaturized MFCs with these CNT-electrodes are conducted with respect to a control bare gold electrode. The results show that CNT-based materials attract more exoelectrogens, Geobacter sp., than bare gold, yielding thicker biofilm formation. Among CNT-based electrodes, low sheet resistance electrodes result in thick biofilm generation and high current/power density. The miniaturized MFC having an SSLbL CNT anode exhibits a high volumetric power density of 3320 W m-3. This research may help lay the foundation for future research involving the optimization of MFCS with 2D and 3D nanostructured electrodes.

  18. Effect of Ultrasonic Frequency and Power Density for Degradation of Dichloroacetonitrile by Sonolytic Ozonation

    NASA Astrophysics Data System (ADS)

    Park, Beomguk; Shin, Donghoon; Cho, Eunju; Khim, Jeehyeong

    2012-07-01

    The degradation of dichloroacetonitrile (DCAN) by means of the processes of sonolysis, ozonolysis and sonolytic ozonolysis was studied, and degradation rate constants were evaluated at various frequencies and power densities of ultrasound. The ultrasonic frequencies used were 35, 170, 283, 450, and 935 kHz. The power densities were in the range of 9.5 to 20 W/L. The degradation rate constants for the sonolytic ozonolysis were (3.1-4.4)×10-3 min-1 with the power density of 9.5 W/L and the ozone dose of 3.7 g/h. And the synergistic effect in sonolytic ozonolysis was significant at 35 and 283 kHz among the five frequencies. The sonolytic ozonolysis provided an extra oxidation mechanism by generating additional hydroxyl radicals, giving significant enhancement on the process. The calculated values of synergistic effect were 2.56 and 2.15 at 35 and 283 kHz, respectively.

  19. Graphene-based in-plane micro-supercapacitors with high power and energy densities

    PubMed Central

    Wu, Zhong–Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus

    2013-01-01

    Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm−2 and a stack capacitance of 17.9 F cm−3. Further, they show a power density of 495 W cm−3 that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm−3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s−1, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications. PMID:24042088

  20. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    NASA Technical Reports Server (NTRS)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  1. Publications of Proceedings for the RF 2005 7th Workshop on High Energy Density and High Power RF

    SciTech Connect

    Luhmann, Jr, N C

    2006-01-01

    The University of California, Davis hosted the High Energy Density and High Power RF 7th Workshop on High Energy Density and High Power RF in Kalamata, Greece, 13-17 June, 2005. The Proceedings cost was supported by these funds from the U.S. Department of Energy. The Proceedings was published through the American Institute of Physics.

  2. A geographical model of radio-frequency power density around mobile phone masts.

    PubMed

    Briggs, David; Beale, Linda; Bennett, James; Toledano, Mireille B; de Hoogh, Kees

    2012-06-01

    Public concern about possible health effects of EMF radiation from mobile phone masts has led to an increase of epidemiological studies and health risk assessments which, in turn, require adequate methods of exposure estimation. Difficulties in exposure modelling are exacerbated both by the complexity of the propagation processes, and the need to obtain estimates for large study populations in order to provide sufficient statistical power to detect or exclude the small relative risks that might exist. Use of geographical information system (GIS) techniques offers the means to make such computations efficiently. This paper describes the development and field validation of a GIS-based exposure model (Geomorf). The model uses a modified Gaussian formulation to represent spatial variations in power densities around mobile phone masts, on the basis of power output, antenna height, tilt and the surrounding propagation environment. Obstruction by topography is allowed for, through use of a visibility function. Model calibration was done using field data from 151 measurement sites (1510 antenna-specific measurements) around a group of masts in a rural location, and 50 measurement sites (658 antenna-specific measurements) in an urban area. Different parameter settings were found to be necessary in urban and rural areas to obtain optimum results. The calibrated models were then validated against independent sets of data gathered from measurement surveys in rural and urban areas, and model performance was compared with that of two commonly used path-loss models (the COST-231 adaptations of the Hata and Walfisch-Ikegami models). Model performance was found to vary somewhat between the rural and urban areas, and at different measurement levels (antenna-specific power density, total power density), but overall gave good estimates (R(2)=0.641 and 0.615, RMSE=10.7 and 6.7 dB m at the antenna and site-level respectively). Performance was considerably better than that of both path

  3. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    SciTech Connect

    Delgado-Aparicio, L; Bell, R E; Faust, I; Tritz, K; Diallo, A; Gerhardt, S P; Kozub, T A; LeBlanc, B P; Stratton, B C

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  4. Evolution of Automotive Chopper Circuits Towards Ultra High Efficiency and Power Density

    NASA Astrophysics Data System (ADS)

    Pavlovsky, Martin; Tsuruta, Yukinori; Kawamura, Atsuo

    Automotive industry is considered to be one of the main contributors to environmental pollution and global warming. Therefore, many car manufacturers are in near future planning to introduce hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV) and pure electric vehicles (EV) to make our cars more environmentally friendly. These new vehicles require highly efficient and small power converters. In recent years, considerable improvements were made in designing such converters. In this paper, an approach based on so called Snubber Assisted Zero Voltage and Zero Current Switching topology otherwise also known as SAZZ is presented. This topology has evolved to be one of the leaders in the field of highly efficient converters with high power densities. Evolution and main features of this topology are briefly discussed. Capabilities of the topology are demonstrated on two case study prototypes based on different design approaches. The prototypes are designed to be fully bi-directional for peak power output of 30kW. Both designs reached efficiencies close to 99% in wide load range. Power densities over 40kW/litre are attainable in the same time. Combination of MOSFET technology and SAZZ topology is shown to be very beneficial to converters designed for EV applications.

  5. High power density dc-to-dc converters for aerospace applications

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    Three dc-to-dc converter topologies aimed at high-power high-frequency applications are introduced. Major system parasitics, namely, the leakage inductance of the transformer and the device output capacitance are efficiently utilized. Of the three circuits, the single-phase and three-phase versions of the dual active bridge topology demonstrate minimal stresses, better utilization of the transformer, bidirectional, and buck-boost modes of operation. All circuits operate at a constant switching frequency, thus simplifying design of the reactive elements. The power transfer characteristics and soft-switching regions on the Vout-Iout plane are identified. Two coaxial transformers with different cross-sections were built for a rating of 50 kVA. Based on the single-phase dual active bridge topology, a 50 kW, 50 kHz converter operating at an input voltage of 200 Vdc and an output voltage of 1600 Vdc was fabricated. Characteristics of current-fed output make the dual active bridge topologies amenable to paralleling and hence extension to megawatt power levels. Projections to a 1 MW system operating from a 500 Vdc input, at an output voltage of 10 kVdc and a switching frequency of 50 kHz, using MOS-controlled thyristors, coaxially wound transformers operating at three times the present current density with cooling, and multilayer ceramic capacitors, suggests an overall power density of 0.075 to 0.08 kg/kW and an overall efficiency of 96 percent.

  6. Anomalous diffusion in nonhomogeneous media: Power spectral density of signals generated by time-subordinated nonlinear Langevin equations

    NASA Astrophysics Data System (ADS)

    Kazakevičius, R.; Ruseckas, J.

    2015-11-01

    Subdiffusive behavior of one-dimensional stochastic systems can be described by time-subordinated Langevin equations. The corresponding probability density satisfies the time-fractional Fokker-Planck equations. In the homogeneous systems the power spectral density of the signals generated by such Langevin equations has power-law dependency on the frequency with the exponent smaller than 1. In this paper we consider nonhomogeneous systems and show that in such systems the power spectral density can have power-law behavior with the exponent equal to or larger than 1 in a wide range of intermediate frequencies.

  7. Experimental power density distribution benchmark in the TRIGA Mark II reactor

    SciTech Connect

    Snoj, L.; Stancar, Z.; Radulovic, V.; Podvratnik, M.; Zerovnik, G.; Trkov, A.; Barbot, L.; Domergue, C.; Destouches, C.

    2012-07-01

    In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the few available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)

  8. Virtual reflections in electronic acoustic architecture

    NASA Astrophysics Data System (ADS)

    van Munster, Bjorn

    2005-09-01

    In the era of the ancient Greeks and Byzantines, the first attempts for increasing reverberation time are noted. In the 1950s, the Ambiophonic system accomplished this by means of an electronic device, for the first time. The early systems only increased the reverberation time by delaying the picked-up reverberation. With the introduction of multichannel feedback-based systems, the reverberation level also could be increased. Later, it was understood that it was important to also fill in the missing reflections, address reflection density, frequency dependence, etc. This resulted in the development of the SIAP concept. Current DSP technology led to the development of a processor whereby density, length, level, and the frequency content can be controlled for different areas in the same room or different rooms, leading to the concept of the acoustic server. electronic acoustic architecture has become the current state-of-the-art approach for solving acoustic deficiencies in, among others, rehearsal rooms, theaters, churches, and multipurpose venues. Incorporation of complementary passive acoustic solutions provides an optimum solution for all room problems. This paper discusses the utilization of virtual reflections in the new approach of electronic acoustic architecture for different environments. Measurements performed in the Sejong Performing Arts Centre, Seoul, South Korea, show the power of this approach.

  9. Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum

    NASA Astrophysics Data System (ADS)

    Zhuravleva, I.; Churazov, E.; Arévalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2015-07-01

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ˜10-30 kpc within radii of 30-220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90-140 km s-1 on ˜20-30 kpc scales and 70-100 km s-1 on smaller scales ˜7-10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7-8 per cent for radii ˜30-220 kpc from the centre, leading to a density bias of less than 3-4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density-velocity perturbation relation and further reduce systematic uncertainties in this analysis.

  10. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  11. Self-suspended vibration-driven energy harvesting chip for power density maximization

    NASA Astrophysics Data System (ADS)

    Murillo, Gonzalo; Agustí, Jordi; Abadal, Gabriel

    2015-11-01

    This work introduces a new concept to integrate energy-harvesting devices with the aim of improving their throughput, mainly in terms of scavenged energy density and frequency tunability. This concept, named energy harvester in package (EHiP), is focused on the heterogeneous integration of a MEMS die, dedicated to scavenging energy, with an auxiliary chip, which can include the control and power management circuitry, sensors and RF transmission capabilities. The main advantages are that the whole die can be used as an inertial mass and the chip area usage is optimized. Based on this concept, in this paper we describe the development and characterization of a MEMS die fully dedicated to harvesting mechanical energy from ambient vibrations through an electrostatic transduction. A test PCB has been fabricated to perform the assembly that allows measurement of the resonance motion of the whole system at 289 Hz. An estimated maximum generated power of around 11 μW has been obtained for an input vibration acceleration of ˜10 m s-2 when the energy harvester operates in a constant-charge cycle for the best-case scenario. Therefore, a maximum scavenged power density of 0.85 mW cm-3 is theoretically expected for the assembled system. These results demonstrate that the generated power density of any vibration-based energy harvester can be significantly increased by applying the EHiP concept, which could become an industrial standard for manufacturing this kind of system, independently of the transduction type, fabrication technology or application.

  12. Acoustic waveguide technique for sensing incipient faults in underground power-transmission cables: Including acousto-optic techniques

    NASA Astrophysics Data System (ADS)

    Harrold, R. T.

    1981-09-01

    Theoretical and practical studies were made of both the acoustic emission, spectrum signatures associated with underground cable incipient faults, and the attenuation of acoustic waves in waterfilled metal tubes used as waveguided. Based on critical data, it can be estimated that in favorable circumstances, the acoustic waveguide system would only be useful for sensing incipient faults in underground cables of approx. 800 meters of less in length. A system were investigated which acoustic emissions from cable incipient faults impinge on a fiber-optic lightguide and locally change its refractive index and modulate laser light transmitted along the light guide. Experiments based on this concept show that is is possible t sense acoustic emissions with energy levels below on micro-joule. A test of this system using a section of compressed gas-insulated cable with an internal flashover was successfully carried out.

  13. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  14. Validity of power functionals for a homogeneous electron gas in reduced-density-matrix-functional theory

    NASA Astrophysics Data System (ADS)

    Putaja, A.; Eich, F. G.; Baldsiefen, T.; Räsänen, E.

    2016-03-01

    Physically valid and numerically efficient approximations for the exchange and correlation energy are critical for reduced-density-matrix-functional theory to become a widely used method in electronic structure calculations. Here we examine the physical limits of power functionals of the form f (n ,n') =(nn')α for the scaling function in the exchange-correlation energy. To this end we obtain numerically the minimizing momentum distributions for the three- and two-dimensional homogeneous electron gas, respectively. In particular, we examine the limiting values for the power α to yield physically sound solutions that satisfy the Lieb-Oxford lower bound for the exchange-correlation energy and exclude pinned states with the condition n (k )<1 for all wave vectors k . The results refine the constraints previously obtained from trial momentum distributions. We also compute the values for α that yield the exact correlation energy and its kinetic part for both the three- and two-dimensional electron gas. In both systems, narrow regimes of validity and accuracy are found at α ≳0.6 and at rs≳10 for the density parameter, corresponding to relatively low densities.

  15. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    NASA Astrophysics Data System (ADS)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible

  16. Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm

    NASA Astrophysics Data System (ADS)

    Warren, Daniel R.; Partridge, Mike; Hill, Mark A.; Peach, Ken

    2015-06-01

    Dose distributions for proton therapy treatments are almost exclusively calculated using pencil beam algorithms. An essential input to these algorithms is the patient model, derived from x-ray computed tomography (CT), which is used to estimate proton stopping power along the pencil beam paths. This study highlights a potential inaccuracy in the mapping between mass density and proton stopping power used by a clinical pencil beam algorithm in materials less dense than water. It proposes an alternative physically-motivated function (the mass average, or MA, formula) for use in this region. Comparisons are made between dose-depth curves calculated by the pencil beam method and those calculated by the Monte Carlo particle transport code MCNPX in a one-dimensional lung model. Proton range differences of up to 3% are observed between the methods, reduced to  <1% when using the MA function. The impact of these range errors on clinical dose distributions is demonstrated using treatment plans for a non-small cell lung cancer patient. The change in stopping power calculation methodology results in relatively minor differences in dose when plans use three fields, but differences are observed at the 2%-2 mm level when a single field uniform dose technique is adopted. It is therefore suggested that the MA formula is adopted by users of the pencil beam algorithm for optimal dose calculation in lung, and that a similar approach is considered when beams traverse other low density regions such as the paranasal sinuses and mastoid process.

  17. Far scrape-off layer particle and heat fluxes in high density - High power scenarios

    NASA Astrophysics Data System (ADS)

    Müller, H. W.; Bernert, M.; Carralero, D.; Kallenbach, A.; Kurzan, B.; Scarabosio, A.; Sieglin, B.; Tophøj, L.; Vianello, N.; Wolfrum, E.

    2015-08-01

    The far scrape-off layer transport is studied in ASDEX Upgrade H-mode discharges with high divertor neutral density N0,div, high power across the separatrix Psep and nitrogen seeding to control the divertor temperature. Such conditions are expected for ITER but usually not investigated in terms of turbulent SOL transport. At high N0,div and Psep the H-mode discharges enter a regime of high cross-field particle and power transport in the SOL which is accompanied by a significant change of the turbulence characteristic analogous to the transition from conductive to convective transport in L-mode. Parallel particle and power flux densities of several 1023 m-2 s-1 and 10 MW m-2 have been detected about ∼40 to 45 mm outside the separatrix mapped to the outer mid-plane. The particle flux fall-off length reached up to 45 mm. This paper presents for the first time an empirical condition to enter the high transport regime in H-mode and the relation of this regime to changes in the filamentary transport.

  18. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells.

    PubMed

    Proietti, Eric; Jaouen, Frédéric; Lefèvre, Michel; Larouche, Nicholas; Tian, Juan; Herranz, Juan; Dodelet, Jean-Pol

    2011-01-01

    H(2)-air polymer-electrolyte-membrane fuel cells are electrochemical power generators with potential vehicle propulsion applications. To help reduce their cost and encourage widespread use, research has focused on replacing the expensive Pt-based electrocatalysts in polymer-electrolyte-membrane fuel cells with a lower-cost alternative. Fe-based cathode catalysts are promising contenders, but their power density has been low compared with Pt-based cathodes, largely due to poor mass-transport properties. Here we report an iron-acetate/phenanthroline/zeolitic-imidazolate-framework-derived electrocatalyst with increased volumetric activity and enhanced mass-transport properties. The zeolitic-imidazolate-framework serves as a microporous host for phenanthroline and ferrous acetate to form a catalyst precursor that is subsequently heat treated. A cathode made with the best electrocatalyst from this work, tested in H(2)-O(2,) has a power density of 0.75 W cm(-2) at 0.6 V, a meaningful voltage for polymer-electrolyte-membrane fuel cells operation, comparable with that of a commercial Pt-based cathode tested under identical conditions. PMID:21811245

  19. NASA powered lift facility internally generated noise and its transmission to the acoustic far field

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1988-01-01

    Noise tests of NASA Lewis Research Center's Powered Lift Facility (PLF) were performed to determine the frequency content of the internally generated noise that reaches the far field. The sources of the internally generated noise are the burner, elbows, valves, and flow turbulence. Tests over a range of nozzle pressure ratios from 1.2 to 3.5 using coherence analysis revealed that low frequency noise below 1200 Hz is transmitted through the nozzle. Broad banded peaks at 240 and 640 Hz were found in the transmitted noise. Aeroacoustic excitation effects are possible in this frequency range. The internal noise creates a noise floor that limits the amount of jet noise suppression that can be measured on the PLF and similar facilities.

  20. Cosmological nonlinear density and velocity power spectra including nonlinear vector and tensor modes

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Jeong, Donghui; Noh, Hyerim

    2016-04-01

    We present the leading order nonlinear density and velocity power spectra in the complete form; previous studies have omitted the vector- and tensor-type perturbations simultaneously excited by the scalar-type perturbation in nonlinear order. These additional contributions are comparable to the scalar-type purely relativistic perturbations, and thus negligible in the current paradigm of concordance cosmology: concerning density and velocity perturbations of the pressureless matter in perturbation regime well inside of matter-dominated epoch, we show that pure Einstein's gravity contributions appearing from the third order are entirely negligible (five orders of magnitude smaller than the Newtonian contributions) in all scales. We thus prove that Newtonian perturbation theory is quite reliable in calculating the amplitude of matter fluctuations even in the precision era of cosmology. Therefore, the only relativistic effect relevant for interpreting observational data must be the projection effects that occurs when mapping galaxies onto the observed coordinate.

  1. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    SciTech Connect

    Gayathri, S.; Sridharan, M. E-mail: m.sridharan@ece.sastra.edu; Kumar, N.; Krishnan, R. E-mail: m.sridharan@ece.sastra.edu; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.

    2013-12-15

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp{sup 2} bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp{sup 3} domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp{sup 2} fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm{sup 2}. The super low friction mechanism is explained by low sliding resistance of a-C/sp{sup 2} and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm{sup 2} is related to widening of the intergrain distance caused by transformation from sp{sup 2} to sp{sup 3} hybridized structure.

  2. Planckian Power Spectral Densities from Human Calves during Posture Maintenance and Controlled Isometric Contractions

    PubMed Central

    Lugo, J. E.

    2015-01-01

    Background The relationship between muscle anatomy and physiology and its corresponding electromyography activity (EMGA) is complex and not well understood. EMGA models may be broadly divided in stochastic and motor-unit-based models. For example, these models have successfully described many muscle physiological variables such as the value of the muscle fiber velocity and the linear relationship between median frequency and muscle fiber velocity. However they cannot explain the behavior of many of these variables with changes in intramuscular temperature, or muscle PH acidity, for instance. Here, we propose that the motor unit action potential can be treated as an electromagnetic resonant mode confined at thermal equilibrium inside the muscle. The motor units comprising the muscle form a system of standing waves or modes, where the energy of each mode is proportional to its frequency. Therefore, the power spectral density of the EMGA is well described and fit by Planck’s law and from its distribution we developed theoretical relationships that explain the behavior of known physiological variables with changes in intramuscular temperature or muscle PH acidity, for instance. Methods EMGA of the calf muscle was recorded during posture maintenance in seven participants and during controlled isometric contractions in two participants. The power spectral density of the EMGA was then fit with the Planckian distribution. Then, we inferred nine theoretical relationships from the distribution and compared the theoretically derived values with experimentally obtained values. Results The power spectral density of EMGA was fit by Planckian distributions and all the theoretical relationships were validated by experimental results. Conclusions Only by considering the motor unit action potentials as electromagnetic resonant modes confined at thermal equilibrium inside the muscle suffices to predict known or new theoretical relationships for muscle physiological variables that

  3. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  4. Improvement of Shape Factor and Loss of Surface Acoustic Wave Resonator Filter Composed of SiO2/High-Density-Electrode/LiTaO3

    NASA Astrophysics Data System (ADS)

    Murata, Takaki; Kadota, Michio; Nakao, Takeshi; Matsuda, Kenji; Hashimoto, Ken-ya

    2009-07-01

    Radio frequency (RF) filters in high frequencies using surface acoustic waves (SAWs), such as MediaFLOTM, time division synchronous code division multiple access (TD-SCDMA) in China's handy phone system, and the global positioning system (GPS) in cars, require a narrow bandwidth. Thus, the SAW substrates for their RF filters also require an excellent temperature coefficient of frequency (TCF) and an optimum electromechanical coupling factor. The authors reported an RF SAW filter for MediaFLOTM using a shear horizontal (SH) leaky SAW (LSAW) on a flattened SiO2 film/high-density metal electrode/36-48°Y·X-LiTaO3 substrate. Although it had a good TCF and a large attenuation out of the pass band, it had a slightly large loss at the pass band only at room temperature compared with that of the conventional Al-electrode/42°Y·X-LiTaO3 in the previous report. In this study, calculation using the coupling-of-modes (COM) theory showed the effect of a new phase inverse method of obtaining a steep slope at the right side of the filter frequency characteristic, although the previous paper showed only the measured frequency characteristics. In addition, an RF SAW filter with a lower loss at the pass band and a better TCF than that of the previous report has been realized.

  5. Thermoelectric power in low-density interstitial-free iron-aluminium alloys

    NASA Astrophysics Data System (ADS)

    Rana, Radhakanta; Liu, Cheng

    2013-09-01

    Thermoelectric power (TEP) studies on low-density interstitial-free iron-aluminium alloys reveal that the TEP decreases with increase in the aluminium content on account of the introduction of lattice dispersion centres. The TEP coefficients, determined from the Nordheim-Gorter law, for 6.8 and 8.1 wt.% aluminium additions to α-iron are found to be higher than values reported in previous literature for small aluminium additions. The grain size has a very weak effect on the TEP of these alloys.

  6. Simulation of chip-size electrocaloric refrigerator with high cooling-power density

    NASA Astrophysics Data System (ADS)

    Gu, Haiming; Craven, Brent; Qian, Xiaoshi; Li, Xinyu; Cheng, Ailan; Zhang, Q. M.

    2013-03-01

    The large electrocaloric effect that found in ferroelectric polymers creates unique opportunity for developing high performance chip scale solid state refrigerator. This letter presents a finite volume simulation study and shows that by employing solid state regenerators and the micro-heat pumping mechanism used in the thermoacoustic cooling, a compact Electrocaloric Oscillatory Refrigeration (ECOR) device can be realized. The simulation results demonstrate that a 1 cm-long ECOR device can provide 9 W/cm3 volumetric cooling power density at 20 K temperature span. By tuning the device parameters in the model, the ECOR can reach more than 50% of the Carnot efficiency.

  7. A novel high power density permanent magnet variable-speed motor

    SciTech Connect

    Chan, C.C.; Chen, G.H.; Jiang, J.Z.; Wang, X.Y. )

    1993-06-01

    This paper proposes a novel polyphase multipole permanent magnet motor which possesses high power density, high efficiency and excellent controllability, yet can be produced by conventional fabrication technique. The basic operating principles, design features, performance analysis and control system are described. The experimental results of a 5 kW, 1,500 rpm prototype motor and its comparison with other types of motors such as switched reluctance motor and induction motor are given. This proposed motor has the potential to compete in certain applications.

  8. Low Temperature Performance of High Power Density DC/DC Converter Modules

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric

    2001-01-01

    In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  9. Speckle Noise in Bar-Code Scanning Systems -Power Spectral Density and SNR

    NASA Astrophysics Data System (ADS)

    Marom, Emanuel; KrěIć-Juri, SǎA.; Bergstein, Leonard

    2003-01-01

    Laser-based flying-spot scanners are strongly affected by speckle that is intrinsic to coherent illumination of diffusing targets. In such systems information is usually extracted by processing the derivative of a photodetector signal that results from collecting over the detector's aperture the scattered light of a laser beam scanning a bar code. Because the scattered light exhibits a time-varying speckle pattern, the signal is corrupted by speckle noise. In this paper we investigate the power spectral density and total noise power of such signals. We also analyze the influence of speckle noise on edge detection and derive estimates for a signal-to-noise ratio when a laser beam scans different sequences of edges. The theory is illustrated by applying the results to Gaussian scanning beams for which we derive closed form expressions.

  10. Feasibility of an experiment to measure stopping powers in solid-density deuterium plasmas at OMEGA

    NASA Astrophysics Data System (ADS)

    Lahmann, B.; Rinderknecht, H. G.; Zylstra, A. B.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Regan, S.; Sangster, C.; Graziani, F.; Collins, G. W.; Rygg, J. R.; Grabowski, P.; Glenzer, S.; Keiter, P.

    2014-10-01

    An experimental design to measure the stopping powers of charged-particles through solid-density, fully-ionized deuterium plasmas at temperatures around 10 eV is investigated. Stopping power in this regime is crucial to the understanding of alpha-heating and burn in Internal Confinement Fusion. Recent work by A.B. Zylstra et al. on the OMEGA laser facility has demonstrated such measurements of stopping power in partially ionized Be plasmas, by measuring the downshift of D3He-protons in an isochorically heated sample. As noted in their work, the effects of partial ionization are not well understood; however such effects are not applicable to hydrogenic fuels, for which the plasmas are expected to be fully ionized. This study will consider the viability of isochorically or shock heating a target to Warm Dense Matter conditions using a platform similar to the planar cryogenic system described by S.P. Regan et al. Plasma properties will be determined by x-ray Thomson scattering while stopping powers will be inferred through measuring downshift of either DD-protons, D3He-protons or D3He-alphas, the latter of which is directly applicable to the stopping of DT-alphas in ignition experiments. This work was supported in part by the U.S. DOE, NLUF, LLE, and LLNL.

  11. Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting

    NASA Astrophysics Data System (ADS)

    Hsu, Tsung-Hsing; Manakasettharn, Supone; Taylor, J. Ashley; Krupenkin, Tom

    2015-11-01

    We have proposed and successfully demonstrated a novel approach to direct conversion of mechanical energy into electrical energy using microfluidics. The method combines previously demonstrated reverse electrowetting on dielectric (REWOD) phenomenon with the fast self-oscillating process of bubble growth and collapse. Fast bubble dynamics, used in conjunction with REWOD, provides a possibility to increase the generated power density by over an order of magnitude, as compared to the REWOD alone. This energy conversion approach is particularly well suited for energy harvesting applications and can enable effective coupling to a broad array of mechanical systems including such ubiquitous but difficult to utilize low-frequency energy sources as human and machine motion. The method can be scaled from a single micro cell with 10-6 W output to power cell arrays with a total power output in excess of 10 W. This makes the fabrication of small light-weight energy harvesting devices capable of producing a wide range of power outputs feasible.

  12. Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting

    PubMed Central

    Hsu, Tsung-Hsing; Manakasettharn, Supone; Taylor, J. Ashley; Krupenkin, Tom

    2015-01-01

    We have proposed and successfully demonstrated a novel approach to direct conversion of mechanical energy into electrical energy using microfluidics. The method combines previously demonstrated reverse electrowetting on dielectric (REWOD) phenomenon with the fast self-oscillating process of bubble growth and collapse. Fast bubble dynamics, used in conjunction with REWOD, provides a possibility to increase the generated power density by over an order of magnitude, as compared to the REWOD alone. This energy conversion approach is particularly well suited for energy harvesting applications and can enable effective coupling to a broad array of mechanical systems including such ubiquitous but difficult to utilize low-frequency energy sources as human and machine motion. The method can be scaled from a single micro cell with 10−6 W output to power cell arrays with a total power output in excess of 10 W. This makes the fabrication of small light-weight energy harvesting devices capable of producing a wide range of power outputs feasible. PMID:26567850

  13. High Density Plasma Modeling for Laser and Pulsed-Power Systems

    NASA Astrophysics Data System (ADS)

    Jones, Michael E.

    1997-10-01

    In the Plasma Physics Applications Group at Los Alamos, we have developed a variety of plasma models to study both laser plasma interactions and magnetically driven ``plasmas'' in pulsed-power systems. The parameters for the plasmas range from the collisionless regime of highly ionized, relatively low density (10^19 cm-3) plasma of laser fusion targets to solid metal liners driven by multi-megaAmpere currents. The wide range of parameters, as well as disparate temporal and spatial scales make the modeling these plasmas particularly challenging. For collisionless plasmas, novel Particle-in-Cell methods have been developed. For pulsed-power systems, sophisticated magnetohydrodynamic methods that include material strength and radiation transport are needed. A overview of the various methods and approximations that are used will be given, along with a discussion of methods for modeling the intermediate or semi-collisional regime. Comparison of the models with experiments performed on a number of facilities including the Livermore NOVA laser, the Los Alamos TRIDENT laser, the Sandia PBFA-Z pulsed power facility, and the Los Alamos PEGASUS pulsed-power facility will be given.

  14. Partial discharge localization in power transformers based on the sequential quadratic programming-genetic algorithm adopting acoustic emission techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Long; Liu, Hua-Dong

    2014-10-01

    Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And

  15. Stable relativistic/charge-displacement channels in ultrahigh power density (≈1021 W/cm3) plasmas

    PubMed Central

    Borisov, A. B.; Longworth, J. W.; Boyer, K.; Rhodes, C. K.

    1998-01-01

    Robust stability is a chief characteristic of relativistic/charge-displacement self-channeling. Theoretical analysis of the dynamics of this stability (i) reveals a leading role for the eigenmodes in the development of stable channels, (ii) suggests a technique using a simple longitudinal gradient in the electron density to extend the zone of stability into the high electron density/high power density regime, (iii) indicates that a situation approaching unconditional stability can be achieved, (iv) demonstrates the efficacy of the stable dynamics in trapping severely perturbed beams in single uniform channels, and (v) predicts that ≈104 critical powers can be trapped in a single stable channel. The scaling of the maximum power density with the propagating wavelength λ is shown to be proportional to λ−4 for a given propagating power and a fixed ratio of the electron plasma density to the critical plasma density. An estimate of the maximum power density that can be achieved in these channels with a power of ≈2 TW at a UV (248 nm) wavelength gives a value of ≈1021 W/cm3 with a corresponding atomic specific magnitude of ≈60 W/atom. The characteristic intensity propagating in the channel under these conditions exceeds 1021 W/cm2. PMID:9653104

  16. The effect of the coupling between the top plate and the fingerboard on the acoustic power radiated by a classical guitar (L).

    PubMed

    García-Mayén, Héctor; Santillán, Arturo

    2011-03-01

    An experimental investigation on the coupling between the fingerboard and the top plate of a classical guitar at low frequencies is presented. The study was carried out using a finished top plate under fixed boundary conditions and a commercial guitar. Radiated sound power was determined in one-third octave bands up to the band of 1 kHz based on measurements of sound intensity. The results provide evidence that the way in which the fingerboard and top plate are coupled is not a relevant factor in the radiated acoustic power of the classical guitar in the studied frequency range. PMID:21428477

  17. Talbot-Lau X-ray Deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments

    DOE PAGESBeta

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Mileham, C.; Begishev, I.; Theobald, W.; Bromage, J.; Regan, S. P.; Klein, S. R.; Munoz-Cordoves, G.; et al

    2016-04-21

    Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  18. Maximization of ICRF power by SOL density tailoring with local gas injection

    NASA Astrophysics Data System (ADS)

    Jacquet, P.; Goniche, M.; Bobkov, V.; Lerche, E.; Pinsker, R. I.; Pitts, R. A.; Zhang, W.; Colas, L.; Hosea, J.; Moriyama, S.; Wang, S.-J.; Wukitch, S.; Zhang, X.; Bilato, R.; Bufferand, H.; Guimarais, L.; Faugel, H.; Hanson, G. R.; Kocan, M.; Monakhov, I.; Noterdaeme, J.-M.; Petrzilka, V.; Shaw, A.; Stepanov, I.; Sips, A. C. C.; Van Eester, D.; Wauters, T.; JET contributors, the; the ASDEX Upgrade Team; the DIII-D Team; ITPA ‘Integrated Operation Scenarios' members, the; experts

    2016-04-01

    Experiments have been performed under the coordination of the International Tokamak Physics Activity (ITPA) on several tokamaks, including ASDEX Upgrade (AUG), JET and DIII-D, to characterize the increased Ion cyclotron range of frequency (ICRF) antenna loading achieved by optimizing the position of gas injection relative to the RF antennas. On DIII-D, AUG and JET (with the ITER-Like Wall) a 50% increase in the antenna loading was observed when injecting deuterium in ELMy H-mode plasmas using mid-plane inlets close to the powered antennas instead of divertor injection and, with smaller improvement when using gas inlets located at the top of the machine. The gas injection rate required for such improvements (~0.7  ×  1022 el s-1 in AUG, ~1.0  ×  1022 el s-1 in JET) is compatible with the use of this technique to optimize ICRF heating during the development of plasma scenarios and no degradation of confinement was observed when using the mid-plane or top inlets compared with divertor valves. An increase in the scrape-off layer (SOL) density was measured when switching gas injection from divertor to outer mid-plane or top. On JET and DIII-D, the measured SOL density increase when using main chamber puffing is consistent with the antenna coupling resistance increase provided that the distance between the measurement lines of sight and the injection location is taken into account. Optimized gas injection was also found to be beneficial for reducing tungsten (W) sputtering at the AUG antenna limiters, and also to reduce slightly the W and nickel (Ni) content in JET plasmas. Modeling the specific effects of divertor/top/mid-plane injection on the outer mid-plane density was carried out using both the EDGE2D-EIRENE and EMC3-EIRENE plasma boundary code packages; simulations indeed indicate that outer mid-plane gas injection maximizes the density in the mid-plane close to the injection point with qualitative agreement with the AUG SOL density measurements

  19. Power Spectral Density of Fluctuations of Bulk and Thermal Speeds in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-07-01

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s‑1 bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are ‑1.43 and ‑1.38, respectively, whereas they are ‑3.08 and ‑2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  20. High-Density Genotypes of Inbred Mouse Strains: Improved Power and Precision of Association Mapping

    PubMed Central

    Rau, Christoph D.; Parks, Brian; Wang, Yibin; Eskin, Eleazar; Simecek, Petr; Churchill, Gary A.; Lusis, Aldons J.

    2015-01-01

    Human genome-wide association studies have identified thousands of loci associated with disease phenotypes. Genome-wide association studies also have become feasible using rodent models and these have some important advantages over human studies, including controlled environment, access to tissues for molecular profiling, reproducible genotypes, and a wide array of techniques for experimental validation. Association mapping with common mouse inbred strains generally requires 100 or more strains to achieve sufficient power and mapping resolution; in contrast, sample sizes for human studies typically are one or more orders of magnitude greater than this. To enable well-powered studies in mice, we have generated high-density genotypes for ∼175 inbred strains of mice using the Mouse Diversity Array. These new data increase marker density by 1.9-fold, have reduced missing data rates, and provide more accurate identification of heterozygous regions compared with previous genotype data. We report the discovery of new loci from previously reported association mapping studies using the new genotype data. The data are freely available for download, and Web-based tools provide easy access for association mapping and viewing of the underlying intensity data for individual loci. PMID:26224782

  1. A Symmetrical, Planar SOFC Design for NASA's High Specific Power Density Requirements

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Sofie, Stephen W.

    2007-01-01

    Solid oxide fuel cell (SOFC) systems for aircraft applications require an order of magnitude increase in specific power density (1.0 kW/kg) and long life. While significant research is underway to develop anode supported cells which operate at temperatures in the range of 650-800 C, concerns about Cr-contamination from the metal interconnect may drive the operating temperature down further, to 750 C and lower. Higher temperatures, 900-1000 C, are more favorable for SOFC stacks to achieve specific power densities of 1.0 kW/kg. Since metal interconnects are not practical at these high temperatures and can account for up to 75% of the weight of the stack, NASA is pursuing a design that uses a thin, LaCrO3-based ceramic interconnect that incorporates gas channels into the electrodes. The bi-electrode supported cell (BSC) uses porous YSZ scaffolds, on either side of a 10-20 microns electrolyte. The porous support regions are fabricated with graded porosity using the freeze-tape casting process which can be tailored for fuel and air flow. Removing gas channels from the interconnect simplifies the stack design and allows the ceramic interconnect to be kept thin, on the order of 50 -100 microns. The YSZ electrode scaffolds are infiltrated with active electrode materials following the high temperature sintering step. The NASA-BSC is symmetrical and CTE matched, providing balanced stresses and favorable mechanical properties for vibration and thermal cycling.

  2. Fatigue-Associated Alterations of Cognitive Function and Electroencephalographic Power Densities

    PubMed Central

    Tanaka, Masaaki; Shigihara, Yoshihito; Funakura, Masami; Kanai, Etsuko; Watanabe, Yasuyoshi

    2012-01-01

    Fatigue is a common problem in modern society. We attempted to identify moderate- to long-term fatigue-related alterations in the central nervous system using cognitive tasks and electroencephalography (EEG) measures. The study group consisted of 17 healthy male participants. After saliva samples were collected to measure copy number of human herpesvirus (HHV)-6 DNA to assess the level of moderate- to long-term fatigue, subjects were evaluated using EEG, with their eyes open for 2 min, then closed for 1 min sitting quietly. Thereafter, they completed cognitive task trials to evaluate simple selective attention for 3 min (Task 1) and conflict-controlling selective attention for 6 min (Task 2, which included Stroop trials). The percent error of Task 2 for Stroop trials was positively associated with the copy number of saliva HHV-6 DNA, although the simple selective attention measures in Task 1 did not differ significantly. EEG power densities (especially the alpha power density) during the eye-closed condition were negatively associated with the saliva HHV-6 DNA level. Impaired high-level information processing such as that required for conflict-controlling selective attention in the central nervous system may be a characteristic feature of moderate- to long-term fatigue. PMID:22514666

  3. Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping

    2012-10-01

    The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.

  4. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    NASA Astrophysics Data System (ADS)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  5. The reversed-field pinch as a poloidal-field-dominated, compact, high-power-density fusion system

    SciTech Connect

    Krakowski, R.A.

    1988-01-01

    This paper discusses the feasibility of reversed-field pinch devices as future thermonuclear reactors. Safety, cost, ion temperatures, Lawson numbers, and power densities are reviewed for these types of devices. 12 refs., 2 figs., 1 tab. (LSP)

  6. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  7. Capabilities, Design, Construction and Commissioning of New Vibration, Acoustic, and Electromagnetic Capabilities Added to the World's Largest Thermal Vacuum Chamber at NASA's Space Power Facility

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Ludwiczak, Damian R.; Carek, Gerald A.; Sorge, Richard N.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    NASA s human space exploration plans developed under the Exploration System Architecture Studies in 2005 included a Crew Exploration Vehicle launched on an Ares I launch vehicle. The mass of the Crew Exploration Vehicle and trajectory of the Ares I coupled with the need to be able to abort across a large percentage of the trajectory generated unprecedented testing requirements. A future lunar lander added to projected test requirements. In 2006, the basic test plan for Orion was developed. It included several types of environment tests typical of spacecraft development programs. These included thermal-vacuum, electromagnetic interference, mechanical vibration, and acoustic tests. Because of the size of the vehicle and unprecedented acoustics, NASA conducted an extensive assessment of options for testing, and as result, chose to augment the Space Power Facility at NASA Plum Brook Station, of the John H. Glenn Research Center to provide the needed test capabilities. The augmentation included designing and building the World s highest mass capable vibration table, the highest power large acoustic chamber, and adaptation of the existing World s largest thermal vacuum chamber as a reverberant electromagnetic interference test chamber. These augmentations were accomplished from 2007 through early 2011. Acceptance testing began in Spring 2011 and will be completed in the Fall of 2011. This paper provides an overview of the capabilities, design, construction and acceptance of this extraordinary facility.

  8. Power-density spectrum of non-stationary short-lived light curves

    NASA Astrophysics Data System (ADS)

    Guidorzi, Cristiano

    2011-08-01

    The power-density spectrum of a light curve is often calculated as the average of a number of spectra derived on individual time intervals the light curve is divided into. This procedure implicitly assumes that each time interval is a different sample function of the same stochastic ergodic process. While this assumption can be applied to many astrophysical sources, there remains a class of transient, highly non-stationary and short-lived events, such as gamma-ray bursts, for which this approach is often inadequate. The power spectrum statistics of a constant signal affected by statistical (Poisson) noise are known to be a χ22 in the Leahy normalization. However, this is no more the case when a non-stationary signal is also present. As a consequence, the uncertainties on the power spectrum cannot be calculated on the basis of the χ22 properties, as assumed by tools such as XRONOS POWSPEC. We generalize the result in the case of a non-stationary signal affected by uncorrelated white noise and show that the new distribution is a non-central χ22(λ), whose non-central value λ is the power spectrum of the deterministic function describing the non-stationary signal. Finally, we test these results in the case of synthetic curves of gamma-ray bursts. We end up with a new formula for calculating the power spectrum uncertainties. This is crucial in the case of non-stationary short-lived processes affected by uncorrelated statistical noise, for which ensemble averaging does not make any physical sense.

  9. Highly directional acoustic receivers.

    PubMed

    Cray, Benjamin A; Evora, Victor M; Nuttall, Albert H

    2003-03-01

    The theoretical directivity of a single combined acoustic receiver, a device that can measure many quantities of an acoustic field at a collocated point, is presented here. The formulation is developed using a Taylor series expansion of acoustic pressure about the origin of a Cartesian coordinate system. For example, the quantities measured by a second-order combined receiver, denoted a dyadic sensor, are acoustic pressure, the three orthogonal components of acoustic particle velocity, and the nine spatial gradients of the velocity vector. The power series expansion, which can be of any order, is cast into an expression that defines the directivity of a single receiving element. It is shown that a single highly directional dyadic sensor can have a directivity index of up to 9.5 dB. However, there is a price to pay with highly directive sensors; these sensors can be significantly more sensitive to nonacoustic noise sources. PMID:12656387

  10. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    PubMed

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors. PMID:21937333

  11. Multilayer laminated piezoelectric bending actuators: design and manufacturing for optimum power density and efficiency

    NASA Astrophysics Data System (ADS)

    Jafferis, Noah T.; Lok, Mario; Winey, Nastasia; Wei, Gu-Yeon; Wood, Robert J.

    2016-05-01

    In previous work we presented design and manufacturing rules for optimizing the energy density of piezoelectric bimorph actuators through the use of laser-induced melting, insulating edge coating, and features for rigid ground attachments to maximize force output, as well as a pre-stacked technique to enable mass customization. Here we adapt these techniques to bending actuators with four active layers, which utilize thinner material layers. This allows the use of lower operating voltages, which is important for overall power usage optimization, as typical small-scale power supplies are low-voltage and the efficiency of boost-converter and drive circuitry increases with decreasing output voltage. We show that this optimization results in a 24%–47% reduction in the weight of the required power supply (depending on the type of drive circuit used). We also present scaling arguments to determine when multi-layer actuator are preferable to thinner actuators, and show that our techniques are capable of scaling down to sub-mg weight actuators.

  12. 2D Spatial Frequency Considerations in Comparing 1D Power Spectral Density Measurements

    SciTech Connect

    Takacs, P.Z.; Barber, S.; Church, E.L.; Kaznatcheev, K.; McKinney, W.R.; Yashchuk, V.Y.

    2010-06-14

    The frequency footprint of ID and 2D profiling instruments needs to be carefully considered in comparing ID surface roughness spectrum measurements made by different instruments. Contributions from orthogonal direction frequency components can not be neglected. The use of optical profiling instruments is ubiquitous in the measurement of the roughness of optical surfaces. Their ease-of-use and non-contact measurement method found widespread use in the optics industry for measuring the quality of delicate optical surfaces. Computerized digital data acquisition with these instruments allowed for quick and easy calculation of surface roughness statistics, such as root-mean-square (RMS) roughness. The computing power of the desktop computer allowed for the rapid conversion of spatial domain data into the frequency domain, enabling the application of sophisticated signal processing techniques to be applied to the analysis of surface roughness, the most powerful of which is the power spectral density (PSP) function. Application of the PSD function to surface statistics introduced the concept of 'bandwidth-limited' roughness, where the value of the RMS roughness depends critically upon the spatial frequency response of the instrument. Different instruments with different spatial frequency response characteristics give different answers when measuring the same surface.

  13. Bubbler---A Novel Ultra High Power Density Energy Harvesting Method Based on Reverse Electrowetting

    NASA Astrophysics Data System (ADS)

    Hsu, Tsung-Hsing

    A novel approach to direct conversion of mechanical energy into electrical energy has been proposed and experimentally and theoretically investigated. The method combines previously demonstrated reverse electrowetting on dielectric (REWOD) phenomenon with the fast self-oscillating process of bubble growth and collapse inside a conductive liquid placed in contact with a dielectric-covered electrode. Fast bubble dynamics, used in conjunction with REWOD, can enable extremely high power densities, in excess of 10 kW/m2. The method can be scaled in power from microwatts to tens of watts, and can enable direct coupling to a wide range of mechanical energy sources, which make it particularly attractive for energy harvesting applications. We believe that this approach can enable extraction of useful energy from various non-traditional sources including thermal expansion of buildings, human motion, and vehicle and machinery movement. Also, this makes the fabrication of small light-weight energy harvesting devices capable of producing a wide range of power outputs feasible.

  14. A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Siebert, Mark

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.

  15. X-Ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Edelson, R.; Vaughan, S.; Uttley, P.; George, I. M.; Griffiths, R. E.; Kaspi, S.; Lawrence, A.; McHandy, I.; Nandra, K.

    2003-01-01

    By combining complementary monitoring observations spanning long, medium and short time scales, we have constructed power spectral densities (PSDs) of six Seyfert 1 galaxies. These PSDs span approx. greater than 4 orders of magnitude in temporal frequency, sampling variations on time scales ranging from tens of minutes to over a year. In at least four cases, the PSD shows a "break," a significant departure from a power law, typically on time scales of order a few days. This is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass compact systems with breaks on time scales of seconds. NGC 3783 shows tentative evidence for a doubly-broken power law, a feature that until now has only been seen in the (much better-defined) PSDs of low-state XRBs. It is also interesting that (when one previously-observed object is added to make a small sample of seven), an apparently significant correlation is seen between the break time scale T and the putative black hole mass M(sub BH), while none is seen between break time scale and luminosity. The data are consistent with the linear relation T = M(sub BH) /10(exp 6.5) solar mass; extrapolation over 6-7 orders of magnitude is in reasonable agreement with XRBs. All of this strengthens the case for a physical similarity between Seyfert 1s and XRBs.

  16. Durability of Low Platinum Fuel Cells Operating at High Power Density

    SciTech Connect

    Polevaya, Olga; Blanchet, Scott; Ahluwalia, Rajesh; Borup, Rod; Mukundan, Rangachary

    2014-03-19

    Understanding and improving the durability of cost-competitive fuel cell stacks is imperative to successful deployment of the technology. Stacks will need to operate well beyond today’s state-of-the-art rated power density with very low platinum loading in order to achieve the cost targets set forth by DOE ($15/kW) and ultimately be competitive with incumbent technologies. An accelerated cost-reduction path presented by Nuvera focused on substantially increasing power density to address non-PGM material costs as well as platinum. The study developed a practical understanding of the degradation mechanisms impacting durability of fuel cells with low platinum loading (≤0.2mg/cm2) operating at high power density (≥1.0W/cm2) and worked out approaches for improving the durability of low-loaded, high-power stack designs. Of specific interest is the impact of combining low platinum loading with high power density operation, as this offers the best chance of achieving long-term cost targets. A design-of-experiments approach was utilized to reveal and quantify the sensitivity of durability-critical material properties to high current density at two levels of platinum loading (the more conventional 0.45 mgPt.cm–1 and the much lower 0.2 mgPt.cm–2) across several cell architectures. We studied the relevance of selected component accelerated stress tests (AST) to fuel cell operation in power producing mode. New stress tests (NST) were designed to investigate the sensitivity to the addition of electrical current on the ASTs, along with combined humidity and load cycles and, eventually, relate to the combined city/highway drive cycle. Changes in the cathode electrochemical surface area (ECSA) and average oxygen partial pressure on the catalyst layer with aging under AST and NST protocols were compared based on the number of completed cycles. Studies showed elevated sensitivity of Pt growth to the potential limits and the initial particle size distribution. The ECSA loss

  17. A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices

    SciTech Connect

    Whitaker, B; Barkley, A; Cole, Z; Passmore, B; Martin, D; McNutt, TR; Lostetter, AB; Lee, JS; Shiozaki, K

    2014-05-01

    This paper presents an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs). The proposed level 2 charger has a two-stage architecture where the first stage is a bridgeless boost ac-dc converter and the second stage is a phase-shifted full-bridge isolated dc-dc converter. The operation of both topologies is presented and the specific advantages gained through the use of SiC power devices are discussed. The design of power stage components, the packaging of the multichip power module, and the system-level packaging is presented with a primary focus on system density and a secondary focus on system efficiency. In this work, a hardware prototype is developed and a peak system efficiency of 95% is measured while operating both power stages with a switching frequency of 200 kHz. A maximum output power of 6.1 kW results in a volumetric power density of 5.0 kW/L and a gravimetric power density of 3.8 kW/kg when considering the volume and mass of the system including a case.

  18. Absolute determination of power density in the VVER-1000 mock-up on the LR-0 research reactor.

    PubMed

    Košt'ál, Michal; Švadlenková, Marie; Milčák, Ján

    2013-08-01

    The work presents a detailed comparison of calculated and experimentally determined net peak areas of selected fission products gamma lines. The fission products were induced during a 2.5 h irradiation on the power level of 9.5 W in selected fuel pins of the VVER-1000 Mock-Up. The calculations were done with deterministic and stochastic (Monte Carlo) methods. The effects of different nuclear data libraries used for calculations are discussed as well. The Net Peak Area (NPA) may be used for the determination of fission density across the mock-up. This fission density is practically identical to power density. PMID:23665766

  19. Thermal-Hydraulic Performance of Cross-Shaped Spiral Fuel in High-Power-Density BWRs

    SciTech Connect

    Conboy, Thomas; Hejzlar, Pavel

    2006-07-01

    Power up-rating of existing nuclear reactors promises to be an area of great study for years to come. One of the major approaches to efficiently increasing power density is by way of advanced fuel design, and cross-shaped spiral-fuel has shown such potential in previous studies. Our work aims to model the thermal-hydraulic consequences of filling a BWR core with these spiral-shaped pins. The helically-wound pins have a cross-section resembling a 4-petaled flower. They fill an assembly in a tight bundle, their dimensions chosen carefully such that the petals of neighboring pins contact each other at their outer-most extent in a self-supporting lattice, absent of grid spacers. Potential advantages of this design raise much optimism from a thermal-hydraulic perspective. These spiral rods possess about 40% larger surface area than traditional rods, resulting in increased cooling and a proportional reduction in average surface heat flux. The thin petal-like extensions help by lowering thermal resistance between the hot central region of the pin and the bulk coolant flow, decreasing the maximum fuel temperature by 200 deg. C according to Finite Element (COSMOS) models. However, COSMOS models also predict a potential problem area at the 'elbow' region of two adjoining petals, where heat flux peaking is twice that along the extensions. Preliminary VIPRE models, which account only for the surface area increase, predict a 22% increase in critical power. It is also anticipated that the spiral twist would provide the flowing coolant with an additional radial velocity component, and likely promote turbulence and mixing within an assembly. These factors are expected to provide further margin for increased power density, and are currently being incorporated into the VIPRE model. The reduction in pressure drop inherent in any core without grid-spacers is also expected to be significant in aiding core stability, though this has not yet been quantified. Spiral-fuel seems to be a

  20. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  1. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  2. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  3. Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model

    SciTech Connect

    Zhang, Bo; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-02-20

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  4. Analytical probability density function for the statistics of the ENSO phenomenon: Asymmetry and power law tail

    NASA Astrophysics Data System (ADS)

    Bianucci, M.

    2016-01-01

    This letter has two main goals. The first one is to give a physically reasonable explanation for the use of stochastic models for mimicking the apparent random features of the El Ninõ-Southern Oscillation (ENSO) phenomenon. The second one is to obtain, from the theory, an analytical expression for the equilibrium density function of the anomaly sea surface temperature, an expression that fits the data from observations well, reproducing the asymmetry and the power law tail of the histograms of the NIÑO3 index. We succeed in these tasks exploiting some recent theoretical results of the author in the field of the dynamical origin of the stochastic processes. More precisely, we apply this approach to the celebrated recharge oscillator model (ROM), weakly interacting by a multiplicative term, with a general deterministic complex forcing (Madden-Julian Oscillations, westerly wind burst, etc.), and we obtain a Fokker-Planck equation that describes the statistical behavior of the ROM.

  5. Daniell method for power spectral density estimation in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander

    2016-03-01

    An alternative method for power spectral density (PSD) estimation—the Daniell method—is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion—the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum.

  6. Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew C.; Meyer, Renate; Christensen, Nelson

    2015-09-01

    The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.

  7. Analysis of power spectral density as a performance metric for TMT M3

    NASA Astrophysics Data System (ADS)

    Yang, Fei; An, Qi-Chang; Wang, Fu-Guo; Liu, Xiang-Yi

    2014-09-01

    We investigate a new metric power spectral density (PSD),for characterizing the performance of seeing-limited large telescope such as thirty meter telescope(TMT ). As the PSD is directly related to the performance of the atmosphere which plays an important role in ground based facilities, it represents the efficiency lose due to mid and high-spatial frequency components in observing time. The metric also properly counts for the optic error of the mirror itself such as the deviations from a perfect surface, and metrology measurement errors .The metric can multiply all the errors which differentiates from the traditional ones, such as RMS. We also numerically confirm this feature for Karman model atmosphere error multiplied with the sample of our vendor and the TMT M3.Additonaly, we discuss other pertinent feature of the PSD, including its relationship to Zernike aberration ,and RMS of wave front errors.

  8. Daniell method for power spectral density estimation in atomic force microscopy.

    PubMed

    Labuda, Aleksander

    2016-03-01

    An alternative method for power spectral density (PSD) estimation--the Daniell method--is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion--the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum. PMID:27036781

  9. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect

    Anil V. Virkar

    2001-06-21

    A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

  10. A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; White, Ralph E.

    1991-01-01

    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.

  11. User's Guide: An Enhanced Modified Faraday Cup for the Profiling of the Power Density Distribution in Electron Beams

    SciTech Connect

    Elmer, J W; Teruya, A T; Palmer, T A

    2002-06-01

    This handbook describes the assembly and operation of an enhanced Modified Faraday Cup (MFC) diagnostic device for measuring the power density distribution of high power electron beams used for welding. The most recent version of this diagnostic device, [1] Version 2.0, contains modifications to the hardware components of previous MFC designs.[2] These modifications allow for more complete capture of the electrons and better electrical grounding, thus improving the quality of the acquired data and enabling a more accurate computed tomographic (CT) reconstruction [3,4] of the power density distribution of the electron beam to be performed. [ 5-9

  12. Development of Optimized Core Design and Analysis Methods for High Power Density BWRs

    NASA Astrophysics Data System (ADS)

    Shirvan, Koroush

    Increasing the economic competitiveness of nuclear energy is vital to its future. Improving the economics of BWRs is the main goal of this work, focusing on designing cores with higher power density, to reduce the BWR capital cost. Generally, the core power density in BWRs is limited by the thermal Critical Power of its assemblies, below which heat removal can be accomplished with low fuel and cladding temperatures. The present study investigates both increases in the heat transfer area between ~he fuel and coolant and changes in operating parameters to achieve higher power levels while meeting the appropriate thermal as well as materials and neutronic constraints. A scoping study is conducted under the constraints of using fuel with cylindrical geometry, traditional materials and enrichments below 5% to enhance its licensability. The reactor vessel diameter is limited to the largest proposed thus far. The BWR with High power Density (BWR-HD) is found to have a power level of 5000 MWth, equivalent to 26% uprated ABWR, resulting into 20% cheaper O&M and Capital costs. This is achieved by utilizing the same number of assemblies, but with wider 16x16 assemblies and 50% shorter active fuel than that of the ABWR. The fuel rod diameter and pitch are reduced to just over 45% of the ABWR values. Traditional cruciform form control rods are used, which restricts the assembly span to less than 1.2 times the current GE14 design due to limitation on shutdown margin. Thus, it is possible to increase the power density and specific power by 65%, while maintaining the nominal ABWR Minimum Critical Power Ratio (MCPR) margin. The plant systems outside the vessel are assumed to be the same as the ABWR-Il design, utilizing a combination of active and passive safety systems. Safety analyses applied a void reactivity coefficient calculated by SIMULA TE-3 for an equilibrium cycle core that showed a 15% less negative coefficient for the BWR-HD compared to the ABWR. The feedwater

  13. Acoustic Aspects of Photoacoustic Signal Generation and Detection in Gases

    NASA Astrophysics Data System (ADS)

    Miklós, A.

    2015-09-01

    In this paper photoacoustic signal generation and detection in gases is investigated and discussed from the standpoint of acoustics. Four topics are considered: the effect of the absorption-desorption process of modulated and pulsed light on the heat power density released in the gas; the generation of the primary sound by the released heat in an unbounded medium; the excitation of an acoustic resonator by the primary sound; and finally, the generation of the measurable PA signal by a microphone. When light is absorbed by a molecule and the excess energy is relaxed by collisions with the surrounding molecules, the average kinetic energy, thus also the temperature of an ensemble of molecules (called "particle" in acoustics) will increase. In other words heat energy is added to the energy of the particle. The rate of the energy transfer is characterized by the heat power density. A simple two-level model of absorption-desorption is applied for describing the heat power generation process for modulated and pulsed illumination. Sound generation by a laser beam in an unbounded medium is discussed by means of the Green's function technique. It is shown that the duration of the generated sound pulse depends mostly on beam geometry. A photoacoustic signal is mostly detected in a photoacoustic cell composed of acoustic resonators, buffers, filters, etc. It is not easy to interpret the measured PA signal in such a complicated acoustic system. The acoustic response of a PA detector to different kinds of excitations (modulated cw, pulsed, periodic pulse train) is discussed. It is shown that acoustic resonators respond very differently to modulated cw excitation and to excitation by a pulse train. The microphone for detecting the PA signal is also a part of the acoustic system; its properties have to be taken into account by the design of a PA detector. The moving membrane of the microphone absorbs acoustic energy; thus, it may influence the resonance frequency and

  14. Power spectral density of velocity fluctuations estimated from phase Doppler data

    NASA Astrophysics Data System (ADS)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  15. Acoustic Imaging of Snowpack Physical Properties

    NASA Astrophysics Data System (ADS)

    Kinar, N. J.; Pomeroy, J. W.

    2011-12-01

    Measurements of snowpack depth, density, structure and temperature have often been conducted by the use of snowpits and invasive measurement devices. Previous research has shown that acoustic waves passing through snow are capable of measuring these properties. An experimental observation device (SAS2, System for the Acoustic Sounding of Snow) was used to autonomously send audible sound waves into the top of the snowpack and to receive and process the waves reflected from the interior and bottom of the snowpack. A loudspeaker and microphone array separated by an offset distance was suspended in the air above the surface of the snowpack. Sound waves produced from a loudspeaker as frequency-swept sequences and maximum length sequences were used as source signals. Up to 24 microphones measured the audible signal from the snowpack. The signal-to-noise ratio was compared between sequences in the presence of environmental noise contributed by wind and reflections from vegetation. Beamforming algorithms were used to reject spurious reflections and to compensate for movement of the sensor assembly during the time of data collection. A custom-designed circuit with digital signal processing hardware implemented an inversion algorithm to relate the reflected sound wave data to snowpack physical properties and to create a two-dimensional image of snowpack stratigraphy. The low power consumption circuit was powered by batteries and through WiFi and Bluetooth interfaces enabled the display of processed data on a mobile device. Acoustic observations were logged to an SD card after each measurement. The SAS2 system was deployed at remote field locations in the Rocky Mountains of Alberta, Canada. Acoustic snow properties data was compared with data collected from gravimetric sampling, thermocouple arrays, radiometers and snowpit observations of density, stratigraphy and crystal structure. Aspects for further research and limitations of the acoustic sensing system are also discussed.

  16. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  17. Simulation of Flow Through Porous Anode in Mfc at Higher Power Density

    NASA Astrophysics Data System (ADS)

    Su, W. W.; Xu, Y. S.; Yan, W. W.; Liu, Y.

    Microbial fuel cell (MFC) is a new environmental friendly energy device which has received greatly attention due to its technology for producing electricity directly from organic or inorganic matter using bacteria as catalyst. To date, many studies have been carried out on advective flow through porous anode in a continuous flow MFC. However, the precise mechanical mechanism of flow through porous anode and the quantified relationship between porous media and MFC performance are not yet clearly understood. It has been found experimentally the power density can be increased apparently at certain spacing configuration. Based on these available experimental data, we studied the effect of spacing between electrodes and the Darcy number of porous anode on the power generation performance of MFC using lattice Boltzmann method. The simulation results indicated that the spacing between electrodes significantly influence the flow velocity profile and residence time in the MFC. Moreover, it was found that the Darcy number of porous anode could regulate the output efficiency of MFC. Our results would be helpful to optimize MFC design.

  18. Analysis of the time series of the EEG frequency spectra and of EEG spectral power densities.

    PubMed

    Dvorák, J; Formánek, J; Kubát, J; Plevová, J; Vanícková, M; Fires, M; Andél, J; Cipra, T; Tomásek, L; Prásková, Z; Holoubková, E; Fabián, Z

    1981-06-01

    Some examples of the use of the principal component model for the economic description of the structure of the multiple time series and for the data reduction in the quantitative EEG studies are presented. The broad-band EEG frequency spectra were measured with the use of an electronic system designed by J. Dvorák. The EEG spectral power densities were computed via the discrete Fourier Transform (namely FFT) algorithm. The estimated two or three first principal components account for the major part of the total variance of individual EEG variables: The results hold for the used elementary epoch of measurement, i.e. 5 sec. - With the use of the algorithms and FORTRAN IV programs developed by J. Andĕl, T. Cipra and L. Tomásek a data reduction by a factor of 1:2000 can be achieved without any substantial loss of biological information. - The described methods help to obtain a better insight into the structure of the data and represent a powerful tool for data reduction at least in a certain class of experimental EEG studies (experimental toxicology, pharmacology, experimental neurology). PMID:7270023

  19. THE FIRST HARD X-RAY POWER SPECTRAL DENSITY FUNCTIONS OF ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Shimizu, T. Taro; Mushotzky, Richard F.

    2013-06-10

    We present results of our power spectral density (PSD) analysis of 30 active galactic nuclei (AGNs) using the 58 month light curves from Swift's Burst Alert Telescope (BAT) in the 14-150 keV band. PSDs were fit using a Monte Carlo based algorithm to take into account windowing effects and measurement error. All but one source were found to be fit very well using an unbroken power law with a slope of {approx} - 1, consistent at low frequencies with previous studies in the 2-10 keV band, with no evidence of a break in the PSD. For five of the highest signal-to-noise ratio sources, we tested the energy dependence of the PSD and found no significant difference in the PSD at different energies. Unlike previous studies of X-ray variability in AGNs, we do not find any significant correlations between the hard X-ray variability and different properties of the AGN including luminosity and black hole mass. The lack of break frequencies and correlations seem to indicate that AGNs are similar to the high state of Galactic black holes.

  20. Tension between the power spectrum of density perturbations measured on large and small scales

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Charnock, Tom; Moss, Adam

    2015-05-01

    There is a tension between measurements of the amplitude of the power spectrum of density perturbations inferred using the cosmic microwave background (CMB) and directly measured by large-scale structure (LSS) on smaller scales. We show that this tension exists, and is robust, for a range of LSS indicators including clusters, lensing and redshift space distortions and using CMB data from either Planck or WMAP +SPT /ACT . One obvious way to try to reconcile this is the inclusion of a massive neutrino which could be either active or sterile. Using Planck and a combination of all the LSS data we find that (i) for an active neutrino ∑mν=(0.357 ±0.099 ) eV and (ii) for a sterile neutrino msterileeff=(0.67 ±0.18 ) eV and Δ Neff=0.32 ±0.20 . This is, however, at the expense of a degraded fit to Planck temperature data, and we quantify the residual tension at 2.5 σ and 1.6 σ for massive and sterile neutrinos, respectively. We also consider alternative explanations including a lower redshift for reionization that would be in conflict with polarization measurements made by WMAP and ad hoc modifications to the primordial power spectrum.

  1. Crosscheck of different techniques for two dimensional power spectral density measurements of x-ray optics

    SciTech Connect

    Yashchuk, Valeriy V.; Irick, Steve C.; Gullikson, Eric M.; Howells, Malcolm R.; MacDowell, Alastair A.; McKinney, Wayne R.; Salmassi, Farhad; Warwick, Tony

    2005-07-12

    The consistency of different instruments and methods for measuring two-dimensional (2D) power spectral density (PSD) distributions are investigated. The instruments are an interferometric microscope, an atomic force microscope (AFM) and the X-ray Reflectivity and Scattering experimental facility, all available at Lawrence Berkeley National Laboratory. The measurements were performed with a gold-coated mirror with a highly polished stainless steel substrate. It was shown that these three techniques provide essentially consistent results. For the stainless steel mirror, an envelope over all measured PSD distributions can be described with an inverse power-law PSD function. It is also shown that the measurements can be corrected for the specific spatial frequency dependent systematic errors of the instruments. The AFM and the X-ray scattering measurements were used to determine the modulation transfer function of the interferometric microscope. The corresponding correction procedure is discussed in detail. Lower frequency investigation of the 2D PSD distribution was also performed with a long trace profiler and a ZYGO GPI interferometer. These measurements are in some contradiction, suggesting that the reliability of the measurements has to be confirmed with additional investigation. Based on the crosscheck of the performance of all used methods, we discuss the ways for improving the 2D PSD characterization of X-ray optics.

  2. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  3. High power density from Pt thin film electrodes based microbial fuel cell.

    PubMed

    Sharma, Tushar; Reddy, A Leela Mohana; Chandra, T S; Ramaprabhu, S

    2008-08-01

    Microbial Fuel Cells (MFC) are robust devices capable of taping biological energy, converting sugars into potential sources of energy. Persistent efforts are directed towards increasing power output. However, they have not been researched to the extent of making them competitive with chemical fuel cells. The power generated in a dual-chamber MFC using neutral red (NR) as the electron mediator has been previously shown to be 152.4 mW/m2 at 412.5 mA/m2 of current density. In the present work we show that Pt thin film coated carbon paper as electrodes increase the performance of a microbial fuel cell compared to conventionally employed electrodes. The results obtained using E. coli based microbial fuel cell with methylene blue and neutral red as the electron mediator, potassium ferricyanide in the cathode compartment were systematically studied and the results obtained with Pt thin film coated over carbon paper as electrodes were compared with that of graphite electrodes. Platinum coated carbon electrodes were found to be better over the previously used for microbial fuel cells and at the same time are cheaper than the preferred pure platinum electrodes. PMID:19049189

  4. Evaluation of localized muscle fatigue using power spectral density analysis of the electromyogram

    NASA Technical Reports Server (NTRS)

    Lafevers, E. V.

    1974-01-01

    Surface electromyograms (EMGs) taken from three upper torso muscles during a push-pull task were analyzed by a power spectral density technique to determine the operational feasibility of the technique for identifying changes in the EMGs resulting from muscular fatigue. The EMGs were taken from four subjects under two conditions (1) in shirtsleeves and (2) in a pressurized space suit. This study confirmed that frequency analysis of dynamic muscle activity is capable of providing reliable data for many industrial applications where fatigue may be of practical interest. The results showed significant effects of the pressurized space suit on the pattern of shirtsleeve fatigue responses of the muscles. The data also revealed (1) reliable differences between muscles in fatigue-induced responses to various locations in the reach envelope at which the subjects were required to perform the push-pull exercise and (2) the differential sensitivity of muscles to the various reach positions in terms of fatigue-related shifts in EMG power.

  5. Composite Cathode for High-Power Density Solid Oxide Fuel Cells

    SciTech Connect

    Ilwon Kim; Scott Barnett; Yi Jiang; Manoj Pillai; Nikkia McDonald; Dan Gostovic; Zhongryang Zhan; Jiang Liu

    2004-01-31

    Reduction of solid oxide fuel cell (SOFC) operating temperature will play a key role in reducing the stack cost by allowing the use of low-cost metallic interconnects and new approaches to sealing, while making applications such as transportation more feasible. Reported results for anode-supported SOFCs show that cathode polarization resistance is the primary barrier to achieving high power densities at operating temperatures of 700 C and lower. This project aims to identify and develop composite cathodes that could reduce SOFC operating temperatures below 700 C. This effort focuses on study and use of (La,Sr)(Co,Fe)O{sub 3} (LSCF) based composite cathodes, which have arguably the best potential to substantially improve on the currently-used, (La,Sr)MnO{sub 3}-Yttria-stabilized Zirconia. During this Phase I, it was successfully demonstrated that high performances can be achieved with LSCF/Gadolinium-Doped Ceria composite cathodes on Ni-based anode supported cells operating at 700 C or lower. We studied electrochemical reactions at LSCF/Yttria-stabilized Zirconia (YSZ) interfaces, and observed chemical reactions between LSCF and YSZ. By using ceria electrolytes or YSZ electrolytes with ceria diffusion barrier layers, the chemical reactions between LSCF and electrolytes were prevented under cathode firing conditions necessary for the optimal adhesion of the cathodes. The protection provided by ceria layer is expected to be adequate for stable long-term cathode performances, but more testing is needed to verify this. Using ceria-based barrier layers, high performance Ni-YSZ anode supported cells have been demonstrated with maximum power densities of 0.8W/cm2 at 700 C and 1.6W/cm{sup 2} at 800 C. Ni-SDC anode supported cells with SDC electrolytes yielded >1W/cm{sup 2} at 600 C. We speculate that the power output of Ni-YSZ anode supported cell at 700 C and lower, was limited by the quality of the Ceria and Ceria YSZ interface. Improvements in the low

  6. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  7. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  8. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  9. Investigation of correlation of LF power modulation of light in natural and artificial illumination situations and acoustic emission

    NASA Astrophysics Data System (ADS)

    Kleeberg, Florian P.; Gutzmann, Holger L.; Weyer, Cornelia; Weiß, Jürgen; Dörfler, Joachim; Hahlweg, Cornelius F.

    2014-09-01

    The present paper is a follow up of a paper presented in 2013 at the Novel Optical Systems conference in the session on Optics and Music. It is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects to be observed which are interesting in the context of occupational medicine. It seems, that acoustic stimuli in the frequency range of the flicker fusion and below might lead to unexpected perceptible effects beyond those of the single stimuli. The effect of infrasound stimuli as a whole body perception seems to be boosted. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we question if such coherence is perceivable at all. Further, the problem of modulation of optical signals by acoustical signal is concerned. A catalogue of scenarios and 'effects to look for' including measurement concepts is presented and discussed.

  10. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers.

    PubMed

    Zhang, Ye; Zhao, Yang; Cheng, Xunliang; Weng, Wei; Ren, Jing; Fang, Xin; Jiang, Yishu; Chen, Peining; Zhang, Zhitao; Wang, Yonggang; Peng, Huisheng

    2015-09-14

    Energy storage devices, such as lithium-ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber-shaped hybrid energy-storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50 mWh cm(-3) or 90 Wh kg(-1) ) many times higher than for other forms of supercapacitors and approximately 3 times that of thin-film batteries; the power density (1 W cm(-3) or 5970 W kg(-1) ) is approximately 140 times of thin-film lithium-ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics. PMID:26352028

  11. A point acoustic device based on aluminum nanowires

    NASA Astrophysics Data System (ADS)

    Xie, Qian-Yi; Ju, Zhen-Yi; Tian, He; Xue, Qing-Tang; Chen, Yuan-Quan; Tao, Lu-Qi; Mohammad, Mohammad Ali; Zhang, Xue-Yue; Yang, Yi; Ren, Tian-Ling

    2016-03-01

    A point Electrical Thermal Acoustic (ETA) device based on aluminum nanowire contacts is designed and fabricated. Interdigitated structural aluminum nanowires are released from the substrate by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE). By releasing the interdigitated structure, the nanowires contact each other at approximately 1 mm above the wafer, forming a Point Contact Structure (PCS). It is found that the PCS acoustic device realizes high efficiency when a biased AC signal is applied. The PCS acoustic device reaches a sound pressure level as high as 67 dB at a distance of 1 cm with 74 mW AC input. The power spectrum is flat, ranging from 2 kHz to 20 kHz with a less than +/-3 dB fluctuation. The highest normalized Sound Pressure Level (SPL) of the point contact structure acoustic device is 18 dB higher than the suspended aluminum wire acoustic device. Comparisons between the PCS acoustic device and the Suspended Aluminum Nanowire (SAN) acoustic device illustrate that the PCS acoustic device has a flatter power spectrum within the 20 kHz range, and enhances the SPL at a lower frequency. Enhancing the response at lower frequencies is extremely useful, which may enable earphone and loudspeaker applications within the frequency range of the human ear with the help of pulse density modulation.A point Electrical Thermal Acoustic (ETA) device based on aluminum nanowire contacts is designed and fabricated. Interdigitated structural aluminum nanowires are released from the substrate by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE). By releasing the interdigitated structure, the nanowires contact each other at approximately 1 mm above the wafer, forming a Point Contact Structure (PCS). It is found that the PCS acoustic device realizes high efficiency when a biased AC signal is applied. The PCS acoustic device reaches a sound pressure level as high as 67 dB at a distance of 1 cm with 74 mW AC input. The power spectrum is flat, ranging from 2 k

  12. Effect of power density and pulse repetition on laser shock peening of Ti-6Al-4V

    SciTech Connect

    Smith, P.R.; Shepard, M.J.; Prevey, P.S. III; Clauer, A.H.

    2000-02-01

    Laser shock peening (LSP) was applied to Ti-6Al-4V (wt.%) simulated airfoil specimens using a Nd:Glass laser. Laser shock peening processing parameters examined in the present study included power density (5.5, 7, and 9 GW/cm{sup 2}) and number of laser pulses per spot (one and three pulses/spot). The LSP's Ti-6Al-4V samples were examined using x-ray diffraction techniques to determine the residual stress distribution and percent cold work as a function of depth. It was found that the residual stress state and percent of cold work were relatively independent of LSP power density. However, the number of laser pulses per spot had a significant effect on both residual stress and percent of cold work for a given power density level. In addition, there was a strong correlation between the magnitude of residual compressive stresses generated and the percent cold work measured.

  13. On the role of the edge density profile for the L-H transition power threshold in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Shao, L. M.; Wolfrum, E.; Ryter, F.; Birkenmeier, G.; Laggner, F. M.; Viezzer, E.; Fischer, R.; Willensdorfer, M.; Kurzan, B.; Lunt, T.; the ASDEX Upgrade Team

    2016-02-01

    The L-H transition power threshold ({{P}\\text{L-\\text{H}}} ) in full tungsten (W) wall discharges is lower by 25% compared to those with graphite (C) mix tungsten walls in ASDEX Upgrade (Ryter et al 2013 Nucl. Fusion 53 113003). The lower power threshold in the full tungsten wall discharges has been found to correlate with higher edge density as well as steeper edge density gradient. An estimate of the minimum in the neoclassical radial electric field well inside the separatrix yields a constant value for all analyzed L-H transitions at fixed toroidal magnetic field ({{B}\\text{T}} ). The decrease of the threshold power is explained by the steeper edge density gradient in the discharges with full tungsten wall.

  14. Multiple characteristics analysis of Alzheimer's electroencephalogram by power spectral density and Lempel-Ziv complexity.

    PubMed

    Liu, Xiaokun; Zhang, Chunlai; Ji, Zheng; Ma, Yi; Shang, Xiaoming; Zhang, Qi; Zheng, Wencheng; Li, Xia; Gao, Jun; Wang, Ruofan; Wang, Jiang; Yu, Haitao

    2016-04-01

    To investigate the electroencephalograph (EEG) background activity in patients with Alzheimer's disease (AD), power spectrum density (PSD) and Lempel-Ziv (LZ) complexity analysis are proposed to extract multiple effective features of EEG signals from AD patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared with the control group, the relative PSD of AD group is significantly higher in the theta frequency band while lower in the alpha frequency bands. In order to explore the nonlinear information, Lempel-Ziv complexity (LZC) and multi-scale LZC is further applied to all electrodes for the four frequency bands. Analysis results demonstrate that the group difference is significant in the alpha frequency band by LZC and multi-scale LZC analysis. However, the group difference of multi-scale LZC is much more remarkable, manifesting as more channels undergo notable changes, particularly in electrodes O1 and O2 in the occipital area. Moreover, the multi-scale LZC value provided a better classification between the two groups with an accuracy of 85.7 %. In addition, we combine both features of the relative PSD and multi-scale LZC to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature, reaching 91.4 %. The obtained results show that analysis of PSD and multi-scale LZC can be taken as a potential comprehensive measure to distinguish AD patients from the normal controls, which may benefit our understanding of the disease. PMID:27066150

  15. Laser-perforated carbon paper electrodes for improved mass-transport in high power density vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Mayrhuber, I.; Dennison, C. R.; Kalra, V.; Kumbur, E. C.

    2014-08-01

    In this study, we demonstrate up to 30% increase in power density of carbon paper electrodes for vanadium redox flow batteries (VRFB) by introducing perforations into the structure of electrodes. A CO2 laser was used to generate holes ranging from 171 to 421 μm diameter, and hole densities from 96.8 to 649.8 holes cm-2. Perforation of the carbon paper electrodes was observed to improve cell performance in the activation region due to thermal treatment of the area around the perforations. Results also demonstrate improved mass transport, resulting in enhanced peak power and limiting current density. However, excessive perforation of the electrode yielded a decrease in performance due to reduced available surface area. A 30% increase in peak power density (478 mW cm-2) was observed for the laser perforated electrode with 234 μm diameter holes and 352.8 holes cm-2 (1764 holes per 5 cm2 electrode), despite a 15% decrease in total surface area compared to the raw un-perforated electrode. Additionally, the effect of perforation on VRFB performance was studied at different flow rates (up to 120 mL min-1) for the optimized electrode architecture. A maximum power density of 543 mW cm-2 was achieved at 120 mL min-1.

  16. THE RELATION BETWEEN GAS DENSITY AND VELOCITY POWER SPECTRA IN GALAXY CLUSTERS: QUALITATIVE TREATMENT AND COSMOLOGICAL SIMULATIONS

    SciTech Connect

    Zhuravleva, I.; Allen, S. W.; Churazov, E. M.; Gaspari, M.; Schekochihin, A. A.; Lau, E. T.; Nagai, D.; Nelson, K.; Parrish, I. J.

    2014-06-10

    We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρ{sub k}/ρ){sup 2}=η{sub 1}{sup 2}(V{sub 1,k}/c{sub s}){sup 2}, where δρ {sub k}/ρ is the spectral amplitude of the density perturbations at wavenumber k, V{sub 1,k}{sup 2}=V{sub k}{sup 2}/3 is the mean square component of the velocity field, c{sub s} is the sound speed, and η{sub 1} is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η{sub 1} ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales.

  17. Theoretical design of gradient coils with minimum power dissipation: accounting for the discretization of current density into coil windings.

    PubMed

    While, Peter T; Korvink, Jan G; Shah, N Jon; Poole, Michael S

    2013-10-01

    Gradient coil windings are typically constructed from either variable width copper tracks or fixed width wires. Excessive power dissipation within these windings during gradient coil operation limits the maximum drive current or duty cycle of the coil. It is common to design gradient coils in terms of a continuous minimum power current density and to perform a discretization to obtain the locations of the coil tracks or wires. However, the existence of finite gaps between these conductors and a maximum conductor width leads to an underestimation of coil resistance when calculated using the continuous current density. Put equivalently, the actual current density within the tracks or wires is higher than that used in the optimization and this departure results in suboptimal coil designs. In this work, a mapping to an effective current density is proposed to account for these effects and provide the correct contribution to the power dissipation. This enables the design of gradient coils that are genuinely optimal in terms of power minimization, post-discretization. The method was applied to the theoretical design of a variety of small x- and z-gradient coils for use in small animal imaging and coils for human head imaging. Computer-driven comparisons were made between coils designed with and without the current density mapping, in terms of simulated power dissipation. For coils to be built using variable width tracks, the method provides slight reductions in power dissipation in most cases and substantial gains only in cases where the minimum separation between track centre-lines is less than twice the gap size. However, for coils to be built using fixed width wires, very considerable reductions in dissipated power are consistently attainable (up to 60%) when compared to standard approaches of coil optimization. PMID:23994605

  18. Two dimensional power spectral density measurements of X-rayoptics with the Micromap interferometric microscope

    SciTech Connect

    Yashchuk, Valeriy V.; Franck, Andrew D.; Irick Steve C.; Howells,Malcolm R.; MacDowell, Alastair A.; McKinney, Wayne R.

    2005-05-12

    A procedure and software have been developed to transform the area distribution of the residual surface heights available from the measurement with the Micromap interferometric microscope into a two-dimensional (2D) power spectral density (PSD) distribution of the surface height. The procedure incorporates correction of one of the spectral distortions of the PSD measurement. The distortion appears as a shape difference between the tangential and sagittal PSD spectra deduced from the 2D PSD distribution for an isotropic surface. A detailed investigation of the origin of the anisotropy was performed, and a mathematical model was developed and used to correct the distortion. The correction employs a modulation transfer function (MTF) of the detector deduced analytically based on an experimentally confirmed assumption about the origin of the anisotropy due to the asymmetry of the read-out process of the instrument's CCD camera. The correction function has only one free parameter, the effective width of the gate-shaped apparatus function which is the same for both directions. The value of the parameter, equal to 1.35 pixels, was found while measuring the 2D PSD distribution of the instrument self-noise, independent of spatial frequency. The effectiveness of the developed procedure is demonstrated with a number of PSD measurements with different X-ray optics including mirrors and a grating.

  19. Development of High-Density Plasma Photonic Crystals Using High-Power Lasers

    NASA Astrophysics Data System (ADS)

    Colon Quinones, Roberto; Wang, Benjamin; Lucca Fabris, Andrea; Cappelli, Mark

    2015-09-01

    A plasma photonic crystal (PPC) is an array of plasma structures that interacts with electromagnetic (EM) waves in ways not possible with natural materials. 2D PPCs can be used for generating a band gap, which is a range of wave frequencies in which no waves are transmitted through the structure. Such gap forms when an EM wave travels through a 2D PPC with spacing equal to half the wavelength of the wave and plasma frequency (ωp) on the order of the frequency of the wave. Until recently, research on PPCs has been limited to ωp < 30 GHz, which is equivalent to a plasma density of ne <1013 cm-3 . Over the last year, PPCs of ne >1015 cm-3 have been generated at Stanford through the use of high-power lasers. The PPCs are generated by expanding the laser beam from a Q-switched Nd:YAG laser through a Galilean beam expander and subsequently focusing the beam through an optical micro-lens array. The intense photoionization of air that occurs at the focus of the individual lenses leads to the formation of a 2D array of very dense plasma spots. Photomultiplier measurements show a plasma lifetime of ~150 ns during which the plasma array functions as a PPC, representing a first step towards advancing the field forward into the low THz regime. Sponsored by the AFOSR MURI and DoD NDSEG.

  20. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  1. Minimum data requirement for neural networks based on power spectral density analysis.

    PubMed

    Deng, Jiamei; Maass, Bastian; Stobart, Richard

    2012-04-01

    One of the most critical challenges ahead for diesel engines is to identify new techniques for fuel economy improvement without compromising emissions regulations. One technique is the precise control of air/fuel ratio, which requires the measurement of instantaneous fuel consumption. Measurement accuracy and repeatability for fuel rate is the key to successfully controlling the air/fuel ratio and real-time measurement of fuel consumption. The volumetric and gravimetric measurement principles are well-known methods for measurement of fuel consumption in internal combustion engines. However, the fuel flow rate measured by these methods is not suitable for either real-time control or real-time measurement purposes because of the intermittent nature of the measurements. This paper describes a technique that can be used to find the minimum data [consisting of data from just 2.5% of the non-road transient cycle (NRTC)] to solve the problem concerning discontinuous data of fuel flow rate measured using an AVL 733S fuel meter for a medium or heavy-duty diesel engine using neural networks. Only torque and speed are used as the input parameters for the fuel flow rate prediction. Power density analysis is used to find the minimum amount of the data. The results show that the nonlinear autoregressive model with exogenous inputs could predict the particulate matter successfully with R(2) above 0.96 using 2.5% NRTC data with only torque and speed as inputs. PMID:24805042

  2. Comparison of the STA/LTA and power spectral density methods for microseismic event detection

    NASA Astrophysics Data System (ADS)

    Vaezi, Yoones; Van der Baan, Mirko

    2015-12-01

    Robust event detection and picking is a prerequisite for reliable (micro-) seismic interpretations. Detection of weak events is a common challenge among various available event detection algorithms. In this paper we compare the performance of two event detection methods, the short-term average/long-term average (STA/LTA) method, which is the most commonly used technique in industry, and a newly introduced method that is based on the power spectral density (PSD) measurements. We have applied both techniques to a 1-hr long segment of the vertical component of some raw continuous data recorded at a borehole geophone in a hydraulic fracturing experiment. The PSD technique outperforms the STA/LTA technique by detecting a higher number of weak events while keeping the number of false alarms at a reasonable level. The time-frequency representations obtained through the PSD method can also help define a more suitable bandpass filter which is usually required for the STA/LTA method. The method offers thus much promise for automated event detection in industrial, local, regional and global seismological data sets.

  3. Power-law singularity in the local density of states due to the point defect in graphene

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Tang, Jian-Ming; Lin, Hsiu-Hau

    2009-09-01

    Defects in graphene give rise to zero modes that are often related to the sharp peak in the local density of states near the defect site. Here we solved all zero modes induced by a single defect in the finite-size graphene and show that their contributions to the local density of states vanish in the thermodynamic limit. Instead, lots of resonant states emerge at low energies and eventually lead to a power-law singularity in the local density of states. Our findings show that the impurity problem in graphene should be treated as a collective phenomenon rather than a single impurity state.

  4. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  5. Acoustic Rectification in Dispersive Media

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  6. Digital Controller For Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  7. Polariton Condensation in Dynamic Acoustic Lattices

    NASA Astrophysics Data System (ADS)

    Cerda-Méndez, E. A.; Krizhanovskii, D. N.; Wouters, M.; Bradley, R.; Biermann, K.; Guda, K.; Hey, R.; Santos, P. V.; Sarkar, D.; Skolnick, M. S.

    2010-09-01

    We demonstrate that the tunable potential introduced by a surface acoustic wave on a homogeneous polariton condensate leads to fragmentation of the condensate into an array of wires which move with the acoustic velocity. Reduction of the spatial coherence of the condensate emission along the surface acoustic wave direction is attributed to the suppression of coupling between the spatially modulated condensates. Interparticle interactions observed at high polariton densities screen the acoustic potential, partially reversing its effect on spatial coherence.

  8. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  9. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273

  10. The resemblance of an autocorrelation function to a power spectrum density for a spike train of an auditory model

    NASA Astrophysics Data System (ADS)

    Ushakov, Y. V.; Dubkov, A. A.; Spagnolo, B.

    2013-01-01

    In this work we develop an analytical approach for calculation of the all-order interspike interval density (AOISID), show its connection with the autocorrelation function, and try to explain the discovered resemblance of AOISID to the power spectrum of the same spike train.

  11. 1310 nm quantum dot DFB lasers with high dot density and ultra-low linewidth-power product

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Lester, L. F.; Gray, A. L.; Newell, T. C.; Hains, C.; Gogna, P.; Muller, R.; Maker, P.; Su, H.; Stintz, A.

    2002-01-01

    Laterally coupled distributed feedback lasers using high-density InAs quantum dots-in-a-well (DWELL) active region demonstrate a nominal wavelength of 1310 nm, a linewidth as small as 68 kHz, and a linewidth-power product of 100 kHz-mW.

  12. A search for X-ray reprocessing echoes in the power spectral density functions of AGN

    NASA Astrophysics Data System (ADS)

    Emmanoulopoulos, D.; Papadakis, I. E.; Epitropakis, A.; Pecháček, T.; Dovčiak, M.; McHardy, I. M.

    2016-09-01

    We present the results of a detailed study of the X-ray power spectral density (PSD) functions of 12 X-ray bright AGN, using almost all the archival XMM-Newton data. The total net exposure of the EPIC-pn light curves is larger than 350 ks in all cases (and exceeds 1 Ms in the case of 1H 0707-497). In a physical scenario in which X-ray reflection occurs in the inner part of the accretion disc of AGN, the X-ray reflection component should be a filtered echo of the X-ray continuum signal and should be equal to the convolution of the primary emission with the response function of the disc. Our primary objective is to search for these reflection features in the 5-7 keV (iron line) and 0.5-1 keV (soft) bands, where the X-ray reflection fraction is expected to be dominant. We fit to the observed periodograms two models: a simple bending power-law model (BPL) and a BPL model convolved with the transfer function of the accretion disc assuming the lamp-post geometry and X-ray reflection from a homogeneous disc. We do not find any significant features in the best-fitting BPL model residuals either in individual PSDs in the iron band, soft and full band (0.3-10 keV) or in the average PSD residuals of the brightest and more variable sources (with similar black hole mass estimates). The typical amplitude of the soft and full-band residuals is around 3-5 per cent. It is possible that the expected general relativistic effects are not detected because they are intrinsically lower than the uncertainty of the current PSDs, even in the strong relativistic case in which X-ray reflection occurs on a disc around a fast rotating black hole having an X-ray source very close above it. However, we could place strong constrains to the X-ray reflection geometry with the current data sets if we knew in advance the intrinsic shape of the X-ray PSDs, particularly its high-frequency slope.

  13. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-05-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,i of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,i-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,i-α anti-correlation can hardly be reconciled with the predicted Ep,i ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,i are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,i. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  14. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-04-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,i of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,i-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,i-α anti-correlation can hardly be reconciled with the predicted Ep,i ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,i are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,i. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  15. A search for X-ray reprocessing echoes in the power spectral density functions of AGN

    NASA Astrophysics Data System (ADS)

    Emmanoulopoulos, D.; Papadakis, I. E.; Epitropakis, A.; Pecháček, T.; Dovčiak, M.; McHardy, I. M.

    2016-06-01

    We present the results of a detailed study of the X-ray power spectra density (PSD) functions of twelve X-ray bright AGN, using almost all the archival XMM-Newton data. The total net exposure of the EPIC-pn light curves is larger than 350 ks in all cases (and exceeds 1 Ms in the case of 1H 0707-497). In a physical scenario in which X-ray reflection occurs in the inner part of the accretion disc of AGN, the X-ray reflection component should be a filtered echo of the X-ray continuum signal and should be equal to the convolution of the primary emission with the response function of the disc. Our primary objective is to search for these reflection features in the 5 - 7 keV (iron line) and 0.5 - 1 keV (soft) bands, where the X-ray reflection fraction is expected to be dominant. We fit to the observed periodograms two models: a simple bending power law model (BPL) and a BPL model convolved with the transfer function of the accretion disc assuming the lamp-post geometry and X-ray reflection from a homogeneous disc. We do not find any significant features in the best-fitting BPL model residuals either in individual PSDs in the iron band, soft and full band (0.3 - 10 keV) or in the average PSD residuals of the brightest and more variable sources (with similar black hole mass estimates). The typical amplitude of the soft and full-band residuals is around 3 - 5 per cent. It is possible that the expected general relativistic effects are not detected because they are intrinsically lower than the uncertainty of the current PSDs, even in the strong relativistic case in which X-ray reflection occurs on a disc around a fast rotating black hole having an X-ray source very close above it. However, we could place strong constrains to the X-ray reflection geometry with the current data sets if we knew in advance the intrinsic shape of the X-ray PSDs, particularly its high frequency slope.

  16. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... 177. Battista RA. Gamma knife radiosurgery for vestibular schwannoma. Otolaryngol Clin North Am . 2009;42:635-654. ...

  17. Dynamic considerations for composite metal-rubber laminate acoustic power coupling bellows with application to thermoacoustic refrigeration

    NASA Astrophysics Data System (ADS)

    Smith, Robert William

    Many electrically driven thermoacoustic refrigerators have employed corrugated metal bellows to couple work from an electro-mechanical transducer to the working fluid typically. An alternative bellows structure to mediate this power transfer is proposed: a laminated hollow cylinder comprised of alternating layers of rubber and metal 'hoop-stack'. Fatigue and visoelastic power dissipation in the rubber are critical considerations; strain energy density plays a role in both. Optimal aspect ratios for a rectangle corss-section in the rubber, for given values of bellows axial strain and oscillatory pressure loads are discussed. Comparisons of tearing energies estimated from known load cases and those obtained by finite element analysis for candidate dimensions are presented. The metal layers of bellows are subject to an out-of-plane buckling instability for the case of external pressure loading; failure of this type was experimentally observed. The proposed structure also exhibits column instability when subject to internal pressure, as do metal bellows. For hoop-stack bellows, shear deflection cannot be ignored and this leads to column instability for both internal and external pressures, the latter being analogous to the case of tension buckling of a beam. During prototype bellows testing, transverse modes of vibration are believed to have been excited parametrically as a consequence of the oscillatory pressures. Some operating frequencies of interest in this study lie above the cut-on frequency at which Timoshenko beam theory (TBT) predicts multiple phase speeds; it is shown that TBT fails to accurately predict both mode shapes and resonance frequencies in this regime. TBT is also shown to predict multiple phase speeds in the presence of axial tension, or external pressures, at magnitudes of interest in this study, over the entire frequency spectrum. For modes below cut-on absent a pressure differential (or equivalently, axial load) TBT predicts decreasing resonance

  18. Use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Aikens, David M.; Wolfe, C. Robert; Lawson, Janice K.

    1995-08-01

    In the second half of the 1990's, LLNL and others will be designing and beginning construction of the National Ignition Facility. This new laser will be capable of producing the worlds first controlled fusion ignition and burn, completing a vital milestone on the path of Fusion Energy. This facility will use more than 7,000 optical components, most of which have a rectangular aperture, which measure greater than 600 mm on the diagonal. In order to optimize the performance versus cost of the laser system, we have determined that specifications based on the Power Spectral Density (PSD) functions are the most effective for controlling mid-spatial wavelength errors. The draft optics specifications based on a combination of PSD and conventional roughness and P-V requirements are presented, with a discussion of their origins. The emphasis is on the application of a PSD function for transmitted wavefront optical specifications, and the benefits thereof. The PSD function is the most appropriate way to characterize transmitted wavefront errors with spatial frequencies ranging from several centimeters to a few hundred nanometers, with amplitudes in the (lambda) /100 regime. Such errors are commonly generated by cost effective, deterministic finishing technologies, and can be damaging to the laser, as well as causing unnecessary energy loss and inability to focus, in a high energy laser application. In addition, periodic errors can occur as a result of errors at other steps in the fabrication process, such as machine vibration in a fixed abrasive step, or material homogeneity ripple. The control of such errors will be essential to the construction of future high energy lasers.

  19. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect

    Anil V. Virkar

    2002-03-26

    Anode-supported cells comprising Ni + yttria-stabilized zirconia (YSZ) anode, thin ({approx}10 {micro}m) YSZ electrolyte, and composite cathodes containing a mixture of La{sub 0.8}Sr{sub 0.2}MnO{sub (3-{delta})} (LSM) and La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub (3-{lambda})} (LSGM) were fabricated. The relative proportions of LSGM and LSM were varied between 30 wt.% LSGM + 70 wt.% LSM and 70 wt.% LSGM + 30 wt.% LSM, while the firing temperature was varied between 1000 and 1200 C. The cathode interlayer composition had a profound effect on cathode performance at 800 C with overpotentials ranging between 60 and 425 mV at 1.0 A/cm{sup 2} and exhibiting a minimum for 50 wt.% LSGM + 50 wt.% LSM. The cathodic overpotential decreased with increasing firing temperature of the composite interlayer in the range 1000 {le} T {le} 1150 C, and then increased dramatically for the interlayer fired at 1200 C. The cell with the optimized cathode interlayer of 50 wt.% LSM + 50 wt.% LSGM fired at 1150 C exhibited an area specific cell resistance of 0.18 {Omega}cm{sup 2} and a maximum power density of 1.4 W/cm{sup 2} at 800 C. Chemical analysis revealed that LSGM reacts with YSZ above 1000 C to form the pyrochlore phase, La{sub 2}Zr{sub 2}O{sub 7}. The formation of the pyrochlore phase at the interface between the LSGM/LSM composite cathode and the YSZ electrolyte limits the firing time and temperature of the cathode interlayer.

  20. Long pulse acceleration of MeV class high power density negative H- ion beam for ITER

    NASA Astrophysics Data System (ADS)

    Umeda, N.; Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-01

    R&D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H- ion beam acceleration up to 1 MeV with 200 A/m2 for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m2 of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  1. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  2. Simulation of electron beam from two strip electron guns and control of power density by rotation of gun

    NASA Astrophysics Data System (ADS)

    Sahu, G. K.; Baruah, S.; Thakur, K. B.

    2012-11-01

    Electron beam is preferably used for large scale evaporation of refractory materials. Material evaporation from a long and narrow source providing a well collimated wedge shaped atomic beam has applications in isotopic purification of metals relevant to nuclear industry. The electron beam from an electron gun with strip type filament provides a linear heating source. However, the high power density of the electron beam can lead to turbulence of the melt pool and undesirable splashing of molten metal. For obtaining quiet surface evaporation, the linear electron beam is generally scanned along its length. To further reduce the power density to maintain quiet evaporation the width of the vapour source can be controlled by rotating the electron gun on its plane, thereby scanning an inclined beam over the molten pool. The rotation of gun has further advantages. When multiple strip type electron guns are used for scaling up evaporation length, a dark zone appears between two beams due to physical separation of adjacent guns. This dark zone can be reduced by rotating the gun and thereby bringing two adjacent beams closer. The paper presented here provides the simulation results of the electron beam trajectory and incident power density originating from two strip electron guns by using in-house developed code. The effect of electron gun rotation on the electron beam trajectory and power density is studied. The simulation result is experimentally verified with the image of molten pool and heat affected zone taken after experiment. This technique can be gainfully utilized in controlling the time averaged power density of the electron beam and obtaining quiet evaporation from the metal molten pool.

  3. Preliminary studies of a laser source used to test mirrors under high power density with a closed cavity

    NASA Astrophysics Data System (ADS)

    Fang, Xiaoting; Yuan, Shengfu; Liu, Wenguang; Huang, Bing

    2014-11-01

    Cavity mirrors of high power lasers are easily damaged by heat absorption of laser beam, so there is an urgent need to detect the absorption coefficient of the coating layers on them. High power combustion drived lasers, which operate with large size cavity mirrors, high gas consumption and short running time, cannot offer a convenient source of radiation for studies of absorption coefficient. Other kinds of lasers cannot achieve the high power density required easily. To solve this problem, in this paper, a small-scale and cost-effective laser source is described to detect the absorption coefficient under high power density with a Quasi-Closed Cavity. This laser source is rebuilt on the basis of a 1000W-class Direct Current (DC)-discharge drived continuous-wave (CW) HF/DF chemical laser. At first, the structure of the laser source is introduced. Then, some performance parameters are measured and the experiment results are analyzed. The laser operated with a (He+NF3)+D2 gas mixture, and output of about 126W with a transmission of 3% was achieved through the experiment, corresponding to an electrical efficiency of about 3%. Power density on the surfaces of mirrors under test reached 3.74 kW/cm2 . It satisfies the requirement of the Quasi-Closed Cavity test well. Experimental results show that this improved DC-discharge drived CW HF/DF chemical laser is applicable as the laser source to detect the absorption coefficient under high power density.

  4. Far-Field Acoustic Power Level and Performance Analyses of F31/A31 Open Rotor Model at Simulated Scaled Takeoff, Nominal Takeoff, and Approach Conditions: Technical Report I

    NASA Technical Reports Server (NTRS)

    Sree, Dave

    2015-01-01

    Far-field acoustic power level and performance analyses of open rotor model F31/A31 have been performed to determine its noise characteristics at simulated scaled takeoff, nominal takeoff, and approach flight conditions. The nonproprietary parts of the data obtained from experiments in 9- by 15-Foot Low-Speed Wind Tunnel (9?15 LSWT) tests were provided by NASA Glenn Research Center to perform the analyses. The tone and broadband noise components have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, angle of attack, thrust, and input shaft power have been presented and discussed. The effect of an upstream pylon on the noise levels of the model has been addressed. Empirical equations relating model's acoustic power level, thrust, and input shaft power have been developed. The far-field acoustic efficiency of the model is also determined for various simulated flight conditions. It is intended that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.

  5. Acoustic noise from volcanoes - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Woulff, G.; Mcgetchin, T. R.

    1976-01-01

    The paper discusses some theoretical aspects of acoustic investigation of volcanoes and describes a field experiment involving the recording, analysis, and interpretation of acoustic radiation from energetic fumaroles at Volcan Acatenango, Guatemala, during mid-January 1973. Particular attention is given to deriving information about the flow velocity of the erupting medium from acoustics as a means to study eruption dynamics. Theoretical considerations suggest that acoustic power radiated during gaseous volcanic eruptions may be related to gas exit velocity according to appropriate power laws. Eruption acoustics proves useful as a means of quantitative monitoring of volcanic activity.

  6. Development and testing of cabin sidewall acoustic resonators for the reduction of cabin tone levels in propfan-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.; Prydz, R. A.; Balena, F. J.

    1991-01-01

    The use of Helmholtz resonators to increase the sidewall transmission loss (TL) in aircraft cabin sidewalls is evaluated. Development, construction, and test of an aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Laboratory and flight test results are discussed. Resonators (448) were located between the enclosure trim panels and the fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a propfan fundamental blade passage frequency (235 Hz). After flight testing on the PTA aircraft, noise reduction (NR) tests were performed with the enclosure in the Kelly Johnson Research and Development Center Acoustics Laboratory. Broadband and tonal excitations were used in the laboratory. Tonal excitation simulated the propfan flight test excitation. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. Increases in NR of up to 11 dB were measured. The effects of flanking, sidewall absorption, cabin absorption, resonator loading of trim panels, and panel vibrations are presented. Resonator and sidewall panel design and test are discussed.

  7. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  8. Acoustic microscopy of living cells.

    PubMed Central

    Hildebrand, J A; Rugar, D; Johnston, R N; Quate, C F

    1981-01-01

    This paper reports preliminary results of the observation by acoustic microscopy of living cells in vitro. The scanning acoustic microscope uses high-frequency sound waves to produce images with submicrometer resolution. The contrast observed in acoustic micrographs of living cells depends on the acoustic properties (i.e., density, stiffness, and attenuation) and on the topographic contour of the cell. Variation in distance separating the acoustic lens and the viewed cell also has a profound effect on the image. When the substratum is located at the focal plane, thick regions of the cell show a darkening that can be related to cellular acoustic attenuation (a function of cytoplasmic viscosity). When the top of the cell is placed near the focal plane, concentric bright and dark rings appear in the image. The location of the rings can be related to cell topography, and the ring contrast can be correlated to the stiffness and density of the cell. In addition, the character of the images of single cells varies dramatically when the substratum upon which they are grown is changed to a different material. By careful selection of the substratum, the information content of the acoustic images can be increased. Our analysis of acoustic images of actively motile cells indicates that leading lamella are less dense or stiff than the quiescent trailing processes of the cells. Images PMID:6940179

  9. Advanced Distributed Measurements and Data Processing at the Vibro-Acoustic Test Facility, GRC Space Power Facility, Sandusky, Ohio - an Architecture and an Example

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.; Evans, Richard K.

    2009-01-01

    A large-scale, distributed, high-speed data acquisition system (HSDAS) is currently being installed at the Space Power Facility (SPF) at NASA Glenn Research Center s Plum Brook Station in Sandusky, OH. This installation is being done as part of a facility construction project to add Vibro-acoustic Test Capabilities (VTC) to the current thermal-vacuum testing capability of SPF in support of the Orion Project s requirement for Space Environments Testing (SET). The HSDAS architecture is a modular design, which utilizes fully-remotely managed components, enables the system to support multiple test locations with a wide-range of measurement types and a very large system channel count. The architecture of the system is presented along with details on system scalability and measurement verification. In addition, the ability of the system to automate many of its processes such as measurement verification and measurement system analysis is also discussed.

  10. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  11. Influence of the fluid density on the statistics of power fluctuations in von Kármán swirling flows

    NASA Astrophysics Data System (ADS)

    Opazo, A.; Sáez, A.; Bustamante, G.; Labbé, R.

    2016-02-01

    Here, we report experimental results on the fluctuations of injected power in confined turbulence. Specifically, we have studied a von Kármán swirling flow with constant external torque applied to the stirrers. Two experiments were performed at nearly equal Reynolds numbers, in geometrically similar experimental setups. Air was utilized in one of them and water in the other. With air, it was found that the probability density function of power fluctuations is strongly asymmetric, while with water, it is nearly Gaussian. This suggests that the outcome of a big change of the fluid density in the flow-stirrer interaction is not simply a change in the amplitude of stirrers' response. In the case of water, with a density roughly 830 times greater than air density, the coupling between the flow and the stirrers is stronger, so that they follow more closely the fluctuations of the average rotation of the nearby flow. When the fluid is air, the coupling is much weaker. The result is not just a smaller response of the stirrers to the torque exerted by the flow; the PDF of the injected power becomes strongly asymmetric and its spectrum acquires a broad region that scales as f-2. Thus, the asymmetry of the probability density functions of torque or angular speed could be related to the inability of the stirrers to respond to flow stresses. This happens, for instance, when the torque exerted by the flow is weak, due to small fluid density, or when the stirrers' moment of inertia is large. Moreover, a correlation analysis reveals that the features of the energy transfer dynamics with water are qualitatively and quantitatively different to what is observed with air as working fluid.

  12. Power-Efficient, High-Current-Density, Long-Life Thermionic Cathode Developed for Microwave Amplifier Applications

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    2002-01-01

    A power-efficient, miniature, easily manufactured, reservoir-type barium-dispenser thermionic cathode has been developed that offers the significant advantages of simultaneous high electron-emission current density (>2 A/sq cm) and very long life (>100,000 hr of continuous operation) when compared with the commonly used impregnated-type barium-dispenser cathodes. Important applications of this cathode are a wide variety of microwave and millimeter-wave vacuum electronic devices, where high output power and reliability (long life) are essential. We also expect it to enable the practical development of higher purveyance electron guns for lower voltage and more reliable device operation. The low cathode heater power and reduced size and mass are expected to be particularly beneficial in traveling-wave-tube amplifiers (TWTA's) for space communications, where future NASA mission requirements include smaller onboard spacecraft systems, higher data transmission rates (high frequency and output power) and greater electrical efficiency.

  13. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  14. Raman backscatter as a remote laser power sensor in high-energy-density plasmas.

    PubMed

    Moody, J D; Strozzi, D J; Divol, L; Michel, P; Robey, H F; LePape, S; Ralph, J; Ross, J S; Glenzer, S H; Kirkwood, R K; Landen, O L; MacGowan, B J; Nikroo, A; Williams, E A

    2013-07-12

    Stimulated Raman backscatter is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching stimulated Raman backscatter between a shot reducing outer versus a shot reducing inner power we infer that about half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. This is the first instantaneous nondisruptive measure of power transfer in an indirect drive NIF experiment using optical measurements. PMID:23889410

  15. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible. PMID:26233382

  16. An InP/InGaAs/InP DHBT with high power density at Ka-band

    NASA Astrophysics Data System (ADS)

    Wang, Che-ming; Huang, Shou-Chien; Huang, Wei-Kuo; Hsin, Yue-ming

    2008-01-01

    An InP/InGaAs/InP double heterojunction bipolar transistor was fabricated and its Ka-band power performance characterized. The device employed a 30 nm highly doped InGaAs base, and a 150 nm collector with an InAlGaAs linearly graded at the base-collector junction to prevent current blocking and maintain breakdown voltage. The dc current gain is 28.4 at a current density of JC = 666 kA/cm 2 and the breakdown voltage (BV CEO) is larger than 5 V. A submicrometer InP/InGaAs DHBT with an emitter size of 0.6 × 12 μm 2 demonstrated a maximum cutoff frequency ( fT) of 230 GHz, and a maximum output power density of 3.7 mW/μm 2 at 29 GHz.

  17. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  18. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    NASA Astrophysics Data System (ADS)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  19. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  20. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes

    SciTech Connect

    Qian Muyang; Ren Chunsheng; Wang Dezhen; Zhang Jialiang; Wei Guodong

    2010-03-15

    Characteristics of a double-power electrode dielectric barrier discharge of an argon plasma jet generated at the atmospheric pressure are investigated in this paper. Time-averaged optical emission spectroscopy is used to measure the plasma parameters, of which the excitation electron temperature is determined by the Boltzmann's plot method whereas the gas temperature is estimated using a fiber thermometer. Furthermore, the Stark broadening of the hydrogen Balmer H{sub {beta}} line is applied to measure the electron density, and the simultaneous presence of comparable Doppler, van der Waals, and instrumental broadenings is discussed. Besides, properties of the jet discharge are also studied by electrical diagnosis. It has been found that the electron densities in this argon plasma jet are on the order of 10{sup 14} cm{sup -3}, and the excitation temperature, gas temperature, and electron density increase with the applied voltage. On the other hand, these parameters are inversely proportional to the argon gas flow rate.

  1. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  2. Determining meteoroid bulk densities using a plasma scattering model with high-power large-aperture radar data

    NASA Astrophysics Data System (ADS)

    Close, Sigrid; Volz, Ryan; Loveland, Rohan; Macdonell, Alex; Colestock, Patrick; Linscott, Ivan; Oppenheim, Meers

    2012-09-01

    We present an improved technique for calculating bulk densities of low-mass (<1 g) meteoroids using a scattering model applied to the high-density plasma formed around the meteoroid as it enters Earth’s atmosphere. These plasmas, referred to as head echoes, travel at or near the speed of the meteoroid, thereby allowing the determination of the ballistic coefficient (mass divided by physical cross-section), which depends upon speed and deceleration. Concurrently, we apply a scattering model to the returned signal strength of the head echo in order to correlate radar-cross-section (RCS) to plasma density and meteoroid mass. In this way, we can uniquely solve for the meteoroid mass, radius and bulk density independently. We have applied this new technique to head echo data collected in 2007 and 2008 simultaneously at VHF (160 MHz) and UHF (422 MHz) at ALTAIR, which is a high-power large-aperture radar located on the Kwajalein Atoll. These data include approximately 20,000 detections with dual-frequency, dual-polarization, and monopulse (i.e. angle) returns. From 2000 detections with the smallest monopulse errors, we find a mean meteoroid bulk density of 0.9 g/cm3 with observations spanning almost three orders of magnitude from 0.01 g/cm3 to 8 g/cm3. Our results show a clear dependence between meteoroid bulk density and altitude of head echo formation, as well as dependence between meteoroid bulk density and 3D speed. The highest bulk densities are detected at the lowest altitudes and lowest speeds. Additionally, we stipulate that the approximations used to derive the ballistic parameter, in addition to neglecting fragmentation, suggest that the traditional ballistic parameter must be used with caution when determining meteoroid parameters.

  3. Border collision bifurcations and power spectral density of chaotic signals generated by one-dimensional discontinuous piecewise linear maps

    NASA Astrophysics Data System (ADS)

    Feltekh, Kais; Jemaa, Zouhair Ben; Fournier-Prunaret, Danièle; Belghith, Safya

    2014-08-01

    Recently, many papers have appeared which study the power spectral density (PSD) of signals issued from some specific maps. This interest in the PSD is due to the importance of frequency in the telecommunications and transmission security. With the large number of wireless systems, the availability of frequencies for transmission and reception is increasingly uncommon for wireless communications. Also, guided media have limitations related to the bandwidth of a signal. In this paper, we investigate some properties associated to the border-collision bifurcations in a one-dimensional piecewise-linear map with three slopes and two parameters. We derive analytical expressions for the autocorrelation sequence, power spectral density (PSD) of chaotic signals generated by our piecewise-linear map. We prove the existence of strong relation between different types of the power spectral density (low-pass, high-pass or band-stop) and the parameters. We also find a relation between the type of spectrum and the order of attractive cycles which are located after the border collision bifurcation between chaos and cycles.

  4. A new method to predict the evolution of the power spectral density for a finite-amplitude sound wave

    NASA Astrophysics Data System (ADS)

    Menounou, Penelope; Blackstock, David T.

    2004-02-01

    A method to predict the effect of nonlinearity on the power spectral density of a plane wave traveling in a thermoviscous fluid is presented. As opposed to time-domain methods, the method presented here is based directly on the power spectral density of the signal, not the signal itself. The Burgers equation is employed for the mathematical description of the combined effects of nonlinearity and dissipation. The Burgers equation is transformed into an infinite set of linear equations that describe the evolution of the joint moments of the signal. A method for solving this system of equations is presented. Only a finite number of equations is appropriately selected and solved by numerical means. For the method to be applied all appropriate joint moments must be known at the source. If the source condition has Gaussian characteristics (it is a Gaussian noise signal or a Gaussian stationary and ergodic stochastic process), then all the joint moments can be computed from the power spectral density of the signal at the source. Numerical results from the presented method are shown to be in good agreement with known analytical solutions in the preshock region for two benchmark cases: (i) sinusoidal source signal and (ii) a Gaussian stochastic process as the source condition.

  5. Low power density multihole cathode very-high-frequency plasma for mixed phase Si:H thin films

    SciTech Connect

    Jariwala, C.; Bhatt, S.; John, P. I.; Chainani, A.; Eguchi, R.; Matsunami, M.; Shin, S.; Dalal, V.

    2008-11-10

    A low power density very-high-frequency (VHF) (55 MHz) H{sub 2} plasma in a capacitively coupled multihole-cathode (MHC) geometry is studied using Langmuir probe measurements. Radial profiles show a higher ion density (N{sub i}) and lower electron temperature (T{sub e}) compared to a MHC 13.56 MHz H{sub 2} plasma. The N{sub i} dependence on power indicates an Ohmic plasma, while T{sub e} is essentially constant. The MHC-VHF plasma is used to investigate mixed phase microcrystalline+amorphous ({mu}c+a-) Si:H thin films at a substrate temperature of 60 deg. C. High-resolution photoemission suggests two types of Si, with concentrations in agreement with atomic force microscopy images showing {approx}510{+-}40 nm crystallites embedded in a-Si:H matrix. The results show that the low power density MHC-VHF plasma is a high-N{sub i} Ohmic collisional plasma, suitable for low temperature deposition of {mu}c+a-Si:H thin films.

  6. Power laws from linear neuronal cable theory: power spectral densities of the soma potential, soma membrane current and single-neuron contribution to the EEG.

    PubMed

    Pettersen, Klas H; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T

    2014-11-01

    Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(α) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency 1/f(α) power laws with power-law exponents analytically identified as α∞(I) = 1/2 for the soma membrane current, α∞(p) = 3/2 for the current-dipole moment, and α∞(V) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(α) power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation

  7. Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEG

    PubMed Central

    Pettersen, Klas H.; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T.

    2014-01-01

    Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation. PMID:25393030

  8. High-Temperature SiC Power Module with Integrated SiC Gate Drivers for Future High-Density Power Electronics Applications

    SciTech Connect

    Whitaker, Mr. Bret; Cole, Mr. Zach; Passmore, Mr. Brandon; Martin, Daniel; Mcnutt, Tyler; Lostetter, Dr. Alex; Ericson, Milton Nance; Frank, Steven Shane; Britton Jr, Charles L; Marlino, Laura D; Mantooth, Alan; Francis, Dr. Matt; Lamichhane, Ranjan; Shepherd, Dr. Paul; Glover, Dr. Michael

    2014-01-01

    This paper presents the testing results of an all-silicon carbide (SiC) intelligent power module (IPM) for use in future high-density power electronics applications. The IPM has high-temperature capability and contains both SiC power devices and SiC gate driver integrated circuits (ICs). The high-temperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes high frequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter to showcase the performance of the module in a system level application. The converter was initially operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The efficiency of the converter was then evaluated experimentally and optimized by increasing the overdrive voltage on the SiC gate driver ICs. Overall a peak efficiency of 97.7% was measured at 3.0 kW output. The converter s switching frequency was then increased to 500 kHz to prove the high frequency capability of the power module was then pushed to its limits and operated at a switching frequency of 500 kHz. With no further optimization of components, the converter was able to operate under these conditions and showed a peak efficiency of 95.0% at an output power of 2.1 kW.

  9. Analysis and Design Considerations of a High-Power Density, Dual Air Gap, Axial-Field Brushless, Permanent Magnet Motor.

    NASA Astrophysics Data System (ADS)

    Cho, Chahee Peter

    1995-01-01

    Until recently, brush dc motors have been the dominant drive system because they provide easily controlled motor speed over a wide range, rapid acceleration and deceleration, convenient control of position, and lower product cost. Despite these capabilities, the brush dc motor configuration does not satisfy the design requirements for the U.S. Navy's underwater propulsion applications. Technical advances in rare-earth permanent magnet materials, in high-power semiconductor transistor technology, and in various rotor position-sensing devices have made using brushless permanent magnet motors a viable alternative. This research investigates brushless permanent magnet motor technology, studying the merits of dual-air gap, axial -field, brushless, permanent magnet motor configuration in terms of power density, efficiency, and noise/vibration levels. Because the design objectives for underwater motor applications include high-power density, high-performance, and low-noise/vibration, the traditional, simplified equivalent circuit analysis methods to assist in meeting these goals were inadequate. This study presents the development and verification of detailed finite element analysis (FEA) models and lumped parameter circuit models that can calculate back electromotive force waveforms, inductance, cogging torque, energized torque, and eddy current power losses. It is the first thorough quantification of dual air-gap, axial -field, brushless, permanent magnet motor parameters and performance characteristics. The new methodology introduced in this research not only facilitates the design process of an axial field, brushless, permanent magnet motor but reinforces the idea that the high-power density, high-efficiency, and low-noise/vibration motor is attainable.

  10. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  11. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  12. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  13. Neutral density estimation derived from meteoroid measurements using high-power, large-aperture radar

    NASA Astrophysics Data System (ADS)

    Li, A.; Close, S.

    2016-07-01

    We present a new method to estimate the neutral density of the lower thermosphere/upper mesosphere given deceleration measurements from meteoroids as they enter Earth's atmosphere. By tracking the plasma (referred to as head echoes) surrounding the ablating meteoroid, we are able to measure the range and velocity of the meteoroid in 3-D. This is accomplished at Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR) with the use of four additional receiving horns. Combined with the momentum and ablation equations, we can feed large quantities of data into a minimization function which estimates the associated constants related to the ablation process and, more importantly, the density ratios between successive layers of the atmosphere. Furthermore, if we take statistics of the masses and bulk densities of the meteoroids, we can calculate the neutral densities and its associated error by the ratio distribution on the minimum error statistic. A standard deviation of approximately 10% can be achieved, neglecting measurement error from the radar. Errors in velocity and deceleration compound this uncertainty, which in the best case amounts to an additional 4% error. The accuracy can be further improved if we take increasing amounts of measurements, limited only by the quality of the ranging measurements and the probability of knowing the median of the distribution. Data analyzed consist mainly of approximately 500 meteoroids over a span of 20 min on two separate days. The results are compared to the existing atmospheric model NRLMSISE-00, which predicts lower density ratios and static neutral densities at these altitudes.

  14. A procedure for combining acoustically induced and mechanically induced loads (first passage failure design criterion)

    NASA Technical Reports Server (NTRS)

    Crowe, D. R.; Henricks, W.

    1983-01-01

    The combined load statistics are developed by taking the acoustically induced load to be a random population, assumed to be stationary. Each element of this ensemble of acoustically induced loads is assumed to have the same power spectral density (PSD), obtained previously from a random response analysis employing the given acoustic field in the STS cargo bay as a stationary random excitation. The mechanically induced load is treated as either (1) a known deterministic transient, or (2) a nonstationary random variable of known first and second statistical moments which vary with time. A method is then shown for determining the probability that the combined load would, at any time, have a value equal to or less than a certain level. Having obtained a statistical representation of how the acoustic and mechanical loads are expected to combine, an analytical approximation for defining design levels for these loads is presented using the First Passage failure criterion.

  15. Acoustic Properties of Return Strokes and M-components From Rocket-Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Fuselier, S. A.; Dwyer, J. R.; Uman, M. A.; Jordan, D.; Carvalho, F. L.; Rassoul, H.

    2015-12-01

    Using a linear, one-dimensional array of 15 microphones situated 95 meters from the lightning channel; we measure the acoustic signatures from 11 triggered-lightning events comprising 41 return strokes and 28 M-components. Measurements were taken at the International Center for Lightning Research and Testing (ICLRT) in Camp Blanding, FL during the summer of 2014. Recently, we reported that beamforming signal processing enables acoustic imaging of the lightning channel at high frequencies (Dayeh et al. 2015). Following up on the work, we report on the characteristics of the acoustic measurements in terms of sound pressure amplitude, peak currents, power spectral density (PSD) properties, and the inferred energy input. In addition, we find that M-component do not create acoustic signatures in most occasions; we discuss these cases in context of the associated current amplitude, rise time, and background continuing current.

  16. A Web 2.0 Interface to Ion Stopping Power and Other Physics Routines for High Energy Density Physics Applications

    NASA Astrophysics Data System (ADS)

    Stoltz, Peter; Veitzer, Seth

    2008-04-01

    We present a new Web 2.0-based interface to physics routines for High Energy Density Physics applications. These routines include models for ion stopping power, sputtering, secondary electron yields and energies, impact ionization cross sections, and atomic radiated power. The Web 2.0 interface allows users to easily explore the results of the models before using the routines within other codes or to analyze experimental results. We discuss how we used various Web 2.0 tools, including the Python 2.5, Django, and the Yahoo User Interface library. Finally, we demonstrate the interface by showing as an example the stopping power algorithms researchers are currently using within the Hydra code to analyze warm, dense matter experiments underway at the Neutralized Drift Compression Experiment facility at Lawrence Berkeley National Laboratory.

  17. Ion beam driven ion-acoustic waves in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Walia, Ritu; Sharma, Kavita

    2012-07-15

    An ion beam propagating through a magnetized potassium plasma cylinder having negatively charged dust grains drives electrostatic ion-acoustic waves to instability via Cerenkov interaction. The phase velocity of sound wave increases with the relative density of negatively charged dust grains. The unstable wave frequencies and the growth rate increase, with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales as one-third power of the beam density. The real part of frequency of the unstable mode increases with the beam energy and scales as almost the one-half power of the beam energy.

  18. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  19. Limits on the power-law mass and luminosity density profiles of elliptical galaxies from gravitational lensing systems

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Biesiada, Marek; Yao, Meng; Zhu, Zong-Hong

    2016-09-01

    We use 118 strong gravitational lenses observed by the SLACS, BOSS emission-line lens survey (BELLS), LSD and SL2S surveys to constrain the total mass profile and the profile of luminosity density of stars (light tracers) in elliptical galaxies up to redshift z ˜ 1. Assuming power-law density profiles for the total mass density, ρ = ρ0(r/r0)-α, and luminosity density, ν = ν0(r/r0)-δ, we investigate the power-law index and its first derivative with respect to the redshift. Using Monte Carlo simulations of the posterior likelihood taking the Planck's best-fitting cosmology as a prior, we find γ = 2.132 ± 0.055 with a mild trend ∂γ/∂zl = -0.067 ± 0.119 when α = δ = γ, suggesting that the total density profile of massive galaxies could have become slightly steeper over cosmic time. Furthermore, similar analyses performed on sub-samples defined by different lens redshifts and velocity dispersions indicate the need of treating low-, intermediate- and high-mass galaxies separately. Allowing δ to be a free parameter, we obtain α = 2.070 ± 0.031, ∂α/∂zl = -0.121 ± 0.078 and δ = 2.710 ± 0.143. The model in which mass traces light is rejected at >95 per cent confidence, and our analysis robustly indicates the presence of dark matter in the form of a mass component that is differently spatially extended than the light. In this case, intermediate-mass elliptical galaxies (200 km s-1 <σap ≤ 300 km s-1) show the best consistency with the singular isothermal sphere as an effective model of galactic lenses.

  20. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect

    Professor Anil V. Virkar

    2003-05-23

    This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid

  1. Defect-Engineered Graphene for High-Energy- and High-Power-Density Supercapacitor Devices.

    PubMed

    Zhu, Jingyi; Childress, Anthony S; Karakaya, Mehmet; Dandeliya, Sushmita; Srivastava, Anurag; Lin, Ye; Rao, Apparao M; Podila, Ramakrishna

    2016-09-01

    Defects are often written off as performance limiters. Contrary to this notion, it is shown that controlling the defect configuration in graphene is critical to overcome a fundamental limitation posed by quantum capacitance and opens new channels for ion diffusion. Defect-engineered graphene flexible pouch capacitors with energy densities of 500% higher than the state-of-the-art supercapacitors are demonstrated. PMID:27299300

  2. Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Hagedorn, N. H.

    1974-01-01

    Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.

  3. Acoustic/Magnetic Stress Sensor

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Namkung, M.

    1986-01-01

    High-resolution sensor fast, portable, does not require permanent bonding to structure. Sensor measures nondestructively type (compressive or tensile) and magnitude of stresses and stress gradients present in class of materials. Includes precise high-resolution acoustic interferometer, sending acoustic transducer, receiving acoustic transducer, electromagnet coil and core, power supply, and magnetic-field-measuring device such as Hall probe. This measurement especially important for construction and applications where steel is widely used. Sensor useful especially for nondestructive evaluation of stress in steel members because of portability, rapid testing, and nonpermanent installation.

  4. Coefficient of variation spectral analysis: An application to underwater acoustics

    NASA Astrophysics Data System (ADS)

    Herstein, P. D.; Laplante, R. F.

    1983-05-01

    Acoustic noise in the ocean is often described in terms of its power spectral density. Just as in other media, this noise consists of both narrowband and broadband frequency components. A major problem in the analysis of power spectral density measurements is distinguishing between narrowband spectral components of interest and contaminating narrowband components. In this paper, the use of coefficient of variation (Cv) spectrum is examined as an adjunct to the conventional power spectrum to distinguish narrowband components of interest from contaminating components. The theory of the Cv is presented. Coefficients for several classical input distributions are developed. It is shown that Cv spectra can be easily implemented as an adjunct procedure during the computation of the ensemble of averaged power spectra. Power and Cv spectra derived from actual at-sea sonobuoy measurements of deep ocean ambient noise separate narrowband components from narrowband lines of interest in the ensemble of averaged power spectra, these acoustic components of interest can be distinguished in the Cv spectra.

  5. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  6. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  7. Eliminating Nonlinear Acoustical Effects From Thermoacoustic Refrigeration Systems

    NASA Astrophysics Data System (ADS)

    Garrett, Steven L.; Smith, Robert W. M.; Poese, Matthew E.

    2006-05-01

    Nonlinear acoustical effects dissipate energy that degrades thermoacoustic refrigerator performance. The largest of these effects occur in acoustic resonators and include shock formation; turbulence and boundary layer disruption; and entry/exit (minor) losses induced by changes in resonator cross-sectional area. Effects such as these also make the creation of accurate performance models more complicated. Suppression of shock formation by intentional introduction of resonator anharmonicity has been common practice for the past two decades. Recent attempts to increase cooling power density by increasing pressure amplitudes has required reduction of turbulence and minor loss by using an new acousto-mechanical resonator topology. The hybrid resonator still stores potential energy in the compressibility of the gaseous working fluid, but stores kinetic energy in the moving (solid) mass of the motor and piston. This talk will first present nonlinear acoustical loss measurements obtained in a "conventional" double-Helmholtz resonator geometry (TRITON) that dissipated four kilowatts of acoustic power. We will then describe the performance of the new "bellows bounce" resonator configuration and "vibromechanical multiplier" used in the first successful implementation of this approach that created an ice cream freezer produced at Penn State for Ben & Jerry's.

  8. Electrostatic Energy Harvester Utilizing High Density of Electrode for Higher Output Power

    NASA Astrophysics Data System (ADS)

    Minami, K.; Miwatani, N.; Kanda, K.; Fujita, T.; Maenaka, K.

    2015-12-01

    In this study, we report an improvement of output power from an electret type vibration energy harvester. Typical crossing-area change harvester has a stripe-shaped electret and counter electrode for making the capacitance change. In order to improve space efficiency, the counter electrodes are divided and arraignment with the same pitch of the electret. We investigate that adjoining the counter electrodes, the fringing effect is decreased and the capacitance change between the electrodes is larger than the conventional design from FEM analysis. The output power of 2.5 μW and 5.3 μW are obtained in each kind of counter electrode with the applied acceleration of 3 G at 350 Hz, which is about 2 or 4 times as high as our previous work.

  9. Mass flow rate measurement in abrasive jets using acoustic emission

    NASA Astrophysics Data System (ADS)

    Ivantsiv, V.; Spelt, J. K.; Papini, M.

    2009-09-01

    The repeatability of abrasive jet machining operations is presently limited by fluctuations in the mass flow rate due to powder compaction, stratification and humidity effects. It was found that the abrasive mass flow rate for a typical abrasive jet micromachining setup could be determined by using data from the acoustic emission of the abrasive jet impacting a flat plate. Two methods for extracting the mass flow rate from the acoustic emission were developed and compared. In the first method, the number of particle impacts per unit time was determined by a direct count of peaks in the acoustic emission signal. The second method utilizes the power spectrum density of the acoustic emission in a specific frequency range. Both measures were found to correlate strongly with the mass flow rate measured by weighing samples of blasted powder for controlled time periods. It was found that the peak count method permits measurement of the average frequency of the impacts and the mass flow rate, but can only be applied to flow rates in which the impact frequency is approximately one order of magnitude less than the frequency of the target plate ringing. The power spectrum density method of signal processing is applicable to relatively fine powders and to flow rates at which the average impact frequency is of the same order of magnitude as that of the ringing due to the impact. The acoustic emission technique can be used to monitor particle flow variations over a wide range of time periods and provides a straightforward and accurate means of process control.

  10. High intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic powers

    PubMed Central

    Pajek, Daniel; Burgess, Alison; Huang, Yuexi; Hynynen, Kullervo

    2014-01-01

    The purpose of this study was to evaluate use of intravascular perfluorocarbon (PFC) droplets to reduce the sonication powers required to achieve clot lysis using high intensity focused ultrasound (HIFU). HIFU with droplets was initially applied to blood clots in an in vitro flow apparatus and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to demonstrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24±5% of the sonication power without droplets. Rabbits receiving 1 ms pulsed sonication during continuous intravascular droplet infusion recanalized in 71% of cases (p=0.041 vs controls). Preliminary experiments showed that damage was contained to the ultrasonic focus, suggesting that safe treatments would be possible with a more tightly focused hemispherical array that allows the whole focus to be placed inside of the main arteries in the human brain. PMID:25023095

  11. Impact of Global Climate Changes on the Wind Power Density in Brazil

    NASA Astrophysics Data System (ADS)

    Martins, Fernando; Pereira, Enio; Pes, Marcelo; Segundo, Eliude; Lyra, Andr

    The potential onshore wind power resources in Brazil could reach more than 145,000 MW. Brazil's wind energy production has risen up from 22 MW in 2003 to 602 MW in 2009 thanks to the government policy and incentives to encourage the use of wind power and other renewable sources of energy. An additional 256.4 MW is now under construction and should start the op-eration at the end of 2010. Recently 71 additional projects have been approved as a result of the first wind-only bidding round for energy supply in Brazil of December 2009. The contracts, to-taling 1800MW, will start in July 2012 with a supply period of 20 years. Developing wind power in Brazil will help the country to meet its strategic objectives of enhancing energy security and reducing the country's energy-related greenhouse gas emissions. In spite of this, the long-term growth of the national wind capacity depends not only on a more competitive price for this en-ergy source (today at US84, 8M W h)butalsoonthesustainabledomesticdevelopmentof thistechnology.F urth controldatascreeningprocesstoselectvalidclimatologicaltimeseriesf ollowedbytheKendalltrendtestat95

  12. Orbits near Collinear Equilibrium Points in the Generalized Photogravitional Chermnykh-like Problem with Power-Law Density Profile

    NASA Astrophysics Data System (ADS)

    Kishor, Ram

    2016-07-01

    We consider a generalized photogravitational Chermnykh-like problem and determine orbits in the basin of collinear equilibrium points. We suppose that bigger primary is radiating body; smaller primary is an oblate spheroid and a disk with power law density profile is rotating around the common center of mass of the system. We compute three types of orbits namely, periodic, hyperbolic and asymptotic orbit, of the infinitesimal body. Also, we analyse, effect of radiation pressure and oblateness and it is noticed that time period of the periodic orbits depends on these parameters. KEYWORDS: Chermnykh-like problem; Orbits; Radiation pressure; Oblateness; Disk; Collinear equilibrium points.

  13. Random Density Inhomogeneities and Focusability of the Output Pulses for Plasma-based Powerful Backward Raman Amplifiers

    SciTech Connect

    A.A. Solodov; V.M. Malkin; N.J. Fisch

    2003-01-21

    Random plasma density inhomogeneities may defocus the output pulses of powerful backward Raman amplifiers (BRA). Because of ultra-high intensities of even non-focused BRA outputs, such distortions, if occur, are then difficult to correct. We derive a simple expression for the largest BRA length for which the output pulse focusability is not yet spoiled. Interestingly, this limitation does not depend on the pump laser intensity. We also note a useful effect of plasma inhomogeneities that might help to suppress premature pump backscattering by thermal noise.

  14. An Investigation of the Overlap Between the Statistical Discrete Gust and the Power Spectral Density Analysis Methods

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Pototzky, Anthony S.; Woods, Jessica A.

    1989-01-01

    The results of a NASA investigation of a claimed Overlap between two gust response analysis methods: the Statistical Discrete Gust (SDG) Method and the Power Spectral Density (PSD) Method are presented. The claim is that the ratio of an SDG response to the corresponding PSD response is 10.4. Analytical results presented for several different airplanes at several different flight conditions indicate that such an Overlap does appear to exist. However, the claim was not met precisely: a scatter of up to about 10 percent about the 10.4 factor can be expected.

  15. An investigation of the 'Overlap' between the Statistical-Discrete-Gust and the Power-Spectral-Density analysis methods

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Pototzky, Anthony S.; Woods, Jessica A.

    1989-01-01

    This paper presents the results of a NASA investigation of a claimed 'Overlap' between two gust response analysis methods: the Statistical Discrete Gust (SDG) method and the Power Spectral Density (PSD) method. The claim is that the ratio of an SDG response to the corresponding PSD response is 10.4. Analytical results presented in this paper for several different airplanes at several different flight conditions indicate that such an 'Overlap' does appear to exist. However, the claim was not met precisely: a scatter of up to about 10 percent about the 10.4 factor can be expected.

  16. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  17. Reverberant acoustic energy in auditoria that comprise systems of coupled rooms

    NASA Astrophysics Data System (ADS)

    Summers, Jason E.

    2003-11-01

    A frequency-dependent model for reverberant energy in coupled rooms is developed and compared with measurements for a 1:10 scale model and for Bass Hall, Ft. Worth, TX. At high frequencies, prior statistical-acoustics models are improved by geometrical-acoustics corrections for decay within sub-rooms and for energy transfer between sub-rooms. Comparisons of computational geometrical acoustics predictions based on beam-axis tracing with scale model measurements indicate errors resulting from tail-correction assuming constant quadratic growth of reflection density. Using ray tracing in the late part corrects this error. For mid-frequencies, the models are modified to account for wave effects at coupling apertures by including power transmission coefficients. Similarly, statical-acoustics models are improved through more accurate estimates of power transmission measurements. Scale model measurements are in accord with the predicted behavior. The edge-diffraction model is adapted to study transmission through apertures. Multiple-order scattering is theoretically and experimentally shown inaccurate due to neglect of slope diffraction. At low frequencies, perturbation models qualitatively explain scale model measurements. Measurements confirm relation of coupling strength to unperturbed pressure distribution on coupling surfaces. Measurements in Bass Hall exhibit effects of the coupled stage house. High frequency predictions of statistical acoustics and geometrical acoustics models and predictions of coupling apertures all agree with measurements.

  18. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Lin, Sz-Chin Steven; Kiraly, Brian; Yue, Hongjun; Li, Sixing; Chiang, I-Kao; Shi, Jinjie; Benkovic, Stephen J.; Huang, Tony Jun

    2012-01-01

    Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based “acoustic tweezers” that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers’ compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering. PMID:22733731

  19. Acoustic, piezoelectric, and dielectric nonlinearities of AlN in coupled resonator filters for high RF power levels.

    PubMed

    Sahyoun, Walaa; Duchamp, Jean-Marc; Benech, Philippe

    2011-10-01

    Coupled resonator filters (CRFs) are the new generation of BAW filters recently designed for the front-end modules of mobile transmission systems. Looking for designers' requirements, CRF devices have been characterized and modeled. The model based on equivalent circuits relies on material constants such as stiffness and electro-coupling coefficients, and works only for linear-mode propagation. Because of their positions between antennas and power amplifiers, they often work under high RF power, inducing nonlinear response in the AlN piezoelectric layer. In this work, we analyze for the first time the nonlinear behavior of AlN material particularly for coupled BAW resonators. To characterize the nonlinear effects in CRFs, we measure the 1-dB gain compression point (P1dB) and the intercept point (IP(3)). Then, we develop a nonlinear model of CRFs using harmonic balance (HB) simulation in commercially available software. The HB environment allows fitting simulations to measurements in terms of P(1dB) and IP(3). We find that a high RF power induces nonlinear changes in the material constants' real parts: elastic stiffness c(33) (4.9%), piezoelectric e(33) (17.4%), and permittivity ϵ(33) (5.2%). These nonlinear variations of material constants describe the nonlinear behavior of CRF devices using the same deposit process for AlN material. PMID:21989879

  20. Publication of Proceedings for the 6th Workshop on High Energy Density and High Power RF (RF 2003)

    SciTech Connect

    Victor L. Granatstein

    2004-08-08

    The 6th Workshop on High Energy Density and High Power RF (RF 2003) was held from June 22 to June 26 at the Coolfont Resort and Conference Center in Berkeley Springs, West Virginia. The Workshop was hosted by the Institute for Research in Electronics and Applied Physics (IREAP) of the University of Maryland, College Park and by the Naval Research Laboratory, Washington DC. As its name implies this was the sixth in a series of biennial workshops devoted to exchanging information and ideas on high power microwave sources and components. The applications addressed included particle accelerators, radar, HPM, space exploration, neutron sources and plasma heating and current driven in controlled thermonuclear fusion research. This Final Report includes a brief description of the RF 2003 Workshop and the distribution of the published proceedings.

  1. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    SciTech Connect

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  2. Technological development of high energy density capacitors. [for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Parker, R. D.

    1976-01-01

    A study was conducted to develop cylindrical wound metallized film capacitors rated 2 micron F 500 VDC that had energy densities greater than 0.1J/g. Polysulfone (PS) and polyvinylidene (PVF2) were selected as dielectrics. Single film PS capacitors of 0.2J/g (uncased) were made of 3.75 micron material. Single film PVF2 capacitors of 0.19J/g (uncased) were made of 6.0 micron material. Corona measurements were made at room temperature, and capacitance and dissipation factor measurements were made over the ranges 25 C to 125 C and 120 Hz to 100 kHz. Nineteen of twenty PVF2 components survived a 2500 hour dc plus ac life test. Failure analyses revealed most failures occurred at wrinkles, but some edge failures were also seen. A 0.989g case was designed. When the case was combined with the PVF2 component, a finished energy density of 0.11J/g was achieved.

  3. LLNL`s acoustic spectrometer

    SciTech Connect

    Baker, J.

    1997-03-17

    This paper describes the development of a frequency sensitive acoustic transducer that operates in the 10 Hz to 10 kHz regime. This device uses modem silicon microfabrication techniques to form mechanical tines that resonate at specified frequencies. This high-sensitivity device is intended for low-power battery powered applications.

  4. Acoustic gravity tornadoes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Stenflo, L.

    2012-12-01

    It is shown that three-dimensional (3D) acoustic gravity waves (AGWs) in the atmosphere can appear in the form of acoustic gravity tornadoes (AGTs) characterized by twisted density structures or density ropes carrying orbital angular momentum. For our purposes, we use a previously obtained 3D wave equation for AGWs, and show that this equation in the paraxial approximation admits solutions in the form of Laguerre-Gauss acoustic gravity vortex beams or AGTs/AG whirls with twisted density structures supporting the dynamics of the AGTs.

  5. Acoustic energy in ducts - Further observations

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1979-01-01

    The transmission of acoustic energy in uniform ducts carrying uniform flow is investigated with the purpose of clarifying two points of interest. The two commonly used definitions of acoustic 'energy' flux are shown to be related by a Legendre transformation of the Lagrangian density exactly as in deriving the Hamiltonian density in mechanics. In the acoustic case the total energy density and the Hamiltonian density are not the same which accounts for two different 'energy' fluxes. When the duct has acoustically absorptive walls neither of the two flux expressions gives correct results. A reevaluation of the basis of derivation of the energy density and energy flux provides forms which yield consistent results for soft walled ducts.

  6. The use of segmented cathodes to determine the spoke current density distribution in high power impulse magnetron sputtering plasmas

    SciTech Connect

    Poolcharuansin, Phitsanu; Estrin, Francis Lockwood; Bradley, James W.

    2015-04-28

    The localized target current density associated with quasi-periodic ionization zones (spokes) has been measured in a high power impulse magnetron sputtering (HiPIMS) discharge using an array of azimuthally separated and electrical isolated probes incorporated into a circular aluminum target. For a particular range of operating conditions (pulse energies up to 2.2 J and argon pressures from 0.2 to 1.9 Pa), strong oscillations in the probe current density are seen with amplitudes up to 52% above a base value. These perturbations, identified as spokes, travel around the discharge above the target in the E×B direction. Using phase information from the angularly separated probes, the spoke drift speeds, angular frequencies, and mode number have been determined. Generally, at low HiPIMS pulse energies E{sub p} < 0.8 J, spokes appear to be chaotic in nature (with random arrival times), however as E{sub p} increases, coherent spokes are observed with velocities between 6.5 and 10 km s{sup −1} and mode numbers m = 3 or above. At E{sub p} > 1.8 J, the plasma becomes spoke-free. The boundaries between chaotic, coherent, and no-spoke regions are weakly dependent on pressure. During each HiPIMS pulse, the spoke velocities increase by about 50%. Such an observation is explained by considering spoke velocities to be determined by the critical ionization velocity, which changes as the plasma composition changes during the pulse. From the shape of individual current density oscillations, it appears that the leading edge of the spoke is associated with a slow increase in local current density to the target and the rear with a more rapid decrease. The measurements show that the discharge current density associated with individual spokes is broadly spread over a wide region of the target.

  7. Extensive Sampling of Forest Carbon using High Density Power Line Lidar

    NASA Astrophysics Data System (ADS)

    Hampton, H. M.; Chen, Q.; Dye, D. G.; Hungate, B. A.

    2013-12-01

    Estimating carbon sequestration and greenhouse gas emissions from forest management, natural processes, and disturbance is of growing interest for mitigating global warming. Ponderosa pine is common at mid-elevations throughout the western United States and is a dominant tree species in southwestern forests. Existing unmanaged "relict" sites and stand reconstructions of southwestern ponderosa pine forests from before European settlement (late 1800s) provide evidence of forests of larger trees of lower density and less vulnerability to severe fires than today's typical conditions of high densities of small trees that have resulted from a century of fire suppression. Forest treatments to improve forest health in the region include tree cutting focused on small-diameter trees (thinning), low-intensity prescribed burning, and monitoring rather than suppressing wildfires. Stimulated by several uncharacteristically-intense fires in the last decade, a collaborative process found strong stakeholder agreement to accelerate forest treatments to reduce fire risk and restore ecological conditions. Land use planning to ramp up management is underway and could benefit from quick and inexpensive techniques to inventory tree-level carbon because existing inventory data are not adequate to capture the range of forest structural conditions. Our approach overcomes these shortcomings by employing recent breakthroughs in estimating aboveground biomass from high resolution light detection and ranging (lidar) remote sensing. Lidar is an active remote sensing technique, analogous to radar, which measures the time required for a transmitted pulse of laser light to return to the sensor after reflection from a target. Lidar data can capture 3-dimensional forest structure with greater detail and broader spatial coverage than is feasible with conventional field measurements. We developed a novel methodology for extensive sampling and field validation of forest carbon, applicable to managed and

  8. High-power laser interaction with low-density C–Cu foams

    SciTech Connect

    Pérez, F.; Colvin, J. D.; May, M. J.; Charnvanichborikarn, S.; Kucheyev, S. O.; Fournier, K. B.; Felter, T. E.

    2015-11-15

    We study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.

  9. Power spectral density estimation by spline smoothing in the frequency domain

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.; Thompson, J. R.

    1972-01-01

    An approach, based on a global averaging procedure, is presented for estimating the power spectrum of a second order stationary zero-mean ergodic stochastic process from a finite length record. This estimate is derived by smoothing, with a cubic smoothing spline, the naive estimate of the spectrum obtained by applying FFT techniques to the raw data. By means of digital computer simulated results, a comparison is made between the features of the present approach and those of more classical techniques of spectral estimation.

  10. Power spectral density estimation by spline smoothing in the frequency domain.

    NASA Technical Reports Server (NTRS)

    De Figueiredo, R. J. P.; Thompson, J. R.

    1972-01-01

    An approach, based on a global averaging procedure, is presented for estimating the power spectrum of a second order stationary zero-mean ergodic stochastic process from a finite length record. This estimate is derived by smoothing, with a cubic smoothing spline, the naive estimate of the spectrum obtained by applying Fast Fourier Transform techniques to the raw data. By means of digital computer simulated results, a comparison is made between the features of the present approach and those of more classical techniques of spectral estimation.-

  11. High voltage and high current density vertical GaN power diodes

    SciTech Connect

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; Moseley, M. W.; Crawford, M. H.; King, M. P.; Allerman, A. A.; Kaplar, R. J.; van Heukelom, M. S.; Wierer, J. J.

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  12. High voltage and high current density vertical GaN power diodes

    DOE PAGESBeta

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; Moseley, M. W.; Crawford, M. H.; King, M. P.; Allerman, A. A.; Kaplar, R. J.; van Heukelom, M. S.; Wierer, J. J.

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  13. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect

    Anil V. Virkar

    2001-09-26

    Anode-supported solid oxide fuel cells with Ni + yttria-stabilized zirconia (YSZ) anode, YSZ-samaria-doped ceria (SDC) bi-layer electrolyte and Sr-doped LaCoO{sub 3} (LSC) + SDC cathode were fabricated. Fuel used consisted of H{sub 2} diluted with He, N{sub 2}, H{sub 2}O or CO{sub 2}, mixtures of H{sub 2} and CO, and mixtures of CO and CO{sub 2}. Cell performance was measured at 800 C with above-mentioned fuel gas mixtures and air as oxidant. For a given concentration of the diluent, the cell performance was higher with He as the diluent than with N{sub 2} as the diluent. Mass transport through porous Ni-YSZ anode for H{sub 2}-H{sub 2}O, CO-CO{sub 2} binary systems and H{sub 2}-H{sub 2}O-diluent gas ternary systems was analyzed using multicomponent gas diffusion theory. At high concentrations of the diluent, the maximum achievable current density was limited by the anodic concentration polarization. From this measured limiting current density, the corresponding effective gas diffusivity was estimated. Highest effective diffusivity was estimated for fuel gas mixtures containing H{sub 2}-H{sub 2}O-He mixtures ({approx}0.34 cm{sup 2}/s), and the lowest for CO-CO{sub 2} mixtures ({approx}0.07 cm{sup 2}/s). The lowest performance was observed with CO-CO{sub 2} mixture as a fuel, which in part was attributed to the lowest effective diffusivity of the fuels tested.

  14. The electro-acoustic transition process of pulsed corona discharge in conductive water

    NASA Astrophysics Data System (ADS)

    Huang, Yifan; Yan, Hui; Wang, Bingzhe; Zhang, Xuming; Liu, Zhen; Yan, Keping

    2014-06-01

    A pulsed corona discharge in conductive water is studied theoretically and experimentally via pre-discharge analysis, thermodynamic and dynamic processes of a plasma-containing bubble, an acoustic signature and energy partitioning. The total particle density and electron density inside the bubble, internal temperature and pressure, bubble radius and bubble wall Mach number are simulated by solving a set of equations including the ideal gas equation, Rayleigh equation and energy balance equation. The bubble radius is also measured by a high-speed charge-coupled device camera on a homemade experimental device. The acoustic waveforms and their power spectral density are calculated indirectly. By using several diagnostic tools, the electrical parameters of the load, light emission from the plasma and acoustic waveforms are recorded simultaneously. Simulation and experimental results of the bubble radius and acoustic signature agree reasonably well over the range of energy inputs from 5 to 30 J per pulse. Different kinds of terminations or intermediates of the energy transition process are analysed through simulation and experimental data. The electro-acoustic efficiency varies from 0.8% to 1.9%, while most of the discharge energy is consumed by circuit loss, Joule heating and thermal radiation, or is transformed into kinetic energy in the water.

  15. High power density dc/dc converter: Selection of converter topology

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  16. Acoustic Characterization of Mesoscale Objects

    SciTech Connect

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  17. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    PubMed Central

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10−22 atm. PMID:26725369

  18. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    NASA Astrophysics Data System (ADS)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  19. Power spectrum density analysis for the influence of complete denture on the brain function of edentulous patients - pilot study

    PubMed Central

    Perumal, Praveen; Anitha, Kuttae Viswanathan; Reddy, Jetti Ramesh; Muthukumar, Balasubramanium

    2016-01-01

    PURPOSE This pilot study was to find the influence of complete denture on the brain activity and cognitive function of edentulous patients measured through Electroencephalogram (EEG) signals. MATERIALS AND METHODS The study recruited 20 patients aged from 50 to 60 years requiring complete dentures with inclusion and exclusion criteria. The brain function and cognitive function were analyzed with a mental state questionnaire and a 15-minute analysis of power spectral density of EEG alpha waves. The analysis included edentulous phase and post denture insertion adaptive phase, each done before and after chewing. The results obtained were statistically evaluated. RESULTS Power Spectral Density (PSD) values increased from edentulous phase to post denture insertion adaption phase. The data were grouped as edentulous phase before chewing (EEG p1-0.0064), edentulous phase after chewing (EEG p2-0.0073), post denture insertion adaptive phase before chewing (EEG p3-0.0077), and post denture insertion adaptive phase after chewing (EEG p4-0.0096). The acquired values were statistically analyzed using paired t-test, which showed statistically significant results (P<.05). CONCLUSION This pilot study showed functional improvement in brain function of edentulous patients with complete dentures rehabilitation. PMID:27350852

  20. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    NASA Astrophysics Data System (ADS)

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.