Science.gov

Sample records for acoustic pressure amplitude

  1. Neural Network Burst Pressure Prediction in Graphite/Epoxy Pressure Vessels from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Walker, James L., II; Rowell, Ginger H.

    1995-01-01

    Acoustic emission (AE) data were taken during hydroproof for three sets of ASTM standard 5.75 inch diameter filament wound graphite/epoxy bottles. All three sets of bottles had the same design and were wound from the same graphite fiber; the only difference was in the epoxies used. Two of the epoxies had similar mechanical properties, and because the acoustic properties of materials are a function of their stiffnesses, it was thought that the AE data from the two sets might also be similar; however, this was not the case. Therefore, the three resin types were categorized using dummy variables, which allowed the prediction of burst pressures all three sets of bottles using a single neural network. Three bottles from each set were used to train the network. The resin category, the AE amplitude distribution data taken up to 25 % of the expected burst pressure, and the actual burst pressures were used as inputs. Architecturally, the network consisted of a forty-three neuron input layer (a single categorical variable defining the resin type plus forty-two continuous variables for the AE amplitude frequencies), a fifteen neuron hidden layer for mapping, and a single output neuron for burst pressure prediction. The network trained on all three bottle sets was able to predict burst pressures in the remaining bottles with a worst case error of + 6.59%, slightly greater than the desired goal of + 5%. This larger than desired error was due to poor resolution in the amplitude data for the third bottle set. When the third set of bottles was eliminated from consideration, only four hidden layer neurons were necessary to generate a worst case prediction error of - 3.43%, well within the desired goal.

  2. Method for Estimating the Acoustic Pressure in Tissues Using Low-Amplitude Measurements in Water.

    PubMed

    Keravnou, Christina P; Izamis, Maria-Louisa; Averkiou, Michalakis A

    2015-11-01

    The aim of this study was to evaluate a simple, reliable and reproducible method for accuracy in estimating the acoustic pressure delivered in tissue exposed to ultrasound. Such a method would be useful for therapeutic applications of ultrasound with microbubbles, for example, sonoporation. The method is based on (i) low-amplitude water measurements that are easily made and do not suffer from non-linear propagation effects, and (ii) the attenuation coefficient of the tissue of interest. The range of validity of the extrapolation method for different attenuation and pressure values was evaluated with a non-linear propagation theoretical model. Depending on the specific tissue attenuation, the method produces good estimates of pressures in excess of 10 MPa. Ex vivo machine-perfused pig liver tissue was used to validate the method for source pressures up to 3.5 MPa. The method can be used to estimate the delivered pressure in vivo in diagnostic and therapeutic applications of ultrasound.

  3. Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes.

    PubMed

    Frinking, Peter J A; Brochot, Jean; Arditi, Marcel

    2010-08-01

    Subharmonic scattering of phospholipid-shell microbubbles excited at relatively low acoustic pressure amplitudes (<30 kPa) has been associated with echo responses from compression-only bubbles having initial surface tension values close to zero. In this work, the relation between sbharmonics and compression-only behavior of phospholipid-shell microbubbles was investigated, experimentally and by simulation, as a function of the initial surface tension by applying ambient overpressures of 0 and 180 mmHg. The microbubbles were excited using a 64-cycle transmit burst with a center frequency of 4 MHz and peak-negative pressure amplitudes ranging from 20 of 150 kPa. In these conditions, an increase in subharmonic response of 28.9 dB (P < 0.05) was measured at 50 kPa after applying an overpressure of 180 mmHg. Simulations using the Marmottant model, taking into account the effect of ambient overpressure on bubble size and initial surface tension, confirmed the relation between subharmonics observed in the pressure-time curves and compression-only behavior observed in the radius-time curves. The trend of an increase in subharmonic response as a function of ambient overpressure, i.e., as a function of the initial surface tension, was predicted by the model. Subharmonics present in the echo responses of phospholipid-shell microbubbles excited at low acoustic pressure amplitudes are indeed related to the echo responses from compression-only bubbles. The increase in subharmonics as a function of ambient overpressure may be exploited for improving methods for noninvasive pressure measurement in heart cavities or big vessels in the human body.

  4. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  5. Neural network burst pressure prediction in impact damaged Kevlar/epoxy bottles from acoustic emission amplitude data

    SciTech Connect

    Walker, J.L.; Workman, G.L.; Russell, S.S.

    1994-12-31

    Acoustic emission (AE) signal analysis has been used to measure the effect of impact damage on the burst pressure of 5.75 inch diameter filament wound Kevlar/epoxy pressure vessels. A calibrated dead weight drop fixture, featuring both sharp and blunt hemispherical impact tups, generated impact damages with energies up to twenty ft-lb{sub f} in the mid hoop region of each vessel. Burst pressures were obtained by hydrostatically testing twenty-seven damaged and undamaged bottles, eleven of which were filled with inert propellant to simulate a rocket motor. Burst pressure prediction models were developed by correlating the differential AE amplitude distributions, Generated during the first pressure ramp to 25% of the expected burst pressure for the undamaged vessels, to known burst pressures using back propagation neural networks. Independent networks were created for the inert propellant filled vessels and the unfilled vessels using a small subset of each during the training phases. The remaining bottles served as the test sets. The eleven filled vessels had an average prediction error of 5.6%, while the unfilled bottles averaged 5.4%. Both of these results were within the 95% prediction interval, but a portion of the vessel burst pressure errors were greater than the {+-}5% worst case error obtained in previous work. in conclusion, the AE amplitude distribution data collected at low proof loads provided a suitable input for neural network burst pressure prediction in damaged and undamaged Kevlar/epoxy bottles. This included pressure vessels both with and without propellant backing. Work is ongoing to decrease the magnitude of the prediction error through network restructuring.

  6. Amplitude Modulations of Acoustic Communication Signals

    NASA Astrophysics Data System (ADS)

    Turesson, Hjalmar K.

    2011-12-01

    In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a

  7. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    PubMed

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  8. Dynamic nonlinear focal shift in amplitude modulated moderately focused acoustic beams.

    PubMed

    Jiménez, Noé; Camarena, Francisco; González-Salido, Nuria

    2017-03-01

    The phenomenon of the displacement of the position of the pressure, intensity and acoustic radiation force maxima along the axis of focused acoustic beams under increasing driving amplitudes (nonlinear focal shift) is studied for the case of a moderately focused beam excited with continuous and 25kHz amplitude modulated signals, both in water and tissue. We prove that in amplitude modulated beams the linear and nonlinear propagation effects coexist in a semi-period of modulation, giving place to a complex dynamic behavior, where the singular points of the beam (peak pressure, rarefaction, intensity and acoustic radiation force) locate at different points on axis as a function of time. These entire phenomena are explained in terms of harmonic generation and absorption during the propagation in a lossy nonlinear medium both for a continuous and an amplitude modulated beam. One of the possible applications of the acoustic radiation force displacement is the generation of shear waves at different locations by using a focused mono-element transducer excited by an amplitude modulated signal.

  9. Acoustic minor losses in high amplitude resonators with single-sided junctions

    NASA Astrophysics Data System (ADS)

    Doller, Andrew J.

    Steady flow engineering handbooks like Idelchik20 do not exist for investigators interested in acoustic (oscillating) fluid flows in complex resonators. Measurements of acoustic minor loss coefficients are presented in this dissertation for a limited number of resonator configurations having single-sided junctions. While these results may be useful, the greater purpose of this work is to provide a set of controlled measurements that can be used to benchmark computational models of acoustic flows used for more complicated resonator structures. The experiments are designed around a driver operating at 150 Hz enabling acoustic pressures in excess of 10k Pa in liquid cooled, temperature controlled resonators with 90°, 45° and 25° junctions. These junctions join a common 109 cm long 4.7 cm diameter section to a section of 8.4 mm diameter tube making two sets of resonators: one set with a small diameter length approximately a quarter-wavelength (45 cm), the other approximately a half-wavelength (112 cm). The long resonators have a velocity node at the junction; the short resonators have a velocity anti-node generating the greatest minor losses. Input power is measured by an accelerometer and a pressure transducer at the driver. A pressure sensor at the rigid termination measures radiation pressure from the driver and static junction pressure, as well as the acoustic pressure used to calculate linear thermal and viscous resonator wall losses. At the largest amplitudes, the 90° junction was found to dissipate as much as 0.3 Watt, 1/3 the power of linear losses alone. For each junction, the power dissipation depends on acoustic pressure differently: pressure cubed for the 90°, pressure to the 3.76 for the 45° and pressure to the 4.48 for the 25°. Common among all resonators, blowing acoustic half-cycle minor losses (KB) are excited at lower amplitudes than the suction half-cycle (KS) minor losses. Data collected for the 90° junction shows KB reaches an asymptotic

  10. Streaming Induced by High-Amplitude Acoustic Pulses and its Implications.

    NASA Astrophysics Data System (ADS)

    Starritt, Hazel Catherine

    Available from UMI in association with The British Library. This thesis investigates some aspects of the nonlinear propagation of high amplitude ultrasound in the context of medical diagnostic applications. Nonlinear propagation occurring in focused diagnostic fields is shown to enhance acoustic streaming in water due to the increased absorption of the high frequency components in the distorted wave. The results of an extensive experimental investigation of streaming in water are presented. The streaming velocities were measured using the technique of hot film anemometry and were found to vary with total acoustic power, pulse repetition frequency, pulse duration and pulse pressure amplitude. The velocity in a high amplitude beam was shown to be enhanced typically by a factor of 5 compared with that in a low amplitude beam of the same acoustic power. Measurements of acoustic parameters were made for comparison. The results showed that in a nonlinear field absorption is enhanced in the region immediately on the transducer side of the focus and this region is shown to act as the "source pump" for the stream. The maximum streaming velocities generated by commercial ultrasonic equipment were measured in the fields of pulsed Doppler units, with maximum velocities generated in the fields of scanned imaging beams being an order of magnitude lower. Streams in stationary beams were observed to become established in time periods which are short compared with the "dwell time" of the transducer at a single location in clinical use. The implications of acoustic streaming and the forces associated with it are discussed in the context of the current diagnostic usage of ultrasound. In particular, obstetric applications are considered where the fetus is scanned through a low loss fluid path in which nonlinear propagation and acoustic streaming may occur.

  11. Acoustic pressure-vector sensor array

    NASA Astrophysics Data System (ADS)

    Huang, Dehua; Elswick, Roy C.; McEachern, James F.

    2004-05-01

    Pressure-vector sensors measure both scalar and vector components of the acoustic field. December 2003 measurements at the NUWC Seneca Lake test facility verify previous observations that acoustic ambient noise spectrum levels measured by acoustic intensity sensors are reduced relative to either acoustic pressure or acoustic vector sensor spectrum levels. The Seneca measurements indicate a reduction by as much as 15 dB at the upper measurement frequency of 2500 Hz. A nonlinear array synthesis theory for pressure-vector sensors will be introduced that allows smaller apertures to achieve narrow beams. The significantly reduced ambient noise of individual pressure-vector elements observed in the ocean by others, and now at Seneca Lake, should allow a nonlinearly combined array to detect significantly lower levels than has been observed in previous multiplicative processing of pressure sensors alone. Nonlinear array synthesis of pressure-vector sensors differs from conventional super-directive algorithms that linearly combine pressure elements with positive and negative weights, thereby reducing the sensitivity of conventional super-directive arrays. The much smaller aperture of acoustic pressure-vector sensor arrays will be attractive for acoustic systems on underwater vehicles, as well as for other applications that require narrow beam acoustic receivers. [The authors gratefully acknowledge the support of ONR and NUWC.

  12. Arbitrary amplitude slow electron-acoustic solitons in three-electron temperature space plasmas

    SciTech Connect

    Mbuli, L. N.; Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2015-06-15

    We examine the characteristics of large amplitude slow electron-acoustic solitons supported in a four-component unmagnetised plasma composed of cool, warm, hot electrons, and cool ions. The inertia and pressure for all the species in this plasma system are retained by assuming that they are adiabatic fluids. Our findings reveal that both positive and negative potential slow electron-acoustic solitons are supported in the four-component plasma system. The polarity switch of the slow electron-acoustic solitons is determined by the number densities of the cool and warm electrons. Negative potential solitons, which are limited by the cool and warm electron number densities becoming unreal and the occurrence of negative potential double layers, are found for low values of the cool electron density, while the positive potential solitons occurring for large values of the cool electron density are only limited by positive potential double layers. Both the lower and upper Mach numbers for the slow electron-acoustic solitons are computed and discussed.

  13. Pressure-Coupled Acoustic-Transducer Assembly

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond

    1993-01-01

    Improved acoustic-transducer assembly easy to assemble, relocatable, and used at high temperatures. In assembly, piezoelectric acoustic transducer pressure-coupled to delay line or fixture through soft metal like aluminum, copper or gold. Transducer subassembly includes layered structure of coupling material, transducer, thin disk of coupling material acting as cushion for transducer, electrode disk with coaxial cable lead attached, insulation/damping material, and pressure plate. Pressure coupling precludes problem of matching coefficients of thermal expansion of transducer, coupling material, and delay line.

  14. Numerical investigation of amplitude-dependent dynamic response in acoustic metamaterials with nonlinear oscillators.

    PubMed

    Manimala, James M; Sun, C T

    2016-06-01

    The amplitude-dependent dynamic response in acoustic metamaterials having nonlinear local oscillator microstructures is studied using numerical simulations on representative discrete mass-spring models. Both cubically nonlinear hardening and softening local oscillator cases are considered. Single frequency, bi-frequency, and wave packet excitations at low and high amplitude levels were used to interrogate the models. The propagation and attenuation characteristics of harmonic waves in a tunable frequency range is found to correspond to the amplitude and nonlinearity-dependent shifts in the local resonance bandgap for such nonlinear acoustic metamaterials. A predominant shift in the propagated wave spectrum towards lower frequencies is observed. Moreover, the feasibility of amplitude and frequency-dependent selective filtering of composite signals consisting of individual frequency components which fall within propagating or attenuating regimes is demonstrated. Further enrichment of these wave manipulation mechanisms in acoustic metamaterials using different combinations of nonlinear microstructures presents device implications for acoustic filters and waveguides.

  15. A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength

  16. A Shock-Refracted Acoustic Wave Model for Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fully expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on the directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength).

  17. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  18. Acoustic oscillatory pressure control for ramjet

    SciTech Connect

    Brown, R.S.; Dunlap, R.

    1988-08-02

    A method for controlling the acoustic oscillatory pressures generated by gas flow at the combustor inlet to a ramjet engine, the inlet including a sudden geometry expansion is described characterized by; restricting the inlet at the sudden expansion geometry such that the gas flow separates upstream and has a vena contracta downstream of the restricted inlet.

  19. Nucleation pressure threshold in acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Miles, Christopher; Doering, Charles; Kripfgans, Oliver

    2016-11-01

    We combine classical nucleation theory with superharmonic focusing to predict necessary pressures to induce nucleation in acoustic droplet vaporization. We show that linear acoustics is a valid approximation to leading order when particle displacements in the sound field are small relative the radius of the droplet. This is done by perturbation analysis of an axisymmetric compressible inviscid flow about a droplet with small surface perturbations relative to the mean radius subjected to an incoming ultrasonic wave. The necessary nucleation pressure threshold inside the droplet is calculated to be - 9 . 33 +/- 0 . 30 MPa for typical experimental parameters by employing results from classical homogeneous nucleation theory. As a result we are able to predict if a given incident pressure waveform will induce nucleation. This research was supported by the Rackham Merit Fellowship, the University of Michigan Physics department, the University of Michigan's MCubed program, and NSF awards PHY-1205219 and DMS-1515161.

  20. Improvement of a large-amplitude sinusoidal pressure generator for dynamic calibration of pressure transducers

    NASA Technical Reports Server (NTRS)

    Robinson, R. E.

    1972-01-01

    Results of research on the improvement of a sinusoidal pressure generator are presented. The generator is an inlet-area-modulated, gas-flow-through device (siren type) which was developed to dynamically calibrate pressure transducers and pressure probes. Tests were performed over a frequency range of 100 Hz to 20 kHz at average chamber pressures (bias pressure) between 30 and 50 psia (21 and 35 N/sq cm abs) and between 150 and 300 psia (104 and 207 N/sq cm abs). Significant improvements in oscillation pressure waveform were obtained but with reduction in available generator oscillation pressure amplitude range. Oscillation pressure amplitude, waveform, and waveform spectral content are given as functions of frequency for the two bias pressure conditions. The generator and instrumentation for frequency, amplitude, and spectrum measurements are described.

  1. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.

  2. Small amplitude electron acoustic solitary waves in a magnetized superthermal plasma

    NASA Astrophysics Data System (ADS)

    Devanandhan, S.; Singh, S. V.; Lakhina, G. S.; Bharuthram, R.

    2015-05-01

    The propagation of electron acoustic solitary waves in a magnetized plasma consisting of fluid cold electrons, electron beam and superthermal hot electrons (obeying kappa velocity distribution function) and ion is investigated in a small amplitude limit using reductive perturbation theory. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation governing the dynamics of electron acoustic solitary waves is derived. The solution of the KdV-ZK equation predicts the existence of negative potential solitary structures. The new results are: (1) increase of either the beam speed or temperature of beam electrons tends to reduce both the amplitude and width of the electron acoustic solitons, (2) the inclusion of beam speed and temperature pushes the allowed Mach number regime upwards and (3) the soliton width maximizes at certain angle of propagation (αm) and then decreases for α >αm . In addition, increasing the superthermality of the hot electrons also results in reduction of soliton amplitude and width. For auroral plasma parameters observed by Viking, the obliquely propagating electron-acoustic solitary waves have electric field amplitudes in the range (7.8-45) mV/m and pulse widths (0.29-0.44) ms. The Fourier transform of these electron acoustic solitons would result in a broadband frequency spectra with peaks near 2.3-3.5 kHz, thus providing a possible explanation of the broadband electrostatic noise observed during the Burst a.

  3. MRI acoustic noise: sound pressure and frequency analysis.

    PubMed

    Counter, S A; Olofsson, A; Grahn, H F; Borg, E

    1997-01-01

    The large gradient coils used in MRI generate, simultaneously with the pulsed radiofrequency (RF) wave, acoustic noise of high intensity that has raised concern regarding hearing safety. The sound pressure levels (SPLs) and power spectra of MRI acoustic noise were measured at the position of the human head in the isocenter of five MRI systems and with 10 different pulse sequences used in clinical MR scanning. Each protocol, including magnetization-prepared rapid gradient echo (MP-RAGE; 113 dB SPL linear), fast gradient echo turbo (114 dB SPL linear), and spin echo T1/2 mm (117 dB SPL linear), was found to have the high SPLs, rapid pulse rates, amplitude-modulated pulse envelopes, and multipeaked spectra. Since thickness and SPL were inversely related, the T1-weighted images generated more intense acoustic noise than the proton-dense T2-weighted measures. The unfiltered linear peak values provided more accurate measurements of the SPL and spectral content of the MRI acoustic noise than the commonly used dB A-weighted scale, which filters out the predominant low frequency components. Fourier analysis revealed predominantly low frequency energy peaks ranging from .05 to approximately 1 kHz, with a steep high frequency cutoff for each pulse sequence. Ear protectors of known attenuation ratings are recommended for all patients during MRI testing.

  4. The use of a hybrid model to compute the nonlinear acoustic performance of silencers for the finite amplitude acoustic wave

    NASA Astrophysics Data System (ADS)

    Kim, Daehwan; Cheong, Cheolung; Jeong, Weui Bong

    2010-05-01

    In the present study, a hybrid method is proposed for predicting the acoustic performance of a silencer for a nonlinear wave. This method is developed by combining two models: (i) a frequency-domain model for the computation of sound attenuation due to a silencer in a linear regime and (ii) a wavenumber space model for the prediction of the nonlinear time-evolution of finite amplitudes of the acoustic wave in a uniform duct of the same length as the silencer. The present method is proposed under the observation that the physical process of the nonlinear sound attenuation phenomenon of a silencer may be decoupled into two distinct mechanisms: (a) a linear acoustic energy loss that owes to the mismatch in the acoustic impedance between reactive elements and/or the sound absorption of acoustic liners in a silencer; (b) a nonlinear acoustic energy loss that is due to the energy-cascade phenomenon that arises from the nonlinear interaction between components of different frequencies. To establish the validity of the present model for predicting the acoustic performance of silencers, two model problems are considered. First, the performance of simple expansion mufflers with nonlinear incident waves has been predicted. Second, proposed method is applied for computing nonlinear acoustic wave propagation in the NASA Langley impedance duct configuration with ceramic tubular liner (CT57). Both results obtained from the hybrid models are compared with those from computational aero-acoustic techniques in a time-space domain that utilize a high-order finite-difference method. Through these comparisons, it is shown that there are good agreements between the two predictions. The main advantage of the present method is that it can effectively compute the nonlinear acoustic performance of silencers in nonlinear regimes without time-space domain calculations that generally entail a greater computational burden.

  5. Effects of Non-Homogeneities on the Eigenmodes of Acoustic Pressure in Combustion Chambers

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Williams, F. A.

    1998-02-01

    Modifications to acoustic eigenmodes in combustion chambers such as those of liquid propellant rocket engines, produced by spatial variations of density and sound speed that arise mainly through progress of combustion processes, are analyzed by using a variational method. The variational principle shows that the eigenvalue is the ratio of a weighted acoustic kinetic energy to a weighted acoustic potential energy, and the eigenfunction is the minimizing function of this ratio. A sample calculation is made for the case in which variations of the properties occur dominantly in the longitudinal direction, with lower temperatures and higher densities prevailing near the injector. The results of the calculation exhibit two major characteristics: the longitudinal density variation aids transfer of acoustic kinetic energy from a lower mode to the adjacent higher mode, so that the pure transverse modes have substantially larger reductions (sometimes exceeding 50%) of their eigenvalues than the combined modes; and variations of the acoustic pressure gradients are found to be larger in high-density regions, so that the acoustic pressure amplitude for purely tangential modes is found to be much higher near the injector than near the nozzle. The higher head acoustic pressure may contribute to the greater sensitivity of acoustic instability to characteristics of the flames near the injectors, as commonly found in engine tests. The improved acoustic eigensolutions can also be helpful in sizing damping devices, such as baffles or acoustic liners.

  6. Arbitrary amplitude electro-acoustic solitary waves in an adiabatic dusty plasma

    NASA Astrophysics Data System (ADS)

    Tanjia, Fatema; Mamun, A. A.

    2008-12-01

    The properties of different types of electro-acoustic (namely ion-acoustic (IA), dust ion-acoustic (DIA), and dust-acoustic (DA)) solitary waves (SWs) in an adiabatic dusty plasma (containing negatively charged cold dust, adiabatic hot ions and inertia-less adiabatic hot electrons) are investigated by the pseudo-potential approach. The combined effects of the adiabatic electrons and ions, and negatively charged dust on the basic properties (critical Mach number, amplitude and width) of the arbitrary amplitude electro-acoustic SWs are systematically and explicitly examined. It is found that the combined effects of the adiabatic electrons and ions, and negatively charged dust significantly modify the basic properties (critical Mach number, amplitude and width) of the SWs. It is also found that due to the effect of the adiabaticity of electrons, the negative DIA SWs (which are found to exist in a dusty plasma containing isothermal electrons, cold ions and negatively charged static dust) disappear, i.e. due to the effect of adiabatic electrons, one cannot have negative DIA SWs for any possible set of dusty plasma parameters.

  7. Nonlinear ionospheric responses to large-amplitude infrasonic-acoustic waves generated by undersea earthquakes

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.

    2017-02-01

    Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.

  8. Nonlinear amplitude frequency characteristics of attenuation in rock under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2006-12-01

    Laboratory experiments have been carried out to investigate the influence of change in strain amplitude on the frequency dependence of attenuation in samples of sandstone, smoky quartz and duralumin. The measurements were performed using the reflection method on pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. The attenuation in rocks is nonlinearly dependent on frequency and strain amplitude. In sandstone for P-waves and in smoky quartz for P- and S-waves, the dependences Q-1p(f) and Q-1s(f) have the attenuation peak. With increasing amplitude, the peak frequency can shift towards both the lower and the higher frequencies. It depends on the location of the frequency of an incident (input) pulse with respect to the peak frequency on the frequency axis. For sandstone the peak frequency of P-waves shifts towards the higher frequencies. For smoky quartz the shift of peak frequency is absent in P-waves, and S-waves shift towards the lower frequencies. The attenuation at the incident frequency always monotonically decreases with amplitude, and the other frequency components have complex or monotonic characters depending on the location of the incident frequency in the relaxation spectrum. Q-1p(f) in duralumin has monotonic character, i.e. a relaxation peak in the measurement frequency band is absent. Attenuation strongly decreases with increasing frequency and weakly depends on strain amplitude. The curve Q-1s(f) has an attenuation peak, and its character essentially depends on strain amplitude. With increasing amplitude, the peak frequency shifts towards the lower frequencies. The unusual increase of peak frequency of the P-wave spectrum in the bottom reflection in comparison with peak frequency in spectrum of the initial reflection is detected. The unusual behaviour of attenuation is explained by features of the joint action of viscoelastic and microplastic mechanisms. These results can be used for improving methods

  9. a Finite Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces

    NASA Astrophysics Data System (ADS)

    Sparrow, Victor Ward

    1990-01-01

    This study has concerned the propagation of finite amplitude, i.e. weakly non-linear, acoustical blast waves from explosions over hard and porous media models of outdoor ground surfaces. The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency domain exhibits a finite impedance, the linear phenomenological porous model of Morse and Ingard was used. The phenomenological equations are solved in the time domain for coupling with the time domain propagation solution in the air. The numerical solution is found through the method of finite differences. The second-order in time and fourth -order in space MacCormack method was used in the air, and the second-order in time and space MacCormack method was used in the porous medium modeling the ground. Two kinds of numerical absorbing boundary conditions were developed for the air propagation equations to truncate the physical domain for solution on a computer. Radiation conditions first were used on those sides of the domain where there were outgoing waves. Characteristic boundary conditions secondly are employed near the acoustic source. The numerical model agreed well with the Pestorius algorithm for the propagation of electric spark pulses in the free field, and with a result of Pfriem for normal plane reflection off a hard surface. In addition, curves of pressure amplification versus incident angle for waves obliquely incident on the hard and porous surfaces were produced which are similar to those in the literature. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance over hard surfaces as r to the power -1.2. This result is consistent with the work of Reed. For propagation over the porous ground surface, the model predicted that this surface decreased the decay rate with distance for the larger blasts compared to the rate expected in the linear acoustics limit.

  10. Large amplitude fluxional behaviour of elemental calcium under high pressure

    PubMed Central

    Tse, J. S.; Desgreniers, S.; Ohishi, Y.; Matsuoka, T.

    2012-01-01

    Experimental evidences are presented showing unusually large and highly anisotropic vibrations in the “simple cubic” (SC) unit cell adopted by calcium over a broad pressure ranging from 30–90 GPa and at temperature as low as 40 K. X-ray diffraction patterns show a preferential broadening of the (110) Bragg reflection indicating that the atomic displacements are not isotropic but restricted to the [110] plane. The unusual observation can be rationalized invoking a simple chemical perspective. As the result of pressure-induced s → d transition, Ca atoms situated in the octahedral environment of the simple cubic structure are subjected to Jahn-Teller distortions. First-principles molecular dynamics calculations confirm this suggestion and show that the distortion is of dynamical nature as the cubic unit cell undergoes large amplitude tetragonal fluctuations. The present results show that, even under extreme compression, the atomic configuration is highly fluxional as it constantly changes. PMID:22523635

  11. Small Amplitude Electron Acoustic Solitons in a Magnetoplasma with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Devanandhan, Selvaraj; Lakhina, Gurbax S.; Singh, Satyavir

    An important characteristic of space plasmas is their ability to sustain a great variety of wave phenomena. Such plasma waves are detected in space with the frequency ranging from few millihertz to several tens of kilohertz. The nonlinear evolutions of these waveforms are interpreted as electron-acoustic and ion-acoustic solitary waves. There have been several studies on solitary waves that are based on models using the Boltzmann distribution function for electrons/ions. However, in space plasmas, a population of superthermal electrons, where the particle distributions may deviate from the Maxwellian can exist. We have studied the small amplitude electron acoustic solitary waves in four component plasma consisting of nonthermal hot electrons, fluid cold electrons, beam electrons and ions is studied. Using reductive perturbation technique, the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing nonlinear evolution of electron acoustic solitons is derived. The effects of non-thermality, beam electron velocity and temperature, obliquity on electron acoustic solitary structures are investigated in detail. These theoretical results on solitary potential structures will be used to model satellite observations in the various regions of the Earth’s magnetosphere.

  12. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  13. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  14. Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.

    1992-01-01

    An experimental technique for absolute measurement of ultrasonic wave particle displacement amplitudes in liquids is reported. The technique is capable of measurements over a frequency range of two decades with a sensitivity less than one angstrom. The technique utilizes a previously reported submersible electrostatic acoustic transducer (ESAT) featuring a conductive membrane stretched over a recessed electrode. An uncertainty analysis shows that the displacement amplitude of an ultrasonic plane wave incident on the ESAT can be experimentally determined to better than 2.3-4 percent, depending on frequency, in the frequency range of 0.5-15 MHz. Membranes with lower and more uniform areal densities can improve the accuracy and extend the operation to higher frequencies.

  15. Acoustics of the piezo-electric pressure probe

    NASA Technical Reports Server (NTRS)

    Dutt, G. S.

    1974-01-01

    Acoustical properties of a piezoelectric device are reported for measuring the pressure in the plasma flow from an MPD arc. A description and analysis of the acoustical behavior in a piezoelectric probe is presented for impedance matching and damping. The experimental results are presented in a set of oscillographic records.

  16. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. II. High-frequency electron-acoustic solitons

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-12-15

    A three-component plasma model composed of ions, cool electrons, and hot electrons is adopted to investigate the existence of large amplitude electron-acoustic solitons not only for the model for which inertia and pressure are retained for all plasma species which are assumed to be adiabatic but also neglecting inertial effects of the hot electrons. Using the Sagdeev potential formalism, the Mach number ranges supporting the existence of large amplitude electron-acoustic solitons are presented. The limitations on the attainable amplitudes of electron-acoustic solitons having negative potentials are attributed to a number of different physical reasons, such as the number density of either the cool electrons or hot electrons ceases to be real valued beyond the upper Mach number limit, or, alternatively, a negative potential double layer occurs. Electron-acoustic solitons having positive potentials are found to be supported only if inertial effects of the hot electrons are retained and these are found to be limited only by positive potential double layers.

  17. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. I. Low-frequency ion-acoustic solitons

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-07-15

    Using the Sagdeev pseudopotential technique, the existence of large amplitude ion-acoustic solitons is investigated for a plasma composed of ions, and hot and cool electrons. Not only are all species treated as adiabatic fluids but the model for which inertial effects of the hot electrons is neglected whilst retaining inertia and pressure for the ions and cool electrons has also been considered. The focus of this investigation has been on identifying the admissible Mach number ranges for large amplitude nonlinear ion-acoustic soliton structures. The lower Mach number limit yields a minimum velocity for the existence of ion-acoustic solitons. The upper Mach number limit for positive potential solitons is found to coincide with the limiting value of the potential (positive) beyond which the ion number density ceases to be real valued, and ion-acoustic solitons can no longer exist. Small amplitude solitons having negative potentials are found to be supported when the temperature of the cool electrons is negligible.

  18. Acoustic emission signals frequency-amplitude characteristics of sandstone after thermal treated under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Kong, Biao; Wang, Enyuan; Li, Zenghua; Wang, Xiaoran; Niu, Yue; Kong, Xiangguo

    2017-01-01

    Thermally treated sandstone deformation and fracture produced abundant acoustic emission (AE) signals. The AE signals waveform contained plentiful precursor information of sandstone deformation and fracture behavior. In this paper, uniaxial compression tests of sandstone after different temperature treatments were conducted, the frequency-amplitude characteristics of AE signals were studied, and the main frequency distribution at different stress level was analyzed. The AE signals frequency-amplitude characteristics had great difference after different high temperature treatment. Significant differences existed of the main frequency distribution of AE signals during thermal treated sandstone deformation and fracture. The main frequency band of the largest waveforms proportion was not unchanged after different high temperature treatments. High temperature caused thermal damage to the sandstone, and sandstone deformation and fracture was obvious than the room temperature. The number of AE signals was larger than the room temperature during the initial loading stage. The low frequency AE signals had bigger proportion when the stress was 0.1, and the maximum value of the low frequency amplitude was larger than high frequency signals. With the increase of stress, the low and high frequency AE signals were gradually increase, which indicated that different scales ruptures were broken in sandstone. After high temperature treatment, the number of high frequency AE signals was significantly bigger than the low frequency AE signals during the latter loading stage, this indicates that the small scale rupture rate of recurrence and frequency were more than large scale rupture. The AE ratio reached the maximum during the sandstone instability failure period, and large scale rupture was dominated in the failure process. AE amplitude increase as the loading increases, the deformation and fracture of sandstone was increased gradually. By comparison, the value of the low frequency

  19. Acoustic properties of pistonphones at low frequencies in the presence of pressure leakage and heat conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; He, Wen; He, Longbiao; Rong, Zuochao

    2015-12-01

    The wide concern on absolute pressure calibration of acoustic transducers at low frequencies prompts the development of the pistonphone method. At low frequencies, the acoustic properties of pistonphones are governed by the pressure leakage and the heat conduction effects. However, the traditional theory for these two effects applies a linear superposition of two independent correction models, which differs somewhat from their coupled effect at low frequencies. In this paper, acoustic properties of pistonphones at low frequencies in full consideration of the pressure leakage and heat conduction effects have been quantitatively studied, and the explicit expression for the generated sound pressure has been derived. With more practical significance, a coupled correction expression for these two effects of pistonphones has been derived. In allusion to two typical pistonphones, the NPL pistonphone and our developed infrasonic pistonphone, comparisons were done for the coupled correction expression and the traditional one, whose results reveal that the traditional one produces maximum insufficient errors of about 0.1 dB above the lower limiting frequencies of two pistonphones, while at lower frequencies, excessive correction errors with an explicit limit of about 3 dB are produced by the traditional expression. The coupled correction expression should be adopted in the absolute pressure calibration of acoustic transducers at low frequencies. Furthermore, it is found that the heat conduction effect takes a limiting deviation of about 3 dB for the pressure amplitude and a small phase difference as frequency decreases, while the pressure leakage effect remarkably drives the pressure amplitude to attenuate and the phase difference tends to be 90° as the frequency decreases. The pressure leakage effect plays a more important role on the low frequency property of pistonphones.

  20. A Neural Network/Acoustic Emission Analysis of Impact Damaged Graphite/Epoxy Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Hill, Erik v. K.; Workman, Gary L.; Russell, Samuel S.

    1995-01-01

    Acoustic emission (AE) signal analysis has been used to measure the effects of impact damage on burst pressure in 5.75 inch diameter, inert propellant filled, filament wound pressure vessels. The AE data were collected from fifteen graphite/epoxy pressure vessels featuring five damage states and three resin systems. A burst pressure prediction model was developed by correlating the AE amplitude (frequency) distribution, generated during the first pressure ramp to 800 psig (approximately 25% of the average expected burst pressure for an undamaged vessel) to known burst pressures using a four layered back propagation neural network. The neural network, trained on three vessels from each resin system, was able to predict burst pressures with a worst case error of 5.7% for the entire fifteen bottle set.

  1. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties.

    PubMed

    James, Kevin R; Dowling, David R

    2008-09-01

    In underwater acoustics, the accuracy of computational field predictions is commonly limited by uncertainty in environmental parameters. An approximate technique for determining the probability density function (PDF) of computed field amplitude, A, from known environmental uncertainties is presented here. The technique can be applied to several, N, uncertain parameters simultaneously, requires N+1 field calculations, and can be used with any acoustic field model. The technique implicitly assumes independent input parameters and is based on finding the optimum spatial shift between field calculations completed at two different values of each uncertain parameter. This shift information is used to convert uncertain-environmental-parameter distributions into PDF(A). The technique's accuracy is good when the shifted fields match well. Its accuracy is evaluated in range-independent underwater sound channels via an L(1) error-norm defined between approximate and numerically converged results for PDF(A). In 50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at frequencies between 100 and 800 Hz, and for ranges from 1 to 8 km, 95% of the approximate field-amplitude distributions generated L(1) values less than 0.52 using only two field calculations. Obtaining comparable accuracy from traditional methods requires of order 10 field calculations and up to 10(N) when N>1.

  2. Simultaneous evaluation of acoustic nonlinearity parameter and attenuation coefficients using the finite amplitude method

    SciTech Connect

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo Cho, Sungjong

    2015-07-15

    A novel method to determine acoustic parameters involved in measuring the nonlinearity parameter of fluids or solids is proposed. The approach is based on the measurement of fundamental and second harmonic pressures with a calibrated receiver, and on a nonlinear least squares data-fitting to multi-Gaussian beam (MGB) equations which explicitly define the attenuation and diffraction effects in the quasilinear regime. Results obtained in water validate the proposed method. The choice of suitable source pressure is discussed with regard to the quasilinear approximation involved. The attenuation coefficients are also acquired in nonlinear regime and their relations are discussed.

  3. Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech

    PubMed Central

    Leong, Victoria; Goswami, Usha

    2015-01-01

    When acquiring language, young children may use acoustic spectro-temporal patterns in speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syllables, phonemes). Children appear to learn acoustic-phonological mappings rapidly, without direct instruction, yet the underlying developmental mechanisms remain unclear. Across different languages, a relationship between amplitude envelope sensitivity and phonological development has been found, suggesting that children may make use of amplitude modulation (AM) patterns within the envelope to develop a phonological system. Here we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model, a set of algorithms for deriving the dominant AM patterns in child-directed speech (CDS). Using Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy comprising 3 core modulation timescales. These timescales correspond to key phonological units: prosodic stress (Stress AM, ~2 Hz), syllables (Syllable AM, ~5 Hz) and onset-rime units (Phoneme AM, ~20 Hz). We argue that these AM patterns could in principle be used by naïve listeners to compute acoustic-phonological mappings without lexical knowledge. We then demonstrate that the modulation statistics within this AM hierarchy indeed parse the speech signal into a primitive hierarchically-organised phonological system comprising stress feet (proto-words), syllables and onset-rime units. We apply the S-AMPH model to two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately identified 72–82% (freely-read CDS) and 90–98% (rhythmically-regular CDS) stress patterns, syllables and onset-rime units. This in-principle demonstration that primitive phonology can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP) theory. AEP theory provides a set of methods for examining how early phonological development is shaped by the temporal modulation structure of speech across

  4. Acoustic waves in gases with strong pressure gradients

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.

  5. Measurement of the acoustic reflex without a pressure seal.

    PubMed

    Surr, R K; Schuchman, G I

    1976-03-01

    Obtaining a hermetic seal in the external auditory canal is often a major obstacle in impedance audiometry. In the present study, the acoustic reflex threshold was determined for three groups of subjects, first with and then without a pressure-tight seal. It was found that for subjects with normal hearing or sensorineural hearing loss and normal tympanograms, 96% of the measurements obtained without a pressure seal were within 5 dB of those obtained with a seal. Among the subjects who exhibited negative middle ear pressure, the acoustic reflex could be measured consistently at the point of maximum compliance, while no response was observed without a pressure seal.

  6. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  7. Robust intravascular optical coherence elastography driven by acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    van Soest, Gijs; Bouchard, Richard R.; Mastik, Frits; de Jong, Nico; van der Steen, Anton F. W.

    2007-07-01

    High strain spots in the vessel wall indicate the presence of vulnerable plaques. The majority of acute cardiovascular events are preceded by rupture of such a plaque in a coronary artery. Intracoronary optical coherence tomography (OCT) can be extended, in principle, to an elastography technique, mapping the strain in the vascular wall. However, the susceptibility of OCT to frame-to-frame decorrelation, caused by tissue and catheter motion, inhibits reliable tissue displacement tracking and has to date obstructed the development of OCT-based intravascular elastography. We introduce a new technique for intravascular optical coherence elastography, which is robust against motion artifacts. Using acoustic radiation force, we apply a pressure to deform the tissue synchronously with the line scan rate of the OCT instrument. Radial tissue displacement can be tracked based on the correlation between adjacent lines, instead of subsequent frames in conventional elastography. The viability of the method is demonstrated with a simulation study. The root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique. Experiments to realize this new elastographic method are presented. Simultaneous optical and ultrasonic pulse-echo tracking demonstrate that the material can be put in a high-frequency oscillatory motion with an amplitude of several micrometers, more than sufficient for accurate tracking with OCT. The resulting data are used to optimize the acoustic pushing sequence and geometry.

  8. A Study of Standing Pressure Waves Within Open and Closed Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2002-01-01

    The first section of the results presented herein was conducted on an axisymmetric resonator configured with open ventilation ports on either end of the resonator, but otherwise closed and free from obstruction. The remaining section presents the results of a similar resonator shape that was closed, but contained an axisymmetric blockage centrally located through the axis of the resonator. Ambient air was used as the working fluid. In each of the studies, the resonator was oscillated at the resonant frequency of the fluid contained within the cavity while the dynamic pressure, static pressure, and temperature of the fluid were recorded at both ends of the resonator. The baseline results showed a marked reduction in the amplitude of the dynamic pressure waveforms over previous studies due to the use of air instead of refrigerant as the working fluid. A sharp reduction in the amplitude of the acoustic pressure waves was expected and recorded when the configuration of the resonators was modified from closed to open. A change in the resonant frequency was recorded when blockages of differing geometries were used in the closed resonator, while acoustic pressure amplitudes varied little from baseline measurements.

  9. Habituation of Auditory Steady State Responses Evoked by Amplitude-Modulated Acoustic Signals in Rats

    PubMed Central

    Prado-Gutierrez, Pavel; Castro-Fariñas, Anisleidy; Morgado-Rodriguez, Lisbet; Velarde-Reyes, Ernesto; Martínez, Agustín D.; Martínez-Montes, Eduardo

    2015-01-01

    Generation of the auditory steady state responses (ASSR) is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials. PMID:26557360

  10. Effect of strain amplitude on relaxation spectra of attenuation in dry and saturated sandstone under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2007-06-01

    Laboratory experiments have been carried out to investigate the amplitude-frequency dependence of compressional- and shear-wave attenuation in samples of dry and saturated sandstone. The measurements were performed using the reflection method on a pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. In general, the attenuation decreases monotonically with increasing strain amplitude as Q^{-1} \\propto \\varepsilon ^{-n_{\\sim} }, where n~ = 0.003-0.045. The decrease in P-wave attenuation, Q-1p, for dry sandstone is 5%, but for saturated sandstone there is no change. The analogous decrease for Q-1s in the dry and the saturated sandstone is 8% and 4%, respectively. The P-wave relaxation spectra, Q-1p(f), in the dry and saturated sandstone are slightly different from each other but the S-wave relaxation spectra, Q-1s(f), are very different. The amplitude variation causes the change in the value of the relaxation strength Δ that leads to the displacement of the curve Q-1(f) in the Y-direction. The value of Δs in the saturated rock is four times more than the value Δp in the dry rock, and the curves Q-1s(f) are shifted relative to Q-1p(f) towards higher frequencies. The upward-downward amplitude dependence Δp(ɛ1-6-1) both in the dry and the saturated rock is represented by the descending curve. The Δs(ɛ1-6-1) curve for the saturated rock shows hysteresis, but for the dry rock hysteresis is absent. The increase in the strain amplitude gives rise to a small change in peak frequency, but stimulates considerable (up to 40%) decrease in the S-wave relaxation peak width. The unusual behaviour of attenuation is explained by a feature of the joint action of viscoelastic and microplastic mechanisms. These results can be used to improve methods of geological interpretation of acoustical and seismic data.

  11. Droplet actuation by surface acoustic waves: an interplay between acoustic streaming and radiation pressure

    NASA Astrophysics Data System (ADS)

    Brunet, Philippe; Baudoin, Michael; Matar, Olivier Bou; Zoueshtiagh, Farzam

    2010-11-01

    Surface acoustic waves (SAW) are known to be a versatile technique for the actuation of sessile drops. Droplet displacement, internal mixing or drop splitting, are amongst the elementary operations that SAW can achieve, which are useful on lab-on-chip microfluidics benches. On the purpose to understand the underlying physical mechanisms involved during these operations, we study experimentally the droplet dynamics varying different physical parameters. Here in particular, the influence of liquid viscosity and acoustic frequency is investigated: it is indeed predicted that both quantities should play a role in the acoustic-hydrodynamic coupling involved in the dynamics. The key point is to compare the relative magnitude of the attenuation length, i.e. the scale within which the acoustic wave decays in the fluid, and the size of the drop. This relative magnitude governs the relative importance of acoustic streaming and acoustic radiation pressure, which are both involved in the droplet dynamics.

  12. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  13. Acoustic emission testing of 12-nickel maraging steel pressure vessels

    NASA Technical Reports Server (NTRS)

    Dunegan, H. L.

    1973-01-01

    Acoustic emission data were obtained from three point bend fracture toughness specimens of 12-nickel maraging steel, and two pressure vessels of the same material. One of the pressure vessels contained a prefabricated flaw which was extended and sharpened by fatigue cycling. It is shown that the flawed vessel had similar characteristics to the fracture specimens, thereby allowing estimates to be made of its nearness to failure during a proof test. Both the flawed and unflawed pressure vessel survived the proof pressure and 5 cycles to the working pressure, but it was apparent from the acoustic emission response during the proof cycle and the 5 cycles to the working pressure that the flawed vessel was very near failure. The flawed vessel did not survive a second cycle to the proof pressure before failure due to flaw extension through the wall (causing a leak).

  14. Neural network prediction of aluminum-lithium weld strengths from acoustic emission amplitude data

    SciTech Connect

    Hill, E.V.K. . Aerospace Engineering Dept.); Israel, P.L. . Computer Science Dept.); Knotts, G.L. )

    1993-09-01

    Acoustic emission (AE) flaw growth activity was monitored in aluminum-lithium weld specimens from the onset of tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was then applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.

  15. Neural Network Prediction of Aluminum-Lithium Weld Strengths from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Israel, Peggy L.; Knotts, Gregory L.

    1993-01-01

    Acoustic Emission (AE) flaw growth activity was monitored in aluminum-lithium weld specimens from the onset tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was the applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.

  16. Solitary Water Waves of Large Amplitude Generated by Surface Pressure

    NASA Astrophysics Data System (ADS)

    Wheeler, Miles H.

    2015-11-01

    We consider exact nonlinear solitary water waves on a shear flow with an arbitrary distribution of vorticity. Ignoring surface tension, we impose a non-constant pressure on the free surface. Starting from a uniform shear flow with a flat free surface and a supercritical wave speed, we vary the surface pressure and use a continuation argument to construct a global connected set of symmetric solitary waves. This set includes waves of depression whose profiles increase monotonically from a central trough where the surface pressure is at its lowest, as well as waves of elevation whose profiles decrease monotonically from a central crest where the surface pressure is at its highest. There may also be two waves in this connected set with identical surface pressure, only one of which is a wave of depression.

  17. Amplitude modulation schemes for enhancing acoustically-driven microcentrifugation and micromixing.

    PubMed

    Ang, Kar M; Yeo, Leslie Y; Hung, Yew M; Tan, Ming K

    2016-09-01

    The ability to drive microcentrifugation for efficient micromixing and particle concentration and separation on a microfluidic platform is critical for a wide range of lab-on-a-chip applications. In this work, we investigate the use of amplitude modulation to enhance the efficiency of the microcentrifugal recirculation flows in surface acoustic wave microfluidic systems, thus concomitantly reducing the power consumption in these devices for a given performance requirement-a crucial step in the development of miniaturized, integrated circuits for true portable functionality. In particular, we show that it is possible to obtain an increase of up to 60% in the acoustic streaming velocity in a microdroplet with kHz order modulation frequencies due to the intensification in Eckart streaming; the streaming velocity is increasing as the modulation index is increased. Additionally, we show that it is possible to exploit this streaming enhancement to effect improvements in the speed of particle concentration by up to 70% and the efficiency of micromixing by 50%, together with a modest decrease in the droplet temperature.

  18. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    PubMed

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.

  19. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    PubMed Central

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew

    2015-01-01

    Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970

  20. Particle-in-cell simulation of large amplitude ion-acoustic solitons

    SciTech Connect

    Sharma, Sarveshwar Sengupta, Sudip; Sen, Abhijit

    2015-02-15

    The propagation of large amplitude ion-acoustic solitons is studied in the laboratory frame (x, t) using a 1-D particle-in-cell code that evolves the ion dynamics by treating them as particles but assumes the electrons to follow the usual Boltzmann distribution. It is observed that for very low Mach numbers the simulation results closely match the Korteweg-de Vries soliton solutions, obtained in the wave frame, and which propagate without distortion. The collision of two such profiles is observed to exhibit the usual solitonic behaviour. As the Mach number is increased, the given profile initially evolves and then settles down to the exact solution of the full non-linear Poisson equation, which then subsequently propagates without distortion. The fractional change in amplitude is found to increase linearly with Mach number. It is further observed that initial profiles satisfying k{sup 2}λ{sub de}{sup 2}<1 break up into a series of solitons.

  1. Modeling of finite amplitude acoustic waves in closed cavities using the Galerkin method.

    PubMed

    Erickson, Robert R; Zinn, Ben T

    2003-04-01

    Nonlinear resonant gas oscillations in closed ducts are investigated by solving a previously derived, quasi-one-dimensional, nonlinear wave equation that accounts for forcing, gas dynamic nonlinearities, and viscous dissipation. This equation is solved with the approximate Galerkin method to determine the dependence of driven oscillations upon the duct shape, forcing frequency, and forcing amplitude. Initially, the applicability of the developed Galerkin solution approach was studied by investigating oscillations in a straight duct, closed at both ends and periodically oscillated at a single frequency. It is shown that the Galerkin method predictions of shock wave-like oscillations in such ducts are in excellent agreement with results obtained with other numerical solution techniques. Next, this study investigated the forced response of a class of horn-shaped ducts, and it is shown that for a given forcing amplitude, there exists a nonmonotonic increase in compression ratio as the duct's flare constant is increased. Finally, it is shown that oscillations driven in ducts whose shapes were chosen to provide shifting of the second and third natural acoustic mode frequencies exhibit significant waveform distortion and non-negligible increases in compression ratio when compared with oscillations driven in straight ducts.

  2. Arbitrary amplitude ion-acoustic solitary excitations in the presence of excess superthermal electrons

    SciTech Connect

    Saini, N. S.; Kourakis, I.; Hellberg, M. A.

    2009-06-15

    Velocity distribution functions with an excess of superthermal particles are commonly observed in space plasmas, and are effectively modeled by a kappa distribution. They are also found in some laboratory experiments. In this paper we obtain existence conditions for and some characteristics of ion-acoustic solitary waves in a plasma composed of cold ions and {kappa}-distributed electrons, where {kappa}>3/2 represents the spectral index. As is the case for the usual Maxwell-Boltzmann electrons, only positive potential solitons are found, and, as expected, in the limit of large {kappa} one recovers the usual range of possible soliton Mach numbers, viz., 1amplitude of the largest possible solitons that may be generated in a given plasma (corresponding to the highest allowed Mach number for the given plasma composition) falls off with decreasing {kappa}, i.e., an increasing superthermal component. On the other hand, at fixed Mach number, both soliton amplitude and profile steepness increase as {kappa} is decreased. These changes are seen to be important particularly for {kappa}<4, i.e., when the electrons have a 'hard' spectrum.

  3. The effects of external acoustic pressure fields on a free-running supercavitating projectile.

    PubMed

    Cameron, Peter J K; Rogers, Peter H; Doane, John W

    2010-12-01

    Proliferation of supercavitating torpedoes has motivated research on countermeasures against them as well as on the fluid phenomenon which makes them possible. The goal of this research was to investigate an envisaged countermeasure, an acoustic field capable of slowing or diverting the weapon by disrupting the cavitation envelope. The research focused on the interactions between high pressure amplitude sound waves and a supercavity produced by a small free-flying projectile. The flight dynamics and cavity geometry measurements were compared to control experiments and theoretical considerations were made for evaluating the effects. Corrugations on the cavity/water interface caused by the pressure signal have been observed and characterized. Results also show that the accuracy of a supercavitating projectile can be adversely affected by the sound signal. This research concludes with results that indicate that it is acoustic cavitation in the medium surrounding the supercavity, caused by the high pressure amplitude sound, that is responsible for the reduced accuracy. A hypothesis has been presented addressing the means by which the acoustic cavitation could cause this effect.

  4. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  5. Pressure potential and stability analysis in an acoustical noncontact transportation

    NASA Astrophysics Data System (ADS)

    Li, J.; Liu, C. J.; Zhang, W. J.

    2017-01-01

    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  6. Sound pressure level gain in an acoustic metamaterial cavity.

    PubMed

    Song, Kyungjun; Kim, Kiwon; Hur, Shin; Kwak, Jun-Hyuk; Park, Jihyun; Yoon, Jong Rak; Kim, Jedo

    2014-12-11

    The inherent attenuation of a homogeneous viscous medium limits radiation propagation, thereby restricting the use of many high-frequency acoustic devices to only short-range applications. Here, we design and experimentally demonstrate an acoustic metamaterial localization cavity which is used for sound pressure level (SPL) gain using double coiled up space like structures thereby increasing the range of detection. This unique behavior occurs within a subwavelength cavity that is 1/10(th) of the wavelength of the incident acoustic wave, which provides up to a 13 dB SPL gain. We show that the amplification results from the Fabry-Perot resonance of the cavity, which has a simultaneously high effective refractive index and effective impedance. We also experimentally verify the SPL amplification in an underwater environment at higher frequencies using a sample with an identical unit cell size. The versatile scalability of the design shows promising applications in many areas, especially in acoustic imaging and underwater communication.

  7. Sound Pressure Level Gain in an Acoustic Metamaterial Cavity

    NASA Astrophysics Data System (ADS)

    Song, Kyungjun; Kim, Kiwon; Hur, Shin; Kwak, Jun-Hyuk; Park, Jihyun; Yoon, Jong Rak; Kim, Jedo

    2014-12-01

    The inherent attenuation of a homogeneous viscous medium limits radiation propagation, thereby restricting the use of many high-frequency acoustic devices to only short-range applications. Here, we design and experimentally demonstrate an acoustic metamaterial localization cavity which is used for sound pressure level (SPL) gain using double coiled up space like structures thereby increasing the range of detection. This unique behavior occurs within a subwavelength cavity that is 1/10th of the wavelength of the incident acoustic wave, which provides up to a 13 dB SPL gain. We show that the amplification results from the Fabry-Perot resonance of the cavity, which has a simultaneously high effective refractive index and effective impedance. We also experimentally verify the SPL amplification in an underwater environment at higher frequencies using a sample with an identical unit cell size. The versatile scalability of the design shows promising applications in many areas, especially in acoustic imaging and underwater communication.

  8. On the implementation of an automated acoustic output optimization algorithm for subharmonic aided pressure estimation

    PubMed Central

    Dave, J. K.; Halldorsdottir, V. G.; Eisenbrey, J. R.; Merton, D. A.; Liu, J. B.; Machado, P.; Zhao, H.; Park, S.; Dianis, S.; Chalek, C. L.; Thomenius, K. E.; Brown, D. B.; Forsberg, F.

    2013-01-01

    Incident acoustic output (IAO) dependent subharmonic signal amplitudes from ultrasound contrast agents can be categorized into occurrence, growth or saturation stages. Subharmonic aided pressure estimation (SHAPE) is a technique that utilizes growth stage subharmonic signal amplitudes for hydrostatic pressure estimation. In this study, we developed an automated IAO optimization algorithm to identify the IAO level eliciting growth stage subharmonic signals and also studied the effect of pulse length on SHAPE. This approach may help eliminate the problems of acquiring and analyzing the data offline at all IAO levels as was done in previous studies and thus, pave the way for real-time clinical pressure monitoring applications. The IAO optimization algorithm was implemented on a Logiq 9 (GE Healthcare, Milwaukee, WI) scanner interfaced with a computer. The optimization algorithm stepped the ultrasound scanner from 0 to 100 % IAO. A logistic equation fitting function was applied with the criterion of minimum least squared error between the fitted subharmonic amplitudes and the measured subharmonic amplitudes as a function of the IAO levels and the optimum IAO level was chosen corresponding to the inflection point calculated from the fitted data. The efficacy of the optimum IAO level was investigated for in vivo SHAPE to monitor portal vein (PV) pressures in 5 canines and was compared with the performance of IAO levels, below and above the optimum IAO level, for 4, 8 and 16 transmit cycles. The canines received a continuous infusion of Sonazoid microbubbles (1.5 μl/kg/min; GE Healthcare, Oslo, Norway). PV pressures were obtained using a surgically introduced pressure catheter (Millar Instruments, Inc., Houston, TX) and were recorded before and after increasing PV pressures. The experiments showed that optimum IAO levels for SHAPE in the canines ranged from 6 to 40 %. The best correlation between changes in PV pressures and in subharmonic amplitudes (r = -0.76; p = 0

  9. Experimental study of outdoor propagation of spherically speading periodic acoustic waves of finite amplitude

    NASA Technical Reports Server (NTRS)

    Theobald, M. A.

    1977-01-01

    The outdoor propagation of spherically spreading sound waves of finite amplitude was investigated. The main purpose of the experiments was to determine the extent to which the outdoor environment, mainly random inhomogeneity of the medium, affects finite amplitude propagation. Periodic sources with fundamental frequencies in the range 6 to 8 kHz and source levels SPLlm from 140 to 149 dB were used. The sources were an array of 7 to 10 horn drivers and a siren. The propagation path was vertical and parallel to an 85 m tower, whose elevator carried the traveling microphone. The general conclusions drawn from the experimental results were as follows. The inhomogeneities caused significant fluctuations in the instantaneous acoustic signal, but with sufficient time averaging of the measured harmonic levels, the results were comparable to results expected for propagation in a quiet medium. Propagation data for the fundamental of the siren approached within 1 dB of the weak shock saturation levels. Extra attenuation on the order of 8 dB was observed. The measurements generally confirmed the predictions of several theoretical models. The maximum propagation distance was 36 m. The narrowbeam arrays were much weaker sources. Nonlinear propagation distortion was produced, but the maximum value of extra attenuation measured was 1.5 dB. The maximum propagation distance was 76 m. The behavior of the asymetric waveforms received in one experiment qualitatively suggested that beam type diffraction effects were present. The role of diffraction of high intensity sound waves in radiation from a single horn was briefly investigated.

  10. The acoustic field scattered from some approximate pressure release materials

    NASA Astrophysics Data System (ADS)

    Caille, Gary W.

    1988-03-01

    The objective was to determine if a pressure release boundary condition can be achieved by coating an elastic shell with a visco-elastic material. One necessary condition is that the coating must acoustically decouple the shell from the scattering problem. Two closed cell rubbers and two cork-rubber composites (nitrile and neoprene based) were investigated. The dynamic viscoelastic constants of the materials were determined by wave propagation techniques. The far field scattering form functions for an infinite cylindrical shell coated with the viscoelastic material were calculated using the complete elastic equations of motion. The form functions were experimentally measured for the different materials at different thicknesses as verification of the theory. A thick finite right cylindrical shell was coated with .25 inches of closed cell neoprene and the normalized scattered pressure measured. The pressure release normalized scattered pressure was determined for the end on incident plane wave case using the acoustic radiation Simplified Helmholtz Integral Program (SHIP).

  11. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter

    NASA Astrophysics Data System (ADS)

    Huber, Peter; Jöchle, Knut; Debus, Jürgen

    1998-10-01

    Monitoring the generation of cavitation is of great interest for diagnostic and therapeutic use of ultrasound in medicine, since cavitation is considered to play a major role in nonthermal ultrasound interactions with tissue. Important parameters are the number of cavitation events and the energy released during the bubble collapse. This energy is correlated to the maximum bubble radius which is related to the cavitation lifespan. The aim of this study was therefore to investigate the influence of the acoustic pressure amplitude and the pulse repetition frequency (PRF) in the field of a lithotripter (Lithostar, Siemens) on the number, size and lifespan of transient cavitation bubbles in water. We used scattered laser light recorded by a photodiode and stroboscopic photographs to monitor the cavitation activity. We found that PRF (range 0.5-5 Hz) had no influence on the cavitation bubble lifespan and size, whereas lifespan and size increased with the acoustic pressure amplitude. In contrast, the number of cavitation events strongly increased with PRF, whereas the pressure amplitude had no significant influence on the number of cavitation events. Thus, by varying the pressure amplitude and PRF, it might be possible to deliver a defined relative number of cavitations at a defined relative energy level in a defined volume. This seems to be relevant to further studies that address the biological effects of transient cavitation occurring in the fields of lithotripters.

  12. Large amplitude ship motions and bow flare slamming pressures in regular head seas

    SciTech Connect

    Tao, Z.; Incecik, A.

    1996-12-31

    In this paper, the motion equations incorporating nonlinear terms due to large amplitude motions and bow flare slamming pressures are described in regular head seas. Numerical predictions of ship motions based on a small amplitude linear theory and large amplitude nonlinear method and experimental data are compared with each other in the frequency and time domain. The nonlinear restoring force, nonlinear damping force and nonlinear fluid momentum force are considered in predicting ship motions. The frequency dependent added mass and damping coefficient are computed at the instantaneous submerged sections of the ship. The momentum slamming theory and Wagner theory are used to predict the bow flare slamming pressure. The total impact pressure is expressed as the sum of water immersion impact pressure and wave striking impact pressure. There is a satisfactory agreement between theoretical predictions and model test measurements.

  13. Response of space shuttle insulation panels to acoustic noise pressure

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1976-01-01

    The response of reusable space shuttle insulation panels to random acoustic pressure fields are studied. The basic analytical approach in formulating the governing equations of motion uses a Rayleigh-Ritz technique. The input pressure field is modeled as a stationary Gaussian random process for which the cross-spectral density function is known empirically from experimental measurements. The response calculations are performed in both frequency and time domain.

  14. Partial-differential-equation-constrained amplitude-based shape detection in inverse acoustic scattering

    NASA Astrophysics Data System (ADS)

    Na, Seong-Won; Kallivokas, Loukas F.

    2008-03-01

    In this article we discuss a formal framework for casting the inverse problem of detecting the location and shape of an insonified scatterer embedded within a two-dimensional homogeneous acoustic host, in terms of a partial-differential-equation-constrained optimization approach. We seek to satisfy the ensuing Karush-Kuhn-Tucker first-order optimality conditions using boundary integral equations. The treatment of evolving boundary shapes, which arise naturally during the search for the true shape, resides on the use of total derivatives, borrowing from recent work by Bonnet and Guzina [1-4] in elastodynamics. We consider incomplete information collected at stations sparsely spaced at the assumed obstacle’s backscattered region. To improve on the ability of the optimizer to arrive at the global optimum we: (a) favor an amplitude-based misfit functional; and (b) iterate over both the frequency- and wave-direction spaces through a sequence of problems. We report numerical results for sound-hard objects with shapes ranging from circles, to penny- and kite-shaped, including obstacles with arbitrarily shaped non-convex boundaries.

  15. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.

    PubMed

    Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F; Blackstock, David T

    2002-01-01

    Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere.

  16. Acoustic Wave Propagation in Pressure Sense Lines

    NASA Technical Reports Server (NTRS)

    Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin

    2003-01-01

    Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.

  17. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  18. Two-Step Pseudomaximum Amplitude-Based Confidence Interval Estimation for Oscillometric Blood Pressure Measurements.

    PubMed

    Lee, Soojeong; Jeon, Gwanggil; Kang, Seokhoon

    2015-01-01

    Blood pressure (BP) is an important vital sign to determine the health of an individual. Although the estimation of average arterial blood pressure using oscillometric methods is possible, there are no established methods for obtaining confidence intervals (CIs) for systolic blood pressure (SBP) and diastolic blood pressure (DBP). In this paper, we propose a two-step pseudomaximum amplitude (TSPMA) as a novel approach to obtain improved CIs of SBP and DBP using a double bootstrap approach. The weighted median (WM) filter is employed to reduce impulsive and Gaussian noises in the step of preprocessing. Application of the proposed method provides tighter CIs and smaller standard deviation of CIs than the pseudomaximum amplitude-envelope and maximum amplitude algorithms with Student's t-method.

  19. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    SciTech Connect

    Rufai, O. R.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  20. Acoustic Determination of Methane Hydrate Disssociation Pressures

    DTIC Science & Technology

    2011-07-01

    coring operations between 1998 and 2000 and stored in liquid nitrogen at at- mospheric pressure...recent years , several groups have attempted to model the stability regimes of gas hydrates. Parrish and Prausnitz (Ref. [13]) used experi- mental data to...t c u rr e n t e x p e ri m e n t P a rr is h & P ra u s n it z , 1 9 7 2 P a rr is h & P ra u s n it z , 1 9 7 2 D ic k e n s & Q u in b

  1. Tongue-Palate Contact Pressure, Oral Air Pressure, and Acoustics of Clear Speech

    ERIC Educational Resources Information Center

    Searl, Jeff; Evitts, Paul M.

    2013-01-01

    Purpose: The authors compared articulatory contact pressure (ACP), oral air pressure (Po), and speech acoustics for conversational versus clear speech. They also assessed the relationship of these measures to listener perception. Method: Twelve adults with normal speech produced monosyllables in a phrase using conversational and clear speech.…

  2. Vertical amplitude phase structure of a low-frequency acoustic field in shallow water

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.

    2016-11-01

    We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.

  3. Optimized Shapes of Ocsillating Resonators for Generating High-Amplitude Pressure Waves

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Finkbeiner, Joshua; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    It is well known that the resonator geometry strongly influences the resonant frequencies of an acoustical resonator and the generated nonlinear standing pressure waveform. Maximizing the ratio of maximum to minimum gas pressure at an end of an oscillating resonator by optimizing the cavity contour is investigated numerically. A quasi-Newton type scheme is used to find optimized axisymmetric resonator shapes to achieve the maximum pressure compression ratio. The acoustical field is solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects are obtained through an automation scheme based on continuation methods. Results are presented from optimizing cone, horn-cone, and cosine resonator geometries. Significant performance improvement is found in the optimized shapes over others previously published. Different optimized shapes are found when starting with different initial guesses, indicating multiple local extrema. The numerical model is validated by comparing with the experimental results of a horn-cone shaped resonator.

  4. High Amplitude Acoustic Behavior of a Slit-Orifice Backed by a Cavity

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.

    2000-01-01

    The objective of this study was to acquire detailed acoustic data and limited flow visualization data for numerical validation of a new model of sound absorption by a very narrow rectangular slit backed by a cavity. The sound absorption model is that being developed by Dr. C. K. W. Tam of Florida State University. This report documents normal incidence impedance measurements of a singular rectangular slit orifice with no mean flow. All impedance measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube using the two-microphone method for several frequencies in the range 1000 - 6000Hz and incident sound pressure levels in the range 130 - 150 dB. In the interest of leaving the analysis of the data to the developers of more advanced Analytical and computational models of sound absorption by narrow slits, we authors have refrained from giving our own explanations of the observed results, although many of the observed results can be explained using the classical understanding of sound absorption by orifices.

  5. High Amplitude Acoustic Behavior of a Slit-Orifice Backed by a Cavity

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)

    2000-01-01

    The objective of the study reported here was to acquire detailed acoustic data and limited and flow visualization data for numerical validation a new model of sound absorption by a very narrow rectangular slit backed by a cavity. The sound absorption model is being developed by Dr. C. K. W. Tam of Florida State University. This report documents normal incidence impedance measurements of a singular rectangular slit orifice with no mean flow. All impedance measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube using the two-microphone method for several frequencies in the range 1000-6000Hz and incident sound pressure levels in the range 130 - 150 dB. In the interest of leaving the analysis of the data to the developers of more advanced analytical and computational models of sound absorption by narrow slits, we have refrained from giving our own explanations of the observed results, although many of the observed results can be explained using the classical explanations of sound absorption by orifices.

  6. Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shifta)

    NASA Astrophysics Data System (ADS)

    Flandro, Gary A.; Fischbach, Sean R.; Majdalani, Joseph

    2007-09-01

    High-amplitude pressure oscillations in solid propellant rocket motor combustion chambers display nonlinear effects including: (1) limit cycle behavior in which the fluctuations may dwell for a considerable period of time near their peak amplitude, (2) elevated mean chamber pressure (DC shift), and (3) a triggering amplitude above which pulsing will cause an apparently stable system to transition to violent oscillations. Along with the obvious undesirable vibrations, these features constitute the most damaging impact of combustion instability on system reliability and structural integrity. The physical mechanisms behind these phenomena and their relationship to motor geometry and physical parameters must, therefore, be fully understood if instability is to be avoided in the design process, or if effective corrective measures must be devised during system development. Predictive algorithms now in use have limited ability to characterize the actual time evolution of the oscillations, and they do not supply the motor designer with information regarding peak amplitudes or the associated critical triggering amplitudes. A pivotal missing element is the ability to predict the mean pressure shift; clearly, the designer requires information regarding the maximum chamber pressure that might be experienced during motor operation. In this paper, a comprehensive nonlinear combustion instability model is described that supplies vital information. The central role played by steep-fronted waves is emphasized. The resulting algorithm provides both detailed physical models of nonlinear instability phenomena and the critically needed predictive capability. In particular, the origin of the DC shift is revealed.

  7. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  8. Observation of 3D defect mediated dust acoustic wave turbulence with fluctuating defects and amplitude hole filaments

    SciTech Connect

    Chang, Mei-Chu; Tsai, Ya-Yi; I, Lin

    2013-08-15

    We experimentally demonstrate the direct observation of defect mediated wave turbulence with fluctuating defects and low amplitude hole filaments, from a 3D self-excited plane dust acoustic wave in a dusty plasma by reducing dissipation. The waveform undulation is found to be the origin for the amplitude and the phase modulations of the local dust density oscillation, the broadening of the sharp peaks in the frequency spectrum, and the fluctuating defects. The corrugated wave crest surface also causes the observed high and low density patches in the transverse (xy) plane. Low oscillation amplitude spots (holes) share the same positions with the defects. Their trajectories in the xyt space appear in the form of chaotic filaments without long term predictability, through uncertain pair generation, propagation, and pair annihilation.

  9. Dual mode acoustic wave sensor for precise pressure reading

    NASA Astrophysics Data System (ADS)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  10. Nonlinear Excitation of Acoustic Modes by Large Amplitude Alfvén waves in the Large Plasma Device (LAPD)

    NASA Astrophysics Data System (ADS)

    Dorfman, S. E.; Carter, T. A.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.; Sydora, R. D.

    2013-12-01

    Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in space plasmas. While the linear behavior of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar corona and solar wind. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may play an important role in the coronal heating problem. Specifically, the decay of large-amplitude Alfvén waves propagating outward from the photosphere could lead to heating of the corona by the daughter ion acoustic modes [2]. As direct observational evidence of parametric decay is limited [3], laboratory experiments may play an important role in validating simple theoretical predictions and aiding in the interpretation of space measurements. Recent counter-propagating Alfvén wave experiments in the Large Plasma Device (LAPD) have recorded the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of this parametric decay instability [4]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. Strong damping observed after the pump Alfvén waves are turned off is under investigation; a novel ion acoustic wave launcher is under development to launch the mode directly for damping studies. New experiments also aim to identify decay instabilities from a single large-amplitude Alfvén wave. In conjunction with these experiments, gyrokinetic simulation efforts are underway to scope out the relevant parameter space. [1] W. Gekelman, et. al., Phys. Plasmas 18, 055501 (2011). [2] F

  11. Nonlinear Acoustics: Periodic Waveguide, Finite-Amplitude Propagation in a Medium Having a Distribution of Relaxation Processes, and Production of an Isolated Negative Pulse in Water

    DTIC Science & Technology

    1993-08-24

    TenCate , "Finite amplitude sound near cutoff in higher order modes of a rectangular duct," J. Acoust. Soc. Am. 84, 327-334 (1988). Gen§ 0 7. D. T...Acoust. Soc. Am. 90, 2339(A) (1991) 1109 0 7. James A. TenCate , "Measurements of nonlinear effects in the sound field radiated from a circular

  12. Sensing the characteristic acoustic impedance of a fluid utilizing acoustic pressure waves

    PubMed Central

    Antlinger, Hannes; Clara, Stefan; Beigelbeck, Roman; Cerimovic, Samir; Keplinger, Franz; Jakoby, Bernhard

    2012-01-01

    Ultrasonic sensors can be used to determine physical fluid parameters like viscosity, density, and speed of sound. In this contribution, we present the concept for an integrated sensor utilizing pressure waves to sense the characteristic acoustic impedance of a fluid. We note that the basic setup generally allows to determine the longitudinal viscosity and the speed of sound if it is operated in a resonant mode as will be discussed elsewhere. In this contribution, we particularly focus on a modified setup where interferences are suppressed by introducing a wedge reflector. This enables sensing of the liquid's characteristic acoustic impedance, which can serve as parameter in condition monitoring applications. We present a device model, experimental results and their evaluation. PMID:23565036

  13. Arbitrary amplitude dust ion acoustic solitons and double layers in the presence of nonthermal positrons and electrons

    NASA Astrophysics Data System (ADS)

    Banerjee, Gadadhar; Maitra, Sarit

    2016-12-01

    Existence of arbitrary amplitude solitons and double layers have been studied in collisionless unmagnetized multicomponent dusty plasmas with nonthermally distributed positrons and electrons by using Sagdeev's pseudopotential method. The linear dispersion relation is obtained for dust ion acoustic wave mode. The present model supports the coexistence of positive potential solitary waves and negative potential solitary waves and double layers. The criterion for the existence of solitary waves and double layers is derived in terms of Mach number limit. The effects of ion temperature and nonthermality of electrons and positrons are studied. Also the effects of positron and dust concentration on the wave propagation are observed.

  14. Acoustic pressure wound therapy in the treatment of stage II pressure ulcers.

    PubMed

    Thomas, Raenell

    2008-11-01

    Pressure ulcers are localized skin injuries secondary to unrelieved pressure or friction. Patients with immobility issues are at increased risk for developing pressure ulcers. In 2004, stricter federal regulations for prevention and treatment of pressure ulcers in institutional settings--eg, long-term care facilities--were introduced. Effective, low-cost treatments for pressure ulcers are needed; acoustic pressure wound therapy (APWT), a noncontact, low-frequency, therapeutic ultrasound system, is one option. A retrospective case series of six long-term care patients (two men and one woman, age range 61 to 92 years), each with one Stage II pressure ulcer, is presented. Acoustic pressure wound therapy was provided as an adjunct to standard treatment that included balsam of Peru/castor oil/trypsin ointment, hydrogel, hydrocolloid dressings, silver dressings, and offloading. Outcomes (days to healing) were determined through changes in wound dimensions. Study participants each received APWT for 3 to 4 minutes three to four times weekly. In four of the six wounds, the average number of days to healing was 22. One of the two remaining patients discontinued treatment at 95% healed; treatment for the sixth patient was ongoing due to hospitalization that delayed APWT. In a long-term care setting, APWT added to standard of care may accelerate healing of Stage II pressure ulcers.

  15. Interrelation between external oscillatory muscle coupling amplitude and in vivo intramedullary pressure related bone adaptation.

    PubMed

    Hu, Minyi; Cheng, Jiqi; Bethel, Neville; Serra-Hsu, Frederick; Ferreri, Suzanne; Lin, Liangjun; Qin, Yi-Xian

    2014-09-01

    Interstitial bone fluid flow (IBFF) is suggested as a communication medium that bridges external physical signals and internal cellular activities in the bone, which thus regulates bone remodeling. Intramedullary pressure (ImP) is one main regulatory factor of IBFF and bone adaptation related mechanotransduction. Our group has recently observed that dynamic hydraulic stimulation (DHS), as an external oscillatory muscle coupling, was able to induce local ImP with minimal bone strain as well as to mitigate disuse bone loss. The current study aimed to evaluate the dose dependent relationship between DHS's amplitude, i.e., 15 and 30mmHg, and in vivo ImP induction, as well as this correlation on bone's phenotypic change. Simultaneous measurements of ImP and DHS cuff pressures were obtained from rats under DHS with various magnitudes and a constant frequency of 2Hz. ImP inductions and cuff pressures upon DHS loading showed a positively proportional response over the amplitude sweep. The relationship between ImP and DHS cuff pressure was evaluated and shown to be proportional, in which ImP was raised with increases of DHS cuff pressure amplitudes (R(2)=0.98). A 4-week in vivo experiment using a rat hindlimb suspension model demonstrated that the mitigation effect of DHS on disuse trabecular bone was highly dose dependent and related to DHS's amplitude, where a higher ImP led to a higher bone volume. This study suggested that sufficient physiological DHS is needed to generate ImP. Oscillatory DHS, potentially induces local fluid flow, has shown dose dependence in attenuation of disuse osteopenia.

  16. Vibro-acoustics of a pressurized optical membrane

    NASA Astrophysics Data System (ADS)

    Tarazaga, Pablo A.; Johnson, Marty E.; Inman, Daniel J.

    2012-07-01

    Optical membranes are currently pursued for their ability to replace the conventional rigid mirrors that are used in space-based telescopes. Among some of the many benefits of using optical membranes is their ability to considerably reduce the weight of the structure. Given the low density of these thin-film membranes, the lower end dynamics play a more significant role than in their rigid plate-like counterparts. Space-based mirrors are subjected to a series of disturbances. Among those encountered are thermal radiation, debris impact, and slewing maneuvers. Thus, being able to model the dynamics appropriately is essential for the adequate performance of thin-film membrane mirrors. With this in mind, the work presented herein uses an impedance based modeling approach to describe the coupled dynamics of a pressurized optical membrane mirror with the end goal of performing vibration suppression of a membrane through acoustic excitation. First the effects of mass loading due to air surrounding a membrane and energy loss due to sound radiation to the far field are modeled in the case of a single membrane. These results are compared to the case of a membrane in vacuum. Second, the membrane is then coupled to a cylindrical cavity where the modeling takes into account the structural acoustic coupling between a cylindrical membrane and a rigid cylindrical cavity, similar to a drum. The coupled model also takes into account the energy loss by sound radiation to the far field due to the membrane's vibration. Third, this paper also looks at using a positive position feedback controller for vibration suppression of the membrane. This is done using a centralized acoustic source at the base of the cavity as the method of actuation. The acoustic actuation is of great interest since it does not mass load the membrane in the conventional way, as most methods of actuation would.

  17. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme waves

    SciTech Connect

    Rahman, Ata-ur-; Kerr, Michael Mc Kourakis, Ioannis; El-Taibany, Wael F.; Qamar, A.

    2015-02-15

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  18. The Dynamics of Vapor Bubbles in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    1999-01-01

    In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper examines numerically the validity of some asymptotic-theory predictions such as the existence of two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena therefore play a role for a few cycles at most, and reaching a limit size-if one exists at all-is found to require far more than several tens of thousands of cycles. It is also found that some small bubbles may grow or collapse depending on the phase of the sound field. The model accounts in detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an approximate formulation valid for bubbles small with respect to the thermal penetration length in the vapor is derived and its accuracy examined, The present findings have implications for acoustically enhanced boiling heat transfer and other special applications such as boiling in microgravity.

  19. Spatiotemporal reconstruction of auditory steady-state responses to acoustic amplitude modulations: Potential sources beyond the auditory pathway.

    PubMed

    Farahani, Ehsan Darestani; Goossens, Tine; Wouters, Jan; van Wieringen, Astrid

    2017-03-01

    Investigating the neural generators of auditory steady-state responses (ASSRs), i.e., auditory evoked brain responses, with a wide range of screening and diagnostic applications, has been the focus of various studies for many years. Most of these studies employed a priori assumptions regarding the number and location of neural generators. The aim of this study is to reconstruct ASSR sources with minimal assumptions in order to gain in-depth insight into the number and location of brain regions that are activated in response to low- as well as high-frequency acoustically amplitude modulated signals. In order to reconstruct ASSR sources, we applied independent component analysis with subsequent equivalent dipole modeling to single-subject EEG data (young adults, 20-30 years of age). These data were based on white noise stimuli, amplitude modulated at 4, 20, 40, or 80Hz. The independent components that exhibited a significant ASSR were clustered among all participants by means of a probabilistic clustering method based on a Gaussian mixture model. Results suggest that a widely distributed network of sources, located in cortical as well as subcortical regions, is active in response to 4, 20, 40, and 80Hz amplitude modulated noises. Some of these sources are located beyond the central auditory pathway. Comparison of brain sources in response to different modulation frequencies suggested that the identified brain sources in the brainstem, the left and the right auditory cortex show a higher responsiveness to 40Hz than to the other modulation frequencies.

  20. Active control of acoustic pressure fields using smart material technologies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, R. C.

    1993-01-01

    An overview describing the use of piezoceramic patches in reducing noise in a structural acoustics setting is presented. The passive and active contributions due to patches which are bonded to an Euler-Bernoulli beam or thin shell are briefly discussed and the results are incorporated into a 2-D structural acoustics model. In this model, an exterior noise source causes structural vibrations which in turn lead to interior noise as a result of nonlinear fluid/structure coupling mechanism. Interior sound pressure levels are reduced via patches bonded to the flexible boundary (a beam in this case) which generate pure bending moments when an out-of-phase voltage is applied. Well-posedness results for the infinite dimensional system are discussed and a Galerkin scheme for approximating the system dynamics is outlined. Control is implemented by using linear quadratic regulator (LQR) optimal control theory to calculate gains for the linearized system and then feeding these gains back into the nonlinear system of interest. The effectiveness of this strategy for this problem is illustrated in an example.

  1. Problems in Nonlinear Acoustics: Parametric Receiving Arrays, Focused Finite Amplitude Sound, and Dispersive Nonlinear Interactions.

    DTIC Science & Technology

    1986-04-30

    TenCate , who is supported by ONR Contract NOOO I 4-84-K-0574, in the completion of work on pure tones that interact in higher order modes of a...rectangular duct.26 Through collaboration with TenCate , Lind has acquired experience with the same experimental apparatus that he will use beginning I June...34 J. Acoust. Soc. " .. Am. 65.1127-1133(1979). 36. J. A TenCate and K F. Hamilton, "Dispersive nonlinear wave interactions in a rectangular duct," In

  2. Problems in Nonlinear Acoustics: Parametric Receiving Arrays, Focused Finite Amplitude Sound, & Noncollinear Tone-Noise Interactions

    DTIC Science & Technology

    1987-07-01

    plane waves that propagate in different directions. This approach was followed by TenCate and Hamilton [33,34], who investigated both theoretically...75, 1383-1391 (1984). • i I ■ [33] J. A. TenCate and M. F. Hamilton, "Dispersive NonUnear Wave Interactions in a Rect- angular Duct," in...and J. A. TenCate , "Sum and Difference Frequency Generation due to Noncollinear Wave Interaction in a Rectangular Duct," J. Acoust. Soc. Am. 81

  3. Problems in Nonlinear Acoustics: Pulsed Finite Amplitude Sound Beams, Nonlinear Propagation of Sound in Layered Media, Time Domain Solutions for Focused Sound Beams, Focusing of Sound with an Ellipsoidal Mirror, and Modeling Finite Amplitude Propagation in Waveguides.

    DTIC Science & Technology

    1991-08-01

    Introduction of an article by Hamilton and TenCate . 5 In a real ocean environment, however, not only does sound penetrate the ocean bottom, but the...F. Hamilton and J. A. TenCate , "Finite amplitude sound near cutoff in higher-order modes of a rectangular duct," J. Acoust. Soc. Am. 84, 327-334

  4. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    DOEpatents

    Ziminsky, Willy Steve; Krull, Anthony Wayne; Healy, Timothy Andrew , Yilmaz, Ertan

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  5. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.

    PubMed

    Wei, Zongsu; Weavers, Linda K

    2016-07-01

    Scaled-up and economically viable sonochemical systems are critical for increased use of ultrasound in environmental and chemical processing applications. In this study, computational simulations and acoustic pressure maps were used to design a larger-scale sono-reactor containing a multi-stepped ultrasonic horn. Simulations in COMSOL Multiphysics showed ultrasonic waves emitted from the horn neck and tip, generating multiple regions of high acoustic pressure. The volume of these regions surrounding the horn neck were larger compared with those below the horn tip. The simulated acoustic field was verified by acoustic pressure contour maps generated from hydrophone measurements in a plexiglass box filled with water. These acoustic pressure contour maps revealed an asymmetric and discrete distribution of acoustic pressure due to acoustic cavitation, wave interaction, and water movement by ultrasonic irradiation. The acoustic pressure contour maps were consistent with simulation results in terms of the effective scale of cavitation zones (∼ 10 cm and <5 cm above and below horn tip, respectively). With the mapped acoustic field and identified cavitation location, a cylindrically-shaped sono-reactor with a conical bottom was designed to evaluate the treatment capacity (∼ 5 L) for the multi-stepped horn using COMSOL simulations. In this study, verification of simulation results with experiments demonstrates that coupling of COMSOL simulations with hydrophone measurements is a simple, effective and reliable scientific method to evaluate reactor designs of ultrasonic systems.

  6. Vector network analyzer measurement of the amplitude of an electrically excited surface acoustic wave and validation by X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Camara, I. S.; Croset, B.; Largeau, L.; Rovillain, P.; Thevenard, L.; Duquesne, J.-Y.

    2017-01-01

    Surface acoustic waves are used in magnetism to initiate magnetization switching, in microfluidics to control fluids and particles in lab-on-a-chip devices, and in quantum systems like two-dimensional electron gases, quantum dots, photonic cavities, and single carrier transport systems. For all these applications, an easy tool is highly needed to measure precisely the acoustic wave amplitude in order to understand the underlying physics and/or to optimize the device used to generate the acoustic waves. We present here a method to determine experimentally the amplitude of surface acoustic waves propagating on Gallium Arsenide generated by an interdigitated transducer. It relies on Vector Network Analyzer measurements of S parameters and modeling using the Coupling-Of-Modes theory. The displacements obtained are in excellent agreement with those measured by a very different method based on X-ray diffraction measurements.

  7. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    PubMed

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  8. Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system

    NASA Astrophysics Data System (ADS)

    Shang, Ying; Yang, Yuan-Hong; Wang, Chen; Liu, Xiao-Hui; Wang, Chang; Peng, Gang-Ding

    2016-06-01

    We propose a demodulated signal distribution theory for a self-interfered distributed acoustic sensing system. The distribution region of Rayleigh backscattering including the acoustic sensing signal in the sensing fiber is investigated theoretically under different combinations of both the path difference and pulse width Additionally we determine the optimal solution between the path difference and pulse width to obtain the maximum phase change per unit length. We experimentally test this theory and realize a good acoustic pressure phase sensitivity of  -150 dB re rad/(μPa·m) of fiber in the frequency range from 200 Hz to 1 kHz.

  9. Investigation of the Acoustic Source Characteristics of High Energy Laser Pulses: Models and Experiment

    DTIC Science & Technology

    2008-06-01

    consistent with the expected approximately 1/r relationship for pressure amplitudes under 100MPa. The modeling effort employed AUTODYN , a finite...agreed with Vogel’s measured values. The efficiency, pulse length, pulse shape, and variation of pressure amplitude with range achieved with AUTODYN ...Nonlinear Acoustics, AUTODYN , Acoustic Modeling, Shock Acoustics 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY

  10. Neural network prediction of aluminum-lithium weld strengths from acoustic emission amplitude data

    NASA Astrophysics Data System (ADS)

    Hill, Eric V. K.; Israel, Peggy L.; Knotts, Gregory L.

    1993-09-01

    AE flaw growth activity was monitored in aluminum-lithium weld specimens from the onset of tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was then applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.

  11. Neural network prediction of aluminum-lithium weld strengths from acoustic emission amplitude data

    NASA Technical Reports Server (NTRS)

    Hill, Eric V. K.; Israel, Peggy L.; Knotts, Gregory L.

    1993-01-01

    AE flaw growth activity was monitored in aluminum-lithium weld specimens from the onset of tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was then applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.

  12. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Bai, F.; Gagar, D.; Foote, P.; Zhao, Y.

    2017-02-01

    Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors in an array is essential in performing localisation. Currently, this is determined using a fixed threshold which is particularly prone to errors when not set to optimal values. This paper presents three new methods for determining the onset of AE signals without the need for a predetermined threshold. The performance of the techniques is evaluated using AE signals generated during fatigue crack growth and compared to the established Akaike Information Criterion (AIC) and fixed threshold methods. It was found that the 1D location accuracy of the new methods was within the range of < 1 - 7.1 % of the monitored region compared to 2.7% for the AIC method and a range of 1.8-9.4% for the conventional Fixed Threshold method at different threshold levels.

  13. Pressure Sensitivity Kernels Applied to Time-reversal Acoustics

    DTIC Science & Technology

    2009-06-29

    diversity in passive time reversal com- munications,” Journal of the Acoustical Society of America, October 2006, Vol. 120, Issue 4, pp. 2067-2076. xvi 5...communications. J. Acoustic Soc. Am., 115:2468–2468, 2004. [3] P. Gerstoft. Inversion of seismo-acoustic data using genetic algorithms and a posteriori...average of focal spots tends to have high stability.[6] The presence of spatial diversity (large arrays) has the same effect as an ensemble average and

  14. High-pressure acoustic properties of glycerol studied by Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Jeong, Min-Seok; Ko, Jae-Hyeon; Ko, Young Ho; Kim, Kwang Joo

    2015-12-01

    Acoustic properties of glycerol was investigated in a wide pressure range from ambient pressure to 30.9 GPa by using a multi-pass Fabry-Perot interferometer and a diamond anvil cell. Pressure dependences of the sound velocity and the Brillouin linewidth showed substantial changes at low pressures below ~4 GPa. This was attributed to the coupling between the main structural relaxation process and the longitudinal acoustic waves. The pressure dependence of the refractive index and the density of glycerol could be obtained by using two scattering geometries and the Lorentz-Lorenz relation.

  15. [High-frequency ventilation. I. Distribution of alveolar pressure amplitudes during high frequency oscillation in the lung model].

    PubMed

    Theissen, J; Lunkenheimer, P P; Niederer, P; Bush, E; Frieling, G; Lawin, P

    1987-09-01

    The pattern of intrapulmonary pressure distribution was studied during high-frequency ventilation in order to explain the inconsistent results reported in the literature. Methods. Pressure and flow velocity (hot-wire anemometry) were measured in different lung compartments: 1. In transalveolar chambers sealed to the perforated pleural surfaces of dried pig lungs; 2. In emphysema-simulating airbags sealed to the isolated bronchial trees of dried pig lungs; and 3. In transalveolar chambers sealed to the perforated pleural surfaces of freshly excised pig lungs. Results. 1. The pressure amplitudes change from one area to another and depending on the exciting frequency. 2. High-frequency oscillation is associated with an increase in pressure amplitude when the exciting frequency rises, whereas with conventional high-frequency jet ventilation the pressure amplitude is more likely to decrease with frequency. 3. During high-frequency jet ventilation the local pressure amplitude changes with the position of the tube in the trachea rather than with the exciting frequency. 4. When the volume of the measuring chamber is doubled the resulting pressure amplitude falls to half the control value. 5. The pressure amplitude and mean pressure measured in the transalveolar chamber vary more or less independently from the peak flow velocity. High-frequency ventilation is thus seen to be a frequency-dependant, inhomogeneous mode of ventilation that can essentially be homogenized by systematically changing the exciting frequency. The frequency-dependant response to different lung areas to excitation is likely to result from an intrabronchially-localized aerodynamic effect rather than the mechanical properties of the lung parenchyma.

  16. Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction

    NASA Technical Reports Server (NTRS)

    Lee, Seongkyu; Brentner, Kenneth S.; Farassat, Fereidoun

    2007-01-01

    The scattering of rotor noise is an area that has received little attention over the years, yet the limited work that has been done has shown that both the directivity and intensity of the acoustic field may be significantly modified by the presence of scattering bodies. One of the inputs needed to compute the scattered acoustic field is the acoustic pressure gradient on a scattering surface. Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. These formulations are presented in this paper. The first formulation is derived by taking the gradient of Farassat's retarded-time Formulation 1A. Although this formulation is relatively simple, it requires numerical time differentiation of the acoustic integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. The acoustic pressure gradient predicted by these new formulations is validated through comparison with the acoustic pressure gradient determined by a purely numerical approach for two model rotors. The agreement between analytic formulations and numerical method is excellent for both stationary and moving observers case.

  17. Energy Transform and Initial Acoustic Pressure Distribution in Microwave-induced Thermoacoustic Tomography.

    PubMed

    Yan, Jing; Tao, Chunjing; Wu, Shizeng

    2005-01-01

    A study of Microwave-induced Thermoacoustic Tomography is presented in this paper. Microwaves illuminate biological tissues to generate acoustic waves by thermoelastic expansion when electromagnetic energy was absorbed by human tissues. The generated acoustic waves carry information about different electromagnetic properties of different tissues which will be collected and processed to reconstruct human cross section image. In this paper, digital electromagnetic human body model with 1cm resolution was founded according to algorithm requirements. Firstly we analyzed the transform and interrelation among electromagnetic energy, heat energy and acoustic energy. On the basis of established human model: (1) we calculated initial acoustic pressure distribution in cross section image under plane microwave radiation with different frequency. It shows that microwave absorption properties and initial acoustic pressure were different with the change of frequency; (2) using single pulse to illuminate human model, initial acoustic pressure maps of thorax cross section at different time steps were analyzed. These results provided a research basis for further study and calculation of acoustic pressure in microwave-induced thermoacoustic tomography.

  18. Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure

    NASA Astrophysics Data System (ADS)

    Abdikian, A.; Mahmood, S.

    2016-12-01

    The obliquely nonlinear acoustic solitary propagation in a relativistically quantum magnetized electron-positron (e-p) plasma in the presence of the external magnetic field as well as the stationary ions for neutralizing the plasma background was studied. By considering the dynamic of the fluid e-p quantum and by using the quantum hydrodynamics model and the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for small but finite amplitude waves and the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars is obtained. The numerical results show that the relativistic effects lead to propagate the electrostatic bell shape structures in quantum e-p plasmas like those in classical pair-ion or pair species for relativistic plasmas. It is also observed that by increasing the relativistic effects, the amplitude and width of the e-p acoustic solitary wave will decrease. In addition, the wave amplitude increases as positron density decreases in magnetized e-p plasmas. It is indicated that by increasing the strength of the magnetic field, the width of the soliton reduces and it becomes sharper. At the end, we have analytically and numerically shown that the pulse soliton solution of the ZK equation is unstable and have traced the dependence of the instability growth rate on electron density. It is found that by considering the relativistic pressure, the instability of the soliton pulse can be reduced. The results can be useful to study the obliquely nonlinear propagation of small amplitude localized structures in magnetized quantum e-p plasmas and be applicable to understand the particle and energy transport mechanism in compact stars such as white dwarfs, where the effects of relativistic electron degeneracy become important.

  19. On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method

    PubMed

    Wu

    2000-05-01

    This paper presents analyses and implementation of the reconstruction of acoustic pressure fields radiated from a general, three-dimensional complex vibrating structure using the Helmholtz equation least-squares (HELS) method. The structure under consideration emulates a full-size four-cylinder engine. To simulate sound radiation from a vibrating structure, harmonic excitations are assumed to act on arbitrarily selected surfaces. The resulting vibration responses are solved by the commercial FEM (finite element method) software I-DEAS. Once the normal component of the surface velocity distribution is determined, the surface acoustic pressures are calculated using standard boundary element method (BEM) codes. The radiated acoustic pressures over several planar surfaces at certain distances from the source are calculated by the Helmholtz integral formulation. These field pressures are taken as the input to the HELS formulation to reconstruct acoustic pressures on the entire source surface, as well as in the field. The reconstructed acoustic pressures thus obtained are then compared with benchmark values. Numerical results demonstrate that good agreements can be obtained with relatively few expansion functions. The HELS method is shown to be very effective in the low-to-mid frequency regime, and can potentially become a powerful noise diagnostic tool.

  20. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  1. Generation and development of small-amplitude disturbances in a laminar boundary layer in the presence of an acoustic field

    NASA Technical Reports Server (NTRS)

    Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.

    1985-01-01

    A low-turbulence subsonic wind tunnel was used to study the influence of acoustic disturbances on the development of small sinusoidal oscillations (Tollmien-Schlichting waves) which constitute the initial phase of turbulent transition. It is found that acoustic waves propagating opposite to the flow generate vibrations of the model (plate) in the flow. Neither the plate vibrations nor the acoustic field itself have any appreciable influence on the stability of the laminar boundary layer. The influence of an acoustic field on laminar boundary layer disturbances is limited to the generation of Tollmien-Schlichting waves at the leading-edge of the plate.

  2. Generation of ion-acoustic waves in an inductively coupled, low-pressure discharge lamp

    SciTech Connect

    Camparo, J. C.; Klimcak, C. M.

    2006-04-15

    For a number of years it has been known that the alkali rf-discharge lamps used in atomic clocks can exhibit large amplitude intensity oscillations. These oscillations arise from ion-acoustic plasma waves and have typically been associated with erratic clock behavior. Though large amplitude ion-acoustic plasma waves are clearly deleterious for atomic clock operation, it does not follow that small amplitude oscillations have no utility. Here, we demonstrate two easily implemented methods for generating small amplitude ion-acoustic plasma waves in alkali rf-discharge lamps. Furthermore, we demonstrate that the frequency of these waves is proportional to the square root of the rf power driving the lamp and therefore that their examination can provide an easily accessible parameter for monitoring and controlling the lamp's plasma conditions. This has important consequences for precise timekeeping, since the atomic ground-state hyperfine transition, which is the heart of the atomic clock signal, can be significantly perturbed by changes in the lamp's output via the ac-Stark shift.

  3. Dissociation of psychophysical and EEG steady-state response measures of cross-modal temporal correspondence for amplitude modulated acoustic and vibrotactile stimulation.

    PubMed

    Timora, Justin R; Budd, Timothy W

    2013-09-01

    Research examining multisensory integration suggests that the correspondence of stimulus characteristics across modalities (cross-modal correspondence) can have a dramatic influence on both neurophysiological and perceptual responses to multimodal stimulation. The current study extends prior research by examining the cross-modal correspondence of amplitude modulation rate for simultaneous acoustic and vibrotactile stimulation using EEG and perceptual measures of sensitivity to amplitude modulation. To achieve this, psychophysical thresholds and steady-state responses (SSRs) were measured for acoustic and vibrotactile amplitude modulated (AM) stimulation for 21 and 40 Hz AM rates as a function of the cross-modal correspondence. The study design included three primary conditions to determine whether the changes in the SSR and psychophysical thresholds were due to the cross-modal temporal correspondence of amplitude modulated stimuli: NONE (AM in one modality only), SAME (the same AM rate for each modality) and DIFF (different AM rates for each modality). The results of the psychophysical analysis showed that AM detection thresholds for the simultaneous AM conditions (i.e., SAME and DIFF) were significantly higher (i.e., lower sensitivity) than AM detection thresholds for the stimulation of a single modality (i.e., NONE). SSR results showed significant effects of SAME and DIFF conditions on SSR activity. The different pattern of results for perceptual and SSR measures of cross-modal correspondence of AM rate indicates a dissociation between entrained cortical activity (i.e., SSR) and perception.

  4. The acoustics and unsteady wall pressure of a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Silver, Jonathan C.

    A Circulation Control (CC) airfoil uses a wall jet exiting onto a rounded trailing edge to generate lift via the Coanda effect. The aerodynamics of the CC airfoil have been studied extensively. The acoustics of the airfoil are, however, much less understood. The primary goal of the present work was to study the radiated sound and unsteady surface pressures of a CC airfoil. The focus of this work can be divided up into three main categories: characterizing the unsteady surface pressures, characterizing the radiated sound, and understanding the acoustics from surface pressures. The present work is the first to present the unsteady surface pressures from the trailing edge cylinder of a circulation control airfoil. The auto-spectral density of the unsteady surface pressures at various locations around the trailing edge are presented over a wide range of the jets momentum coefficient. Coherence of pressure and length scales were computed and presented. Single microphone measurements were made at a range of angles for a fixed observer distance in the far field. Spectra are presented for select angles to show the directivity of the airfoil's radiated sound. Predictions of the acoustics were made from unsteady surface pressures via Howe's curvature noise model and a modified Curle's analogy. A summary of the current understanding of the acoustics from a CC airfoil is given along with suggestions for future work.

  5. The Relationship of Cavitation to the Negative Acoustic Pressure Amplitude in Ultrasonic Therapy

    NASA Astrophysics Data System (ADS)

    Fan, Ting-Bo; Tu, Juan; Luo, Lin-Jiao; Guo, Xia-Sheng; Huang, Pin-Tong; Zhang, Dong

    2016-08-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 81127901, 81420108018, 81527803, 81227004 and 11374155, the Natural Science Foundation of Jiangsu Province under Grant No BK20131017, the Main Scientific and Technological Project of Zhejiang Province under Grant No 2013C03044-1, the Chinese Postdoctoral Science Foundation under Grant No 134238, the Postdoctoral Foundation of Jiangsu Province under Grant No 1401001B, and the Qing Lan Project.

  6. An Acoustic Emission and Acousto-Ultrasonic Analysis of Impact Damaged Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.; Workman, Gary L.

    1996-01-01

    The research presented herein summarizes the development of acoustic emission (AE) and acousto-ultrasonic (AU) techniques for the nondestructive evaluation of filament wound composite pressure vessels. Vessels fabricated from both graphite and kevlar fibers with an epoxy matrix were examined prior to hydroburst using AU and during hydroburst using AE. A dead weight drop apparatus featuring both blunt and sharp impactor tips was utilized to produce a single known energy 'damage' level in each of the vessels so that the degree to which the effects of impact damage could be measured. The damage levels ranged from barely visible to obvious fiber breakage and delamination. Independent neural network burst pressure prediction models were developed from a sample of each fiber/resin material system. Here, the cumulative AE amplitude distribution data collected from low level proof test (25% of the expected burst for undamaged vessels) were used to measure the effects of the impact on the residual burst pressure of the vessels. The results of the AE/neural network model for the inert propellant filled graphite/epoxy vessels 'IM7/3501-6, IM7/977-2 and IM7/8553-45' demonstrated that burst pressures can be predicted from low level AE proof test data, yielding an average error of 5.0%. The trained network for the IM7/977-2 class vessels was also able to predict the expected burst pressure of taller vessels (three times longer hoop region length) constructed of the same material and using the same manufacturing technique, with an average error of 4.9%. To a lesser extent, the burst pressure prediction models could also measure the effects of impact damage to the kevlar/epoxy 'Kevlar 49/ DPL862' vessels. Here though, due to the higher attenuation of the material, an insufficient amount of AE amplitude information was collected to generate robust network models. Although, the worst case trial errors were less than 6%, when additional blind predictions were attempted, errors as

  7. Cryogenic High-Pressure Shear-Coaxial Jets Exposed to Transverse Acoustic Forcing

    DTIC Science & Technology

    2011-12-13

    Air Force Research Laboratory (AFMC) AFRL/RZSA 10 E. Saturn Blvd. Edwards AFB CA 93524-7680 9. SPONSORING / MONITORING AGENCY NAME(S) AND...pressure antinode ( PAN ). The role of injector exit geometry on the flow response was examined using two shear coaxial injectors with different outer-to...jets to pressure perturbations due to transverse acoustic forcing at a pressure antinode ( PAN ). The role of injector exit geometry on the flow

  8. ACOUSTIC LOCATION OF LEAKS IN PRESSURIZED UNDER- GROUND PETROLEUM PIPELINES

    EPA Science Inventory

    Experiments were conducted at the Underground Storage Tank (UST) Test Apparatus Pipeline in which three acoustic sensors separated by a maximum distance of 38.1 m (125 ft) were used to monitor signals produced by 11.4-, 5.7-, and 3.8-L/h (3.0-, 1.5-, and 1.0-gal/h) leaks in th...

  9. Experimental and numerical characterization of the sound pressure in standing wave acoustic levitators.

    PubMed

    Stindt, A; Andrade, M A B; Albrecht, M; Adamowski, J C; Panne, U; Riedel, J

    2014-01-01

    A novel method for predictions of the sound pressure distribution in acoustic levitators is based on a matrix representation of the Rayleigh integral. This method allows for a fast calculation of the acoustic field within the resonator. To make sure that the underlying assumptions and simplifications are justified, this approach was tested by a direct comparison to experimental data. The experimental sound pressure distributions were recorded by high spatially resolved frequency selective microphone scanning. To emphasize the general applicability of the two approaches, the comparative studies were conducted for four different resonator geometries. In all cases, the results show an excellent agreement, demonstrating the accuracy of the matrix method.

  10. Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields

    NASA Astrophysics Data System (ADS)

    Courtney, Charles R. P.; Drinkwater, Bruce W.; Demore, Christine E. M.; Cochran, Sandy; Grinenko, Alon; Wilcox, Paul D.

    2013-03-01

    We show that Bessel-function acoustic pressure fields can be used to trap and controllably position microparticles. A circular, 16-element ultrasound array generates and manipulates an acoustic field within a chamber, trapping microparticles and agglomerates. Changes in the phase of the sinusoidal signals applied to the array elements result in the movement of the Bessel-function pressure field and hence the microparticles. This demonstrates ultrasonic manipulation analogous to holographic optical tweezers. The manipulation limits of the device are explained by the existence of unwanted resonances within the manipulation chamber.

  11. Investigations of High Pressure Acoustic Waves in Resonators with Seal-like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher; Steinetz, Bruce; Finkbeiner, Joshua

    2003-01-01

    A conical resonator (having a dissonant acoustic design) was tested in four configurations: (1) baseline resonator with closed ends and no blockage, (2) closed resonator with internal blockage, (3) ventilated resonator with no blockage, and (4) ventilated resonator with an applied pressure differential. These tests were conducted to investigate the effects of blockage and ventilation holes on dynamic pressurization. Additionally, the investigation was to determine the ability of acoustic pressurization to impede flow through the resonator. In each of the configurations studied, the entire resonator was oscillated at the gas resonant frequency while dynamic pressure, static pressure, and temperature of the fluid were measured. In the final configuration, flow through the resonator was recorded for three oscillation conditions. Ambient condition air was used as the working fluid.

  12. Acoustic model of micro-pressure wave emission from a high-speed train tunnel

    NASA Astrophysics Data System (ADS)

    Miyachi, T.

    2017-03-01

    The micro-pressure wave (MPW) radiated from a tunnel portal can, if audible, cause serious problems around tunnel portals in high-speed railways. This has created a need to develop an acoustic model that considers the topography around a radiation portal in order to predict MPWs more accurately and allow for higher speed railways in the future. An acoustic model of MPWs based on linear acoustic theory is developed in this study. First, the directivity of sound sources and the acoustical effect of topography are investigated using a train launcher facility around a portal on infinitely flat ground and with an infinite vertical baffle plate. The validity of linear acoustic theory is then discussed through a comparison of numerical results obtained using the finite difference method (FDM) and experimental results. Finally, an acoustic model is derived that considers sound sources up to the second order and Green's function to represent the directivity and effect of topography, respectively. The results predicted by this acoustic model are shown to be in good agreement with both numerical and experimental results.

  13. Burst prediction by acoustic emission in filament-wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.

    1990-01-01

    Acoustic emission in 51-cm diameter graphite/epoxy pressure vessels was monitored during pressurization (hydrotesting). Several vessels were subjected to impact by a blunt impactor, but only after the vessels had been proofed; that is, pressurized to 80 percent of nominal burst pressure as determined from control (unimpacted) vessels. AE activity was then monitored throughout a series of successively higher pressure cycles ranging from 10 to 60 percent of ultimate. Each cycle included a ramp up to pressure followed by a 4-min hold period and then pressure unload. The event rate was high, and especially modified AE analyzers had to be used to acquire the data. This paper presents the AE event count versus pressure history of these tests and demonstrates the ability of the AE technique to monitor the growth of damage and to estimate the effect on ultimate strength. The number of events that occurred during pressure holds proved to be a reasonable estimator of vessel performance.

  14. Pressure transducer for measuring acoustic radiation force based on a magnetic sensor

    NASA Astrophysics Data System (ADS)

    Kamimura, H. A. S.; Pavan, T. Z.; Almeida, T. W. J.; Pádua, M. L. A.; Baggio, A. L.; Fatemi, M.; Carneiro, A. A. O.

    2011-01-01

    This work presents a pressure transducer based on a magnetic sensor to measure acoustic radiation force (ARF) and small displacements. The methodology presented in this paper allowed this transducer to be calibrated for use as an acoustic pressure and intensity meter. It can control the acoustic intensity emitted by ultrasound used, for example, in ARF impulse imaging, vibro-acoustography and high-intensity focused ultrasound techniques. The device comprises a magnet, a membrane, a magnetoresistive sensor and a coil to cancel the external magnetic field. When ARF is applied to the membrane, the magnetic field on the sensor changes due to the magnetic target displacement. The variation of the output signal from the magnetic transducer is proportional to the acoustic pressure applied to the membrane. A focused ultrasound transducer with a central frequency of 3 MHz was used to apply a continuous ARF. The sensitivities of the magnetic transducer as an acoustic pressure and intensity meter, evaluated in water, were respectively 0.597 µV MPa-1 and 0.073 µV (W cm-2)-1/2, while those of the needle hydrophone (Onda model HNP-0400) used in the magnetic transducer calibration were respectively, 0.5024 mV MPa-1 and 6.153 mV (W cm-2)-1/2. The transducer resolution to displacement is 5 nm and 6 dB of signal attenuation occurs for 7° of misalignment. The transducer responded well to acoustic pressure in water above 200 kPa.

  15. Full bandwidth calibration procedure for acoustic probes containing a pressure and particle velocity sensor.

    PubMed

    Basten, Tom G H; de Bree, Hans-Elias

    2010-01-01

    Calibration of acoustic particle velocity sensors is still difficult due to the lack of standardized sensors to compare with. Recently it is shown by Jacobsen and Jaud [J. Acoust. Soc. Am. 120, 830-837 (2006)] that it is possible to calibrate a sound pressure and particle velocity sensor in free field conditions at higher frequencies. This is done by using the known acoustic impedance at a certain distance of a spherical loudspeaker. When the sound pressure is measured with a calibrated reference microphone, the particle velocity can be calculated from the known impedance and the measured pressure. At lower frequencies, this approach gives unreliable results. The method is now extended to lower frequencies by measuring the acoustic pressure inside the spherical source. At lower frequencies, the sound pressure inside the sphere is proportional to the movement of the loudspeaker membrane. If the movement is known, the particle velocity in front of the loudspeaker can be derived. This low frequency approach is combined with the high frequency approach giving a full bandwidth calibration procedure which can be used in free field conditions using a single calibration setup. The calibration results are compared with results obtained with a standing wave tube.

  16. Surface pressure distributions on a delta wing undergoing large amplitude pitching oscillations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, Scott A.

    1989-01-01

    Wind tunnel experiments were performed on a 70 deg sweep delta wing to determine the effect of a sinusoidal pitching motion on the pressure field on the suction side of the wing. Twelve pressure taps were placed from 35 to 90 percent of the chord, at 60 percent of the local semi-span. Pressure coefficients were measured as a function of Reynolds number and pitch rate. The pressure coefficient was seen to vary at approximately the same frequency as the pitching frequency. The relative pressure variation at each chord location was comparable for each case. The average pressure distribution through each periodic motion was near the static distribution for the average angle of attack. Upon comparing the upstroke and downstroke pressures for a specific angle of attack, the downstroke pressures were slightly larger. Vortex breakdown was seen to have the most significant effect at the 40 to 45 percent chord location, where a decrease in pressure was apparent.

  17. Variabilities detected by acoustic emission from filament-wound Aramid fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.

    1978-01-01

    Two hundred and fifty Aramid fiber/epoxy pressure vessels were filament-wound over spherical aluminum mandrels under controlled conditions typical for advanced filament-winding. A random set of 30 vessels was proof-tested to 74% of the expected burst pressure; acoustic emission data were obtained during the proof test. A specially designed fixture was used to permit in situ calibration of the acoustic emission system for each vessel by the fracture of a 4-mm length of pencil lead (0.3 mm in diameter) which was in contact with the vessel. Acoustic emission signatures obtained during testing showed larger than expected variabilities in the mechanical damage done during the proof tests. To date, identification of the cause of these variabilities has not been determined.

  18. Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    2000-01-01

    A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.

  19. Effects of flat-topped ion distribution and dust temperature on small amplitude dust-acoustic solitary waves and double layers in dusty plasma

    SciTech Connect

    Alinejad, H.; Mamun, A. A.

    2010-12-15

    The combined effects of the flat-topped ion distribution and dust temperature are incorporated in the study of small but finite amplitude dust-acoustic (DA) solitary waves (SWs) as well double layers (DLs) in an unmagnetized dusty plasma. Due to the flat-trapped ions, our plasma model admits only rarefactive localized structures. It is found that the effects of dust temperature and resonant particles significantly modify the criteria for the existence of DA SWs and DLs, as well as significantly modify their basic properties.

  20. Effects of ion-temperature on propagation of the large-amplitude ion-acoustic solitons in degenerate electron-positron-ion plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2010-08-15

    Large-amplitude ion-acoustic solitary wave (IASW) propagation and matching criteria of existence of such waves are investigated in a degenerate dense electron-positron-ion plasma considering the ion-temperature as well as electron/positron degeneracy effects. It is shown that the ion-temperature effects play an important role in the existence criteria and allowed Mach-number range in such plasmas. Furthermore, a fundamental difference is remarked in the existence of supersonic IASW propagations between degenerate plasmas with nonrelativistic and ultrarelativistic electrons and positrons. Current study may be helpful in astrophysical as well as the laboratory inertial confinement fusion-research.

  1. Load influence on gear noise. [mathematical model for determining acoustic pressure level as function of load

    NASA Technical Reports Server (NTRS)

    Merticaru, V.

    1974-01-01

    An original mathematical model is proposed to derive equations for calculation of gear noise. These equations permit the acoustic pressure level to be determined as a function of load. Application of this method to three parallel gears is reported. The logical calculation scheme is given, as well as the results obtained.

  2. Correlation of combustor acoustic power levels inferred from internal fluctuating pressure measurements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1978-01-01

    Combustion chamber acoustic power levels inferred from internal fluctuating pressure measurements are correlated with operating conditions and chamber geometries over a wide range. The variables include considerations of chamber design (can, annular, and reverse-flow annular) and size, number of fuel nozzles, burner staging and fuel split, airflow and heat release rates, and chamber inlet pressure and temperature levels. The correlated data include those obtained with combustion component development rigs as well as engines.

  3. Small amplitude dust ion-acoustic solitary waves and double layers in a dusty plasma with flat-topped electron distribution

    SciTech Connect

    Alinejad, H.; Mamun, A. A.

    2010-12-15

    The properties of small but finite amplitude dust ion-acoustic (DIA) solitary waves (SWs) as well double layers (DLs) in a dusty plasma containing warm adiabatic ions, electrons following flat-topped velocity distribution, and arbitrarily (positively or negatively) charged immobile dust are studied. The effects of ion-temperature, resonant electrons, and dust number density are found to significantly modify the criteria for the existence of the DIA SWs and DLs, as well as significantly modify their basic features. It is also shown that the ion-temperature reduces the possibility for the formation of these localized structures, and that their amplitude decreases (increases) with the increase in the negative (positive) dust number density.

  4. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    PubMed

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  5. Acoustic study of the elastic and inelastic properties of high-pressure polyethylene samples with different irradiation histories

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Nikanorov, S. P.; Kravchenko, V. S.; Malinov, V. I.; Punin, V. T.

    2007-11-01

    The influence of vibrational deformation amplitude ɛ on the dynamic elasticity modulus (Young’s modulus E) and internal friction (logarithmic decrement δ) of high-pressure polyethylene samples with different histories is studied. Acoustic measurements are made by a resonance method using the longitudinal vibrations of a composite piezoelectric vibrator at a frequency of ≈ 100 kHz. The dependences E(ɛ) and δ(ɛ) are taken at room temperature. From the acoustic data, the elasticity and microplasticity of the samples are estimated. It is found that the microplasticity remains almost unaffected upon irradiation and aging, while the elasticity modulus and breaking elongation per unit length considerably depend on the history and clearly correlated with each other. The observed effects are explained by the fact that atom-atom interaction and defects inside polymer macromolecules substantially influence the elastic modulus and breaking strength, while the inelastic microplastic strain is most likely associated with molecule-molecule interaction, which is affected by irradiation insignificantly.

  6. Numerical simulation of a ramjet inlet flowfield in response to large amplitude combustor pressure oscillation

    NASA Technical Reports Server (NTRS)

    Hsieh, T.; Wardlaw, A. B., Jr.; Coakley, T.

    1984-01-01

    The unsteady flow of a two-dimensional ramjet inlet is studied numerically by solving the Navier-Stokes equation with a two-equation turbulence model. Unsteadiness is introduced by prescribing the pressure disturbance at the inlet exit plane. The case with a sinusoidal exit plane pressure fluctuation of 20 percent of the steady exit pressure is considered. The resulting flow field exhibits a complicated interaction between the terminal shock, separation pockets and core flow. The exit plane properties feature a non-linear response to the imposed sinusoidal pressure variation.

  7. Acoustic Detection Of Loose Particles In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Kwok, Lloyd C.

    1995-01-01

    Particle-impact-noise-detector (PIND) apparatus used in conjunction with computer program analyzing output of apparatus to detect extraneous particles trapped in pressure sensors. PIND tester essentially shaker equipped with microphone measuring noise in pressure sensor or other object being shaken. Shaker applies controlled vibration. Output of microphone recorded and expressed in terms of voltage, yielding history of noise subsequently processed by computer program. Data taken at sampling rate sufficiently high to enable identification of all impacts of particles on sensor diaphragm and on inner surfaces of sensor cavities.

  8. Comment on 'Nonlinear properties of small amplitude dust ion acoustic solitary waves' [Phys. Plasmas 7, 3594 (2000)

    SciTech Connect

    Duha, S. S.; Mamun, A. A.

    2008-10-15

    The aim of this comment is to show how the model equations used by Ghosh et al. [Phys. Plasmas 7, 3594 (2000)] are completely inconsistent, and to provide a guideline for a consistent dusty plasma model which is appropriate for the study of the nonlinear properties of the dust ion acoustic solitary waves.

  9. Optimization of Acoustic Pressure Measurements for Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.

    2007-01-01

    As noise constraints become increasingly stringent, there is continued emphasis on the development of improved acoustic liner concepts to reduce the amount of fan noise radiated to communities surrounding airports. As a result, multiple analytical prediction tools and experimental rigs have been developed by industry and academia to support liner evaluation. NASA Langley has also placed considerable effort in this area over the last three decades. More recently, a finite element code (Q3D) based on a quasi-3D implementation of the convected Helmholtz equation has been combined with measured data acquired in the Langley Grazing Incidence Tube (GIT) to reduce liner impedance in the presence of grazing flow. A new Curved Duct Test Rig (CDTR) has also been developed to allow evaluation of liners in the presence of grazing flow and controlled, higher-order modes, with straight and curved waveguides. Upgraded versions of each of these two test rigs are expected to begin operation by early 2008. The Grazing Flow Impedance Tube (GFIT) will replace the GIT, and additional capabilities will be incorporated into the CDTR. The current investigation uses the Q3D finite element code to evaluate some of the key capabilities of these two test rigs. First, the Q3D code is used to evaluate the microphone distribution designed for the GFIT. Liners ranging in length from 51 to 610 mm are investigated to determine whether acceptable impedance eduction can be achieved with microphones placed on the wall opposite the liner. This analysis indicates the best results are achieved for liner lengths of at least 203 mm. Next, the effects of moving this GFIT microphone array to the wall adjacent to the liner are evaluated, and acceptable results are achieved if the microphones are placed off the centerline. Finally, the code is used to investigate potential microphone placements in the CDTR rigid wall adjacent to the wall containing an acoustic liner, to determine if sufficient fidelity can be

  10. Nonlinear Response of Composite Panels Under Combined Acoustic Excitation and Aerodynamic Pressure

    NASA Technical Reports Server (NTRS)

    Abdel-Motagaly, K.; Duan, B.; Mei, C.

    1999-01-01

    A finite element formulation is presented for the analysis of large deflection response of composite panels subjected to aerodynamic pressure- at supersonic flow and high acoustic excitation. The first-order shear deformation theory is considered for laminated composite plates, and the von Karman nonlinear strain-displacement relations are employed for the analysis of large deflection panel response. The first-order piston theory aerodynamics and the simulated Gaussian white noise are employed for the aerodynamic and acoustic loads, respectively. The nonlinear equations of motion for an arbitrarily laminated composite panel subjected to a combined aerodynamic and acoustic pressures are formulated first in structure node degrees-of-freedom. The system equations are then transformed and reduced to a set of coupled nonlinear equations in modal coordinates. Modal participation is defined and the in-vacuo modes to be retained in the analysis are based on the modal participation values. Numerical results include root mean square values of maximum deflections, deflection and strain response time histories, probability distributions, and power spectrum densities. Results showed that combined acoustic and aerodynamic loads have to be considered for panel analysis and design at high dynamic pressure values.

  11. Evaluation of Acoustic Emission SHM of PRSEUS Composite Pressure Cube Tests

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2013-01-01

    A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) pressure cube were conducted during third quarter 2011 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. The AE signals of the later tests are consistent with the final failure progression through two of the pressure cube panels. Calibration tests and damage precursor AE indications, from preliminary checkout pressurizations, indicated areas of concern that eventually failed. Hence those tests have potential for vehicle health monitoring.

  12. A dynamic pressure view cell for acoustic stimulation of fluids—Micro-bubble generation and fluid movement in porous media

    NASA Astrophysics Data System (ADS)

    Stewart, Robert A.; Shaw, J. M.

    2015-09-01

    The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.

  13. A dynamic pressure view cell for acoustic stimulation of fluids--Micro-bubble generation and fluid movement in porous media.

    PubMed

    Stewart, Robert A; Shaw, J M

    2015-09-01

    The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.

  14. Large amplitude dust-acoustic double layers in non-thermal plasmas with positive and negative dust

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.; Pillay, S. R.

    2011-11-29

    The existence of large amplitude double layers in a plasma composed of cold negative dust, adiabatic positive dust, non-thermal ions and Boltzmann electrons is investigated using the Sagdeev pseudopotential technique. Both positive potential and negative potential double layers are found to be supported by the model. The variation of the maximum amplitudes of the double layers and corresponding Mach numbers are examined as a function of various plasma parameters. In particular, we investigate to what extent ion non-thermal effects are required for positive potential double layers to occur.

  15. Large amplitude dust-acoustic double layers in non-thermal plasmas with positive and negative dust

    NASA Astrophysics Data System (ADS)

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Pillay, S. R.; Lakhina, G. S.

    2011-11-01

    The existence of large amplitude double layers in a plasma composed of cold negative dust, adiabatic positive dust, non-thermal ions and Boltzmann electrons is investigated using the Sagdeev pseudopotential technique. Both positive potential and negative potential double layers are found to be supported by the model. The variation of the maximum amplitudes of the double layers and corresponding Mach numbers are examined as a function of various plasma parameters. In particular, we investigate to what extent ion non-thermal effects are required for positive potential double layers to occur.

  16. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  17. Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure

    DOEpatents

    Sinha, Dipen N.; Wray, William O.

    1994-01-01

    Apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established.

  18. Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure

    DOEpatents

    Sinha, D.N.; Wray, W.O.

    1994-12-27

    The apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established. 3 figures.

  19. A review of the physical properties and biological effects of the high amplitude acoustic field used in extracorporeal lithotripsy.

    PubMed

    Coleman, A J; Saunders, J E

    1993-01-01

    Extracorporeal shockwave lithotripsy (ESWL) has now been used for more than a decade in the treatment of urinary stone disease. During this period there has been a wide range of studies on the physical properties of the high-amplitude focussed fields used in ESWL and the biological effects of exposure to such fields, including their ability to fragment hard concretions. These studies form a distinct body of knowledge whose relevance to the broader literature on biological effects from lower amplitude exposures has yet to be fully evaluated. This review attempts to present the main results of biological-effects studies in ESWL along with what is known of the physical properties of lithotripsy fields with the aim of assisting this evaluation. In general, the reported biological effects of lithotripsy fields are compatible with those that have been observed at those lower amplitudes of focussed pulsed ultrasound in which transient cavitation is the dominant mechanism of interaction. The relatively large amplitudes and low frequencies in ESWL, however, make it a more potent generator of transient cavitation than most other forms of medical ultrasound. Biological-effects studies with lithotripsy fields may, therefore, be expected to extend our understanding of the nature of transient cavitation and, in particular, its effects in mammalian tissue.

  20. Three-dimensional visualization of shear wave propagation generated by dual acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.

  1. Measurements of underwater acoustic pressure fields using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Carroll, Gerard P.

    2004-05-01

    Laser Doppler vibrometers (LDV) are designed to measure structural vibration velocity by sensing the phase shift in the laser signal reflected from a vibrating source. It is known that index of refraction modulations resulting from acoustic pressure distributions along a laser light path will also cause a phase shift. Simpson et al. [J. Acoust. Soc. Am. 99(4), 2521(A) (1996)] have investigated this acousto-optic phase modulation as a possible contaminating effect for underwater LDV vibration measurements. This paper will investigate acousto-optic phase modulations measured by a scanning LDV as a method for measuring pressure radiating from underwater vibrating surfaces. This is done by passing the laser beam through the radiating pressure field and measuring the backscattered laser signal which is reflected off a rigid and retroreflective surface (outside the pressure field). It is shown experimentally, using the average pressure measured with an LDV over a plane in the vicinity of a vibrating structure, that the pressure at a far-field location normal to the plane can be determined.

  2. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Hooyer, T. S.; Iverson, N. R.; Thomason, J. F.; Jackson, M.

    2006-09-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates.

  3. A modal test method using sound pressure transducers based on vibro-acoustic reciprocity

    NASA Astrophysics Data System (ADS)

    Zhu, W. D.; Liu, J. M.; Xu, Y. F.; Ying, H. Q.

    2014-06-01

    A modal test method that uses sound pressure transducers at fixed locations and an impact hammer roving over a test structure is developed in this work. Since sound pressure transducers are used, the current method deals with a coupled structural-acoustic system. Based on the vibro-acoustic reciprocity, the method is equivalent to one, where acoustic excitations at fixed locations are given and the resulting acceleration of the test structure is measured. The current method can eliminate mass loading due to use of accelerometers, which can destroy existence of repeated or close natural frequencies of a symmetric structure. It can also avoid effects of a nodal line of a mode and an inactive area of a local mode, and measure all the out-of-plane modes within a frequency range of interest, including global and local ones. The coupling between the structure and the acoustic field in a structural-acoustic system introduces asymmetry in the model formulation. An equivalent state space formulation is used for a damped structural-acoustic system and the associated eigenvalue problem is derived. The biorthonormality relations between the left and right eigenvectors and the relations between the structural and acoustic components in the left and right eigenvectors are proved. The frequency response functions associated with the current method are derived and their physical meanings are explained. The guidelines for using the current method, including the types of structures that are suitable for the method, the positions of the sound pressure transducers, and the orientation of the test structure relative to the transducers, are provided. Modal tests were carried out on an automotive disk brake using the traditional and current methods, where multiple accelerometers and microphones were used to measure its dynamic responses induced by impacts, respectively. The differences between the measured natural frequencies using the current method and those from the finite element

  4. Evaluation of Acoustic Emission NDE of Kevlar Composite Over Wrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2008-01-01

    Pressurization and failure tests of small Kevlar/epoxy COPV bottles were conducted during 2006 and 2007 by Texas Research Institute Austin, Inc., at TRI facilities. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. Results of some of the tests indicate a possibility that AE can be used to track the stress-rupture degradation of COPV vessels.

  5. Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction

    NASA Technical Reports Server (NTRS)

    Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.

    2008-01-01

    Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.

  6. Numerical simulation of the processes in the normal incidence tube for high acoustic pressure levels

    NASA Astrophysics Data System (ADS)

    Fedotov, E. S.; Khramtsov, I. V.; Kustov, O. Yu.

    2016-10-01

    Numerical simulation of the acoustic processes in an impedance tube at high levels of acoustic pressure is a way to solve a problem of noise suppressing by liners. These studies used liner specimen that is one cylindrical Helmholtz resonator. The evaluation of the real and imaginary parts of the liner acoustic impedance and sound absorption coefficient was performed for sound pressure levels of 130, 140 and 150 dB. The numerical simulation used experimental data having been obtained on the impedance tube with normal incidence waves. At the first stage of the numerical simulation it was used the linearized Navier-Stokes equations, which describe well the imaginary part of the liner impedance whatever the sound pressure level. These equations were solved by finite element method in COMSOL Multiphysics program in axisymmetric formulation. At the second stage, the complete Navier-Stokes equations were solved by direct numerical simulation in ANSYS CFX in axisymmetric formulation. As the result, the acceptable agreement between numerical simulation and experiment was obtained.

  7. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  8. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics.

    PubMed

    Hart, Roger C; Herring, G C; Balla, R Jeffrey

    2007-06-15

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  9. Study of the transit time of pressure propagation in an acoustic delay line

    NASA Astrophysics Data System (ADS)

    Song, Yunn-Fang; Chen, Ching-Iue; Chang, Chu-Nan; You, Jean-Luh; Hwang, Fu-Kwun; Hsu, Chih-Ying

    1986-12-01

    A fast sensor was used as a vacuum gauge to measure the transit time of a gas pressure through an acoustic delay line (ADL). The results were compared with the predictions of two theoretical models. We found that in the rupture pressure range of 101 to 104 Pa, the predictions of Jean and Rauss' model, based on the assumption that the flow of gas be a gas fluid, set lower boundaries for the observed transit times; while the predictions of our model, based on the molecular motion, set the upper ones.

  10. Relations among subglottal pressure, breathing, and acoustic parameters of sentence-level prominence in German.

    PubMed

    Petrone, Caterina; Fuchs, Susanne; Koenig, Laura L

    2017-03-01

    This study investigates whether acoustic correlates of prominence are related to actions of the respiratory system resulting in local changes of subglottal pressure (Psub). Simultaneous recordings were made of acoustics; intraoral pressure (Pio), as an estimate of Psub; and thoracic and abdominal volume changes. Ten German speakers read sentences containing a verb ending with /t/ followed by a noun starting with /t/. These /t#t/ sequences were typically realized as one /t:/ with a long intraoral pressure plateau. Sentence-level prominence was manipulated by shifting the position of contrastive focus within the sentences. The slope and peak values of Pio within the /t#t/ sequence were used to estimate differences in Psub across focus positions. Results show that prominence production is related to changes in the slope and maximum value of the pressure plateau. While pressure increases led to higher intensity, the increases did not relate to f0, hence, suggesting that local f0 changes primarily reflect laryngeal activity. Finally, strong individual differences were observed in the respiratory data. These findings confirm past reports of local Psub increases corresponding to sentence-level prominence. Speaker-specific activations of the respiratory system are interpreted in terms of motor equivalence, with laryngeal mechanisms also appearing to contribute to Psub changes.

  11. Existence domains of large amplitude dust-acoustic solitons in non-thermal plasmas with positive and negative dust

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.; Pillay, S. R.

    2011-11-29

    Using the traditional Sagdeev pseudopotential approach, the existence of large amplitude solitons is investigated for a plasma composed of cold negative dust, adiabatic positive dust, non-thermal ions and Boltzmann electrons. The lower and upper soliton Mach number limitations are determined as a function of various parameters and physical reasons are provided as to why these Mach number limits occur. Some regions in parameter space have been identified where only negative or positive solitons occur, whereas, other regions support the coexistence of both positive and negative potential solitons.

  12. Existence domains of large amplitude dust-acoustic solitons in non-thermal plasmas with positive and negative dust

    NASA Astrophysics Data System (ADS)

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Pillay, S. R.; Lakhina, G. S.

    2011-11-01

    Using the traditional Sagdeev pseudopotential approach, the existence of large amplitude solitons is investigated for a plasma composed of cold negative dust, adiabatic positive dust, non-thermal ions and Boltzmann electrons. The lower and upper soliton Mach number limitations are determined as a function of various parameters and physical reasons are provided as to why these Mach number limits occur. Some regions in parameter space have been identified where only negative or positive solitons occur, whereas, other regions support the coexistence of both positive and negative potential solitons.

  13. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  14. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  15. Pressure and temperature dependences of the acoustic behaviors of biocompatible silk studied by using Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Wan; Ryeom, Junho; Ko, Jae-Hyeon; Kim, Dong Wook; Park, Chan Hum; Park, Jaehoon; Ko, Young Ho; Kim, Kwang Joo

    2016-07-01

    The elastic properties of a biocompatible silk film were investigated under temperature and pressure variations by using Brillouin spectroscopy. The Brillouin frequency shift decreased monotonically upon heating and showed a sudden change at the glass transition temperature. The existence of water molecules in the film increased the longitudinal modulus by approximately 10% and induced a relaxation peak in the hypersonic damping at ~60 ◦ C. The pressure dependences of the sound velocities of the longitudinal and the transverse acoustic modes and the refractive index were determined for the first time at pressures up to ~15.5 GPa. All these properties increased upon compression; these changes indicated that the free volume in the silk film collapsed at a pressure of about 3 GPa.

  16. DIASCoPE: Directly integrated acoustic system combined with pressure experiments—A new method for fast acoustic velocity measurements at high pressure

    NASA Astrophysics Data System (ADS)

    Whitaker, Matthew L.; Baldwin, Kenneth J.; Huebsch, William R.

    2017-03-01

    A new experimental system to measure elastic wave velocities in samples in situ under extreme conditions of pressure and temperature in a multi-anvil apparatus has been installed at Beamline 6-BM-B of the Advanced Photon Source at Argonne National Laboratory. This system allows for measurement of acoustic velocities via ultrasonic interferometry, and makes use of the synchrotron beam to measure sample densities via X-ray diffraction and sample lengths using X-radiographic imaging. This system is fully integrated into the automated software controls of the beamline and is capable of collecting robust data on elastic wave travel times in less than 1 s, which is an improvement of more than one to two orders of magnitude over existing systems. Moreover, this fast data collection time has been shown to have no effect on the obtained travel time results. This allows for more careful study of time-dependent phenomena with tighter snapshots in time of processes that would otherwise be lost or averaged out in other acoustic measurement systems.

  17. A model for the pressure excitation spectrum and acoustic impedance of sound absorbers in the presence of grazing flow

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1973-01-01

    The acoustic impedance of sound absorbers in the presence of grazing flow is essential information when analyzing sound propagation within ducts. A unification of the theory of the nonlinear acoustic resistance of Helmholtz resonators including grazing flow is presented. The nonlinear resistance due to grazing flow is considered to be caused by an exciting pressure spectrum produced by the interaction of the grazing flow and the jets flowing from the resonator orifices. With this exciting pressure spectrum the resonator can be treated in the same manner as a resonator without grazing flow but with an exciting acoustic spectrum.

  18. Liquid mercury sound velocity measurements under high pressure and high temperature by picosecond acoustics in a diamond anvils cell.

    PubMed

    Decremps, F; Belliard, L; Couzinet, B; Vincent, S; Munsch, P; Le Marchand, G; Perrin, B

    2009-07-01

    Recent improvements to measure ultrasonic sound velocities of liquids under extreme conditions are described. Principle and feasibility of picosecond acoustics in liquids embedded in a diamond anvils cell are given. To illustrate the capability of these advances in the sound velocity measurement technique, original high pressure and high temperature results on the sound velocity of liquid mercury up to 5 GPa and 575 K are given. This high pressure technique will certainly be useful in several fundamental and applied problems in physics and many other fields such as geophysics, nonlinear acoustics, underwater sound, petrology or physical acoustics.

  19. Modeling of Structural-Acoustic Interaction Using Coupled FE/BE Method and Control of Interior Acoustic Pressure Using Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shi, Yacheng

    1997-01-01

    A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.

  20. Picosecond acoustics method for measuring the thermodynamical properties of solids and liquids at high pressure and high temperature.

    PubMed

    Decremps, F; Gauthier, M; Ayrinhac, S; Bove, L; Belliard, L; Perrin, B; Morand, M; Le Marchand, G; Bergame, F; Philippe, J

    2015-02-01

    Based on the original combination of picosecond acoustics and diamond anvils cell, recent improvements to accurately measure hypersonic sound velocities of liquids and solids under extreme conditions are described. To illustrate the capability of this technique, results are given on the pressure and temperature dependence of acoustic properties for three prototypical cases: polycrystal (iron), single-crystal (silicon) and liquid (mercury) samples. It is shown that such technique also enables the determination of the density as a function of pressure for liquids, of the complete set of elastic constants for single crystals, and of the melting curve for any kind of material. High pressure ultrafast acoustic spectroscopy technique clearly opens opportunities to measure thermodynamical properties under previously unattainable extreme conditions. Beyond physics, this state-of-the-art experiment would thus be useful in many other fields such as nonlinear acoustics, oceanography, petrology, in of view. A brief description of new developments and future directions of works conclude the article.

  1. Electron Acoustic Waves and the Search for a Truly Self-Consistent Large-Amplitude Plasma Response

    NASA Astrophysics Data System (ADS)

    Johnston, Tudor; Afeyan, Bedros

    2003-10-01

    We examine some theoretical nonlinear Vlasov work invoked in connection with recent laser-plasma experiments [1] on Electron Acoustic Waves and their stimulated scatter (SEAS). Earlier work discussed [2-5] is then related to more recent theory [6] used to interpret [1]. All this [2-6] is then related the recent Vlasov-Poisson findings of Afeyan et al. [7] on Kinetic Electrostatic Electron Nonlinear (KEEN) waves. (Part of this work was performed under the auspices of the U.S. Department of Energy under grant number DE-FG03-NA00059.) [1] D.S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001), Phys. Plasmas 9, 2311(2002). [2] I.B. Bernstein et al., Phys.Rev. 108, 546 (1957). [3] W.P. Allis, paper no. 3 pp. 21-42, in In Honor of Philip M. Morse, ed. H. Feshbach and K. Ingard, MIT Press, Cambridge, MA, (1969). (Source for V.B. Krapchev and A.K. Ram, Phys. Rev. A, 22, 1229 (1980)). [4] H. Schamel, Phys. Scr. 20, 336 (1979), Phys. Rep. 140, 161 (1986), Phys. Plasmas 7, 4831 (2000). [5] J.P. Holloway and J.J. Dorning, Phys. Lett. A 138, 279 (1989) and Phys. Rev. A 44, 3856 (1991). [6] H. A. Rose and D. A. Russell, Phys. Plasmas 8, 4784 (2001). [7] B. B. Afeyan et al., "Optical Mixing Generated Kinetic Electrostatic Electron Nonlinear (KEEN) Waves", manuscript in preparation and poster at this conference.

  2. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones.

    PubMed

    Voss, S E; Rosowski, J J; Shera, C A; Peake, W T

    2000-03-01

    In clinical measurements of hearing sensitivity, a given earphone is assumed to produce essentially the same sound-pressure level in all ears. However, recent measurements [Voss et al., Ear and Hearing (in press)] show that with some middle-ear pathologies, ear-canal sound pressures can deviate by as much as 35 dB from the normal-ear value; the deviations depend on the earphone, the middle-ear pathology, and frequency. These pressure variations cause errors in the results of hearing tests. Models developed here identify acoustic mechanisms that cause pressure variations in certain pathological conditions. The models combine measurement-based Thévenin equivalents for insert and supra-aural earphones with lumped-element models for both the normal ear and ears with pathologies that alter the ear's impedance (mastoid bowl, tympanostomy tube, tympanic-membrane perforation, and a "high-impedance" ear). Comparison of the earphones' Thévenin impedances to the ear's input impedance with these middle-ear conditions shows that neither class of earphone acts as an ideal pressure source; with some middle-ear pathologies, the ear's input impedance deviates substantially from normal and thereby causes abnormal ear-canal pressure levels. In general, for the three conditions that make the ear's impedance magnitude lower than normal, the model predicts a reduced ear-canal pressure (as much as 35 dB), with a greater pressure reduction with an insert earphone than with a supra-aural earphone. In contrast, the model predicts that ear-canal pressure levels increase only a few dB when the ear has an increased impedance magnitude; the compliance of the air-space between the tympanic membrane and the earphone determines an upper limit on the effect of the middle-ear's impedance increase. Acoustic leaks at the earphone-to-ear connection can also cause uncontrolled pressure variations during hearing tests. From measurements at the supra-aural earphone-to-ear connection, we conclude that it

  3. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  4. Acoustic predictions using measured pressures from a model rotor in the DNW

    NASA Technical Reports Server (NTRS)

    Visintainer, Joseph A.; Burley, Casey L.; Marcolini, Michael A.; Liu, Sandy R.

    1991-01-01

    A contemporary design, 4-bladed United Technologies model rotor with pressure-instrumented blades was tested in the Duits-Nederslandse Windtunnel. Simultaneous acoustic and pressure measurements were made for a wide range of operating conditions. Microphones were optimally positioned at a number of locations in the flow forward of the rotor to measure rotor thickness noise, high-speed impulsive noise (both in the rotor plane), and blade-vortex interaction noise (forward and 25 deg below the rotor plane). The blade surface pressure data are used as aerodynamic input to WOPWOP, which is a state-of-the-art rotor noise prediction program that predicts rotor thickness and loading noise. The predicted results using WOPWOP are compared to the measured noise levels for cases where either thickness noise, blade-vortex interaction noise, or high-speed impulsive noise is the dominant noise mechanism. The comparisons show regions of good agreement, as well as areas where further improvement is necessary.

  5. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    USGS Publications Warehouse

    Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.

    2006-01-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.

  6. Discriminating Simulated Vocal Tremor Source Using Amplitude Modulation Spectra

    PubMed Central

    Carbonell, Kathy M.; Lester, Rosemary A.; Story, Brad H.; Lotto, Andrew J.

    2014-01-01

    Objectives/Hypothesis Sources of vocal tremor are difficult to categorize perceptually and acoustically. This paper describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Study Design Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Methods Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor) and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. Results The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. Conclusions These results supply initial support for an amplitude-envelope based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. PMID:25532813

  7. Magnetic Barkhausen noise and magneto acoustic emission in pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Neyra Astudillo, Miriam Rocío; López Pumarega, María Isabel; Núñez, Nicolás Marcelo; Pochettino, Alberto; Ruzzante, José

    2017-03-01

    Magnetic Barkhausen Noise (MBN) and Magneto Acoustic Emission (MAE) were studied in A508 Class II forged steel used for pressure vessels in nuclear power stations. The magnetic experimental determinations were completed with a macro graphic study of sulfides and the texture analysis of the material. The analysis of these results allows us to determine connections between the magnetic anisotropy, texture and microstructure of the material. Results clearly suggest that the plastic flow direction is different from the forging direction indicated by the material supplier

  8. Pressure field induced in the water column by acoustic-gravity waves generated from sea bottom motion

    NASA Astrophysics Data System (ADS)

    C. A. Oliveira, Tiago; Kadri, Usama

    2016-10-01

    An uplift of the ocean bottom caused by a submarine earthquake can trigger acoustic-gravity waves that travel at near the speed of sound in water and thus may act as early tsunami precursors. We study the spatiotemporal evolution of the pressure field induced by acoustic-gravity modes during submarine earthquakes, analytically. We show that these modes may all induce comparable temporal variations in pressure at different water depths in regions far from the epicenter, though the pressure field depends on the presence of a leading acoustic-gravity wave mode. Practically, this can assist in the implementation of an early tsunami detection system by identifying the pressure and frequency ranges of measurement equipment and appropriate installation locations.

  9. Pressurized Wideband Acoustic Stapedial Reflex Thresholds: Normal Development and Relationships to Auditory Function in Infants.

    PubMed

    Hunter, Lisa L; Keefe, Douglas H; Feeney, M Patrick; Fitzpatrick, Denis F

    2017-02-01

    This study analyzed effects of pressurization on wideband acoustic stapedial-muscle reflex (ASR) tests in infants cared for in normal newborn (NN) and neonatal intensive care units (NICU). Effects of hearing-screening outcomes on ASR threshold measurements were also evaluated, and a subsequent longitudinal study established normative threshold ranges over the first year after birth. An initial experiment compared thresholds in newborns measured at ambient pressure in the ear canal and at the tympanometric peak pressure. ASR thresholds for broadband noise were higher for ears that did not pass newborn hearing screening and ASR threshold was 14 dB higher for real-ear compared to coupler conditions. Effects of pressurization were significant for ears that passed screening; thus, ASR testing in infants should be conducted at tympanometric peak pressure. ASR threshold was significantly higher for ears that referred on transient evoked otoacoustic emissions and Auditory Brainstem Response (ABR) screening tests and also for ears with conductive and sensorineural hearing loss diagnosed by ABR. Developmental ASR changes were significant over the first year for both normal and NICU infants. Wideband pressurized ASR thresholds are a clinically relevant measure of newborn hearing screening and diagnostic outcomes.

  10. Phenomenological Description of Acoustic Emission Processes Occurring During High-Pressure Sand Compaction

    NASA Astrophysics Data System (ADS)

    Delgado-Martín, Jordi; Muñoz-Ibáñez, Andrea; Grande-García, Elisa; Rodríguez-Cedrún, Borja

    2016-04-01

    Compaction, pore collapse and grain crushing have a significant impact over the hydrodynamic properties of sand formations. The assessment of the crushing stress threshold constitutes valuable information in order to assess the behavior of these formations provided that it can be conveniently identified. Because of the inherent complexities of the direct observation of sand crushing, different authors have developed several indirect methods, being acoustic emission a promising one. However, previous researches have evidenced that there are different processes triggering acoustic emissions which need to be carefully accounted. Worth mentioning among them are grain bearing, grain to container friction, intergranular friction and crushing. The work presented here addresses this purpose. A broadband acoustic emission sensor (PA MicroHF200) connected to a high-speed data acquisition system and control software (AeWIN for PCI1 2.10) has been attached to a steel ram and used to monitor the different processes occurring during the oedometric compaction of uniform quartz sand up to an axial load of about 110 MPa and constant temperature. Load was stepwise applied using a servocontrolled hydraulic press acting at a constant load rate. Axial strain was simultaneously measured with the aid of a LDT device. Counts, energy, event duration, rise time and amplitude were recorded along each experiment and after completion selected waveforms were transformed from the time to the frequency domain via FFT transform. Additional simplified tests were performed in order to isolate the frequency characteristics of the dominant processes occurring during sand compaction. Our results show that, from simple tests, it is possible to determine process-dependent frequency components. When considering more complex experiments, many of the studied processes overlap but it is still possible to identify when a particular one dominates as well as the likely onset of crushing.

  11. Interactions Between Corticotropin-Releasing Factor and the Serotonin 1A Receptor System on Acoustic Startle Amplitude and Prepulse Inhibition of the Startle Response in Two Rat Strains

    PubMed Central

    Conti, Lisa H.

    2011-01-01

    Both the neuropeptide, corticotropin-releasing factor (CRF) and the serotonin 1A (5-HT1A) receptor systems have been implicated in anxiety disorders and there is evidence that the two systems interact with each other to affect behavior. Both systems have individually been shown to affect prepulse inhibition (PPI) of the acoustic startle response. PPI is a form of sensorimotor gating that is reduced in patients with anxiety disorders including post-traumatic stress and panic disorder. Here, we examined whether the two systems interact or counteract each other to affect acoustic startle amplitude, PPI and habituation of the startle response. In experiment 1, Brown Norway (BN) and Wistar-Kyoto (WKY) rats were administered ether an intraperitoneal (IP) injection of saline or the 5-HT1A receptor agonist, 8-OH-DPAT 10 min prior to receiving an intracerebroventricular (ICV) infusion of either saline or CRF (0.3 µg). In a second experiment, rats were administered either an IP injection of saline or the 5-HT1A receptor antagonist, WAY 100,635 10 min prior to receiving an ICV infusion of saline or CRF. Thirty min after the ICV infusion, the startle response and PPI were assessed. As we have previously shown, the dose of CRF used in these experiments reduced PPI in BN rats and had no effect on PPI in WKY rats. Administration of 8-OH-DPAT alone had no effect on PPI in either rat strain when the data from the two strains were examined separately. Administration of 8-OHDPAT added to the effect of CRF in BN rats, and the combination of 8-OH-DPAT and CRF significantly reduced PPI in WKY rats. CRF alone had no effect on baseline startle amplitude in either rat strain, but CRF enhanced the 8-OH-DPAT-induced increase in startle in both strains. Administration of WAY 100,635 did not affect the CRF-induced change in PPI and there were no interactions between CRF and WAY 100,635 on baseline startle. The results suggest that activation of the 5-HT1A receptor can potentiate the effect of

  12. The Acoustic Field Scattered from Some Approximate Pressure Release Materials Coating a Finite Cylinder.

    NASA Astrophysics Data System (ADS)

    Caille, Gary William

    1988-12-01

    The objective was to determine if a pressure release boundary condition can be achieved by coating an elastic shell with a viscoelastic material. One necessary condition is that the coating must acoustically decouple the shell from the scattering problem. Two closed cell rubbers and two cork-rubber composites (nitrile and neoprene based) were investigated. The dynamic viscoelastic constants of the materials were determined by wave propagation techniques. The far field scattering form functions for an infinite cylindrical shell coated with the viscoelastic material were calculated using the complete elastic equations of motion. The form functions were experimentally measured for the different materials at different thicknesses as verification of the theory. A thick finite right cylindrical shell was coated with.25 inches of closed cell neoprene and the normalized scattered pressure measured. The pressure release normalized scattered pressure was determined for the end on incident plane wave case using the acoustic radiation Simplified Helmholtz Integral Program (SHIP). The pressure release normalized scattered pressure was determined for the side incident case using a modified Combined Helmholtz Integral Equation Formulation (CHIEF) radiation program. The material property measurements showed the closed cell rubbers have longitudinal wave propagation speeds of approximately 150 m/sec and attenuations of 30 dB/cm. The cork-rubber composites have longitudinal wave speeds of approximately 300 m/sec and attenuations of 7 dB/cm. The scattering measurements demonstrated that a thin shell (inner radius to outer radius ratio of.97) could be made to scatter in a pressure release manner with a.25 inches of nitrile. The rubber-cork composites could not produce the pressure release effect for nondimensionalized wave number (product of the wave number and the radius of the cylinder) values less than 4 with reasonable thicknesses. The coated finite thick shell, with side

  13. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment.

    PubMed

    Nightingale, Kathryn R; Church, Charles C; Harris, Gerald; Wear, Keith A; Bailey, Michael R; Carson, Paul L; Jiang, Hui; Sandstrom, Kurt L; Szabo, Thomas L; Ziskin, Marvin C

    2015-07-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term "conditionally" is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues.

  14. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment

    PubMed Central

    Nightingale, Kathryn R.; Church, Charles C.; Harris, Gerald; Wear, Keith A.; Bailey, Michael R.; Carson, Paul L.; Jiang, Hui; Sandstrom, Kurt L.; Szabo, Thomas L.; Ziskin, Marvin C.

    2016-01-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term “conditionally” is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. PMID:26112617

  15. Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas).

    PubMed

    Finneran, James J; Carder, Donald A; Ridgway, Sam H

    2002-01-01

    The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.

  16. Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Finneran, James J.; Carder, Donald A.; Ridgway, Sam H.

    2002-01-01

    The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.

  17. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids.

  18. Numerical acoustic characteristics and optimum design of the pressure reducing valve

    NASA Astrophysics Data System (ADS)

    Guo, P. C.; Sun, L. G.; Sun, S. H.; Feng, J. J.; Wu, K. G.; Luo, X. Q.

    2016-11-01

    The pressure reducing valves are widely used in the technological water supplied ways of gravity flow. A credible pressure reducing valve can provide stable cooling water for units with extremely low maintenance cost and labor intensity in a fairly long period of time. In this paper, a three-dimensional numerical simulation of flow field and acoustic characteristics towards a combined type pressure reducing valve was carried out based on ANSYS Fluent and the FW-H equation. The numerical results achieve the regulation of noise generation, transmission and attenuation. It shows that the sound pressure level of monitoring points seem to be higher and large gradient at low frequencies under the same flow velocity, while it presents reverse results with the increment of frequency and maintains a constant valve finally. At the same time, the monitoring points in the vicinity of throttling cone shows higher sound pressure level and upstream noise is lower than downstream's. Aiming at the problem of valve noise, a modified measure to reduce the flow-induced noise was proposed.

  19. Response of acoustic and elastic properties to pressure and crystallization of Ce-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Wang, R. J.; Wang, W. H.

    2005-09-01

    The density and acoustic velocities of a Ce70Al10Ni10Cu10 bulk metallic glass (BMG) under hydrostatic-pressure (up to 0.5GPa ) and in crystallized state in ambient conditions were measured in situ by a pulse echo overlap method. The pressure derivatives of velocities and Grüneisen parameters as well as the equation of state (EOS) of the BMG were determined and compared to those of various other BMGs and nonmetallic glasses. Surprisingly, the BMG, unlike other BMGs with normal mode stiffness, exhibits an anomalous soft longitudinal acoustic mode under pressure similar to that of typical oxide glasses. An unusually large softening of longitudinal acoustic phonons in the BMG, relative to its crystalline state, is also observed, analogous with that in oxide glasses. The possible origin for the anomaly is the intrinsic glassy structure containing short-range covalent bonds.

  20. Behaviour of a Premixed Flame Subjected to Acoustic Oscillations

    PubMed Central

    Qureshi, Shafiq R.; Khan, Waqar A.; Prosser, Robert

    2013-01-01

    In this paper, a one dimensional premixed laminar methane flame is subjected to acoustic oscillations and studied. The purpose of this analysis is to investigate the effects of acoustic perturbations on the reaction rates of different species, with a view to their respective contribution to thermoacoustic instabilities. Acoustically transparent non reflecting boundary conditions are employed. The flame response has been studied with acoustic waves of different frequencies and amplitudes. The integral values of the reaction rates, the burning velocities and the heat release of the acoustically perturbed flame are compared with the unperturbed case. We found that the flame's sensitivity to acoustic perturbations is greatest when the wavelength is comparable to the flame thickness. Even in this case, the perturbations are stable with time. We conclude that acoustic fields acting on the chemistry do not contribute significantly to the emergence of large amplitude pressure oscillations. PMID:24376501

  1. Simultaneous measurement of temperature, hydrostatic pressure and acoustic signal using a single distributed Bragg reflector fiber laser

    NASA Astrophysics Data System (ADS)

    Tan, Yan-Nan; Zhang, Yang; Guan, Bai-Ou

    2011-05-01

    A fiber-optic sensor based on a dual polarization fiber grating laser for simultaneous measurement of temperature, hydrostatic pressure and acoustic signal is proposed and experimentally demonstrated. The acoustic wave induces a frequency modulation (FM) of the carrier in radio frequency (RF) range generated by the fiber laser and can be easily extracted by using the FM demodulation technique. The temperature can be determined by the laser wavelength. The hydrostatic pressure can be determined by monitoring the static shift of the carrier frequency and deducting the effect of the temperature.

  2. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure.

    PubMed

    Morris, Paul; Hurrell, Andrew; Shaw, Adam; Zhang, Edward; Beard, Paul

    2009-06-01

    A dual sensing fiber-optic hydrophone that can make simultaneous measurements of acoustic pressure and temperature at the same location has been developed for characterizing ultrasound fields and ultrasound-induced heating. The transduction mechanism is based on the detection of acoustically- and thermally-induced thickness changes in a polymer film Fabry-Perot interferometer deposited at the tip of a single mode optical fiber. The sensor provides a peak noise-equivalent pressure of 15 kPa (at 5 MHz, over a 20 MHz measurement bandwidth), an acoustic bandwidth of 50 MHz, and an optically defined element size of 10 microm. As well as measuring acoustic pressure, temperature changes up to 70 degrees C can be measured, with a resolution of 0.34 degrees C. To evaluate the thermal measurement capability of the sensor, measurements were made at the focus of a high-intensity focused ultrasound (HIFU) field in a tissue mimicking phantom. These showed that the sensor is not susceptible to viscous heating, is able to withstand high intensity fields, and can simultaneously acquire acoustic waveforms while monitoring induced temperature rises. These attributes, along with flexibility, small physical size (OD approximately 150 microm), immunity to Electro-Magnetic Interference (EMI), and low sensor cost, suggest that this type of hydrophone may provide a practical alternative to piezoelectric based hydrophones.

  3. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    NASA Astrophysics Data System (ADS)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  4. Stabilization and Low-Frequency Oscillation of Capillary Bridges with Modulated Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.

    1996-01-01

    In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.

  5. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas.

    PubMed

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M; Orlando, Thomas M

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation. Graphical Abstract ᅟ.

  6. Comparison of sonochemiluminescence images using image analysis techniques and identification of acoustic pressure fields via simulation.

    PubMed

    Tiong, T Joyce; Chandesa, Tissa; Yap, Yeow Hong

    2017-05-01

    One common method to determine the existence of cavitational activity in power ultrasonics systems is by capturing images of sonoluminescence (SL) or sonochemiluminescence (SCL) in a dark environment. Conventionally, the light emitted from SL or SCL was detected based on the number of photons. Though this method is effective, it could not identify the sonochemical zones of an ultrasonic systems. SL/SCL images, on the other hand, enable identification of 'active' sonochemical zones. However, these images often provide just qualitative data as the harvesting of light intensity data from the images is tedious and require high resolution images. In this work, we propose a new image analysis technique using pseudo-colouring images to quantify the SCL zones based on the intensities of the SCL images and followed by comparison of the active SCL zones with COMSOL simulated acoustic pressure zones.

  7. On the behavior of a shear-coaxial jet, spanning sub- to supercritical pressures, with and without an externally imposed transverse acoustic field

    NASA Astrophysics Data System (ADS)

    Davis, Dustin Wayne

    In the past, liquid rocket engines (LRE) have experienced high-frequency combustion instability, which impose an acoustic field in the combustion chamber. The acoustic field interacts with the fluid jets issuing from the injectors, thus altering the behavior of the jet compared to that of stable operation of the LRE. It is possible that this interaction could be a substantial feed back mechanism driving the combustion instability. In order to understand the problem of combustion instability, it is necessary to understand the interaction of the jet with the acoustic waves. From past combustion instability studies of the liquid oxygen and hydrogen propellant combination in a shear-coaxial injector configuration, a design guideline of outer-to-inner jet velocity ratio greater than about ten was proposed in order to avoid high-frequency acoustic combustion instability problems. However, no satisfactory physical explanation was provided. To promote this understanding, a cold-flow experimental investigation of a shear-coaxial jet interacting with a high-amplitude non-linear acoustic field was undertaken under chamber pressures extending into the supercritical regime. Liquid nitrogen (LN2) flowed from the inner tube of a coaxial injector while gaseous nitrogen (GN2) issued from its annular region. The injector fluids were directed into a chamber pressurized with gaseous nitrogen. The acoustic excitation was provided by an external driver capable of delivering acoustic field amplitudes up to 165 dB. The resonant modes of the chamber governed the two frequencies studied here, with the first two modes being about 3 and 5.2 kHz. High-speed images of the jet were taken with a Phantom CMOS camera. The so-called "dark core" of the jet is among the most salient features in the acquired images, and therefore, was defined and measured. The core length was found to decrease with increasing velocity and momentum flux ratio. Because of the ability of the camera to capture thousands of

  8. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    NASA Astrophysics Data System (ADS)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  9. Pressure probe and hot-film probe rsponses to acoustic excitation in mean flow

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.; Jones, M. G.

    1986-01-01

    An experiment was conducted to compare the relative responses of a hot-film probe and a pressure probe positioned in a flow duct carrying mean flow and progressive acoustic waves. The response of each probe was compared with that of a condenser-type microphone flush mounted in the duct wall for flow Mach numbers up to about 0.5. The response of the pressure probe was less than that of the flush-mounted microphone by not more than about 2.1 dB at the highest centerline Mach number. This decreased response of the probe can likely be attributed to flow-induced impedance changes at the probe sensor orifices. The response of the hot-film probe, expressed in terms of fluctuating pressure, was greater than that of the flush-mounted microphone by as much as 6.0 dB at the two higher centerline Mach numbers. Removal of the contribution from fluctuating temperature in the hot-film analytical model greatly improved the agreement between the two transducer responses.

  10. Experimental feasibility of investigating acoustic waves in Couette flow with entropy and pressure gradients

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.

    1990-01-01

    The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.

  11. Extension of the angular spectrum method to calculate pressure from a spherically curved acoustic source.

    PubMed

    Vyas, Urvi; Christensen, Douglas A

    2011-11-01

    The angular spectrum method is an accurate and computationally efficient method for modeling acoustic wave propagation. The use of the typical 2D fast Fourier transform algorithm makes this a fast technique but it requires that the source pressure (or velocity) be specified on a plane. Here the angular spectrum method is extended to calculate pressure from a spherical transducer-as used extensively in applications such as magnetic resonance-guided focused ultrasound surgery-to a plane. The approach, called the Ring-Bessel technique, decomposes the curved source into circular rings of increasing radii, each ring a different distance from the intermediate plane, and calculates the angular spectrum of each ring using a Fourier series. Each angular spectrum is then propagated to the intermediate plane where all the propagated angular spectra are summed to obtain the pressure on the plane; subsequent plane-to-plane propagation can be achieved using the traditional angular spectrum method. Since the Ring-Bessel calculations are carried out in the frequency domain, it reduces calculation times by a factor of approximately 24 compared to the Rayleigh-Sommerfeld method and about 82 compared to the Field II technique, while maintaining accuracies of better than 96% as judged by those methods for cases of both solid and phased-array transducers.

  12. Acoustic scattering by circular cylinders of various aspect ratios. [pressure gradient microphones

    NASA Technical Reports Server (NTRS)

    Maciulaitis, A.

    1979-01-01

    The effects of acoustic scattering on the useful frequency range of pressure gradient microphones were investigated experimentally between ka values of 0.407 and 4.232 using two circular cylindrical models (L/D = 0.5 and 0.25) having a 25 cm outside diameter. Small condenser microphones, attached to preamplifiers by flexible connectors, were installed from inside the cylindrical bodies, and flush mounted on the exterior surface of the cylinders. A 38 cm diameter woofer in a large speaker enclosure was used as the sound source. Surface pressure augmentation and phase differences were computed from measured data for various sound wave incidence angles. Results are graphically compared with theoretical predictions supplied by NASA for ka = 0.407, 2.288, and 4.232. All other results are tabulated in the appendices. With minor exceptions, the experimentally determined pressure augmentations agreed within 0.75 dB with theoretical predictions. The agreement for relative phase angles was within 5 percent without any exceptions. Scattering parameter variations with ka and L/D ratio, as computed from experimental data, are also presented.

  13. A comparison between heterodyne and homodyne interferometry to realise the SI unit of acoustic pressure in water

    NASA Astrophysics Data System (ADS)

    Koukoulas, Triantafillos; Robinson, Stephen; Rajagopal, Srinath; Zeqiri, Bajram

    2016-04-01

    Optical approaches for hydrophone calibrations offer significant advantages over existing methods based on reciprocity. In particular, heterodyne and homodyne interferometry can accurately measure particle velocity and displacements at a specific point in space thus enabling the acoustical pressure to be measured in an absolute, direct, assumption-free manner, with traceability through the SI definition of the metre. The calibration of a hydrophone can then be performed by placing the active element of the sensor at the point where the acoustic pressure field was measured and monitoring its electrical output. However, it is crucial to validate the performance and accuracy of such optical methods by direct comparison rather than through device calibration. Here we report on the direct comparison of two such optical interferometers used in underwater acoustics and ultrasonics in terms of acoustic pressure estimation and their associated uncertainties in the frequency range 200 kHz-3.5 MHz, with results showing agreement better than 1% in terms of pressure and typical expanded uncertainties better than 3% for both reported methods.

  14. Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures

    SciTech Connect

    Bodet, L.; Dhemaied, A.; Mourgues, R.; Tournat, V.; Rejiba, F.

    2012-05-24

    Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

  15. Nonlinear Acoustics Used To Reduce Leakage Flow

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    Leakage and wear are two fundamental problems in all traditional turbine seals that contribute to an engine's inefficiency. The solutions to seal leakage and wear conflict in the conventional design space. Reducing the clearance between the seal and rotating shaft reduces leakage but increases wear because of increased contact incidents. Increasing the clearance to reduce the contact between parts reduces wear but increases parasitic leakage. The goal of this effort is to develop a seal that restricts leakage flow using acoustic pressure while operating in a noncontacting manner, thereby increasing life. In 1996, Dr. Timothy Lucas announced his discovery of a method to produce shock-free high-amplitude pressure waves. For the first time, the formation of large acoustic pressures was possible using dissonant resonators. A pre-prototype acoustic seal developed at the NASA Glenn Research Center exploits this fundamental acoustic discovery: a specially shaped cavity oscillated at the contained fluid's resonant frequency produces high-amplitude acoustic pressure waves of a magnitude approaching those required of today's seals. While the original researchers are continuing their development of acoustic pumps, refrigeration compressors, and electronic thermal management systems using this technology, the goal of researchers at Glenn is to apply these acoustic principles to a revolutionary sealing device. When the acoustic resonator shape is optimized for the sealing device, the flow from a high-pressure cavity to a low-pressure cavity will be restricted by a series of high-amplitude standing pressure waves of higher pressure than the pressure to be sealed. Since the sealing resonator cavity will not touch the adjacent sealing structures, seal wear will be eliminated, improving system life. Under a cooperative agreement between Glenn and the Ohio Aerospace Institute (OAI), an acoustic-based pre-prototype seal was demonstrated for the first time. A pressurized cavity was

  16. Towards a reference cavitating vessel Part III—design and acoustic pressure characterization of a multi-frequency sonoreactor

    NASA Astrophysics Data System (ADS)

    Wang, Lian; Memoli, Gianluca; Hodnett, Mark; Butterworth, Ian; Sarno, Dan; Zeqiri, Bajram

    2015-08-01

    A multi-frequency cavitation vessel (RV-multi) has been commissioned at the National Physical Laboratory (NPL, UK), with the aim of establishing a standard source of acoustic cavitation in water, with reference to which details of the cavitation process can be studied and cavitation measurement techniques evaluated. The vessel is a cylindrical cavity with a maximum capacity up to 17 L, and is designed to work at six frequency ranges, from 21 kHz to 136 kHz, under controlled temperature conditions. This paper discusses the design of RV-multi and reports experiments carried out to establish the reproducibility of the acoustic pressure field established within the vessel and its operating envelope, including sensitivity to aspects such as water depth and temperature. The acoustic field distribution was determined along the radial and depth directions within the vessel using a miniature hydrophone, for two input voltage levels under low power transducer excitation conditions (e.g. below the cavitation threshold). Particular care was taken in determining peak acoustic pressure locations, as these are critical for accompanying cavitation studies. Perturbations of the vessel by the measuring hydrophone were also monitored with a bottom-mounted pressure sensor.

  17. Ultrasound and microbubble mediated drug delivery: acoustic pressure as determinant for uptake via membrane pores or endocytosis.

    PubMed

    De Cock, Ine; Zagato, Elisa; Braeckmans, Kevin; Luan, Ying; de Jong, Nico; De Smedt, Stefaan C; Lentacker, Ine

    2015-01-10

    Although promising results are achieved in ultrasound mediated drug delivery, its underlying biophysical mechanisms remain to be elucidated. Pore formation as well as endocytosis has been reported during ultrasound application. Due to the plethora of ultrasound settings used in literature, it is extremely difficult to draw conclusions on which mechanism is actually involved. To our knowledge, we are the first to show that acoustic pressure influences which route of drug uptake is addressed, by inducing different microbubble-cell interactions. To investigate this, FITC-dextrans were used as model drugs and their uptake was analyzed by flow cytometry. In fluorescence intensity plots, two subpopulations arose in cells with FITC-dextran uptake after ultrasound application, corresponding to cells having either low or high uptake. Following separation of the subpopulations by FACS sorting, confocal images indicated that the low uptake population showed endocytic uptake. The high uptake population represented uptake via pores. Moreover, the distribution of the subpopulations shifted to the high uptake population with increasing acoustic pressure. Real-time confocal recordings during ultrasound revealed that membrane deformation by microbubbles may be the trigger for endocytosis via mechanostimulation of the cytoskeleton. Pore formation was shown to be caused by microbubbles propelled towards the cell. These results provide a better insight in the role of acoustic pressure in microbubble-cell interactions and the possible consequences for drug uptake. In addition, it pinpoints the need for a more rational, microbubble behavior based choice of acoustic parameters in ultrasound mediated drug delivery experiments.

  18. Acoustic energy-driven fluid pump and method

    SciTech Connect

    Janus, Michael C.; Richards, George A.; Robey, Edward H.

    1997-12-01

    Bulk fluid motion is promoted in a gaseous fluid contained within a conduit system provided with a diffuser without the need for a mean pressure differential across the conduit system. The contacting of the gaseous fluid with unsteady energy at a selected frequency and pressure amplitude induces fluid flow through the conical diffuser. The unsteady energy can be provided by pulse combustors, thermoacoustic engines, or acoustic energy generators such as acoustic speakers.

  19. Problems In Nonlinear Acoustics: pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams and parametric receiving arrays

    DTIC Science & Technology

    1990-12-07

    Proceedings of the 13th Interna- tional Congress on Acoustics, Belgrade, Yugoslavia, August 1989, edited by P. Pravica and G. Drakulic (Sava Centar...Congress on Acoustics (Sava Centar, Belgrade, 1989), edited by P. Pravica and G. Drakulic , Vol. 1, pp. 145-148. [11] K.-E. Froysa, "Weakly nonlinear...Congress on Acoustics (Sava Centar, Belgrade, 1989), edited by P. Pravica and G. Drakulic , Vol. 1, pp. 283-286. [41] C. M. Darvennes, M. F. Hamilton, J

  20. Laser-induced acoustic desorption/atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Gao, Jinshan; Borton, David J; Owen, Benjamin C; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M; Madden, Jeremy T; Qian, Kuangnan; Kenttämaa, Hilkka I

    2011-03-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a commercial linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. From the four APCI reagent systems tested, neat carbon disulfide provided the best results. The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar but minor amount of fragmentation was observed for these two reagents. When the experiment was performed without a liquid reagent (nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to predominantly form stable molecular ions.

  1. Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization Mass Spectrometry

    PubMed Central

    Gao, Jinshan; Borton, David J.; Owen, Benjamin C.; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M.; Madden, Jeremy T.; Qian, Kuangnan; Kenttämaa, Hilkka I.

    2010-01-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. Four APCI reagent systems were tested: the traditionally used mixture of methanol and water, neat benzene, neat carbon disulfide, and nitrogen gas (no liquid reagent). The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar amount of fragmentation was observed for these reagents. When the experiment was performed without a liquid reagent(nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to form stable molecular ions. PMID:21472571

  2. Self-demodulation of amplitude-modulated signal components in amplitude-modulated bone-conducted ultrasonic hearing

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhito; Nakagawa, Seiji

    2015-07-01

    A novel hearing aid system utilizing amplitude-modulated bone-conducted ultrasound (AM-BCU) is being developed for use by profoundly deaf people. However, there is a lack of research on the acoustic aspects of AM-BCU hearing. In this study, acoustic fields in the ear canal under AM-BCU stimulation were examined with respect to the self-demodulation effect of amplitude-modulated signal components generated in the ear canal. We found self-demodulated signals with an audible sound pressure level related to the amplitude-modulated signal components of bone-conducted ultrasonic stimulation. In addition, the increases in the self-demodulated signal levels at low frequencies in the ear canal after occluding the ear canal opening, i.e., the positive occlusion effect, indicate the existence of a pathway by which the self-demodulated signals pass through the aural cartilage and soft tissue, and radiate into the ear canal.

  3. Characterization of a setup to test the impact of high-amplitude pressure waves on living cells.

    PubMed

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O

    2014-01-24

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction.

  4. Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells

    PubMed Central

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.

    2014-01-01

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction. PMID:24458018

  5. Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells

    NASA Astrophysics Data System (ADS)

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.

    2014-01-01

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction.

  6. The acoustic velocity, refractive index, and equation of state of liquid ammonia dihydrate under high pressure and high temperature.

    PubMed

    Ma, Chunli; Wu, Xiaoxin; Huang, Fengxian; Zhou, Qiang; Li, Fangfei; Cui, Qiliang

    2012-09-14

    High-pressure and high-temperature Brillouin scattering studies have been performed on liquid of composition corresponding to the ammonia dihydrate stoichiometry (NH(3)·2H(2)O) in a diamond anvil cell. Using the measured Brillouin frequency shifts from 180° back- and 60° platelet-scattering geometries, the acoustic velocity, refractive index, density, and adiabatic bulk modulus have been determined under pressure up to freezing point along the 296, 338, 376, and 407 K isotherms. Along these four isotherms, the acoustic velocities increase smoothly with increasing pressure but decrease with the increased temperature. However, the pressure dependence of the refractive indexes on the four isotherms exhibits a change in slope around 1.5 GPa. The bulk modulus increases linearly with pressure and its slope, dB/dP, decreases from 6.83 at 296 K to 4.41 at 407 K. These new datasets improve our understanding of the pressure- and temperature-induced molecular structure changes in the ammonia-water binary system.

  7. Effects of large pressure amplitude low frequency noise in the parotid gland perivasculo-ductal connective tissue.

    PubMed

    Oliveira, Pedro; Brito, José; Mendes, João; da Fonseca, Jorge; Águas, Artur; Martins dos Santos, José

    2013-01-01

    Introdução: Em tecidos e órgãos expostos a ruído de baixa frequência de alta amplitude ocorre fibrose na ausência de sinais inflamatórios, que se pensa ser uma resposta protetora. No tecido conjuntivo perivasculo-ductal da glândula parótida seguem artérias, veias e a árvore ductal. Crê-se que o tecido conjuntivo perivasculo-ductal funcione como um estabilizador mecânico do tecido glandular.Material e Métodos: Para quantificar a proliferação de tecido conjuntivo perivasculo-ductal em ratos expostos a ruído de baixafrequência de alta amplitude foram utilizados 60 ratos Wistar igualmente divididos em seis grupos. Um grupo mantido em silêncio, e os restantes 5 expostos a ruído de baixa frequência de alta amplitude continuamente: g1-168h (1 semana); g2-504h (3 semanas); g3-840h (5semanas); g4-1512h (9 semanas) e g5-2184h (13 semanas). Após a exposição, as parótidas foram removidas e o tecido conjuntivo perivasculo-ductal foi medido em todos os grupos. Foi efectuada análise estatística com ANOVA por SPSS 13.0.Resultados: A tendência é um aumento global das áreas do tecido conjuntivo perivasculo-ductal, que se desenvolve de forma linear e significativa com o tempo de exposição (p < 0,001).Discussão: Tem sido sugerido que a resposta biológica à exposição ao ruído de baixa frequência de alta amplitude está associada à necessidade de manter a integridade estrutural. O reforço estrutural seria conseguido através do aumento do tecido conjuntivo perivasculo-ductal.Conclusões: Assim, estes resultados mostram que o tecido conjuntivo perivasculo-ductal aumenta em resposta à exposição ao ruído de baixa frequência de alta amplitude.

  8. The best marker for guiding the clinical management of patients with raised intracranial pressure-the RAP index or the mean pulse amplitude?

    PubMed

    Hall, Allan; O'Kane, Roddy

    2016-10-01

    Raised intracranial pressure is a common problem in a variety of neurosurgical conditions including traumatic brain injury, hydrocephalus and intracranial haemorrhage. The clinical management of these patients is guided by a variety of haemodynamic, biochemical and clinical factors. However to date there is no single parameter that is used to guide clinical management of patients with raised intracranial pressure (ICP). However, the role of ICP indices, specifically the mean pulse amplitude (AMP) and RAP index [correlation coefficient (R) between AMP amplitude (A) and mean ICP pressure (P); index of compensatory reserve], as an indicator of true ICP has been investigated. Whilst the RAP index has been used both as a descriptor of neurological deterioration in TBI patients and as a way of characterising the compensatory reserve in hydrocephalus, more recent studies have highlighted the limitation of the RAP index due to the influence that baseline effect errors have on the mean ICP, which is used in the calculation of the RAP index. These studies have suggested that the ICP mean pulse amplitude may be a more accurate marker of true intracranial pressure due to the fact that it is uninfluenced by the mean ICP and, therefore, the AMP may be a more reliable marker than the RAP index for guiding the clinical management of patients with raised ICP. Although further investigation needs to be undertaken in order to fully assess the role of ICP indices in guiding the clinical management of patients with raised ICP, the studies undertaken to date provide an insight into the potential role of ICP indices to treat raised ICP proactively rather than reactively and therefore help prevent or minimise secondary brain injury.

  9. Dependence of macrophage superoxide release on the pulse amplitude of an applied pressure regime: a potential factor at the soft tissue-implant interface.

    PubMed

    Shin, Hainsworth Y; Frechette, Danielle M; Rohner, Nathan; Zhang, Xiaoyan; Puleo, David A; Bjursten, Lars M

    2016-03-01

    Failure of soft tissue implants has been largely attributed to the influence of biomaterial surface properties on the foreign body response, but some implant complications, e.g. macrophage accumulation and necrosis, are still not effectively addressed with surface treatments to minimize deleterious biomaterial effects. We explored an alternative explanation for implant failure, linking biocompatibility with implant micromotion-induced pressure fluctuations at the tissue-biomaterial interface. For this purpose, we used a custom in vitro system to characterize the effects of pressure fluctuations on the activity of macrophages, the predominant cells at a healing implant site. Initially, we quantified superoxide production by HL60-derived macrophage-like cells under several different pressure regimes with means of 5-40 mmHg, amplitudes of 0-15 mmHg and frequencies of 0-1.5 Hz. All pressure regimes tested elicited significantly (p < 0.05) reduced superoxide production by macrophage-like cells relative to parallel controls. Notably, pressure-sensitive reductions in superoxide release correlated (r(2)  = 0.74; p < 0.01) only with pulse pressures. Based on the connection between superoxide production and cell viability, we also explored the influence of cyclic pressure on macrophage numbers and death. Compared to controls, adherent macrophage-like cells exposed to 7.5/2.5 mmHg cyclic pressures for 6 h exhibited significantly (p < 0.01) reduced cell numbers, independent of cell death. A similar effect was observed for cells treated with 10 U/ml superoxide dismutase. Collectively, our results suggest that pressure pulses are a putative regulator of macrophage adhesion via a superoxide-related effect. Pressure fluctuations, e.g. due to implant micromotion, may, therefore, potentially modulate macrophage-dependent wound healing.

  10. Abnormal Central Pulsatile Hemodynamics in Adolescents With Obesity: Higher Aortic Forward Pressure Wave Amplitude Is Independently Associated With Greater Left Ventricular Mass.

    PubMed

    Pierce, Gary L; Pajaniappan, Mohanasundari; DiPietro, Amy; Darracott-Woei-A-Sack, Kathryn; Kapuku, Gaston K

    2016-11-01

    We hypothesized that increased aortic forward pressure wave amplitude (Pf), which is determined by characteristic impedance (Zc) in the proximal aorta, is the primary hemodynamic determinant of obesity-associated higher left ventricular (LV) mass in adolescents. Aortic pulsatile hemodynamics were measured noninvasively in 60 healthy adolescents (age 14-19 years; 42% male; 50% black) by sequential recordings of pulse waveforms via tonometry, brachial blood pressure, and pulsed Doppler and diameter of the LV outflow tract using 2-dimensional echocardiography. Adolescents who were overweight/obese (n=23; age 16.0±0.3 years; body mass index ≥85th percentile) had higher LV mass index, brachial and carotid systolic blood pressure and pulse pressure, normalized Zc and Pf compared with adolescents with healthy weight (n=37; 16.7±0.3 years; body mass index <85th percentile, all P<0.01). In contrast, there was no difference in mean or diastolic blood pressure, carotid-femoral pulse wave velocity, carotid augmentation index, or aortic backward wave amplitude (all P>0.05). Stepwise multiple linear regression analysis that included age, sex, race, normalized Zc, and brachial systolic blood pressure revealed that body mass index (B±SE; 0.49±0.20, P=0.02, R(2)=0.26), aortic Pf (0.22±0.07; P<0.02, R(2) change=0.11), and cardiac output (2.82±1.02, P<0.01; R(2) change=0.08) were significant correlates of LV mass index (total R(2)=0.44, P<0.01). These findings suggest that higher aortic Pf is a major hemodynamic determinant of increased LV mass in adolescents with elevated adiposity. Improper matching between aortic diameter and pulsatile flow during early systole potentially contributes to the early development of LV hypertrophy in childhood obesity.

  11. Quality Prediction of Twin Wire Arc Sprayed Coatings Using Acoustic Emission Analysis

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Abdulgader, M.; Wang, G.; Zielke, R.

    2013-03-01

    In this work, acoustic emission analysis is utilized in the twin wire arc spraying (TWAS) process to study the influence of the adjustable process parameters on the simultaneously obtained acoustic signals at the nozzle and at the substrate. The amplitude of recorded signals at the substrate was in general much higher than those recorded at the nozzle. At the substrate side, the amplitude of emitted acoustic signals is dependent on feedstock materials and is higher when using solid wires. The acoustic signals were recorded at the spraying gun for different gas pressures without arc ignition (as dry runs) in order to reveal the effect of the arc on the emitted acoustic signals. A correlation between controllable parameters, the acoustic signals, and the obtained in-flight particle characteristics was observed. This work contributes to the online control of TWAS processes and is one of many proposed publications in the research field of the conducted acoustic emission analysis.

  12. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    NASA Astrophysics Data System (ADS)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  13. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    SciTech Connect

    Wang, Xuebing; Chen, Ting; Qi, Xintong; Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng; Kung, Jennifer; Yu, Tony; Wang, Yanbin

    2015-08-14

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.

  14. Surface Acoustic Wave Based Pressure Sensor with Ground Shielding over Cavity on 41° YX LiNbO3

    NASA Astrophysics Data System (ADS)

    Lee, Keekeun; Wang, Wen; Kim, Geunyoung; Yang, Sangsik

    2006-07-01

    A surface acoustic wave (SAW)-based pressure sensor was fabricated for stable mechanical compression force measurement. A single phase unidirectional transducer (SPUDT) and two acoustic tracks were employed to minimize inherent insertion loss and improve reflectivity from the reflectors. The coupling of modes (COM) theory and finite element methods (FEMs) were used to determine optimal design parameters. A LiNbO3 diaphragm was bonded to a heavily doped silicon substrate with a cavity of ˜250 μm deep, in which gold was lined all over the inner cavity to reduce the coupling loss of SAW energy to the surrounding atmosphere. As a mechanical compression force was applied to the diaphragm, the diaphragm bent, resulting in phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of mechanical compression applied. The measured reflection coefficient S11 showed good agreement with simulated results.

  15. Effect of the spiral liquid crystals on the amplitude and temporal characteristics of the pressure-sensitive luminophore

    NASA Astrophysics Data System (ADS)

    Zharkova, Galina M.; Petrov, Alexander P.; Kovrizhina, Valentina N.

    2016-10-01

    The article discusses the properties of the coatings based on porphyrin platinum complex and the polymer binder, which are used for measuring the pressure distribution on the model surface. To enhance the emission of the phosphor coating liquid crystals are made with the properties of a photonic crystal. Developed liquid crystal mixture in which the end of the band gap coincides with the peak of the phosphor luminescence. It is shown that the intensity of the luminescence of the phosphor in such a medium is increased in 3 times.

  16. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  17. Coding Acoustic Metasurfaces.

    PubMed

    Xie, Boyang; Tang, Kun; Cheng, Hua; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo

    2017-02-01

    Coding acoustic metasurfaces can combine simple logical bits to acquire sophisticated functions in wave control. The acoustic logical bits can achieve a phase difference of exactly π and a perfect match of the amplitudes for the transmitted waves. By programming the coding sequences, acoustic metasurfaces with various functions, including creating peculiar antenna patterns and waves focusing, have been demonstrated.

  18. Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics

    SciTech Connect

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.; Yu, Xiao

    2013-08-15

    We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250–300 kV). The beam is composed of C{sup +} ions (85%) and protons, the beam energy density is 0.5–5 J/cm{sup 2} (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1–2 J/cm{sup 2}. The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10{sup 3} pulses/s.

  19. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  20. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  1. Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode.

    PubMed

    Jaeger, Michael; Niederhauser, Joël J; Hejazi, Marjaneh; Frenz, Martin

    2005-01-01

    An optoacoustic detection method suitable for depth profiling of optical absorption of layered or continuously varying tissue structures is presented. Detection of thermoelastically induced pressure transients allows reconstruction of optical properties of the sample to a depth of several millimeters with a spatial resolution of 24 mum. Acoustic detection is performed using a specially designed piezoelectric transducer, which is transparent for optical radiation. Thus, ultrasonic signals can be recorded at the same position the tissue is illuminated. Because the optoacoustical sound source is placed in the pulsed-acoustic near field of the pressure sensor, signal distortions commonly associated with acoustical diffraction are eliminated. Therefore, the acoustic signals mimic exactly the depth profile of the absorbed energy. This is illustrated by imaging the absorption profile of a two-layered sample with different absorption coefficients, and of a dye distribution while diffusing into a gelatin phantom.

  2. Arbitrary amplitude dust-acoustic waves in four-component dusty plasma using non-extensive electrons and ions distributions-soliton solution

    NASA Astrophysics Data System (ADS)

    Abulwafa, Essam M.; Elhanbaly, Atalla M.; Mahmoud, Abeer A.; Al-Araby, Abd-alrahman F.

    2017-01-01

    The four-component dusty plasma consisting of positive and negative dust species, electrons, and ions is considered for study. The fluid dynamics equations are applied to describe the motion of the two dust species. Both the electrons and ions are described by employing non-extensive distributions. The one-dimensional arbitrary amplitude of an electrostatic solitary structure has been studied using the Sagdeev pseudo-potential and phase-portrait approaches. In addition to the existence of either the compressive or rarefactive solitary wave, the analysis shows that these two types of waves coexist and propagate in the studied plasma model. Due to the complexity involved in the structure of Sagdeev pseudo-potential, a small amplitude approximation is considered. The corresponding potential diagrams and phase portrait are investigated and the analysis supports the existence of both compressive and rarefactive solitary waves in the considered plasma.

  3. Nonlinear Acoustics in a Dispersive Continuum: Random Waves, Radiation Pressure, and Quantum Noise.

    DTIC Science & Technology

    1983-03-01

    Karpman , Nonlinear Waves in Dispersive Media, Pergamon Press, New York, 1975, p. 76. 26. R. Beyers, Nonlinear Acoustics, U.S. Government Printing...20301 U. S. Army Research nffice 2 copies Box 12211 Research Triangle Park tlorth Carolina 27709 Defense Technical Information Center 12 copies Cameron

  4. Study of acoustic field modulation in the regenerator by double loudspeakers method.

    PubMed

    Zhou, Lihua; Xie, Xiujuan; Li, Qing

    2011-11-01

    A model to modulate acoustic field in a regenerator of a thermoacoustic system by the double loudspeakers method is presented in this paper. The equations are derived for acoustic field modulation. They represent the relations among acoustic field (complex pressure p(0), complex velocity u(0), and acoustic impedance Z(0)), driving parameters of loudspeakers (voltage amplitude and its phase difference), and operating parameters involved in a matrix H (frequency, temperature of regenerator). The range of acoustic field is adjustable and limited by the maximal driving voltages of loudspeakers according to driving parameters. The range is simulated and analyzed in the amplitude-phase and complex coordinate planes for a given or variable H. The simulated results indicate that the range has its intrinsic characteristics. The expected acoustic field in a regenerator can be obtained feasibly by the modulation.

  5. Effect of anisotropic dust pressure and superthermal electrons on propagation and stability of dust acoustic solitary waves

    SciTech Connect

    Bashir, M. F.; Behery, E. E.; El-Taibany, W. F.

    2015-06-15

    Employing the reductive perturbation technique, Zakharov–Kuznetzov (ZK) equation is derived for dust acoustic (DA) solitary waves in a magnetized plasma which consists the effects of dust anisotropic pressure, arbitrary charged dust particles, Boltzmann distributed ions, and Kappa distributed superthermal electrons. The ZK solitary wave solution is obtained. Using the small-k expansion method, the stability analysis for DA solitary waves is also discussed. The effects of the dust pressure anisotropy and the electron superthermality on the basic characteristics of DA waves as well as on the three-dimensional instability criterion are highlighted. It is found that the DA solitary wave is rarefactive (compressive) for negative (positive) dust. In addition, the growth rate of instability increases rapidly as the superthermal spectral index of electrons increases with either positive or negative dust grains. A brief discussion for possible applications is included.

  6. Introducing DIASCoPE: Directly Integrated Acoustic System Combined with Pressure Experiments — Changing the Paradigm from Product to Process

    NASA Astrophysics Data System (ADS)

    Whitaker, M. L.; Baldwin, K. J.; Huebsch, W. B.; Tercé, N.; Bejina, F.; Bystricky, M.; Chen, H.; Vaughan, M. T.; Weidner, D. J.

    2014-12-01

    Understanding the properties and behaviors of materials and multi-phase aggregates under conditions of high pressure and temperature is vital to unraveling the mysteries that lie beneath the surface of the planet. Advances in in situexperimental techniques using synchrotron radiation at these extreme conditions have helped to provide answers to fundamental questions that were previously unattainable. Synchrotron-based ultrasonic interferometry measurements have proven to be especially important in determining acoustic velocities and thermoelastic properties of materials at high pressures and temperatures. However, due to relatively slow data collection times, it has been difficult to measure the effects of processes as they occur, and instead the measurement is made on the end product of these processes. DIASCoPE is an important step toward addressing this problem.Over the last three years, we have designed and developed an on-board ultrasonic acoustic velocity measurement system that cuts data collection time down by over an order of magnitude. We can now measure P- and S-wave travel times in samples at extreme conditions in less than one second. Moreover, the system has been fully integrated with the multi-anvil apparatus and the EPICS control system at beamline X17B2 of the National Synchrotron Light Source, allowing for greater ease of control andfull automation of experimental data collection. The DIASCoPE has completed the testing and commissioning phase, and the first data collected using this powerful new system will be presented here.DIASCoPE represents a major step forward in acoustic velocity collection time reduction that will finally allow us to begin to witness what effects various processes in the deep Earth may have on the physical properties of materials at extreme conditions as they occur. These new capabilities will allow us to change the focus of study from the product to the process itself and will lead to a greater understanding of the

  7. A film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system

    NASA Astrophysics Data System (ADS)

    Zhang, Mengying; Zhao, Zhan; Du, Lidong; Fang, Zhen

    2017-04-01

    This paper presented a high-performance pressure sensor based on a film bulk acoustic resonator (FBAR). The support film of the FBAR chip was made of silicon nitride and the part under the resonator area was etched to enhance the sensitivity and improve the linearity of the pressure sensor. A micro resistor temperature sensor and a micro resistor heater were integrated in the chip to monitor and control the operating temperature. The sensor chip was fabricated, and packaged in an oscillator circuit for differential pressure detection. When the detected pressure ranged from  ‑100 hPa to 600 hPa, the sensitivity of the improved FBAR pressure sensor was  ‑0.967 kHz hPa‑1, namely  ‑0.69 ppm hPa‑1, which was 19% higher than that of existing sensors with a complete support film. The nonlinearity of the improved sensor was less than  ±0.35%, while that of the existing sensor was  ±5%. To eliminate measurement errors from humidity, the temperature control system integrated in the sensor chip controlled the temperature of the resonator up to 75 °C, with accuracy of  ±0.015 °C and power of 20 mW.

  8. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults

    PubMed Central

    Keefe, Douglas H.; Hunter, Lisa L.; Feeney, M. Patrick; Fitzpatrick, Denis F.

    2015-01-01

    Procedures are described to measure acoustic reflectance and admittance in human adult and infant ears at frequencies from 0.2 to 8 kHz. Transfer functions were measured at ambient pressure in the ear canal, and as down- or up-swept tympanograms. Acoustically estimated ear-canal area was used to calculate ear reflectance, which was parameterized by absorbance and group delay over all frequencies (and pressures), with substantial data reduction for tympanograms. Admittance measured at the probe tip in adults was transformed into an equivalent admittance at the eardrum using a transmission-line model for an ear canal with specified area and ear-canal length. Ear-canal length was estimated from group delay around the frequency above 2 kHz of minimum absorbance. Illustrative measurements in ears with normal function are described for an adult, and two infants at 1 month of age with normal hearing and a conductive hearing loss. The sensitivity of this equivalent eardrum admittance was calculated for varying estimates of area and length. Infant-ear patterns of absorbance peaks aligned in frequency with dips in group delay were explained by a model of resonant canal-wall mobility. Procedures will be applied in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function. PMID:26723319

  9. A model for the acoustic impedance of a perforated plate liner with multiple frequency excitation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1971-01-01

    A nonlinear resistance model is used in the one-dimensional equations of motion with an arbitrary exciting pressure function. The effects of high amplitude fluid motion, grazing flow, and spectral excitation can be studied together. Sample calculations of acoustic resistances are presented using a high amplitude discrete tone superimposed upon a simulated white noise spectrum. The tone amplitude is varied and its effect is shown both with and without a grazing flow velocity.

  10. Holograms for acoustics

    NASA Astrophysics Data System (ADS)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  11. An acoustic emission and acousto-ultrasonic analysis of impact damaged composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Workman, Gary L. (Principal Investigator); Walker, James L.

    1996-01-01

    The use of acoustic emission to characterize impact damage in composite structures is being performed on composite bottles wrapped with graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology will include neural net analysis and/or other multivariate techniques to enhance the capability of the technique to identify dominant failure mechanisms during fracture. The acousto-ultrasonics technique will also continue to be investigated to determine its ability to predict regions prone to failure prior to the burst tests. Characterization of the stress wave factor before, and after impact damage will be useful for inspection purposes in manufacturing processes. The combination of the two methods will also allow for simple nondestructive tests capable of predicting the performance of a composite structure prior to its being placed in service and during service.

  12. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    DTIC Science & Technology

    2016-07-27

    mode shape Properties of DMD • Isolates response of flow at forcing frequency and harmonics • Single modes can reconstruct convective processes (POD...impact wave detaches and convective velocity. 4822 Hz Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16333 13 PAN Acoustic...amount of variability from the flow field ( convective velocity or ligament separation) to detect a single, strong natural frequency associated with

  13. Ducted fan acoustic radiation including the effects of nonuniform mean flow and acoustic treatment

    NASA Technical Reports Server (NTRS)

    Eversman, Walter; Roy, Indranil Danda

    1993-01-01

    Forward and aft acoustic propagation and radiation from a ducted fan is modeled using a finite element discretization of the acoustic field equations. The fan noise source is introduced as equivalent body forces representing distributed blade loading. The flow in and around the nacelle is assumed to be nonuniform, reflecting the effects of forward flight and flow into the inlet. Refraction due to the fan exit jet shear layer is not represented. Acoustic treatment on the inlet and exhaust duct surfaces provides a mechanism for attenuation. In a region enclosing the fan a pressure formulation is used with the assumption of locally uniform flow. Away from the fan a velocity potential formulation is used and the flow is assumed nonuniform but irrotational. A procedure is developed for matching the two regions by making use of local duct modal amplitudes as transition state variables and determining the amplitudes by enforcing natural boundary conditions at the interface between adjacent regions in which pressure and velocity potential are used. Simple models of rotor alone and rotor/exit guide vane generated noise are used to demonstrate the calculation of the radiated acoustic field and to show the effect of acoustic treatment. The model has been used to assess the success of four techniques for acoustic lining optimization in reducing far field noise.

  14. Acoustic method for levitation of small living animals

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Cao, C. D.; Lü, Y. J.; Hong, Z. Y.; Wei, B.

    2006-11-01

    Ultrasonic levitation of some small living animals such as ant, ladybug, and young fish has been achieved with a single-axis acoustic levitator. The vitality of ant and ladybug is not evidently influenced during the acoustic levitation, whereas that of the young fish is reduced because of the inadequacy of water supply. Numerical analysis shows that the sound pressures on the ladybug's surface almost reach the incident pressure amplitude p0 due to sound scattering. It is estimated that 99.98% of the acoustic energy is reflected away from the ladybug. The acoustic radiation pressure pa on the ladybug's surface is only 1%-3% of p0, which plays a compression role on the central region and a suction role on the peripheral region.

  15. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    PubMed

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  16. Ultrahigh-pressure acoustic wave velocities of SiO2-Al2O3 glasses up to 200 GPa

    NASA Astrophysics Data System (ADS)

    Ohira, Itaru; Murakami, Motohiko; Kohara, Shinji; Ohara, Koji; Ohtani, Eiji

    2016-12-01

    Extensive experimental studies on the structure and density of silicate glasses as laboratory analogs of natural silicate melts have attempted to address the nature of dense silicate melts that may be present at the base of the mantle. Previous ultrahigh-pressure experiments, however, have been performed on simple systems such as SiO2 or MgSiO3, and experiments in more complex system have been conducted under relatively low-pressure conditions below 60 GPa. The effect of other metal cations on structural changes that occur in dense silicate glasses under ultrahigh pressures has been poorly understood. Here, we used a Brillouin scattering spectroscopic method up to pressures of 196.9 GPa to conduct in situ high-pressure acoustic wave velocity measurements of SiO2-Al2O3 glasses in order to understand the effect of Al2O3 on pressure-induced structural changes in the glasses as analogs of aluminosilicate melts. From 10 to 40 GPa, the transverse acoustic wave velocity ( V S ) of Al2O3-rich glass (SiO2 + 20.5 mol% Al2O3) was greater than that of Al2O3-poor glass (SiO2 + 3.9 mol% Al2O3). This result suggests that SiO2-Al2O3 glasses with higher proportions of Al ions with large oxygen coordination numbers (5 and 6) become elastically stiffer up to 40 GPa, depending on the Al2O3 content, but then soften above 40 GPa. At pressures from 40 to ~100 GPa, the increase in V S with increasing pressure became less steep than below 40 GPa. Above ~100 GPa, there were abrupt increases in the P-V S gradients ( dV S /dP) at 130 GPa in Al2O3-poor glass and at 116 GPa in Al2O3-rich glass. These changes resemble previous experimental results on SiO2 glass and MgSiO3 glass. Given that changes of dV S / dP have commonly been related to changes in the Si-O coordination states in the glasses, our results, therefore, may indicate a drastic structural transformation in SiO2-Al2O3 glasses above 116 GPa, possibly associated with an average Si-O coordination number change to higher than 6. Compared

  17. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble.

    PubMed

    Tzanakis, I; Eskin, D G; Georgoulas, A; Fytanidis, D K

    2014-03-01

    An experimental study to evaluate cavitation bubble dynamics is conducted. The aim is to predict the magnitude and statistical distribution of hydrodynamic impact pressure generated from the implosion of various individual acoustic cavitation bubbles near to a rigid boundary, considering geometrical features of the pitted area. A steel sample was subjected to cavitation impacts by an ultrasonic transducer with a 5mm diameter probe. The pitted surface was then examined using high-precision 3D optical interferometer techniques. Only the incubation period where surface is plastically deformed without material loss is taken into account. The exposure time was adjusted in the range of 3-60 s to avoid pit overlapping and a special procedure for pit analysis and characterisation was then followed. Moreover, a high-speed camera device was deployed to capture the implosion mechanisms of cavitation bubbles near to the surface. The geometrical characteristics of single incubation pits as well as pit clusters were studied and their deformation patterns were compared. Consequently, a reverse engineering approach was applied in order the hydrodynamic impact pressure from the implosion of an individual cavitation bubble to be determined. The characteristic parameters of the cavitation implosion process such as hydrodynamic impact pressure and liquid micro-jet impact velocity as well as the hydrodynamic severity of the cavitation impacts were quantified. It was found that the length of the hypotenuse of the orthographic projections from the center of the pit, which basically represents the deformed area of the pit, increases with the hydrodynamic impact aggressiveness in a linear rate. Majority of the hydrodynamic impacts were in the range of 0.4-1 GPa while the corresponding micro-jet velocities were found to be in the range of 200-700 m/s. Outcomes of this study, contribute to further understanding the cavitation intensity from the implosion of acoustically generated bubbles and

  18. Role of acoustics in flame/vortex interactions

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.; Macaraeg, Michele G.; Hussaini, M. Y.

    1993-01-01

    The role of acoustics in flame/vortex interactions is examined via asymptotic analysis and numerical simulation. The model consists of a one-step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are allowed to mix and react by convection and diffusion in the presence of an acoustic field or a time-varying pressure field of small amplitude. The main emphasis is on the influence of the acoustics on the ignition time and flame structure as a function of vortex Reynolds number and initial temperature differences of the reactants.

  19. Vibration and acoustic properties of honeycomb sandwich structures subject to variable incident plane-wave angle pressure loads

    NASA Astrophysics Data System (ADS)

    Yan, Jiaxue

    Honeycomb structures are widely used in many areas for their material characteristics such as high strength-to-weight ratio, stiffness-to-weight, sound transmission, and other properties. Honeycomb structures are generally constructed from periodically spaced tessellations of unit cells. It can be shown that the effective stiffness and mass properties of honeycomb are controlled by the local geometry and wall thickness of the particular unit cells used. Of particular interest are regular hexagonal (6-sided) honeycomb unit cell geometries which exhibit positive effective Poisson's ratio, and modified 6-sided auxetic honeycomb unit cells with Poisson's ratio which is effectively negative; a property not found in natural materials. One important honeycomb meta-structure is sandwich composites designed with a honeycomb core bonded between two panel layers. By changing the geometry of the repetitive unit cell, and overall depth and material properties of the honeycomb core, sandwich panels with different vibration and acoustic properties can be designed to shift resonant frequencies and improve intensity and Sound Transmission Loss (STL). In the present work, a honeycomb finite element model based on beam elements is programmed in MATLAB and verified with the commercial finite element software ABAQUS for frequency extraction and direct frequency response analysis. The MATLAB program was used to study the vibration and acoustic properties of different kinds of honeycomb sandwich panels undergoing in-plane loading with different incident pressure wave angles and frequency. Results for the root mean square intensity IRMS based on normal velocity on the transmitted side of the panel measure vibration magnitude are reported for frequencies between 0 and 1000 Hz. The relationship between the sound transmission loss computed with ABAQUS and the inverse of the intensity of surface velocity is established. In the present work it is demonstrated that the general trend between the

  20. Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure.

    PubMed

    Miller, Douglas L

    2016-12-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas-body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustical radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiologic conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound.

  1. Development of the seafloor acoustic ranging system

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Fujimoto, H.

    2007-12-01

    We have developed a seafloor acoustic ranging system, which simulates an operation with the DONET (Development of Dense Ocean-floor Network System for Earthquake and Tsunami) cable, to monitor seafloor crustal movement. The seafloor acoustic ranging system was based on the precise acoustic transponder (PXP). We have a few problems for the improvement of the resolution. One thing is the variation of sound speed. Another is the bending of ray path. A PXP measures horizontal distances on the seafloor from the round trip travel times of acoustic pulses between pairs of PXP. The PXP was equipped with the pressure, temperature gauge and tilt-meter. The variation of sound speed in seawater has a direct effect on the measurement. Therefore we collect the data of temperature and pressure. But we don't collect the data of salinity because of less influence than temperature and pressure. Accordingly a ray path of acoustic wave tends to be bent upward in the deep sea due to the Snell's law. As the acoustic transducer of each PXPs held about 3.0m above the seafloor, the baseline is too long for altitude from the seafloor. In this year we carried out the experiment for the seafloor acoustic ranging system. We deployed two PXPs at about 750m spacing on Kumano-nada. The water depth is about 2050m. We collected the 660 data in this experiment during one day. The round trip travel time show the variation with peak-to-peak amplitude of about 0.03msec. It was confirmed to explain the majority in this change by the change in sound speed according to the temperature and pressure. This results shows the resolution of acoustic measurements is +/-2mm. Acknowledgement This study is supported by 'DONET' of Ministry of Education, Culture, Sports, Science and Technology.

  2. Non-invasive estimation of static and pulsatile intracranial pressure from transcranial acoustic signals.

    PubMed

    Levinsky, Alexandra; Papyan, Surik; Weinberg, Guy; Stadheim, Trond; Eide, Per Kristian

    2016-05-01

    The aim of the present study was to examine whether a method for estimation of non-invasive ICP (nICP) from transcranial acoustic (TCA) signals mixed with head-generated sounds estimate the static and pulsatile invasive ICP (iICP). For that purpose, simultaneous iICP and mixed TCA signals were obtained from patients undergoing continuous iICP monitoring as part of clinical management. The ear probe placed in the right outer ear channel sent a TCA signal with fixed frequency (621 Hz) that was picked up by the left ear probe along with acoustic signals generated by the intracranial compartment. Based on a mathematical model of the association between mixed TCA and iICP, the static and pulsatile nICP values were determined. Total 39 patients were included in the study; the total number of observations for prediction of static and pulsatile iICP were 5789 and 6791, respectively. The results demonstrated a good agreement between iICP/nICP observations, with mean difference of 0.39 mmHg and 0.53 mmHg for static and pulsatile ICP, respectively. In summary, in this cohort of patients, mixed TCA signals estimated the static and pulsatile iICP with rather good accuracy. Further studies are required to validate whether mixed TCA signals may become useful for measurement of nICP.

  3. External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane.

    PubMed

    Bergevin, Christopher; Olson, Elizabeth S

    2014-03-01

    Sound energy is conveyed to the inner ear by the diaphanous, cone-shaped tympanic membrane (TM). The TM moves in a complex manner and transmits sound signals to the inner ear with high fidelity, pressure gain, and a short delay. Miniaturized sensors allowing high spatial resolution in small spaces and sensitivity to high frequencies were used to explore how pressure drives the TM. Salient findings are: (1) A substantial pressure drop exists across the TM, and varies in frequency from ∼10 to 30 dB. It thus appears reasonable to approximate the drive to the TM as being defined solely by the pressure in the ear canal (EC) close to the TM. (2) Within the middle ear cavity (MEC), spatial variations in sound pressure could vary by more than 20 dB, and the MEC pressure at certain locations/frequencies was as large as in the EC. (3) Spatial variations in pressure along the TM surface on the EC-side were typically less than 5 dB up to 50 kHz. Larger surface variations were observed on the MEC-side.

  4. Estimating colony sizes of emerging bats using acoustic recordings.

    PubMed

    Kloepper, Laura N; Linnenschmidt, Meike; Blowers, Zelda; Branstetter, Brian; Ralston, Joel; Simmons, James A

    2016-03-01

    The decline of bats demands more widespread monitoring of populations for conservation and management. Current censusing methods are either prone to bias or require costly equipment. Here, we report a new method using passive acoustics to determine bat count census from overall acoustic amplitude of the emerging bat stream. We recorded the video and audio of an emerging colony of Mexican free-tailed bats from two cave locations across multiple nights. Instantaneous bat counts were calculated from the video frames, and the bat stream's acoustic amplitude corresponding to each video frame was determined using three different methods for calculating acoustic intensity. We found a significant link between all three acoustic parameters and bat count, with the highest R (2) of 0.742 linking RMS pressure and bat count. Additionally, the relationship between acoustics and population size at one cave location could accurately predict the population size at another cave location. The data were gathered with low-cost, easy-to-operate equipment, and the data analysis can be easily accomplished using automated scripts or with open-source acoustic software. These results are a potential first step towards creating an acoustic model to estimate bat population at large cave colonies worldwide.

  5. Estimating colony sizes of emerging bats using acoustic recordings

    PubMed Central

    Kloepper, Laura N.; Linnenschmidt, Meike; Blowers, Zelda; Branstetter, Brian; Ralston, Joel; Simmons, James A.

    2016-01-01

    The decline of bats demands more widespread monitoring of populations for conservation and management. Current censusing methods are either prone to bias or require costly equipment. Here, we report a new method using passive acoustics to determine bat count census from overall acoustic amplitude of the emerging bat stream. We recorded the video and audio of an emerging colony of Mexican free-tailed bats from two cave locations across multiple nights. Instantaneous bat counts were calculated from the video frames, and the bat stream’s acoustic amplitude corresponding to each video frame was determined using three different methods for calculating acoustic intensity. We found a significant link between all three acoustic parameters and bat count, with the highest R2 of 0.742 linking RMS pressure and bat count. Additionally, the relationship between acoustics and population size at one cave location could accurately predict the population size at another cave location. The data were gathered with low-cost, easy-to-operate equipment, and the data analysis can be easily accomplished using automated scripts or with open-source acoustic software. These results are a potential first step towards creating an acoustic model to estimate bat population at large cave colonies worldwide. PMID:27069667

  6. The Acoustic Field Scattered from Some Approximate Pressure Release Materials Coating a Finite Cyclinder

    DTIC Science & Technology

    1988-03-01

    Center Frequency) 101 Figure 3-29 Normalized Scattered Pressure Versus ka for Thick Finite Shell (b/a =.9) with Axial Incidence (Solid Line is Shell...Incidence (45 kiz Center Frequency) 104 Figure 3-31 Normalized Scattered Pressure Versus ka for Thick Finite Shell (b/a =.9) with Axial Incidence and...with 0.25 inches of Neoprene for Normal Incidence (20 kHz Center Frequency) 112 X; Figure 3-36 Normalized Scattered Pressure Versus ka for Thick Finite

  7. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    SciTech Connect

    Hahn, P. Dual, J.

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  8. Analyzing panel acoustic contributions toward the sound field inside the passenger compartment of a full-size automobile.

    PubMed

    Wu, Sean F; Moondra, Manmohan; Beniwal, Ravi

    2015-04-01

    The Helmholtz equation least squares (HELS)-based nearfield acoustical holography (NAH) is utilized to analyze panel acoustic contributions toward the acoustic field inside the interior region of an automobile. Specifically, the acoustic power flows from individual panels are reconstructed, and relative contributions to sound pressure level and spectrum at any point of interest are calculated. Results demonstrate that by correlating the acoustic power flows from individual panels to the field acoustic pressure, one can correctly locate the panel allowing the most acoustic energy transmission into the vehicle interior. The panel on which the surface acoustic pressure amplitude is the highest should not be used as indicative of the panel responsible for the sound field in the vehicle passenger compartment. Another significant advantage of this HELS-based NAH is that measurements of the input data only need to be taken once by using a conformal array of microphones in the near field, and ranking of panel acoustic contributions to any field point can be readily performed. The transfer functions between individual panels of any vibrating structure to the acoustic pressure anywhere in space are calculated not measured, thus significantly reducing the time and effort involved in panel acoustic contributions analyses.

  9. Finite amplitude wave interaction with premixed laminar flames

    NASA Astrophysics Data System (ADS)

    Aslani, Mohamad; Regele, Jonathan D.

    2014-11-01

    The physics underlying combustion instability is an active area of research because of its detrimental impact in many combustion devices, such as turbines, jet engines, and liquid rocket engines. Pressure waves, ranging from acoustic waves to strong shocks, are potential sources of these disturbances. Literature on flame-disturbance interactions are primarily focused on either acoustics or strong shock wave interactions, with little information about the wide spectrum of behaviors that may exist between these two extremes. For example, the interaction between a flame and a finite amplitude compression wave is not well characterized. This phenomenon is difficult to study numerically due to the wide range of scales that need to be captured, requiring powerful and efficient numerical techniques. In this work, the interaction of a perturbed laminar premixed flame with a finite amplitude compression wave is investigated using the Parallel Adaptive Wavelet Collocation Method (PAWCM). This method optimally solves the fully compressible Navier-Stokes equations while capturing the essential scales. The results show that depending on the amplitude and duration of a finite amplitude disturbance, the interaction between these waves and premixed flames can produce a broad range of responses.

  10. Use of large-scale acoustic monitoring to assess anthropogenic pressures on Orthoptera communities.

    PubMed

    Penone, Caterina; Le Viol, Isabelle; Pellissier, Vincent; Julien, Jean-François; Bas, Yves; Kerbiriou, Christian

    2013-10-01

    Biodiversity monitoring at large spatial and temporal scales is greatly needed in the context of global changes. Although insects are a species-rich group and are important for ecosystem functioning, they have been largely neglected in conservation studies and policies, mainly due to technical and methodological constraints. Sound detection, a nondestructive method, is easily applied within a citizen-science framework and could be an interesting solution for insect monitoring. However, it has not yet been tested at a large scale. We assessed the value of a citizen-science program in which Orthoptera species (Tettigoniidae) were monitored acoustically along roads. We used Bayesian model-averaging analyses to test whether we could detect widely known patterns of anthropogenic effects on insects, such as the negative effects of urbanization or intensive agriculture on Orthoptera populations and communities. We also examined site-abundance correlations between years and estimated the biases in species detection to evaluate and improve the protocol. Urbanization and intensive agricultural landscapes negatively affected Orthoptera species richness, diversity, and abundance. This finding is consistent with results of previous studies of Orthoptera, vertebrates, carabids, and butterflies. The average mass of communities decreased as urbanization increased. The dispersal ability of communities increased as the percentage of agricultural land and, to a lesser extent, urban area increased. Despite changes in abundances over time, we found significant correlations between yearly abundances. We identified biases linked to the protocol (e.g., car speed or temperature) that can be accounted for ease in analyses. We argue that acoustic monitoring of Orthoptera along roads offers several advantages for assessing Orthoptera biodiversity at large spatial and temporal extents, particularly in a citizen science framework.

  11. Spinning mode acoustic radiation from the flight inlet

    NASA Technical Reports Server (NTRS)

    Moss, W. F.

    1983-01-01

    A mathematical model was developed for spinning mode acoustic radiation from a thick wall duct without flow. This model is based on a series of experiments (with and without flow). A nearly pure azimuthal spinning mode was isolated and then reflection coefficients and far field pressure (amplitude and phase) were measured. In our model the governing boundary value problem for the Helmholtz equation is first converted into an integral equation for the unknown acoustic pressure over a disk, S1, near the mouth of the duct and over the exterior surface, S2, of the duct. Assuming a pure azimuthal mode excitation, the azimuthal dependence is integrated out which yields an integral equation over the generator C1 of S1 and the generator C2 of S2. The sound pressure on C1 was approximated by a truncated modal expansion of the interior acoustic pressure. Piecewise linear spline approximation on C2 was used.

  12. Evaluation of the sensitivity of electro-acoustic measurements for process monitoring and control of an atmospheric pressure plasma jet system

    NASA Astrophysics Data System (ADS)

    Law, V. J.; O'Neill, F. T.; Dowling, D. P.

    2011-06-01

    The development of non-invasive process diagnostic techniques for the control of atmospheric plasmas is a critical issue for the wider adoption of this technology. This paper evaluates the use of a frequency-domain deconvolution of an electro-acoustic emission as a means to monitor and control the plasma formed using an atmospheric pressure plasma jet (APPJ) system. The air plasma system investigated was formed using a PlasmaTreat™ OpenAir applicator. Change was observed in the electro-acoustic signal with changes in substrate type (ceramic, steel, polymer). APPJ nozzle to substrate distance and substrate feature size were monitored. The decoding of the electro-acoustic emission yields three subdatasets that are described by three separate emission mechanisms. The three emissions are associated with the power supply fundamental drive frequency and its harmonics, the APPJ nozzle longitudinal mode acoustic emission and its odd overtones, and the acoustic surface reflection that is produced by the impedance mismatch between the discharge and the surface. Incorporating this knowledge into a LabVIEW program facilitated the continuous deconvolution of the electro-acoustic data. This enabled the use of specific frequency band test limits to control the APPJ treatment process which is sensitive to both plasma processing conditions and substrate type and features.

  13. Method specificity of non-invasive blood pressure measurement: oscillometry and finger pulse pressure vs acoustic methods.

    PubMed Central

    De Mey, C; Schroeter, V; Butzer, R; Roll, S; Belz, G G

    1995-01-01

    1. The agreement of blood pressure measurements by stethoscope auscultation (SBPa, DBPa-IV and DBPa-V), oscillometry (Dinamap; SBPo, and DBPo) and digital photoplethysmography (Finapres; SBPf, and DBPf) with the graphical analysis of the analogue microphone signals of vascular wall motion sound (SBPg and DBPg) was evaluated in eight healthy subjects in the presence of responses to the intravenous infusion of 1 microgram min-1 isoprenaline. 2. In general, there was good agreement between the SBP/DBP-measurements based on auscultatory Korotkoff-I- and IV-criteria and the reference method; the average method difference in estimating the isoprenaline responses for SBPa-SBPg was: -1.1, 95% CI: -5.4 to 3.1 mm Hg with a within-subject between-method repeatability coefficient (REP) of 11.6 mm Hg and for DBPa-IV-DBPg: 3.5, 95% CI: -0.5 to 6.5 mm Hg, REP: 11.5 mm Hg. The ausculatation of Korotkoff-V substantially overestimated the isoprenaline induced reduction of DBP: method difference DBPa-V-DBPg: -11.3, 95% CI: -17.8 to -4.7 mm Hg, REP: 31.8 mm Hg. 3. Oscillometry yielded good approximations for the SBP response to isoprenaline (average method difference SBPo-SBPg: -2.9, 95% CI: -9.0 to 3.3 mm Hg, REP: 17.6 mm Hg) but was poorly sensitive with regard to the DBP responses: method difference DBPo-DBPg: 6.5, 95% CI: -1.3 to 14.3 mm Hg, REP: 25.7 mm Hg. 4. Whilst the finger pulse pressure agreed well with regard to DBP (method difference for the DBP responses to isoprenaline: DBPf-DBPg: 1.8, 95% CI: -5.1 to 8.6 mm Hg, REP: 18.5 mm Hg) it was rather unsatisfactory with regard to SBP (method difference SBPf-SBPg: -14.1, 95% CI: -28.2 to -0.1 mm Hg, REP: 49.9 mm Hg).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8554929

  14. Effect of Turbulent Boundary Layer Flow on Measurement of Acoustic Pressure and Intensity. Revised.

    DTIC Science & Technology

    1984-05-18

    variation is identical to that in the k 3R domain. The measured response 77 -17- 18 May 1984 GCL: Ihz function shown in Figure 2 is by Farabee and Geib ...I1hz 14. Farabee, T. M. and F. E. Geib , Jr., OfLsurme nt , Boundarv Lav,,r Pressure Fields with an Array of Pressure Transducers in a Subsonic Flow...Research & Development Center (Copy No. 34) Department of the Navy Bethesda, MD 20084 Commanding Officer Attn: F. E. Geib Naval Ocean Systems Center Code

  15. EVALUATION OF ACOUSTIC FORCES ON A PARTICLE IN AEROSOL MEDIUM

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    The acoustic force exerted on a solid particle was evaluated to develop a fundamental understanding of the critical physical parameters or constraints affecting particle motion and capture in a collecting device. The application of an acoustic force to the collection of a range of submicron-to-micron particles in a highly turbulent airflow stream laden with solid particles was evaluated in the presence of other assisting and competing forces. This scoping estimate was based on the primary acoustic force acting directly on particles in a dilute aerosol system, neglecting secondary interparticle effects such as agglomeration of the sub-micron particles. A simplified analysis assuming a stable acoustic equilibrium with an infinite sound speed in the solid shows that for a solid-laden air flow in the presence of a standing wave, particles will move toward the nearest node. The results also show that the turbulent drag force on a 1-{micro}m particle resulting from eddy motion is dominant when compared with the electrostatic force or the ultrasonic acoustic force. At least 180 dB acoustic pressure level at 1 MHz is required for the acoustic force to be comparable to the electrostatic or turbulent drag forces in a high-speed air stream. It is noted that particle size and pressure amplitude are dominant parameters for the acoustic force. When acoustic pressure level becomes very large, the acoustic energy will heat up the surrounding air medium, which may cause air to expand. With an acoustic power of about 600 watts applied to a 2000-lpm air flow, the air temperature can increase by as much as 15 C at the exit of the collector.

  16. An evaluation of acoustic emission for in-service crack detection in pressure vessels and pipework

    SciTech Connect

    Tidswell, R.D.; Shipley, M.P.; Cane, B.J.

    1996-12-01

    In an increasingly competitive environment there is a growing need for non-invasive inspection techniques which can be applied in-service to reduce downtime and extend the run time between inspection overhauls. As a result, acoustic emission has begun to be extended to testing during plant operation or cool-down prior to plant outage. Some notable successes have been demonstrated and the technique offers considerable potential for widespread application throughout the refinery, petrochemical and power industries. However, before world-wide acceptance can be gained, a number of critical issues need to be addressed. To address these issues, identify the application areas for which in-service AE is suitable and to provide clear guidelines to successful implementation, ERA has carried out the first independent survey of world-wide plant experience. Approximately 500 facilities were contacted world-wide and detailed discussions with experienced plant operators and service providers has enabled applications to be identified where clear guidelines for the successful implementation of in-service AE can be compiled. A summary of the results of the survey are presented, together with several case studies, illustrating the benefits, limitations and procedures key to the successful implementation of in-service AE.

  17. Coherent entropy induced and acoustic noise separation in compact nozzles

    NASA Astrophysics Data System (ADS)

    Tao, Wenjie; Schuller, Thierry; Huet, Maxime; Richecoeur, Franck

    2017-04-01

    A method to separate entropy induced noise from an acoustic pressure wave in an harmonically perturbed flow through a nozzle is presented. It is tested on an original experimental setup generating simultaneously acoustic and temperature fluctuations in an air flow that is accelerated by a convergent nozzle. The setup mimics the direct and indirect noise contributions to the acoustic pressure field in a confined combustion chamber by producing synchronized acoustic and temperature fluctuations, without dealing with the complexity of the combustion process. It allows generating temperature fluctuations with amplitude up to 10 K in the frequency range from 10 to 100 Hz. The noise separation technique uses experiments with and without temperature fluctuations to determine the relative level of acoustic and entropy fluctuations in the system and to identify the nozzle response to these forcing waves. It requires multi-point measurements of acoustic pressure and temperature. The separation method is first validated with direct numerical simulations of the nonlinear Euler equations. These simulations are used to investigate the conditions for which the separation technique is valid and yield similar trends as the experiments for the investigated flow operating conditions. The separation method then gives successfully the acoustic reflection coefficient but does not recover the same entropy reflection coefficient as predicted by the compact nozzle theory due to the sensitivity of the method to signal noises in the explored experimental conditions. This methodology provides a framework for experimental investigation of direct and indirect combustion noises originating from synchronized perturbations.

  18. Acoustic and aerodynamic performance of a 1.83 meter (6 foot) diameter 1.2 pressure ratio fan (QF-6). [for short takeoff aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.; Stakolich, E. G.

    1974-01-01

    A 1.2-pressure-ratio, 1.83-meter-(6-ft-) diameter experimental fan stage with characteristics suitable for use in STOL aircraft engines was tested for acoustic and aerodynamic performance. The design incorporated features for low noise, including absence of inlet guide vanes, low rotor-blade-tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator rows. The stage was run with four nozzles of different area. The perceived noise along a 152.4 meter (500-ft) sideline was rear-quadrant dominated with a maximum design-point level of 103.9 PNdb. The acoustic 1/3-octave results were analytically separated into broadband and pure-tone components. It was found that the stage noise levels generally increase with a decrease in nozzle area, with this increase observed primarily in the broadband noise component. A stall condition was documented acoustically with a 90-percent-of-design-area nozzle.

  19. The effects of pressure sensor acoustics on airdata derived from a High-angle-of-attack Flush Airdata Sensing (HI-FADS) system

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.

    1991-01-01

    The accuracy of a nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was verified for quasi-steady flight conditions up to 55 deg angle of attack during the F-18 High Alpha Research Vehicle (HARV) Program. The system is a matrix of nine pressure ports arranged in annular rings on the aircraft nose. The complete airdata set is estimated using nonlinear regression. Satisfactory frequency response was verified to the system Nyquist frequency (12.5 Hz). The effects of acoustical distortions within the individual pressure sensors of the nonintrusive pressure matrix on overall system performance are addressed. To quantify these effects, a frequency-response model describing the dynamics of acoustical distortion is developed and simple design criteria are derived. The model adjusts measured HI-FADS pressure data for the acoustical distortion and quantifies the effects of internal sensor geometries on system performance. Analysis results indicate that sensor frequency response characteristics very greatly with altitude, thus it is difficult to select satisfactory sensor geometry for all altitudes. The solution used presample filtering to eliminate resonance effects, and short pneumatic tubing sections to reduce lag effects. Without presample signal conditioning the system designer must use the pneumatic transmission line to attenuate the resonances and accept the resulting altitude variability.

  20. The Effects of Acoustic Treatment on Pressure Disturbances From a Supersonic Jet in a Circular Duct

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    1996-01-01

    The pressure disturbances generated by an instability wave in the shear layer of a supersonic jet are studied for an axisymmetric jet inside a lined circular duct. For the supersonic jet, locally linear stability analysis with duct wall boundary conditions is used to calculate the eigenvalues and the eigenfunctions at each axial location. These values are used to determine the growth rates and phase velocities of the instability waves and the near field pressure disturbance patterns. The study is confined to the dominant Kelvin-Helmholtz instability mode and to the region just downstream of the nozzle exit where the shear layer is growing but is still small in size compared to the radius of the duct. Numerical results are used to study the effects of changes in the outer flow, growth in the shear layer thickness, wall distance, and wall impedance, and the effects of these changes on non-axisymmetric modes. The primary results indicate that the effects of the duct wall on stability characteristics diminish as the outer flow increases and as the jet azimuthal mode number increases. Also, wall reflections are reduced when using a finite impedance boundary condition at the wall; but in addition, reflections are reduced and growth rates diminished by keeping the imaginary part of the impedance negative when using the negative exponential for the harmonic dependence.

  1. Study of noise sources in a subsonic fan using measured blade pressures and acoustic theory

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1975-01-01

    Sources of noise in a 1.4 m (4.6 ft) diameter subsonic tip speed propulsive fan running statically outdoors are studied using a combination of techniques. Signals measured with pressure transducers on a rotor blade are plotted in a format showing the space-time history of inlet distortion. Study of these plots visually and with statistical correlation analysis confirms that the inlet flow contains long, thin eddies of turbulence. Turbulence generated in the boundary layer of the shroud upstream of the rotor tips was not found to be an important noise source. Fan noise is diagnosed by computing narrowband spectra of rotor and stator sound power and comparing these with measured sound power spectra. Rotor noise is computed from spectra of the measured blade pressures and stator noise is computed using the author's stator noise theory. It is concluded that the rotor and stator sources contribute about equally at frequencies in the vicinity of the first three harmonics of blade passing frequency. At higher frequencies, the stator contribution diminishes rapidly and the rotor/inlet turbulence mechanism dominates. Two parametric studies are performed by using the rotor noise calculation procedure which was correlated with test. In the first study, the effects on noise spectrum and directivity are calculated for changes in turbulence properties, rotational Mach number, number of blades, and stagger angle. In the second study the influences of design tip speed and blade number on noise are evaluated.

  2. A novel acoustically quiet coil for neonatal MRI system

    PubMed Central

    Ireland, Christopher M.; Giaquinto, Randy O.; Loew, Wolfgang; Tkach, Jean A.; Pratt, Ronald G.; Kline-Fath, Beth M.; Merhar, Stephanie L.; Dumoulin, Charles L.

    2015-01-01

    MRI acoustic exposure has the potential to elicit physiological distress and impact development in preterm and term infants. To mitigate this risk, a novel acoustically quiet coil was developed to reduce the sound pressure level experienced by neonates during MR procedures. The new coil has a conventional high-pass birdcage RF design, but is built on a framework of sound abating material. We evaluated the acoustic and MR imaging performance of the quiet coil and a conventional body coil on two small footprint NICU MRI systems. Sound pressure level and frequency response measurements were made for six standard clinical MR imaging protocols. The average sound pressure level, reported for all six imaging pulse sequences, was 82.2 dBA for the acoustically quiet coil, and 91.1 dBA for the conventional body coil. The sound pressure level values measured for the acoustically quiet coil were consistently lower, 9 dBA (range 6-10 dBA) quieter on average. The acoustic frequency response of the two coils showed a similar harmonic profile for all imaging sequences. However, the amplitude was lower for the quiet coil, by as much as 20 dBA. PMID:26457072

  3. A novel acoustically quiet coil for neonatal MRI system.

    PubMed

    Ireland, Christopher M; Giaquinto, Randy O; Loew, Wolfgang; Tkach, Jean A; Pratt, Ronald G; Kline-Fath, Beth M; Merhar, Stephanie L; Dumoulin, Charles L

    2015-08-01

    MRI acoustic exposure has the potential to elicit physiological distress and impact development in preterm and term infants. To mitigate this risk, a novel acoustically quiet coil was developed to reduce the sound pressure level experienced by neonates during MR procedures. The new coil has a conventional high-pass birdcage RF design, but is built on a framework of sound abating material. We evaluated the acoustic and MR imaging performance of the quiet coil and a conventional body coil on two small footprint NICU MRI systems. Sound pressure level and frequency response measurements were made for six standard clinical MR imaging protocols. The average sound pressure level, reported for all six imaging pulse sequences, was 82.2 dBA for the acoustically quiet coil, and 91.1 dBA for the conventional body coil. The sound pressure level values measured for the acoustically quiet coil were consistently lower, 9 dBA (range 6-10 dBA) quieter on average. The acoustic frequency response of the two coils showed a similar harmonic profile for all imaging sequences. However, the amplitude was lower for the quiet coil, by as much as 20 dBA.

  4. Distributed acoustic sensing with Michelson interferometer demodulation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Wang, Chen; Shang, Ying; Wang, Chang; Zhao, Wenan; Peng, Gangding; Wang, Hongzhong

    2016-12-01

    The distributed acoustic sensing (DAS) has been extensively studied and widely used. A distributed acoustic sensing system based on the unbalanced Michelson interferometer with phase generated carrier (PGC) demodulation was designed and tested. The system could directly obtain the phase, amplitude, frequency response, and location information of sound wave at the same time and measurement at all points along the sensing fiber simultaneously. Experiments showed that the system successfully measured the acoustic signals with a phase-pressure sensitivity about-148 dB (re rad/μPa) and frequency response ripple less than 1.5 dB. The further field experiment showed that the system could measure signals at all points along the sensing fiber simultaneously.

  5. Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Li, Shengcai

    2015-09-01

    The acoustical scattering cross section is a paramount parameter determining the scattering ability of cavitation bubbles when they are excited by the incident acoustic waves. This parameter is strongly related with many important applications of acoustic cavitation including facilitating the reaction of chemical process, boosting bubble sonoluminescence, and performing non-invasive therapy and drug delivery. In present paper, both the analytical and numerical solutions of acoustical scattering cross section of gas bubbles under dual-frequency excitation are obtained. The validity of the analytical solution is shown with demonstrating examples. The nonlinear characteristics (e.g., harmonics, subharmonics and ultraharmonics) of the scattering cross section curve under dual-frequency approach are investigated. Compared with single-frequency approach, the dual-frequency approach displays more resonances termed as "combination resonances" and could promote the acoustical scattering cross section significantly within a much broader range of bubble sizes due to the generation of more resonances. The influence of several paramount parameters (e.g., acoustic pressure amplitude, power allocations between two acoustic components, and the ratio of the frequencies) in the dual-frequency system on the predictions of scattering cross section has been discussed.

  6. Offshore exposure experiments on cuttlefish indicate received sound pressure and particle motion levels associated with acoustic trauma

    PubMed Central

    Solé, Marta; Sigray, Peter; Lenoir, Marc; van der Schaar, Mike; Lalander, Emilia; André, Michel

    2017-01-01

    Recent findings on cephalopods in laboratory conditions showed that exposure to artificial noise had a direct consequence on the statocyst, sensory organs, which are responsible for their equilibrium and movements in the water column. The question remained about the contribution of the consequent near-field particle motion influence from the tank walls, to the triggering of the trauma. Offshore noise controlled exposure experiments (CEE) on common cuttlefish (Sepia officinalis), were conducted at three different depths and distances from the source and particle motion and sound pressure measurements were performed at each location. Scanning electron microscopy (SEM) revealed injuries in statocysts, which severity was quantified and found to be proportional to the distance to the transducer. These findings are the first evidence of cephalopods sensitivity to anthropogenic noise sources in their natural habitat. From the measured received power spectrum of the sweep, it was possible to determine that the animals were exposed at levels ranging from 139 to 142 dB re 1 μPa2 and from 139 to 141 dB re 1 μPa2, at 1/3 octave bands centred at 315 Hz and 400 Hz, respectively. These results could therefore be considered a coherent threshold estimation of noise levels that can trigger acoustic trauma in cephalopods. PMID:28378762

  7. Roles of positively charged heavy ions and degenerate plasma pressure on cylindrical and spherical ion acoustic solitary waves

    NASA Astrophysics Data System (ADS)

    Hossen, M. R.; Nahar, L.; Sultana, S.; Mamun, A. A.

    2014-09-01

    The properties of heavy-ion-acoustic (HIA) solitary structures associated with the nonlinear propagation of cylindrical and spherical electrostatic perturbations in an unmagnetized, collisionless dense plasma system has been investigated theoretically. Our considered model contains degenerate electron and inertial light ion fluids, and positively charged static heavy ions, which is valid for both of the non-relativistic and ultra-relativistic limits. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations have been derived by employing the reductive perturbation method, and numerically examined in order. It has been found that the effect of degenerate pressure and number density of electron and inertial light ion fluids, and positively charged static heavy ions significantly modify the basic features of HIA solitary waves. It is also noted that the inertial light ion fluid is the source of dispersion for HIA waves and is responsible for the formation of solitary waves. The basic features and the underlying physics of HIA solitary waves, which are relevant to some astrophysical compact objects, are briefly discussed.

  8. Offshore exposure experiments on cuttlefish indicate received sound pressure and particle motion levels associated with acoustic trauma.

    PubMed

    Solé, Marta; Sigray, Peter; Lenoir, Marc; van der Schaar, Mike; Lalander, Emilia; André, Michel

    2017-04-05

    Recent findings on cephalopods in laboratory conditions showed that exposure to artificial noise had a direct consequence on the statocyst, sensory organs, which are responsible for their equilibrium and movements in the water column. The question remained about the contribution of the consequent near-field particle motion influence from the tank walls, to the triggering of the trauma. Offshore noise controlled exposure experiments (CEE) on common cuttlefish (Sepia officinalis), were conducted at three different depths and distances from the source and particle motion and sound pressure measurements were performed at each location. Scanning electron microscopy (SEM) revealed injuries in statocysts, which severity was quantified and found to be proportional to the distance to the transducer. These findings are the first evidence of cephalopods sensitivity to anthropogenic noise sources in their natural habitat. From the measured received power spectrum of the sweep, it was possible to determine that the animals were exposed at levels ranging from 139 to 142 dB re 1 μPa(2) and from 139 to 141 dB re 1 μPa(2), at 1/3 octave bands centred at 315 Hz and 400 Hz, respectively. These results could therefore be considered a coherent threshold estimation of noise levels that can trigger acoustic trauma in cephalopods.

  9. Asymmetry in melting and growth relaxation of 4He crystals in superfluid after manipulation by acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    Nomura, Ryuji; Abe, Haruka; Okuda, Yuichi

    2017-02-01

    The relaxation dynamics of the crystal–superfluid interface of 4He after deformation induced by acoustic radiation pressure was investigated for various crystal orientations. The melting relaxation after growth was approximately 10 times slower than the growth relaxation after melting for vicinal surfaces and facets, while both relaxation times were consistent with each other for rough surfaces. The asymmetry in the time constant between the melting and growth of vicinal surfaces and facets can be qualitatively explained as the effect of superflow induced by local rapid interface motion, such as a quick rounding of facet edges of the 4He crystal. Rough surfaces move more isotropically and no significant local rapid interface motion is induced; therefore, their relaxation is likely to be symmetric with a minimal effect of superflow. While the growth relaxation was simply back to the initial shape in a single stage, the melting relaxation was much more complex with multiple stages and the exhibition of various anomalous shapes depending on temperature. Anomalous shapes such as needle-like shapes during melting have a larger curvature and higher energy and thus should have disappeared more quickly than the growth shape with a smaller curvature, but they were considerably stable and disappeared slowly. This counter-intuitive asymmetry suggests the significant role of superflow in the relaxation process.

  10. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus

    SciTech Connect

    Yan, Zhaoli Tian, Hao; Cheng, Xiaobin; Yang, Jun; Chen, Bin

    2015-12-15

    A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10{sup −4} during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.

  11. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus.

    PubMed

    Yan, Zhaoli; Chen, Bin; Tian, Hao; Cheng, Xiaobin; Yang, Jun

    2015-12-01

    A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10(-4) during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.

  12. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus

    NASA Astrophysics Data System (ADS)

    Yan, Zhaoli; Chen, Bin; Tian, Hao; Cheng, Xiaobin; Yang, Jun

    2015-12-01

    A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10-4 during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.

  13. Nonlinear acoustics in a dispersive continuum: Random waves, radiation pressure, and quantum noise

    NASA Astrophysics Data System (ADS)

    Cabot, M. A.

    The nonlinear interaction of sound with sound is studied using dispersive hydrodynamics which derived from a variational principle and the assumption that the internal energy density depends on gradients of the mass density. The attenuation of sound due to nonlinear interaction with a background is calculated and is shown to be sensitive to both the nature of the dispersion and decay bandwidths. The theoretical results are compared to those of low temperature helium experiments. A kinetic equation which described the nonlinear self-inter action of a background is derived. When a Deybe-type cutoff is imposed, a white noise distribution is shown to be a stationary distribution of the kinetic equation. The attenuation and spectrum of decay of a sound wave due to nonlinear interaction with zero point motion is calculated. In one dimension, the dispersive hydrodynamic equations are used to calculate the Langevin and Rayleigh radiation pressures of wave packets and solitary waves.

  14. A computational simulation study on the acoustic pressure generated by a dental endosonic file: effects of intensity, file shape and volume.

    PubMed

    Tiong, T Joyce; Price, Gareth J; Kanagasingam, Shalini

    2014-09-01

    One of the uses of ultrasound in dentistry is in the field of endodontics (i.e. root canal treatment) in order to enhance cleaning efficiency during the treatment. The acoustic pressures generated by the oscillation of files in narrow channels has been calculated using the COMSOL simulation package. Acoustic pressures in excess of the cavitation threshold can be generated and higher values were found in narrower channels. This parallels experimental observations of sonochemiluminescence. The effect of varying the channel width and length and the dimensions and shape of the file are reported. As well as explaining experimental observations, the work provides a basis for the further development and optimisation of the design of endosonic files.

  15. Dynamics of encapsulated microbubbles for contrast ultrasound imaging and drug delivery: from pressure dependent subharmonic to collapsing jet and acoustic streaming

    NASA Astrophysics Data System (ADS)

    Sarkar, Kausik

    2016-11-01

    Intravenously injected microbubbles used as ultrasound contrast enhancing agents are encapsulated by a nanometer-thick layer of lipids, proteins or polymers to stabilize them against premature dissolution. Over the years, we have developed interfacial rheological models for the encapsulation and used them to characterize several contrast agents by acoustic means. We will present an overview of our research emphasizing recent efforts in two directions. The first is on using subharmonic signals from the contrast microbubbles for non-invasive pressure estimation. Experimental measurement and modeling show that the subharmonic signal can both increase or decrease with pressure depending on frequency. Secondly, we will discuss boundary element (BEM) simulation of the collapse of an encapsulated microbubbles forming a jet near a blood vessel wall. Different rheology models of the encapsulation have been rigorously implemented in the BEM formulation. We will discuss the resulting stresses and the acoustic streaming near the wall leading to sonoporation and other bioeffects. Partially supported by Natinal Science Foundation.

  16. Effect of positive end-expiratory pressure on acoustic wave propagation in experimental porcine lung injury.

    PubMed

    Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam

    2015-03-01

    To evaluate the effect of positive end-expiratory pressure (PEEP) on sound propagation through injured lungs, we injected a multifrequency broad-band sound signal into the airway of eight anesthetized, intubated and mechanically ventilated pigs, while recording transmitted sound at three locations bilaterally on the chest wall. Oleic acid injections effected a severe pulmonary oedema predominately in the dependent lung regions, with an average increase in venous admixture from 19 ± 15 to 59 ± 14% (P < 0.001), and a reduction in dynamic respiratory system compliance from 34 ± 7 to 14 ± 4 ml cmH2 O(-1) (P < 0.001). A concomitant decrease in sound transit time was seen in the dependent lung regions (P < 0.05); no statistically significant change occurred in the lateral or non-dependent areas. The application of PEEP resulted in a decrease in venous admixture, increase in respiratory system compliance and return of the sound transit time to pre-injury levels in the dependent lung regions. Our results indicate that sound transmission velocity increases in lung tissue affected by permeability-type pulmonary oedema in a manner reversible during alveolar recruitment with PEEP.

  17. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    NASA Astrophysics Data System (ADS)

    Koukoulas, Triantafillos; Piper, Ben

    2015-04-01

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  18. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    SciTech Connect

    Koukoulas, Triantafillos Piper, Ben

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  19. Acoustic streaming in two-dimensional freely suspended smectic liquid crystal films

    NASA Astrophysics Data System (ADS)

    Yablonskii, S. V.; Kurbatov, N. M.; Parfenyev, V. M.

    2017-01-01

    We study horizontal streaming excited by means of a low-frequency and low-intensity acoustic wave in 2D freely suspended films of thermotropic smectic liquid crystals. Acoustic pressure induces fast periodic transverse oscillations of the film, which produce in-plane stationary couples of vortices slowly rotating in opposite directions owing to hydrodynamic nonlinearity. The parameters of the vortices are measured using a new method, based on tracking solidlike disk-shaped islands. The horizontal motion occurs only when the amplitude of the acoustic pressure exceeds the threshold value, which can be explained by Bingham-like behavior of the smectic film. The measurements above threshold are in good agreement with existing theoretical predictions. We demonstrate experimentally that in-plane flow is well controlled by changing the acoustic pressure, excitation frequency, and geometry of the film. The observations open the way to using the phenomenon in nondisplay applications.

  20. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  1. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes

    NASA Astrophysics Data System (ADS)

    Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk

    2017-04-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressure node in terms of throughput.

  2. Acoustic Properties of Return Strokes and M-components From Rocket-Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Fuselier, S. A.; Dwyer, J. R.; Uman, M. A.; Jordan, D.; Carvalho, F. L.; Rassoul, H.

    2015-12-01

    Using a linear, one-dimensional array of 15 microphones situated 95 meters from the lightning channel; we measure the acoustic signatures from 11 triggered-lightning events comprising 41 return strokes and 28 M-components. Measurements were taken at the International Center for Lightning Research and Testing (ICLRT) in Camp Blanding, FL during the summer of 2014. Recently, we reported that beamforming signal processing enables acoustic imaging of the lightning channel at high frequencies (Dayeh et al. 2015). Following up on the work, we report on the characteristics of the acoustic measurements in terms of sound pressure amplitude, peak currents, power spectral density (PSD) properties, and the inferred energy input. In addition, we find that M-component do not create acoustic signatures in most occasions; we discuss these cases in context of the associated current amplitude, rise time, and background continuing current.

  3. Periodic Partial Extinction Regime in Acoustically Coupled Fuel Droplet Combustion

    NASA Astrophysics Data System (ADS)

    Plascencia Quiroz, Miguel; Bennewitz, John; Vargas, Andres; Sim, Hyung Sub; Smith, Owen; Karagozian, Ann

    2016-11-01

    This experimental study investigates the response of burning liquid fuel droplets exposed to standing acoustic waves, extending prior studies quantifying mean and temporal flame response to moderate acoustic excitation. This investigation explores alternative fuels exposed to a range of acoustic forcing conditions (frequencies and amplitudes), with a focus on ethanol and JP-8. Three fundamental flame regimes are observed: sustained oscillatory combustion, periodic partial extinction and reignition (PPER), and full extinction. Phase-locked OH* chemiluminescence imaging and local temporal pressure measurements allow quantification of the combustion-acoustic coupling through the local Rayleigh index G. As expected, PPER produces negative G values, despite having clear flame oscillations. PPER is observed to occur at low-frequency, high amplitude excitation, where the acoustic time scales are large compared with kinetic/reaction times scales for diffusion-limited combustion processes. These quantitative differences in behavior are determined to depend on localized fluid mechanical strain created by the acoustic excitation as well as reaction kinetics. Supported by AFOSR Grant FA9550-15-1-0339.

  4. Acoustic nonlinearity in fluorinert FC-43

    SciTech Connect

    Pantea, Cristian; Sinha, Dipen N; Osterhoudt, Curtis F; Mombourquette, Paul C

    2009-01-01

    Fluorinert FC-43 nonlinearity was investigated using two approaches: (i) a finite amplitude method with harmonic production; and (ii) a nonlinear frequency mixing in the fluid with consequent beam profile measurement of the difference frequency. The finite amplitude method provides information on the coefficient of nonlinearity, {beta}, through the amplitudes of the fundamental and the second harmonic, at a certain transmitter-receiver distance. A calibrated hydrophone was used as a receiver, in order to obtain direct pressure measurements of the acoustic waves in the fluid. The role of transmitter-receiver distance in {beta} determination is investigated. In the second approach, a single transducer is used to provide two high-frequency beams. The collinear high-frequency beams mix nonlinearly in the fluid resulting in a difference frequency beam and higher order harmonics of the primaries. The difference frequency beam profite is investigated at lengths beyond the mixing distance. The experimental data are compured with the KZK theory.

  5. Acoustic measurement study 40 by 80 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An acoustical study conducted during the period from September 1, 1973 to April 30, 1974 measured sound pressure levels and vibration amplitudes inside and outside of the subsonic tunnel and on the tunnel structure. A discussion of the technical aspects of the study, the field measurement and data reduction procedures, and results are presentd, and conclusions resulting from the study which bear upon near field and far field tunnel noise, upon the tunnel as an acoustical enclosure, and upon the sources of noise within the tunnel drive system are given.

  6. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  7. High-amplitude, ultrashort strain solitons in solids

    NASA Astrophysics Data System (ADS)

    Muskens, O. L.

    2004-03-01

    In recent years, pressure pulses of very short (picosecond) time duration have found wide application as a diagnostic tool in the semiconductor industry and in fundamental condensed matter research. Next to their application in the studies of nanometer-sized structures, propagation of these short acoustic pulses over millimeter distances at low temperatures has revealed a new field of picosecond acoustics. It has been shown that, for very short strain pulses, phonon dispersion destroys the internal structure of the coherent wavepacket by pulling apart its different frequency components. However, when strain amplitudes are sufficiently increased, a nonlinear pulse-steepening mechanism emerges, that leads to the formation of shock waves. The combined action of the nonlinear and dispersive effects then results in the formation of stable, highly localized solitary waves. In this thesis, we study the development of picosecond pressure pulses into trains of ultrashort acoustic solitons in a bulk crystal. The high-amplitude, bipolar strain wavepackets are generated by femtosecond optical excitation of a thin chromium film evaporated onto the crystal, using high-power optical pulses from an amplified Ti:sapphire laser. Propagation over millimeter distances at low temperatures is studied by means of two complementary experimental methods. First, the development of low-frequency, gigahertz strain components is monitored using Brillouin light-scattering. By monitoring the scattered intensity against traveled distance of the packets, we demonstrate the breakup of the initial single-cycle pulse into an ultrashort acoustic soliton train, reaching transient pressures up to tens of kilobars and soliton widths less than 0.5 picoseconds, corresponding to only several nanometers in the crystal. Further, we show that the ultrashort strain solitons interact coherently with local electronic two-level systems at terahertz frequency, in optically excited ruby. The strain

  8. Development of acoustically lined ejector technology for multitube jet noise suppressor nozzles by model and engine tests over a wide range of jet pressure ratios and temperatures

    NASA Technical Reports Server (NTRS)

    Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.

    1974-01-01

    An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.

  9. Reduction of peak acoustic pressure and shaping of heated region by use of multifoci sonications in MR-guided high-intensity focused ultrasound mediated mild hyperthermia

    PubMed Central

    Partanen, Ari; Tillander, Matti; Yarmolenko, Pavel S.; Wood, Bradford J.; Dreher, Matthew R.; Köhler, Max O.

    2013-01-01

    Purpose: Ablative hyperthermia (>55 °C) has been used as a definitive treatment for accessible solid tumors not amenable to surgery, whereas mild hyperthermia (40–45 °C) has been shown effective as an adjuvant for both radiotherapy and chemotherapy. An optimal mild hyperthermia treatment is spatially accurate, with precise and homogeneous heating limited to the target region while also limiting the likelihood of unwanted thermal or mechanical bioeffects (tissue damage, vascular shutoff). Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) can noninvasively heat solid tumors under image-guidance. In a mild hyperthermia setting, a sonication approach utilizing multiple concurrent foci may provide the benefit of reducing acoustic pressure in the focal region (leading to reduced or no mechanical effects), while providing better control over the heating. The objective of this study was to design, implement, and characterize a multifoci sonication approach in combination with a mild hyperthermia heating algorithm, and compare it to the more conventional method of electronically sweeping a single focus. Methods: Simulations (acoustic and thermal) and measurements (acoustic, with needle hydrophone) were performed. In addition, heating performance of multifoci and single focus sonications was compared using a clinical MR-HIFU platform in a phantom (target = 4–16 mm), in normal rabbit thigh muscle (target = 8 mm), and in a Vx2 tumor (target = 8 mm). A binary control algorithm was used for real-time mild hyperthermia feedback control (target range = 40.5–41 °C). Data were analyzed for peak acoustic pressure and intensity, heating energy efficiency, temperature accuracy (mean), homogeneity of heating (standard deviation [SD], T10 and T90), diameter and length of the heated region, and thermal dose (CEM43). Results: Compared to the single focus approach, multifoci sonications showed significantly lower (67% reduction) peak acoustic

  10. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  11. Acoustic droplet vaporization for diagnostic and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Kripfgans, Oliver Daniel

    A technology, termed Acoustic Droplet Vaporization (ADV), is developed whereby superheated droplets are caused to vaporize by application of an ultrasonic field. The droplet emulsion (90% <6 um diameter) is made by mixing saline, albumin, and perfluorocarbon at high speed. It has been observed that an acoustic pressure threshold exists above which the droplets vaporize into bubbles approximately 25-times the original droplet diameter. For frequencies between 1.5 and 8 MHz, the threshold decreases from 4.5 to 0.75 MPa peak rarefactional pressure. The single pulse efficiency of ADV has been measured as 26%. This technology might be useful for tissue occlusion in cancer treatment as well as for aberration correction in acoustic imaging. To demonstrate these potential applications, gas bubbles were made in vivo in animal models by ADV. It was found that ADV could be used to temporarily form large gas bubbles (>30 um) in vivo, which at large number density occluded targeted tissues and reduced the blood flow by 34%. Alternatively, for a very sparse droplet population, gas bubbles could serve as potential point beacons for phase aberration correction given their backscatter amplitudes of 24 dB above tissue background. Other possible applications include drug delivery, indicator for cryo therapy, pressure/radiation beacons, hyperthermia, and cavitation nuclei. ADV of individual droplets showed that during acoustic irradiation, droplets perform dipole-type oscillations and that such oscillations increased in amplitude with acoustic intensity. Smaller droplets required more acoustic intensity for vaporization than larger droplets; however, independent of droplet diameter, a maximum oscillation amplitude of 1.3 um, was required. This threshold corresponds to a Reynolds number of ˜5 x 104. Vaporization started either as a spot on the axis of oscillation close to a pole of the droplet, or homogeneously throughout the droplet's imaged cross-section. It is concluded that

  12. The phase transformation of methane caused by pressure change during its rising from seepage, revealed by acoustic reflection data

    NASA Astrophysics Data System (ADS)

    Aoyama, C.; Aoyama, S.

    2014-12-01

    The objective of this survey is to measure acoustical reflection from the methane plumes at close range by utilizing a remotely-operated vehicle, in order to quantify methane gas flux seeping out from shallow methane hydrates in the sea of japan. In the off-Joetsu area, we conducted acoustic survey for methane plumes distribution using quantitative echo sounder (Simrad EK60) and Multi beam echo sounder (SEABAT 8160) installed on R/V Natsushima, and then conducted underwater survey using ROV Hyper-Dolphin in the following methods, 1) Observing seafloor morphology, 2) Measurement methane discharge with a calibrated collecting equipment , 3) Measuring rising speed of methane bubbles with a ruler, 4) Collecting acoustic reflection data using quantitative echo sounder, 5) Observing rising methane bubbles. All processes in the underwater survey were recorded by a HD camera equipped on ROV, and those videos are used for after-cruise analysis. In the underwater survey by ROV, we found three methane plume points and successfully collected acoustic data which would detect each methane bubble. Based on videos and acoustic data obtained in this survey, detailed analysis conducted.

  13. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    PubMed

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  14. Acoustic borehole logging

    SciTech Connect

    Medlin, W.L.; Manzi, S.J.

    1990-10-09

    This patent describes an acoustic borehole logging method. It comprises traversing a borehole with a borehole logging tool containing a transmitter of acoustic energy having a free-field frequency spectrum with at least one characteristic resonant frequency of vibration and spaced-apart receiver, repeatedly exciting the transmitter with a swept frequency tone burst of a duration sufficiently greater than the travel time of acoustic energy between the transmitter and the receiver to allow borehole cavity resonances to be established within the borehole cavity formed between the borehole logging tool and the borehole wall, detecting acoustic energy amplitude modulated by the borehole cavity resonances with the spaced-apart receiver, and recording an amplitude verses frequency output of the receiver in correlation with depth as a log of the borehole frequency spectrum representative of the subsurface formation comprising the borehole wall.

  15. Measurement of the acoustic radiation force on a sphere embedded in a soft solid

    NASA Astrophysics Data System (ADS)

    Lidon, Pierre; Villa, Louis; Taberlet, Nicolas; Manneville, Sébastien

    2017-01-01

    The acoustic radiation force exerted on a small sphere located at the focus of an ultrasonic beam is measured in a soft gel. It is proved to evolve quadratically with the local amplitude of the acoustic field. Strong oscillations of the local pressure are observed and attributed to an acoustic Fabry-Pérot effect between the ultrasonic emitter and the sphere. Taking this effect into account with a simple model, a quantitative link between the radiation force and the acoustic pressure is proposed and compared to theoretical predictions in the absence of dissipation. The discrepancy between experiment and theory suggests that dissipative effects should be taken into account for fully modeling the observations.

  16. Acoustic and aerodynamic performance of a 1.83-meter (6-ft) diameter 1.25-pressure-ratio fan (QF-8)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.

    1976-01-01

    A 1.25-pressure-ratio 1.83-meter (6-ft) tip diameter experimental fan stage with characteristics suitable for engine application on STOL aircraft was tested for acoustic and aerodynamic performance. The design incorporated proven features for low noise, including absence of inlet guide vanes, low rotor blade tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator blade rows. The fan was operated with five exhaust nozzle areas. The stage noise levels generally increased with a decrease in nozzle area. Separation of the acoustic one-third octave results into broadband and pure-tone components showed the broadband noise to be greater than the corresponding pure-tone components. The sideline perceived noise was highest in the rear quadrants. The acoustic results of QF-8 were compared with those of two similar STOL application fans in the test series. The QF-8 had somewhat higher relative noise levels than those of the other two fans. The aerodynamic results of QF-8 and the other two fans were compared with corresponding results from 50.8-cm (20-in.) diam scale models of these fans and design values. Although the results for the full-scale and scale models of the other two fans were in reasonable agreement for each design, the full-scale fan QF-8 results showed poor performance compared with corresponding model results and design expectations. Facility effects of the full-scale fan QF-8 installation were considered in analyzing this discrepancy.

  17. Nearfield Acoustical Holography

    NASA Astrophysics Data System (ADS)

    Hayek, Sabih I.

    Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.

  18. Amplitude, isobar and grey-scale imaging of ultrasonic shadows behind rigid, elastic and gaseous spheres.

    PubMed

    Filipczyński, L; Kujawska, T; Tymkiewicz, R; Wójcik, J

    1996-01-01

    The theory of wave reflection from spherical obstacles was applied for determination of the cause of the shadow created by plane wave pulses incident on rigid, steel, gaseous spheres and on spheres made of kidney stones. The spheres were immersed in water which was assumed to be a tissue-like medium. Acoustic pressure distributions behind the spheres with the radii of 1 mm, 2.5 mm and 3.5 mm were determined at the frequency of 5 MHz. The use of the exact wave theory enabled us to take into account the diffraction effects. The computed pressure distributions were verified experimentally at the frequency of 5 MHz for a steel sphere with a 2.5-mm radius. The experimental and theoretical pulses were composed of about three ultrasonic frequency periods. Acoustic pressure distributions in the shadow zone of all spheres were shown in the amplitude axonometric projection, in the grey scale and also as acoustic isobar patterns. Our analysis confirmed existing simpler descriptions of the shadow from the point of view of reflection and refraction effects; however, our approach is more general, also including diffraction effects and assuming the pulse mode. The analysis has shown that gaseous spherical inclusions caused shadows with very high dynamics of acoustic pressures that were about 15 dB higher in relation to all the other spheres. The shadow length, determined as the length at which one observes a 6-dB drop of the acoustic pressure, followed the relation r-6dB = 3.7a2/lambda with the accuracy of about 20% independent of the sphere type. lambda denotes the wavelength and a the sphere radius. Thus, a theoretical possibility of differentiating between gaseous and other inclusions and of estimation of the inclusion size in the millimeter range from the shadow was shown. The influence of the frequency-dependent attenuation on the shadow will be considered in the next study.

  19. Large amplitude drop shape oscillations

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G.

    1982-01-01

    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.

  20. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  1. Space Shuttle Orbiter Main Engine Ignition Acoustic Pressure Loads Issue: Recent Actions to Install Wireless Instrumentation on STS-129

    NASA Technical Reports Server (NTRS)

    Wells, Nathan; Studor, George

    2009-01-01

    This slide presentation reviews the development and construction of the wireless acoustic instruments surrounding the space shuttle's main engines in preparation for STS-129. The presentation also includes information on end-of-life processing and the mounting procedure for the devices.

  2. Numerical methods for large eddy simulation of acoustic combustion instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton T.

    Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion

  3. Cyclic Crack Growth Testing of an A.O. Smith Multilayer Pressure Vessel with Modal Acoustic Emission Monitoring and Data Assessment

    NASA Technical Reports Server (NTRS)

    Ziola, Steven M.

    2014-01-01

    Digital Wave Corp. (DWC) was retained by Jacobs ATOM at NASA Ames Research Center to perform cyclic pressure crack growth sensitivity testing on a multilayer pressure vessel instrumented with DWC's Modal Acoustic Emission (MAE) system, with captured wave analysis to be performed using DWCs WaveExplorerTM software, which has been used at Ames since 2001. The objectives were to document the ability to detect and characterize a known growing crack in such a vessel using only MAE, to establish the sensitivity of the equipment vs. crack size and / or relevance in a realistic field environment, and to obtain fracture toughness materials properties in follow up testing to enable accurate crack growth analysis. This report contains the results of the testing.

  4. Acoustic integrated extinction

    PubMed Central

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100

  5. Acoustic actuation of bioinspired microswimmers.

    PubMed

    Kaynak, Murat; Ozcelik, Adem; Nourhani, Amir; Lammert, Paul E; Crespi, Vincent H; Huang, Tony Jun

    2017-01-31

    Acoustic actuation of bioinspired microswimmers is experimentally demonstrated. Microswimmers are fabricated in situ in a microchannel. Upon acoustic excitation, the flagellum of the microswimmer oscillates, which in turn generates linear or rotary movement depending on the swimmer design. The speed of these bioinspired microswimmers is tuned by adjusting the voltage amplitude applied to the acoustic transducer. Simple microfabrication and remote actuation are promising for biomedical applications.

  6. Large eddy simulations of a transcritical round jet submitted to transverse acoustic modulation

    NASA Astrophysics Data System (ADS)

    Gonzalez-Flesca, M.; Schmitt, T.; Ducruix, S.; Candel, S.

    2016-05-01

    This article reports numerical computations of a turbulent round jet of transcritical fluid (low temperature nitrogen injected under high pressure conditions) surrounded by the same fluid at rest under supercritical conditions (high temperature and high pressure) and submitted to transverse acoustic modulations. The numerical framework relies on large eddy simulation in combination with a real-gas description of thermodynamics and transport properties. A stationary acoustic field is obtained by modulating the normal acoustic velocity at the lateral boundaries of the computational domain. This study specifically focuses on the interaction of the jet with the acoustic field to investigate how the round transcritical jet changes its shape and mixes with the surrounding fluid. Different modulation amplitudes and frequencies are used to sweep a range of conditions. When the acoustic field is established in the domain, the jet length is notably reduced and the jet is flattened in the spanwise direction. Two regimes of oscillation are identified: for low Strouhal numbers a large amplitude motion is observed, while for higher Strouhal numbers the jet oscillates with a small amplitude around the injector axis. The minimum length is obtained for a Strouhal number of 0.3 and the jet length increases with increasing Strouhal numbers after reaching this minimum value. The mechanism of spanwise deformation is shown to be linked with dynamical effects resulting from reduction of the pressure in the transverse direction in relation with increased velocities on the two sides of the jet. A propagative wave is then introduced in the domain leading to similar effects on the jet, except that a bending is also observed in the acoustic propagation direction. A kinematic model, combining hydrodynamic and acoustic contributions, is derived in a second stage to represent the motion of the jet centerline. This model captures details of the numerical simulations quite well. These various

  7. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  8. Acoustic characterization of high intensity focused ultrasound field generated from a transmitter with large aperture

    NASA Astrophysics Data System (ADS)

    Fan, Tingbo; Chen, Tao; Zhang, Wei; Hu, Jimin; Zhang, Yichuan; Zhang, Dong

    2017-03-01

    A combined experiment and simulation method was utilized to characterize the acoustic field generated from a strong focused HIFU transmitter. The nonlinear sound propagation was described by the spheroidal beam equation (SBE). The relationship between the source pressure amplitude and excitation voltage was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; then the acoustic pressure field generated by the strong focused transducer was predicted by using the SBE model. A commercial fiber optic probe hydrophone (FOPH) was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a half aperture angle of 30°. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results show that the current approach might be useful to describe the HIFU field.

  9. Investigating the efficacy of subharmonic aided pressure estimation for portal vein pressures and portal hypertension monitoring.

    PubMed

    Dave, Jaydev K; Halldorsdottir, Valgerdur G; Eisenbrey, John R; Merton, Daniel A; Liu, Ji-Bin; Zhou, Jian-Hua; Wang, Hsin-Kai; Park, Suhyun; Dianis, Scott; Chalek, Carl L; Lin, Feng; Thomenius, Kai E; Brown, Daniel B; Forsberg, Flemming

    2012-10-01

    The efficacy of using subharmonic emissions from Sonazoid microbubbles (GE Healthcare, Oslo, Norway) to track portal vein pressures and pressure changes was investigated in 14 canines using either slow- or high-flow models of portal hypertension (PH). A modified Logiq 9 scanner (GE Healthcare, Milwaukee, WI, USA) operating in subharmonic mode (f(transmit): 2.5 MHz, f(receive): 1.25 MHz) was used to collect radiofrequency data at 10-40% incident acoustic power levels with 2-4 transmit cycles (in triplicate) before and after inducing PH. A pressure catheter (Millar Instruments, Inc., Houston, TX, USA) provided reference portal vein pressures. At optimum insonification, subharmonic signal amplitude changes correlated with portal vein pressure changes; r ranged from -0.82 to -0.94 and from -0.70 to -0.73 for PH models considered separately or together, respectively. The subharmonic signal amplitudes correlated with absolute portal vein pressures (r: -0.71 to -0.79). Statistically significant differences between subharmonic amplitudes, before and after inducing PH, were noted (p ≤ 0.01). Portal vein pressures estimated using subharmonic aided pressure estimation did not reveal significant differences (p > 0.05) with respect to the pressures obtained using the Millar pressure catheter. Subharmonic-aided pressure estimation may be useful clinically for portal vein pressure monitoring.

  10. Neural Network Burst Pressure Prediction in Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Dion, Seth-Andrew T.; Karl, Justin O.; Spivey, Nicholas S.; Walker, James L., II

    2007-01-01

    Acoustic emission data were collected during the hydroburst testing of eleven 15 inch diameter filament wound composite overwrapped pressure vessels. A neural network burst pressure prediction was generated from the resulting AE amplitude data. The bottles shared commonality of graphite fiber, epoxy resin, and cure time. Individual bottles varied by cure mode (rotisserie versus static oven curing), types of inflicted damage, temperature of the pressurant, and pressurization scheme. Three categorical variables were selected to represent undamaged bottles, impact damaged bottles, and bottles with lacerated hoop fibers. This categorization along with the removal of the AE data from the disbonding noise between the aluminum liner and the composite overwrap allowed the prediction of burst pressures in all three sets of bottles using a single backpropagation neural network. Here the worst case error was 3.38 percent.

  11. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    SciTech Connect

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  12. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Zhang, Yuning; Li, Shengcai

    2017-03-01

    The multi-frequency acoustic excitation has been employed to enhance the effects of oscillating bubbles in sonochemistry for many years. In the present paper, nonlinear dynamic oscillations of bubble under dual-frequency acoustic excitation are numerically investigated within a broad range of parameters. By investigating the power spectra and the response curves of oscillating bubbles, two unique features of bubble oscillations under dual-frequency excitation (termed as "combination resonance" and "simultaneous resonance") are revealed and discussed. Specifically, the amplitudes of the combination resonances are quantitatively compared with those of other traditional resonances (e.g. main resonances, harmonics). The influences of several paramount parameters (e.g., the bubble radius, the acoustic pressure amplitude, the energy allocation between two component waves) on nonlinear bubble oscillations are demonstrated.

  13. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  14. Computation of acoustic ressure fields produced in feline brain by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Omidi, Nazanin

    In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the ultrasonic threshold for cavitation-induced changes in the mammalian brain. The thresholds for tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The goal of this study was to improve the estimates for acoustic pressures and intensities present in vivo during those experimental exposures by estimating them using nonlinear rather than linear theory. In our current project, the acoustic pressure waveforms produced in the brains of anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer (focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et al. The focal pressure waveforms were also computed at the location of the true maximum. For low source pressures, the computed waveforms were the same as those determined using linear theory, and the focal intensities matched experimentally determined values. For higher source pressures, the focal pressure waveforms became increasingly distorted, with the compressional amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower than the values calculated using linear theory. The implications of these results for clinical exposures are discussed.

  15. Development and optimization of acoustic bubble structures at high frequencies.

    PubMed

    Lee, Judy; Ashokkumar, Muthupandian; Yasui, Kyuichi; Tuziuti, Toru; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

    2011-01-01

    At high ultrasound frequencies, active bubble structures are difficult to capture due to the decrease in timescale per acoustic cycle and size of bubbles with increasing frequencies. However the current study demonstrates an association between the spatial distribution of visible bubbles and that of the active bubble structure established in the path of the propagating acoustic wave. By monitoring the occurrence of these visible bubbles, the development of active bubbles can be inferred for high frequencies. A series of still images depicting the formation of visible bubble structures suggest that a strong standing wave field exists at early stages of wave propagation and weakens by the increase in the attenuation of the acoustic wave, caused by the formation of large coalesced bubbles. This attenuation is clearly demonstrated by the occurrence of a force which causes bubbles to be driven toward the liquid surface and limit standing wave fields to near the surface. This force is explained in terms of the acoustic streaming and traveling wave force. It is found that a strong standing wave field is established at 168 kHz. At 448 kHz, large coalesced bubbles can significantly attenuate the acoustic pressure amplitude and weaken the standing wave field. When the frequency is increased to 726 kHz, acoustic streaming becomes significant and is the dominant force behind the disruption of the standing wave structure. The disruption of the standing wave structure can be minimized under certain pulse ON and OFF ratios.

  16. Experimental determination of the dynamics of an acoustically levitated sphere

    SciTech Connect

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  17. Investigating the efficacy of subharmonic aided pressure estimation for portal vein pressures and portal hypertension monitoring

    PubMed Central

    Dave, Jaydev K.; Halldorsdottir, Valgerdur G.; Eisenbrey, John R.; Merton, Daniel A.; Liu, Ji-Bin; Zhou, Jian-Hua; Wang, Hsin-Kai; Park, Suhyun; Dianis, Scott; Chalek, Carl L.; Lin, Feng; Thomenius, Kai E.; Brown, Daniel B.; Forsberg, Flemming

    2013-01-01

    The efficacy of using subharmonic emissions from Sonazoid microbubbles (GE Healthcare, Oslo, Norway) to track portal vein pressures and pressure changes was investigated in 14 canines using either slow- or high-flow models of portal hypertension (PH). A modified Logiq 9 scanner (GE Healthcare, Milwaukee, WI) operating in subharmonic mode (ftransmit:2.5MHz, freceive:1.25MHz) was used to collect RF data at 10-40% incident acoustic power levels with 2-4 transmit cycles (in triplicate), before and after inducing PH. A pressure catheter (Millar Instruments, Inc., Houston, TX) provided reference portal vein pressures. At optimum insonification, subharmonic signal amplitude changes correlated with portal vein pressure changes; r ranged from -0.82 to -0.94 and from -0.70 to -0.73 for PH models considered separately or together, respectively. The subharmonic signal amplitudes correlated with absolute portal vein pressures (r: -0.71 to -0.79). Statistically significant differences between subharmonic amplitudes, before and after inducing PH, were noted (p≤0.01). Portal vein pressures estimated using SHAPE did not reveal significant differences (p>0.05) with respect to the pressures obtained using the Millar pressure catheter. Subharmonic aided pressure estimation may be useful clinically for portal vein pressure monitoring. PMID:22920550

  18. Propellant injection strategy for suppressing acoustic combustion instability

    NASA Astrophysics Data System (ADS)

    Diao, Qina

    Shear-coaxial injector elements are often used in liquid-propellant-rocket thrust chambers, where combustion instabilities remain a significant problem. A conventional solution to the combustion instability problem relies on passive control techniques that use empirically-developed hardware such as acoustic baffles and tuned cavities. In addition to adding weight and decreasing engine performance, these devices are designed using trial-and-error methods, which do not provide the capability to predict the overall system stability characteristics in advance. In this thesis, two novel control strategies that are based on propellant fluid dynamics were investigated for mitigating acoustic instability involving shear-coaxial injector elements. The new control strategies would use a set of controlled injectors allowing local adjustment of propellant flow patterns for each operating condition, particularly when instability could become a problem. One strategy relies on reducing the oxidizer-fuel density gradient by blending heavier methane with the main fuel, hydrogen. Another strategy utilizes modifying the equivalence ratio to affect the acoustic impedance through mixing and reaction rate changes. The potential effectiveness of these strategies was assessed by conducting unit-physics experiments. Two different model combustors, one simulating a single-element injector test and the other a double-element injector test, were designed and tested for flame-acoustic interaction. For these experiments, the Reynolds number of the central oxygen jet was kept between 4700 and 5500 making the injector flames sufficiently turbulent. A compression driver, mounted on one side of the combustor wall, provided controlled acoustic excitation to the injector flames, simulating the initial phase of flame-acoustic interaction. Acoustic excitation was applied either as band-limited white noise forcing between 100 Hz and 5000 Hz or as single-frequency, fixed-amplitude forcing at 1150 Hz

  19. Transient Cavitation Induced by High Amplitude Diagnostic Ultrasound.

    NASA Astrophysics Data System (ADS)

    Ayme, Eveline J.

    1988-07-01

    Study of the response of gaseous microbubbles to medical ultrasound is essential to apprehend the potentially dangerous effects of transient cavitation on living tissues. However, the prediction of such response is complicated by the finite -amplitude distortion associated with high amplitude acoustic fields. Through a combination of theoretical developments, computer simulations, and experiments, this dissertation investigates the consequences of the interaction between finite-amplitude distortion and transient cavitation, in the context of a diagnostic ultrasonic field. The theoretical approach is to synthesize the asymmetry between compression and rarefaction half-cycles which characterizes a typical nonlinearly distorted pulse obtained at the focus of a diagnostic transducer immersed in water. The synthetic pulse is used to drive a theoretical model for nonlinear bubble dynamics. Comparison with sinusoidal pulses "equivalent" to the distorted pulse as measured by a selection of descriptive parameters shows that: (i) the peak-positive pressure (P_{+} ) in the distorted pulse is a very poor predictor of transient cavitation, (ii) the peak-negative pressure (P_{-}) is a better indicator but underestimates the actual bubble response, (iii) the best predictor is the pressure amplitude of the fundamental (P_{F}) in a Fourier series representation of the distorted pulse. These predictions are tested experimentally on Drosophila larvae. The larvae are exposed to pulsed, symmetric, sinusoidal fields and to pulsed, asymmetric, distorted fields. The killing ratio of the larvae is plotted as a function of the same selection of descriptive parameters, namely P_{+}, P_{ -}, and P_{F}. The resulting curves are compared with the killing ratio plotted against the peak pressure in the sinusoidal, undistorted pulse (P_{A}). If the distorted pulse is described in terms of P_ {-} or P_{+} , the killing ratios are significantly different; if the distorted pulse is described in terms

  20. Analysis of an existing experiment on the interaction of acoustic waves with a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Schopper, M. R.

    1982-01-01

    The hot-wire anemometer amplitude data contained in the 1977 report of P. J. Shapiro entitled, ""The Influence of Sound Upon Laminar Boundary'' were reevaluated. Because the low-Reynolds number boundary layer disturbance data were misinterpreted, an effort was made to improve the corresponding disturbance growth rate curves. The data are modeled as the sum of upstream and downstream propagating acoustic waves and a wave representing the Tollmien-Schlichting (TS) wave. The amplitude and phase velocity of the latter wave were then adjusted so that the total signal reasonably matched the amplitude and phase angle hot-wire data along the plate laminar boundary layer. The revised rates show growth occurring further upstream than Shapiro found. It appears that the premature growth is due to the adverse pressure gradient created by the shape of the plate. Basic elements of sound propagation in ducts and the experimental and theoretical acoustic-stability literature are reviewed.

  1. Structural-acoustic coupling effects on the non-vacuum packaging vibratory cylinder gyroscope.

    PubMed

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng; Tao, Yi; Zheng, Yu; Xiao, Dingbang

    2013-12-13

    The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE) model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm.

  2. The acoustic emission of a distributed mode loudspeaker near a porous layer.

    PubMed

    Prokofieva, E Yu; Horoshenkov, Kirill V; Harris, N

    2002-06-01

    Experimental and theoretical modeling of the vibro-acoustic performance of a distributed mode loudspeaker (DML) suggest that their acoustic emission can be significantly affected by the presence of a porous layer. The amplitude of the surface velocity of the panel and the acoustic pressure on the porous surface are reduced largely in the vicinity of structural resonances due to the additional radiation damping and visco-thermal absorption phenomenon in the porous layer. The experimental results suggest that a porous layer between a rigid base and a DML panel can considerably alter its acoustic emission in the near field and in the far field. This is illustrated by a reduction in the level of fluctuations in the emitted acoustic pressure spectra. These fluctuations are normally associated with the interference between the sound emitted by the front surface of the speaker and that emitted from the back. Another contribution comes from the pronounced structural resonances in the surface velocity spectrum. The results of this work suggest that the acoustic boundary conditions near a DML can be modified by the porous layer so that a desired acoustic output can be attained.

  3. Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development

    NASA Technical Reports Server (NTRS)

    Putnam, G. C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.

  4. Structural-Acoustic Coupling Effects on the Non-Vacuum Packaging Vibratory Cylinder Gyroscope

    PubMed Central

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng; Tao, Yi; Zheng, Yu; Xiao, Dingbang

    2013-01-01

    The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE) model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm. PMID:24351631

  5. Comment on "Relative variance of the mean squared pressure in multimode media: rehabilitating former approaches" [J. Acoust. Soc. Am. 136, 2621-2629 (2014)].

    PubMed

    Davy, John L; Weaver, Richard L

    2015-03-01

    Models for the statistics of responses in finite reverberant structures, and in particular, for the variance of the mean square pressure in reverberation rooms, have been studied for decades. It is therefore surprising that a recent communication has claimed that the literature has gotten the simplest of such calculations very wrong. Monsef, Cozza, Rodrigues, Cellard, and Durocher [(2014). J. Acoust. Soc. Am. 136, 2621-2629] have derived a modal-based expression for the relative variance that differs significantly from expressions that have been accepted since 1969. This Comment points out that the Monsef formula is clearly incorrect, and then for the interested reader, points out the subtle place where they made their mistake.

  6. Amplitude sorting of oscillatory burst signals by sampling

    DOEpatents

    Davis, Thomas J.

    1977-01-01

    A method and apparatus for amplitude sorting of oscillatory burst signals is described in which the burst signal is detected to produce a burst envelope signal and an intermediate or midportion of such envelope signal is sampled to provide a sample pulse output. The height of the sample pulse is proportional to the amplitude of the envelope signal and to the maximum burst signal amplitude. The sample pulses are fed to a pulse height analyzer for sorting. The present invention is used in an acoustic emission testing system to convert the amplitude of the acoustic emission burst signals into sample pulse heights which are measured by a pulse height analyzer for sorting the pulses in groups according to their height in order to identify the material anomalies in the test material which emit the acoustic signals.

  7. Basic Linear Acoustics

    NASA Astrophysics Data System (ADS)

    Pierce, Alan D.

    This chapter deals with the physical and mathematical aspects of sound when the disturbances are, in some sense, small. Acoustics is usually concerned with small-amplitude phenomena, and consequently a linear description is usually acoustics applicable. Disturbances are governed by the properties of the medium in which they occur, and the governing equations are the equations of continuum mechanics, which apply equally to gases, liquids, and solids. These include the mass, momentum, and energy equations, as well as thermodynamic principles. The viscosity and thermal conduction enter into the versions of these equations that apply to fluids. Fluids of typical great interest are air and sea water, and consequently this chapter includes a summary of their relevant acoustic properties. The foundation is also laid for the consideration of acoustic waves in elastic solids, suspensions, bubbly liquids, and porous media.

  8. Acoustic Neuroma

    MedlinePlus

    ... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...

  9. Development, modeling, simulation, and testing of a novel propane-fueled Brayton-Gluhareff cycle acoustically-pressurized ramjet engine

    NASA Astrophysics Data System (ADS)

    Bramlette, Richard B.

    In the 1950s, Eugene Gluhareff built the first working "pressure jet" engine, a variation on the classical ramjet engine with a pressurized inlet system relying on sonic tuning which allowed operation at subsonic speeds. The engine was an unqualified success. Unfortunately, after decades of sales and research, Gluhareff passed away leaving behind no significant published studies of the engine or detailed analysis of its operation. The design was at serious risk of being lost to history. This dissertation is intended to address that risk by studying a novel subscale modification of Gluhareff's original design operating on the same principles. Included is a background of related engine and how the pressure jet is distinct. The preliminary sizing of a pressure jet using closed-form expressions is then discussed followed by a review of propane oxidation modeling, how it integrates into the Computational Fluid Dynamics (CFD) solver, and the modeling of the pressure jet engine cycle with CFD. The simulation was matched to experimental data recorded on a purpose-built test stand recording chamber pressure, exhaust speed (via a Pitot/static system), temperatures, and thrust force. The engine CFD simulation produced a wide range of qualitative results that matched the experimental data well and suggested strong recirculation flows through the engine confirming suspicions about how the engine operates. Engine operating frequency between CFD and experiment also showed good agreement and appeared to be driven by the "Kadenacy Effect." The research effort lastly opens the door for further study of the engine cycle, the use of pressurized intakes to produce static thrust in a ramjet engine, the Gluhareff pressure jet's original geometry, and a wide array of potential applications. A roadmap of further study and applications is detailed including a modeling and testing of larger engines.

  10. Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review.

    PubMed

    Tudela, Ignacio; Sáez, Verónica; Esclapez, María Deseada; Díez-García, María Isabel; Bonete, Pedro; González-García, José

    2014-05-01

    Numerical methods for the calculation of the acoustic field inside sonoreactors have rapidly emerged in the last 15 years. This paper summarizes some of the most important works on this topic presented in the past, along with the diverse numerical works that have been published since then, reviewing the state of the art from a qualitative point of view. In this sense, we illustrate and discuss some of the models recently developed by the scientific community to deal with some of the complex events that take place in a sonochemical reactor such as the vibration of the reactor walls and the nonlinear phenomena inherent to the presence of ultrasonic cavitation. In addition, we point out some of the upcoming challenges that must be addressed in order to develop a reliable tool for the proper designing of efficient sonoreactors and the scale-up of sonochemical processes.

  11. Laser-Induced Thermal Acoustic Measurements in a Highly Back-Pressured Scramjet Isolator Model: A Research Plan

    NASA Technical Reports Server (NTRS)

    Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Wilson, Lloyd G.

    2008-01-01

    Under the Propulsion Discipline of NASA s Fundamental Aeronautics Program s Hypersonics Project, a test apparatus, for testing a scramjet isolator model, is being constructed at NASA's Langley Research Center. The test apparatus will incorporate a 1-inch by 2-inch by 15-inch-long scramjet isolator model supplied with 2.1 lbm/sec of unheated dry air through a Mach 2.5 converging-diverging nozzle. The planned research will incorporate progressively more challenging measurement techniques to characterize the flow field within the isolator, concluding with the application of the Laser-Induced Thermal Acoustic (LITA) measurement technique. The primary goal of this research is to use the data acquired to validate Computational Fluid Dynamics (CFD) models employed to characterize the complex flow field of a scramjet isolator. This paper describes the test apparatus being constructed, pre-test CFD simulations, and the LITA measurement technique.

  12. Injection coupling with high amplitude transverse modes: Experimentation and simulation

    NASA Astrophysics Data System (ADS)

    Mery, Yoann; Ducruix, Sébastien; Scouflaire, Philippe; Candel, Sébastien

    2009-06-01

    High frequency combustion instabilities have technical importance in the design of liquid rocket engines. These phenomena involve a strong coupling between transverse acoustic modes and combustion. They are currently being investigated by combining experimentation and numerical simulations. On the experimental level, the coupling is examined in a model scale system featuring a multiple injector combustor (MIC) comprising five coaxial injectors fed with liquid oxygen and gaseous methane. This system is equipped with a novel VHAM actuator (Very High Amplitude Modulator) which comprises two nozzles and a rotating toothed wheel blocking the nozzles in an alternate fashion. This device was designed to obtain the highest possible levels of transverse oscillation in the MIC. After a brief review of the VHAM, this article reports cold flow experiments using this modulator. Velocity maps obtained under resonant conditions using the VHAM are examined at different instants during a cycle of oscillation. Experimental data are compared with numerical pressure and velocity fields obtained from an acoustic solver. The good agreement observed in the nozzle vicinity indicates that numerical simulations can be used to analyze the complex flow field generated by the VHAM. To cite this article: Y. Mery et al., C. R. Mecanique 337 (2009).

  13. Viscosity and compressibility of diacylglycerol under high pressure

    NASA Astrophysics Data System (ADS)

    Malanowski, Aleksander; Rostocki, A. J.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Kościesza, R.; Tarakowski, R.; Ptasznik, S.; Siegoczyński, R. M.

    2013-03-01

    The influence of high pressure on viscosity and compressibility of diacylglycerol (DAG) oil has been presented in this paper. The investigated DAG oil was composed of 82% of DAGs and 18% TAGs (triacylglycerols). The dynamic viscosity of DAG was investigated as a function of the pressure up to 400 MPa. The viscosity was measured by means of the surface acoustic wave method, where the acoustic waveguides were used as sensing elements. As the pressure was rising, the larger ultrasonic wave attenuation was observed, whereas amplitude decreased with the liquid viscosity augmentation. Measured changes of physical properties were most significant in the pressure range near the phase transition. Deeper understanding of DAG viscosity and compressibility changes versus pressure could shed more light on thermodynamic properties of edible oils.

  14. Transient cavitation in high-quality-factor resonators at high static pressures.

    PubMed

    Gaitan, D Felipe; Tessien, Ross A; Hiller, Robert A; Gutierrez, Joel; Scott, Corey; Tardif, Henry; Callahan, Brant; Matula, Thomas J; Crum, Lawrence A; Holt, R Glynn; Church, Charles C; Raymond, Jason L

    2010-06-01

    It is well known that cavitation collapse can generate intense concentrations of mechanical energy, sufficient to erode even the hardest metals and to generate light emissions visible to the naked eye [sonoluminescence (SL)]. Considerable attention has been devoted to the phenomenon of "single bubble sonoluminescence" (SBSL) in which a single stable cavitation bubble radiates light flashes each and every acoustic cycle. Most of these studies involve acoustic resonators in which the ambient pressure is near 0.1 MPa (1 bar), and with acoustic driving pressures on the order of 0.1 MPa. This study describes a high-quality factor, spherical resonator capable of achieving acoustic cavitation at ambient pressures in excess of 30 MPa (300 bars). This system generates bursts of violent inertial cavitation events lasting only a few milliseconds (hundreds of acoustic cycles), in contrast with the repetitive cavitation events (lasting several minutes) observed in SBSL; accordingly, these events are described as "inertial transient cavitation." Cavitation observed in this high pressure resonator is characterized by flashes of light with intensities up to 1000 times brighter than SBSL flashes, as well as spherical shock waves with amplitudes exceeding 30 MPa at the resonator wall. Both SL and shock amplitudes increase with static pressure.

  15. Particle analysis in an acoustic cytometer

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  16. Acoustic Recordings of Strombolian and Subplinian Activity at Shishaldin Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.; McNutt, S. R.; Vergniolle, S.; Boichu, M.

    2002-05-01

    New data from a pressure sensor provide a detailed perspective on the 1999 eruption of Shishaldin volcano, Alaska. The eruption was well monitored by a 6-station seismic network and frequent satellite passes, but visual observations were minimal. To refine our interpretation of the 1999 eruption we investigate acoustic data recorded on a pressure sensor 6.5 km north of Shishaldin. Three types of acoustic signals were identified, representing different types of eruptive behavior. On April 19, 1999 the pressure sensor recorded a monotonic (2-3 Hz) hum that grew in amplitude for more than 13 hours. At 19:35 UTC on April 19, the humming signal abruptly ended and seismic tremor amplitude increased dramatically. Four minutes later, a broadband (1-15 Hz) signal was recorded on both the pressure sensor and the seismometers, suggesting the onset of the main Subplinian phase. The Subplinian phase appears in the acoustic record as a 50-min broadband signal, over which several low-frequency bursts are superimposed. The final acoustic phase detected by the pressure sensor was a series of discrete pulses, interpreted to be strong Strombolian gas explosions. The strongest explosions, recorded on April 23rd were associated with a small, ash-poor plume and strong seismic tremor. In time series, these events are similar to gas explosions observed at other volcanoes such as Stromboli and Karymsky, but are of lower frequency (1-2 Hz) and are 1-2 orders of magnitude (up to 60 Pa at 6.5 km) larger. Waveform modeling allows us to constrain the size and overpressure of the bubbles, as well as the amount of gas and magma released during the Strombolian phase of the eruption. The acoustic data may be used to investigate the change from Strombolian activity to Subplinian, and back to Strombolian. The 1999 Shishaldin eruption shows that pressure sensors can serve as an excellent complement to traditional means of monitoring remote volcanoes.

  17. GRAAL - Griggs-type Apparatus equipped with Acoustics in the Laboratory: a new instrument to explore the rheology of rocks at high pressure

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Champallier, R.; Precigout, J.; Pinquier, Y.; Ferrand, T. P.; Incel, S.; Hilairet, N.; Labrousse, L.; Renner, J.; Green, H. W., II; Stunitz, H.; Jolivet, L.

    2015-12-01

    Two new generation solid-medium Griggs-type apparatus have been set up at the Laboratoire de Géologie of ENS PARIS, and the Institut des Sciences de la Terre d'Orléans (ISTO). These new set-ups allow to perform controlled rock deformation experiments on large volume samples, up to 5 GPa and 1300°C. Careful pressure - stress calibration will be performed (using D-DIA and/or Paterson-type experiments as standards), strain-stress-pressure will be measured using modern techniques and state of the art salt assemblies. Focusing on rheology, the pressure vessel at ISTO has been designed in a goal of deforming large sample diameter (8 mm) at confining pressure of up to 3 GPa. Thanks to this large sample size, this new vessel will allow to explore the microstructures related to the deformation processes occurring at pressures of the deep lithosphere and in subduction zones. In this new apparatus, we moreover included a room below the pressure vessel in order to develop a basal load cell as close as possible to the sample. This new design, in progress, aims at significantly improving the accuracy of stress measurements in the Griggs-type apparatus. The ultimate goal is to set up a new technique able to routinely quantify the rheology of natural rocks between 0.5 and 5 GPa. Although fundamental to document the rheology of the lithosphere, such a technique is still missing in rock mechanics. Focusing on the evolution of physical and mechanical properties during mineral phase transformations, the vessel at ENS is equipped with continuous acoustic emission (AE) multi-sensor monitoring in order to "listen" to the sample during deformation. Indeed, these continuous recordings enable to detect regular AE like signals during dynamic crack propagation, as well as non-impulsive signals, which might be instrumental to identify laboratory analogs to non-volcanic tremor and low frequency earthquake signals. P and S elastic wave velocities will also be measured contemporaneously during

  18. Comparison of pilot and industrial scale atmospheric pressure glow discharge systems including a novel electro-acoustic technique for process monitoring

    NASA Astrophysics Data System (ADS)

    Tynan, J.; Law, V. J.; Ward, P.; Hynes, A. M.; Cullen, J.; Byrne, G.; Daniels, S.; Dowling, D. P.

    2010-02-01

    A comparison of a pilot and industrial scale atmospheric pressure polymer processing plasma system has been carried out using process-monitoring diagnostic tools during treatment of amorphous polyethylene terephthalate. These systems have been compared using optical emission spectroscopy (OES), photodiode (PD) analysis and multi-variate analysis of the applied electrical and emitted electro-acoustic signals to facilitate scale up operations from the pilot to the industrial scale system. The voltage, current, electro-acoustic intensity and frequency of the plasma systems were found to change systematically with an increase in applied plasma power and addition of oxygen (O2) into a helium (He) plasma. The plasma drive frequency was pulled by the plasma reactance from approximately 26 to 16 kHz on the pilot system and from approximately 36 to 32 kHz on the industrial system, for an increase in applied plasma power and addition of O2. The OES analysis revealed a number of peaks associated with nitrogen (N2) species between 250 and 450 nm due to the presence of air within the He plasma. Temporally resolved analysis of the discharge emission carried out using a PD showed an increase in the number of discharge events per power cycle with an increase in power and a decrease in emission intensity for addition of O2 into the He plasma for both the pilot and industrial scale systems. Using these diagnostic tools both plasma stability and run to run variations were assessed. A visual analysis of the 1.2 m wide plasma was also carried out where a more homogeneous plasma was observed at higher powers.

  19. Directional Acoustic Density Sensor

    DTIC Science & Technology

    2010-09-13

    fluctuations of fluid density at a point . (2) DESCRIPTION OF THE PRIOR ART [0004] Conventional vector sensors measure particle velocity, v (vx,Vytvz...dipole-type or first order sensor that is realized by measuring particle velocity at a point , (which is the vector sensor sensing approach for...underwater sensors), or by measuring the gradient of the acoustic pressure at two closely spaced (less than the wavelength of an acoustic wave) points as it

  20. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  1. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  2. Physical properties of archaeal tetraether lipid membranes as revealed by differential scanning and pressure perturbation calorimetry, molecular acoustics, and neutron reflectometry: effects of pressure and cell growth temperature.

    PubMed

    Zhai, Yong; Chong, Parkson Lee-Gau; Taylor, Leeandrew Jacques-Asa; Erlkamp, Mirko; Grobelny, Sebastian; Czeslik, Claus; Watkins, Erik; Winter, Roland

    2012-03-20

    The polar lipid fraction E (PLFE) is a major tetraether lipid component in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Using differential scanning and pressure perturbation calorimetry as well as ultrasound velocity and density measurements, we have determined the compressibilities and volume fluctuations of PLFE liposomes derived from different cell growth temperatures (T(g) = 68, 76, and 81 °C). The compressibility and volume fluctuation values of PLFE liposomes, which are substantially less than those detected from diester lipid membranes (e.g., DPPC), exhibit small but significant differences with T(g). Among the three T(g)s employed, 76 °C leads to the least compressible and most tightly packed PLFE membranes. This temperature is within the range for optimal cell growth (75-80 °C). It is known that a decrease in T(g) decreases the number of cyclopentane rings in archael tetraether lipids. Thus, our data enable us to present the new view that membrane packing in PLFE liposomes varies with the number of cyclopentane rings in a nonlinear manner, reaching maximal tightness when the tetraether lipids are derived from cells grown at optimal T(g)s. In addition, we have studied the effects of pressure on total layer thickness, d, and neutron scattering length density, ρ(n), of a silicon-D(2)O interface that is covered with a PLFE membrane using neutron reflectometry (NR). At 55 °C, d and ρ(n) are found to be rather insensitive to pressure up to 1800 bar, suggesting minor changes of the thickness of the membrane's hydrophobic core and headgroup orientation upon compression only.

  3. XV-15 Structural-Acoustic Data

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    1997-01-01

    Tiltrotor aircraft are a potentially viable means of intercity travel. The tiltrotor is able to transport passengers relatively quickly from the center of a city to destinations within a 300-mile radius. For such vehicles to be commercially viable, the interior noise and vibration levels must be acceptable to the passengers. A review of the literature revealed very little structural-acoustic data related to the tiltrotor. For this reason, structural-acoustic measurements were taken aboard an XV-15 tiltrotor. The six flight conditions included five in level flight, nominally 140-220 knots, for airplane mode (nacelle at 0 degrees) and one out-of-ground-effect (OGE) hover (nacelle at 90 degrees). The flight test measurements included nine exterior surface pressures, five structural accelerations, and two interior pressures. These sensors were located near the tip path plane on the port side of the aircraft. One minute of data was acquired at each condition. The data is presented as time histories, autospectra, coherence functions, and cross-spectra. In general, for level flight, the measured data showed very little effect of forward flight speed except to change the amplitude of the response; however, the character of the response was found to be dependent on spatial location. In contrast, in the hover mode the spatial location had very little effect on the character of the response. Additionally, the report highlights: the coherence between the transducer data and the rotor tach signal; and transfer function calculations between the exterior pressures.

  4. A simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina.

    PubMed

    Till, S J; Milsom, P K; Rowlands, G

    2004-07-01

    Shock waves have been proposed in the literature as a mechanism for retinal damage induced by ultra-short laser pulses. For a spherical absorber, we derive a set of linear equations describing the propagation of pressure waves. We show that the formation of shock fronts is due to the form of the absorber rather than the inclusion of nonlinear terms in the equations. The analytical technique used avoids the need for a Laplace transform approach and is easily applied to other absorber profiles. Our analysis suggests that the 'soft' nature of the membrane surrounding retinal melanosomes precludes shock waves as a mechanism for the retinal damage induced by ultra-short pulse lasers. The quantitative estimates of the pressure gradients induced by laser absorption which are made possible by this work, together with detailed meso-scale or molecular modelling, will allow alternative damage mechanisms to be identified.

  5. Internal Acoustics of a Pintle Valve with Supercritical Helium Flow

    NASA Technical Reports Server (NTRS)

    Fishbach, Sean R.; Davis, R. Benjamin

    2010-01-01

    Large amplitude flow unsteadiness is a common phenomenon within the high flow rate ducts and valves associated with propulsion systems. Boundary layer noise, shear layers and vortex shedding are a few of the many sources of flow oscillations. The presence of lightly damped acoustic modes can organize and amplify these sources of flow perturbation, causing undesirable loading of internal parts. The present study investigates the self-induced acoustic environment within a pintle valve subject to high Reynolds Number flow of helium gas. Experiments were conducted to measure the internal pressure oscillations of the Ares I Launch Abort System (LAS) Attitude Control Motor (ACM) valve. The AGM consists of a solid propellant gas generator with eight pintle valves attached to the aft end. The pintle valve is designed to deliver variable upstream conditions to an attache( converging diverging nozzle. In order to investigate the full range of operating conditions 28 separate tests were conducted with varying pintle position and upstream pressure. Helium gas was utilized in order to closely mimic the speed of sound of the gas generator exhaust, minimizing required scaling during data analysis. The recordec pressure measurements were interrogated to multiple ends. The development of root mean square (RMS) value! versus Reynolds Number and Pintle position are important to creating bounding unsteady load curves for valve internal parts. Spectral analysis was also performed, helping to identify power spectral densities (PSD) of acoustic natural frequencies and boundary layer noise. An interesting and unexpected result was the identification of an acoustic mode within the valve which does not respond until the valve was over 60% open. Further, the response amplitude around this mode can be as large or larger than those associated with lower frequency modes.

  6. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules.

    PubMed

    Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M; Ni, Yu-Li; Bourdeau, Raymond W; Kochmann, Dennis M; Shapiro, Mikhail G

    2017-02-13

    Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (∼250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

  7. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules

    NASA Astrophysics Data System (ADS)

    Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.

    2017-02-01

    Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

  8. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    PubMed

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  9. Acoustic field modulation in regenerators

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  10. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  11. Subharmonic contrast microbubble signals for noninvasive pressure estimation under static and dynamic flow conditions.

    PubMed

    Halldorsdottir, Valgerdur G; Dave, Jaydev K; Leodore, Lauren M; Eisenbrey, John R; Park, Suhyun; Hall, Anne L; Thomenius, Kai; Forsberg, Flemming

    2011-07-01

    Our group has proposed the concept of subharmonic aided pressure estimation (SHAPE) utilizing microbubble-based ultrasound contrast agent signals for the noninvasive estimation of hydrostatic blood pressures. An experimental system for in vitro SHAPE was constructed based on two single-element transducers assembled confocally at a 60 degree angle to each other. Changes in the first, second and subharmonic amplitudes of five different ultrasound contrast agents were measured in vitro at static hydrostatic pressures from 0-186 mmHg, acoustic pressures from 0.35-0.60 MPa peak-to-peak and frequencies of 2.5-6.6 MHz. The most sensitive agent and optimal parameters for SHAPE were determined using linear regression analysis and implemented on a Logiq 9 scanner (GE Healthcare, Milwaukee, WI). This implementation of SHAPE was then tested under dynamic-flow conditions and compared to pressure-catheter measurements. Over the pressure range studied, the first and second harmonic amplitudes reduced approximately 2 dB for all contrast agents. Over the same pressure range, the subharmonic amplitudes decreased by 9-14 dB and excellent linear regressions were achieved with the hydrostatic pressure variations (r = 0.98, p < 0.001). Optimal sensitivity was achieved at a transmit frequency of 2.5 MHz and acoustic pressure of 0.35 MPa using Sonazoid (GE Healthcare, Oslo, Norway). A Logiq 9 scanner was modified to implement SHAPE on a convex transducer with a frequency range from 1.5-4.5 MHz and acoustic pressures from 0-3.34 MPa. Results matched the pressure catheter (r2 = 0.87). In conclusion, subharmonic contrast signals are a good indicator of hydrostatic pressure. Out of the five ultrasound contrast agents tested, Sonazoid was the most sensitive for subharmonic pressure estimation. Real-time SHAPE has been implemented on a commercial scanner and offers the possibility of allowing pressures in the heart and elsewhere to be obtained noninvasively.

  12. A computer program for the determination of the acoustic pressure signature of helicopter rotors due to blade thickness

    NASA Technical Reports Server (NTRS)

    Mall, G. H.; Farassat, F.

    1976-01-01

    A computer program is presented for the determination of the thickness noise of helicopter rotors. The results were obtained in the form of an acoutic pressure time history. The parameters of the program are the rotor geometry and the helicopter motion descriptors, and the formulation employed is valid in the near and far fields. The blade planform must be rectangular, but the helicopter motion is arbitrary; the observer position is fixed with respect to the ground with a maximum elevation of 45 deg above or below the rotor plane. With these restrictions, the program can also be used for the calculation of thickness noise of propellers.

  13. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  14. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  15. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  16. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  17. Real topological string amplitudes

    NASA Astrophysics Data System (ADS)

    Narain, K. S.; Piazzalunga, N.; Tanzini, A.

    2017-03-01

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.

  18. Basic Linear Acoustics

    NASA Astrophysics Data System (ADS)

    Pierce, Alan

    This chapter deals with the physical and mathematical aspects of sound when the disturbances are, in some sense, small. Acoustics is usually concerned with small-amplitude phenomena, and consequently a linear description is usually applicable. Disturbances are governed by the properties of the medium in which they occur, and the governing equations are the equations of continuum mechanics, which apply equally to gases, liquids, and solids. These include the mass, momentum, and energy equations, as well as thermodynamic principles. The viscosity and thermal conduction enter into the versions of these equations that apply to fluids. Fluids of typical great interest are air and sea water, and consequently this chapter includes a summary of their relevant acoustic properties. The foundation is also laid for the consideration of acoustic waves in elastic solids, suspensions, bubbly liquids, and porous media.

  19. Acoustic testing of a 1.5 pressure ratio low tip speed fan with a serrated rotor (QEP fan B scale model). [reduction of engine noise

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Paas, J. E.; Minzner, W. R.

    1973-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a serrated rotor leading edge to determine its effects on noise generation. The serrated rotor was produced by cutting teeth into the leading edge of the nominal rotor blades. The effects of speed and exhaust nozzle area on the scale models noise characteristics were investigated with both the nominal rotor and serrated rotor. Acoustic results indicate the serrations reduced front quadrant PNL's at takeoff power. In particular, the 200 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdb at 40 deg for nominal and large nozzle operation. However, the rear quadrant maximum sideline PNL's were increased 1.5 to 3 PNdb at approach thust and up to 2 PNdb at takeoff thust with these serrated rotor blades. The configuration with the serrated rotor produced the lowest maximum 200 foot (61.0 m) sideline PNL for any given thust when the large nozzle (116% of design area) was employed.

  20. Acoustic and aerodynamic performance of a variable-pitch 1.83-meter-(6-ft) diameter 1.20-pressure-ratio fan stage (QF-9)

    NASA Technical Reports Server (NTRS)

    Glaser, F. W.; Woodward, R. P.; Lucas, J. G.

    1977-01-01

    Far field noise data and related aerodynamic performance are presented for a variable pitch fan stage having characteristics suitable for low noise, STOL engine application. However, no acoustic suppression material was used in the flow passages. The fan was externally driven by an electric motor. Tests were made at several forward thrust rotor blade pitch angles and one for reverse thrust. Fan speed was varied from 60 to 120 percent of takeoff (design) speed, and exhaust nozzles having areas 92 to 105 percent of design were tested. The fan noise level was at a minimum at the design rotor blade pitch angles of 64 deg for takeoff thrust and at 57 deg for approach (50 percent takeoff thrust). Perceived noise along a 152.4-m sideline reached 100.1 PNdb for the takeoff (design) configuration for a stage pressure ratio of 1.17 and thrust of 57,600 N. For reverse thrust the PNL values were 4 to 5 PNdb above the takeoff values at comparable fan speeds.

  1. Acoustic testing of a 1.5 pressure ratio low tip speed fan with casing tip bleed (QEP Fan B scale model)

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Minzner, W. R.; Paas, J. E.

    1971-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a rotor tip casing bleed slot to determine its effects on noise generation. The bleed slot was located 1/2 inch (1.3 cm) upstream of the rotor leading edge and was configured to be a continuous opening around the circumference. The bleed manifold system was operated over a range of bleed rates corresponding to as much as 6% of the fan flow at approach thrust and 4.25% of the fan flow at takeoff thrust. Acoustic results indicate that a bleed rate of 4% of the fan flow reduces the fan maximum approach 200 foot (61.0 m) sideline PNL 0.5 PNdB and the corresponding takeoff thrust noise 1.1 PNdB below the level with zero bleed. However, comparison of the standard casing (no bleed slot) and the slotted bleed casing with zero bleed shows that the bleed slot itself caused a noise increase.

  2. Acoustically and Electrokinetically Driven Transport in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin

    Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the

  3. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    SciTech Connect

    Xie, Jin-Han Vanneste, Jacques

    2014-10-15

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, and viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.

  4. Response to "Comments on 'A theoretical model of the pressure distributions arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds'" [J. Acoust. Soc. Am. 130, 389-403 (2011)].

    PubMed

    Erath, Byron D; Peterson, Sean D; Zañartu, Matías; Wodicka, George R; Stewart, Kelley C; Plesniak, Michael W

    2013-08-01

    Hirschberg [J. Acoust. Soc. Am. 134, 9-12 (2013)] presents a commentary and criticisms of the viscous flow model presented by Erath et al. [J. Acoust. Soc. Am. 130, 389-403 (2011)] that solves for the asymmetric pressure loading on the vocal fold walls. This pressure loading arises from asymmetric flow attachment to one vocal fold wall when the glottal channel forms a divergent configuration. Hirschberg proposes an alternative model for the asymmetric loading based upon inviscid flow curvature at the glottal inlet. In this manuscript further evidence is provided in support of the model of Erath et al. and the underlying assumptions, and demonstrates that the primary criticisms presented by Hirschberg are unwarranted. The model presented by Hirschberg is compared with the model from the original paper by Erath et al., and it is shown that each model describes different and complementary aspects of divergent glottal flows.

  5. Electronic dummy for acoustical testing

    NASA Technical Reports Server (NTRS)

    Bauer, B. B.; Di Mattia, A. L.; Rosencheck, A. J.; Stern, M.; Torick, E. L.

    1967-01-01

    Electronic Dummy /ED/ used for acoustical testing represents the average male torso from the Xiphoid process upward and includes an acoustic replica of the human head. This head simulates natural flesh, and has an artificial voice and artificial ears that measure sound pressures at the eardrum or the entrance to the ear canal.

  6. Acoustically enhanced heat transport

    NASA Astrophysics Data System (ADS)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  7. Acoustically enhanced heat transport

    SciTech Connect

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K.; Yeo, Leslie Y.

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  8. Acoustically enhanced heat transport.

    PubMed

    Ang, Kar M; Yeo, Leslie Y; Friend, James R; Hung, Yew Mun; Tan, Ming K

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10(6) Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ∼ 10(-9) m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ∼ 10(-8) m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10(-8) m with 10(6) Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  9. Acoustic bubble traps

    NASA Astrophysics Data System (ADS)

    Geisler, Reinhard; Kurz, Thomas; Lauterborn, Werner

    2000-07-01

    A small, oscillating bubble in a liquid can be trapped in the antinode of an acoustic standing wave field. Bubble stability is required for the study of single bubble sonoluminescence (SBSL). The properties of the acoustic resonator are essential for the stable trapping of sonoluminescing bubbles. Resonators can be chosen according to the intended application: size and geometry can be varied in a wide range. In this work, the acoustic responses of different resonators were measured by means of holographic interferometry, hydrophones and a laser vibrometer. Also, high-speed photography was used to observe the bubble dynamics. Several single, stable sonoluminescent bubbles were trapped simultaneously within an acoustic resonator in the pressure antinodes of a higher harmonic mode (few bubble sonoluminescence, FBSL).

  10. Reducing Thermal Conduction In Acoustic Levitators

    NASA Technical Reports Server (NTRS)

    Lierke, Ernst G.; Leung, Emily W.; Bhat, Balakrishna T.

    1991-01-01

    Acoustic transducers containing piezoelectric driving elements made more resistant to heat by reduction of effective thermal-conductance cross sections of metal vibration-transmitting rods in them, according to proposal. Used to levitate small objects acoustically for noncontact processing in furnaces. Reductions in cross sections increase amplitudes of transmitted vibrations and reduce loss of heat from furnaces.

  11. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  12. Ionic association and solvation of the ionic liquid 1-hexyl-3-methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements.

    PubMed

    Sadeghi, Rahmat; Ebrahimi, Nosaibah

    2011-11-17

    A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are

  13. Protostring scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Thorn, Charles B.

    2016-11-01

    We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.

  14. Acoustic Seaglider

    DTIC Science & Technology

    2008-03-07

    a national naval responsibility. Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial...problem and acoustic navigation and communications within the context of distributed autonomous persistent undersea surveillance sensor networks...Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial coherence and the description of ambient

  15. Fourth-order acoustic torque in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  16. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  17. Amplitude interpretation and visualization of three-dimensional reflection data

    SciTech Connect

    Enachescu, M.E. )

    1994-07-01

    Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements not obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.

  18. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    SciTech Connect

    Chen, Tao; Fan, Tingbo; Zhang, Wei; Qiu, Yuanyuan; Tu, Juan E-mail: dzhang@nju.edu.cn; Guo, Xiasheng; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2014-03-21

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focused HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.

  19. Acoustic Characterization of Fluorinert FC-43 Liquid with Helium Gas Bubbles: Numerical Experiments

    DOE PAGES

    Vanhille, Christian; Pantea, Cristian; Sinha, Dipen N.

    2017-01-01

    In this work, we define the acoustic characteristics of a biphasic fluid consisting of static helium gas bubbles in liquid Fluorinert FC-43 and study the propagation of ultrasound of finite amplitudes in this medium. Very low sound speed and high sound attenuation are found, in addition to a particularly high acoustic nonlinear parameter. This result suggests the possibility of using this medium as a nonlinear enhancer in various applications. In particular, parametric generation of low ultrasonic frequencies is studied in a resonator cavity as a function of driving pressure showing high conversion efficiency. This work suggests that this medium couldmore » be used for applications such as parametric arrays, nondestructive testing, diagnostic medicine, sonochemistry, underwater acoustics, and ultrasonic imaging and to boost the shock formation in fluids.« less

  20. Thermal cracking and amplitude dependent attenuation

    SciTech Connect

    Johnston, D.H.; Toksoez, M.N.

    1980-02-10

    The role of crack and grain boundary contacts in determining seismic wave attenuation in rock is investigated by examining Q as a function of thermal cycling (cracking) and wave strain amplitude. Q values are obtained using a longitudinal resonant bar technique in the 10- to 20-kHz range for maximum strain amplitudes varying from roughly 10/sup -8/ to 10/sup -5/. The samples studied include the Berea and Navajo sandstones, Plexiglas, Westerly granite, Solenhofen limestone, and Frederick diabase, the latter two relatively crack free in their virgin state. Measurements were made at room temperature and pressure in air. Q values for both sandstones are constant at low strains (<10/sup -6/) but decrease rapidly with amplitude at higher strains. There is no hysteresis of Q with amplitude. Q values for Plexiglas show no indication of amplitude dependent behavior. The granite, limestone, and diabase are thermally cycled at both fast and slow heating rates in order to induce cracking. Samples slowly cycled at 400/sup 0/C show a marked increase in Q that cannot be entirely explained by outgassing of volatiles. Cycling may also widen thin cracks and grain boundaries, reducing contact areas. Samples heated beyond 400/sup 0/C, or rapidly heated, result in generally decreasing Q values. The amplitude dependence of Q is found to be coupled to the effects of thermal cycling. For rock slowly cycled 400)C or less, the transition from low-amplitude contant Q to high-amplitude variable Q behavior decreases to lower amplitudes as a function of maximum temperature. Above 400/sup 0/C, and possibly in th rapidly heated samples also, the transition moves to higher amplitudes.

  1. Response of transonic diffuser flows to abrupt increases of back pressure: Wall pressure measurements

    NASA Astrophysics Data System (ADS)

    Bogar, T. J.; Sajben, M.

    1986-10-01

    The propagation of compression pulses in a supercritically operated transonic diffuser was investigated by use of pressure measurements along the top wall of the model. The pulses were generated at the downstream end of the diffuser by the abrupt injection of a secondary flow of air. Two types of waves were observed: (1) an upstream-traveling acoustic wave and (2) a downstream-traveling convective wave which resulted from the impingement of the acoustic wave on the shock. Wave speeds were determined for a range of diffuser pressure ratios including separated, strong-shock flows and fully attached, weak-shock flows. Streamwise distributions of initial and reflected pulse amplitudes were determined for one weak and one strong-shock case over a 3-to-1 range of initial pulse strengths.

  2. Amplitudes of Field Theories

    SciTech Connect

    Feng Bo

    2007-11-20

    In this talk, we will present recent progresses in perturbative calculations of scattering amplitudes at tree and one-loop levels. At tree level, we will discuss MHV-diagram method and on-shell recursion relation. At one-loop level, we will establish the framework of Unitarity cut method.

  3. Reinforcing Saccadic Amplitude Variability

    ERIC Educational Resources Information Center

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  4. Planar amplitude ammonia sensor

    NASA Astrophysics Data System (ADS)

    Karasinski, Pawel; Rogozinski, Roman

    2004-09-01

    The paper presents the results of investigation involving the influence of the change of launching conditions on the characteristics of amplitude ammonia sensors produced with the application of strip waveguides of different refractive profiles. Strip waveguides were produced using ion exchange technique, and the absorption sensitive films were produced using sol-gel technology.

  5. Investigation of embedded structures in media with unknown acoustic properties

    NASA Astrophysics Data System (ADS)

    Kümmritz, S.; Wolf, M.; Kühnicke, E.

    2017-02-01

    This contribution presents new methods for the localization and characterization of discontinuities in media with unknown acoustic properties using annular arrays. The usage of annular arrays allows the focus position to be varied. By evaluating the signal amplitude as a function of the focus position and the measured time of flight, sound velocity and layer thickness can be determined simultaneously. For classifying the discontinuities, the directional patterns of the reflected sound fields are evaluated. The sound pressure distribution of the reflected sound field at the probe surface mainly depends on shape and size of the reflector. Evaluating the amplitude difference between the probe elements provides the ability to classify reflector shape and to determine its thickness.

  6. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  7. Cross-Channel Amplitude Sweeps Are Crucial to Speech Intelligibility

    ERIC Educational Resources Information Center

    Prendergast, Garreth; Green, Gary G. R.

    2012-01-01

    Classical views of speech perception argue that the static and dynamic characteristics of spectral energy peaks (formants) are the acoustic features that underpin phoneme recognition. Here we use representations where the amplitude modulations of sub-band filtered speech are described, precisely, in terms of co-sinusoidal pulses. These pulses are…

  8. Arbitrary Amplitude DIA and DA Solitary Waves in Adiabatic Dusty Plasmas

    SciTech Connect

    Mamun, A. A.; Jahan, N.; Shukla, P. K.

    2008-10-15

    The dust-ion-acoustic (DIA) as well as the dust-acoustic (DA) solitary waves (SWs) in an adiabatic dusty plasma are investigated by the pseudo-potential approach which is valid for arbitrary amplitude SWs. The role of the adiabaticity of electrons and ions in modifying the basic features (polarity, speed, amplitude and width) of arbitrary amplitude DIA and DA SWs are explicitly examined. It is found that the effects of the adiabaticity of electrons and ions significantly modify the basic features (polarity, speed, amplitude and width) of the DIA and DA SWs. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

  9. On noninvasive assessment of acoustic fields acting on the fetus

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Kazakov, V. V.

    2014-05-01

    The aim of this study is to verify a noninvasive technique for assessing the characteristics of acoustic fields in the audible range arising in the uterus under the action of maternal voice, external sounds, and vibrations. This problem is very important in view of actively developed methods for delivery of external sounds to the uterus: music, maternal voice recordings, sounds from outside the mother's body, etc., that supposedly support development of the fetus at the prenatal stage psychologically and cognitively. However, the parameters of acoustic signals have been neither measured nor normalized, which may be dangerous for the fetus and hinder actual assessment of their impact on fetal development. The authors show that at frequencies below 1 kHz, acoustic pressure in the uterus may be measured noninvasively using a hydrophone placed in a soft capsule filled with liquid. It was found that the acoustic field at frequencies up to 1 kHz arising in the uterus under the action of an external sound field has amplitude-frequency parameters close to those of the external field; i.e., the external field penetrates the uterus with hardly any difficulty.

  10. Eliminating Nonlinear Acoustical Effects From Thermoacoustic Refrigeration Systems

    NASA Astrophysics Data System (ADS)

    Garrett, Steven L.; Smith, Robert W. M.; Poese, Matthew E.

    2006-05-01

    Nonlinear acoustical effects dissipate energy that degrades thermoacoustic refrigerator performance. The largest of these effects occur in acoustic resonators and include shock formation; turbulence and boundary layer disruption; and entry/exit (minor) losses induced by changes in resonator cross-sectional area. Effects such as these also make the creation of accurate performance models more complicated. Suppression of shock formation by intentional introduction of resonator anharmonicity has been common practice for the past two decades. Recent attempts to increase cooling power density by increasing pressure amplitudes has required reduction of turbulence and minor loss by using an new acousto-mechanical resonator topology. The hybrid resonator still stores potential energy in the compressibility of the gaseous working fluid, but stores kinetic energy in the moving (solid) mass of the motor and piston. This talk will first present nonlinear acoustical loss measurements obtained in a "conventional" double-Helmholtz resonator geometry (TRITON) that dissipated four kilowatts of acoustic power. We will then describe the performance of the new "bellows bounce" resonator configuration and "vibromechanical multiplier" used in the first successful implementation of this approach that created an ice cream freezer produced at Penn State for Ben & Jerry's.

  11. Nonlinear Acoustics at the Air-Water Free Surface

    NASA Astrophysics Data System (ADS)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  12. Aero-acoustic features of internal and external chamfered Hartmann whistles: A comparative study

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Srinivasan, K.; Sundararajan, T.

    2014-02-01

    The efficient way of chamfering at the mouth of Hartmann whistles in generating higher acoustic emission levels are experimentally demonstrated in this paper. The relevant parameters of the present work comprise internal and external-chamfer angles (15°, 30°), cavity-length, nozzle-to-cavity-distance and jet pressure ratios. The frequency and amplitude characteristics of internal and external, chamfered-Hartmann whistles are compared in detail to ascertain the role of chamfering in enhancing acoustic radiations. The high frequencies possessed by the internal chamfered whistles as compared to the external ones indicate that it amplifies the resonance. It is observed that the internal chamfered whistles exhibit higher directivity than the external chamfered ones. Further, it is noticed that the acoustic-power and efficiency are also higher for the internal chamfered whistles. The shadowgraph sequences reveal the variance in flow-shock oscillations as well as the spill-over features at the mouth of internal and external, chamfered cavities. The presence of large mass flow as well as its subsequent increase of spill-over as a result of enlarged mouth in internal chamfered whistles, leads to the generation of high intensity acoustic radiation than the external chamfered ones. Thus, the internal chamfer proves to be the best passive control device for augmented sound pressure levels and acoustic efficiencies in resonance cavities.

  13. Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling.

    PubMed

    Kreider, Wayne; Yuldashev, Petr V; Sapozhnikov, Oleg A; Farr, Navid; Partanen, Ari; Bailey, Michael R; Khokhlova, Vera A

    2013-08-01

    High-intensity focused ultrasound (HIFU) is a treatment modality that relies on the delivery of acoustic energy to remote tissue sites to induce thermal and/or mechanical tissue ablation. To ensure the safety and efficacy of this medical technology, standard approaches are needed for accurately characterizing the acoustic pressures generated by clinical ultrasound sources under operating conditions. Characterization of HIFU fields is complicated by nonlinear wave propagation and the complexity of phased-array transducers. Previous work has described aspects of an approach that combines measurements and modeling, and here we demonstrate this approach for a clinical phased-array transducer. First, low amplitude hydrophone measurements were performed in water over a scan plane between the array and the focus. Second, these measurements were used to holographically reconstruct the surface vibrations of the transducer and to set a boundary condition for a 3-D acoustic propagation model. Finally, nonlinear simulations of the acoustic field were carried out over a range of source power levels. Simulation results were compared with pressure waveforms measured directly by hydrophone at both low and high power levels, demonstrating that details of the acoustic field, including shock formation, are quantitatively predicted.

  14. Characterization of a Multi-element Clinical HIFU System Using Acoustic Holography and Nonlinear Modeling

    PubMed Central

    Kreider, Wayne; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera A.

    2014-01-01

    High-intensity focused ultrasound (HIFU) is a treatment modality that relies on the delivery of acoustic energy to remote tissue sites to induce thermal and/or mechanical tissue ablation. To ensure the safety and efficacy of this medical technology, standard approaches are needed for accurately characterizing the acoustic pressures generated by clinical ultrasound sources under operating conditions. Characterization of HIFU fields is complicated by nonlinear wave propagation and the complexity of phased-array transducers. Previous work has described aspects of an approach that combines measurements and modeling, and here we demonstrate this approach for a clinical phased array transducer. First, low-amplitude hydrophone measurements were performed in water over a scan plane between the array and the focus. Second, these measurements were used to holographically reconstruct the surface vibrations of the transducer and to set a boundary condition for a 3-D acoustic propagation model. Finally, nonlinear simulations of the acoustic field were carried out over a range of source power levels. Simulation results were compared to pressure waveforms measured directly by hydrophone at both low and high power levels, demonstrating that details of the acoustic field including shock formation are quantitatively predicted. PMID:25004539

  15. Weak boson production amplitude zeros; equalities of the helicity amplitudes

    NASA Astrophysics Data System (ADS)

    Mamedov, Fizuli

    2002-08-01

    We investigate the radiation amplitude zeros exhibited by many standard model amplitudes for triple weak gauge boson production processes. We show that WZγ production amplitudes have an especially rich structure in terms of zeros; these amplitudes have zeros originating from several different sources. It is also shown that the type-I current null zone is the special case of the equality of the specific helicity amplitudes.

  16. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  17. Syzygies probing scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Liu, Junyu; Xie, Ruofei; Zhang, Hao; Zhou, Yehao

    2016-09-01

    We propose a new efficient algorithm to obtain the locally minimal generating set of the syzygies for an ideal, i.e. a generating set whose proper subsets cannot be generating sets. Syzygy is a concept widely used in the current study of scattering amplitudes. This new algorithm can deal with more syzygies effectively because a new generation of syzygies is obtained in each step and the irreducibility of this generation is also verified in the process. This efficient algorithm can also be applied in getting the syzygies for the modules. We also show a typical example to illustrate the potential application of this method in scattering amplitudes, especially the Integral-By-Part(IBP) relations of the characteristic two-loop diagrams in the Yang-Mills theory.

  18. Acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  19. Amplitude Modulator Chassis

    SciTech Connect

    Erbert, G

    2009-09-01

    The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 ps apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.

  20. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    PubMed

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing.

  1. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Gray, G.W.; Jensen, A.S.

    1957-10-22

    A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.

  2. Amplitudes of Spiral Perturbations

    NASA Astrophysics Data System (ADS)

    Grosbol, P.; Patsis, P. A.

    2014-03-01

    It has proven very difficult to estimate the amplitudes of spiral perturbations in disk galaxies from observations due to the variation of mass-to-light ratio and extinction across spiral arms. Deep, near-infrared images of grand-design spiral galaxies obtained with HAWK-I/VLT were used to analyze the azimuthal amplitude and shape of arms, which, even in the K-band may, be significantly biased by the presence of young stellar populations. Several techniques were applied to evaluate the relative importance of young stars across the arms, such as surface brightness of the disk with light from clusters subtracted, number density of clusters detected, and texture of the disk. The modulation of the texture measurement, which correlates with the number density of faint clusters, yields amplitudes of the spiral perturbation in the range 0.1-0.2. This estimate gives a better estimate of the mass perturbation in the spiral arms, since it is dominated by old clusters.

  3. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  4. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  5. Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch.

    PubMed

    Plummer, Emily Megan; Goller, Franz

    2008-01-01

    Song of the zebra finch (Taeniopygia guttata) is a complex temporal sequence generated by a drastic change to the regular oscillations of the normal respiratory pattern. It is not known how respiratory functions, such as supply of air volume and gas exchange, are controlled during song. To understand the integration between respiration and song, we manipulated respiration during song by injecting inert dental medium into the air sacs. Increased respiratory rate after injections indicates that the reduction of air affected quiet respiration and that birds compensated for the reduced air volume. During song, air sac pressure, tracheal airflow and sound amplitude decreased substantially with each injection. This decrease was consistently present during each expiratory pulse of the song motif irrespective of the air volume used. Few changes to the temporal pattern of song were noted, such as the increased duration of a minibreath in one bird and the decrease in duration of a long syllable in another bird. Despite the drastic reduction in air sac pressure, airflow and sound amplitude, no increase in abdominal muscle activity was seen. This suggests that during song, birds do not compensate for the reduced physiological or acoustic parameters. Neither somatosensory nor auditory feedback mechanisms appear to effect a correction in expiratory effort to compensate for reduced air sac pressure and sound amplitude.

  6. The Acoustic Properties of Low Intensity Vocalizations Match Hearing Sensitivity in the Webbed-Toed Gecko, Gekko subpalmatus

    PubMed Central

    Chen, Jingfeng; Jono, Teppei; Cui, Jianguo; Yue, Xizi; Tang, Yezhong

    2016-01-01

    The design of acoustic signals and hearing sensitivity in socially communicating species would normally be expected to closely match in order to minimize signal degradation and attenuation during signal propagation. Nevertheless, other factors such as sensory biases as well as morphological and physiological constraints may affect strict correspondence between signal features and hearing sensitivity. Thus study of the relationships between sender and receiver characteristics in species utilizing acoustic communication can provide information about how acoustic communication systems evolve. The genus Gekko includes species emitting high-amplitude vocalizations for long-range communication (loud callers) as well as species producing only low-amplitude vocalizations when in close contact with conspecifics (quiet callers) which have rarely been investigated. In order to investigate relationships between auditory physiology and the frequency characteristics of acoustic signals in a quiet caller, Gekko subpalmatus we measured the subjects’ vocal signal characteristics as well as auditory brainstem responses (ABRs) to assess auditory sensitivity. The results show that G. subpalmatus males emit low amplitude calls when encountering females, ranging in dominant frequency from 2.47 to 4.17 kHz with an average at 3.35 kHz. The auditory range with highest sensitivity closely matches the dominant frequency of the vocalizations. This correspondence is consistent with the notion that quiet and loud calling species are under similar selection pressures for matching auditory sensitivity with spectral characteristics of vocalizations. PMID:26752301

  7. The Acoustic Properties of Low Intensity Vocalizations Match Hearing Sensitivity in the Webbed-Toed Gecko, Gekko subpalmatus.

    PubMed

    Chen, Jingfeng; Jono, Teppei; Cui, Jianguo; Yue, Xizi; Tang, Yezhong

    2016-01-01

    The design of acoustic signals and hearing sensitivity in socially communicating species would normally be expected to closely match in order to minimize signal degradation and attenuation during signal propagation. Nevertheless, other factors such as sensory biases as well as morphological and physiological constraints may affect strict correspondence between signal features and hearing sensitivity. Thus study of the relationships between sender and receiver characteristics in species utilizing acoustic communication can provide information about how acoustic communication systems evolve. The genus Gekko includes species emitting high-amplitude vocalizations for long-range communication (loud callers) as well as species producing only low-amplitude vocalizations when in close contact with conspecifics (quiet callers) which have rarely been investigated. In order to investigate relationships between auditory physiology and the frequency characteristics of acoustic signals in a quiet caller, Gekko subpalmatus we measured the subjects' vocal signal characteristics as well as auditory brainstem responses (ABRs) to assess auditory sensitivity. The results show that G. subpalmatus males emit low amplitude calls when encountering females, ranging in dominant frequency from 2.47 to 4.17 kHz with an average at 3.35 kHz. The auditory range with highest sensitivity closely matches the dominant frequency of the vocalizations. This correspondence is consistent with the notion that quiet and loud calling species are under similar selection pressures for matching auditory sensitivity with spectral characteristics of vocalizations.

  8. Pressure Pulse Measurements Using Optical Hydrophone Principles

    NASA Astrophysics Data System (ADS)

    Ueberle, Friedrich; Jamshidi-Rad, Abtin

    2011-02-01

    Pressure pulses are used in extracorporeal lithotripsy, pain therapy and other medical applications. Typical lithotripter pulses reach positive pressure amplitudes of ca. 20 to more than 100 MPa and negative pressures of -5 to more than -20 MPa, depending on the focusing properties and energy settings of the source. The IEC standard 61846, which defines the acoustic parameters of pressure pulse fields, describes the properties of "Focus-" and "Field-" type hydrophones, which were originally specified as PVDF sensors. During recent years, two types of optical sensors were developed, which are based on the principle of measuring reflection changes of a laser beam at a glass-water surface: The fiber optic sensor using bare optical fibers and the "light spot" sensor using a thick glass block. Measurements with both hydrophone types were made with a low pressure transducer (p+max=3 MPa), and two electromagnetic lithotripter sources with the same total acoustic energy (E5MPa=90mJ), one with a wide focus (FWHM = 11 mm, p+max = 30 MPa) and the other with a small focus (FWHM = 3,5 mm, p+max = 83 MPa). The results show that both optical sensor types provide high pressure-time signal fidelity comparable to PVDF membrane sensors. Both optical hydrophones can serve as "Focus-" and "Field-" hydrophones as defined in the lithotripsy measurement standard IEC 61846.

  9. A review of acoustic dampers applied to combustion chambers in aerospace industry

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Li, X. Y.

    2015-04-01

    In engine combustion systems such as rockets, aero-engines and gas turbines, pressure fluctuations are always present, even during normal operation. One of design prerequisites for the engine combustors is stable operation, since large-amplitude self-sustained pressure fluctuations (also known as combustion instability) have the potential to cause serious structural damage and catastrophic engine failure. To dampen pressure fluctuations and to reduce noise, acoustic dampers are widely applied as a passive control means to stabilize combustion/engine systems. However, they cannot respond to the dynamic changes of operating conditions and tend to be effective over certain narrow range of frequencies. To maintain their optimum damping performance over a broad frequency range, extensive researches have been conducted during the past four decades. The present work is to summarize the status, challenges and progress of implementing such acoustic dampers on engine systems. The damping effect and mechanism of various acoustic dampers, such as Helmholtz resonators, perforated liners, baffles, half- and quarter-wave tube are introduced first. A summary of numerical, experimental and theoretical studies are then presented to review the progress made so far. Finally, as an alternative means, ';tunable acoustic dampers' are discussed. Potential, challenges and issues associated with the dampers practical implementation are highlighted.

  10. Nonlinear Resonant Oscillations of Gas in Optimized Acoustical Resonators and the Effect of Central Blockage

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Finkbeiner, Joshua; Raman, Ganesh; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    Optimizing resonator shapes for maximizing the ratio of maximum to minimum gas pressure at an end of the resonator is investigated numerically. It is well known that the resonant frequencies and the nonlinear standing waveform in an acoustical resonator strongly depend on the resonator geometry. A quasi-Newton type scheme was used to find optimized axisymmetric resonator shapes achieving the maximum pressure compression ratio with an acceleration of constant amplitude. The acoustical field was solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects were obtained through an automation scheme based on continuation method. Results are presented for optimizing three types of geometry: a cone, a horn-cone and a half cosine-shape. For each type, different optimized shapes were found when starting with different initial guesses. Further, the one-dimensional model was modified to study the effect of an axisymmetric central blockage on the nonlinear standing wave.

  11. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  12. An experimental and theoretical study of high-intensity, high-efficiency sirens: A thesis in acoustics

    SciTech Connect

    Pla, F.G.

    1987-05-01

    High-intensity, high-efficiency sound sources are needed for acoustic agglomeration of particle-laden aerosols in power plant flues and for combustion enhancement. The mechanical design of an experimental and a full-size siren is presented. Tunable inlet chambers are included to minimize the acoustic power radiated backward in the siren. Results show that tunable inlets are most effective at low pressure ratios and low frequencies. The main acoustic losses are discussed. A theoretical study of the sound generation mechanism in sirens is then presented. The various sound attenuation mechanisms are reviewed and a low frequency numerical solution for the frequency response is given. Finite-amplitude sound propagation in a horn is also studied. Results are presented that agree very well with experimental data. Important nonlinear phenomena such as shock formation, acoustic saturation, and distortion of initially non-sinusoidal finite-amplitude waves are discussed. Finally, a new siren design methodology is presented, including a step-by-step discussion on how to minimize the acoustic losses. 126 refs., 70 figs., 7 tabs.

  13. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas; Houston, Janice

    2012-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I liftoff acoustic environments and to determine the acoustic reduction gained by using an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model and Mobile Launcher with tower. Acoustic and pressure data were measured by over 200 instruments. The ASMAT results are compared to Ares I-X flight data.

  14. Electromagnetic acoustic source (EMAS) for generating shock waves and cavitation in mercury

    NASA Astrophysics Data System (ADS)

    Wang, Qi

    In the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory a vessel of liquid mercury is subjected to a proton beam. The resulting nuclear interaction produces neutrons that can be used for materials research, among other things, but also launches acoustic waves with pressures in excess of 10 MPa. The acoustic waves have high enough tensile stress to generate cavitation in the mercury which results in erosion to the steel walls of the vessel. In order to study the cavitation erosion and develop mitigation schemes it would be convenient to have a way of generating similar pressures and cavitation in mercury, without the radiation concerns associated with a proton beam. Here an electromagnetic acoustic source (EMAS) has been developed which consisted of a coil placed close to a metal plate which is in turn is in contact with a fluid. The source is driven by discharging a capacitor through the coil and results in a repulsive force on the plate launching acoustic waves in the fluid. A theoretical model is presented to predict the acoustic field from the EMAS and compares favorably with measurements made in water. The pressure from the EMAS was reported as a function of capacitance, charging voltage, number of coils, mylar thickness, and properties of the plates. The properties that resulted in the highest pressure were employed for experiments in mercury and a maximum pressure recorded was 7.1 MPa. Cavitation was assessed in water and mercury by high speed camera and by detecting acoustic emissions. Bubble clouds with lifetimes on the order of 100 µs were observed in water and on the order of 600 µs in mercury. Based on acoustic emissions the bubble radius in mercury was estimated to be 0.98 mm. Experiments to produce damage to a stainless steel plate in mercury resulted in a minimal effect after 2000 shock waves at a rate of 0.33 Hz - likely because the pressure amplitude was not high enough. In order to replicate the conditions in the SNS it is

  15. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, V.

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  16. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  17. Nonlinear acoustic techniques for landmine detection.

    PubMed

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.

  18. Acoustic Behavior of Halobacterium salinarum Gas Vesicles in the High-Frequency Range: Experiments and Modeling.

    PubMed

    Cherin, Emmanuel; Melis, Johan M; Bourdeau, Raymond W; Yin, Melissa; Kochmann, Dennis M; Foster, F Stuart; Shapiro, Mikhail G

    2017-03-01

    Gas vesicles (GVs) are a new and unique class of biologically derived ultrasound contrast agents with sub-micron size whose acoustic properties have not been fully elucidated. In this study, we investigated the acoustic collapse pressure and behavior of Halobacterium salinarum gas vesicles at transmit center frequencies ranging from 12.5 to 27.5 MHz. The acoustic collapse pressure was found to be above 550 kPa at all frequencies, nine-fold higher than the critical pressure observed under hydrostatic conditions. We illustrate that gas vesicles behave non-linearly when exposed to ultrasound at incident pressure ranging from 160 kPa to the collapse pressure and generate second harmonic amplitudes of -2 to -6 dB below the fundamental in media with viscosities ranging from 0.89 to 8 mPa·s. Simulations performed using a Rayleigh-Plesset-type model accounting for buckling and a dynamic finite-element analysis suggest that buckling is the mechanism behind the generation of harmonics. We found good agreement between the level of second harmonic relative to the fundamental measured at 20 MHz and the Rayleigh-Plesset model predictions. Finite-element simulations extended these findings to a non-spherical geometry, confirmed that the acoustic buckling pressure corresponds to the critical pressure under hydrostatic conditions and support the hypothesis of limited gas flow across the GV shell during the compression phase in the frequency range investigated. From simulations, estimates of GV bandwidth-limited scattering indicate that a single GV has a scattering cross section comparable to that of a red blood cell. These findings will inform the development of GV-based contrast agents and pulse sequences to optimize their detection with ultrasound.

  19. Parvulescu Revisited: Small Tank Acoustics for Bioacousticians.

    PubMed

    Rogers, Peter H; Hawkins, Anthony D; Popper, Arthur N; Fay, Richard R; Gray, Michael D

    2016-01-01

    Researchers often perform hearing studies on fish in small tanks. The acoustic field in such a tank is considerably different from the acoustic field that occurs in the animal's natural environment. The significance of these differences is magnified by the nature of the fish's auditory system where either acoustic pressure (a scalar), acoustic particle velocity (a vector), or both may serve as the stimulus. It is essential for the underwater acoustician to understand the acoustics of small tanks to be able to carry out valid auditory research in the laboratory and to properly compare and interpret the results of others.

  20. Frustrated total internal reflection acoustic field sensor

    DOEpatents

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  1. Dynamic acoustic tractor beams

    SciTech Connect

    Mitri, F. G.

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  2. Coffee roasting acoustics.

    PubMed

    Wilson, Preston S

    2014-06-01

    Cracking sounds emitted by coffee beans during the roasting process were recorded and analyzed to investigate the potential of using the sounds as the basis for an automated roast monitoring technique. Three parameters were found that could be exploited. Near the end of the roasting process, sounds known as "first crack" exhibit a higher acoustic amplitude than sounds emitted later, known as "second crack." First crack emits more low frequency energy than second crack. Finally, the rate of cracks appearing in the second crack chorus is higher than the rate in the first crack chorus.

  3. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  4. Effects of a trailing edge flap on the aerodynamics and acoustics of rotor blade-vortex interactions

    NASA Technical Reports Server (NTRS)

    Charles, B. D.; Tadghighi, H.; Hassan, A. A.

    1992-01-01

    The use of a trailing edge flap on a helicopter rotor has been numerically simulated to determine if such a device can mitigate the acoustics of blade vortex interactions (BVI). The numerical procedure employs CAMRAD/JA, a lifting-line helicopter rotor trim code, in conjunction with RFS2, an unsteady transonic full-potential flow solver, and WOPWOP, an acoustic model based on Farassat's formulation 1A. The codes were modified to simulate trailing edge flap effects. The CAMRAD/JA code was used to compute the far wake inflow effects and the vortex wake trajectories and strengths which are utilized by RFS2 to predict the blade surface pressure variations. These pressures were then analyzed using WOPWOP to determine the high frequency acoustic response at several fixed observer locations below the rotor disk. Comparisons were made with different flap deflection amplitudes and rates to assess flap effects on BVI. Numerical experiments were carried out using a one-seventh scale AH-1G rotor system for flight conditions simulating BVI encountered during low speed descending flight with and without flaps. Predicted blade surface pressures and acoustic sound pressure levels obtained have shown good agreement with the baseline no-flap test data obtained in the DNW wind tunnel. Numerical results indicate that the use of flaps is beneficial in reducing BVI noise.

  5. Nonlinear behavior of acoustic waves in combustion chambers

    NASA Technical Reports Server (NTRS)

    Culick, F. E. C.

    1975-01-01

    The nonlinear growth and limiting amplitude of acoustic waves in a combustion chamber are considered. A formal framework is provided within which practical problems can be treated with a minimum of effort and expense. The general conservation equations were expanded in two small parameters, one characterizing the mean flow field and one measuring the amplitude of oscillations, and then combined to yield a nonlinear inhomogeneous wave equation. The unsteady pressure and velocity fields were expressed as syntheses of the normal modes of the chamber, but with unknown time-varying amplitudes. This procedure yielded a representation of a general unsteady field as a system of coupled nonlinear oscillators. The system of nonlinear equations was treated by the method of averaging to produce a set of coupled nonlinear first order differential equations for the amplitudes and phases of the modes. The analysis is applicable to any combustion chamber. The most interesting applications are probably to solid rockets, liquid rockets, or thrust augmentors on jet engines.

  6. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    SciTech Connect

    Dai, Xiwen; Jing, Xiaodong Sun, Xiaofeng

    2015-05-15

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  7. Acoustic monitoring of first responder's physiology for health and performance surveillance

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2002-08-01

    Acoustic sensors have been used to monitor firefighter and soldier physiology to assess health and performance. The Army Research Laboratory has developed a unique body-contacting acoustic sensor that can monitor the health and performance of firefighters and soldiers while they are doing their mission. A gel-coupled sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. This technology can monitor heartbeats, breaths, blood pressure, motion, voice, and other indicators that can provide vital feedback to the medics and unit commanders. Diverse physiological parameters can be continuously monitored with acoustic sensors and transmitted for remote surveillance of personnel status. Body-worn acoustic sensors located at the neck, breathing mask, and wrist do an excellent job at detecting heartbeats and activity. However, they have difficulty extracting physiology during rigorous exercise or movements due to the motion artifacts sensed. Rigorous activity often indicates that the person is healthy by virtue of being active, and injury often causes the subject to become less active or incapacitated making the detection of physiology easier. One important measure of performance, heart rate variability, is the measure of beat-to-beat timing fluctuations derived from the interval between two adjacent beats. The Lomb periodogram is optimized for non-uniformly sampled data, and can be applied to non-stationary acoustic heart rate features (such as 1st and 2nd heart sounds) to derive heart rate variability and help eliminate errors created by motion artifacts. Simple peak-detection above or below a certain threshold or waveform derivative parameters can produce the timing and amplitude features necessary for the Lomb periodogram and cross-correlation techniques. High-amplitude motion artifacts may contribute to a different

  8. Acoustic equations for a gas stream in rigid-body rotation

    NASA Astrophysics Data System (ADS)

    Garcia-Ybarra, Pedro L.; Marin-Antuña, Jose M.

    2017-02-01

    The classical topic of wave propagation in a rotating gas is revisited by deducing scalar wave equations for propagation of acoustic and rotational waves through a plug flow of gas in rigid-body rotation with arbitrary intensities of the radial stratification. In the light of these novel equations, wave propagation is analyzed in two different base gas states: isothermal and homentropic. In both cases, previous findings are recovered that assess the validity of the equations and new results are established. In the non-homentropic but isothermal case, the set of governing equations is reduced to two coupled scalar wave equations with space dependent coefficients for the disturbances of density and pressure. Travelling wave solutions with variable amplitude have been obtained in the limit of weak stratification both for inertial waves as for acoustic waves which, in general, propagate on different frequency bands that overlap in the small wavenumber region. Furthermore, the entropy stratification in the base state is stable and compels the propagation of internal waves, leading to hybrid acoustic-inertial-vortical modes. In the homentropic case, the adiabatic relation between pressure and density disturbances allows to reduce further the governing equations to a single fourth-order scalar wave equation. In this case, the sound propagation velocity depends on the distance to the rotation axis and solutions are found by multiple-scale analyses in the form of waves with slowly varying amplitude and wavenumber. The corresponding eikonal equation shows that acoustic rays are refracted towards the rotation axis, propagating and spinning along and around it. In that way, the swirling gas behaves as an axial waveguide trapping inside any acoustic ray propagating in the vortex with large enough azimuthal and/or vertical wavenumber component.

  9. Testing of containers made of glass-fiber reinforced plastic with the aid of acoustic emission analysis

    NASA Technical Reports Server (NTRS)

    Wolitz, K.; Brockmann, W.; Fischer, T.

    1979-01-01

    Acoustic emission analysis as a quasi-nondestructive test method makes it possible to differentiate clearly, in judging the total behavior of fiber-reinforced plastic composites, between critical failure modes (in the case of unidirectional composites fiber fractures) and non-critical failure modes (delamination processes or matrix fractures). A particular advantage is that, for varying pressure demands on the composites, the emitted acoustic pulses can be analyzed with regard to their amplitude distribution. In addition, definite indications as to how the damages occurred can be obtained from the time curves of the emitted acoustic pulses as well as from the particular frequency spectrum. Distinct analogies can be drawn between the various analytical methods with respect to whether the failure modes can be classified as critical or non-critical.

  10. Numerical analysis of acoustically driven viscous flow through a circular hole

    NASA Astrophysics Data System (ADS)

    Notomi, Tetsuo; Namba, Masanobu

    1990-12-01

    Periodic viscous flows through a circular hole driven by fluctuating far field pressure are numerically studied. The time-dependent incompressible Navier-Stokes equations formulated with orthogonal curvilinear coordinates are solved by using a finite difference method. The flow patterns are classified into three regimes by fluctuating pressure amplitude and frequency: flows with no laminar separation (high frequency-low pressure range), flows with attached separation bubble (intermediate frequency and pressure range) and flows with detached vortex ring (low frequency-high pressure range). The flow resistance of the circular hole is proportional to the acoustic particle velocity but independent of the viscosity of the fluid and almost invariant with the frequency for the low frequency-high pressure range. On the other hand, for the high frequency-low pressure range, the flow resistance is independent of the periodic pressure amplitude and varies directly with 2/3 powers of frequency. Finally, the predicted circular hole impedance is in good agreement with Ingard and Ising's (1967) experimental data for the orifice impedance.

  11. Acoustic techniques in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Sinha, D.N.

    1995-07-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  12. Acoustically-driven microfluidic systems

    SciTech Connect

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  13. Wave propagation in a 2D nonlinear structural acoustic waveguide using asymptotic expansions of wavenumbers

    NASA Astrophysics Data System (ADS)

    Vijay Prakash, S.; Sonti, Venkata R.

    2016-02-01

    Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrödinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions.

  14. Pressure waves in a supersaturated bubbly magma

    USGS Publications Warehouse

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  15. Frequency response calibration of recess-mounted pressure transducers

    NASA Astrophysics Data System (ADS)

    Marcolini, M. A.; Lorber, P. F.; Miller, W. T., Jr.; Covino, A. F., Jr.

    1991-03-01

    A technique is described for measuring the frequency response of pressure transducers mounted inside a model, where a narrow pipette leads to an orifice at the surface. An acoustic driver is mounted to a small chamber which has an opening at the opposite end with an O-ring seal to place over the orifice. A 3.18 mm (1/8 inch) reference microphone is mounted to one side of the chamber. The acoustic driver receives an input of white noise, and the transducer and reference microphone outputs are compared to obtain the frequency response of the pressure transducer. Selected results are presented in the form of power spectra for both the transducer and the reference, as well as the amplitude variation and phase shift between the two signals as a function of frequency. The effect of pipette length and the use of this technique for identifying both blocked orifices and faulty transducers are described.

  16. Frequency response calibration of recess-mounted pressure transducers

    NASA Technical Reports Server (NTRS)

    Marcolini, M. A.; Lorber, P. F.; Miller, W. T., Jr.; Covino, A. F., Jr.

    1991-01-01

    A technique is described for measuring the frequency response of pressure transducers mounted inside a model, where a narrow pipette leads to an orifice at the surface. An acoustic driver is mounted to a small chamber which has an opening at the opposite end with an O-ring seal to place over the orifice. A 3.18 mm (1/8 inch) reference microphone is mounted to one side of the chamber. The acoustic driver receives an input of white noise, and the transducer and reference microphone outputs are compared to obtain the frequency response of the pressure transducer. Selected results are presented in the form of power spectra for both the transducer and the reference, as well as the amplitude variation and phase shift between the two signals as a function of frequency. The effect of pipette length and the use of this technique for identifying both blocked orifices and faulty transducers are described.

  17. Self-focused acoustic ejectors for viscous liquids.

    PubMed

    Hon, S F; Kwok, K W; Li, H L; Ng, H Y

    2010-06-01

    Self-focused acoustic ejectors using the Fresnel zone plate (FZP) have been developed for ejecting viscous liquids, without nozzle, in the drop-on-demand mode. The FZP is composed of a lead zirconate titanate piezoelectric plate patterned with a series of annular electrodes, with the unelectroded region of the plate removed. Our results show that the acoustic waves are effectively self-focused by constructive interference in glycerin (with a viscosity of 1400 mPa s), giving small focal points with a high pressure. Due to the high attenuation, the wave pressure decreases significantly with the distance from the FZP. Nevertheless, the pressure at the focal points 2.5 and 6.5 mm from the FZP is high enough to eject glycerin droplets in the drop-on-demand mode. Driven by a simple wave train comprising a series of sinusoidal voltages with an amplitude of 35 V, a frequency of 4.28 MHz, and a duration of 2 ms, the ejector can eject fine glycerin droplets with a diameter of 0.4 mm at a repetition frequency of 120 Hz in a downward direction. Droplets of other viscous liquids, such as the prepolymer of an epoxy with a viscosity of 2000 mPa s, can also be ejected in the drop-on-demand mode under similar conditions.

  18. Acoustic field interaction with a boiling system under terrestrial gravity and microgravity.

    PubMed

    Sitter, J S; Snyder, T J; Chung, J N; Marston, P L

    1998-11-01

    Pool boiling experiments from a platinum wire heater in FC-72 liquid were conducted under terrestrial and microgravity conditions, both with and without the presence of a high-intensity acoustic standing wave within the fluid. The purpose of this research was to study the interaction between an acoustic field and a pool boiling system in normal gravity and microgravity. The absence of buoyancy in microgravity complicates the process of boiling. The acoustic force on a vapor bubble generated from a heated wire in a standing wave was shown to be able to play the role of buoyancy in microgravity. The microgravity environment was achieved with 0.6 and 2.1-s drop towers. The sound was transmitted through the fluid medium by means of a half wavelength sonic transducer driven at 10.18 kHz. At high enough acoustic pressure amplitudes cavitation and streaming began playing an important role in vapor bubble dynamics and heat transfer. Several different fixed heat fluxes were chosen for the microgravity experiment and the effects of acoustics on the surface temperature of the heater were recorded and the vapor bubble movement was filmed. Video images of the pool boiling processes and heat transfer data are presented.

  19. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    PubMed

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  20. Acoustic receptivity of compressible boundary layers: Receptivity by way of surface-temperature variations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    The Goldstein-Ruban theory has been extended within the framework of Zavol'skii et al. to study the acoustic receptivity of compressible boundary layers. We consider the receptivity produced in a region of localized, small-amplitude variation in the surface temperature and compare it with the receptivity that is induced through a similar mechanism by a variation in the suction velocity at the surface. It is found that the orientation of the acoustic wave can have a significant impact on the receptivity process, with the maximum receptivity at a given sound-pressure level being produced by upstream oriented acoustic waves. At sufficiently low Mach numbers, the variation of receptivity with the acoustic-wave orientation can be predicted analytically and is the same for both surface suction and surface heating. However, as a result of the acoustic refraction across the mean boundary layer, the above dependence can become rather complex and, also, dependent on the type of surface nonuniformity. The results also suggest that the receptivity caused by temperature nonuniformities may turn out to be more significant than that produced by the mean-flow perturbations associated with strip suction.

  1. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  2. An experimental test of noise-dependent voice amplitude regulation in Cope’s grey treefrog (Hyla chrysoscelis)

    PubMed Central

    Love, Elliot K.; Bee, Mark A.

    2010-01-01

    One strategy for coping with the constraints on acoustic signal reception posed by ambient noise is to signal louder as noise levels increase. Termed the ‘Lombard effect’, this reflexive behaviour is widespread among birds and mammals and occurs with a diversity of signal types, leading to the hypothesis that voice amplitude regulation represents a general vertebrate mechanism for coping with environmental noise. Support for this evolutionary hypothesis, however, remains limited due to a lack of studies in taxa other than birds and mammals. Here, we report the results of an experimental test of the hypothesis that male grey treefrogs increase the amplitude of their advertisement calls in response to increasing levels of chorus-shaped noise. We recorded spontaneously produced calls in quiet and in the presence of noise broadcast at sound pressure levels ranging between 40 dB and 70 dB. While increasing noise levels induced predictable changes in call duration and rate, males did not regulate call amplitude. These results do not support the hypothesis that voice amplitude regulation is a generic vertebrate mechanism for coping with noise. We discuss the possibility that intense sexual selection and high levels of competition for mates in choruses place some frogs under strong selection to call consistently as loudly as possible. PMID:20823939

  3. Amplitude-modulation detection by gerbils in reverberant sound fields.

    PubMed

    Lingner, Andrea; Kugler, Kathrin; Grothe, Benedikt; Wiegrebe, Lutz

    2013-08-01

    Reverberation can dramatically reduce the depth of amplitude modulations which are critical for speech intelligibility. Psychophysical experiments indicate that humans' sensitivity to amplitude modulation in reverberation is better than predicted from the acoustic modulation depth at the receiver position. Electrophysiological studies on reverberation in rabbits highlight the contribution of neurons sensitive to interaural correlation. Here, we use a prepulse-inhibition paradigm to quantify the gerbils' amplitude modulation threshold in both anechoic and reverberant virtual environments. Data show that prepulse inhibition provides a reliable method for determining the gerbils' AM sensitivity. However, we find no evidence for perceptual restoration of amplitude modulation in reverberation. Instead, the deterioration of AM sensitivity in reverberant conditions can be quantitatively explained by the reduced modulation depth at the receiver position. We suggest that the lack of perceptual restoration is related to physical properties of the gerbil's ear input signals and inner-ear processing as opposed to shortcomings of their binaural neural processing.

  4. Effects of Acoustic and Fluid Dynamic Interactions in Resonators: Applications in Thermoacoustic Refrigeration

    NASA Astrophysics Data System (ADS)

    Antao, Dion Savio

    Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization

  5. Fracture energy analysis via acoustic emission

    NASA Astrophysics Data System (ADS)

    Maslov, I. I.; Gradov, O. M.

    1986-04-01

    The results of previous studies on acoustic emission during fatigue loading are used to relate the characteristics of the acoustic signals to the fracture processes occurring at the crack tip. At stresses below the yield point of the material, discrete acoustic emissions are produced, their amplitude distribution being described by a monotonically decreasing function. At stresses near the yield point, the signals are continuous with a peak observed in the amplitude distribution function, while above the yield point the acoustic emission resumes the character it had below the yield point. It is shown that these emissions correspond to the formation of individual microfractures, to the process of macroplastic deformation and to stepwise crack propagation of the structurally disordered material, respectively.

  6. Validation and Simulation of Ares I Scale Model Acoustic Test - 2 - Simulations at 5 Foot Elevation for Evaluation of Launch Mount Effects

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Putman, Gabriel C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the direction of the launch tower. These tests have been performed without water suppression and have compared the acoustic emissions for launch structures with and without launch mounts. In addition, simulation results have also been compared to acoustic and imagery data collected from similar live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic environment experienced by the vehicle and the formation of highly directed acoustic waves moving across the platform deck. Comparisons of simulation results to live-fire test data showed good amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths showed qualitative capture of all plume and pressure wave evolution features.

  7. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  8. MO-F-CAMPUS-J-01: Acoustic Range Verification of Proton Beams: Simulation of Heterogeneity and Clinical Proton Pulses

    SciTech Connect

    Jones, K; Sehgal, C; Avery, S

    2015-06-15

    Purpose: Through simulation, to assess acoustic-based range verification of proton beams (protoacoustics) under clinical conditions. Methods: Pressure waves generated by the energy deposition of a 150 MeV, 8 mm FWHM pulsed pencil proton beam were numerically simulated through two Methods: 1) For a homogeneous water medium, an analytical wave-equation solution was used to calculate the time-dependent pressure measured at detector points surrounding the proton Bragg peak. 2) For heterogeneity studies, a CT tissue image was used to calculate the proton dose deposition and define the acoustic properties of the voxels through which numerical pressure wave propagation was simulated with the k-Wave matlab toolbox. The simulations were used to assess the dependence of the acoustic amplitude and range-verification accuracy on proton pulse rise time and tissue heterogeneity. Results: As the proton pulse rise time is increased from 1 to 40 µs, the amplitude of the expected acoustic emission decreases (a 60% drop distal to the Bragg peak), the central frequency of the expected signal decreases (from 45 to 6 kHz), and the accuracy of the range-verification decreases (from <1 mm to 16 mm at 5 cm distal to the Bragg peak). For a 300 nA pulse, the expected pressure range is on the order of 0.1 Pa, which is observable with commercial detectors. For the heterogeneous medium, our test case shows that pressure waves emitted by an anterior pencil beam directed into the abdomen and detected posteriorly can determine the Bragg peak range to an accuracy of <2mm for a 1 µs proton pulse. Conclusion: For proton pulses with fast rise-times, protoacoustics is a promising potential method for monitoring penetration depth through heterogeneous tissue. The loss of range-verification accuracy with increasing rise-times, however, suggests the need for comparisons to modeling to improve accuracy for slower cyclotron proton sources.

  9. Pressure Modulated Sonic Jet in Supersonic Crossflow

    NASA Astrophysics Data System (ADS)

    Rossmann, Tobias

    2014-11-01

    Sonic transverse jets in supersonic crossflow are modulated using high-amplitude variations in jet stagnation pressure to enhance jet penetration and mixing. An injection/modulation apparatus combining a powered resonance tube and acoustic resonator is used to create low momentum ratio jets (J = 1 , 2) in a supersonic cross-stream (M = 3 . 5). The injector has the capability to modulate the jet supply pressure at sufficiently high frequency (> 15 kHz) and amplitude (up to 190 dB) to access relevant Strouhal numbers (St = 0 - 0 . 3) and amplitudes (up to 10% of the jet stagnation pressure) related to mixing enhancement. Planar laser Mie scattering in both side and end views allows for instantaneous imaging of the jet fluid to quantify jet trajectory, spread, and mixing behavior. For modulated J = 2 transverse jets, the recirculation zone directly downstream of the injection location is eliminated and significantly faster centerline signal decay rates are seen. For the J = 1 modulated jets, substantial increases in centerline penetration, jet spread, and centerline signal decay rate are shown. Additionally, PDF analysis of the instantaneous jet fluid signal values is performed to compare local mixing efficiencies between the modulated and un-modulated cases.

  10. Electrochemical Processes Enhanced by Acoustic Liquid Manipulation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2004-01-01

    Acoustic liquid manipulation is a family of techniques that employ the nonlinear acoustic effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. Researchers at the NASA Glenn Research Center are exploring new methods of manipulating liquids for a variety of space applications, and we have found that acoustic techniques may also be used in the normal Earth gravity environment to enhance the performance of existing fluid processes. Working in concert with the NASA Commercial Technology Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation (Elgin, IL), researchers at Glenn have applied nonlinear acoustic principles to industrial applications. Collaborating with Alchemitron Corporation, we have adapted the devices to create acoustic streaming in a conventional electroplating process.

  11. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOEpatents

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  12. Aerodynamic and acoustic effects of eliminating core swirl from a full scale 1.6 stage pressure ratio fan (QF-5A)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Acker, L. W.; Stakolich, E. G.

    1978-01-01

    Fan QF-5A was a modification of fan QF-5 which had an additional core stator and adjusted support struts to turn the core exit flow from a 30 deg swirl to the axial direction. This modification was necessary to eliminate the impingement of the swirling core flow on the axial support pylon of the NASA-Lewis Quiet Fan Facility that caused aerodynamic, acoustic and structural problems with the original fan stage at fan speeds greater than 85 percent of design. The redesigned fan QF-5A did obtain the design bypass ratio with an increased core airflow suggesting that the flow problem was resolved. Acoustically, the redesigned stage showed a low frequency broadband noise reduction compared to the results for fan QF-5 at similar operating conditions.

  13. On the characteristics of obliquely propagating electrostatic structures in non-Maxwellian plasmas in the presence of ion pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad; Kourakis, Ioannis

    2017-03-01

    The dynamical characteristics of large amplitude ion-acoustic waves are investigated in a magnetized plasma comprising ions presenting space asymmetry in the equation of state and non-Maxwellian electrons. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low theory. An excess in the superthermal component of the electron population is assumed, in agreement with long-tailed (energetic electron) distribution observations in space plasmas; this is modeled via a kappa-type distribution function. Large electrostatic excitations are assumed to propagate in a direction oblique to the external magnetic field. In the linear (small amplitude) regime, two electrostatic modes are shown to exist. The properties of arbitrary amplitude (nonlinear) obliquely propagating ion-acoustic solitary excitations are thus investigated via a pseudomechanical energy balance analogy, by adopting a Sagdeev potential approach. The combined effect of the ion pressure anisotropy and excess superthermal electrons is shown to alter the parameter region where solitary waves can exist. An excess in the suprathermal particles is thus shown to be associated with solitary waves, which are narrower, faster, and of larger amplitude. Ion pressure anisotropy, on the other hand, affects the amplitude of the solitary waves, which become weaker (in strength), wider (in spatial extension), and thus slower in comparison with the cold ion case.

  14. New acoustical technology of sound absorption based on reverse horn

    NASA Astrophysics Data System (ADS)

    Zhang, Yong Yan; Wu, Jiu Hui; Cao, Song Hua; Cao, Pei; Zhao, Zi Ting

    2016-12-01

    In this paper, a novel reverse horn’s sound-absorption mechanism and acoustic energy focusing mechanism for low-frequency broadband are presented. Due to the alternation of the reverse horn’s thickness, the amplitude of the acoustic pressure propagated in the structure changes, which results in growing energy focused in the edge and in the reverse horn’s tip when the characteristic length is equal to or less than a wavelength and the incident wave is compressed. There are two kinds of methods adopted to realize energy dissipation. On the one hand, sound-absorbing materials are added in incident direction in order to overcome the badness of the reverse horn’s absorption in high frequency and improve the overall high-frequency and low-frequency sound-absorption coefficients; on the other hand, adding mass and film in its tip could result in mechanical energy converting into heat energy due to the coupled vibration of mass and the film. Thus, the reverse horn with film in the tip could realize better sound absorption for low-frequency broadband. These excellent properties could have potential applications in the one-dimensional absorption wedge and for the control of acoustic wave.

  15. Nonlinear standing waves in 2-D acoustic resonators.

    PubMed

    Cervenka, Milan; Bednarik, Michal

    2006-12-22

    This paper deals with 2-D simulation of finite-amplitude standing waves behavior in rectangular acoustic resonators. Set of three partial differential equations in third approximation formulated in conservative form is derived from fundamental equations of gas dynamics. These equations form a closed set for two components of acoustic velocity vector and density, the equations account for external driving force, gas dynamic nonlinearities and thermoviscous dissipation. Pressure is obtained from solution of the set by means of an analytical formula. The equations are formulated in the Cartesian coordinate system. The model equations set is solved numerically in time domain using a central semi-discrete difference scheme developed for integration of sets of convection-diffusion equations with two or more spatial coordinates. Numerical results show various patterns of acoustic field in resonators driven using vibrating piston with spatial distribution of velocity. Excitation of lateral shock-wave mode is observed when resonant conditions are fulfilled for longitudinal as well as for transversal direction along the resonator cavity.

  16. Interferometer Detects Acoustic Emissions in Composites

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H.; Clause, R. O.; Wade, J. C.; Zerwekh, P. S.

    1985-01-01

    Embedded single-mode optical fibers sample internal-stress fields directly. Statically loaded composite matrix emits pulsed ultrasonic waves which mechanically modulate embedded fiber and phase-modulate transmitted optical field. Modulation detected by optical interferometry and Fourier optical processing converted to electronic signal proportional to acoustic field amplitude integated along length of fiber embedded in specimen. Technique used for measurements of both high- and low-frequency CW acoustic fields as well as high-frequency transients.

  17. Three-Dimensional Shallow Water Acoustics

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Three-Dimensional Shallow Water Acoustics Dr. Ying...model to predict acoustic fluctuations and derive sound pressure sensitivity kernels due to 3-D sound speed perturbation in the water column. The...numerical method to be utilized is a tangent linear solution to predict acoustic fluctuations due to 3-D sound speed perturbation in the water column. This

  18. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  19. Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves

    SciTech Connect

    Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin

    2008-09-07

    The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.

  20. Acoustic measurements of a liquefied cohesive sediment bed under waves

    NASA Astrophysics Data System (ADS)

    Mosquera, R.; Groposo, V.; Pedocchi, F.

    2014-04-01

    In this article the response of a cohesive sediment deposit under the action of water waves is studied with the help of laboratory experiments and an analytical model. Under the same regular wave condition three different bed responses were observed depending on the degree of consolidation of the deposit: no bed motion, bed motion of the upper layer after the action of the first waves, and massive bed motion after several waves. The kinematic of the upper 3 cm of the deposit were measured with an ultrasound acoustic profiler, while the pore-water pressure inside the bed was simultaneously measured using several pore pressure sensors. A poro-elastic model was developed to interpret the experimental observations. The model showed that the amplitude of the shear stress increased down into the bed. Then it is possible that the lower layers of the deposit experience plastic deformations, while the upper layers present just elastic deformations. Since plastic deformations in the lower layers are necessary for pore pressure build-up, the analytical model was used to interpret the experimental results and to state that liquefaction of a self consolidated cohesive sediment bed would only occur if the bed yield stress falls within the range defined by the amplitude of the shear stress inside the bed.

  1. Mixing in Shear Coaxial Jets with and without Acoustics

    DTIC Science & Technology

    2012-03-29

    Force Research Laboratory (AFMC) AFRL/RZSA 10 E. Saturn Blvd. Edwards AFB CA 93524-7680 9. SPONSORING / MONITORING AGENCY NAME(S) AND...Acoustic Field Set-Up: Pressure Antinode • Pressure antinode ( PAN ) – condition of maximum pressure perturbation in the acoustic field • Piezo-sirens...forced in-phase • Superposition of quasi-1D acoustic waves traveling in opposite directions ⇒ PAN at the jet location (geometric center of test

  2. Scavenging dissolved oxygen via acoustic droplet vaporization.

    PubMed

    Radhakrishnan, Kirthi; Holland, Christy K; Haworth, Kevin J

    2016-07-01

    Acoustic droplet vaporization (ADV) of perfluorocarbon emulsions has been explored for diagnostic and therapeutic applications. Previous studies have demonstrated that vaporization of a liquid droplet results in a gas microbubble with a diameter 5-6 times larger than the initial droplet diameter. The expansion factor can increase to a factor of 10 in gassy fluids as a result of air diffusing from the surrounding fluid into the microbubble. This study investigates the potential of this process to serve as an ultrasound-mediated gas scavenging technology. Perfluoropentane droplets diluted in phosphate-buffered saline (PBS) were insonified by a 2 MHz transducer at peak rarefactional pressures lower than and greater than the ADV pressure amplitude threshold in an in vitro flow phantom. The change in dissolved oxygen (DO) of the PBS before and after ADV was measured. A numerical model of gas scavenging, based on conservation of mass and equal partial pressures of gases at equilibrium, was developed. At insonation pressures exceeding the ADV threshold, the DO of air-saturated PBS decreased with increasing insonation pressures, dropping as low as 25% of air saturation within 20s. The decrease in DO of the PBS during ADV was dependent on the volumetric size distribution of the droplets and the fraction of droplets transitioned during ultrasound exposure. Numerically predicted changes in DO from the model agreed with the experimentally measured DO, indicating that concentration gradients can explain this phenomenon. Using computationally modified droplet size distributions that would be suitable for in vivo applications, the DO of the PBS was found to decrease with increasing concentrations. This study demonstrates that ADV can significantly decrease the DO in an aqueous fluid, which may have direct therapeutic applications and should be considered for ADV-based diagnostic or therapeutic applications.

  3. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.

    PubMed

    Žnidarčič, Anton; Mettin, Robert; Dular, Matevž

    2015-01-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term "acoustic supercavitation" was proposed for this type of cavitation Žnidarčič et al. (2014) [1]. We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations. The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields.

  4. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr.; Younane Abousleiman

    2004-04-01

    The research during this project has concentrated on developing a correlation between rock deformation mechanisms and their acoustic velocity signature. This has included investigating: (1) the acoustic signature of drained and undrained unconsolidated sands, (2) the acoustic emission signature of deforming high porosity rocks (in comparison to their low porosity high strength counterparts), (3) the effects of deformation on anisotropic elastic and poroelastic moduli, and (4) the acoustic tomographic imaging of damage development in rocks. Each of these four areas involve triaxial experimental testing of weak porous rocks or unconsolidated sand and involves measuring acoustic properties. The research is directed at determining the seismic velocity signature of damaged rocks so that 3-D or 4-D seismic imaging can be utilized to image rock damage. These four areas of study are described in the report: (1) Triaxial compression experiments have been conducted on unconsolidated Oil Creek sand at high confining pressures. (2) Initial experiments on measuring the acoustic emission activity from deforming high porosity Danian chalk were accomplished and these indicate that the AE activity was of a very low amplitude. (3) A series of triaxial compression experiments were conducted to investigate the effects of induced stress on the anisotropy developed in dynamic elastic and poroelastic parameters in rocks. (4) Tomographic acoustic imaging was utilized to image the internal damage in a deforming porous limestone sample. Results indicate that the deformation damage in rocks induced during laboratory experimentation can be imaged tomographically in the laboratory. By extension the results also indicate that 4-D seismic imaging of a reservoir may become a powerful tool for imaging reservoir deformation (including imaging compaction and subsidence) and for imaging zones where drilling operation may encounter hazardous shallow water flows.

  5. Acoustic modes in fluid networks

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.; Clark, Robert W., Jr.; Doiron, Harold H.

    1992-01-01

    Pressure and flow rate eigenvalue problems for one-dimensional flow of a fluid in a network of pipes are derived from the familiar transmission line equations. These equations are linearized by assuming small velocity and pressure oscillations about mean flow conditions. It is shown that the flow rate eigenvalues are the same as the pressure eigenvalues and the relationship between line pressure modes and flow rate modes is established. A volume at the end of each branch is employed which allows any combination of boundary conditions, from open to closed, to be used. The Jacobi iterative method is used to compute undamped natural frequencies and associated pressure/flow modes. Several numerical examples are presented which include acoustic modes for the Helium Supply System of the Space Shuttle Orbiter Main Propulsion System. It should be noted that the method presented herein can be applied to any one-dimensional acoustic system involving an arbitrary number of branches.

  6. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  7. Identification of rocket-induced acoustic waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Mabie, Justin; Bullett, Terence; Moore, Prentiss; Vieira, Gerald

    2016-10-01

    Acoustic waves can create plasma disturbances in the ionosphere, but the number of observations is limited. Large-amplitude acoustic waves generated by energetic sources like large earthquakes and tsunamis are more readily observed than acoustic waves generated by weaker sources. New observations of plasma displacements caused by rocket-generated acoustic waves were made using the Vertically Incident Pulsed Ionospheric Radar (VIPIR), an advanced high-frequency radar. Rocket-induced acoustic waves which are characterized by low amplitudes relative to those induced by more energetic sources can be detected in the ionosphere using the phase data from fixed frequency radar observations of a plasma layer. This work is important for increasing the number and quality of observations of acoustic waves in the ionosphere and could help improve the understanding of energy transport from the lower atmosphere to the thermosphere.

  8. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice

    2014-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  9. Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields

    DTIC Science & Technology

    2014-01-01

    Kirchhoff’s theorem, typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in...two noncollinear ultrasonic baffled piston sources. The theory is extended to the modeling of the sound beams generated by parametric transducer arrays ...typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in the near-field by

  10. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  11. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.

  12. Nonlinear behavior of acoustic waves in combustion chambers. I, II. [stability in solid propellant rocket engine and T burner

    NASA Technical Reports Server (NTRS)

    Culick, F. E. C.

    1976-01-01

    The general problem of the nonlinear growth and limiting amplitude of acoustic waves in a combustion chamber is treated in three parts: (1) the general conservation equations are expanded in two small parameters, and then combined to yield a nonlinear inhomogeneous wave equation, (2) the unsteady pressure and velocity fields are expressed as a synthesis of the normal modes of the chamber, but with unknown time-varying amplitudes, and (3) the system of nonlinear equations is treated by the method of averaging to produce a set of coupled nonlinear first order differential equations for the amplitudes and phases of the modes. This approximate analysis is applied to the investigation of the unstable motions in a solid propellant rocket engine and in a T burner.

  13. Acceleration of solitary ion-acoustic surface waves

    NASA Astrophysics Data System (ADS)

    Stenflo, L.; Gradov, O. M.

    1991-10-01

    We consider the interaction between long-wavelength ion-acoustic and electron-plasma surface waves on a semi-infinite plasma. It then turns out that an ion-acoustic solitary wave can be accelerated when the amplitude of the electron-plasma surface wave varies in time.

  14. Studies of acoustical properties of bulk porous flexible materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1984-01-01

    Acoustic prediction and measurement of bulk porous materials with flexible frames is investigated. The acoustic properties of Kevlar 29 are examined. Various acoustic tests are employed to determine impedance, sound wave propagation, and wave pressure equations for the highly porous fiber composites. The derivation of design equations and future research goals are included.

  15. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.

    PubMed

    Ben Haj Slama, Rafika; Gilles, Bruno; Ben Chiekh, Maher; Béra, Jean-Christophe

    2017-04-01

    This research evaluates the use of Particle Image Velocimetry (PIV) technique for characterizing acoustic streaming flow generated by High Intensity Focused Ultrasound (HIFU). PIV qualification tests, focusing on the seeding particle size (diameter of 5, 20 and 50μm) were carried out in degassed water subjected to a focused field of 550kHz-frequency with an acoustic pressure amplitude of 5.2, 10.5 and 15.7bar at the focus. This study shows that the ultrasonic field, especially the radiation force, can strongly affect seeding particle behavior. Large particles (50μm-diameter) are repelled from the focal zone and gathered at radiation pressure convergence lines on either side of the focus. The calculation of the acoustic radiation pressure applied on these particles explains the observed phenomenon. PIV measurements do not, therefore, properly characterize the streaming flow in this case. On the contrary, small particles (5μm-diameter) velocity measurements were in good agreement with the Computational Fluid Dynamics (CFD) simulations of the water velocity field. A simple criterion approximating the diameter threshold below which seeding particles are qualified for PIV in presence of focused ultrasound is then proposed.

  16. Modeling of the acoustic field of thermally induced ultrasonic emission from a spherical cavity surface.

    PubMed

    Wang, Dongdong; Hu, Hanping; Wang, Zedong

    2015-02-01

    Thermo-acoustic (TA) ultrasound has attracted considerable interest during the last decade for its many advantages over the conventional electro-acoustic ultrasound. In this paper, a general expression of the acoustic pressure field of thermally induced ultrasonic emission from a spherical cavity surface is derived by using a fully thermally-mechanically coupled TA model. The characteristics and regularities of ultrasound from spherical focusing TA emitter can therefore be studied in detail. It is found that, for the TA emission in sphere shell, wideband flat amplitude-frequency response pattern, the most important feature of TA ultrasound in an open space from a technical standpoint, is seriously disrupted by wave interference occurring in spherical cavity. The dependences of sound pressure of TA ultrasound in spherical cavity on the heating frequency, the inner radius of spherical cavity, the location in spherical cavity, and the thickness of TA sample layer, as well as the type and filling pressure of gas in cavity are given and discussed. The currently used planar TA solution is only the special case for spherical cavity with infinite radius of the analytical solution developed in this work, which would be of significance for more comprehensive guide to understanding and using TA ultrasound.

  17. The effect of static pressure on the inertial cavitation threshold.

    PubMed

    Bader, Kenneth B; Raymond, Jason L; Mobley, Joel; Church, Charles C; Felipe Gaitan, D

    2012-08-01

    The amplitude of the acoustic pressure required to nucleate a gas or vapor bubble in a fluid, and to have that bubble undergo an inertial collapse, is termed the inertial cavitation threshold. The magnitude of the inertial cavitation threshold is typically limited by mechanisms other than homogeneous nucleation such that the theoretical maximum is never achieved. However, the onset of inertial cavitation can be suppressed by increasing the static pressure of the fluid. The inertial cavitation threshold was measured in ultrapure water at static pressures up to 30 MPa (300 bars) by exciting a radially symmetric standing wave field in a spherical resonator driven at a resonant frequency of 25.5 kHz. The threshold was found to increase linearly with the static pressure; an exponentially decaying temperature dependence was also found. The nature and properties of the nucleating mechanisms were investigated by comparing the measured thresholds to an independent analysis of the particulate content and available models for nucleation.

  18. Study of acoustic radiation during air stream filtration through a porous medium

    NASA Astrophysics Data System (ADS)

    Zaslavskii, Yu. M.; Zaslavskii, V. Yu.

    2012-11-01

    The paper presents results of laboratory experiments on studying the characteristics of acoustic emission generated by a flow of compressed air, which is filtered by porous pumice samples with and without partial fluid saturation. The construction features of the laboratory setup and details of the experiments are described. Porous samples with dry and partially fluid-filled pores are used. The visual patterns of the acoustic emission spectrum, which occurs under stationary filtration of the compressed air, are presented, and its amplitude-frequency distribution characteristic for different sample porosities and different degrees of their fluid saturation is shown. It is demonstrated that the relaxation times of the emission noise level differ. This is revealed during the sharp elimination of the drop in pressure from such samples, i.e., in the nonstationary filtration mode.

  19. A Two-dimensional Cartesian and Axisymmetric Study of Combustion-acoustic Interaction

    NASA Technical Reports Server (NTRS)

    Hood, Caroline; Frendi, Abdelkader

    2006-01-01

    This paper describes a study of a lean premixed (LP) methane-air combustion wave in a two-dimensional Cartesian and axisymmetric coordinate system. Lean premixed combustors provide low emission and high efficiency; however, they are susceptible to combustion instabilities. The present study focuses on the behavior of the flame as it interacts with an external acoustic disturbance. It was found that the flame oscillations increase as the disturbance amplitude is increased. Furthermore, when the frequency of the disturbance is at resonance with a chamber frequency, the instabilities increase. For the axisymmetric geometry, the flame is found to be more unstable compared to the Cartesian case. In some cases, these instabilities were severe and led to flame extinction. In the axisymmetric case, several passive control devices were tested to assess their effectiveness. It is found that an acoustic cavity is better able at controlling the pressure fluctuations in the chamber.

  20. Suppression of flow-acoustic coupling in sidebranch ducts by interface modification

    NASA Astrophysics Data System (ADS)

    Knotts, B. D.; Selamet, A.

    2003-08-01

    The flow-acoustic coupling of shear layer instabilities with the acoustic resonances at the interface of a closed sidebranch and main duct can produce high-amplitude pure-tone noise, known as "whistle". This study investigates experimentally the effect of various interface geometry modifications on whistles. The objective of the modifications is to suppress the noise by redirecting the shear layer at the main duct-sidebranch interface. Interchangeable suppressor blocks of varying shapes and sizes mounted upstream and downstream of the sidebranch opening are used to change the geometry. The block shapes include those with square edges, ramps, bevelled edges, and curved (radiused) edges. The experiments are conducted in a flow facility at conditions that include certain ranges of Strouhal numbers known to coincide with significant noise generation. The effectiveness of various suppressors in reducing the noise is assessed by analyzing the measured sound pressure levels.