Science.gov

Sample records for acoustic propagation models

  1. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE PAGESBeta

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  2. Numerical modelling of nonlinear full-wave acoustic propagation

    NASA Astrophysics Data System (ADS)

    Velasco-Segura, Roberto; Rendón, Pablo L.

    2015-10-01

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe's linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  3. Numerical modelling of nonlinear full-wave acoustic propagation

    SciTech Connect

    Velasco-Segura, Roberto Rendón, Pablo L.

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  4. Acoustic Propagation Modeling for Marine Hydro-Kinetic Applications

    NASA Astrophysics Data System (ADS)

    Johnson, C. N.; Johnson, E.

    2014-12-01

    The combination of riverine, tidal, and wave energy have the potential to supply over one third of the United States' annual electricity demand. However, in order to deploy and test prototypes, and commercial installations, marine hydrokinetic (MHK) devices must meet strict regulatory guidelines that determine the maximum amount of noise that can be generated and sets particular thresholds for determining disturbance and injury caused by noise. An accurate model for predicting the propagation of a MHK source in a real-life hydro-acoustic environment has been established. This model will help promote the growth and viability of marine, water, and hydrokinetic energy by confidently assuring federal regulations are meet and harmful impacts to marine fish and wildlife are minimal. Paracousti, a finite difference solution to the acoustic equations, was originally developed for sound propagation in atmospheric environments and has been successfully validated for a number of different geophysical activities. The three-dimensional numerical implementation is advantageous over other acoustic propagation techniques for a MHK application where the domains of interest have complex 3D interactions from the seabed, banks, and other shallow water effects. A number of different cases for hydro-acoustic environments have been validated by both analytical and numerical results from canonical and benchmark problems. This includes a variety of hydrodynamic and physical environments that may be present in a potential MHK application including shallow and deep water, sloping, and canyon type bottoms, with varying sound speed and density profiles. With the model successfully validated for hydro-acoustic environments more complex and realistic MHK sources from turbines and/or arrays can be modeled.

  5. Theoretical models for duct acoustic propagation and radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1991-01-01

    The development of computational methods in acoustics has led to the introduction of analysis and design procedures which model the turbofan inlet as a coupled system, simultaneously modeling propagation and radiation in the presence of realistic internal and external flows. Such models are generally large, require substantial computer speed and capacity, and can be expected to be used in the final design stages, with the simpler models being used in the early design iterations. Emphasis is given to practical modeling methods that have been applied to the acoustical design problem in turbofan engines. The mathematical model is established and the simplest case of propagation in a duct with hard walls is solved to introduce concepts and terminologies. An extensive overview is given of methods for the calculation of attenuation in uniform ducts with uniform flow and with shear flow. Subsequent sections deal with numerical techniques which provide an integrated representation of duct propagation and near- and far-field radiation for realistic geometries and flight conditions.

  6. Modeling of acoustic emission signal propagation in waveguides.

    PubMed

    Zelenyak, Andreea-Manuela; Hamstad, Marvin A; Sause, Markus G R

    2015-01-01

    Acoustic emission (AE) testing is a widely used nondestructive testing (NDT) method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM) was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing. PMID:26007731

  7. Modeling of Acoustic Emission Signal Propagation in Waveguides

    PubMed Central

    Zelenyak, Andreea-Manuela; Hamstad, Marvin A.; Sause, Markus G. R.

    2015-01-01

    Acoustic emission (AE) testing is a widely used nondestructive testing (NDT) method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM) was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing. PMID:26007731

  8. Acoustic propagation in the Hudson River Estuary: Analysis of experimental measurements and numerical modeling results

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Sreeram

    Underwater intrusion detection is an ongoing security concern in port and harbor areas. Of particular interest is to detect SCUBA divers, unmanned underwater vehicles and small boats from their acoustic signature. A thorough understanding of the effects of the shallow water propagating medium on acoustic signals can help develop new technologies and improve the performance of existing acoustic based surveillance systems. The Hudson River Estuary provides us with such a shallow water medium to conduct research and improve our knowledge of shallow water acoustics. Acoustic propagation in the Hudson River Estuary is highly affected by the temporal and spatial variability of salinity and temperature due to tides, freshwater inflows, winds etc. The primary goal of this research is to help develop methodologies to predict the formation of an acoustic field in the realistic environment of the lower Hudson River Estuary. Shallow water high-frequency acoustic propagation experiments were conducted in the Hudson River near Hoboken, New Jersey. Channel Impulse Response (CIR) measurements were carried out in the frequency band from 10 to 100 kHz for distances up to 200 meters in a water depth of 8-10 meters which formed the basis for experimental Transmission Loss (TL). CIR data was also utilized to demonstrate multi-path propagation in shallow water. Acoustic propagation models based on Ray Theory and Parabolic Equation methods were implemented in the frequency band from 10 to 100 kHz and TL was estimated. The sound velocity profiles required as input by acoustic propagation models were calculated from in-situ measurements of temperature, salinity and depth. Surface reflection loss was obtained from CIR data and incorporated into the acoustic propagation models. Experimentally obtained TL was used to validate the acoustic model predictions. An outcome of this research is an operational acoustic transmission loss (TL) forecast system based on the existing, Stevens New York

  9. Modeling of acoustic and gravity waves propagation through the atmosphere with spectral element method

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2014-12-01

    Low-frequency events such as tsunamis generate acoustic and gravity waves which quickly propagate in the atmosphere. Since the atmospheric density decreases exponentially as the altitude increases and from the conservation of the kinetic energy, those waves see their amplitude raise (to the order of 105 at 200km of altitude), allowing their detection in the upper atmosphere. Various tools have been developed through years to model this propagation, such as normal modes modeling or to a greater extent time-reversal techniques, but none offer a low-frequency multi-dimensional atmospheric wave modelling.A modeling tool is worthy interest since there are many different phenomena, from quakes to atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool.Starting from the SPECFEM program that already propagate waves in solid, porous or fluid media using a spectral element method, this work offers a tool with the ability to model acoustic and gravity waves propagation in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source.Atmospheric attenuation is required in a proper modeling framework since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals. The bottom forcing feature has been implemented due to its ability to easily model the coupling with the Earth's or ocean's surface (that vibrates when a surface wave go through it) but also huge atmospheric events.

  10. Numerical modeling of acoustic and gravity waves propagation in the atmosphere using a spectral element method

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Brissaud, Quentin; Garcia, Raphael; Komatitsch, Dimitri

    2015-04-01

    During low-frequency events such as tsunamis, acoustic and gravity waves are generated and quickly propagate in the atmosphere. Due to the exponential decrease of the atmospheric density with the altitude, the conservation of the kinetic energy imposes that the amplitude of those waves increases (to the order of 105 at 200km of altitude), which allows their detection in the upper atmosphere. This propagation bas been modelled for years with different tools, such as normal modes modeling or to a greater extent time-reversal techniques, but a low-frequency multi-dimensional atmospheric wave modelling is still crucially needed. A modeling tool is worth of interest since there are many different sources, as earthquakes or atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool. By adding some developments to the SPECFEM package that already models wave propagation in solid, porous or fluid media using a spectral element method, we show here that acoustic and gravity waves propagation can now be modelled in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source. The bottom forcing feature has been implemented to easily model the coupling with the Earth's or ocean's vibrating surfaces but also huge atmospheric events. Atmospheric attenuation is also introduced since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals.

  11. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    SciTech Connect

    Aldridge, David Franklin; Collier, Sandra L.; Marlin, David H.; Ostashev, Vladimir E.; Symons, Neill Phillip; Wilson, D. Keith

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  12. Propagation modeling for sperm whale acoustic clicks in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia A.; Udovydchenkov, Ilya A.; Rypina, Irina I.; Ioup, George E.; Ioup, Juliette W.; Caruthers, Jerald W.; Newcomb, Joal; Fisher, Robert

    2001-05-01

    Simulations of acoustic broadband (500-6000 Hz) pulse propagation in the northern Gulf of Mexico, based on environmental data collected as a part of the Littoral Acoustic Demonstration Center (LADC) experiments in the summers of 2001 and 2002, are presented. The results of the modeling support the hypothesis that consistent spectrogram interference patterns observed in the LADC marine mammal phonation data cannot be explained by the propagation effects for temporal analysis windows corresponding to the duration of an animal click, and may be due to a uniqueness of an individual animal phonation apparatus. The utilization of simulation data for the development of an animal tracking algorithm based on the acoustic recordings of a single bottom-moored hydrophone is discussed. The identification of the bottom and surface reflected clicks from the same animal is attempted. The critical ranges for listening to a deep-water forging animal by a surface receiving system are estimated. [Research supported by ONR.

  13. Passive models of viscothermal wave propagation in acoustic tubes.

    PubMed

    Bilbao, Stefan; Harrison, Reginald; Kergomard, Jean; Lombard, Bruno; Vergez, Christophe

    2015-08-01

    A continued fraction expansion to the immittances defining viscothermal wave propagation in a cylindrical tube has been presented recently in this journal, intended as a starting point for time domain numerical method design. Though the approximation has the great benefit of passivity, or positive realness under truncation, its convergence is slow leading to approximations of high order in practice. Other passive structures, when combined with optimisation methods, can lead to good accuracy over a wide frequency range, and for relatively low order. PMID:26328672

  14. A Fusion Model of Seismic and Hydro-Acoustic Propagation for Treaty Monitoring

    NASA Astrophysics Data System (ADS)

    Arora, Nimar; Prior, Mark

    2014-05-01

    We present an extension to NET-VISA (Network Processing Vertically Integrated Seismic Analysis), which is a probabilistic generative model of the propagation of seismic waves and their detection on a global scale, to incorporate hydro-acoustic data from the IMS (International Monitoring System) network. The new model includes the coupling of seismic waves into the ocean's SOFAR channel, as well as the propagation of hydro-acoustic waves from underwater explosions. The generative model is described in terms of multiple possible hypotheses -- seismic-to-hydro-acoustic, under-water explosion, other noise sources such as whales singing or icebergs breaking up -- that could lead to signal detections. We decompose each hypothesis into conditional probability distributions that are carefully analyzed and calibrated. These distributions include ones for detection probabilities, blockage in the SOFAR channel (including diffraction, refraction, and reflection around obstacles), energy attenuation, and other features of the resulting waveforms. We present a study of the various features that are extracted from the hydro-acoustic waveforms, and their correlations with each other as well the source of the energy. Additionally, an inference algorithm is presented that concurrently infers the seismic and under-water events, and associates all arrivals (aka triggers), both from seismic and hydro-acoustic stations, to the appropriate event, and labels the path taken by the wave. Finally, our results demonstrate that this fusion of seismic and hydro-acoustic data leads to very good performance. A majority of the under-water events that IDC (International Data Center) analysts built in 2010 are correctly located, and the arrivals that correspond to seismic-to-hydroacoustic coupling, the T phases, are mostly correctly identified. There is no loss in the accuracy of seismic events, in fact, there is a slight overall improvement.

  15. Testing and verification of a scale-model acoustic propagation system.

    PubMed

    Sagers, Jason D; Ballard, Megan S

    2015-12-01

    This paper discusses the design and operation of a measurement apparatus used to conduct scale-model underwater acoustic propagation experiments, presents experimental results for an idealized waveguide, and compares the measured results to data generated by two-dimensional (2D) and three-dimensional (3D) numerical models. The main objective of this paper is to demonstrate the capability of the apparatus for a simple waveguide that primarily exhibits 2D acoustic propagation. The apparatus contains a computer-controlled positioning system that accurately moves a receiving transducer in the water layer above a scale-model bathymetry while a stationary source transducer emits broadband pulsed waveforms. Experimental results are shown for a 2.133 m × 1.219 m bathymetric part possessing a flat-bottom bathymetry with a translationally invariant wedge of 10° slope along one edge. Beamformed results from a synthetic horizontal line array indicate the presence of strong in-plane arrivals along with weaker diffracted and horizontally refracted arrivals. A simulated annealing inversion method is applied to infer values for five waveguide parameters with the largest measurement uncertainty. The inferred values are then used in a 2D method of images model and a 3D adiabatic normal-mode model to simulate the measured acoustic data. PMID:26723314

  16. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.

    PubMed

    Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F; Blackstock, David T

    2002-01-01

    Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere. PMID:11837954

  17. Finite Difference Numerical Modeling of Gravito-Acoustic Wave Propagation in a Windy and Attenuating Atmosphere

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2015-12-01

    The acoustic and gravity waves propagating in the planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to the atmosphere dynamics. To get a better understanding of the physic behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground to the upper thermosphere. Thus, In order to provide an efficient numerical tool at the regional or the global scale a high order finite difference time domain (FDTD) approach is proposed that relies on the linearized compressible Navier-Stokes equations (Landau 1959) with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). One significant benefit from this code is its versatility. Indeed, it handles both acoustic and gravity waves in the same simulation that enables one to observe correlations between the two. Simulations will also be performed on 2D/3D realistic cases such as tsunamis in a full MSISE-00 atmosphere and gravity-wave generation through atmospheric explosions. Computations are validated by comparison to well-known analytical solutions based on dispersion relations in specific benchmark cases (atmospheric explosion and bottom displacement forcing).

  18. Acoustic Wave Propagation in Snow Based on a Biot-Type Porous Model

    NASA Astrophysics Data System (ADS)

    Sidler, R.

    2014-12-01

    Despite the fact that acoustic methods are inexpensive, robust and simple, the application of seismic waves to snow has been sparse. This might be due to the strong attenuation inherent to snow that prevents large scale seismic applications or due to the somewhat counterintuitive acoustic behavior of snow as a porous material. Such materials support a second kind of compressional wave that can be measured in fresh snow and which has a decreasing wave velocity with increasing density of snow. To investigate wave propagation in snow we construct a Biot-type porous model of snow as a function of porosity based on the assumptions that the solid frame is build of ice, the pore space is filled with a mix of air, or air and water, and empirical relationships for the tortuosity, the permeability, the bulk, and the shear modulus.We use this reduced model to investigate compressional and shear wave velocities of snow as a function of porosity and to asses the consequences of liquid water in the snowpack on acoustic wave propagation by solving Biot's differential equations with plain wave solutions. We find that the fast compressional wave velocity increases significantly with increasing density, but also that the fast compressional wave velocity might be even lower than the slow compressional wave velocity for very light snow. By using compressional and shear strength criteria and solving Biot's differential equations with a pseudo-spectral approach we evaluate snow failure due to acoustic waves in a heterogeneous snowpack, which we think is an important mechanism in triggering avalanches by explosives as well as by skiers. Finally, we developed a low cost seismic acquisition device to assess the theoretically obtained wave velocities in the field and to explore the possibility of an inexpensive tool to remotely gather snow water equivalent.

  19. Model parameter extraction for obliquely propagating surface acoustic waves in infinitely long grating structures

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Chen, Jing; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2016-07-01

    In this paper, we propose the use of the “longitudinal resonance condition” for the characterization of the two-dimensional propagation of surface acoustic waves (SAWs) in periodic grating structures, and also show a procedure for extracting parameters required in the behavior model from the full-wave analysis. The condition is given by β xp = π, where p is the grating period and β x is the wavenumber of the grating mode in the longitudinal direction (x). This is based on the fact that in conventional SAW resonators, acoustic resonances including transverse ones occur when β x is real but the longitudinal resonance condition is mostly satisfied. The longitudinal resonance condition is applied to a simple model, and the wavenumber β y in the lateral direction (y) is expressed as a simple function of the angular frequency ω. The full-wave analysis is applied for SAWs propagating in an infinite grating on a 128°YX-LiNbO3 substrate, and the anisotropy parameter γ is extracted by the fitting with the derived equation. The fitted result agrees well with the original numerical result. It is also indicated that γ estimated by this technique is significantly different from the value estimated without taking the effects of the grating structure into account.

  20. Localization of marine mammals near Hawaii using an acoustic propagation model

    NASA Astrophysics Data System (ADS)

    Tiemann, Christopher O.; Porter, Michael B.; Frazer, L. Neil

    2004-06-01

    Humpback whale songs were recorded on six widely spaced receivers of the Pacific Missile Range Facility (PMRF) hydrophone network near Hawaii during March of 2001. These recordings were used to test a new approach to localizing the whales that exploits the time-difference of arrival (time lag) of their calls as measured between receiver pairs in the PMRF network. The usual technique for estimating source position uses the intersection of hyperbolic curves of constant time lag, but a drawback of this approach is its assumption of a constant wave speed and straight-line propagation to associate acoustic travel time with range. In contrast to hyperbolic fixing, the algorithm described here uses an acoustic propagation model to account for waveguide and multipath effects when estimating travel time from hypothesized source positions. A comparison between predicted and measured time lags forms an ambiguity surface, or visual representation of the most probable whale position in a horizontal plane around the array. This is an important benefit because it allows for automated peak extraction to provide a location estimate. Examples of whale localizations using real and simulated data in algorithms of increasing complexity are provided.

  1. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  2. Time domain computational modeling of viscothermal acoustic propagation in catalytic converter substrates with porous walls

    NASA Astrophysics Data System (ADS)

    Dickey, N. S.; Selamet, A.; Miazgowicz, K. D.; Tallio, K. V.; Parks, S. J.

    2005-08-01

    Models for viscothermal effects in catalytic converter substrates are developed for time domain computational methods. The models are suitable for use in one-dimensional approaches for the prediction of exhaust system performance (engine tuning characteristics) and radiated sound levels. Starting with the ``low reduced frequency'' equations for viscothermal acoustic propagation in capillary tubes, time domain submodels are developed for the frequency-dependent wall friction, frequency-dependent wall heat transfer, and porous wall effects exhibited by catalytic converter substrates. Results from a time domain computational approach employing these submodels are compared to available analytical solutions for the low reduced frequency equations. The computational results are shown to agree well with the analytical solutions for capillary geometries representative of automotive catalytic converter substrates.

  3. Vehicular sources in acoustic propagation experiments

    NASA Technical Reports Server (NTRS)

    Prado, Gervasio; Fitzgerald, James; Arruda, Anthony; Parides, George

    1990-01-01

    One of the most important uses of acoustic propagation models lies in the area of detection and tracking of vehicles. Propagation models are used to compute transmission losses in performance prediction models and to analyze the results of past experiments. Vehicles can also provide the means for cost effective experiments to measure acoustic propagation conditions over significant ranges. In order to properly correlate the information provided by the experimental data and the propagation models, the following issues must be taken into consideration: the phenomenology of the vehicle noise sources must be understood and characterized; the vehicle's location or 'ground truth' must be accurately reproduced and synchronized with the acoustic data; and sufficient meteorological data must be collected to support the requirements of the propagation models. The experimental procedures and instrumentation needed to carry out propagation experiments are discussed. Illustrative results are presented for two cases. First, a helicopter was used to measure propagation losses at a range of 1 to 10 Km. Second, a heavy diesel-powered vehicle was used to measure propagation losses in the 300 to 2200 m range.

  4. Experimental study of noise sources and acoustic propagation in a turbofan model

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Canard-Caruana, S.; Julliard, J.

    1990-10-01

    Experimental studies of the acoustic radiation of subsonic fans mainly due to blade and vane presure fluctuations were performed in the SNECMA 5C2 compressor anechoic facility. A brief description of the test rig is presented noting that the CA5 turbojet engine model fan has a diameter of 47 cm, 48 blades, and a nominal rotation speed of 12,600 rpm. The two chief experiments discussed are the measurement of blade and vane pressure fluctuations by thin-film transducers and the spinning mode analysis of the sound field propagating in the intake duct. Several examples of applications are discussed, and it is shown that an inflow control device, as expected, reduces the aerodynamic disturbances by about 10 dB. Rotor-stator interaction tones are determined by the modal analysis, and it is found that a duct lining with a length of one duct radius could give an insertion loss up to 20 dB in flight.

  5. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  6. Underwater Wireless Sensor Networks: How Do Acoustic Propagation Models Impact the Performance of Higher-Level Protocols?

    PubMed Central

    Llor, Jesús; Malumbres, Manuel P.

    2012-01-01

    Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios. PMID:22438712

  7. Underwater Wireless Sensor Networks: how do acoustic propagation models impact the performance of higher-level protocols?

    PubMed

    Llor, Jesús; Malumbres, Manuel P

    2012-01-01

    Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios. PMID:22438712

  8. Modeling acoustic wave propagation in the Southern Ocean to estimate the acoustic impact of seismic surveys on marine mammals

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bohlen, T.

    2007-12-01

    According to the Protocol on Environmental Protection to the Antarctic Treaty, adopted 1991, seismic surveys in the Southern Ocean south of 60°S are exclusively dedicated to academic research. The seismic surveys conducted by the Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany during the last 20 years focussed on two areas: The Wedell Sea (60°W - 0°W) and the Amundsen/Bellinghausen Sea (120°W - 60°W). Histograms of the Julian days and water depths covered by these surveys indicate that maximum activities occurred in January and February, and most lines were collected either in shallow waters of 400 - 500 m depth or in deep waters of 2500 - 4500 m depth. To assess the potential risk of future seismic research on marine mammal populations an acoustic wave propagation modeling study is conducted for the Wedell and the Amundsen/ Bellinghausen Sea. A 2.5D finite-difference code is used. It allows to simulate the spherical amplitude decay of point sources correctly, considers P- and S-wave velocities at the sea floor and provides snapshots of the wavefield at any spatial and temporal resolution. As source signals notional signatures of GI-, G- and Bolt guns, computed by the NUCLEUS software (PGS) are used. Based on CTD measurements, sediment core samplings and sediment echosounder recordings two horizontally-layered, range-independent generic models are established for the Wedell and the Amundsen/Bellinghausen Sea, one for shallow (500 m) and one for deep water (3000 m). They indicate that the vertical structure of the water masses is characterized by a 100 m thick, cold, low sound velocity layer (~1440 - 1450 m/s), centered in 100 m depth. In the austral summer it is overlain by a warmer, 50 m thick surface layer with slightly higher sound velocities (~1447 - 1453 m/s). Beneath the low-velocity layer sound velocities increase rapidly to ~1450 - 1460 m/s in 200 m depth, and smoothly to ~1530 m/s in 4700 m depth. The sea floor is mainly

  9. 3D frequency-domain finite-difference modeling of acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Operto, S.; Virieux, J.

    2006-12-01

    We present a 3D frequency-domain finite-difference method for acoustic wave propagation modeling. This method is developed as a tool to perform 3D frequency-domain full-waveform inversion of wide-angle seismic data. For wide-angle data, frequency-domain full-waveform inversion can be applied only to few discrete frequencies to develop reliable velocity model. Frequency-domain finite-difference (FD) modeling of wave propagation requires resolution of a huge sparse system of linear equations. If this system can be solved with a direct method, solutions for multiple sources can be computed efficiently once the underlying matrix has been factorized. The drawback of the direct method is the memory requirement resulting from the fill-in of the matrix during factorization. We assess in this study whether representative problems can be addressed in 3D geometry with such approach. We start from the velocity-stress formulation of the 3D acoustic wave equation. The spatial derivatives are discretized with second-order accurate staggered-grid stencil on different coordinate systems such that the axis span over as many directions as possible. Once the discrete equations were developed on each coordinate system, the particle velocity fields are eliminated from the first-order hyperbolic system (following the so-called parsimonious staggered-grid method) leading to second-order elliptic wave equations in pressure. The second-order wave equations discretized on each coordinate system are combined linearly to mitigate the numerical anisotropy. Secondly, grid dispersion is minimized by replacing the mass term at the collocation point by its weighted averaging over all the grid points of the stencil. Use of second-order accurate staggered- grid stencil allows to reduce the bandwidth of the matrix to be factorized. The final stencil incorporates 27 points. Absorbing conditions are PML. The system is solved using the parallel direct solver MUMPS developed for distributed

  10. Model of propagation of acoustic pulses caused by underground nuclear explosion and theirs influence on the ionosphere

    NASA Astrophysics Data System (ADS)

    Krasnov, V.; Drobzheva, Y.

    2003-04-01

    To describe the propagation of an acoustic pulse through the inhomogeneity atmosphere we developed new equation and correspondent computer simulation code. The equation takes into account nonlinear effects, inhomogeneities of the atmosphere, absorption, expansion of a wave acoustic front, etc. The model includes subroutine of vertical movement of earth surface during an underground nuclear explosion (we use an empirical model), subroutine of acoustic pulse generation by a spall zone, subroutine of propagation of acoustic pulse up to the ionospheric height, subroutine of acoustic wave influence on the ionospheric plasma, subroutine of ionospheric perturbation influence on Doppler frequency of a radio wave. All calculations take into account geomagnetic field and neutral wind. The data measurement of acoustic pulses at heights of the ionosphere with helping Doppler radio sounding were used to test the model. We used data of Doppler shift records which were obtained during 9 underground nuclear explosion for 16 traces of radio sounding of the ionoshphere. Coefficients correlation between calculated and experimental forms is 0.7-0.94.

  11. Turbofan Duct Propagation Model

    NASA Technical Reports Server (NTRS)

    Lan, Justin H.; Posey, Joe W. (Technical Monitor)

    2001-01-01

    The CDUCT code utilizes a parabolic approximation to the convected Helmholtz equation in order to efficiently model acoustic propagation in acoustically treated, complex shaped ducts. The parabolic approximation solves one-way wave propagation with a marching method which neglects backwards reflected waves. The derivation of the parabolic approximation is presented. Several code validation cases are given. An acoustic lining design process for an example aft fan duct is discussed. It is noted that the method can efficiently model realistic three-dimension effects, acoustic lining, and flow within the computational capabilities of a typical computer workstation.

  12. Joint Acoustic Propagation Experiment (JAPE)

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Olsen, Robert O.; Kennedy, Bruce W.

    1993-01-01

    The Joint Acoustic Propagation Experiment (JAPE), performed under the auspices of NATO and the Acoustics Working Group, was conducted at White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of 220 trials using various acoustic sources including speakers, propane cannon, various types of military vehicles, helicopters, a 155mm howitzer, and static high explosives. Of primary importance to the performance of these tests was the intensive characterization of the atmosphere before and during the trials. Because of the wide range of interests on the part of the participants, JAPE was organized in such a manner to provide a broad cross section of test configurations. These included short and long range propagation from fixed and moving vehicles, terrain masking, and vehicle detection. A number of independent trials were also performed by individual participating agencies using the assets available during JAPE. These tests, while not documented in this report, provided substantial and important data to those groups. Perhaps the most significant feature of JAPE is the establishment of a permanent data base which can be used by not only the participants but by others interested in acoustics. A follow-on test was performed by NASA LaRC during the period 19-29 Aug. 1991 at the same location. These trials consisted of 59 overflights of supersonic aircraft in order to establish the relationship between atmospheric turbulence and the received sonic boom energy at the surface.

  13. Numerical modeling of nonlinear acoustic-gravity wave propagation in the whole atmosphere

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Kshevetskii, Sergey P.

    According to present knowledge, acoustic-gravity waves (AGWs) observed in the upper atmosphere may be generated near the Earth surface due to different sources and propagate upwards. Algorithms for two- and three-dimensional numerical simulation of vertical propagation and breaking of nonlinear AGWs from the Earth's surface to the upper atmosphere were developed recently. The algorithms of the solution of fluid dynamic equations use finite-difference analogues of basic conservation laws. This approach allows us to select physically correct generalized wave solutions of the nonlinear equations. Horizontally moving periodical horizontal sinusoidal structures of vertical velocity on the Earth’s surface serve as AGW sources in the model. Numerical simulation was made in a region of the Earth atmosphere with dimensions up to several thousand kilometers horizontally and 500 km vertically. Vertical profiles of the mean temperature, density, molecular viscosity and thermal conductivity are specified from standard models of the atmosphere. Calculations are made for different amplitudes, horizontal wavelengths and speeds of wave sources at the bottom boundary of the model. It is shown that after “switch on” tropospheric source atmospheric waves very quickly (for several minutes) may propagate to high altitudes (up to 100 km). When AGW amplitudes increase with height, waves may break down in the middle and upper atmosphere. Instability and dissipation of wave energy may lead to formations of wave accelerations of the mean winds and to creations of wave-induced jet flows in the middle and upper atmosphere. Nonlinear interactions may lead to instabilities of the initial wave and to the creation of smaller-scale structures. These smaller inhomogeneities may increase temperature and wind gradients and enhance the wave energy dissipation. Thus, the increase in AGW amplitudes in the upper atmosphere may occur at a much slower pace than the increase in amplitudes of

  14. Current state of acoustic wave propagation modelling and its use in the estimation of impact on marine mammals

    NASA Astrophysics Data System (ADS)

    Racca, R.; Hannay, D.; Carr, S.

    2006-05-01

    Underwater acoustic wave propagation modelling has matured into a sophisticated and reliable forecasting tool for predicting the acoustic noise footprints of geophysical exploration activities. Computational methods such as Parabolic Equation solutions of the wave function can account for all aspects of acoustic propagation including diffraction, mode stripping, and compressional and shear wave transmission in the seabed substrate. Given sufficient knowledge of the acousto-physical properties of the water column and the seabed, it is possible to estimate the acoustic transmission loss for individual sound frequencies and hence the overall attenuation of a spectrally described source at any range. In combination with numerical models that provide reliable estimates of the acoustic pulse properties and spatial pattern of the sound emission from any design of airgun array, wave propagation modelling provides the means to fully characterize the ensonification of an area without need for experimental measurement, allowing the potential impact on the marine environment of a planned operation to be studied in advance of physical deployment of the equipment. In this presentation we provide an overview of the current state of acoustic propagation modelling methods with particular emphasis on full noise footprint estimation, whereby the acoustic propagation model is automatically run along multiple traverses to cover the region of interest to a desired spatial resolution. The prediction of sound level footprints, however, is only a step in the process of estimating the acoustic impact on sea life and especially marine mammals. The interaction between the sound and the subject is also influenced by the subject's frequency-dependent auditory sensitivity relative to the frequency content of the sounds to which it is exposed. Much experimental work has been performed recently to measure frequency- dependent auditory thresholds (audiograms) for many marine mammal species. The

  15. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  16. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1985-01-01

    A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  17. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1986-01-01

    In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  18. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1984-01-01

    This report describes the activities during the fourth six month period of the investigation of acoustic propagation in the atmosphere with a realistic lapse temperature profile. A significant error was detected since the previous semi-annual report and has been corrected in both the plane wave and point source solutions. This report then describes both of these problems in some detail along with presenting some numerical results from the model. Work will begin this summer on the model of propagation in an inversion.

  19. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    NASA Astrophysics Data System (ADS)

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the

  20. Nonlinear propagation of spark-generated N-waves in air: modeling and measurements using acoustical and optical methods.

    PubMed

    Yuldashev, Petr; Ollivier, Sébastien; Averiyanov, Mikhail; Sapozhnikov, Oleg; Khokhlova, Vera; Blanc-Benon, Philippe

    2010-12-01

    The propagation of nonlinear spherically diverging N-waves in homogeneous air is studied experimentally and theoretically. A spark source is used to generate high amplitude (1.4 kPa) short duration (40 μs) N-waves; acoustic measurements are performed using microphones (3 mm diameter, 150 kHz bandwidth). Numerical modeling with the generalized Burgers equation is used to reveal the relative effects of acoustic nonlinearity, thermoviscous absorption, and oxygen and nitrogen relaxation on the wave propagation. The results of modeling are in a good agreement with the measurements in respect to the wave amplitude and duration. However, the measured rise time of the front shock is ten times longer than the calculated one, which is attributed to the limited bandwidth of the microphone. To better resolve the shock thickness, a focused shadowgraphy technique is used. The recorded optical shadowgrams are compared with shadow patterns predicted by geometrical optics and scalar diffraction model of light propagation. It is shown that the geometrical optics approximation results in overestimation of the shock rise time, while the diffraction model allows to correctly resolve the shock width. A combination of microphone measurements and focused optical shadowgraphy is therefore a reliable way of studying evolution of spark-generated shock waves in air. PMID:21218866

  1. A three-dimensional, longitudinally-invariant finite element model for acoustic propagation in shallow water waveguides.

    PubMed

    Isakson, Marcia J; Goldsberry, Benjamin; Chotiros, Nicholas P

    2014-09-01

    A three-dimensional, longitudinally-invariant finite element (FE) model for shallow water acoustic propagation is constructed through a cosine transform of a series of two-dimensional FE models at different values of the out-of-plane wavenumber. An innovative wavenumber sampling method is developed that efficiently captures the essential components of the integral as the out-of-plane wave number approaches the water wavenumber. The method is validated by comparison with benchmark solutions of two shallow water waveguide environments: a flat range independent case and a benchmark wedge. PMID:25190422

  2. Propagation of spinning acoustic modes in partially choked converging ducts

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.; Kelly, J. J.; Watson, L. T.

    1982-04-01

    A computer model based on the wave-envelope technique is used to study the propagation of spinning acoustic modes in converging hard-walled and lined circular ducts carrying near sonic mean flows. The results show that with increasing spinning mode number the intensification of the acoustic signal at the throat decreases for upstream propagation. The influence of the throat Mach number, frequency, boundary-layer thickness, and liner admittance on the propagation of spinning modes is considered.

  3. Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section.

    PubMed

    Bilbao, Stefan; Harrison, Reginald

    2016-07-01

    Numerical modeling of wave propagation in acoustic tubes is a subject of longstanding interest, particularly for enclosures of varying cross section, and especially when viscothermal losses due to boundary layer effects are taken into consideration. Though steady-state, or frequency domain methods, are a common avenue of approach, recursive time domain methods are an alternative, allowing for the generation of wideband responses, and offer a point of departure for more general modeling of nonlinear wave propagation. The design of time-domain methods is complicated by numerical stability considerations, and to this end, a passive representation is a useful design principle leading to simple stable and explicit numerical schemes, particularly in the case of viscothermal loss modeling. Such schemes and the accompanying energy and stability analysis are presented here. Numerical examples are presented for a variety of duct profiles, illustrating strict energy dissipation, and for comparison of computed input impedances against frequency-domain results. PMID:27475194

  4. On the time-mean state of ocean models and the properties of long range acoustic propagation

    NASA Astrophysics Data System (ADS)

    Dushaw, B. D.; Worcester, P. F.; Dzieciuch, M. A.; Menemenlis, D.

    2013-09-01

    Receptions on three vertical hydrophone arrays from basin-scale acoustic transmissions in the North Pacific during 1996 and 1998 are used to test the time-mean sound-speed properties of the World Ocean Atlas 2005 (WOA05), of an eddying unconstrained simulation of the Parallel Ocean Program (POP), and of three data-constrained solutions provided by the estimating the circulation and climate of the ocean (ECCO) project: a solution based on an approximate Kalman filter from the Jet Propulsion Laboratory (ECCO-JPL), a solution based on the adjoint method from the Massachusetts Institute of Technology (ECCO-MIT), and an eddying solution based on a Green's function approach from ECCO, Phase II (ECCO2). Predictions for arrival patterns using annual average WOA05 fields match observations to within small travel time offsets (0.3-1.0 s). Predictions for arrival patterns from the models differ substantially from the measured arrival patterns, from the WOA05 climatology, and from each other, both in terms of travel time and in the structure of the arrival patterns. The acoustic arrival patterns are sensitive to the vertical gradients of sound speed that govern acoustic propagation. Basin-scale acoustic transmissions, therefore, provide stringent tests of the vertical temperature structure of ocean state estimates. This structure ultimately influences the mixing between the surface waters and the ocean interior. The relatively good agreement of the acoustic data with the more recent ECCO solutions indicates that numerical ocean models have reached a level of accuracy where the acoustic data can provide useful additional constraints for ocean state estimation.

  5. Finite-difference numerical modelling of gravito-acoustic wave propagation in a windy and attenuating atmosphere

    NASA Astrophysics Data System (ADS)

    Brissaud, Quentin; Martin, Roland; Garcia, Raphaël F.; Komatitsch, Dimitri

    2016-04-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a finite difference in the time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with a background flow (wind). One significant benefit of such a method is its versatility because it handles both acoustic and gravity waves in the same simulation, which enables one to observe interactions between them. Simulations can be performed for 2D or 3D realistic cases such as tsunamis in a full MSISE-00 atmosphere or gravity-wave generation by atmospheric explosions. We validate the computations by comparing them to analytical solutions based on dispersion relations in specific benchmark cases: an atmospheric explosion, and a ground displacement forcing.

  6. Evaluation of a scale-model experiment to investigate long-range acoustic propagation

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Mcaninch, Gerry L.; Carlberg, Ingrid A.

    1987-01-01

    Tests were conducted to evaluate the feasibility of using a scale-model experiment situated in an anechoic facility to investigate long-range sound propagation over ground terrain. For a nominal scale factor of 100:1, attenuations along a linear array of six microphones colinear with a continuous-wave type of sound source were measured over a wavelength range from 10 to 160 for a nominal test frequency of 10 kHz. Most tests were made for a hard model surface (plywood), but limited tests were also made for a soft model surface (plywood with felt). For grazing-incidence propagation over the hard surface, measured and predicted attenuation trends were consistent for microphone locations out to between 40 and 80 wavelengths. Beyond 80 wavelengths, significant variability was observed that was caused by disturbances in the propagation medium. Also, there was evidence of extraneous propagation-path contributions to data irregularities at more remote microphones. Sensitivity studies for the hard-surface and microphone indicated a 2.5 dB change in the relative excess attenuation for a systematic error in source and microphone elevations on the order of 1 mm. For the soft-surface model, no comparable sensitivity was found.

  7. The subgrid modeling of propagation of acoustic waves in heterogeneous media with multiscale isotropic random elastic stiffness and density

    NASA Astrophysics Data System (ADS)

    Soboleva, O. N.; Kurochkina, E. P.

    2016-01-01

    The effective coefficients in the problem of the acoustic wave propagation have been calculated for a multiscale 3D isotropic medium using a subgrid modeling approach. The density and the elastic stiffness have been represented mathematically by the Kolmogorov multiplicative cascades, which, to date, appear to be the only mechanisms for generating a stationary multifractal fields with a log-stable probability distribution. The fields with the stable distribution are described with the help of linear combination random values ?, ? and weight coefficients ?, ?, which satisfy certain conditions in the nodes of spatial grid ?. The parameters of the stable distribution of the random values ?, ? are equal: ?, ?, ?, ?. The wavelength is assumed to be large as compared with the scale of heterogeneities of the medium. We consider the regime in which the waves propagate over a distance of the typical wave length in source. The theoretical results obtained in this paper are compared with the results of a direct 3D numerical simulation.

  8. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-06-01

    It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.

  9. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1987-01-01

    Acoustic propagation in an atmosphere with a specific form of temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solution have been considered the primary emphasis has been on solutions of the acoustic wave equation with point force where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  10. Linear and nonlinear acoustic wave propagation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Yu, Ping

    1988-01-01

    The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.

  11. Acoustic signal propagation characterization of conduit networks

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Safeer

    Analysis of acoustic signal propagation in conduit networks has been an important area of research in acoustics. One major aspect of analyzing conduit networks as acoustic channels is that a propagating signal suffers frequency dependent attenuation due to thermo-viscous boundary layer effects and the presence of impedance mismatches such as side branches. The signal attenuation due to side branches is strongly influenced by their numbers and dimensions such as diameter and length. Newly developed applications for condition based monitoring of underground conduit networks involve measurement of acoustic signal attenuation through tests in the field. In many cases the exact installation layout of the field measurement location may not be accessible or actual installation may differ from the documented layout. The lack of exact knowledge of numbers and lengths of side branches, therefore, introduces uncertainty in the measurements of attenuation and contributes to the random variable error between measured results and those predicted from theoretical models. There are other random processes in and around conduit networks in the field that also affect the propagation of an acoustic signal. These random processes include but are not limited to the presence of strong temperature and humidity gradients within the conduits, blockages of variable sizes and types, effects of aging such as cracks, bends, sags and holes, ambient noise variations and presence of variable layer of water. It is reasonable to consider that the random processes contributing to the error in the measured attenuation are independent and arbitrarily distributed. The error, contributed by a large number of independent sources of arbitrary probability distributions, is best described by an approximately normal probability distribution in accordance with the central limit theorem. Using an analytical approach to model the attenuating effect of each of the random variable sources can be very complex and

  12. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1985-01-01

    This report describes the activities during the fifth six month period of the investigation of acoustic propagation in the atmosphere with a realistic temperature profile. Progress has been achieved in two major directions: comparisons between the lapse model and experimental data taken by NASA during the second tower experiment, and development of a model propagation in an inversion. Data from the second tower experiment became available near the end of 1984 and some comparisons have been carried out, but this work is not complete. Problems with the temperature profiler during the experiment have produced temperature profiles that are difficult to fit the assumed variation of temperature with height, but in cases where reasonable fits have been obtained agreement between the model and the experiments are close. The major weaknesses in the model appear to be the presence of discontinuities in some regions, the low sound levels predicted near the source height, and difficulties with the argument of the Hankel function being outside the allowable range. Work on the inversion model has progressed slowly, and the rays for that case are discussed along with a simple energy conservation model of sound level enhancement in the inversion case.

  13. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  14. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  15. Joint Acoustic Propagation Experiment (JAPE-91) Workshop

    NASA Technical Reports Server (NTRS)

    Willshire, William L., Jr. (Compiler); Chestnutt, David (Compiler)

    1993-01-01

    The Joint Acoustic Propagation Experiment (JAPE), was conducted at the White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of various short and long range propagation experiments using various acoustic sources including speakers, propane cannons, helicopters, a 155 mm howitzer, and static high explosives. Of primary importance to the performance of theses tests was the extensive characterization of the atmosphere during these tests. This atmospheric characterization included turbulence measurements. A workshop to disseminate the results of JAPE-91 was held in Hampton, VA, on 28 Apr. 1993. This report is a compilation of the presentations made at the workshop along with a list of attendees and the agenda.

  16. Analysis of Acoustic Modeling and Sound Propagation in Aircraft Noise Prediction

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Shepherd, Kevin P. (Technical Monitor)

    2006-01-01

    An analysis has been performed of measured and predicted aircraft noise levels around Denver International Airport. A detailed examination was made of 90 straight-out departures that yielded good measurements on multiple monitors. Predictions were made with INM 5, INM 6 and the simulation model NMSIM. Predictions were consistently lower than measurements, less so for the simulation model than for the integrated models. Lateral directivity ("installation effect") patterns were seen which are consistent with other recent measurements. Atmospheric absorption was determined to be a significant factor in the underprediction. Calculations of atmospheric attenuation were made over a full year of upper air data at seven locations across the United States. It was found that temperature/humidity effects could cause variations of up to +/-4 dB, depending on season, for the sites examined. It was concluded that local temperature and humidity should be accounted for in aircraft noise modeling.

  17. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers. PMID:24116529

  18. Acoustic propagation in partially choked converging-diverging ducts

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.; Nayfeh, A. H.; Watson, L. T.

    1982-04-01

    A computer model based on the wave-envelope technique is used to study acoustic propagation in converging-diverging hard walled and lined circular ducts carrying near sonic mean flows. The influences of the liner admittance, boundary layer thickness, spinning mode number, and mean Mach number are considered. The numerical results indicate that the diverging portion of the duct can have a strong reflective effect for partially choked flows.

  19. Acoustic pulse propagation near a right-angle wall.

    PubMed

    Liu, Lanbo; Albert, Donald G

    2006-04-01

    Experimental measurements were conducted around a right-angle wall to investigate the effect of this obstacle on sound propagation outdoors. Using small explosions as the source of the acoustic waves allowed reflected and diffracted arrivals to be discerned and investigated in detail. The measurements confirm that diffraction acts as a low-pass filter on acoustic waveforms in agreement with simple diffraction theory, reducing the peak pressure and broadening the waveform shape received by a sensor in the shadow zone. In addition, sensors mounted directly on the wall registered pressure doubling for nongrazing angles of incidence in line-of-sight conditions. A fast two-dimensional finite difference time domain (FDTD) model was developed and provided additional insight into the propagation around the wall. Calculated waveforms show good agreement with the measured waveforms. PMID:16642821

  20. Propagation of acoustic pulses in random gravity wave fields

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; de La Camara, Alvaro; Lott, François

    2015-11-01

    A linear solution modeling the interaction between an incoming acoustic wave and a randomly perturbed atmosphere is developed, using the normal mode method. The wave mode structure is determined by a sound speed profile that is confining. The environmental uncertainty is described by a stochastic field obtained with a multiwave stochastic parameterization of gravity waves (GW). Using the propagating modes of the unperturbed atmosphere, the wave propagation problem is reduced to solving a system of ordinary differential equations. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime. In this regime, the coupling between the acoustic pulse and the randomly perturbed waveguides is weak and the propagation distance must be large enough for the wave to experience significant scattering. A general expression for the pressure far-field is derived in terms of saddle-point contributions. The saddle-points are obtained from a WKB approximation of the vertical eigenvalue problem. We present preliminary results that show how statistics of the transmitted signal are related to some eigenvalues and how an ``optimal'' GW field can trigger large deviations in the acoustic signals. The present model is used to explain the variability of infrasound signals.

  1. Vlasov simulation of 2D Modulational Instability of Ion Acoustic Waves and Prospects for Modeling such instabilities in Laser Propagation Codes

    NASA Astrophysics Data System (ADS)

    Berger, Richard; Chapman, T.; Banks, J. W.; Brunner, S.

    2015-11-01

    We present 2D+2V Vlasov simulations of Ion Acoustic waves (IAWs) driven by an external traveling-wave potential, ϕ0 (x , t) , with frequency, ω, and wavenumber, k, obeying the kinetic dispersion relation. Both electrons and ions are treated kinetically. Simulations with ϕ0 (x , t) , localized transverse to the propagation direction, model IAWs driven in a laser speckle. The waves bow with a positive or negative curvature of the wave fronts that depends on the sign of the nonlinear frequency shift ΔωNL , which is in turn determined by the magnitude of ZTe /Ti where Z is the charge state and Te , i is the electron, ion temperature. These kinetic effects result can cause modulational and self-focusing instabilities that transfer wave energy to kinetic energy. Linear dispersion properties of IAWs are used in laser propagation codes that predict the amount of light reflected by stimulated Brillouin scattering. At high enough amplitudes, the linear dispersion is invalid and these kinetic effects should be incorporated. Including the spatial and time scales of these instabilities is computationally prohibitive. We report progress including kinetic models in laser propagation codes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 15.

  2. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Kulkarni, Prateek P.; Manimala, James M.

    2016-06-01

    Longitudinal elastic wave propagation characteristics of acoustic metamaterials with various inerter configurations are investigated using their representative one-dimensional discrete element lattice models. Inerters are dynamic mass-amplifying mechanical elements that are activated by a difference in acceleration across them. They have a small device mass but can provide a relatively large dynamic mass presence depending on accelerations in systems that employ them. The effect of introducing inerters both in local attachments and in the lattice was examined vis-à-vis the propagation characteristics of locally resonant acoustic metamaterials. A simple effective model based on mass, stiffness, or their combined equivalent was used to establish dispersion behavior and quantify attenuation within bandgaps. Depending on inerter configurations in local attachments or in the lattice, both up-shift and down-shift in the bandgap frequency range and their extent are shown to be possible while retaining static mass addition to the host structure to a minimum. Further, frequency-dependent negative and even extreme effective-stiffness regimes are encountered. The feasibility of employing tuned combinations of such mass-delimited inertant configurations to engineer acoustic metamaterials that act as high-pass filters without the use of grounded elements or even as complete longitudinal wave inhibitors is shown. Potential device implications and strategies for practical applications are also discussed.

  3. Sources and propagation of atmospherical acoustic shock waves

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François

    2012-09-01

    Sources of aerial shock waves are numerous and produce acoustical signals that propagate in the atmosphere over long ranges, with a wide frequency spectrum ranging from infrasonic to audible, and with a complex human response. They can be of natural origin, like meteors, lightning or volcanoes, or human-made as for explosions, so-called "buzz-saw noise" (BSN) from aircraft engines or sonic booms. Their description, modeling and data analysis within the viewpoint of nonlinear acoustics will be the topic of the present lecture, with focus on two main points: the challenges of the source description, and the main features of nonlinear atmospheric propagation. Inter-disciplinary aspects, with links to atmospheric and geo-sciences will be outlined. Detailed description of the source is very dependent on its nature. Mobile supersonic sources can be rotating (fan blades of aircraft engines) or in translation (meteors, sonic boom). Mach numbers range from transonic to hypersonic. Detailed knowledge of geometry is critical for the processes of boom minimization and audible frequency spectrum of BSN. Sources of geophysical nature are poorly known, and various mechanisms for explaining infrasound recorded from meteors or thunderstorms have been proposed. Comparison between recorded data and modeling may be one way to discriminate between them. Moreover, the nearfield of these sources is frequently beyond the limits of acoustical approximation, or too complex for simple modeling. A proper numerical description hence requires specific matching procedures between nearfield behavior and farfield propagation. Nonlinear propagation in the atmosphere is dominated by temperature and wind stratification. Ray theory is an efficient way to analyze observations, but is invalid in various situations. Nonlinear effects are enhanced locally at caustics, or in case of grazing propagation over a rigid surface. Absorption, which controls mostly the high frequency part of the spectrum contained

  4. Reflection of Propagating Slow Magneto-acoustic Waves in Hot Coronal Loops: Multi-instrument Observations and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Mandal, Sudip; Yuan, Ding; Fang, Xia; Banerjee, Dipankar; Pant, Vaibhav; Van Doorsselaere, Tom

    2016-09-01

    Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence. The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.

  5. Acoustical scale modeling of roadway traffic noise

    SciTech Connect

    Anderson, G.S.

    1980-03-01

    During the planning and design of any federally assisted highway project, noise levels must be predicted for the highway in its operational mode. The use of an acoustical scale modeling technique to predict roadway traffic noise is described. Literature pertaining to acoustical scale modeling of outdoor noise propagation, particularly roadway noise, is reviewed. Field and laboratory measurements validated the predictions of the acoustical scale modeling technique. (1 photo)

  6. Spectral solution of acoustic wave-propagation problems

    NASA Technical Reports Server (NTRS)

    Kopriva, David A.

    1990-01-01

    The Chebyshev spectral collocation solution of acoustic wave propagation problems is considered. It is shown that the phase errors decay exponentially fast and that the number of points per wavelength is not sufficient to estimate the phase accuracy. Applications include linear propagation of a sinusoidal acoustic wavetrain in two space dimensions, and the interaction of a sound wave with the bow shock formed by placing a cylinder in a uniform Mach 4 supersonic free stream.

  7. Radiation and propagation of short acoustical pulses from underground explosions

    SciTech Connect

    Banister, J.R.

    1982-06-01

    Radiation and propagation of short acoustical pulses from underground nuclear explosions were analyzed. The cone of more intense radiation is defined by the ratio of sound speeds in the ground and air. The pressure history of the radiated pulse is a function of the vertical ground-motion history, the range, the burial depth, and the velocity of longitudinal seismic waves. The analysis of short-pulse propagation employed an N-wave model with and without enegy conservation. Short pulses with initial wave lengths less than 100 m are severely attenuated by the energy loss in shocks and viscous losses in the wave interior. The methods developed in this study should be useful for system analysis.

  8. Wave envelopes method for description of nonlinear acoustic wave propagation.

    PubMed

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  9. Modelling sound propagation in the Southern Ocean to estimate the acoustic impact of seismic research surveys on marine mammals

    NASA Astrophysics Data System (ADS)

    Breitzke, Monika; Bohlen, Thomas

    2010-05-01

    Modelling sound propagation in the ocean is an essential tool to assess the potential risk of air-gun shots on marine mammals. Based on a 2.5-D finite-difference code a full waveform modelling approach is presented, which determines both sound exposure levels of single shots and cumulative sound exposure levels of multiple shots fired along a seismic line. Band-limited point source approximations of compact air-gun clusters deployed by R/V Polarstern in polar regions are used as sound sources. Marine mammals are simulated as static receivers. Applications to deep and shallow water models including constant and depth-dependent sound velocity profiles of the Southern Ocean show dipole-like directivities in case of single shots and tubular cumulative sound exposure level fields beneath the seismic line in case of multiple shots. Compared to a semi-infinite model an incorporation of seafloor reflections enhances the seismically induced noise levels close to the sea surface. Refraction due to sound velocity gradients and sound channelling in near-surface ducts are evident, but affect only low to moderate levels. Hence, exposure zone radii derived for different hearing thresholds are almost independent of the sound velocity structure. With decreasing thresholds radii increase according to a spherical 20 log10 r law in case of single shots and according to a cylindrical 10 log10 r law in case of multiple shots. A doubling of the shot interval diminishes the cumulative sound exposure levels by -3 dB and halves the radii. The ocean bottom properties only slightly affect the radii in shallow waters, if the normal incidence reflection coefficient exceeds 0.2.

  10. Nonlinear propagation and control of acoustic waves in phononic superlattices

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Mehrem, Ahmed; Picó, Rubén; García-Raffi, Lluís M.; Sánchez-Morcillo, Víctor J.

    2016-05-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime. xml:lang="fr"

  11. Computational ocean acoustics: Advances in 3D ocean acoustic modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Henrik; Jensen, Finn B.

    2012-11-01

    The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].

  12. Field observation of low-to-mid-frequency acoustic propagation characteristics of an estuarine salt wedge.

    PubMed

    Reeder, D Benjamin

    2016-01-01

    The estuarine environment often hosts a salt wedge, the stratification of which is a function of the tide's range and speed of advance, river discharge volumetric flow rate, and river mouth morphology. Competing effects of temperature and salinity on sound speed in this stratified environment control the degree of acoustic refraction occurring along an acoustic path. A field experiment was carried out in the Columbia River Estuary to test the hypothesis: the estuarine salt wedge is acoustically observable in terms of low-to-mid-frequency acoustic propagation. Linear frequency-modulated acoustic signals in the 500-2000 Hz band were transmitted during the advance and retreat of the salt wedge during May 27-29, 2013. Results demonstrate that the salt wedge front is the dominant physical mechanism controlling acoustic propagation in this environment: received signal energy is relatively stable before and after the passage of the salt wedge front when the acoustic path consists of a single medium (either entirely fresh water or entirely salt water), and suffers a 10-15 dB loss and increased variability during salt wedge front passage. Physical parameters and acoustic propagation modeling corroborate and inform the acoustic observations. PMID:26827001

  13. Backward propagating acoustic waves in single gold nanobeams

    NASA Astrophysics Data System (ADS)

    Jean, Cyril; Belliard, Laurent; Becerra, Loïc; Perrin, Bernard

    2015-11-01

    Femtosecond pump-probe spectroscopy has been carried out on suspended gold nanostructures with a rectangular cross section lithographed on a silicon substrate. With a thickness fixed to 110 nm and a width ranging from 200 nm to 800 nm , size dependent measurements are used to distinguish which confined acoustic modes are detected. Furthermore, in order to avoid any ambiguity due to the measurement uncertainties on both the frequency and size, pump and probe beams are also spatially shifted to detect guided acoustic phonons. This leads us to the observation of backward propagating acoustic phonons in the gigahertz range ( ˜3 GHz ) in such nanostructures. While backward wave propagation in elastic waveguides has been predicted and already observed at the macroscale, very few studies have been done at the nanoscale. Here, we show that these backward waves can be used as the unique signature of the width dilatational acoustic mode.

  14. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  15. Physical oceanography and acoustic propagation during LADC experiment in the Gulf of Mexico in 2001

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergey; Caruthers, Jerald W.; Rayborn, Grayson H.; Udovydchenkov, Ilya A.; Sidorovskaia, Natalia A.; Rypina, Irina I.; Newcomb, Joal J.; Fisher, Robert A.; Ioup, George E.; Ioup, Juliette W.

    2003-04-01

    The Littoral Acoustic Demonstration Center (LADC) deployed three environmental and acoustic moorings in a downslope line just off the Mississippi River Delta in the northern Gulf of Mexico in an area of a large concentration of sperm whales in July 2001. The measurement of whale vocalizations and, more generally, ambient noise, were the objectives of the experiment. Each mooring had a single hydrophone autonomously recording Environmental Acoustic Recording System (EARS) obtained from the U.S. Naval Oceanographic Office and modified to recorded signals up to 5859 Hz continuously for 36 days. Also, self-recording, environmental sensors were attached to the moorings to obtain profiles of time series data of temperature and salinity. Satellite imagery and NOAA mooring data were gathered for an analysis of eddy formations and movement in the Gulf. This paper will discuss the possible environmental impact of two events that occurred during the experiment: the passage of Tropical Storm Barry and the movement of the remnants of an eddy in the area. Discussed also will be the expected effects of these events on acoustic propagation based on modeling, which are carried out for long range and low frequency (300 km and 500 Hz) using the normal-mode acoustic model SWAMP (Shallow Water Acoustic Modal Propagation by M. F. Werby and N. A. Sidorovskaia) and for short range and high frequency (10 km and 5000 Hz) using the parabolic-equation acoustic model RAM (Range-dependent Acoustic model by M. Collins). [Work supported by ONR.

  16. Analyzing Acoustic Propagation In A Pump Diffuser And Volute

    NASA Technical Reports Server (NTRS)

    Chon, Juliet T.; Szabo, Roland J.

    1994-01-01

    Theory and computer codes developed for use in analyzing propagation of sinusoidal components of fluctuations of pressure (acoustic waves) through fluid in diffuser and in volute or discharge duct of centrifugal pump. Reflections from impedance mismatches taken into account. Such analysis of propagation and resultant fluctuations of pressure important part of analysis of fluid-borne contributions to stresses on volute housing, volute liner, and/or discharge duct.

  17. Acoustic propagation in rigid ducts with blockage

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1982-01-01

    Acoustic levitation has been suggested for moving nonmagnetic material in furnaces for heat processing in space experiments. Basically, acoustic standing waves under resonant conditions are excited in the cavity of the furnace while the material blockage is located at a pressure node and thus at a maximum gradient. The position of the blockage is controlled by displacing the node as a result of frequency change. The present investigation is concerned with the effect of blockage on the longitudinal and transverse resonances of a cylindrical cavity, taking into account the results of a one-dimensional and three-dimensional (3-D) analysis. Based on a Green's function surface element method, 3-D analysis is tested experimentally and proved to be accurate over a wide range of geometric parameters and boundary shapes. The shift in resonance depends on the change in pressure gradient and duct shortening caused by the blockage.

  18. Acoustic propagation in rigid three-dimensional waveguides

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.

    1980-01-01

    The linear acoustic propagation in finite rigid three-dimensional waveguides is determined analytically using an eigenfunction expansion of the Helmholtz equation. The geometry considered consists of straight and circular bends of rectangular cross section with continuous interfaces (branches and sharp corners are excluded). The phenomena of resonance shift and relocation are explained for a bend-straight duct combination.

  19. Database for propagation models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1991-01-01

    A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.

  20. Overview of geometrical room acoustic modeling techniques.

    PubMed

    Savioja, Lauri; Svensson, U Peter

    2015-08-01

    Computerized room acoustics modeling has been practiced for almost 50 years up to date. These modeling techniques play an important role in room acoustic design nowadays, often including auralization, but can also help in the construction of virtual environments for such applications as computer games, cognitive research, and training. This overview describes the main principles, landmarks in the development, and state-of-the-art for techniques that are based on geometrical acoustics principles. A focus is given to their capabilities to model the different aspects of sound propagation: specular vs diffuse reflections, and diffraction. PMID:26328688

  1. Effect of tidal internal wave fields on shallow water acoustic propagation

    NASA Astrophysics Data System (ADS)

    Lin, Ju; Wang, Huan; Sun, Junping

    2010-09-01

    Internal waves are one of the most pronounced oceanic phenomenons to the oceanographer. During past decades much effort has been made to investigate the effect of internal waves on shallow water acoustic propagation. Even though many field observations, such as SWARM '95, have provided fruitful information about the relation between internal waves and acoustic propagation, it is necessary to conduct more numerical simulations due to their extensive feasibility. In this study, the shallow water internal wave environment is constructed by using a non-hydrostatic ocean model, the open boundary forcing is set by considering single or several internal wave modes at the M2 tidal frequency. In order to show the mode coupling caused by the internal wave field more clearly, the acoustic starting field with different single normal modes is adopted. The acoustic simulation can be used to check whether a specific combination of internal wave modes is related to the mode coupling, and which mode pair will be affected. The combination of internal wave modes can be separated into several groups. Even though the internal wave fields are different among every case in each group, the acoustic field structure and the mode coupling are similar. Different acoustic normal mode coupling occurs due to the different combinations of internal wave mode forcing. When the parameters of internal wave mode are modified gently, the acoustic mode coupling becomes quite different. It is interesting and important to investigate the sensitivity of acoustic fields to the variability of the internal mode combination.

  2. Low frequency acoustic pulse propagation in temperate forests.

    PubMed

    Albert, Donald G; Swearingen, Michelle E; Perron, Frank E; Carbee, David L

    2015-08-01

    Measurements of acoustic pulse propagation for a 30-m path were conducted in an open field and in seven different forest stands in the northeastern United States consisting of deciduous, evergreen, or mixed tree species. The waveforms recorded in forest generally show the pulse elongation characteristic of propagation over a highly porous ground surface, with high frequency scattered arrivals superimposed on the basic waveform shape. Waveform analysis conducted to determine ground properties resulted in acoustically determined layer thicknesses of 4-8 cm in summer, within 2 cm of the directly measured thickness of the litter layers. In winter the acoustic thicknesses correlated with the site-specific snow cover depths. Effective flow resistivity values of 50-88 kN s m(-4) were derived for the forest sites in summer, while lower values typical for snow were found in winter. Reverberation times (T60) were typically around 2 s, but two stands (deciduous and pruned spruce planted on a square grid) had lower values of about 1.2 s. One site with a very rough ground surface had very low summer flow resistivity value and also had the longest reverberation time of about 3 s. These measurements can provide parameters useful for theoretical predictions of acoustic propagation within forests. PMID:26328690

  3. Acoustic pulse propagation in an urban environment using a three-dimensional numerical simulation.

    PubMed

    Mehra, Ravish; Raghuvanshi, Nikunj; Chandak, Anish; Albert, Donald G; Wilson, D Keith; Manocha, Dinesh

    2014-06-01

    Acoustic pulse propagation in outdoor urban environments is a physically complex phenomenon due to the predominance of reflection, diffraction, and scattering. This is especially true in non-line-of-sight cases, where edge diffraction and high-order scattering are major components of acoustic energy transport. Past work by Albert and Liu [J. Acoust. Soc. Am. 127, 1335-1346 (2010)] has shown that many of these effects can be captured using a two-dimensional finite-difference time-domain method, which was compared to the measured data recorded in an army training village. In this paper, a full three-dimensional analysis of acoustic pulse propagation is presented. This analysis is enabled by the adaptive rectangular decomposition method by Raghuvanshi, Narain and Lin [IEEE Trans. Visual. Comput. Graphics 15, 789-801 (2009)], which models sound propagation in the same scene in three dimensions. The simulation is run at a much higher usable bandwidth (nearly 450 Hz) and took only a few minutes on a desktop computer. It is shown that a three-dimensional solution provides better agreement with measured data than two-dimensional modeling, especially in cases where propagation over rooftops is important. In general, the predicted acoustic responses match well with measured results for the source/sensor locations. PMID:24907788

  4. Radial propagation of geodesic acoustic modes

    SciTech Connect

    Hager, Robert; Hallatschek, Klaus

    2009-07-15

    The GAM group velocity is estimated from the ratio of the radial free energy flux to the total free energy applying gyrokinetic and two-fluid theory. This method is much more robust than approaches that calculate the group velocity directly and can be generalized to include additional physics, e.g., magnetic geometry. The results are verified with the gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], the two-fluid code NLET[K. Hallatschek and A. Zeiler, Phys. Plasmas 7, 2554 (2000)], and analytical calculations. GAM propagation must be kept in mind when discussing the windows of GAM activity observed experimentally and the match between linear theory and experimental GAM frequencies.

  5. Frequency Domain Calculations Of Acoustic Propagation

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Two complex geometry problems are solved using the linearized Euler equations. The impedance mismatch method1 is used to impose the solid surfaces without the need to use a body-fitted grid. The problem is solved in the frequency domain to avoid long run times. Although the harmonic assumption eliminates all time dependence, a pseudo-time term is added to allow conventional iterative methods to be employed. A Jameson type, Runge-Kutta scheme is used to advance the solution in pseudo time. The spatial operator is based on a seven-point, sixth-order finite difference. Constant coefficient, sixth-derivative artificial dissipation is used throughout the domain. A buffer zone technique employing a complex frequency to damp all waves near the boundaries is used to minimize reflections. The results show that the method is capable of capturing the salient features of the scattering, but an excessive number of grid points are required to resolve the phenomena in the vicinity of the solid bodies because the wavelength of the acoustics is relatively short compared with the size of the bodies. Smoothly transitioning into the immersed boundary condition alleviates the difficulties, but a fine mesh is still required.

  6. Propagation of plate acoustic waves in contact with fluid medium

    NASA Astrophysics Data System (ADS)

    Ghatadi Suraji, Nagaraj

    The characteristics of acoustic waves propagating in thin piezoelectric plates in the presence of a fluid medium contacting one or both of the plate surfaces are investigated. If the velocity of plate wave in the substrate is greater than velocity of bulk wave in the fluid, then a plate acoustic wave (PAW) traveling in the substrate will radiate a bulk acoustic wave (BAW) in the fluid. It is found that, under proper conditions, efficient conversion of energy from plate acoustic waves to bulk acoustic waves and vice versa can be obtained. For example, using the fundamental anti symmetric plate wave mode (A0 mode) propagating in a lithium niobate substrate and water as the fluid, total mode conversion loss (PAW to BAW and back from BAW to PAW) of less than 3 dB has been obtained. This mode conversion principle can be used to realize miniature, high efficiency transducers for use in ultrasonic flow meters. Similar type of transducer based on conversion of energy from surface acoustic wave (SAW) to bulk acoustic wave (BAW) has been developed previously. The use of plate waves has several advantages. Since the energy of plate waves is present on both plate surfaces, the inter digital transducer (IDT) can be on the surface opposite from that which is in contact with the fluid. This protects the IDT from possible damage due to the fluid and also simplifies the job of making electrical connections to the IDT. Another advantage is that one has wider choice of substrate materials with plate waves than is the case with SAWs. Preliminary calculations indicate that the mode conversion principle can also be used to generate and detect ultrasonic waves in air. This has potential applications for realizing transducers for use in non-contact ultrasonic's. The design of an ASIC (Application Specific Integrated Circuit) chip containing an amplifier and frequency counter for use with ultrasonic transducers is also presented in this thesis.

  7. The role of gravity in ocean acoustics propagation and its implication to early tsunami detection

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago; Lin, Ying-Tsong; Kadri, Usama

    2016-04-01

    Oceanic low frequency sound generated by submarine earthquake travels much faster than tsunamis and leaves pressure signatures that can act as tsunami precursors. In this regard, it is anticipated that the correct measurement and analysis of low frequency acoustics would enhance current early tsunami detection systems. In this work we model the low frequency acoustics generated by the 2004 Indian Ocean earthquake using the "Method of Normal Modes" and the "Acoustics-Gravity Wave" theory. Ocean acoustic theories usually neglect the effect of gravity. However, we show for rigid and elastic bottom conditions how gravity influences the acoustic normal mode propagation speed. Practically, our results can help in the real time characterization of low frequency sources in the ocean. This will enhance the robustness of early tsunami detection systems.

  8. Propagation of three-dimensional electron-acoustic solitary waves

    SciTech Connect

    Shalaby, M.; El-Sherif, L. S.; El-Labany, S. K.; Sabry, R.

    2011-06-15

    Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.

  9. Ray dynamics in a long-range acoustic propagation experiment.

    PubMed

    Beron-Vera, Francisco J; Brown, Michael G; Colosi, John A; Tomsovic, Steven; Virovlyansky, Anatoly L; Wolfson, Michael A; Zaslavsky, George M

    2003-09-01

    A ray-based wave-field description is employed in the interpretation of broadband basin-scale acoustic propagation measurements obtained during the Acoustic Thermometry of Ocean Climate program's 1994 Acoustic Engineering Test. Acoustic observables of interest are wavefront time spread, probability density function (PDF) of intensity, vertical extension of acoustic energy in the reception finale, and the transition region between temporally resolved and unresolved wavefronts. Ray-based numerical simulation results that include both mesoscale and internal-wave-induced sound-speed perturbations are shown to be consistent with measurements of all the aforementioned observables, even though the underlying ray trajectories are predominantly chaotic, that is, exponentially sensitive to initial and environmental conditions. Much of the analysis exploits results that relate to the subject of ray chaos; these results follow from the Hamiltonian structure of the ray equations. Further, it is shown that the collection of the many eigenrays that form one of the resolved arrivals is nonlocal, both spatially and as a function of launch angle, which places severe restrictions on theories that are based on a perturbation expansion about a background ray. PMID:14514177

  10. Influence of a forest edge on acoustical propagation: experimental results.

    PubMed

    Swearingen, Michelle E; White, Michael J; Guertin, Patrick J; Albert, Donald G; Tunick, Arnold

    2013-05-01

    Acoustic propagation through a forest edge can produce complicated pressure time histories because of scattering from the trees and changes in the microclimate and ground parameters of the two regions. To better understand these effects, a field experiment was conducted to measure low-frequency acoustic pulses propagating in an open field, a forest, and passing through a forest edge in both directions. Waveforms measured in the open field were simple impulses with very low scattering, whereas waveforms at the edge and within the forest had stronger reverberations after the direct arrival. The direct wave pulse shapes increased in duration in accordance with the path length in the forest, which had an effective flow resistivity 12 to 13 that of the grassy open field. The measurements exhibit different rates of attenuation in the two regions, with relatively lower attenuation in the open field than higher rates in the forest. Decay of SEL transmitted into the forest was 4 dB more per tenfold distance than for outbound transmission. Stronger attenuation in the 1-2 kHz range occurs when propagating into the forest. While the measured meteorological profiles revealed three distinct microclimates, meteorological effects are not sufficient to explain the apparent non-reciprocal propagation. PMID:23654365

  11. Oblique Propagation of Ion Acoustic Solitons in Magnetized Superthermal Plasmas

    NASA Astrophysics Data System (ADS)

    Devanandhan, S.; Sreeraj, T.; Singh, S.; Lakhina, G. S.

    2015-12-01

    Small amplitude ion-acoustic solitons are studied in a magnetized plasma consisting of protons, doubly charged helium ions and superthermal electrons. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) is derived to examine the properties of ion acoustic solitary structures observed in space plasmas. Our model is applicable for weakly magnetized plasmas. The results will be applied to the satellite observations in the solar wind at 1 AU where magnetized ion acoustic waves with superthermal electrons can exist. The effects of superthermality, temperature and densities on these solitary structures will be discussed.

  12. Advanced Concepts for Underwater Acoustic Channel Modeling

    NASA Astrophysics Data System (ADS)

    Etter, P. C.; Haas, C. H.; Ramani, D. V.

    2014-12-01

    This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.

  13. A Database for Propagation Models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.; Rucker, James

    1997-01-01

    The Propagation Models Database is designed to allow the scientists and experimenters in the propagation field to process their data through many known and accepted propagation models. The database is an Excel 5.0 based software that houses user-callable propagation models of propagation phenomena. It does not contain a database of propagation data generated out of the experiments. The database not only provides a powerful software tool to process the data generated by the experiments, but is also a time- and energy-saving tool for plotting results, generating tables and producing impressive and crisp hard copy for presentation and filing.

  14. A superconducting qubit coupled to propagating acoustic waves

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin V.; Aref, Thomas; Frisk Kockum, Anton; Ekström, Maria K.; Johansson, Göran; Delsing, Per

    2015-03-01

    Mechanical devices in the quantum regime have so far consisted mainly of suspended resonators, where standing modes can be populated with quanta of vibrational energy. We present a fundamentally different system, where the mechanical excitation is not restricted to a specific mode and location. Instead, we demonstrate strong non-classical coupling between propagating phonons and a superconducting qubit. The qubit is fabricated on a piezoelectric substrate, and is designed to interact with Surface Acoustic Waves (SAWs) in the gigahertz frequency range. A separate on-chip transducer allows us to launch SAWs toward the qubit from a distance and pick up SAW phonons that the qubit reflects and emits. In a series of experiments where the qubit is addressed both electrically and acoustically, we show that the qubit couples much more strongly to SAWs than to any electrical modes. The low speed of sound sets phonons apart from photons as a medium for transporting quantum information, and should enable real-time manipulation of propagating quanta. The short acoustic wavelength and strong piezoelectric coupling should also allows regimes of interaction to be explored which cannot be reached in photonic systems.

  15. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Allen, Christopher; Chu, S. Reynold

    2008-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles to ensure compliance with acoustic requirements and thus provide a safe and habitable acoustic environment for the crews, and to validate developed models via building physical mockups and conducting acoustic measurements.

  16. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    PubMed

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging. PMID:24180758

  17. On fast radial propagation of parametrically excited geodesic acoustic mode

    SciTech Connect

    Qiu, Z.; Chen, L.; Zonca, F.

    2015-04-15

    The spatial and temporal evolution of parametrically excited geodesic acoustic mode (GAM) initial pulse is investigated both analytically and numerically. Our results show that the nonlinearly excited GAM propagates at a group velocity which is, typically, much larger than that due to finite ion Larmor radius as predicted by the linear theory. The nonlinear dispersion relation of GAM driven by a finite amplitude drift wave pump is also derived, showing a nonlinear frequency increment of GAM. Further implications of these findings for interpreting experimental observations are also discussed.

  18. Propagation of acoustic perturbations in a gas flow with dissipation

    NASA Astrophysics Data System (ADS)

    Zavershinskii, I. P.; Molevich, N. E.

    1992-10-01

    In an earlier study (Ingard and Singhal, 1973), it has been found that, in a nondissipating moving medium, an acoustic wave propagating from a source in the flow direction has a smaller amplitude than a wave moving against the flow. Here, it is demonstrated that consideration of dissipation phenomena, which are related to the shear and bulk viscosities and heat conductivity of a medium, leads to an additional anisotropy of the sound amplitude, whose sign is opposite to that obtained in the above mentioned study.

  19. Seismic wave propagation modeling

    SciTech Connect

    Jones, E.M.; Olsen, K.B.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A hybrid, finite-difference technique was developed for modeling nonlinear soil amplification from three-dimensional, finite-fault radiation patters for earthquakes in arbitrary earth models. The method was applied to the 17 January 1994 Northridge earthquake. Particle velocities were computed on a plane at 5-km depth, immediately above the causative fault. Time-series of the strike-perpendicular, lateral velocities then were propagated vertically in a soil column typical of the San Fernando Valley. Suitable material models were adapted from a suite used to model ground motions at the US Nevada Test Site. The effects of nonlinearity reduced relative spectral amplitudes by about 40% at frequencies above 1.5 Hz but only by 10% at lower frequencies. Runs made with source-depth amplitudes increased by a factor of two showed relative amplitudes above 1.5 Hz reduced by a total of 70% above 1.5 Hz and 20% at lower frequencies. Runs made with elastic-plastic material models showed similar behavior to runs made with Masing-Rule models.

  20. Transformation of intense acoustic waves propagating vertically upward in an isothermally stratified atmosphere

    NASA Astrophysics Data System (ADS)

    Gusev, V. A.; Zhostkov, R. A.

    2015-09-01

    The specific features in the propagation of acoustic waves with a finite amplitude in the model of an isothermally viscous stratified atmosphere have been studied based on the analytical solutions. The Khokhlov—Zabolotskaya and Burgers equations have been generalized for a stratified atmosphere. The selfsimilar solution for a generalized Burgers equation with variable viscosity has been found. The asymptotic solution for an initial sinusoidal disturbance has been obtained. The solutions can be used to seismically analyze induced acoustic fields in a wide frequency band.

  1. Acoustic modeling of the speech organ

    NASA Astrophysics Data System (ADS)

    Kacprowski, J.

    The state of research on acoustic modeling of phonational and articulatory speech producing elements is reviewed. Consistent with the physical interpretation of the speech production process, the acoustic theory of speech production is expressed as the product of three factors: laryngeal involvement, sound transmission, and emanations from the mouth and/or nose. Each of these factors is presented in the form of a simplified mathematical description which provides the theoretical basis for the formation of physical models of the appropriate functional members of this complex bicybernetic system. Vocal tract wall impedance, vocal tract synthesizers, laryngeal dysfunction, vowel nasalization, resonance circuits, and sound wave propagation are discussed.

  2. Propagation of high frequency jet noise using geometric acoustics

    NASA Technical Reports Server (NTRS)

    Khavaran, A.; Krejsa, E. A.

    1993-01-01

    Spherical directivity of noise radiated from a convecting quadrupole source embedded in an arbitrary spreading jet is obtained by ray-tracing methods of geometrical acoustics. The six propagation equations are solved in their general form in a rectangular coordinate system. The noise directivity in the far field is calculated by applying an iteration scheme that finds the required radiation angles at the source resulting in propagation through a given observer point. Factors influencing the zone of silence are investigated. The caustics of geometrical acoustics and the exact locations where it forms is demonstrated by studying the variation in ray tube area obtained from transport equation. For a ring source convecting along the center-axis of an axisymmetric jet, the polar directivity of the radiated noise is obtained by an integration with respect to azimuthal directivity of compact quadrupole sources distributed on the ring. The Doppler factor is shown to vary slightly from point to point on the ring. Finally the scaling of the directivity pattern with power -3 of Doppler factor is investigated and compared with experimental data.

  3. Observations of acoustic surface waves in outdoor sound propagation

    NASA Astrophysics Data System (ADS)

    Albert, Donald G.

    2003-05-01

    Acoustic surface waves have been detected propagating outdoors under natural conditions. Two critical experimental conditions were employed to ensure the conclusive detection of these waves. First, acoustic pulses rather than a continuous wave source allowed an examination of the waveform shape and avoided the masking of wave arrivals. Second, a snow cover provided favorable ground impedance conditions for surface waves to exist. The acoustic pulses were generated by blank pistol shots fired 1 m above the snow. The resultant waveforms were measured using a vertical array of six microphones located 60 m away from the source at heights between 0.1 and 4.75 m. A strong, low frequency ``tail'' following the initial arrival was recorded near the snow surface. This tail, and its exponential decay with height (z) above the surface (~e-αz), are diagnostic features of surface waves. The measured attenuation coefficient α was 0.28 m-1. The identification of the surface wave is confirmed by comparing the measured waveforms with waveforms predicted by the theoretical evaluation of the explicit surface wave pole term using residue theory.

  4. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  5. Modeling turbulent flame propagation

    SciTech Connect

    Ashurst, W.T.

    1994-08-01

    Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.

  6. Tests Of Shear-Flow Model For Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Parrot, Tony L.; Watson, Willie R.; Jones, Michael G.

    1992-01-01

    Tests described in report conducted to validate two-dimensional shear-flow analytical model for determination of acoustic impedance of acoustic liner in grazing-incidence, grazing-flow environment by use of infinite-waveguide method. Tests successful for both upstream and downstream propagations. Work has potential for utility in testing of engine ducts in commercial aircraft.

  7. Low-Frequency Acoustic Signals Propagation in Buried Pipelines

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, A. L.; Lapshin, B. M.

    2016-01-01

    The article deals with the issues concerning acoustic signals propagation in the large-diameter oil pipelines caused by mechanical action on the pipe body. Various mechanisms of signals attenuation are discussed. It is shown that the calculation of the attenuation caused only by internal energy loss, i.e, the presence of viscosity, thermal conductivity and liquid pipeline wall friction lead to low results. The results of experimental studies, carried out using the existing pipeline with a diameter of 1200 mm. are shown. It is experimentally proved that the main mechanism of signal attenuation is the energy emission into the environment. The numerical values of attenuation coefficients that are 0,14- 0.18 dB/m for the pipeline of 1200 mm in diameter, in the frequency range from 50 Hz to 500 Hz, are determined.

  8. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  9. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.

    PubMed

    Wang, Ding; Wang, Liji; Ding, Pinbo

    2016-08-01

    An illustrative theory is developed to analyze the acoustic wave propagation characteristics in the porous media with anisotropic permeability. We focus here on the role of fracture permeability in the unconsolidated porous media, looking in particular at the compressional P-wave phase velocity and attenuation. Two fluid pressure equilibration characteristic time factors are defined, which are corresponding to crack-pore system and crack-crack system, respectively. The theoretical results show that the dispersion and attenuation characteristics of acoustic wave are affected by porous matrix and fracture permeability simultaneously. Due to the fluid exchange that takes place between fractures and pores dominantly, the influence of the fracture connectivity on the wave propagation is very weak when the permeability of background medium is relatively high. However, correlation between wave propagation and fracture permeability is significant when the matrix permeability at a low level. A second attenuation peak occurs for the fluid flow within fractures in high-frequency region for more and more higher fracture permeability. The exact analytical solutions that are compared to numerical forward modeling of wave propagation in fractured media allow us to verify the correctness of the new model. If there exists another approach for obtaining the connectivity information of background media, we can use this model to analyze qualitatively the permeability of fractures or afford an indicator of in-situ permeability changes in a oil reservoir, for example, fracturing operations. PMID:27259119

  10. Analysis of passive acoustic ranging of helicopters from the joint acoustic propagation experiment

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Morgan, John C.

    1993-01-01

    For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station (WES) have been performing research dealing with the application of sensors for detection of military targets. The WES research has included the use of seismic, acoustic, magnetic, and other sensors to detect, track, and classify military ground targets. Most of the WES research has been oriented toward the employment of such sensors in a passive mode. Techniques for passive detection are of particular interest in the Army because of the advantages over active detection. Passive detection methods are not susceptible to interception, detection, jamming, or location of the source by the threat. A decided advantage for using acoustic and seismic sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of low flying helicopters at long distances without visual contact. This study was conducted to analyze the passive acoustic ranging (PAR) concept using a more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

  11. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    PubMed

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz. PMID:27250143

  12. A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media

    SciTech Connect

    Wilcox, Lucas C.; Stadler, Georg; Burstedde, Carsten; Ghattas, Omar

    2010-12-10

    We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic-acoustic media. A velocity-strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic-acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic-acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.

  13. A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media

    NASA Astrophysics Data System (ADS)

    Wilcox, Lucas C.; Stadler, Georg; Burstedde, Carsten; Ghattas, Omar

    2010-12-01

    We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic-acoustic media. A velocity-strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic-acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic-acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.

  14. Model-scale sound propagation experiment

    NASA Technical Reports Server (NTRS)

    Willshire, William L., Jr.

    1988-01-01

    The results of a scale model propagation experiment to investigate grazing propagation above a finite impedance boundary are reported. In the experiment, a 20 x 25 ft ground plane was installed in an anechoic chamber. Propagation tests were performed over the plywood surface of the ground plane and with the ground plane covered with felt, styrofoam, and fiberboard. Tests were performed with discrete tones in the frequency range of 10 to 15 kHz. The acoustic source and microphones varied in height above the test surface from flush to 6 in. Microphones were located in a linear array up to 18 ft from the source. A preliminary experiment using the same ground plane, but only testing the plywood and felt surfaces was performed. The results of this first experiment were encouraging, but data variability and repeatability were poor, particularly, for the felt surface, making comparisons with theoretical predictions difficult. In the main experiment the sound source, microphones, microphone positioning, data acquisition, quality of the anechoic chamber, and environmental control of the anechoic chamber were improved. High-quality, repeatable acoustic data were measured in the main experiment for all four test surfaces. Comparisons with predictions are good, but limited by uncertainties of the impedance values of the test surfaces.

  15. Numerical study of nonlinear full wave acoustic propagation

    NASA Astrophysics Data System (ADS)

    Velasco-Segura, Roberto; Rendon, Pablo L.

    2013-11-01

    With the aim of describing nonlinear acoustic phenomena, a form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite-volume method using Roe's linearization has been implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a HIFU system, both with satisfactory results. The code is written for parallel execution on a GPU and improves performance by a factor of over 50 when compared to the standard CLAWPACK Fortran code. This code can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from modest models of diagnostic and therapeutic HIFU, parametric acoustic arrays, to acoustic wave guides. A couple of examples will be presented showing shock formation and oblique interaction. DGAPA PAPIIT IN110411, PAEP UNAM 2013.

  16. A mesh-free method with arbitrary-order accuracy for acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Takekawa, Junichi; Mikada, Hitoshi; Imamura, Naoto

    2015-05-01

    In the present study, we applied a novel mesh-free method to solve acoustic wave equation. Although the conventional finite difference methods determine the coefficients of its operator based on the regular grid alignment, the mesh-free method is not restricted to regular arrangements of calculation points. We derive the mesh-free approach using the multivariable Taylor expansion. The methodology can use arbitrary-order accuracy scheme in space by expanding the influence domain which controls the number of neighboring calculation points. The unique point of the method is that the approach calculates the approximation of derivatives using the differences of spatial variables without parameters as e.g. the weighting functions, basis functions. Dispersion analysis using a plane wave reveals that the choice of the higher-order scheme improves the dispersion property of the method although the scheme for the irregular distribution of the calculation points is more dispersive than that of the regular alignment. In numerical experiments, a model of irregular distribution of the calculation points reproduces acoustic wave propagation in a homogeneous medium same as that of a regular lattice. In an inhomogeneous model which includes low velocity anomalies, partially fine arrangement improves the effectiveness of computational cost without suffering from accuracy reduction. Our result indicates that the method would provide accurate and efficient solutions for acoustic wave propagation using adaptive distribution of the calculation points.

  17. Mesospheric airglow and ionospheric responses to upward-propagating acoustic and gravity waves above tropospheric sources

    NASA Astrophysics Data System (ADS)

    Snively, J. B.; Zettergren, M. D.

    2013-12-01

    The existence of acoustic waves (periods ~1-5 minutes) and gravity waves (periods >4 minutes) in the ionosphere above active tropospheric convection has been appreciated for more than forty years [e.g., Georges, Rev. Geophys. and Space Phys., 11(3), 1973]. Likewise, gravity waves exhibiting cylindrical symmetry and curvature of phase fronts have been observed via imaging of the mesospheric airglow layers [e.g., Yue et al., JGR, 118(8), 2013], clearly associated with tropospheric convection; gravity wave signatures have also recently been detected above convection in ionospheric total electron content (TEC) measurements [Lay et al., GRL, 40, 2013]. We here investigate the observable features of acoustic waves, and their relationship to upward-propagating gravity waves generated by the same sources, as they arrive in the mesosphere, lower-thermosphere, and ionosphere (MLTI). Numerical simulations using a nonlinear, cylindrically-axisymmetric, compressible atmospheric dynamics model confirm that acoustic waves generated by transient tropospheric sources may produce "concentric ring" signatures in the mesospheric hydroxyl airglow layer that precede the arrival of gravity waves. As amplitudes increase with altitude and decreasing neutral density, the modeled acoustic waves achieve temperature and vertical wind perturbations on the order of ~10s of Kelvin and m/s throughout the E- and F-region. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for low-latitudes using a 2D dipole magnetic field coordinate system, we investigate acoustic wave perturbations to the ionosphere in the meridional direction. Resulting perturbations are predicted to be detectable by ground-based radar and GPS TEC measurements, or via in situ instrumentation. Although transient and short-lived, the acoustic waves' airglow and ionospheric signatures are likely to in some cases be observable, and may provide important insight into the regional

  18. Numerical analysis of sound propagation for acoustic lens array in different fluid mediums

    NASA Astrophysics Data System (ADS)

    Fujisawa, Kei; Asada, Akira

    2014-11-01

    In this paper, an acoustic sound focusing method using acoustic lens array is investigated numerically. To understand the sound propagation in the acoustic field in water with a lens material of glycerin, compressible Navier-Stokes equation, the mass conservation, energy equation, state equation in cylindrical coordinate system are solved without applying parabolic approximation. The numerical method is based on the finite difference time domain method. The numerical calculation of the sound propagation is carried out in the near field of the acoustic lens array of variable thickness normal to the acoustic beam. The numerical result shows that the sound pressure level along the beam axis increases due to the influence of the acoustic lens array, which indicates the capability of the acoustic lens array to the sound focusing.

  19. A database for propagation models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.; Suwitra, Krisjani S.

    1992-01-01

    In June 1991, a paper at the fifteenth NASA Propagation Experimenters Meeting (NAPEX 15) was presented outlining the development of a database for propagation models. The database is designed to allow the scientists and experimenters in the propagation field to process their data through any known and accepted propagation model. The architecture of the database also incorporates the possibility of changing the standard models in the database to fit the scientist's or the experimenter's needs. The database not only provides powerful software to process the data generated by the experiments, but is also a time- and energy-saving tool for plotting results, generating tables, and producing impressive and crisp hard copy for presentation and filing.

  20. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    NASA Astrophysics Data System (ADS)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  1. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  2. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  3. Mode tomography using signals from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX)

    NASA Astrophysics Data System (ADS)

    Chandrayadula, Tarun K.

    Ocean acoustic tomography uses acoustic signals to infer the environmental properties of the ocean. The procedure for tomography consists of low frequency acoustic transmissions at mid-water depths to receivers located at hundreds of kilometer ranges. The arrival times of the signal at the receiver are then inverted for the sound speed of the background environment. Using this principle, experiments such as the 2004 Long Range Ocean Acoustic Propagation EXperiment have used acoustic signals recorded across Vertical Line Arrays (VLAs) to infer the Sound Speed Profile (SSP) across depth. The acoustic signals across the VLAs can be represented in terms of orthonormal basis functions called modes. The lower modes of the basis set concentrated around mid-water propagate longer distances and can be inverted for mesoscale effects such as currents and eddies. In spite of these advantages, mode tomography has received less attention. One of the important reasons for this is that internal waves in the ocean cause significant amplitude and travel time fluctuations in the modes. The amplitude and travel time fluctuations cause errors in travel time estimates. The absence of a statistical model and the lack of signal processing techniques for internal wave effects have precluded the modes from being used in tomographic inversions. This thesis estimates a statistical model for modes affected by internal waves and then uses the estimated model to design appropriate signal processing methods to obtain tomographic observables for the low modes. In order to estimate a statistical model, this thesis uses both the LOAPEX signals and also numerical simulations. The statistical model describes the amplitude and phase coherence across different frequencies for modes at different ranges. The model suggests that Matched Subspace Detectors (MSDs) based on the amplitude statistics of the modes are the optimum detectors to make travel time estimates for modes up to 250 km. The mean of the

  4. The multipath propagation effect in gunshot acoustics and its impact on the design of sniper positioning systems

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2013-06-01

    Counter sniper systems rely on the detection and parameter estimation of the shockwave and the muzzle blast in order to determine the sniper location. In real-world situations, these acoustical signals can be disturbed by natural phenomena like weather and climate conditions, multipath propagation effect, and background noise. While some of these issues have received some attention in recent publications with application to gunshot acoustics, the multipath propagation phenomenon whose effect can not be neglected, specially in urban environments, has not yet been discussed in details in the technical literature in the same context. Propagating sound waves can be reflected at the boundaries in the vicinity of sound sources or receivers, whenever there is a difference in acoustical impedance between the reflective material and the air. Therefore, the received signal can be composed of a direct-path signal plus N scaled delayed copies of that signal. This paper presents a discussion on the multipath propagation effect and its impact on the performance and reliability of sniper positioning systems. In our formulation, propagation models for both the shockwave and the muzzle blast are considered and analyzed. Conclusions following the theoretical analysis of the problem are fully supported by actual gunshots acoustical signatures.

  5. Experimental study of outdoor propagation of spherically speading periodic acoustic waves of finite amplitude

    NASA Technical Reports Server (NTRS)

    Theobald, M. A.

    1977-01-01

    The outdoor propagation of spherically spreading sound waves of finite amplitude was investigated. The main purpose of the experiments was to determine the extent to which the outdoor environment, mainly random inhomogeneity of the medium, affects finite amplitude propagation. Periodic sources with fundamental frequencies in the range 6 to 8 kHz and source levels SPLlm from 140 to 149 dB were used. The sources were an array of 7 to 10 horn drivers and a siren. The propagation path was vertical and parallel to an 85 m tower, whose elevator carried the traveling microphone. The general conclusions drawn from the experimental results were as follows. The inhomogeneities caused significant fluctuations in the instantaneous acoustic signal, but with sufficient time averaging of the measured harmonic levels, the results were comparable to results expected for propagation in a quiet medium. Propagation data for the fundamental of the siren approached within 1 dB of the weak shock saturation levels. Extra attenuation on the order of 8 dB was observed. The measurements generally confirmed the predictions of several theoretical models. The maximum propagation distance was 36 m. The narrowbeam arrays were much weaker sources. Nonlinear propagation distortion was produced, but the maximum value of extra attenuation measured was 1.5 dB. The maximum propagation distance was 76 m. The behavior of the asymetric waveforms received in one experiment qualitatively suggested that beam type diffraction effects were present. The role of diffraction of high intensity sound waves in radiation from a single horn was briefly investigated.

  6. Effects of dissipation on propagation of surface electromagnetic and acoustic waves

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nagaraj

    With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. With this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. The first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an effort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. A dielectric-metal-dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. An equation for propagation length is derived in a wide range of frequencies. I also show how the frequency of coupled surface plasmons can be modulated by changing the thickness of the metal film. I propose a Kronig-Penny model for the plasmonic crystal, which in the long wavelength limit, may serve as a homogeneous dielectric substrate with high anisotropy which do not exist for natural optical crystals. In the second part (chapters 4 & 5) of the dissertation, I discuss an interesting effect of extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two metal plates. Starting from the elastic properties of the metal plates, I derive a dispersion equation that gives

  7. Mid-frequency acoustic propagation in shallow water on the New Jersey shelf: mean intensity.

    PubMed

    Tang, Dajun; Henyey, Frank S; Wang, Zhongkang; Williams, Kevin L; Rouseff, Daniel; Dahl, Peter H; Quijano, Jorge; Choi, Jee Woong

    2008-09-01

    Mid-frequency (1-10 kHz) sound propagation was measured at ranges 1-9 km in shallow water in order to investigate intensity statistics. Warm water near the bottom results in a sound speed minimum. Environmental measurements include sediment sound speed and water sound speed and density from a towed conductivity-temperature-depth chain. Ambient internal waves contribute to acoustic fluctuations. A simple model involving modes with random phases predicts the mean transmission loss to within a few dB. Quantitative ray theory fails due to near axial focusing. Fluctuations of the intensity field are dominated by water column variability. PMID:19045567

  8. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    SciTech Connect

    Liu, Xiaozhou Zhang, Lue; Wang, Xiangda; Gong, Xiufen

    2015-10-28

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.

  9. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.

  10. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier- Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle

  11. Aerosol lenses propagation model.

    PubMed

    Tremblay, Grégoire; Roy, Gilles

    2011-09-01

    We propose a model based on the properties of cascading lenses modulation transfer function (MTF) to reproduce the irradiance of a screen illuminated through a dense aerosol cloud. In this model, the aerosol cloud is broken into multiple thin layers considered as individual lenses. The screen irradiance generated by these individual layers is equivalent to the point-spread function (PSF) of each aerosol lens. Taking the Fourier transform of the PSF as a MTF, we cascade the lenses MTF to find the cloud MTF. The screen irradiance is found with the Fourier transform of this MTF. We show the derivation of the model and we compare the results with the Undique Monte Carlo simulator for four aerosols at three optical depths. The model is in agreement with the Monte Carlo for all the cases tested. PMID:21886230

  12. Observations of vertically propagating driven dust acoustic waves: Finite temperature effects

    SciTech Connect

    Williams, Jeremiah D.; Thomas, Edward Jr.; Marcus, Lydia

    2008-04-15

    In this study, the first measurement of the dispersion relationship for a vertically propagating (i.e., parallel to gravity), driven dust acoustic wave is reported. Finite dust temperature effects were observed in the dispersion relation of the dust acoustic wave.

  13. Model-based ocean acoustic passive localization

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1994-01-24

    The detection, localization and classification of acoustic sources (targets) in a hostile ocean environment is a difficult problem -- especially in light of the improved design of modern submarines and the continual improvement in quieting technology. Further the advent of more and more diesel-powered vessels makes the detection problem even more formidable than ever before. It has recently been recognized that the incorporation of a mathematical model that accurately represents the phenomenology under investigation can vastly improve the performance of any processor, assuming, of course, that the model is accurate. Therefore, it is necessary to incorporate more knowledge about the ocean environment into detection and localization algorithms in order to enhance the overall signal-to-noise ratios and improve performance. An alternative methodology to matched-field/matched-mode processing is the so-called model-based processor which is based on a state-space representation of the normal-mode propagation model. If state-space solutions can be accomplished, then many of the current ocean acoustic processing problems can be analyzed and solved using this framework to analyze performance results based on firm statistical and system theoretic grounds. The model-based approach, is (simply) ``incorporating mathematical models of both physical phenomenology and the measurement processes including noise into the processor to extract the desired information.`` In this application, we seek techniques to incorporate the: (1) ocean acoustic propagation model; (2) sensor array measurement model; and (3) noise models (ambient, shipping, surface and measurement) into a processor to solve the associated localization/detection problems.

  14. Arctic acoustics ultrasonic modeling studies

    NASA Astrophysics Data System (ADS)

    Chamuel, Jacques R.

    1990-03-01

    A unique collection of laboratory ultrasonic modeling results are presented revealing and characterizing hidden pulsed seismoacoustic wave phenomena from 3-D range dependent liquid/solid boundaries. The research succeeded in isolating and identifying low frequency (10 to 500 Hz) transmission loss mechanisms and provided physical insight into Arctic acoustic problems generally beyond the state-of-the-art of theoretical and numerical analysis. The ultrasonic modeling studies dealt with controversial issues and existing discrepancies on seismo-acoustic waves at water/ice interface, sea ice thickness determination, low frequency transmission loss, and bottom leaky Rayleigh waves. The areas investigated include leaky Rayleigh waves at water/ice interface, leaky flexural waves in floating ice plates, effects of dry/wet cracks in sea ice on plate waves and near grazing acoustic waves, edge waves in floating plates, low frequency backscatter from ice keel width resonances, conversion of underwater acoustic waves into plate waves by keels, nondispersive flexural wave along apex of small angle solid wedge, Scholte and leaky Rayleigh waves along apex of immersed 90 ice wedge, backscatter from trailing edge of floes, floating plate resonances associated with near-grazing underwater acoustic waves, acoustic coupling between adjacent floes, and multiple bottom leaky Rayleigh wave components in water layer over solid bottom.

  15. High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams

    SciTech Connect

    Siemens, M.; Li, Q.; Murnane, M.; Kapteyn, H.; Yang, R.; Anderson, E.; Nelson, K.

    2009-03-02

    We study ultrahigh frequency surface acoustic wave propagation in nickel-on-sapphire nanostructures. The use of ultrafast, coherent, extreme ultraviolet beams allows us to extend optical measurements of propagation dynamics of surface acoustic waves to frequencies of nearly 50 GHz, corresponding to wavelengths as short as 125 nm. We repeat the measurement on a sequence of nanostructured samples to observe surface acoustic wave dispersion in a nanostructure series for the first time. These measurements are critical for accurate characterization of thin films using this technique.

  16. Underwater Sound Propagation Modeling Methods for Predicting Marine Animal Exposure.

    PubMed

    Hamm, Craig A; McCammon, Diana F; Taillefer, Martin L

    2016-01-01

    The offshore exploration and production (E&P) industry requires comprehensive and accurate ocean acoustic models for determining the exposure of marine life to the high levels of sound used in seismic surveys and other E&P activities. This paper reviews the types of acoustic models most useful for predicting the propagation of undersea noise sources and describes current exposure models. The severe problems caused by model sensitivity to the uncertainty in the environment are highlighted to support the conclusion that it is vital that risk assessments include transmission loss estimates with statistical measures of confidence. PMID:26610982

  17. Acoustical effects of a large ridge on low-frequency sound propagation in stationary and moving atmospheres

    NASA Technical Reports Server (NTRS)

    Robertson, J. S.; Jacobson, M. J.; Siegmann, W. L.; Santandrea, D. P.

    1989-01-01

    The effects of a ridge on a low-frequency acoustic propagation in quiescent and windy atmospheres are investigated using a parabolic approximation. A logarithmic wind-speed profile, commonly employed to model atmospheric wind currents, is modified and used to model two-dimensional atmospheric flow over a triangularly-shaped hill. The parabolic equation is solved using an implicit finite-difference algorithm. Several examples are examined to determine the combined effects of source-ridge distance, ridge dimensions, wind-speed profile, and CW source frequency on the received acoustic field.

  18. Laser induced plane acoustic wave generation, propagation, and interaction with rigid structures in water

    NASA Astrophysics Data System (ADS)

    Ko, Seung H.; Ryu, Sang G.; Misra, Nipun; Pan, Heng; Grigoropoulos, Costas P.; Kladias, Nick; Panides, Elias; Domoto, Gerald A.

    2008-10-01

    Short pulsed laser induced single acoustic wave generation, propagation, interaction with rigid structures, and focusing in water are experimentally and numerically studied. A large area short duration single plane acoustic wave was generated by the thermoelastic interaction of a homogenized nanosecond pulsed laser beam with a liquid-solid interface and propagated at the speed of sound in water. Laser flash schlieren photography was used to visualize the transient interaction of the plane acoustic wave with various submerged rigid structures [(a) a single block, (b) double blocks, (c) 33° tilted single block, and (d) concave cylindrical acoustic lens configurations]. Excellent agreement between the experimental results and numerical simulation is observed. Our simulation results demonstrate that the laser induced planar acoustic wave can be focused down to several tens of micron size and several bars in pressure.

  19. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation

    PubMed Central

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-01-01

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL. PMID:26978361

  20. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation.

    PubMed

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-01-01

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL. PMID:26978361

  1. Controlling acoustic-wave propagation through material anisotropy

    NASA Astrophysics Data System (ADS)

    Tehranian, Aref; Amirkhizi, Alireza V.; Irion, Jeffrey; Isaacs, Jon; Nemat-Nasser, Sia

    2009-03-01

    Acoustic-wave velocity is strongly direction dependent in an anisotropic medium. This can be used to design composites with preferred acoustic-energy transport characteristics. In a unidirectional fiber-glass composite, for example, the preferred direction corresponds to the fiber orientation which is associated with the highest stiffness and which can be used to guide the momentum and energy of the acoustic waves either away from or toward a region within the material, depending on whether one wishes to avoid or harvest the corresponding stress waves. The main focus of this work is to illustrate this phenomenon using numerical simulations and then check the results experimentally.

  2. Vibro-acoustic propagation of gear dynamics in a gear-bearing-housing system

    NASA Astrophysics Data System (ADS)

    Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.; Parker, Robert G.

    2014-10-01

    This work developed a computational process to predict noise radiation from gearboxes. It developed a system-level vibro-acoustic model of an actual gearbox, including gears, bearings, shafts, and housing structure, and compared the results to experiments. The meshing action of gear teeth causes vibrations to propagate through shafts and bearings to the housing radiating noise. The vibration excitation from the gear mesh and the system response were predicted using finite element and lumped-parameter models. From these results, the radiated noise was calculated using a boundary element model of the housing. Experimental vibration and noise measurements from the gearbox confirmed the computational predictions. The developed tool was used to investigate the influence of standard rolling element and modified journal bearings on gearbox radiated noise.

  3. A database for propagation models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.; Suwitra, Krisjani; Le, Chuong

    1995-01-01

    A database of various propagation phenomena models that can be used by telecommunications systems engineers to obtain parameter values for systems design is presented. This is an easy-to-use tool and is currently available for either a PC using Excel software under Windows environment or a Macintosh using Excel software for Macintosh. All the steps necessary to use the software are easy and many times self explanatory.

  4. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  5. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Vargas, Magda B.

    2013-01-01

    Subscale rocket acoustic data is used to predict acoustic environments for full scale rockets. Over the last several years acoustic data has been collected during horizontal tests of solid rocket motors. Space Launch System (SLS) Scale Model Acoustic Test (SMAT) was designed to evaluate the acoustics of the SLS vehicle including the liquid engines and solid rocket boosters. SMAT is comprised of liquid thrusters scalable to the Space Shuttle Main engines (SSME) and Rocket Assisted Take Off (RATO) motors scalable to the 5-segment Reusable Solid Rocket Motor (RSTMV). Horizontal testing of the liquid thrusters provided an opportunity to collect acoustic data from liquid thrusters to characterize the acoustic environments. Acoustic data was collected during the horizontal firings of a single thruster and a 4-thruster (Quad) configuration. Presentation scope. Discuss the results of the single and 4-thruster acoustic measurements. Compare the measured acoustic levels of the liquid thrusters to the Solid Rocket Test Motor V - Nozzle 2 (SRTMV-N2).

  6. FE simulation of laser generated surface acoustic wave propagation in skin.

    PubMed

    L'Etang, Adèle; Huang, Zhihong

    2006-12-22

    Advances in laser ultrasonics have opened new possibilities in medical applications, such as the characterization of skin properties. This paper describes the development of a multilayered finite element model (FEM) using ANSYS to simulate the propagation of laser generated thermoelastic surface acoustic waves (SAWs) through skin and to generate signals one would expect to observe without causing thermal damage to skin. A transient thermal analysis is developed to simulate the thermal effect of the laser source penetrating into the skin. The results from the thermal analysis are subsequently applied as a load to the structural analysis where the out-of-plane displacement responses are analysed in models with varying dermis layer thickness. PMID:16814352

  7. Acoustic wave propagation in heterogeneous two-dimensional fractured porous media

    NASA Astrophysics Data System (ADS)

    Hamzehpour, Hossein; Asgari, Mojgan; Sahimi, Muhammad

    2016-06-01

    This paper addresses an important fundamental question: the differences between wave propagation in fractured porous media with a uniform matrix (constant bulk modulus) and those in which the matrix is heterogeneous with its bulk modulus distributed spatially. The analysis of extensive experimental data [Phys. Rev. E 71, 046301 (2005), 10.1103/PhysRevE.71.046301] indicated that such distributions are self-affine and induce correlations at all the relevant length scales. The comparison is important from a practical view point because in many of the traditional models of fractured rock, particularly those that are used to study wave propagation or fit some data, the matrix is assumed to be uniform. Using extensive numerical simulation of propagation of acoustic waves, we present strong evidence indicating that the waves' amplitude in a fractured porous medium with a heterogeneous matrix decays exponentially with the distance from the source. This is in sharp contrast with a fractured porous medium with a uniform matrix in which not only the waves' amplitude decays with the distance as a stretched exponential function, but the exponent that characterizes the function is also dependent upon the fracture density. The localization length depends on the correlations in the spatial distribution of the bulk modulus, as well as the fracture density. The mean speed of the waves varies linearly with the fractures' mean orientation.

  8. Acoustic wave propagation in heterogeneous two-dimensional fractured porous media.

    PubMed

    Hamzehpour, Hossein; Asgari, Mojgan; Sahimi, Muhammad

    2016-06-01

    This paper addresses an important fundamental question: the differences between wave propagation in fractured porous media with a uniform matrix (constant bulk modulus) and those in which the matrix is heterogeneous with its bulk modulus distributed spatially. The analysis of extensive experimental data [Phys. Rev. E 71, 046301 (2005)PLEEE81539-375510.1103/PhysRevE.71.046301] indicated that such distributions are self-affine and induce correlations at all the relevant length scales. The comparison is important from a practical view point because in many of the traditional models of fractured rock, particularly those that are used to study wave propagation or fit some data, the matrix is assumed to be uniform. Using extensive numerical simulation of propagation of acoustic waves, we present strong evidence indicating that the waves' amplitude in a fractured porous medium with a heterogeneous matrix decays exponentially with the distance from the source. This is in sharp contrast with a fractured porous medium with a uniform matrix in which not only the waves' amplitude decays with the distance as a stretched exponential function, but the exponent that characterizes the function is also dependent upon the fracture density. The localization length depends on the correlations in the spatial distribution of the bulk modulus, as well as the fracture density. The mean speed of the waves varies linearly with the fractures' mean orientation. PMID:27415385

  9. Sensitivity of acoustic propagation to uncertainties in the marine environment as characterized by various rapid environmental assessment methods

    NASA Astrophysics Data System (ADS)

    Pecknold, Sean; Osler, John C.

    2012-02-01

    Accurate sonar performance prediction modelling depends on a good knowledge of the local environment, including bathymetry, oceanography and seabed properties. The function of rapid environmental assessment (REA) is to obtain relevant environmental data in a tactically relevant time frame, with REA methods categorized by the nature and immediacy of their application, from historical databases through remotely sensed data to in situ acquisition. However, each REA approach is subject to its own set of uncertainties, which are in turn transferred to uncertainty in sonar performance prediction. An approach to quantify and manage this uncertainty has been developed through the definition of sensitivity metrics and Monte Carlo simulations of acoustic propagation using multiple realizations of the marine environment. This approach can be simplified by using a linearized two-point sensitivity measure based on the statistics of the environmental parameters used by acoustic propagation models. The statistical properties of the environmental parameters may be obtained from compilations of historical data, forecast conditions or in situ measurements. During a field trial off the coast of Nova Scotia, a set of environmental data, including oceanographic and geoacoustic parameters, were collected together with acoustic transmission loss data. At the same time, several numerical models to forecast the oceanographic conditions were run for the area, including 5- and 1-day forecasts as well as nowcasts. Data from the model runs are compared to each other and to in situ environmental sampling, and estimates of the environmental uncertainties are calculated. The forecast and in situ data are used with historical geoacoustic databases and geoacoustic parameters collected using REA techniques, respectively, to perform acoustic transmission loss predictions, which are then compared to measured transmission loss. The progression of uncertainties in the marine environment, within and

  10. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.

    PubMed

    Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel

    2016-04-01

    The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials. PMID:27106317

  11. Analysis of measured broadband acoustic propagation using a parabolic equation approach

    NASA Astrophysics Data System (ADS)

    Gray, Mason; Knobles, D. P.; Koch, Robert

    2003-10-01

    A broadband parabolic equation (PE) approach is employed to simulate data taken from two Shallow Water Acoustic Measurement Instrument (SWAMI) bottom mounted horizontal line array (HLA) experiments in shallow water environments off the east coast of the U.S. and in the Gulf of Mexico. In both experiments the HLA was deployed along an isobath. Light bulbs were imploded at known depths and ranges in both the range-independent (array end fire) and range-dependent (array broadside) directions. For the east coast experimental data, the PE model is used to infer a seabed geoacoustic description in both the range-dependent and range-independent directions. Also, comparisons of modeled time series were made for the range-independent case with a broadband normal mode model to validate the PE calculations. In the Gulf of Mexico experiment, the sediment geoacoustic profile is well known from previous inversions and geophysical measurements. This known seabed description was used to simulate the range-dependent data. A broadband energy-conserving coupled mode approach is also employed to model the range-dependent propagation. This allows the physical mechanisms associated with range-dependent propagation to be examined in a quantitative manner for this shallow water environment. [Work supported by ONR.

  12. Acoustic Models of Optical Mirrors

    ERIC Educational Resources Information Center

    Mayer, V. V.; Varaksina, E. I.

    2014-01-01

    Students form a more exact idea of the action of optical mirrors if they can observe the wave field being formed during reflection. For this purpose it is possible to organize model experiments with flexural waves propagating in thin elastic plates. The direct and round edges of the plates are used as models of plane, convex and concave mirrors.…

  13. Measurement of Bubble Size Distribution Based on Acoustic Propagation in Bubbly Medium

    NASA Astrophysics Data System (ADS)

    Wu, Xiongjun; Hsiao, Chao-Tsung; Choi, Jin-Keun; Chahine, Georges

    2013-03-01

    Acoustic properties are strongly affected by bubble size distribution in a bubbly medium. Measurement of the acoustic transmission becomes increasingly difficulty as the void fraction of the bubbly medium increases due to strong attenuation, while acoustic reflection can be measured more easily with increasing void fraction. The ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright, an instrument for bubble size measurement that is under development tries to take full advantage of the properties of acoustic propagation in bubbly media to extract bubble size distribution. Properties of both acoustic transmission and reflection in the bubbly medium from a range of short single-frequency bursts of acoustic waves at different frequencies are measured in an effort to deduce the bubble size distribution. With the combination of both acoustic transmission and reflection, assisted with validations from photography, the ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright has the potential to measure bubble size distributions in a wider void fraction range. This work was sponsored by Department of Energy SBIR program

  14. On the effects of small-scale variability on acoustic propagation in Fram Strait: The tomography forward problem.

    PubMed

    Dushaw, Brian D; Sagen, Hanne; Beszczynska-Möller, Agnieszka

    2016-08-01

    Acoustic tomography systems have been deployed in Fram Strait over the past decade to complement existing observing systems there. The observed acoustic arrival patterns are unusual, however, consisting of a single, broad arrival pulse, with no discernible repeating patterns or individual ray arrivals. The nature of these arrivals is caused by vigorous acoustic scattering from the small-scale processes that dominate ocean variability in Fram Strait. Simple models for internal wave and mesoscale variability were constructed and tailored to match the variability observed by moored thermisters in Fram Strait. The internal wave contribution to variability is weak. Acoustic propagation through a simulated ocean consisting of a climatological sound speed plus mesoscale and internal wave scintillations obtains arrival patterns that match the characteristics of those observed, i.e., pulse width and travel time variation. The scintillations cause a proliferation of acoustic ray paths, however, reminiscent of "ray chaos." This understanding of the acoustic forward problem is prerequisite to designing an inverse scheme for estimating temperature from the observed travel times. PMID:27586755

  15. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  16. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  17. A model experiment to study sonic boom propagation through turbulence. Part III: validation of sonic boom propagation models.

    PubMed

    Lipkens, Bart

    2002-01-01

    In previous papers, we have shown that model experiments are successful in simulating the propagation of sonic booms through the atmospheric turbulent boundary layer. The results from the model experiment, pressure wave forms of spark-produced N waves and turbulence characteristics of the plane jet, are used to test various sonic boom models for propagation through turbulence. Both wave form distortion models and rise time prediction models are tested. Pierce's model [A. D. Pierce, "Statistical theory of atmospheric turbulence effects on sonic boom rise times," J. Acoust. Soc. Am. 49, 906-924 (1971)] based on the wave front folding mechanism at a caustic yields an accurate prediction for the rise time of the mean wave form after propagation through the turbulence. PMID:11837956

  18. Application of acoustic radiosity methods to noise propagation within buildings

    NASA Astrophysics Data System (ADS)

    Muehleisen, Ralph T.; Beamer, C. Walter

    2005-09-01

    The prediction of sound pressure levels in rooms from transmitted sound is a difficult problem. The sound energy in the source room incident on the common wall must be accurately predicted. In the receiving room, the propagation of sound from the planar wall source must also be accurately predicted. The radiosity method naturally computes the spatial distribution of sound energy incident on a wall and also naturally predicts the propagation of sound from a planar area source. In this paper, the application of the radiosity method to sound transmission problems is introduced and explained.

  19. An Investigation of Acoustic Wave Propagation in Mach 2 Flow

    NASA Astrophysics Data System (ADS)

    Nieberding, Zachary J.

    Hypersonic technology is the next advancement to enter the aerospace community; it is defined as the study of flight at speeds Mach 5 and higher where intense aerodynamic heating is prevalent. Hypersonic flight is achieved through use of scramjet engines, which intake air and compress it by means of shock waves and geometry design. The airflow is then directed through an isolator where it is further compressed, it is then delivered to the combustor at supersonic speeds. The combusted airflow and fuel mixture is then accelerated through a nozzle to achieve the hypersonic speeds. Unfortunately, scramjet engines can experience a phenomenon known as an inlet unstart, where the combustor produces pressures large enough to force the incoming airflow out of the inlet of the engine, resulting in a loss of acceleration and power. There have been several government-funded programs that look to prove the concept of the scramjet engine and also tackle this inlet unstart issue. The research conducted in this thesis is a fundamental approach towards controlling the unstart problem: it looks at the basic concept of sending a signal upstream through the boundary layer of a supersonic flow and being able to detect a characterizeable signal. Since conditions within and near the combustor are very harsh, hardware is unable to be installed in that area, so this testing will determine if a signal can be sent and if so, how far upstream can the signal be detected. This experimental approach utilizes several acoustic and mass injection sources to be evaluated over three test series in a Mach 2 continuous flow wind tunnel that will determine the success of the objective. The test series vary in that the conditions of the flow and the test objectives change. The research shows that a characterizeable signal can be transmitted upstream roughly 12 inches through the subsonic boundary layer of a supersonic cross flow. It is also shown that the signal attenuates as the distance between the

  20. Weakly nonlinear acoustic wave propagation in a nonlinear orthotropic circular cylindrical waveguide.

    PubMed

    Prakash, Vijay S; Sonti, Venkata R

    2015-11-01

    Nonlinear acoustic wave propagation is considered in an infinite orthotropic thin circular cylindrical waveguide. The modes are non-planar having small but finite amplitude. The fluid is assumed to be ideal and inviscid with no mean flow. The cylindrical waveguide is modeled using the Donnell's nonlinear theory for thin cylindrical shells. The approximate solutions for the acoustic velocity potential are found using the method of multiple scales (MMS) in space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrödinger Equation (NLSE). The first objective is to study the nonlinear term in the NLSE, as the sign of the nonlinear term determines the stability of the amplitude modulation. On the other hand, at other specific frequencies, interactions occur between the primary wave and its higher harmonics. Here, the objective is to identify the frequencies of the higher harmonic interactions. Lastly, the linear terms in the NLSE obtained using the MMS calculations are validated. All three objectives are met using an asymptotic analysis of the dispersion equation. PMID:26627797

  1. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    NASA Astrophysics Data System (ADS)

    Desjouy, C.; Ollivier, S.; Marsden, O.; Dragna, D.; Blanc-Benon, P.

    2015-10-01

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular - also called Von Neumann - regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.

  2. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    SciTech Connect

    Desjouy, C. Ollivier, S.; Dragna, D.; Blanc-Benon, P.; Marsden, O.

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.

  3. Passive localization in ocean acoustics: A model-based approach

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1995-09-01

    A model-based approach is developed to solve the passive localization problem in ocean acoustics using the state-space formulation for the first time. It is shown that the inherent structure of the resulting processor consists of a parameter estimator coupled to a nonlinear optimization scheme. The parameter estimator is designed using the model-based approach in which an ocean acoustic propagation model is used in developing the model-based processor required for localization. Recall that model-based signal processing is a well-defined methodology enabling the inclusion of environmental (propagation) models, measurement (sensor arrays) models, and noise (shipping, measurement) models into a sophisticated processing algorithm. Here the parameter estimator is designed, or more appropriately the model-based identifier (MBID) for a propagation model developed from a shallow water ocean experiment. After simulation, it is then applied to a set of experimental data demonstrating the applicability of this approach. {copyright} {ital 1995} {ital Acoustical} {ital Society} {ital of} {ital America}.

  4. The Effects of Nonlinear Propagation on Acoustic Source Imaging in One-Dimension

    NASA Astrophysics Data System (ADS)

    Shepherd, Micah; Gee, Kent L.

    2006-10-01

    The acoustics of finite-amplitude (nonlinear) sound sources, such as rockets and jets, are not well understood. Characterization of sound pressure amplitudes, aeroacoustic source locations and frequency dependence of these sources is needed to assess the impact of the acoustic field on the launch equipment and surrounding environment. Nonlinear propagation of high-amplitude sound is being studied to determine if a source-imaging method called near-field acoustical holography (NAH), which is based on linear assumptions, can be used to estimate the source information mentioned. A one-dimensional numerical algorithm is being used to linearly and nonlinearly propagate the radiation from a monofrequency source. NAH is used to reconstruct the source information from the simulated data and the error is determined in decibels.

  5. Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with ice covers.

    PubMed

    Collis, Jon M; Frank, Scott D; Metzler, Adam M; Preston, Kimberly S

    2016-05-01

    Sound propagation predictions for ice-covered ocean acoustic environments do not match observational data: received levels in nature are less than expected, suggesting that the effects of the ice are substantial. Effects due to elasticity in overlying ice can be significant enough that low-shear approximations, such as effective complex density treatments, may not be appropriate. Building on recent elastic seafloor modeling developments, a range-dependent parabolic equation solution that treats the ice as an elastic medium is presented. The solution is benchmarked against a derived elastic normal mode solution for range-independent underwater acoustic propagation. Results from both solutions accurately predict plate flexural modes that propagate in the ice layer, as well as Scholte interface waves that propagate at the boundary between the water and the seafloor. The parabolic equation solution is used to model a scenario with range-dependent ice thickness and a water sound speed profile similar to those observed during the 2009 Ice Exercise (ICEX) in the Beaufort Sea. PMID:27250161

  6. Acoustic propagation through anisotropic internal wave fields: transmission loss, cross-range coherence, and horizontal refraction.

    PubMed

    Oba, Roger; Finette, Steven

    2002-02-01

    Results of a computer simulation study are presented for acoustic propagation in a shallow water, anisotropic ocean environment. The water column is characterized by random volume fluctuations in the sound speed field that are induced by internal gravity waves, and this variability is superimposed on a dominant summer thermocline. Both the internal wave field and resulting sound speed perturbations are represented in three-dimensional (3D) space and evolve in time. The isopycnal displacements consist of two components: a spatially diffuse, horizontally isotropic component and a spatially localized contribution from an undular bore (i.e., a solitary wave packet or solibore) that exhibits horizontal (azimuthal) anisotropy. An acoustic field is propagated through this waveguide using a 3D parabolic equation code based on differential operators representing wide-angle coverage in elevation and narrow-angle coverage in azimuth. Transmission loss is evaluated both for fixed time snapshots of the environment and as a function of time over an ordered set of snapshots which represent the time-evolving sound speed distribution. Horizontal acoustic coherence, also known as transverse or cross-range coherence, is estimated for horizontally separated points in the direction normal to the source-receiver orientation. Both transmission loss and spatial coherence are computed at acoustic frequencies 200 and 400 Hz for ranges extending to 10 km, a cross-range of 1 km, and a water depth of 68 m. Azimuthal filtering of the propagated field occurs for this environment, with the strongest variations appearing when propagation is parallel to the solitary wave depressions of the thermocline. A large anisotropic degradation in horizontal coherence occurs under the same conditions. Horizontal refraction of the acoustic wave front is responsible for the degradation, as demonstrated by an energy gradient analysis of in-plane and out-of-plane energy transfer. The solitary wave packet is

  7. Acoustic propagation through anisotropic internal wave fields: Transmission loss, cross-range coherence, and horizontal refraction

    NASA Astrophysics Data System (ADS)

    Oba, Roger; Finette, Steven

    2002-02-01

    Results of a computer simulation study are presented for acoustic propagation in a shallow water, anisotropic ocean environment. The water column is characterized by random volume fluctuations in the sound speed field that are induced by internal gravity waves, and this variability is superimposed on a dominant summer thermocline. Both the internal wave field and resulting sound speed perturbations are represented in three-dimensional (3D) space and evolve in time. The isopycnal displacements consist of two components: a spatially diffuse, horizontally isotropic component and a spatially localized contribution from an undular bore (i.e., a solitary wave packet or solibore) that exhibits horizontal (azimuthal) anisotropy. An acoustic field is propagated through this waveguide using a 3D parabolic equation code based on differential operators representing wide-angle coverage in elevation and narrow-angle coverage in azimuth. Transmission loss is evaluated both for fixed time snapshots of the environment and as a function of time over an ordered set of snapshots which represent the time-evolving sound speed distribution. Horizontal acoustic coherence, also known as transverse or cross-range coherence, is estimated for horizontally separated points in the direction normal to the source-receiver orientation. Both transmission loss and spatial coherence are computed at acoustic frequencies 200 and 400 Hz for ranges extending to 10 km, a cross-range of 1 km, and a water depth of 68 m. Azimuthal filtering of the propagated field occurs for this environment, with the strongest variations appearing when propagation is parallel to the solitary wave depressions of the thermocline. A large anisotropic degradation in horizontal coherence occurs under the same conditions. Horizontal refraction of the acoustic wave front is responsible for the degradation, as demonstrated by an energy gradient analysis of in-plane and out-of-plane energy transfer. The solitary wave packet is

  8. Evolution of nonlinear ion-acoustic solitary wave propagation in rotating plasma

    SciTech Connect

    Das, G. C.; Nag, Apratim

    2006-08-15

    A simple unmagnetized plasma rotating around an axis at an angle {theta} with the propagation direction of the acoustic mode has been taken. The nonlinear wave mode has been derived as an equivalent Sagdeev potential equation. A special procedure, known as the tanh method, has been developed to study the nonlinear wave propagation in plasma dynamics. Further, under small amplitude approximation, the nonlinear plasma acoustic mode has been exploited to study the evolution of soliton propagation in the plasma. The main emphasis has been given to the interaction of Coriolis force on the changes of coherent structure of the soliton. The solitary wave solution finds the different nature of solitons called compressive and rarefactive solitons as well as its explosions or collapses along with soliton dynamics and these have been showing exciting observations in exhibiting a narrow wave packet with the generation of high electric pressure and the growth of high energy which, in turn, yields the phenomena of radiating soliton in dynamics.

  9. Three-dimensional visualization of shear wave propagation generated by dual acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.

  10. A Stratified Acoustic Model Accounting for Phase Shifts for Underwater Acoustic Networks

    PubMed Central

    Wang, Ping; Zhang, Lin; Li, Victor O. K.

    2013-01-01

    Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated. PMID:23669708

  11. Ensemble modeling of CME propagation

    NASA Astrophysics Data System (ADS)

    Lee, C. O.; Arge, C. N.; Henney, C. J.; Odstrcil, D.; Millward, G. H.; Pizzo, V. J.

    2014-12-01

    The Wang-Sheeley-Arge(WSA)-Enlil-cone modeling system is used for making routine arrival time forecasts of the Earth-directed "halo" coronal mass ejections (CMEs), since they typically produce the most geoeffective events. A major objective of this work is to better understand the sensitivity of the WSA-Enlil modeling results to input model parameters and how these parameters contribute to the overall model uncertainty and performance. We present ensemble modeling results for a simple halo CME event that occurred on 15 February 2011 and a succession of three halo CME events that occurred on 2-4 August 2011. During this period the Solar TErrestrial RElations Observatory (STEREO) A and B spacecraft viewed the CMEs over the solar limb, thereby providing more reliable constraints on the initial CME geometries during the manual cone fitting process. To investigate the sensitivity of the modeled CME arrival times to small variations in the input cone properties, for each CME event we create an ensemble of numerical simulations based on multiple sets of cone parameters. We find that the accuracy of the modeled arrival times not only depends on the initial input CME geometry, but also on the reliable specification of the background solar wind, which is driven by the input maps of the photospheric magnetic field. As part of the modeling ensemble, we simulate the CME events using the traditional daily updated maps as well as those that are produced by the Air Force data Assimilative Photospheric flux Transport (ADAPT) model, which provide a more instantaneous snapshot of the photospheric field distribution. For the August 2011 events, in particular, we find that the accuracy in the arrival time predictions also depends on whether the cone parameters for all three CMEs are specified in a single WSA-Enlil simulation. The inclusion/exclusion of one or two of the preceding CMEs affects the solar wind conditions through which the succeeding CME propagates.

  12. The physical theory and propagation model of THz atmospheric propagation

    NASA Astrophysics Data System (ADS)

    Wang, R.; Yao, J. Q.; Xu, D. G.; Wang, J. L.; Wang, P.

    2011-02-01

    Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.

  13. Wave propagation characteristics of helically orthotropic cylindrical shells and resonance emergence in scattered acoustic field. Part 1. Formulations

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid

    2016-05-01

    The method of wave function expansion is adopted to study the three dimensional scattering of a plane progressive harmonic acoustic wave incident upon an arbitrarily thick-walled helically filament-wound composite cylindrical shell submerged in and filled with compressible ideal fluids. An approximate laminate model in the context of the so-called state-space formulation is employed for the construction of T-matrix solution to solve for the unknown modal scattering coefficients. Considering the nonaxisymmetric wave propagation phenomenon in anisotropic cylindrical components and following the resonance scattering theory which determines the resonance and background scattering fields, the stimulated resonance frequencies of the shell are isolated and classified due to their fundamental mode of excitation, overtone and style of propagation along the cylindrical axis (i.e., clockwise or anticlockwise propagation around the shell) and are identified as the helically circumnavigating waves.

  14. Diffusive Propagation of Energy in a Non-acoustic Chain

    NASA Astrophysics Data System (ADS)

    Komorowski, Tomasz; Olla, Stefano

    2016-08-01

    We consider a non-acoustic chain of harmonic oscillators with the dynamics perturbed by a random local exchange of momentum, such that energy and momentum are conserved. The macroscopic limits of the energy density, momentum and the curvature (or bending) of the chain satisfy a system of evolution equations. We prove that, in a diffusive space-time scaling, the curvature and momentum evolve following a linear system that corresponds to a damped Euc(uler)-Buc(ernoulli) beam equation. The macroscopic energy density evolves following a non linear diffusive equation. In particular, the energy transfer is diffusive in this dynamics. This provides a first rigorous example of a normal diffusion of energy in a one dimensional dynamics that conserves the momentum.

  15. Influence of exit impedance on finite difference solutions of transient acoustic mode propagation in ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1981-01-01

    The time-dependent governing acoustic-difference equations and boundary conditions are developed and solved for sound propagation in an axisymmetric (cylindrical) hard-wall duct without flow and with spinning acoustic modes. The analysis begins with a harmonic sound source radiating into a quiescent duct. This explicit iteration method then calculates stepwise in real time to obtain the steady solutions of the acoustic field. The transient method did not converge to the steady-state solution for cutoff acoustic duct modes. This has implications as to its use in a variable-area duct, where modes may become cutoff in the smal-area portion of the duct. For single cutoff mode propagation the steady-state impedance boundary condition produced acoustic reflections during the initial transient that caused finite instabilities in the numerical calculations. The stability problem is resolved by reformulating the exit boundary condition. Example calculations show good agreement with exact analytical and numerical results for forcing frequencies above, below, and nearly at the cutoff frequency.

  16. Acoustic Propagation in a Water-Filled Cylindrical Pipe

    SciTech Connect

    Sullivan, E J; Candy, J V

    2003-06-01

    This study was concerned with the physics of the propagation of a tone burst of high frequency sound in a steel water-filled pipe. The choice of the pulse was rather arbitrary, so that this work in no way can be considered as recommending a particular pulse form. However, the MATLAB computer codes developed in this study are general enough to carry out studies of pulses of various forms. Also, it should be pointed out that the codes as written are quite time consuming. A computation of the complete field, including all 5995 modes, requires several hours on a desktop computer. The time required by such computations as these is a direct consequence of the bandwidths, frequencies and sample rates employed. No attempt was made to optimize these codes, and it is assumed that much can be done in this regard.

  17. Numerical solutions of acoustic wave propagation problems using Euler computations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1984-01-01

    This paper reports solution procedures for problems arising from the study of engine inlet wave propagation. The first problem is the study of sound waves radiated from cylindrical inlets. The second one is a quasi-one-dimensional problem to study the effect of nonlinearities and the third one is the study of nonlinearities in two dimensions. In all three problems Euler computations are done with a fourth-order explicit scheme. For the first problem results are shown in agreement with experimental data and for the second problem comparisons are made with an existing asymptotic theory. The third problem is part of an ongoing work and preliminary results are presented for this case.

  18. Sound propagation in and radiation from acoustically lined flow ducts: A comparison of experiment and theory

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr.; Dean, P. D.; Wynne, G. A.; Burrin, R. H.

    1973-01-01

    The results of an experimental and theoretical study of many of the fundamental details of sound propagation in hard wall and soft wall annular flow ducts are reported. The theory of sound propagation along such ducts and the theory for determining the complex radiation impedance of higher order modes of an annulus are outlined, and methods for generating acoustic duct modes are developed. The results of a detailed measurement program on propagation in rigid wall annular ducts with and without airflow through the duct are presented. Techniques are described for measuring cut-on frequencies, modal phase speed, and radial and annular mode shapes. The effects of flow velocity on cut-on frequencies and phase speed are measured. Comparisons are made with theoretical predictions for all of the effects studies. The two microphone method of impedance is used to measure the effects of flow on acoustic liners. A numerical study of sound propagation in annular ducts with one or both walls acoustically lined is presented.

  19. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    PubMed

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. PMID:25937493

  20. Propagation modeling for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Barts, R. Michael; Stutzman, Warren L.

    1988-01-01

    A simplified empirical model for predicting primary fade statistics for a vegetatively shadowed mobile satellite signal is presented, and predictions based on the model are presented using propagation parameter values from experimental data. Results from the empirical model are used to drive a propagation simulator to produce the secondary fade statistics of average fade duration.

  1. Sound propagation and absorption in foam - A distributed parameter model.

    NASA Technical Reports Server (NTRS)

    Manson, L.; Lieberman, S.

    1971-01-01

    Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.

  2. Effect of crystalline quality of diamond film to the propagation loss of surface acoustic wave devices.

    PubMed

    Fujii, Satoshi; Shikata, Shinichi; Uemura, Tomoki; Nakahata, Hideaki; Harima, Hiroshi

    2005-10-01

    Diamond films with various crystal qualities were grown by chemical vapor deposition on silicon wafers. Their crystallinity was characterized by Raman scattering and electron backscattering diffraction. By fabricating a device structure for surface acoustic wave (SAW) using these diamond films, the propagation loss was measured at 1.8 GHz and compared with the crystallinity. It was found that the propagation loss was lowered in relatively degraded films having small crystallites, a narrow distribution in the diamond crystallite size, and preferential grain orientation. This experiment clarifies diamond film characteristics required for high-frequency applications in SAW filters. PMID:16382634

  3. Propagation of large-wavevector acoustic phonons new perspectives from phonon imaging

    NASA Astrophysics Data System (ADS)

    Wolfe, James P.

    Within the last decade a number of attempts have been made to observe the ballistic propagation of large wavevector acoustic phonons in crystals at low temperatures. Time-of-flight heat-pulse methods have difficulty in distinguishing between scattered phonons and ballistic phonons which travel dispersively at subsonic velocities. Fortunately, ballistic phonons can be identified by their highly anisotropic flux, which is observed by phonon imaging techniques. In this paper, several types of phonon imaging experiments are described which reveal the dispersive propagation of large-wavevector phonons and expose interesting details of the phonon scattering processes.

  4. JAPE 91: Influence of terrain masking of the acoustic propagation of helicopter noise

    NASA Technical Reports Server (NTRS)

    Naz, P.

    1993-01-01

    The acoustic propagation in the case of a noise source masked by a small element of terrain has been investigated experimentally. These data have been measured during the 'terrain masking' experiment of the NATO JAPE 91 experimental campaign. The main objective of that experiment was to study the acoustic detection of a helicopter masked by a small hill. Microphones have been placed at different locations on the shadow zone of the hill to study the effect of the terrain obstruction on sound propagation. The results presented come from data measured by Atlas Elektronik and by ISL, and have been processed together. The terrain obstruction causes an excess attenuation of the SPL (Sound Pressure Level) for all the frequencies, but this attenuation is more effective for the high frequencies than for the low frequencies. Results typical of diffraction phenomena have been observed; the SPL is minimal at the foot of the hill and is relatively constant beyond it.

  5. Characterization of acoustic wave propagation in a concrete member after fire exposure

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Huang, Chin-Ting

    2001-04-01

    The acoustic wave propagation in a concrete member with embedded reinforcing bars was analyzed. Fire exposure was applied to two batches of concrete specimens prior to acoustic wave characterization. The fire duration and maximum temperature were simulated for experimental studies using a custom-built electric oven. A standard ultrasonic pulse velocity testing system for concrete was used to provide the through-transmission wave propagation. Multiple peaks were found in the frequency domain based on the fast Fourier transform of the waveform. This could be due to cracks induced by the incompatibility of thermal deformation of the constituents of concrete. Further study showed bond deterioration between reinforcing bars and concrete would also contribute to the variation in frequency content of the recorded waveform.

  6. An experimental investigation of acoustic propagation in saturated sands with variable fluid properties

    NASA Astrophysics Data System (ADS)

    Costley, R. D., Jr.

    1985-05-01

    The Biot-Stoll theory describes the propagation of acoustic waves in a saturated, unconsolidated porous medium. The expressions for the attenuation and phase velocity derived from this theory depend explicitly on the viscosity, density, and bulk modulus of the pore fluid. An experiment has been designed to determine the dependence of attenuation and phase velocity on these properties of the pore fluid. The phase velocity and attenuation of compressional waves were measured using a mixture of water and glycerine as the interstitial fluid. The theoretical background is reviewed and the experimental procedure is discussed in detail. The results, along with comparisons with the Biot-Stoll theory, are then presented. The choices of the theoretical parameters are discussed and their relation to the fit of the theory to the data. The Biot-Stoll theory is shown to adequately describe the effects of the fluid properties on acoustic wave propagation in saturated sediments, at least for compressional waves of the first type.

  7. Study of low-frequency-acoustic- and seismic-wave energy propagation on the shelf

    NASA Astrophysics Data System (ADS)

    Rutenko, A. N.; Manul'chev, D. S.; Solov'ev, A. A.

    2013-05-01

    The paper presents the results of field and numerical studies on the features of low-frequency-acoustic- and seismic-wave energy propagation on the shelf of the Sea of Japan. Measurements were conducted with the Mollusk-07 autonomous vertical acousto-hydrophysical measurement system, an electromagnetic low-frequency resonance emitter, and a pulsed pneumoemitter lowered from the ship, as well as a shore-based resonance seismoemitter.

  8. A difference theory for noise propagation in an acoustically lined duct with mean flow

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1973-01-01

    A finite difference formulation is presented for sound propagation in a two-dimensional straight soft-walled duct with uniform flow. The difference analysis is developed in terms of complex notation. The governing acoustic difference equations and the appropriate displacement boundary conditions associated with uniform flow are presented for the sound attenuation in straight hard and soft-walled ducts. At present the finite Mach number case is solved only for the one-dimensional hard walled duct.

  9. A difference theory for noise propagation in an acoustically lined duct with mean flow.

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1973-01-01

    A finite difference formulation is presented for sound propagation in a two-dimensional straight soft-walled duct with uniform flow. The difference analysis is developed in terms of complex notation. The governing acoustic difference equations and the appropriate displacement boundary conditions associated with uniform flow are presented. Example calculations are presented for the sound attenuation in straight hard and soft-walled ducts. At present the finite Mach number case is solved only for the one-dimensional hard walled duct.

  10. Generation and Propagation of a Picosecond Acoustic Pulse at a Buried Interface: Time-Resolved X-Ray Diffraction Measurements

    SciTech Connect

    Lee, S.H.; Cavalieri, A.L.; Fritz, D.M.; Swan, M.C.; Reis, D.A.; Hegde, R.S.; Reason, M.; Goldman, R.S.

    2005-12-09

    We report on the propagation of coherent acoustic wave packets in (001) surface oriented Al{sub 0.3}Ga{sub 0.7}As/GaAs heterostructure, generated through localized femtosecond photoexcitation of the GaAs. Transient structural changes in both the substrate and film are measured with picosecond time-resolved x-ray diffraction. The data indicate an elastic response consisting of unipolar compression pulses of a few hundred picosecond duration traveling along [001] and [001] directions that are produced by predominately impulsive stress. The transmission and reflection of the strain pulses are in agreement with an acoustic mismatch model of the heterostructure and free-space interfaces.

  11. Observations of clustering inside oceanic bubble clouds and the effect on short-range acoustic propagation.

    PubMed

    Weber, Thomas C

    2008-11-01

    It has recently been shown [Weber, T. C. et al. (2007). "Acoustic propagation through clustered bubble clouds," IEEE J. Ocean. Eng. 32, 513-523] that gas bubble clustering plays a role in determining the acoustic field characteristics of bubbly fluids. In particular, it has been shown that clustering changes the bubble-induced attenuation as well as the ping-to-ping variability in the acoustic field. The degree to which bubble clustering exists in nature, however, is unknown. This paper describes a method for quantifying bubble clustering using a high frequency (400 kHz) multibeam sonar, and reports on observations of near-surface bubble clustering during a storm (14.6 m/s wind speed) in the Gulf of Maine. The multibeam sonar data are analyzed to estimate the pair correlation function, a measure of bubble clustering. In order to account for clustering in the mean acoustic field, a modification to the effective medium wave number is made. With this modification, the multibeam sonar observations are used to predict the effect of clustering on the attenuation of the mean field for short-range propagation (1 m) at frequencies between 10 and 350 kHz. Results for this specific case show that clustering can cause the attenuation to change by 20%-80% over this frequency range. PMID:19045766

  12. Recent Advances in Underwater Acoustic Modelling and Simulation

    NASA Astrophysics Data System (ADS)

    ETTER, P. C.

    2001-02-01

    A comprehensive review of international developments in underwater acoustic modelling is used to construct an updated technology baseline containing 107 propagation models, 16 noise models, 17 reverberation models and 25 sonar performance models. This updated technology baseline represents a 30% increase over a previous baseline published in 1996. When executed in higher-level simulations, these models can generate predictive and diagnostic outputs that are useful to acoustical oceanographers or sonar technologists in the analysis of complex systems operating in the undersea environment. Recent modelling developments described in the technical literature suggest two principal areas of application: low-frequency, inverse acoustics in deep water; and high-frequency, bottom-interacting acoustics in coastal regions. Rapid changes in global geopolitics have opened new avenues for collaboration, thereby facilitating the transfer of modelling and simulation technologies among members of the international community. This accelerated technology transfer has created new imperatives for international standards in modelling and simulation architectures. National and international activities to promote interoperability among modelling and simulation efforts in government, industry and academia are reviewed and discussed.

  13. A sonic boom propagation model including mean flow atmospheric effects

    NASA Astrophysics Data System (ADS)

    Salamone, Joe; Sparrow, Victor W.

    2012-09-01

    This paper presents a time domain formulation of nonlinear lossy propagation in onedimension that also includes the effects of non-collinear mean flow in the acoustic medium. The model equation utilized is an augmented Burgers equation that includes the effects of nonlinearity, geometric spreading, atmospheric stratification, and also absorption and dispersion due to thermoviscous and molecular relaxation effects. All elements of the propagation are implemented in the time domain and the effects of non-collinear mean flow are accounted for in each term of the model equation. Previous authors have presented methods limited to showing the effects of wind on ray tracing and/or using an effective speed of sound in their model equation. The present work includes the effects of mean flow for all terms included in the augmented Burgers equation with all of the calculations performed in the time-domain. The capability to include the effects of mean flow in the acoustic medium allows one to make predictions more representative of real-world atmospheric conditions. Examples are presented for nonlinear propagation of N-waves and shaped sonic booms. [Work supported by Gulfstream Aerospace Corporation.

  14. A low order flow/acoustics interaction method for the prediction of sound propagation using 3D adaptive hybrid grids

    SciTech Connect

    Kallinderis, Yannis; Vitsas, Panagiotis A.; Menounou, Penelope

    2012-07-15

    A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using static and dynamic flow/acoustics coupling demonstrating the importance of the latter.

  15. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Chu, SShao-sheng R.; Allen, Christopher S.

    2009-01-01

    Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. In FY09, the physical mockup developed in FY08, with interior geometric shape similar to Orion CM (Crew Module) IML (Interior Mode Line), was used to validate SEA (Statistical Energy Analysis) acoustic model development with realistic ventilation fan sources. The sound power levels of these sources were unknown a priori, as opposed to previous studies that RSS (Reference Sound Source) with known sound power level was used. The modeling results were evaluated based on comparisons to measurements of sound pressure levels over a wide frequency range, including the frequency range where SEA gives good results. Sound intensity measurement was performed over a rectangular-shaped grid system enclosing the ventilation fan source. Sound intensities were measured at the top, front, back, right, and left surfaces of the and system. Sound intensity at the bottom surface was not measured, but sound blocking material was placed tinder the bottom surface to reflect most of the incident sound energy back to the remaining measured surfaces. Integrating measured sound intensities over measured surfaces renders estimated sound power of the source. The reverberation time T6o of the mockup interior had been modified to match reverberation levels of ISS US Lab interior for speech frequency bands, i.e., 0.5k, 1k, 2k, 4 kHz, by attaching appropriately sized Thinsulate sound absorption material to the interior wall of the mockup. Sound absorption of Thinsulate was modeled in three methods: Sabine equation with measured mockup interior reverberation time T60, layup model based on past impedance tube testing, and layup model plus air absorption correction. The evaluation/validation was

  16. Low-frequency sound propagation modeling over a locally-reacting boundary using the parabolic approximation

    NASA Technical Reports Server (NTRS)

    Robertson, J. S.; Siegman, W. L.; Jacobson, M. J.

    1989-01-01

    There is substantial interest in the analytical and numerical modeling of low-frequency, long-range atmospheric acoustic propagation. Ray-based models, because of frequency limitations, do not always give an adequate prediction of quantities such as sound pressure or intensity levels. However, the parabolic approximation method, widely used in ocean acoustics, and often more accurate than ray models for lower frequencies of interest, can be applied to acoustic propagation in the atmosphere. Modifications of an existing implicit finite-difference implementation for computing solutions to the parabolic approximation are discussed. A locally-reacting boundary is used together with a one-parameter impedance model. Intensity calculations are performed for a number of flow resistivity values in both quiescent and windy atmospheres. Variations in the value of this parameter are shown to have substantial effects on the spatial variation of the acoustic signal.

  17. Error Propagation in a System Model

    NASA Technical Reports Server (NTRS)

    Schloegel, Kirk (Inventor); Bhatt, Devesh (Inventor); Oglesby, David V. (Inventor); Madl, Gabor (Inventor)

    2015-01-01

    Embodiments of the present subject matter can enable the analysis of signal value errors for system models. In an example, signal value errors can be propagated through the functional blocks of a system model to analyze possible effects as the signal value errors impact incident functional blocks. This propagation of the errors can be applicable to many models of computation including avionics models, synchronous data flow, and Kahn process networks.

  18. TOPICAL REVIEW: Sensors and actuators based on surface acoustic waves propagating along solid liquid interfaces

    NASA Astrophysics Data System (ADS)

    Lindner, Gerhard

    2008-06-01

    The propagation of surface acoustic waves (SAWs) along solid-liquid interfaces depends sensitively on the properties of the liquid covering the solid surface and may result in a momentum transfer into the liquid and thus a propulsion effect via acoustic streaming. This review gives an overview of the design of different SAW devices used for the sensing of liquids and the basic mechanisms of the interaction of SAWs with overlaying liquids. In addition, applications of devices based on these phenomena with respect to touch sensing and the measurement of liquid properties such as density, viscosity or the composition of mixed liquids are described, including microfabricated as well as macroscopic devices made from non-piezoelectric materials. With respect to the rapidly growing field of acoustic streaming applications, recent developments in the movement of nanolitre droplets on a single piezoelectric chip, the rather macroscopic approaches to the acoustic pumping of liquids in channels and recent attempts at numerical simulations of acoustic streaming are reported.

  19. Acoustic Propagation Studies For Sperm Whale Phonation Analysis During LADC Experiments

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia A.; Ioup, George E.; Ioup, Juliette W.; Caruthers, Jerald W.

    2004-11-01

    The Littoral Acoustic Demonstration Center (LADC) conducted a series of passive acoustic experiments in the Northern Gulf of Mexico and the Ligurian Sea in 2001 and 2002. Environmental and acoustic moorings were deployed in areas of large concentrations of marine mammals (mainly, sperm whales). Recordings and analysis of whale phonations are among the objectives of the project. Each mooring had a single autonomously recording hydrophone (Environmental Acoustic Recording System (EARS)) obtained from the U.S. Naval Oceanographic Office after modification to record signals up to 5,859 Hz in the Gulf of Mexico and up to 12,500 Hz in the Ligurian Sea. Self-recording environmental sensors, attached to the moorings, and concurrent environmental ship surveys provided the environmental data for the experiments. The results of acoustic simulations of long-range propagation of the broad-band (500-6,000 Hz) phonation pulses from a hypothetical whale location to the recording hydrophone in the experimental environments are presented. The utilization of the simulation results for an interpretation of the spectral features observed in whale clicks and for the development of tracking algorithms from single hydrophone recordings based on the identification of direct and surface and bottom reflected arrivals are discussed. [Research supported by ONR.

  20. Local probing of propagating acoustic waves in a gigahertz echo chamber

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin V.; Santos, Paulo V.; Johansson, Göran; Delsing, Per

    2012-04-01

    In the same way that micro-mechanical resonators resemble guitar strings and drums, surface acoustic waves resemble the sound these instruments produce, but moving over a solid surface rather than through air. In contrast with oscillations in suspended resonators, such propagating mechanical waves have not before been studied near the quantum mechanical limits. Here, we demonstrate local probing of surface acoustic waves with a displacement sensitivity of 30amRMSHz-1/2 and detection sensitivity on the single-phonon level after averaging, at a frequency of 932MHz. Our probe is a piezoelectrically coupled single-electron transistor, which is sufficiently fast, non-destructive and localized to enable us to track pulses echoing back and forth in a long acoustic cavity, self-interfering and ringing the cavity up and down. We project that strong coupling to quantum circuits will enable new experiments, and hybrids using the unique features of surface acoustic waves. Prospects include quantum investigations of phonon-phonon interactions, and acoustic coupling to superconducting qubits for which we present favourable estimates.

  1. Acoustic wave propagation and stochastic effects in metamaterial absorbers

    SciTech Connect

    Christensen, J. Willatzen, M.

    2014-07-28

    We show how stochastic variations of the effective parameters of anisotropic structured metamaterials can lead to increased absorption of sound. For this, we derive an analytical model based on the Bourret approximation and illustrate the immediate connection between material disorder and attenuation of the averaged field. We demonstrate numerically that broadband absorption persists at oblique irradiation and that the influence of red noise comprising short spatial correlation lengths increases the absorption beyond what can be archived with a structured but ordered system.

  2. Computational methods for studying acoustic propagation in nonuniform waveguides.

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Eversman, W.

    1973-01-01

    A variational technique is used to model sound transmission through a nonuniform duct segment consisting of an axial variation in wall admittance or cross sectional area. The method involves the Ritz minimization of functionals which have the governing equations as stationary conditions. The variational method is verified by application to segments of variables-separable geometry for which eigenfunction expansion techniques offer an alternative solution procedure, and by comparison with the results of stepped duct approximations to the nonuniformity. Quantitative data are presented which indicate the boundary condition matching to be a suitable measure of the accuracy of the transmitted field.

  3. Using the nonlinear geometrical acoustics method in the problem of moreton and EUV wave propagation in the solar corona

    NASA Astrophysics Data System (ADS)

    Afanasyev, An. N.; Uralov, A. M.; Grechnev, V. V.

    2011-12-01

    Propagation of shock related Moreton and EUV waves in the solar atmosphere is simulated by the nonlinear geometrical acoustics method. This method is based on the ray approximation and takes account of nonlinear wave features: dependence of the wave velocity on its amplitude, nonlinear dissipation of wave energy in the shock front, and the increase in its duration with time. The paper describes ways of applying this method to solve the propagation problem of a blast magnetohydrodynamic shock wave. Results of analytical modeling of EUV and Moreton waves in the spherically symmetric and isothermal solar corona are also presented. The calculations demonstrate deceleration of these waves and an increase in their duration. The calculation results of the kinematics of the EUV wave observed on the Sun on January 17, 2010 are presented as an example.

  4. Multi-dimensional instability of obliquely propagating ion acoustic solitary waves in electron-positron-ion superthermal magnetoplasmas

    NASA Astrophysics Data System (ADS)

    EL-Shamy, E. F.

    2014-08-01

    The solitary structures of multi-dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.

  5. Multi-dimensional instability of obliquely propagating ion acoustic solitary waves in electron-positron-ion superthermal magnetoplasmas

    SciTech Connect

    EL-Shamy, E. F.

    2014-08-15

    The solitary structures of multi–dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.

  6. Acoustic Emission Detection and Prediction of Fatigue Crack Propagation in Composite Patch Repairs Using Neural Networks

    SciTech Connect

    Okafor, A. Chukwujekwu; Singh, Navdeep; Singh, Navrag

    2007-03-21

    An aircraft is subjected to severe structural and aerodynamic loads during its service life. These loads can cause damage or weakening of the structure especially for aging military and civilian aircraft, thereby affecting its load carrying capabilities. Hence composite patch repairs are increasingly used to repair damaged aircraft metallic structures to restore its structural efficiency. This paper presents the results of Acoustic Emission (AE) monitoring of crack propagation in 2024-T3 Clad aluminum panels repaired with adhesively bonded octagonal, single sided boron/epoxy composite patch under tension-tension fatigue loading. Crack propagation gages were used to monitor crack initiation. The identified AE sensor features were used to train neural networks for predicting crack length. The results show that AE events are correlated with crack propagation. AE system was able to detect crack propagation even at high noise condition of 10 Hz loading; that crack propagation signals can be differentiated from matrix cracking signals that take place due to fiber breakage in the composite patch. Three back-propagation cascade feed forward networks were trained to predict crack length based on the number of fatigue cycles, AE event number, and both the Fatigue Cycles and AE events, as inputs respectively. Network using both fatigue cycles and AE event number as inputs to predict crack length gave the best results, followed by Network with fatigue cycles as input, while network with just AE events as input had a greater error.

  7. Understanding and exploiting the acoustic propagation delay in underwater sensor networks

    NASA Astrophysics Data System (ADS)

    Syed, Affan Ahmed

    An understanding of the key areas of difference in acoustic underwater sensor networks and their impact on network design is essential for a rapid deployment of aquatic sensornets. Such an understanding will allow system designers to harvest the vast literature of research present in RF sensornets and focus on just those key aspects that are different for acoustic sensornets. Most complexities at the physical layer will eventually be handled either by assuming short ranges or with technology advancements making complex algorithms both cost and power efficient. However, the impact of large latency and the resulting magnification of multipath will remain a great impediment for developing robust sensor networks. This thesis contributes towards an understanding of, and solutions to, the impact of latency on sensornet migration to an underwater acoustic environment. The thesis of this dissertation is that Latency-awareness allows both migration of existing terrestrial sensornet protocols and design of new underwater protocols that can overcome and exploit the large propagation delay inherent to acoustic underwater networks. We present four studies that contribute to this thesis. First, we formalize the impact of large propagation delay on networking protocols in the concept of space-time uncertainty. Second, we use the understanding developed from this concept to design the first high-latency aware time synchronization protocol for acoustic sensor networks that is able to overcome an error source unique to the underwater environment. Third, we exploit the space-time volume during medium access to propose T-Lohi, a new class of energy and throughput efficient medium access control (MAC) protocols. Last, with our protocol implementations we are able to indicate the importance of a different type of multipath which we call self-multipath. This self-multipath adversely affects the throughput of T-Lohi MAC, and to overcome this affect we develop a novel Bayesian learning

  8. Steps toward quantitative infrasound propagation modeling

    NASA Astrophysics Data System (ADS)

    Waxler, Roger; Assink, Jelle; Lalande, Jean-Marie; Velea, Doru

    2016-04-01

    Realistic propagation modeling requires propagation models capable of incorporating the relevant physical phenomena as well as sufficiently accurate atmospheric specifications. The wind speed and temperature gradients in the atmosphere provide multiple ducts in which low frequency sound, infrasound, can propagate efficiently. The winds in the atmosphere are quite variable, both temporally and spatially, causing the sound ducts to fluctuate. For ground to ground propagation the ducts can be borderline in that small perturbations can create or destroy a duct. In such cases the signal propagation is very sensitive to fluctuations in the wind, often producing highly dispersed signals. The accuracy of atmospheric specifications is constantly improving as sounding technology develops. There is, however, a disconnect between sound propagation and atmospheric specification in that atmospheric specifications are necessarily statistical in nature while sound propagates through a particular atmospheric state. In addition infrasonic signals can travel to great altitudes, on the order of 120 km, before refracting back to earth. At such altitudes the atmosphere becomes quite rare causing sound propagation to become highly non-linear and attenuating. Approaches to these problems will be presented.

  9. Analog model for thermoviscous propagation in a cylindrical tube.

    PubMed

    Thompson, Stephen C; Gabrielson, Thomas B; Warren, Daniel M

    2014-02-01

    Modeling acoustic propagation in tubes including the effects of thermoviscous losses at the tube walls is important in applications such as thermoacoustics, hearing aids, and wind musical instruments. Frequency dependent impedances for a tube transmission line model in terms of the so-called thermal and viscous functions are well established, and form the basis for frequency domain analysis of systems that include tubes. However, frequency domain models cannot be used for systems in which significant nonlinearities are important, as is the case with the pressure-flow relationship through the reed in a woodwind instrument. This paper describes a cylindrical tube model based on a continued fraction expansion of the thermal and viscous functions. The model can be represented as an analog circuit model which allows its use in time domain system modeling. This model avoids problems with fractional derivatives in the time domain. PMID:25234868

  10. Seismo-acoustic ray model benchmarking against experimental tank data.

    PubMed

    Camargo Rodríguez, Orlando; Collis, Jon M; Simpson, Harry J; Ey, Emanuel; Schneiderwind, Joseph; Felisberto, Paulo

    2012-08-01

    Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications. PMID:22894193

  11. Stability analysis for acoustic wave propagation in tilted TI media by finite differences

    NASA Astrophysics Data System (ADS)

    Bakker, Peter M.; Duveneck, Eric

    2011-05-01

    Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves

  12. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.

    PubMed

    Guo, Min; Abbott, Derek; Lu, Minhua; Liu, Huafeng

    2016-03-01

    Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with 64 × 128 fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues. PMID:26768475

  13. Applications of velocity potential function to acoustic duct propagation and radiation from inlets using finite element theory

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Majjigi, R. K.

    1979-01-01

    A finite element velocity potential program was developed to study acoustic wave propagation in complex geometries. For irrotational flows, relatively low sound frequencies, and plane wave input, the finite element solutions showed significant effects of inlet curvature and flow gradients on the attenuation of a given acoustic liner in a realistic variable area turbofan inlet. The velocity potential approach can not be used to estimate the effects of rotational flow on acoustic propagation, since the potential acoustic disturbances propagate at the speed of the media in sheared flow. Approaches are discussed that are being considered for extending the finite element solution to include the far field, as well as the internal portion of the duct. A new matrix partitioning approach is presented that can be incorporated in previously developed programs to allow the finite element calculation to be marched into the far field. The partitioning approach provided a large reduction in computer storage and running times.

  14. The effect of buildings on acoustic pulse propagation in an urban environment.

    PubMed

    Albert, Donald G; Liu, Lanbo

    2010-03-01

    Experimental measurements were conducted using acoustic pulse sources in a full-scale artificial village to investigate the reverberation, scattering, and diffraction produced as acoustic waves interact with buildings. These measurements show that a simple acoustic source pulse is transformed into a complex signature when propagating through this environment, and that diffraction acts as a low-pass filter on the acoustic pulse. Sensors located in non-line-of-sight (NLOS) positions usually recorded lower positive pressure maxima than sensors in line-of-sight positions. Often, the first arrival on a NLOS sensor located around a corner was not the largest arrival, as later reflection arrivals that traveled longer distances without diffraction had higher amplitudes. The waveforms are of such complexity that human listeners have difficulty identifying replays of the signatures generated by a single pulse, and the usual methods of source location based on the direction of arrivals may fail in many cases. Theoretical calculations were performed using a two-dimensional finite difference time domain (FDTD) method and compared to the measurements. The predicted peak positive pressure agreed well with the measured amplitudes for all but two sensor locations directly behind buildings, where the omission of rooftop ray paths caused the discrepancy. The FDTD method also produced good agreement with many of the measured waveform characteristics. PMID:20329833

  15. A Theoretical and Experimental Study of Acoustic Propagation in Multisectioned Circular Ducts. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.

    1976-01-01

    The propagation of plane waves and higher order acoustic modes in a circular multisectioned duct was studied. A unique source array consisting of two concentric rings of sources, providing phase and amplitude control in the radial, as well as circumferential direction, was developed to generate plane waves and both spinning and nonspinning higher order modes. Measurements of attenuation and radial mode shapes were taken with finite length liners inserted between the hard wall sections of an anechoically terminated duct. Materials tested as liners included a glass fiber material and both sintered fiber metals and perforated sheet metals with a honeycomb backing. The fundamental acoustic properties of these materials were studied with emphasis on the attenuation of sound by the liners and the determination of local versus extended reaction behavior for the boundary condition. A search technique was developed to find the complex eigenvalues for a liner under the assumption of a locally reacting boundary condition.

  16. Acoustic emission source modeling using a data-driven approach

    NASA Astrophysics Data System (ADS)

    Cuadra, J.; Vanniamparambil, P. A.; Servansky, D.; Bartoli, I.; Kontsos, A.

    2015-04-01

    The next generation of acoustics-based non-destructive evaluation for structural health monitoring applications will depend, among other reasons, on the capability to effectively characterize the transient stress wave effects related to acoustic emission (AE) generated due to activation of failure mechanisms in materials and structures. In this context, the forward problem of simulating AE is addressed herein by a combination of experimental, analytical and computational methods, which are used to form a data-driven finite element (FE) model for AE generation and associated transient elastic wave propagation. Acoustic emission is viewed for this purpose as part of the dynamic process of energy release caused by crack initiation. To this aim, full field experimental data obtained from crack initiation monitored by digital image correlation is used to construct a traction-separation law and to define damage initiation parameters. Subsequently, 3D FE simulations based on this law are performed using both a cohesive and an extended finite element modeling approach. To create a realistic computational AE source model, the transition between static and dynamic responses is evaluated. Numerically simulated AE signals from the dynamic response due to the onset of crack growth are analyzed in the context of the inverse problem of source identification and demonstrate the effects of material and geometry in crack-induced wave propagation.

  17. Chromospheric extents predicted by time-dependent acoustic wave models

    SciTech Connect

    Cuntz, M. Heidelberg Universitaet )

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights. 74 refs.

  18. Chromospheric extents predicted by time-dependent acoustic wave models

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.

  19. Probabilistic modeling of propagating explosions

    SciTech Connect

    Luck, L.B.; Eisenhawer, S.W.; Bott, T.F.

    1996-03-01

    Weapons containing significant quantities of high explosives (HE) are sometimes located in close proximity to one another. If an explosion occurs in a weapon, the possibility of propagation to one or more additional weapons may exist, with severe consequences possibly resulting. In the general case, a system of concern consists of multiple weapons and various other objects in a complex, three-dimensional geometry. In each weapon, HE is enclosed by (casing) materials that function as protection in the event of a neighbor detonation but become a source of fragments if the HE is initiated. The protection afforded by the casing means that only high-momentum fragments, which occur rarely, are of concern. These fragments, generated in an initial donor weapon are transported to other weapons either directly or by ricochet. Interaction of a fragment with an acceptor weapon can produce a reaction in the acceptor HE and result in a second detonation. In this paper we describe a comprehensive methodology to estimate the probability of various consequences for fragment-induced propagating detonations in arrays of weapons containing HE. Analysis of this problem requires an approach that can both define the circumstances under which rare events can occur and calculate the probability of such occurrences. Our approach is based on combining process tree methodology with Monte Carlo transport simulation. Our Monte Carlo technique very effectively captures important features of these differences. Process tree methodology is described and its use is discussed for a simplified problem and to illustrate the power of Monte Carlo simulation in estimating fragment-induced detonation of an acceptor weapon.

  20. Measurement of the flow velocity in unmagnetized plasmas by counter propagating ion-acoustic waves

    SciTech Connect

    Ma, J.X.; Li Yangfang; Xiao Delong; Li Jingju; Li Yiren

    2005-06-15

    The diffusion velocity of an inhomogeneous unmagnetized plasma is measured by means of the phase velocities of ion-acoustic waves propagating along and against the direction of the plasma flow. Combined with the measurement of the plasma density distributions by usual Langmuir probes, the method is applied to measure the ambipolar diffusion coefficient and effective ion collision frequency in inhomogeneous plasmas formed in an asymmetrically discharged double-plasma device. Experimental results show that the measured flow velocities, diffusion coefficients, and effective collision frequencies are in agreement with ion-neutral collision dominated diffusion theory.

  1. Propagation studies using a theoretical ionosphere model

    NASA Technical Reports Server (NTRS)

    Lee, M.

    1973-01-01

    The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray tracing program to see what success would be obtained in predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra-Rowe D region model, and the Groves' neutral atmospheric model are used throughout this work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long distance high frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted.

  2. Comparison of acoustic and seismic excitation, propagation, and scattering at an air-ground interface containing a mine-like inclusion.

    PubMed

    Muir, Thomas G; Costley, R Daniel; Sabatier, James M

    2014-01-01

    Finite element methods are utilized to model and compare the use of both a remote loudspeaker and a vertical shaker in the generation of sound and shear and interface waves in an elastic solid containing an imbedded elastic scatterer, which is resonant. Results for steady state and transient insonification are presented to illustrate excitation, propagation, and scattering mechanisms and effects. Comparisons of acoustic and vibratory excitation of the solid interface are made, with a view towards remote sensing of induced vibratory motion through optical measurement of the ground interface motion above the imbedded inclusion. Some advantages of the acoustic excitation method for exciting plate mode resonances in the target are observed. PMID:24437744

  3. Effective acoustic modeling for robust speaker recognition

    NASA Astrophysics Data System (ADS)

    Hasan Al Banna, Taufiq

    Robustness due to mismatched train/test conditions is the biggest challenge facing the speaker recognition community today, with transmission channel and environmental noise degradation being the prominent factors. Performance of state-of-the art speaker recognition methods aim at mitigating these factors by effectively modeling speech in multiple recording conditions, so that it can learn to distinguish between inter-speaker and intra-speaker variability. The increasing demand and availability of large development corpora introduces difficulties in effective data utilization and computationally efficient modeling. Traditional compensation strategies operate on higher dimensional utterance features, known as supervectors, which are obtained from the acoustic modeling of short-time features. Feature compensation is performed during front-end processing. Motivated by the covariance structure of conventional acoustic features, we envision that feature normalization and compensation can be integrated into the acoustic modeling. In this dissertation, we investigate the following fundamental research challenges: (i) analysis of data requirements for effective and efficient background model training, (ii) introducing latent factor analysis modeling of acoustic features, (iii) integration of channel compensation strategies in mixture-models, and (iv) development of noise robust background models using factor analysis. The effectiveness of the proposed solutions are demonstrated in various noisy and channel degraded conditions using the recent evaluation datasets released by the National Institute of Standards and Technology (NIST). These research accomplishments make an important step towards improving speaker recognition robustness in diverse acoustic conditions.

  4. Model experiment to study sonic boom propagation through turbulence. Part II. Effect of turbulence intensity and propagation distance through turbulence.

    PubMed

    Lipkens, B; Blackstock, D T

    1998-09-01

    A model experiment was reported to be successful in simulating the propagation of sonic booms through a turbulent atmosphere [B. Lipkens and D. T. Blackstock, J. Acoust. Soc. Am. 103, 148-158 (1998)]. In this study the effect on N wave characteristics of turbulence intensity and propagation distance through turbulence are investigated. The main parameters of interest are the rise time and the peak pressure. The effect of turbulence intensity and propagation distance is to flatten the rise time and peak pressure distributions. Rise time and peak pressure distributions always have positive skewness after propagation through turbulence. Average rise time grows with turbulence intensity and propagation distance. The scattering of rise time data is one-sided, i.e., rise times are almost always increased by turbulence. Average peak pressure decreases slowly with turbulence intensity and propagation distance. For the reported data a threefold increase in average rise time is observed and a maximum decrease of about 20% in average peak pressure. Rise times more than ten times that of the no turbulence value are observed. At most, the maximum peak pressure doubles after propagation through turbulence, and the minimum peak pressure values are about one-half the no-turbulence values. Rounded waveforms are always more common than peaked waveforms. PMID:9745733

  5. Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions.

    PubMed

    McCollom, Brittany A; Collis, Jon M

    2014-09-01

    A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions. PMID:25190379

  6. Ocean seismo-acoustics. Low-frequency underwater acoustics

    SciTech Connect

    Akal, T.; berkson, J.M.

    1986-01-01

    This book presents information on seismo-acoustic propagation in seawater and sea beds that includes theoretical developments, modelling and experiments, and fluctuations. Boundary scatteiring, seismo-acoustic waves and seismo-acoustic noise are discussed. Technology and new approaches in seismo-acoustic measurements are presented.

  7. Hydraulic Fracture Propagation through Preexisting Discontinuity Monitored by Acoustic Emission and Ultrasonic Transmission

    NASA Astrophysics Data System (ADS)

    Stanchits, S.; Lund, J.; Surdi, A.; Edelman, E.; Whitney, N.; Eldredge, R.; Suarez-Rivera, R.

    2011-12-01

    Hydraulic fracturing is critical to enhance hydrocarbon production from ultra-low permeability unconventional reservoirs, and is the common completion methodology for tight formations around the world. Unfortunately, these reservoirs are often highly heterogeneous and their heterogeneity imparts a degree of geometrical complexity in hydraulic fractures that is poorly understood. Fracture complexity (e.g. branching) results in higher surface area and could be beneficial to production provided it remains conductive. Understanding the sources and consequences of fracture complexity is thus of high importance to completion and production operations. In this study we postulate that textural complexity in tight heterogeneous formations induces fracture complexity, and that the main sources of textural complexity are associated with veins, bed boundaries, lithologic contacts, and geologic interfaces. We thus study the effect of interfaces on hydraulic fracture propagation under laboratory conditions by Acoustic Emission (AE) and Ultrasonic Transmission (UT) monitoring techniques. The experiments were conducted on low permeability sandstone blocks of 279 x 279 x 381 mm length with saw cut discontinuities oriented orthogonally to the expected direction of fracture propagation. The rock is loaded in a poly-axial test frame to representative effective in-situ stress conditions of normal and deviatoric stress. Hydraulic fracturing was initiated by injection of silicon oil into a borehole drilled off center from the block. Acoustic emission (AE) events were continuously monitored during testing using nineteen P-wave sensors. Additional sensors were installed to periodically monitor ultrasonic transmission (UT) along various directions oblique and perpendicular to the fracture and the interface. The AE and UT data were recorded using a Vallen AMSY-6 system, with 16-bit amplitude resolution and 5 MHz sampling rate. Detailed analysis of AE localizations allowed us to identify

  8. Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects.

    PubMed

    Solovchuk, Maxim; Sheu, Tony W H; Thiriet, Marc

    2013-11-01

    This study investigates the influence of blood flow on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors. A three-dimensional acoustic-thermal-hydrodynamic coupling model is developed to compute the temperature field in the hepatic cancerous region. The model is based on the nonlinear Westervelt equation, bioheat equations for the perfused tissue and blood flow domains. The nonlinear Navier-Stokes equations are employed to describe the flow in large blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. A simulation of the Westervelt equation requires a prohibitively large amount of computer resources. Therefore a sixth-order accurate acoustic scheme in three-point stencil was developed for effectively solving the nonlinear wave equation. Results show that focused ultrasound beam with the peak intensity 2470 W/cm(2) can induce acoustic streaming velocities up to 75 cm/s in the vessel with a diameter of 3 mm. The predicted temperature difference for the cases considered with and without acoustic streaming effect is 13.5 °C or 81% on the blood vessel wall for the vein. Tumor necrosis was studied in a region close to major vessels. The theoretical feasibility to safely necrotize the tumors close to major hepatic arteries and veins was shown. PMID:24180802

  9. A perturbative analysis of surface acoustic wave propagation and reflection in interdigital transducers

    NASA Astrophysics Data System (ADS)

    Thoma, Carsten Hilmar

    1997-12-01

    The coupling of stress and strain fields to electric fields present in anisotropic piezoelectric crystals makes them ideal for use as electromechanical transducers in a wide variety of applications. In recent years such crystals have been utilized to produce surface acoustic wave devices for signal processing applications, in which an applied metallic grating both transmits and receives, through the piezoelectric effect, electromechanical surface waves. The design of such interdigital transducers requires an accurate knowledge of wave propagation and reflection. The presence of the metal grating in addition to its ideal transduction function, by means of electrical and mechanical loading, also introduces a velocity shift as well as reflection into substrate surface waves. We seek to obtain a consistent formulation of the wave behavior due to the electrical and mechanical loading of the substrate crystal by the metallic grating. A perturbative solution up to second order in h//lambda is developed, where h is the maximum grating height and λ the acoustic wavelength. For the operating frequencies and physical parameters of modern surface acoustic wave devices such an analysis will provide an adequate description of device behavior in many cases, thereby circumventing the need for more computationally laborious methods. Numerical calculations are presented and compared with available experimental data.

  10. Optical acoustic experimental investigation of propagation femtosecond laser radiation in air and biological tissues

    NASA Astrophysics Data System (ADS)

    Bochkarev, N. N.; Kabanov, A. M.; Protasevich, E. S.; Stepanov, A. N.

    2008-01-01

    Using two optical acoustic approaches we experimentally investigated spatial location of filament zone of propagation channel of focused laser radiation. For femtosecond pulses passing in air it was shown that nonlinear focus length had spatial scale of 1/P at initial power P moderate for self-focusing and at optical system focus distance significantly lower than Rayleigh beam length. The results of experimental optical acoustic investigation of femto- and nanosecond pulses attenuation by some biological tissues (muscular tissue, adipose tissue, cutaneous covering, and milk) and optical breakdown thresholds on these one are presented. It was shown that penetration depth of short laser pulse radiation into biological tissues is the same as for longer one. However, amplitude of acoustic response to a process of interaction of femtosecond laser pulse with biological tissue is larger in several times than that to interaction with nanosecond pulses of the same power and spectral distribution. The obtained threshold values can be interesting for tabulation of limit allowable levels of irradiation at work with laser radiation. Such values are unknown for femtosecond laser pulses today.

  11. Numerical Modeling of Ocean Acoustic Wavefields

    NASA Astrophysics Data System (ADS)

    Tappert, Frederick

    1997-08-01

    The U.S. Navy requires real-time ``acoustic performance prediction'' models in order to optimize sonar tactics in naval combat situations. The need for numerical models that solve the acoustic wave equation in realistic ocean environments is being met by a collaborative effort between university researchers, industrial contractors, and navy laboratory workers. This paper discusses one particularly successful numerical model, called the PE/SSF model, that was originally developed by the author. Here PE stands for Parabolic Equation, a good approximation to the elliptic Helmholtz equation; and SSF stands for the Split-Step Fourier algorithm, a highly efficient marching algorithm for solving parabolic type equations. These techniques are analyzed, and examples are displayed of ocean acoustic wavefields generated by the PE/SSF model.

  12. LMSS propagation modeling at Virginia Tech

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L.; Barts, R. Michael; Bostian, Charles W.

    1988-01-01

    Recent efforts in the modeling of land mobile satellite systems are reported. These include descriptions of a simple model for prediction of fading statistics, a propagation simulator, and results from studies using the simulator. Predictions are compared to available measured data.

  13. Model-based passive acoustic tracking of sperm whale foraging behavior in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Tiemann, Christopher; Thode, Aaron; Straley, Jan; Folkert, Kendall; O'Connell, Victoria

    2005-09-01

    In 2004, the Southeast Alaska Sperm Whale Avoidance Project (SEASWAP) introduced the use of passive acoustics to help monitor the behavior of sperm whales depredating longline fishing operations. Acoustic data from autonomous recorders mounted on longlines provide the opportunity to demonstrate a tracking algorithm based on acoustic propagation modeling while providing insight into whales' foraging behavior. With knowledge of azimuthally dependent bathymetry, a 3D track of whale motion can be obtained using data from just one hydrophone by exploiting multipath arrival information from recorded sperm whale clicks. The evolution of multipath arrival patterns is matched to range-, depth-, and azimuth-dependent modeled arrival patterns to generate an estimate of whale motion. This technique does not require acoustic ray identification (i.e., direct path, surface reflected, etc.) while still utilizing individual ray arrival information, and it can also account for all waveguide propagation physics such as interaction with range-dependent bathymetry and ray refraction.

  14. Single-point nonlinearity indicators for the propagation of high-amplitude acoustic signals

    NASA Astrophysics Data System (ADS)

    Falco, Lauren E.

    In the study of jet noise, prediction schemes and impact assessment models based on linear acoustic theory are not always sufficient to describe the character of the radiated noise. Typically, a spectral comparison method is employed to determine whether nonlinear effects are important. A power spectral density recorded at one propagation distance is extrapolated to a different distance using linear theory and compared with a measurement at the second distance. Discrepancies between the measured and extrapolated spectra are often attributed to nonlinearity. There are many other factors that can influence the outcome of this operation, though, including meteorological factors such as wind and temperature gradients, ground reflections, and uncertainty in the source location. Therefore, an improved method for assessing the importance of nonlinearity that requires only a single measurement is desirable. This work examines four candidate single-point nonlinearity indicators derived from the quantity Qp2 p found in the work of Morfey and Howell. These include: Qneg/Qpos, a ratio designed to test for conservation of energy; Qpos/p3rms , a bandlimited quantity that describes energy lost from a certain part of the spectrum due to nonlinearity; the spectral Gol'dberg number Gamma s, a dimensionless quantity whose sign indicates the direction of nonlinear energy transfer and whose magnitude can be used to compare the relative importance of linear and nonlinear effects; and the coherence indicator gamma Q, which also denotes the direction of nonlinear energy transfer and which is bounded between -1 and 1. Two sets of experimental data are presented. The first was recorded in a plane wave tube built of 2" inner-diameter PVC pipe with four evenly-spaced microphones flush-mounted with the inside wall of the tube. One or two compression drivers were used as the sound source, and an anechoic termination made of fiberglass served to minimize reflections from the far end of the tube

  15. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas; Houston, Janice

    2012-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I liftoff acoustic environments and to determine the acoustic reduction gained by using an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model and Mobile Launcher with tower. Acoustic and pressure data were measured by over 200 instruments. The ASMAT results are compared to Ares I-X flight data.

  16. Modelling acoustic scattering, sound speed, and attenuation in gassy soft marine sediments.

    PubMed

    Mantouka, A; Dogan, H; White, P R; Leighton, T G

    2016-07-01

    A model for nonlinear gas bubble pulsation in marine sediments is presented. This model is then linearized to determine the resonance frequency and the damping terms for linear radial oscillations. The linear model is then used to predict the effects that such bubble pulsations will have on the sound speed and attenuation of acoustic waves propagating in gassy marine sediment. The results are compared for monodisperse populations against the predictions of a model of Anderson and Hampton and, furthermore, the additional abilities of the model introduced in this paper are discussed. These features include the removal of the sign ambiguities in the expressions, the straightforward implementation for acoustic propagation through polydisperse bubble populations, the capability to estimate bubble size distributions through a full acoustic inversion, and the capability to predict nonlinear effects. PMID:27475152

  17. Computational acoustic modeling of cetacean vocalizations

    NASA Astrophysics Data System (ADS)

    Gurevich, Michael Dixon

    A framework for computational acoustic modeling of hypothetical vocal production mechanisms in cetaceans is presented. As a specific example, a model of a proposed source in the larynx of odontocetes is developed. Whales and dolphins generate a broad range of vocal sounds, but the exact mechanisms they use are not conclusively understood. In the fifty years since it has become widely accepted that whales can and do make sound, how they do so has remained particularly confounding. Cetaceans' highly divergent respiratory anatomy, along with the difficulty of internal observation during vocalization have contributed to this uncertainty. A variety of acoustical, morphological, ethological and physiological evidence has led to conflicting and often disputed theories of the locations and mechanisms of cetaceans' sound sources. Computational acoustic modeling has been used to create real-time parametric models of musical instruments and the human voice. These techniques can be applied to cetacean vocalizations to help better understand the nature and function of these sounds. Extensive studies of odontocete laryngeal morphology have revealed vocal folds that are consistently similar to a known but poorly understood acoustic source, the ribbon reed. A parametric computational model of the ribbon reed is developed, based on simplified geometrical, mechanical and fluid models drawn from the human voice literature. The physical parameters of the ribbon reed model are then adapted to those of the odontocete larynx. With reasonable estimates of real physical parameters, both the ribbon reed and odontocete larynx models produce sounds that are perceptually similar to their real-world counterparts, and both respond realistically under varying control conditions. Comparisons of acoustic features of the real-world and synthetic systems show a number of consistencies. While this does not on its own prove that either model is conclusively an accurate description of the source, it

  18. Rupture Propagation for Stochastic Fault Models

    NASA Astrophysics Data System (ADS)

    Favreau, P.; Lavallee, D.; Archuleta, R.

    2003-12-01

    The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.

  19. Vertically propagating acoustic waves launched by seismic waves visualized in ionograms

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi; Shinagawa, Hiroyuki

    2013-04-01

    After the magnitude 9.0 earthquake off the Pacific coast of Tohoku (near the east coast of Honshu, Japan), which occurred on 11 March 2011, an unusual multiple-cusp signature (MCS) was observed in ionograms at three ionosonde stations across Japan. Similar MCSs in ionograms were identified in 8 of 43 earthquakes with a seismic magnitude of 8.0 or greater for the period from 1957 to 2011. The appearance of MCSs at different epicentral distances exhibited traveling characteristics at a velocity of ~4.0 km/s, which is in the range of Rayleigh waves. There was a ~7 min offset in delay time at each epicentral distance in the travel-time diagram. This offset is consistent with the propagation time of acoustic waves from the ground to the ionosphere. We analyzed vertical structure of electron density perturbation that caused MCSs. The ionosonde technique is essentially radar-based measurement of a reflection at a height where the plasma frequency is equal to the sounding radio frequency and it is possible to obtain an electron density profile by sweeping the frequency. However, this measured height is not a true height because radio waves do not propagate at the speed of light in the ionosphere. The group velocity of radio waves decreases just below the reflection height where the sounding frequency approaches the plasma frequency. The amount of delay is larger when this region is thicker. The vertically propagating acoustic waves modulate the electron density. The radio wave speed greatly delays and a cusp signature appears in the echo trace at a phase of the periodic perturbation of electron density where the density gradient is most gradual. Simulations were conducted how large amplitude of density perturbation produces cusp signatures as observed. First, the real height density profile was obtained by converting the ionogram trace just before the arrival of coseismic disturbances. The electron density profile was then modified by adding a periodic perturbation and the

  20. Spinning mode sound propagation in ducts with acoustic treatment and sheared flow

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1975-01-01

    The propagation of spinning mode sound was considered for a cylindrical duct with sheared steady flow. Calculations concentrated on the determination of the wall optimum acoustic impedance and the maximum possible attenuation. Both the least attenuated and higher radial modes for spinning lobe patterns were considered. A parametric study was conducted over a wide range of Mach numbers, spinning lobe numbers, sound frequency, and boundary layer thickness. A correlation equation was developed from theoretical considerations starting with the thin boundary layer approximation of Eversman. This correlation agrees well with the more exact calculations for inlets and provides a single boundary layer refraction parameter which determines the change in optimum wall impedance due to refraction effects.

  1. On the Propagation of Plane Acoustic Waves in a Duct With Flexible and Impedance Walls

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Vu, Bruce

    2003-01-01

    This Technical Memorandum (TM) discusses the harmonic and random plane acoustic waves propagating from inside a duct to its surroundings. Various duct surfaces are considered, such as rigid, flexible, and impedance. In addition, the effects of a mean flow are studied when the duct alone is considered. Results show a significant reduction in overall sound pressure levels downstream of the impedance wall for both mean flow and no mean flow cases and for a narrow duct. When a wider duct is used, the overall sound pressure level (OSPL) reduction downstream of the impedance wall is much smaller. In the far field, the directivity is such that the overall sound pressure level is reduced by about 5 decibels (dB) on the side of the impedance wall. When a flexible surface is used, the far field directivity becomes asymmetric with an increase in the OSPL on the side of the flexible surface of about 7 dB.

  2. Propagation and oblique collision of ion-acoustic solitary waves in a magnetized dusty electronegative plasma

    SciTech Connect

    El-Labany, S. K.; Behery, E. E.; El-Shamy, E. F.

    2013-12-15

    The propagation and oblique collision of ion-acoustic (IA) solitary waves in a magnetized dusty electronegative plasma consisting of cold mobile positive ions, Boltzmann negative ions, Boltzmann electrons, and stationary positive/negative dust particles are studied. The extended Poincaré-Lighthill-Kuo perturbation method is employed to derive the Korteweg-de Vries equations and the corresponding expressions for the phase shifts after collision between two IA solitary waves. It turns out that the angle of collision, the temperature and density of negative ions, and the dust density of opposite polarity have reasonable effects on the phase shift. Clearly, the numerical results demonstrated that the IA solitary waves are delayed after the oblique collision. The current finding of this work is applicable in many plasma environments having negative ion species, such as D- and F-regions of the Earth's ionosphere and some laboratory plasma experiments.

  3. The stability of freely-propagating ion acoustic waves in 2D systems

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2014-10-01

    The stability of a freely-propagating ion acoustic wave (IAW) is a basic science problem that is made difficult by the need to resolve electron kinetic effects over a timescale that greatly exceeds the IAW period during numerical simulation. Recent results examining IAW stability using a 1D+1V Vlasov-Poisson solver indicate that instability is a fundamental property of IAWs that occurs over most if not all of the parameter space of relevance to ICF experiments. We present here new results addressing the fundamental question of IAW stability across a broad range of plasma conditions in a 2D+2V system using LOKI, ranging from a regime of relatively weak to a regime of relatively strong ion kinetic effects. Work performed under the auspices of the U.S. DOE by LLNL (DE-AC52-07NA27344) and funded by the LDRD Program at LLNL (12-ERD-061).

  4. Acoustical model of a Shoddy fibre absorber

    NASA Astrophysics Data System (ADS)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  5. Features of Propagation of the Acoustic-Gravity Waves Generated by High-Power Periodic Radiation

    NASA Astrophysics Data System (ADS)

    Chernogor, L. F.; Frolov, V. L.

    2013-09-01

    We present the results of the bandpass filtering of temporal variations of the Doppler frequency shift of radio signals from a vertical-sounding Doppler radar located near the city of Kharkov when the ionosphere was heated by high-power periodic (with 10 and 15-min periods) radiation from the Sura facility. The filtering was done in the ranges of periods that are close to the acoustic cutoff period and the Brunt—Väisälä period (4-6, 8-12, and 13-17 min). Oscillations with periods of 4-6 min and amplitudes of 50-100 mHz were not recorded in fact. Oscillations with periods of 8-12 and 13-17 min and amplitudes of 60-100 mHz were detected in almost all the sessions. In the former and the latter oscillations, the time of delay with respect to the heater switch-on was close to 100 min and about 40-50 min, respectively. These values correspond to group propagation velocities of about 160 and 320-400 m/s. The Doppler shift oscillations were caused by the acoustic-gravity waves which led to periodic variations in the electron number density with a relative amplitude of about 0.1-1.0%. It was demonstrated that the acoustic-gravity waves were not recorded when the effective power of the Sura facility was equal to 50 MW and they were confidently observed when the effective power was increased up to 130 MW. It is shown that the period of the wave processes was determined by the period of the heating-pause cycles, and the duration of the wave trains did not depend on the duration of the series of heating-pause cycles. The data suggest that the generation mechanism of recorded wave disturbances is different from the mechanism proposed in 1970-1990.

  6. Comparison of optical and acoustical monitoring during a crack propagation, implication for slow earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Lengliné, Olivier; Schmittbuhl, Jean; Elkhoury, Jean; Toussaint, Renaud; Daniel, Guillaume; Maloy, Knut Jurgen

    2010-05-01

    Observations of aseismic transients in several tectonic context suggest that they might be linked to seismicity. However a clear observation and description of these phenomena and their interaction is lacking. This owes to the difficulty of characterizing with a sufficient resolution processes taking place at depth. Here we aim to study these interactions between aseismic and seismic slip taking advantage of an unique experimental setup. We conducted a series of mode I crack propagation experiments on transparent materials (PMMA). The crack advance is trapped in a weakness plane which is the interface between two previously sandblasted and annealed plexiglass plates. A fast video camera taking up to 500 frames per second ensures the tracking of the front rupture. The acoustic system is composed of a maximum of 44 channels continuously recording at 5 MHz for a few tens of seconds. Piezo-electric sensors are composed of a 32 elements linear array and individual sensors surrounding the crack front. An automatic detection and localization procedure allows us to obtain the position of acoustic emission (A.E.) that occurred during the crack advance. Crack front image processing reveals an intermittent opening which might be linked to the time and space clustering of the AE. An analogy between the mode I (opening) and the mode III (antiplane slip) allows us to interpret our results in term of slip on faults. Our experiment thus helps to reveal the interplay between seismic and aseismic slip on faults.

  7. Model-based ocean acoustic passive localization. Revision 1

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1994-06-01

    A model-based approach is developed (theoretically) to solve the passive localization problem. Here the authors investigate the design of a model-based identifier for a shallow water ocean acoustic problem characterized by a normal-mode model. In this problem they show how the processor can be structured to estimate the vertical wave numbers directly from measured pressure-field and sound speed measurements thereby eliminating the need for synthetic aperture processing or even a propagation model solution. Finally, they investigate various special cases of the source localization problem, designing a model-based localizer for each and evaluating the underlying structure with the expectation of gaining more and more insight into the general problem.

  8. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  9. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  10. Finite Difference Simulations of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Applications to INSIGHT NASA Mission and Mars Microphone Experiments

    NASA Astrophysics Data System (ADS)

    Garcia, R.; Brissaud, Q.; Martin, R.; Rolland, L. M.; Komatitsch, D.

    2015-12-01

    A simulation tool of acoustic and gravity wave propagation through finite differences is applied to the case of Mars atmosphere.The details of the code and its validation for Earth atmosphere are presented in session SA003.The simulations include the modeling of both acoustic and gravity waves in the same run, an effects of exponential density decrease, winds and attenuation.The application to Mars requires the inclusion of a specific attenuation effect related to the relaxation induced by vibrational modes of carbon dioxide molecules.Two different applications are presented demonstrating the ability of the simulation tool to work at very different scale length and frequencies.First the propagation of acoustic and gravity waves due to a bolide explosion in the atmosphere of Mars are simulated.This case has a direct application to the atmospheric pressure and seismic measurements that will be performed by INSIGHT NASA discovery mission next year.Then, we also present simulations of sound wave propagation on a scale of meters that can be used to infer the feasability microphone measurements for future Mars missions.

  11. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations. PMID:12880062

  12. Oblique propagation of ion-acoustic solitary waves in a magnetized electron-positron-ion plasma

    SciTech Connect

    Ferdousi, M.; Sultana, S.; Mamun, A. A.

    2015-03-15

    The properties of obliquely propagating ion-acoustic solitary waves in the presence of ambient magnetic field have been investigated theoretically in an electron-positron-ion nonthermal plasma. The plasma nonthermality is introduced via the q-nonextensive distribution of electrons and positrons. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations are derived by adopting reductive perturbation method. The solution of K-dV and modified K-dV equation, which describes the solitary wave characteristics in the long wavelength limit, is obtained by steady state approach. It is seen that the electron and positron nonextensivity and external magnetic field (obliqueness) have significant effects on the characteristics of solitary waves. A critical value of nonextensivity is found for which solitary structures transit from positive to negative potential. The findings of this investigation may be used in understanding the wave propagation in laboratory and space plasmas where static external magnetic field is present.

  13. Acoustic emission for characterising the crack propagation in strain-hardening cement-based composites (SHCC)

    SciTech Connect

    Paul, S.C.; Pirskawetz, S.; Zijl, G.P.A.G. van; Schmidt, W.

    2015-03-15

    This paper presents the analysis of crack propagation in strain-hardening cement-based composite (SHCC) under tensile and flexural load by using acoustic emission (AE). AE is a non-destructive technique to monitor the development of structural damage due to external forces. The main objective of this research was to characterise the cracking behaviour in SHCC in direct tensile and flexural tests by using AE. A better understanding of the development of microcracks in SHCC will lead to a better understanding of pseudo strain-hardening behaviour of SHCC and its general performance. ARAMIS optical deformation analysis was also used in direct tensile tests to observe crack propagation in SHCC materials. For the direct tensile tests, SHCC specimens were prepared with polyvinyl alcohol (PVA) fibre with three different volume percentages (1%, 1.85% and 2.5%). For the flexural test beam specimens, only a fibre dosage of 1.85% was applied. It was found that the application of AE in SHCC can be a good option to analyse the crack growth in the specimens under increasing load, the location of the cracks and most importantly the identification of matrix cracking and fibre rupture or slippage.

  14. Modeling Propagation of Shock Waves in Metals

    SciTech Connect

    Howard, W M; Molitoris, J D

    2005-08-19

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P {approx} 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P {approx} 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.

  15. Study of Two-Dimensional Compressible Non-Acoustic Modeling of Stirling Machine Type Components

    NASA Technical Reports Server (NTRS)

    Tew, Roy C., Jr.; Ibrahim, Mounir B.

    2001-01-01

    A two-dimensional (2-D) computer code was developed for modeling enclosed volumes of gas with oscillating boundaries, such as Stirling machine components. An existing 2-D incompressible flow computer code, CAST, was used as the starting point for the project. CAST was modified to use the compressible non-acoustic Navier-Stokes equations to model an enclosed volume including an oscillating piston. The devices modeled have low Mach numbers and are sufficiently small that the time required for acoustics to propagate across them is negligible. Therefore, acoustics were excluded to enable more time efficient computation. Background information about the project is presented. The compressible non-acoustic flow assumptions are discussed. The governing equations used in the model are presented in transport equation format. A brief description is given of the numerical methods used. Comparisons of code predictions with experimental data are then discussed.

  16. Acoustic wave propagation in the solar atmosphere 1. Rediscussion of the linearized theory including nonstationary solutions

    NASA Technical Reports Server (NTRS)

    Wang, Zhengzhi; Ulrich, Roger K.; Coroniti, Ferdinand V.

    1995-01-01

    The normal dispersion analysis for linear adiabatic wave propagation in stratified atmospheres adopts a real frequency and solves for the complex vertical wavenumber. We show that an exponentially stratified atmosphere does not have any spatially bounded normal modes for real frequencies. The usual treatment involves a representation where the imaginary part of the vertical wavenumber yields a rho(sup -1/2) dependence of the velocity amplitude which diverges as the absolute value of z approaches infinity. This solution includes a cutoff frequency below which acoustic modes cannot propagate. The standard dispersion analysis is a local representation of the wave behavior in both space and time but which is assumed to represent the motion throughout - infinity is less than t is less than infinity and 0 is less than infinity. However, any solution which has a purely sinusoidal time dependence extends through this full domain and is divergent due to the rho(sup -1/2) dependence. We show that a proper description is in terms of a near field of a boundary piston which is driven arbitrarily as a function of space and time. The atmosphere which responds to this piston is a semi-infinite layer which has an initially constant sound speed but which has the usual gravitational stratification. In a restricted domain of space and time above this boundary, the wavelike behavior of the medium may be described by frequencies and vertical wavenumbers which are both complex. When both parameters are allowed to have imaginary components, a new range of solutions is found for which there is virtually no cutoff frequency. We show that vertical energy propagation can take place through the solar atmosphere as a result of oscillations below the nominal cutoff frequency. Previously, the largest amplitude oscillations which generally have low frequencies were dropped from the calculation of energy flux becuase their frequencies are below the cutoff frequency. This new family of near

  17. Numerical Models for Sound Propagation in Long Spaces

    NASA Astrophysics Data System (ADS)

    Lai, Chenly Yuen Cheung

    Both reverberation time and steady-state sound field are the key elements for assessing the acoustic condition in an enclosed space. They affect the noise propagation, speech intelligibility, clarity index, and definition. Since the sound field in a long space is non diffuse, classical room acoustics theory does not apply in this situation. The ray tracing technique and the image source methods are two common models to fathom both reverberation time and steady-state sound field in long enclosures nowadays. Although both models can give an accurate estimate of reverberation times and steady-state sound field directly or indirectly, they often involve time-consuming calculations. In order to simplify the acoustic consideration, a theoretical formulation has been developed for predicting both steady-state sound fields and reverberation times in street canyons. The prediction model is further developed to predict the steady-state sound field in a long enclosure. Apart from the straight long enclosure, there are other variations such as a cross junction, a long enclosure with a T-intersection, an U-turn long enclosure. In the present study, an theoretical and experimental investigations were conducted to develop formulae for predicting reverberation times and steady-state sound fields in a junction of a street canyon and in a long enclosure with T-intersection. The theoretical models are validated by comparing the numerical predictions with published experimental results. The theoretical results are also compared with precise indoor measurements and large-scale outdoor experimental results. In all of previous acoustical studies related to long enclosure, most of the studies are focused on the monopole sound source. Besides non-directional noise source, many noise sources in long enclosure are dipole like, such as train noise and fan noise. In order to study the characteristics of directional noise sources, a review of available dipole source was conducted. A dipole was

  18. Target & Propagation Models for the FINDER Radar

    NASA Technical Reports Server (NTRS)

    Cable, Vaughn; Lux, James; Haque, Salmon

    2013-01-01

    Finding persons still alive in piles of rubble following an earthquake, a severe storm, or other disaster is a difficult problem. JPL is currently developing a victim detection radar called FINDER (Finding Individuals in Emergency and Response). The subject of this paper is directed toward development of propagation & target models needed for simulation & testing of such a system. These models are both physical (real rubble piles) and numerical. Early results from the numerical modeling phase show spatial and temporal spreading characteristics when signals are passed through a randomly mixed rubble pile.

  19. Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development

    NASA Technical Reports Server (NTRS)

    Putnam, G. C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.

  20. Nonlinear acoustic pulse propagation in dispersive sediments using fractional loss operators.

    PubMed

    Maestas, Joseph T; Collis, Jon M

    2016-03-01

    The nonlinear progressive wave equation (NPE) is a time-domain formulation of the Euler fluid equations designed to model low-angle wave propagation using a wave-following computational domain. The wave-following frame of reference permits the simulation of long-range propagation and is useful in modeling blast wave effects in the ocean waveguide. Existing models do not take into account frequency-dependent sediment attenuation, a feature necessary for accurately describing sound propagation over, into, and out of the ocean sediment. Sediment attenuation is addressed in this work by applying lossy operators to the governing equation that are based on a fractional Laplacian. These operators accurately describe frequency-dependent attenuation and dispersion in typical ocean sediments. However, dispersion within the sediment is found to be a secondary process to absorption and effectively negligible for ranges of interest. The resulting fractional NPE is benchmarked against a Fourier-transformed parabolic equation solution for a linear case, and against the analytical Mendousse solution to Burgers' equation for the nonlinear case. The fractional NPE is then used to investigate the effects of attenuation on shock wave propagation. PMID:27036279

  1. Modeling Light Propagation in Luminescent Media

    NASA Astrophysics Data System (ADS)

    Sahin, Derya

    This study presents physical, computational and analytical modeling approaches for light propagation in luminescent random media. Two different approaches are used, namely (i) a statistical approach: Monte-Carlo simulations for photon transport and (ii) a deterministic approach: radiative transport theory. Both approaches account accurately for the multiple absorption and reemission of light at different wavelengths and for anisotropic luminescence. The deterministic approach is a generalization of radiative transport theory for solving inelastic scattering problems in random media. We use the radiative transport theory to study light propagation in luminescent media. Based on this theory, we also study the optically thick medium. Using perturbation methods, a corrected diffusion approximation with asymptotically accurate boundary conditions and a boundary layer solution are derived. The accuracy and the efficacy of this approach is verified for a plane-parallel slab problem. In particular, we apply these two approaches (MC and radiative transport theory) to model light propagation in semiconductor-based luminescent solar concentrators (LSCs). The computational results for both approaches are compared with each other and found to agree. The results of this dissertation present practical and reliable techniques to use for solving forward/inverse inelastic scattering problems arising in various research areas such as optics, biomedical engineering, nuclear engineering, solar science and material science.

  2. Crack propagation modeling using Peridynamic theory

    NASA Astrophysics Data System (ADS)

    Hafezi, M. H.; Alebrahim, R.; Kundu, T.

    2016-04-01

    Crack propagation and branching are modeled using nonlocal peridynamic theory. One major advantage of this nonlocal theory based analysis tool is the unifying approach towards material behavior modeling - irrespective of whether the crack is formed in the material or not. No separate damage law is needed for crack initiation and propagation. This theory overcomes the weaknesses of existing continuum mechanics based numerical tools (e.g. FEM, XFEM etc.) for identifying fracture modes and does not require any simplifying assumptions. Cracks grow autonomously and not necessarily along a prescribed path. However, in some special situations such as in case of ductile fracture, the damage evolution and failure depend on parameters characterizing the local stress state instead of peridynamic damage modeling technique developed for brittle fracture. For brittle fracture modeling the bond is simply broken when the failure criterion is satisfied. This simulation helps us to design more reliable modeling tool for crack propagation and branching in both brittle and ductile materials. Peridynamic analysis has been found to be very demanding computationally, particularly for real-world structures (e.g. vehicles, aircrafts, etc.). It also requires a very expensive visualization process. The goal of this paper is to bring awareness to researchers the impact of this cutting-edge simulation tool for a better understanding of the cracked material response. A computer code has been developed to implement the peridynamic theory based modeling tool for two-dimensional analysis. A good agreement between our predictions and previously published results is observed. Some interesting new results that have not been reported earlier by others are also obtained and presented in this paper. The final objective of this investigation is to increase the mechanics knowledge of self-similar and self-affine cracks.

  3. Applications of velocity potential function to acoustic duct propagation and radiation from inlets using finite element theory

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Majjigi, R. K.

    1979-01-01

    A finite element velocity potential program has been developed to study acoustic wave propagation in complex geometries. For irrotational flows, relatively low sound frequencies, and plane wave input, the finite element solutions show significant effects of inlet curvature and flow gradients on the attenuation of a given acoustic liner in a realistic variable area turbofan inlet. In addition, as shown in the paper, the velocity potential approach can not be used to estimate the effects of rotational flow on acoustic propagation since the potential acoustic disturbances propagate at the speed of the media in sheared flow. Approaches are discussed that are being considered for extending the finite element solution to include the far field as well as the internal portion of the duct. A new matrix partitioning approach is presented that can be incorporated in previously developed programs to allow the finite element calculation to be marched into the far field. The partitioning approach provides a large reduction in computer storage and running times.

  4. Ocean acoustic signal processing: A model-based approach

    SciTech Connect

    Candy, J.V. ); Sullivan, E.J. )

    1992-12-01

    A model-based approach is proposed to solve the ocean acoustic signal processing problem that is based on a state-space representation of the normal-mode propagation model. It is shown that this representation can be utilized to spatially propagate both modal (depth) and range functions given the basic parameters (wave numbers, etc.) developed from the solution of the associated boundary value problem. This model is then generalized to the stochastic case where an approximate Gauss--Markov model evolves. The Gauss--Markov representation, in principle, allows the inclusion of stochastic phenomena such as noise and modeling errors in a consistent manner. Based on this framework, investigations are made of model-based solutions to the signal enhancement, detection and related parameter estimation problems. In particular, a modal/pressure field processor is designed that allows {ital in} {ital situ} recursive estimation of the sound velocity profile. Finally, it is shown that the associated residual or so-called innovation sequence that ensues from the recursive nature of this formulation can be employed to monitor the model's fit to the data and also form the basis of a sequential detector.

  5. Propagation characteristics of dust-acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-08-01

    The experimental observation of the self-excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion-dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  6. Modeling UHF Radio Propagation in Buildings.

    NASA Astrophysics Data System (ADS)

    Honcharenko, Walter

    The potential implementation of wireless Radio Local Area Networks and Personal Communication Services inside buildings requires a thorough understanding of signal propagation within buildings. This work describes a study leading to a theoretical understanding of wave propagation phenomenon inside buildings. Covered first is propagation in the clear space between the floor and ceiling, which is modeled using Kirchoff -Huygens diffraction theory. This along with ray tracing techniques are used to develop a model to predict signal coverage inside buildings. Simulations were conducted on a hotel building, two office buildings, and a university building to which measurements of CW signals were compared, with good agreement. Propagation to other floors was studied to determine the signal strength as a function of the number of floors separating transmitter and receiver. Diffraction paths and through the floor paths which carry significant power to the receivers were examined. Comparisons were made to measurements in a hotel building and an office building, in which agreements were excellent. As originally developed for Cellular Mobile Radio (CMR) systems, the sector average is obtained from the spatial average of the received signal as the mobile traverses a path of 20 or so wavelengths. This approach has also been applied indoors with the assumption that a unique average could be obtained by moving either end of the radio link. However, unlike in the CMR environment, inside buildings both ends of the radio link are in a rich multipath environment. It is shown both theoretically and experimentally that moving both ends of the link is required to achieve a unique average. Accurate modeling of the short pulse response of a signal within a building will provide insight for determining the hardware necessary for high speed data transmission and recovery, and a model for determining the impulse response is developed in detail. Lastly, the propagation characteristics of

  7. Modeling propagation of coherent optical pulses through molecular vapor

    SciTech Connect

    Shore, B.W.; Eberly, J.H.

    1982-01-01

    Results of modeling the mutual coupling of coherent molecular response and coherent optical pulses during propagation are described. The propagation is treated numerically, with particular emphasis on both continuum and discrete behavior associated with the quasicontinuum model.

  8. Propagating precipitation waves: experiments and modeling.

    PubMed

    Tinsley, Mark R; Collison, Darrell; Showalter, Kenneth

    2013-12-01

    Traveling precipitation waves, including counterrotating spiral waves, are observed in the precipitation reaction of AlCl3 with NaOH [Volford, A.; et al. Langmuir 2007, 23, 961 - 964]. Experimental and computational studies are carried out to characterize the wave behavior in cross-section configurations. A modified sol-coagulation model is developed that is based on models of Liesegang band and redissolution systems. The dynamics of the propagating waves is characterized in terms of growth and redissolution of a precipitation feature that travels through a migrating band of colloidal precipitate. PMID:24191642

  9. Wave propagation in a 2D nonlinear structural acoustic waveguide using asymptotic expansions of wavenumbers

    NASA Astrophysics Data System (ADS)

    Vijay Prakash, S.; Sonti, Venkata R.

    2016-02-01

    Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrödinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions.

  10. Spectroscopic observations of propagating disturbances in a polar coronal hole: evidence of slow magneto-acoustic waves

    NASA Astrophysics Data System (ADS)

    Gupta, G. R.; Teriaca, L.; Marsch, E.; Solanki, S. K.; Banerjee, D.

    2012-10-01

    Aims: We focus on detecting and studying quasi-periodic propagating features that have been interpreted in terms of both slow magneto-acoustic waves and of high-speed upflows. Methods: We analyzed long-duration spectroscopic observations of the on-disk part of the south polar coronal hole taken on 1997 February 25 by the SUMER spectrometer onboard SOHO. We calibrated the velocity with respect to the off-limb region and obtained time-distance maps in intensity, Doppler velocity, and line width. We also performed a cross-correlation analysis on different time series curves at different latitudes. We studied average spectral line profiles at the roots of propagating disturbances and along the propagating ridges, and performed a red-blue asymmetry analysis. Results: We clearly find propagating disturbances in intensity and Doppler velocity with a projected propagation speed of about 60 ± 4.8 km s-1 and a periodicity of ≈14.5 min. To our knowledge, this is the first simultaneous detection of propagating disturbances in intensity as well as in Doppler velocity in a coronal hole. During the propagation, an intensity enhancement is associated with a blueshifted Doppler velocity. These disturbances are clearly seen in intensity also at higher latitudes (i.e., closer to the limb), while disturbances in Doppler velocity become faint there. The spectral line profiles averaged along the propagating ridges are found to be symmetric, to be well fitted by a single Gaussian, and have no noticeable red-blue asymmetry. Conclusions: Based on our analysis, we interpret these disturbances in terms of propagating slow magneto-acoustic waves.

  11. On whether azimuthal isotropy and alongshelf translational invariance are present in low-frequency acoustic propagation along the New Jersey shelfbreak.

    PubMed

    Lynch, James F; Emerson, Chris; Abbot, Philip A; Gawarkiewicz, Glen G; Newhall, Arthur E; Lin, Ying-Tsong; Duda, Timothy F

    2012-02-01

    To understand the issues associated with the presence (or lack) of azimuthal isotropy and horizontal (along isobath) invariance of low-frequency (center frequencies of 600 Hz and 900 Hz) acoustic propagation in a shelfbreak environment, a series of experiments were conducted under the Autonomous Wide-Aperture Cluster for Surveillance component of the Shallow Water 2006 experiment. Transmission loss data reported here were from two mobile acoustic sources executing (nearly) circular tracks transmitting to sonobuoy receivers in the circle centers, and from one 12.5 km alongshelf acoustic track. The circle radii were 7.5 km. Data are from September 8, 2006. Details of the acoustic and environmental measurements are presented. Simple analytic and computer models are used to assess the variability expected due to the ocean and seabed conditions encountered. A comparison of model results and data is made, which shows preliminary consistency between the data and the models, but also points towards further work that should be undertaken specifically in enlarging the range and frequency parameter space, and in looking at integrated transmission loss. PMID:22352604

  12. Infrasound Propagation Modeling for Explosive Yield Estimation

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Golden, P.; Negraru, P.

    2013-12-01

    This study focuses on developing methods of estimating the size or yield of HE surface explosions from local and regional infrasound measurements in the southwestern United States. A munitions disposal facility near Mina, Nevada provides a repeating ground-truth source for this study, with charge weights ranging from 870 - 3800 lbs. Detonation logs and GPS synchronized videos were obtained for a sample of shots representing the full range of weights. These are used to calibrate a relationship between charge weight and spectral level from seismic waveforms recorded at the Nevada Seismic Array (NVAR) at a distance of 36 km. Origin times and yields for the remaining shots are inferred from the seismic recordings at NVAR. Infrasound arrivals from the detonations have been continuously recorded on three four-element, small aperture infrasound arrays since late 2009. NVIAR is collocated with NVAR at a range of approximately 36 km to the northeast. FALN and DNIAR are located at ranges of 154 km to the north, and 293 km to the southeast respectively. Travel times and amplitudes for stratospheric arrivals at DNIAR show strong seasonal variability with the largest amplitudes and celerities occurring during the winter months when the stratospheric winds are favorable. Stratospheric celerities for FNIAR to the north are more consistent as they are not strongly affected by the predominantly meridional stratospheric winds. Tropospheric arrivals at all three arrays show considerable variability that does not appear to be a seasonal effect. Naval Research Laboratory Ground to Space (NRL-G2S) Mesoscale models are used to specify the atmosphere along the propagation path for each detonation. Ray-tracing is performed for each source/receiver pair to identify events for which the models closely match the travel-time observations. This subset of events is used to establish preliminary wind correction formulas using wind values from the G2S profile for the entire propagation path. These

  13. Nonlinear propagation of small-amplitude modified electron acoustic solitary waves and double layer in semirelativistic plasmas

    SciTech Connect

    Sah, O.P.; Goswami, K.S. )

    1994-10-01

    Considering an unmagnetized plasma consisting of relativistic drifting electrons and nondrifting thermal ions and by using reductive perturbation method, a usual Korteweg--de Vries (KdV) equation and a generalized form of KdV equation are derived. It is found that while the former governs the dynamics of a small-amplitude rarefactive modified electron acoustic (MEA) soliton, the latter governs the dynamics of a weak compressive modified electron acoustic double layer. The influences of relativistic effect on the propagation of such a soliton and double layer are examined. The relevance of this investigation to space plasma is pointed out.

  14. Effects of Temperature on Acoustically-Induced Strains and Damage Propagation in CFRP Plates.

    NASA Astrophysics Data System (ADS)

    Galea, Stephen C. P.

    Available from UMI in association with The British Library. The effect of temperature on the material elastic properties, acoustically-induced strains, damage initiation, damage propagation and residual thermal strains of composite materials has been investigated. An experimental rig, using the free-free beam technique, was built to attain accurate measurements of Young's modulus and loss factor of CFRP beams in the temperature range -40^circC to 150^circC. These results were then compared with measurements taken from a commercially available Dynamic Mechanical Thermal Analyser. Using the finite element method a study was undertaken to determine the effect of temperature on the free vibration of clamped (but no in-plane constraints) CFRP plates of various layups. Predictions of natural frequencies of two CFRP plates were then compared with experimentally determined values. CFRP plates subjected to broadband acoustic excitation (20-600 Hz) of OSPL up to 160 dB showed no significant changes in the strain response with increasing temperature. Also predictions of RMS strains using the simple single mode formulae agreed reasonably well with measured values for most OSPL and temperatures studied. A flexural fatigue apparatus, using a half-sine -clamped cantilevered arrangement, was modified to allow flexural cyclic loading, when placed in an environmental chamber or oven, of CFRP coupons at various temperatures (-40^circC to 120^circC). Wet and dry XAS/914C coupons of layup (0, +/- 45,0) _{rm s} were subjected to cyclic surface strain reversals at temperatures -40^circC, 20^circC and 120^ circC. Flexural fatigue results showed a considerable decrease in flexural fatigue resistance as temperatures were increased to 120^circ C. An optical microscopic analysis showed damage in CFRP appears to be in the form of translaminar cracking and delamination. Also an SEM analysis showed an increased propensity of fibre/matrix debonding under adverse conditions. A finite element

  15. Modelling and observing Jovian electron propagation times

    NASA Astrophysics Data System (ADS)

    Toit Strauss, Du; Potgieter, Marius; Kopp, Andreas; Heber, Bernd

    2012-07-01

    During the Pioneer 10 Jovian encounter, it was observed that the Jovian magnetosphere is a strong source of low energy electrons. These electrons are accelerated in the Jovian magnetosphere and then propagate through the interplanetary medium to reach Earth, sampling the heliospheric magnetic field (HMF) and its embedded turbulence. With the current constellation of near Earth spacecraft (STEREO, SOHO, ACE, ect.) various aspects of Jovian electron transport at/near Earth can be studied in 3D (spatially). During a CME, the plasma between the Earth and Jupiter becomes more disturbed, inhibiting the transport of these electrons to Earth. With the passage of the CME beyond Jupiter, quite-time transport conditions persist and increases of the electron flux at Earth are observed (so-called quite time increases). Using multi-spacecraft observation during such an event, we are able to infer the propagation time of these electrons from Jupiter to Earth. Using a state-of-the-art electron transport model, we study the transport of these electrons from Jupiter and Earth, focusing on their propagation times. These computed values are also compared with observations. We discuss the implications of these results from a particle transport point-of-view.

  16. SLS Scale Model Acoustic Test Liftoff Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, Douglas; Giacomoni, Clothilde

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible design phase test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments.

  17. A case-study comparison of computer modeling and scale modeling in acoustics consulting

    NASA Astrophysics Data System (ADS)

    Calamia, Paul T.

    2002-05-01

    As an alternate or compliment to computer models, acoustics consultants often make use of scale models to evaluate the efficacy of architectural designs. The intention of this paper is to compare the two modeling approaches, using one or more case studies, to explore the pros and cons of each. Topics of comparison will include cost, geometric representations, effective bandwidths, propagation phenomena (e.g., diffraction), simulation of material properties, and auralization. Where possible, measured data from existing spaces will be presented to provide a reference for the modeled data.

  18. Modelling acoustic scattering by suspended flocculating sediments

    NASA Astrophysics Data System (ADS)

    Thorne, Peter D.; MacDonald, Iain T.; Vincent, Christopher E.

    2014-10-01

    The development of a theoretical description of how sound interacts with flocculating sediments has been lacking and this deficiency has impeded sound being used to extract quantitative suspended sediment parameters in suspensions containing flocs. As a step towards theoretically examining this problem a relatively simple heuristic approach has been adopted to provide a description of the interaction of sound with suspensions that undergo flocculation. A model is presented for the interpretation of acoustic scattering from suspensions of fine sediments as they transition from primary particles, through an intermediate regime, to the case where low density flocs dominate the acoustic scattering. The approach is based on modified spherical elastic solid and elastic fluid scatterers and a combination of both. To evaluate the model the variation of density and compressional velocity within the flocs as they form and grow in size is required. The density can be estimated from previous studies; however, the velocity is unknown and is formulated here using a fluid mixture approach. Uncertainties in these parameters can have a significant effect on the predicted scattering characteristics and are therefore investigated in the present study. Furthermore, to assess the proposed model, outputs are compared with recently published laboratory observations of acoustic scattering by flocculating cohesive suspensions.

  19. Irregular lattice model for quasistatic crack propagation

    NASA Astrophysics Data System (ADS)

    Bolander, J. E.; Sukumar, N.

    2005-03-01

    An irregular lattice model is proposed for simulating quasistatic fracture in softening materials. Lattice elements are defined on the edges of a Delaunay tessellation of the medium. The dual (Voronoi) tessellation is used to scale the elemental stiffness terms in a manner that renders the lattice elastically homogeneous. This property enables the accurate modeling of heterogeneity, as demonstrated through the elastic stress analyses of fiber composites. A cohesive description of fracture is used to model crack initiation and propagation. Numerical simulations, which demonstrate energy-conserving and grid-insensitive descriptions of cracking, are presented. The model provides a framework for the failure analysis of quasibrittle materials and fiber-reinforced brittle-matrix composites.

  20. Influence of exit impedance on finite difference solutions of transient acoustic mode propagation in ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1981-01-01

    The cutoff mode instability problem associated with a transient finite difference solution to the wave equation is explained. The steady-state impedance boundary condition is found to produce acoustic reflections during the initial transient, which cause finite instabilities in the cutoff modes. The stability problem is resolved by extending the duct length to prevent transient reflections. Numerical calculations are presented at forcing frequencies above, below, and nearly at the cutoff frequency, and exit impedance models are presented for use in the practical design of turbofan inlets.

  1. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  2. Theory and modeling of cylindrical thermo-acoustic transduction

    NASA Astrophysics Data System (ADS)

    Tong, Lihong; Lim, C. W.; Zhao, Xiushao; Geng, Daxing

    2016-06-01

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media.

  3. Causality, Stokes' wave equation, and acoustic pulse propagation in a viscous fluid.

    PubMed

    Buckingham, Michael J

    2005-08-01

    Stokes' acoustic wave equation is solved for the impulse response of an isotropic viscous fluid. Two exact integral forms of solution are derived, both of which are causal, predicting a zero response before the source is activated at time t = 0. Moreover, both integral solutions satisfy a stronger causality condition: the pressure pulse is maximally flat, with all its time derivatives identically zero at t = 0, signifying that there is no instantaneous response to the source anywhere in the fluid. A closed-form approximation for each of the two integrals is derived, with distinctly different properties in the two cases, even though the original integrals are equivalent in that they predict identical pulse shapes. One of these approximations, reminiscent of transient solutions that have appeared previously in the literature, is noncausal due to the incorrect representation of high-frequency components in the propagating pulse. In the second approximation, all frequency components are treated correctly, leading to an impulse response that satisfies the strong causality condition, also satisfied by the original integrals, whereby the predicted pressure pulse is zero when t < 0 and maximally flat everywhere in the fluid immediately after t = 0. PMID:16196738

  4. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators. PMID:26812132

  5. Frequency-dependent damping in propagating slow magneto-acoustic waves

    SciTech Connect

    Prasad, S. Krishna; Banerjee, D.; Van Doorsselaere, T.

    2014-07-10

    Propagating slow magneto-acoustic waves are often observed in polar plumes and active region fan loops. The observed periodicities of these waves range from a few minutes to a few tens of minutes and their amplitudes were found to decay rapidly as they travel along the supporting structure. Previously, thermal conduction, compressive viscosity, radiation, density stratification, and area divergence were identified to be some of the causes for change in the slow wave amplitude. Our recent studies indicate that the observed damping in these waves is frequency-dependent. We used imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly to study this dependence in detail and for the first time via observations we attempted to deduce a quantitative relation between the damping length and frequency of these oscillations. We developed a new analysis method to obtain this relation. The observed frequency dependence does not seem to agree with the current linear wave theory and it was found that the waves observed in the polar regions show a different dependence from those observed in the on-disk loop structures despite the similarity in their properties.

  6. Damage Propagation Modeling for Aircraft Engine Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  7. Hybrid Speaker Recognition Using Universal Acoustic Model

    NASA Astrophysics Data System (ADS)

    Nishimura, Jun; Kuroda, Tadahiro

    We propose a novel speaker recognition approach using a speaker-independent universal acoustic model (UAM) for sensornet applications. In sensornet applications such as “Business Microscope”, interactions among knowledge workers in an organization can be visualized by sensing face-to-face communication using wearable sensor nodes. In conventional studies, speakers are detected by comparing energy of input speech signals among the nodes. However, there are often synchronization errors among the nodes which degrade the speaker recognition performance. By focusing on property of the speaker's acoustic channel, UAM can provide robustness against the synchronization error. The overall speaker recognition accuracy is improved by combining UAM with the energy-based approach. For 0.1s speech inputs and 4 subjects, speaker recognition accuracy of 94% is achieved at the synchronization error less than 100ms.

  8. Acoustic attenuation, phase and group velocities in liquid-filled pipes III: nonaxisymmetric propagation and circumferential modes in lossless conditions.

    PubMed

    Baik, Kyungmin; Jiang, Jian; Leighton, Timothy G

    2013-03-01

    Equations for the nonaxisymmetric modes that are axially and circumferentially propagating in a liquid-filled tube with elastic walls surrounded by air/vacuum are presented using exact elasticity theory. Dispersion curves for the axially propagating modes are obtained and verified through comparison with measurements. The resulting theory is applied to the circumferential modes, and the pressures and the stresses in the liquid-filled pipe are calculated under external forced oscillation by an acoustic source. This provides the theoretical foundation for the narrow band acoustic bubble detector that was subsequently deployed at the Target Test Facility (TTF) of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), TN. PMID:23463995

  9. On the role of ion-temperature anisotropy on the propagation of shear-modified ion-acoustic waves

    NASA Astrophysics Data System (ADS)

    Koepke, M. E.; Teodorescu, C.; Reynolds, E. W.

    2002-11-01

    Oblique ion-acoustic waves, excited by the combination of magnetic-field-aligned (parallel) electron drift and sheared parallel ion flow, are investigated in magnetized laboratory plasma that is characterized by ion-temperature anisotropy. Direct measurements of the parallel and perpendicular ion temperatures, parallel and perpendicular ion drift velocities, electron temperature and parallel electron drift velocity, parallel and perpendicular wavevector components, and mode frequency and growth rate are used to document an observed correlation between ion-temperature anisotropy and wave-propagation angle. Experimental measurements show that anisotropy significantly influences the propagation angle. These results support the ion-acoustic wave interpretation of broadband waves in the auroral energization region where shear and anisotropy are known to exist and may have ramifications for many space plasmas in which anisotropy exists in the electron-temperature or ion-temperature.

  10. Lattice Boltzmann model for wave propagation.

    PubMed

    Zhang, Jianying; Yan, Guangwu; Shi, Xiubo

    2009-08-01

    A lattice Boltzmann model for two-dimensional wave equation is proposed by using the higher-order moment method. The higher-order moment method is based on the solution of a series of partial differential equations obtained by using multiscale technique and Chapman-Enskog expansion. In order to obtain the lattice Boltzmann model for the wave equation with higher-order accuracy of truncation errors, we removed the second-order dissipation term and the third-order dispersion term by employing the moments up to fourth order. The reversibility in time appears owing to the absence of the second-order dissipation term and the third-order dispersion term. As numerical examples, some classical examples, such as interference, diffraction, and wave passing through a convex lens, are simulated. The numerical results show that this model can be used to simulate wave propagation. PMID:19792280

  11. Oblique propagation of ion acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons

    SciTech Connect

    Wang, Jian-Yong; Cheng, Xue-Ping; Tang, Xiao-Yan; Yang, Jian-Rong; Ren, Bo

    2014-03-15

    The oblique propagation of ion-acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons is studied. Linear dispersion relations of the fast and slow ion-acoustic modes are discussed under the weak and strong magnetic field situations. By means of the reductive perturbation approach, Korteweg-de Vries equations governing ion-acoustic waves of fast and slow modes are derived, respectively. Explicit interacting soliton-cnoidal wave solutions are obtained by the generalized truncated Painlevé expansion. It is found that every peak of a cnoidal wave elastically interacts with a usual soliton except for some phase shifts. The influence of the electron superthermality, positron concentration, and magnetic field obliqueness on the soliton-cnoidal wave are investigated in detail.

  12. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    PubMed

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-01

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant. PMID:25089584

  13. Acoustic Switches: Harnessing Deformation to Switch On and Off the Propagation of Sound (Adv. Mater. 8/2016).

    PubMed

    Babaee, Sahab; Viard, Nicolas; Wang, Pai; Fang, Nicholas X; Bertoldi, Katia

    2016-02-01

    Isosurfaces of sound waves traveling through an architected material proposed by K. Bertoldi and co-workers on page 1631 are depicted. The material comprises a square array of elastomeric helices in background air and acts as an on/off acoustic switch. It is characterized by frequency ranges of strong wave attenuation (bandgaps) in the undeformed configuration. Upon deformation, the initial bandgap is suppressed, enabling the propagation of sound over all frequencies. PMID:26891043

  14. Speeding up tsunami wave propagation modeling

    NASA Astrophysics Data System (ADS)

    Lavrentyev, Mikhail; Romanenko, Alexey

    2014-05-01

    Trans-oceanic wave propagation is one of the most time/CPU consuming parts of the tsunami modeling process. The so-called Method Of Splitting Tsunami (MOST) software package, developed at PMEL NOAA USA (Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration, USA), is widely used to evaluate the tsunami parameters. However, it takes time to simulate trans-ocean wave propagation, that is up to 5 hours CPU time to "drive" the wave from Chili (epicenter) to the coast of Japan (even using a rather coarse computational mesh). Accurate wave height prediction requires fine meshes which leads to dramatic increase in time for simulation. Computation time is among the critical parameter as it takes only about 20 minutes for tsunami wave to approach the coast of Japan after earthquake at Japan trench or Sagami trench (as it was after the Great East Japan Earthquake on March 11, 2011). MOST solves numerically the hyperbolic system for three unknown functions, namely velocity vector and wave height (shallow water approximation). The system could be split into two independent systems by orthogonal directions (splitting method). Each system can be treated independently. This calculation scheme is well suited for SIMD architecture and GPUs as well. We performed adaptation of MOST package to GPU. Several numerical tests showed 40x performance gain for NVIDIA Tesla C2050 GPU vs. single core of Intel i7 processor. Results of numerical experiments were compared with other available simulation data. Calculation results, obtained at GPU, differ from the reference ones by 10^-3 cm of the wave height simulating 24 hours wave propagation. This allows us to speak about possibility to develop real-time system for evaluating tsunami danger.

  15. Acoustic Modeling for Aqua Ventus I off Monhegan Island, ME

    SciTech Connect

    Whiting, Jonathan M.; Hanna, Luke A.; DeChello, Nicole L.; Copping, Andrea E.

    2013-10-31

    The DeepCwind consortium, led by the University of Maine, was awarded funding under the US Department of Energy’s Offshore Wind Advanced Technology Demonstration Program to develop two floating offshore wind turbines in the Gulf of Maine equipped with Goldwind 6 MW direct drive turbines, as the Aqua Ventus I project. The Goldwind turbines have a hub height of 100 m. The turbines will be deployed in Maine State waters, approximately 2.9 miles off Monhegan Island; Monhegan Island is located roughly 10 miles off the coast of Maine. In order to site and permit the offshore turbines, the acoustic output must be evaluated to ensure that the sound will not disturb residents on Monhegan Island, nor input sufficient sound levels into the nearby ocean to disturb marine mammals. This initial assessment of the acoustic output focuses on the sound of the turbines in air by modeling the assumed sound source level, applying a sound propagation model, and taking into account the distance from shore.

  16. Evaluation of the feasibility of scale modeling to quantify wind and terrain effects on low-angle sound propagation

    NASA Technical Reports Server (NTRS)

    Anderson, G. S.; Hayden, R. E.; Thompson, A. R.; Madden, R.

    1985-01-01

    The feasibility of acoustical scale modeling techniques for modeling wind effects on long range, low frequency outdoor sound propagation was evaluated. Upwind and downwind propagation was studied in 1/100 scale for flat ground and simple hills with both rigid and finite ground impedance over a full scale frequency range from 20 to 500 Hz. Results are presented as 1/3-octave frequency spectra of differences in propagation loss between the case studied and a free-field condition. Selected sets of these results were compared with validated analytical models for propagation loss, when such models were available. When they were not, results were compared with predictions from approximate models developed. Comparisons were encouraging in many cases considering the approximations involved in both the physical modeling and analysis methods. Of particular importance was the favorable comparison between theory and experiment for propagation over soft ground.

  17. Modelling Fracture Propagation in Anisotropic Rock Mass

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Siren, Topias; Rinne, Mikael

    2015-05-01

    Anisotropic rock mass is often encountered in rock engineering, and cannot be simplified as an isotropic problem in numerical models. A good understanding of rock fracturing processes and the ability to predict fracture initiation and propagation in anisotropic rock masses are required for many rock engineering problems. This paper describes the development of the anisotropic function in FRACOD—a specialized fracture propagation modelling software—and its recent applications to rock engineering issues. Rock anisotropy includes strength anisotropy and modulus anisotropy. The level of complexity in developing the anisotropic function for strength anisotropy and modulus anisotropy in FRACOD is significantly different. The strength anisotropy function alone does not require any alteration in the way that FRACOD calculates rock stress and displacement, and therefore is relatively straightforward. The modulus anisotropy function, on the other hand, requires modification of the fundamental equations of stress and displacement in FRACOD, a boundary element code, and hence is more complex and difficult. In actual rock engineering, the strength anisotropy is often considered to be more pronounced and important than the modulus anisotropy, and dominates the stability and failure pattern of the rock mass. The modulus anisotropy will not be considered in this study. This paper discusses work related to the development of the strength anisotropy in FRACOD. The anisotropy function has been tested using numerical examples. The predicted failure surfaces are mostly along the weakest planes. Predictive modelling of the Posiva's Olkiluoto Spalling Experiment was made. The model suggests that spalling is very sensitive to the direction of anisotropy. Recent observations from the in situ experiment showed that shear fractures rather than tensile fractures occur in the holes. According to the simulation, the maximum tensile stress is well below the tensile strength, but the maximum

  18. T-wave generation and propagation: a comparison between data and spectral element modeling.

    PubMed

    Jamet, Guillaume; Guennou, Claude; Guillon, Laurent; Mazoyer, Camille; Royer, Jean-Yves

    2013-10-01

    T-waves are underwater acoustic waves generated by earthquakes. Modeling of their generation and propagation is a challenging problem. Using a spectral element code-SPECFEM2D, this paper presents the first realistic simulations of T-waves taking into account major aspects of this phenomenon: The radiation pattern of the source, the propagation of seismic waves in the crust, the seismic to acoustic conversion on a non-planar seafloor, and the propagation of acoustic waves in the water column. The simulated signals are compared with data from the mid-Atlantic Ridge recorded by an array of hydrophones. The crust/water interface is defined by the seafloor bathymetry. Different combinations of water sound-speed profiles and sub-seafloor seismic velocities, and frequency content of the source are tested. The relative amplitudes, main arrival-times, and durations of simulated T-phases are in good agreement with the observed data; differences in the spectrograms and early arrivals are likely due to too simplistic source signals and environmental model. These examples demonstrate the abilities of the SPECFEM2D code for modeling earthquake generated T-waves. PMID:24116530

  19. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications.

    PubMed

    Sankaranarayanan, Subramanian K R S; Bhethanabotla, Venkat R

    2009-03-01

    We develop a 3-D finite element model of a focused surface acoustic wave (F-SAW) device based on LiNbO(3) to analyze the wave generation and propagation characteristics for devices operating at MHz frequencies with varying applied input voltages. We compare the F-SAW device to a conventional SAW device with similar substrate dimensions and transducer finger periodicity. SAW devices with concentrically shaped focused interdigital transducer fingers (F-IDTs) are found to excite waves with high intensity and high beam-width compression ratio, confined to a small localized area. F-SAW devices are more sensitive to amplitude variations at regions close to the focal point than conventional SAW devices having uniform IDT configuration. We compute F-SAW induced streaming forces and velocity fields by applying a successive approximation technique to the Navier-Stokes equation (Nyborg's theory). The maximum streaming force obtained at the focal point varies as the square of the applied input voltage. Computed streaming velocities at the focal point in F-SAW devices are at least an order of magnitude higher than those in conventional SAW devices. Simulated frequency response indicates higher insertion losses in F-SAW devices than in conventional devices, reflecting their greater utility as actuators than as sensors. Our simulation findings suggest that F-SAW devices can be utilized effectively for actuation in microfluidic applications involving diffusion limited transport processes. PMID:19411221

  20. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  1. Mathematical model of acoustic speech production with mobile walls of the vocal tract

    NASA Astrophysics Data System (ADS)

    Lyubimov, N. A.; Zakharov, E. V.

    2016-03-01

    A mathematical speech production model is considered that describes acoustic oscillation propagation in a vocal tract with mobile walls. The wave field function satisfies the Helmholtz equation with boundary conditions of the third kind (impedance type). The impedance mode corresponds to a threeparameter pendulum oscillation model. The experimental research demonstrates the nonlinear character of how the mobility of the vocal tract walls influence the spectral envelope of a speech signal.

  2. Improving Acoustic Models by Watching Television

    NASA Technical Reports Server (NTRS)

    Witbrock, Michael J.; Hauptmann, Alexander G.

    1998-01-01

    Obtaining sufficient labelled training data is a persistent difficulty for speech recognition research. Although well transcribed data is expensive to produce, there is a constant stream of challenging speech data and poor transcription broadcast as closed-captioned television. We describe a reliable unsupervised method for identifying accurately transcribed sections of these broadcasts, and show how these segments can be used to train a recognition system. Starting from acoustic models trained on the Wall Street Journal database, a single iteration of our training method reduced the word error rate on an independent broadcast television news test set from 62.2% to 59.5%.

  3. Error propagation in energetic carrying capacity models

    USGS Publications Warehouse

    Pearse, Aaron T.; Stafford, Joshua D.

    2014-01-01

    Conservation objectives derived from carrying capacity models have been used to inform management of landscapes for wildlife populations. Energetic carrying capacity models are particularly useful in conservation planning for wildlife; these models use estimates of food abundance and energetic requirements of wildlife to target conservation actions. We provide a general method for incorporating a foraging threshold (i.e., density of food at which foraging becomes unprofitable) when estimating food availability with energetic carrying capacity models. We use a hypothetical example to describe how past methods for adjustment of foraging thresholds biased results of energetic carrying capacity models in certain instances. Adjusting foraging thresholds at the patch level of the species of interest provides results consistent with ecological foraging theory. Presentation of two case studies suggest variation in bias which, in certain instances, created large errors in conservation objectives and may have led to inefficient allocation of limited resources. Our results also illustrate how small errors or biases in application of input parameters, when extrapolated to large spatial extents, propagate errors in conservation planning and can have negative implications for target populations.

  4. Effects of obliqueness and strong electrostatic interaction on linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma

    SciTech Connect

    Shahmansouri, M.; Mamun, A. A.

    2014-03-15

    Linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma is theoretically investigated. The normal mode analysis (reductive perturbation method) is employed to investigate the role of ambient/external magnetic field, obliqueness, and effective electrostatic dust-temperature in modifying the properties of linear (nonlinear) dust-acoustic waves propagating in such a strongly coupled dusty plasma. The effective electrostatic dust-temperature, which arises from strong electrostatic interactions among highly charged dust, is considered as a dynamical variable. The linear dispersion relation (describing the linear propagation characteristics) for the obliquely propagating dust-acoustic waves is derived and analyzed. On the other hand, the Korteweg-de Vries equation describing the nonlinear propagation of the dust-acoustic waves (particularly, propagation of dust-acoustic solitary waves) is derived and solved. It is shown that the combined effects of obliqueness, magnitude of the ambient/external magnetic field, and effective electrostatic dust-temperature significantly modify the basic properties of linear and nonlinear dust-acoustic waves. The results of this work are compared with those observed by some laboratory experiments.

  5. Modeling and adaptive control of acoustic noise

    NASA Astrophysics Data System (ADS)

    Venugopal, Ravinder

    Active noise control is a problem that receives significant attention in many areas including aerospace and manufacturing. The advent of inexpensive high performance processors has made it possible to implement real-time control algorithms to effect active noise control. Both fixed-gain and adaptive methods may be used to design controllers for this problem. For fixed-gain methods, it is necessary to obtain a mathematical model of the system to design controllers. In addition, models help us gain phenomenological insights into the dynamics of the system. Models are also necessary to perform numerical simulations. However, models are often inadequate for the purpose of controller design because they involve parameters that are difficult to determine and also because there are always unmodeled effects. This fact motivates the use of adaptive algorithms for control since adaptive methods usually require significantly less model information than fixed-gain methods. The first part of this dissertation deals with derivation of a state space model of a one-dimensional acoustic duct. Two types of actuation, namely, a side-mounted speaker (interior control) and an end-mounted speaker (boundary control) are considered. The techniques used to derive the model of the acoustic duct are extended to the problem of fluid surface wave control. A state space model of small amplitude surfaces waves of a fluid in a rectangular container is derived and two types of control methods, namely, surface pressure control and map actuator based control are proposed and analyzed. The second part of this dissertation deals with the development of an adaptive disturbance rejection algorithm that is applied to the problem of active noise control. ARMARKOV models which have the same structure as predictor models are used for system representation. The algorithm requires knowledge of only one path of the system, from control to performance, and does not require a measurement of the disturbance nor

  6. Electromagnetic model for propagation through clouds

    NASA Astrophysics Data System (ADS)

    Seker, S. S.

    Electromagnetic propagation through a sparse distribution of lossy dielectric particles in a cloud is investigated. A mathematical model is developed to aid in the interpretation of the interaction data obtained by electromagnetic remote probing of mixed ice crystal and waterdrop clouds. Such clouds can contain many possible crystal forms, most notably thin long cylinder, bullets, and flat plate crystals. Bistatic reflectivity and attenuation are computed for waves of selected polarizations passing through clouds with specified size, shape, and distributions. The proposed formulation is matrix and stochastic in nature, and easily accomodates arbitrary polarization states. It allows complete characterization of medium depolarization effects from hydrometers (e.g., attenuation, isolation, and shape shift). The results obtained are of interest in connection with the study of the effects of clouds on microwave or millimeter-wave communications.

  7. Characterization of a Multi-element Clinical HIFU System Using Acoustic Holography and Nonlinear Modeling

    PubMed Central

    Kreider, Wayne; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera A.

    2014-01-01

    High-intensity focused ultrasound (HIFU) is a treatment modality that relies on the delivery of acoustic energy to remote tissue sites to induce thermal and/or mechanical tissue ablation. To ensure the safety and efficacy of this medical technology, standard approaches are needed for accurately characterizing the acoustic pressures generated by clinical ultrasound sources under operating conditions. Characterization of HIFU fields is complicated by nonlinear wave propagation and the complexity of phased-array transducers. Previous work has described aspects of an approach that combines measurements and modeling, and here we demonstrate this approach for a clinical phased array transducer. First, low-amplitude hydrophone measurements were performed in water over a scan plane between the array and the focus. Second, these measurements were used to holographically reconstruct the surface vibrations of the transducer and to set a boundary condition for a 3-D acoustic propagation model. Finally, nonlinear simulations of the acoustic field were carried out over a range of source power levels. Simulation results were compared to pressure waveforms measured directly by hydrophone at both low and high power levels, demonstrating that details of the acoustic field including shock formation are quantitatively predicted. PMID:25004539

  8. Modeling of Conversion of Seismic to Acoustic Waves at the Seafloor Interface

    NASA Astrophysics Data System (ADS)

    Balanche, A.; Guennou, C.; Goslin, J.; Dziak, R.

    2007-12-01

    Hydroacoustic waves are generated at the seafloor interface, by conversion of seismic waves and travel in the water column within the SOFAR channel with little attenuation. Recording T-waves with widespread arrays of autonomous hydrophones moored in the SOFAR channel allows to detect and localize many small-magnitude earthquakes in oceanic areas. However, hydroacoustic data cannot be used straightforwardly in seismic interpretations. In particular, because the physics of the seismic to acoustic conversion and the acoustic propagation is not completely understood, no direct information on the event magnitudes, focal mechanisms and focal depths can be directly derived from the hydroacoustic signals. In order to overcome some of these limitations, we have developed a mechanical model of the conversion from seismic to acoustic waves at the seafloor interface. The modelling is achieved through major adaptations of the 2D- finite element code "FLUSOL", which was originally developed to model fluid to solid energy conversion. Velocity displacement module within fluids and solids are derived from the stress and pressure computed for each grid element. We are able to model successfully, over a 10 x 10 km-grid, the seismic to acoustic conversion of waves generated by a source in the crust. Our model shows that a source with a high S-wave content appear to be more efficient in producing T-waves than a simple explosive source that only generates P-waves. Future work include the modelling of the conversion by more realistic seafloor topographies. Finally, we will use the output of SOLFLU as input to standard long-range acoustic propagation codes made available by the marine acoustics community. The modelled T-waves generated by various source mechanisms (tectonic or magmatic) will then be compared with real data to validate our conversion model.

  9. Modeling Seismoacoustic Propagation from the Nonlinear to Linear Regimes

    NASA Astrophysics Data System (ADS)

    Chael, E. P.; Preston, L. A.

    2015-12-01

    Explosions at shallow depth-of-burial can cause nonlinear material response, such as fracturing and spalling, up to the ground surface above the shot point. These motions at the surface affect the generation of acoustic waves into the atmosphere, as well as the surface-reflected compressional and shear waves. Standard source scaling models for explosions do not account for such nonlinear interactions above the shot, while some recent studies introduce a non-isotropic addition to the moment tensor to represent them (e.g., Patton and Taylor, 2011). We are using Sandia's CTH shock physics code to model the material response in the vicinity of underground explosions, up to the overlying ground surface. Across a boundary where the motions have decayed to nearly linear behavior, we couple the signals from CTH into a linear finite-difference (FD) seismoacoustic code to efficiently propagate the wavefields to greater distances. If we assume only one-way transmission of energy through the boundary, then the particle velocities there suffice as inputs for the FD code, simplifying the specification of the boundary condition. The FD algorithm we use applies the wave equations for velocity in an elastic medium and pressure in an acoustic one, and matches the normal traction and displacement across the interface. Initially we are developing and testing a 2D, axisymmetric seismoacoustic routine; CTH can use this geometry in the source region as well. The Source Physics Experiment (SPE) in Nevada has collected seismic and acoustic data on numerous explosions at different scaled depths, providing an excellent testbed for investigating explosion phenomena (Snelson et al., 2013). We present simulations for shots SPE-4' and SPE-5, illustrating the importance of nonlinear behavior up to the ground surface. Our goal is to develop the capability for accurately predicting the relative signal strengths in the air and ground for a given combination of source yield and depth. Sandia National

  10. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  11. a Modeling and Measurement Study of Acoustic Horns

    NASA Astrophysics Data System (ADS)

    Post, John Theodore

    Although acoustic horns have been in use for thousands of years, formal horn design only began approximately 80 years ago with the pioneering effort of A. G. Webster. In this dissertation, the improvements to Webster's original horn model are reviewed and the lack of analytical progress since Webster is noted. In an attempt to augment the traditional methods of analysis, a semi-analytical technique presented by Rayleigh is extended. Although Rayleigh's method is not based on one-dimensional wave propagation, it is found not to offer significant improvement over Webster's model. In order to be free of the limitations associated with analytical techniques, a numerical method based on boundary elements has been developed. It is suitable for solving radiation problems that can be modeled as a source in an infinite bafffe. The exterior boundary element formulation is exchanged for an interior formulation by placing a hemisphere over the baffled source and using an analytical expansion of the field in the exterior half space. The boundary element method is demonstrated by solving the baffled piston problem, and is then used to obtain the acoustic throat impedance and far-field directivity of axisymmetric horns having exponential and tractrix contours. Experiments are performed to measure the throat impedance and the far-field directivity of two axisymmetric horns mounted in a rigid baffle. An exponential horn and a tractrix horn with equal throat radius (2.54 cm), length (55.9 cm), and mouth radius (27.1 cm) are critically examined. A modern implementation of the "reaction on the source" method is compared with a new implementation of the two-microphone method for measuring acoustic impedance. The modified two-microphone method is found to be extremely simple and accurate, but the "reaction on the source" method has the advantage of in situ measurements. The far-field directivity is measured by a new technique that allows the far-field pressure to be calculated from the

  12. Stochastic simulation for the propagation of high-frequency acoustic waves through a random velocity field

    NASA Astrophysics Data System (ADS)

    Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.

    2012-05-01

    In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.

  13. The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Goldstein, C. I.; Turkel, E.

    1984-01-01

    The Helmholtz Equation (-delta-K(2)n(2))u=0 with a variable index of refraction, n, and a suitable radiation condition at infinity serves as a model for a wide variety of wave propagation problems. A numerical algorithm was developed and a computer code implemented that can effectively solve this equation in the intermediate frequency range. The equation is discretized using the finite element method, thus allowing for the modeling of complicated geometrices (including interfaces) and complicated boundary conditions. A global radiation boundary condition is imposed at the far field boundary that is exact for an arbitrary number of propagating modes. The resulting large, non-selfadjoint system of linear equations with indefinite symmetric part is solved using the preconditioned conjugate gradient method applied to the normal equations. A new preconditioner is developed based on the multigrid method. This preconditioner is vectorizable and is extremely effective over a wide range of frequencies provided the number of grid levels is reduced for large frequencies. A heuristic argument is given that indicates the superior convergence properties of this preconditioner.

  14. Stochastic simulation for the propagation of high-frequency acoustic waves through a random velocity field

    SciTech Connect

    Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.

    2012-05-17

    In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.

  15. Analytical Study of the Propagation of Fast Longitudinal Modes along wz-BN/AlN Thin Acoustic Waveguides

    PubMed Central

    Caliendo, Cinzia

    2015-01-01

    The propagation of the fundamental symmetric Lamb mode S0 along wz-BN/AlN thin composite plates suitable for telecommunication and sensing applications is studied. The investigation of the acoustic field profile across the plate thickness revealed the presence of modes having longitudinal polarization, the Anisimkin Jr. plate modes (AMs), travelling at a phase velocity close to that of the wz-BN longitudinal bulk acoustic wave propagating in the same direction. The study of the S0 mode phase velocity and coupling coefficient (K2) dispersion curves, for different electrical boundary conditions, has shown that eight different coupling configurations are allowable that exhibit a K2 as high as about 4% and very high phase velocity (up to about 16,700 m/s). The effect of the thickness and material type of the metal floating electrode on the K2 dispersion curves has also been investigated, specifically addressing the design of an enhanced coupling device. The gravimetric sensitivity of the BN/AlN-based acoustic waveguides was then calculated for both the AMs and elliptically polarized S0 modes; the AM-based sensor velocity and attenuation shifts due to the viscosity of a surrounding liquid was theoretically predicted. The performed investigation suggests that wz-BN/AlN is a very promising substrate material suitable for developing GHz band devices with enhanced electroacoustic coupling efficiency and suitable for application in telecommunications and sensing fields. PMID:25625904

  16. Ensemble Modeling of CME Propagation and Geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Mays, M. Leila; Taktakishvili, Aleksandre; Pulkkinen, Antti; MacNeice, Peter; Rastätter, Lutz; Odstrcil, Dusan; Jian, Lan; Richardson, Ian

    2015-04-01

    Ensemble modeling of coronal mass ejections (CMEs) provides a probabilistic forecast of CME arrival time which includes an estimation of arrival time uncertainty from the spread and distribution of predictions and forecast confidence in the likelihood of CME arrival. The real-time ensemble modeling of CME propagation uses the Wang-Sheeley-Arge (WSA)-ENLIL+Cone model installed at the {Community Coordinated Modeling Center} (CCMC) and executed in real-time at the CCMC/{Space Weather Research Center}. The current implementation of this ensemble modeling method evaluates the sensitivity of WSA-ENLIL+Cone model simulations of CME propagation to initial CME parameters. We discuss the results of real-time ensemble simulations for a total of 35 CME events which occurred between January 2013 - July 2014. For the 17 events where the CME was predicted to arrive at Earth, the mean absolute arrival time prediction error was 12.3 hours, which is comparable to the errors reported in other studies. For predictions of CME arrival at Earth the correct rejection rate is 62%, the false-alarm rate is 38%, the correct alarm ratio is 77%, and false alarm ratio is 23%. The arrival time was within the range of the ensemble arrival predictions for 8 out of 17 events. The Brier Score for CME arrival predictions is 0.15 (where a score of 0 on a range of 0 to 1 is a perfect forecast), which indicates that on average, the predicted probability, or likelihood, of CME arrival is fairly accurate. The reliability of ensemble CME arrival predictions is heavily dependent on the initial distribution of CME input parameters (e.g. speed, direction, and width), particularly the median and spread. Preliminary analysis of the probabilistic forecasts suggests undervariability, indicating that these ensembles do not sample a wide enough spread in CME input parameters. Prediction errors can also arise from ambient model parameters, the accuracy of the solar wind background derived from coronal maps, or other

  17. Evaluation of Wave Propagation Properties during a True-Triaxial Rock Fracture Experiment using Acoustic Emission Frequency Characteristics

    NASA Astrophysics Data System (ADS)

    Goodfellow, S. D.; Ghofrani Tabari, M.; Nasseri, M. B.; Young, R.

    2013-12-01

    A true-triaxial deformation experiment was conducted to study the evolution of wave propagation properties by using frequency characteristics of AE waveforms to diagnose the state of fracturing in a sample of sandstone. Changes in waveform frequency content has been interpreted as either the generation of progressively larger fractures or the relative attenuation of high-frequency wave components as a result of micro-crack formation. A cubic sample of Fontainebleau sandstone was initially loaded to a stress state of σ1 = σ2 = 35 MPa, σ3 = 5 MPa at which point σ1¬ was increased until failure. Acoustic emission (AE) activity was monitored by 18 PZT transducers, three embedded in each platen. The sensor amplitude response spectrum was determined by following an absolute source calibration procedure and showed a relatively constant sensitivity in the frequency range between 20 kHz and 1200 kHz. Amplified waveforms were continuously recorded at a sampling rate of 10 MHz and 12-bit resolution. Continuous acoustic emission waveforms were harvested to extract discrete events. Using a time-varying transverse isotropic velocity model, 48,502 events were locatable inside the sample volume. Prior to peak-stress, AE activity was associated with stable quasi-static growth of fractures coplanar with σ1 and σ2 located near the platen boundaries. In the post peak-stress regime, fracture growth displays unstable ¬dynamic propagation. Analysis of waveform frequency characteristics was limited to the pre peak-stress regime. Analysis of AE frequency characteristics was conducted on all 48,502 located AE events; each event file containing 18 waveforms of varied quality. If the signal to noise ratio was greater than 5, the waveforms power spectrum was estimated and the source-receiver raypath vector was calculated. The power spectrum of each waveform was divided into three frequency bands (Low: 100 - 300 kHz, Medium: 300 - 600 kHz and High: 600 - 1000 kHz) and the power in each

  18. Modeling Passive Propagation of Malwares on the WWW

    NASA Astrophysics Data System (ADS)

    Chunbo, Liu; Chunfu, Jia

    Web-based malwares host in websites fixedly and download onto user's computers automatically while users browse. This passive propagation pattern is different from that of traditional viruses and worms. A propagation model based on reverse web graph is proposed. In this model, propagation of malwares is analyzed by means of random jump matrix which combines orderness and randomness of user browsing behaviors. Explanatory experiments, which has single or multiple propagation sources respectively, prove the validity of the model. Using this model, people can evaluate the hazardness of specified websites and take corresponding countermeasures.

  19. Propagation Effects of Wind and Temperature on Acoustic Ground Contour Levels

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; McAninch, Gerry L.

    2006-01-01

    Propagation characteristics for varying wind and temperature atmospheric conditions are identified using physically-limiting propagation angles to define shadow boundary regions. These angles are graphically illustrated for various wind and temperature cases using a newly developed ray-tracing propagation code.

  20. Towards a Comprehensive Model of Jet Noise Using an Acoustic Analogy and Steady RANS Solutions

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    An acoustic analogy is developed to predict the noise from jet flows. It contains two source models that independently predict the noise from turbulence and shock wave shear layer interactions. The acoustic analogy is based on the Euler equations and separates the sources from propagation. Propagation effects are taken into account by calculating the vector Green's function of the linearized Euler equations. The sources are modeled following the work of Tam and Auriault, Morris and Boluriaan, and Morris and Miller. A statistical model of the two-point cross-correlation of the velocity fluctuations is used to describe the turbulence. The acoustic analogy attempts to take into account the correct scaling of the sources for a wide range of nozzle pressure and temperature ratios. It does not make assumptions regarding fine- or large-scale turbulent noise sources, self- or shear-noise, or convective amplification. The acoustic analogy is partially informed by three-dimensional steady Reynolds-Averaged Navier-Stokes solutions that include the nozzle geometry. The predictions are compared with experiments of jets operating subsonically through supersonically and at unheated and heated temperatures. Predictions generally capture the scaling of both mixing noise and BBSAN for the conditions examined, but some discrepancies remain that are due to the accuracy of the steady RANS turbulence model closure, the equivalent sources, and the use of a simplified vector Green's function solver of the linearized Euler equations.

  1. Outdoor sound propagation effects on aircraft detection through passive phased-array acoustic antennas: 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Roselli, Ivan; Testa, Pierluigi; Caronna, Gaetano; Barbagelata, Andrea; Ferrando, Alessandro

    2005-09-01

    The present paper describes some of the main acoustic issues connected with the SAFE-AIRPORT European Project for the development of an innovative acoustic system for the improvement of air traffic management. The system sensors are two rotating passive phased-array antennas with 512 microphones each. In particular, this study focused on the propagation of sound waves in the atmosphere and its influence on the system detection efficiency. The effects of air temperature and wind gradients on aircraft tracking were analyzed. Algorithms were implemented to correct output data errors on aircraft location due to acoustic ray deviation in 3D environment. Numerical simulations were performed using several temperature and wind profiles according to common and critical meteorological conditions. Aircraft location was predicted through 3D acoustic ray triangulation methods, taking into account variation in speed of sound waves along rays path toward each antenna. The system range was also assessed considering aircraft noise spectral emission. Since the speed of common airplanes is not negligible with respect to sound speed during typical airport operations such as takeoff and approach, the influence of the Doppler effect on range calculation was also considered and most critical scenarios were simulated.

  2. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  3. UV Multi-scatter Propagation Model of Point Probability Method

    NASA Astrophysics Data System (ADS)

    Lu, Bai; Zhensen, Wu; Haiying, Li

    Based on the multi-scatter propagation model of Monte Carlo, an improved geometric model is proposed. The model is ameliorated by using the point probability method. Comparison is made between the multiple scattering propagation models and the single-scatter propagation model in calculation time and relative error. The effect of complex weather, stumbling block and the transmitter and the receiver in different height are discussed. It is shown that although the single-scatter propagation model can be evaluated easily from standard numerical integration but this model cannot describe general non-line-of sight propagation problem. While the improved point probability multi-scatter Monte Carlo model may be used to more general case.

  4. A numerical model of acoustic choking. II - Shocked solutions

    NASA Astrophysics Data System (ADS)

    Walkington, N. J.; Eversman, W.

    1986-01-01

    The one dimensional equations of gas dynamics are used to model subsonic acoustic choking. This model can accommodate non-linear distortion of waves and the eventual formation of shock waves. Several finite differencing schemes are adapted to obtain solutions. The results obtained with the various schemes are compared with the asymptotic results available. The results suggest that no one finite differencing scheme gives solutions significantly better than the others and that most of the difference solutions are close to the asymptotic results. If the acoustic shock wave is sufficiently strong it almost annihilates the acoustic wave; in this situation numerical errors may dominate the results. Such solutions involve very large acoustic attenuations.

  5. Acoustic communication in the Greater Sage-Grouse (Centrocercus urophasianus) an examination into vocal sacs, sound propagation, and signal directionality

    NASA Astrophysics Data System (ADS)

    Dantzker, Marc Steven

    The thesis is an inquiry into the acoustic communication of a very unusual avian species, the Greater Sage-Grouse, Centrocercus urophasianus. One of the most outstanding features of this animal's dynamic mating display is its use of paired air sacs that emerge explosively from an esophageal pouch. My first line of inquiry into this system is a review of the form and function of similar vocal apparatuses, collectively called vocal sacs, in birds. Next, with a combination of mathematical models and field measurements, My collaborator and I investigate the acoustic environment where the Greater Sage-Grouse display. The complexities of this acoustic environment are relevant both to the birds and to the subsequent examinations of the display's properties. Finally, my collaborators and I examine a cryptic component of the acoustic display --- directionality --- which we measured simultaneously from multiple locations around free moving grouse on their mating grounds.

  6. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.

    PubMed

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T

    2016-05-01

    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively. PMID:27250158

  7. Coupled vibro-acoustic model updating using frequency response functions

    NASA Astrophysics Data System (ADS)

    Nehete, D. V.; Modak, S. V.; Gupta, K.

    2016-03-01

    Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.

  8. Propagation Model for Cosmic Ray Species in the Galaxy

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Moskalenko, I. V.; Jones, F. C.; Ptuskin, V. S.; Strong, A. W.; Mashnik, S. G.

    2002-01-01

    During the last decade there have been a number of space and balloon experiments with improved sensivity and statistics, which impose stricter constraints on cosmic ray propagation models. Propagation is the main issue in the interpretation of such data as antiproton and positron fluxes in cosmic rays, and diffuse gamma-ray emission. We develop a new propagation model that reproduces measurements of secondary antiprotons as well as primary and secondary nuclei. We will present results of our calculation of CR propagation in the Galaxy for this model using the GALPROP code.

  9. ZnO films on /001/-cut (110)-propagating GaAs substrates for surface acoustic wave device applications

    NASA Technical Reports Server (NTRS)

    Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei; Kim, Yoonkee; Hunt, William D.

    1995-01-01

    A potential application for piezoelectric films substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on /001/-cut group of (110) zone axes-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(sup 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on /001/-cut GaAs samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. It was found that near the group of (110) zone axes propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the (100) direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  10. ZnO Films on {001}-Cut <110>-Propagating GaAs Substrates for Surface Acoustic Wave Device Applications

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei

    1995-01-01

    A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut <110> -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the <100> direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  11. The effect of ocean fronts on acoustic wave propagation in the Celtic Sea

    NASA Astrophysics Data System (ADS)

    Shapiro, G.; Chen, F.; Thain, R.

    2014-11-01

    Underwater noise is now classed as pollution in accordance with the Marine Strategy Framework Directive. Noise from shipping is a major contributor to the ambient noise levels in ocean, particularly at low (< 300 Hz) frequencies. This paper studies patterns and seasonal variations of underwater noise in the Celtic Sea by using a coupled ocean model (POLCOMS) and an acoustic model (HARCAM) in the year 2010. Two sources of sound are considered: (i) representing a typical large cargo ship and (ii) noise from pile-driving activity. In summer, when the source of sound is on the onshore side of the front, the sound energy is mostly concentrated in the near-bottom layer. In winter, the sound from the same source is distributed more evenly in the vertical. The difference between the sound level in summer and winter at 10 m depth is as high as 20 dB at a distance of 40 km. When the source of sound is on the seaward side of the front, the sound level is nearly uniform in the vertical. The transmission loss is also greater (~ 16 dB) in the summer than in the winter for shallow source while it is up to ~ 20 dB for deep source at 30 km.

  12. Propagation of small-scale acoustic-gravity waves in the Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Walterscheid, R. L.

    1984-04-01

    The amplification and attenuation of small-scale acoustic-gravity waves in Venus's atmosphere is studied with a plane-wave model that realistically simulates height variations in structure and zonal circulation. Forcing for these waves could be convective activity at cloud heights or close to the surface, or turbulence arising from small-scale shear instability of the zonal flow; the model treats both surface forcing and cloud-level forcing by diabatic heating variations in the low-stability layer near the base of the clouds. Waves are attenuated in this cloud-level, low-static-stability layer. Slowly moving waves with small vertical length scales are attenuated by eddy diffusivity. Westward moving waves can undergo critical level absorption. A net enhancement in wave amplitude is also possible because waves can be trapped between the surface and the base of the low stability layer at about 50 km. Observations of small-scale wave activity at the cloud tops and above can be used to explore uncertain aspects of atmospheric structure and circulation such as the persistence or decay of the atmospheric superrotation with height above the clouds.

  13. Shift of the interference extrema of low-frequency acoustic propagations near the axis of a deep sound channel

    NASA Astrophysics Data System (ADS)

    Lee, Seongwook; Na, Jungyul; Yoo, Jae Myung; Jurng, Moon-Sub; Oh, Suntaek

    2015-07-01

    Broadband interference patterns measured from acoustic propagations near the axis of a deep sound channel are interpreted. Analyses using mode theory for the waveguide with bilinear sound speed profiles show that the increase in sound speed without gradient variation shifts the positions of intensity maxima to higher frequencies in a fixed range whereas the increase in the gradient shifts the maxima to lower frequencies. Analytic results imply that the frequency shift of intensity extrema appearing in the measurements could be explained by the increase in the sound speed gradient above the axis of the deep sound channel.

  14. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    NASA Astrophysics Data System (ADS)

    Kanamori, Masashi; Takahashi, Takashi; Aoyama, Takashi

    2015-10-01

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  15. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    SciTech Connect

    Kanamori, Masashi Takahashi, Takashi Aoyama, Takashi

    2015-10-28

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  16. Obliquely propagating ion-acoustic solitons and supersolitons in four-component auroral plasmas

    NASA Astrophysics Data System (ADS)

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2016-02-01

    Arbitrary amplitude nonlinear low frequency electrostatic soliton and supersoliton structures are studied in magnetized four-component auroral plasmas composed of a cold singly charged oxygen-ion fluid, Boltzmann distribution of hot protons and two distinct group of electron species. Using the Sagdeev pseudo-potential technique, the characteristics of obliquely propagating nonlinear structures are investigated analytically and numerically. The model supports the evolution of soliton and supersoliton structures in the auroral acceleration region. Depending on the parametric region, the positive and negative potential solitons coexists at lower Mach numbers, but at higher Mach numbers only negative potential solitons and supersolitons can exist. The presence of hot protons restricted the Mach number of the nonlinear structures to exist only at the subsonic region. The present investigation concurs with the Swedish Viking satellite observations in the auroral region.

  17. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation

    NASA Astrophysics Data System (ADS)

    Mondal, K. K.

    2004-11-01

    For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dust- acoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expres- sions for the growth rates have also been derived.

  18. Acoustic characteristics of 1/20-scale model helicopter rotors

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.; Kohlhepp, Fred W.; Leighton, Kenneth P.

    1986-01-01

    A wind tunnel test to study the effects of geometric scale on acoustics and to investigate the applicability of very small scale models for the study of acoustic characteristics of helicopter rotors was conducted in the United Technologies Research Center Acoustic Research Tunnel. The results show that the Reynolds number effects significantly alter the Blade-Vortex-Interaction (BVI) Noise characteristics by enhancing the lower frequency content and suppressing the higher frequency content. In the time domain this is observed as an inverted thickness noise impulse rather than the typical positive-negative impulse of BVI noise. At higher advance ratio conditions, in the absence of BVI, the 1/20 scale model acoustic trends with Mach number follow those of larger scale models. However, the 1/20 scale model acoustic trends appear to indicate stall at higher thrust and advance ratio conditions.

  19. Propagation and stability of quantum dust-ion-acoustic shock waves in planar and nonplanar geometry

    SciTech Connect

    Masood, W.; Siddiq, M.; Nargis, Shahida; Mirza, Arshad M.

    2009-01-15

    Dust-ion-acoustic (DIA) shock waves are studied in an unmagnetized quantum plasma consisting of electrons, ions, and dust by employing the quantum hydrodynamic (QHD) model. In this context, a Korteweg-deVries-Burger (KdVB) equation is derived by employing the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of the quantum DIA shock wave is maximum for spherical, intermediate for cylindrical, and minimum for the planar geometry. The effects of quantum Bohm potential, dust concentration, and kinematic viscosity on the quantum DIA shock structure are also investigated. The temporal evolution of DIA KdV solitons and Burger shocks are also studied by putting the dissipative and dispersive coefficients equal to zero, respectively. The effects of the quantum Bohm potential on the stability of the DIA shock is also investigated. The present investigation may be beneficial to understand the dissipative and dispersive processes that may occur in the quantum dusty plasmas found in microelectronic devices as well as in astrophysical plasmas.

  20. Chelyabinsk meteoroid entry: analysis of acoustic signals in the area of direct sound propagation

    NASA Astrophysics Data System (ADS)

    Podobnaya, Elena; Popova, Olga; Glazachev, Dmitry; Rybnov, Yurij; Shuvalov, Valery; Jenniskens, Peter; Kharlamov, Vladimir

    E.Podobnaya, Yu.Rybnov, O.Popova, V. Shuvalov, P. Jenniskens, V.Kharlamov, D.Glazachev The Chelyabinsk airburst of 15 February 2013, was exceptional because of the large kinetic energy of the impacting body and the airburst that was generated, creating significant damage and injuries in a populated area. The meteor and the effects of the airburst were extraordinarily well documented. Numerous video records provided an accurate record of the trajectory and orbit of the cosmic body as well as features of its interaction with the atmosphere (Borovicka et al., 2013; Popova et al. 2013). In this presentation, we discuss the information on shock wave arrival times. Arrival times of the shock wave were derived from the shaking of the camera, the movement of smoke or car exhaust, and the movement of cables in the field of view, as well as directly from the audio record. From the analysis of these shock wave arrival times, the altitudes of the energy deposition were derived (Popova et al. 2013). Borovicka et al (2013) suggested that subsequent acoustic arrivals corresponded to separate fragmentation events. The observed arrival times will be compared with model estimates taking into account the real wind and atmospheric conditions (i.e. sound velocity changes with altitude). Results of numerical simulations will be compared with recorded sound signals. References Borovicka J. et al., 2013, Nature 503, 235 Popova O. et al., 2013, Science, 342, 1096

  1. The leaking mode problem in atmospheric acoustic-gravity wave propagation

    NASA Technical Reports Server (NTRS)

    Kinney, W. A.; Pierce, A. D.

    1976-01-01

    The problem of predicting the transient acoustic pressure pulse at long horizontal distances from large explosions in the atmosphere is examined. Account is taken of poles off the real axis and of branch line integrals in the general integral governing the transient waveform. Perturbation techniques are described for the computation of the imaginary ordinate of the poles and numerical studies are described for a model atmosphere terminated by a halfspace with c = 478 m/sec above 125 km. For frequencies less than 0.0125 rad/sec, the GR sub 1 mode, for example, is found to have a frequency dependent amplitude decay of the order of 0.0001 nepers/km. Examples of numerically synthesized transient waveforms are exhibited with and without the inclusion of leaking modes. The inclusion of leaking modes results in waveforms with a more marked beginning rather than a low frequency oscillating precursor of gradually increasing amplitude. Also, the revised computations indicate that waveforms invariably begin with a pressure rise, a result supported by other theoretical considerations and by experimental data.

  2. Numerical study of wave propagation around an underground cavity: acoustic case

    NASA Astrophysics Data System (ADS)

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz

    2015-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the

  3. On the Role of Ion-Temperature Anisotropy in the Growth and Propagation of the Shear-Modified Ion-Acoustic Instability

    NASA Astrophysics Data System (ADS)

    Teodorescu, C.; Koepke, M. E.; Reynolds, E. W.

    2002-05-01

    Broadband ion-acoustic waves have been observed in the Earth's ionosphere, where the electron and ion temperatures are equal, propagating obliquely to the magnetic field lines. Explaining these waves with the current-driven ion-acoustic instability in homogeneous plasma requires an unusually large ratio of electron to ion temperature. We investigate in a Q machine oblique ion-acoustic waves, excited by the combination of magnetic-field-aligned (parallel) current and sheared parallel ion flow, at almost equal ion and electron temperatures. Direct measurements of the parallel and perpendicular ion temperatures, parallel and perpendicular ion drift velocities, electron temperature and parallel electron drift velocity, parallel and perpendicular wavevector components, and mode frequency and growth rate are used to elucidate the shear-modified ion-acoustic instability mechanism and document an observed correlation between ion-temperature anisotropy and wave-propagation angle. Experimental measurements show how anisotropy significantly influences this propagation angle. These results may support the ion-acoustic wave interpretation of broadband waves in the auroral energization region where shear and anisotropy are known to exist. Although the results were obtained from an investigation of shear-modified ion-acoustic waves, our conclusions pertain to the general subject of oblique ion-acoustic waves and thus have ramifications for many space plasmas. * Work supported by NSF and NASA.

  4. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  5. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Liever, Peter A.

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  6. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    PubMed Central

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  7. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks.

    PubMed

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  8. Modelling a nonlinear MTFDE from acoustics

    NASA Astrophysics Data System (ADS)

    Teodoro, M. Filomena

    2016-06-01

    The main interest of this work is to compute a approximate solution of equations with equal delay and advance which often appear in models from applied sciences. In this article, we consider a special case of a nonlinear forward-backward which models the vibration of some elastics tissues in physiology, just as the vocal fold mucosa. The oscillation as superficial wave propagating through the tissues in the direction of the flow is described by the considered equation. The approximation of solution is obtained using a non regular mesh instead a regular one as presented in [1] where is adapted an numerical scheme based on algorithms introduced in [2, 3] using collocation, finite element method, method of steps and Newton's method3 are used.

  9. Numerical modeling of the acoustic guitar

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine; Derveaux, Grégoire; Joly, Patrick; Bécache, Eliane

    2003-10-01

    An interactive DVD has been created, based on a numerical model of the acoustic guitar. In a first chapter, the retained physical model is described and illustrated, from the pluck to the 3D radiation field. The second chapter is devoted to the presentation of the numerical tools used for solving the equations of the model. Numerical simulations of plate vibrations and radiated sound pressure are shown in the third chapter. A number of simulated sounds are presented and analyzed in the fourth chapter. In addition, the DVD includes a discussion between a guitar maker, an acoustician, a guitar player and a mathematician. This discussion is entitled ``towards a common language.'' Its aim is to show the interest of simulations with respect to complementary professional approaches of the instrument. This DVD received the Henri Poincaré Prize from the 8th Research Film Festival of Nancy (June 2003), sponsored by the CNRS, in the category ``Documents for the scientific community and illustrations of the research for teaching purpose.''

  10. Analyses of Tsunami Events using Simple Propagation Models

    NASA Astrophysics Data System (ADS)

    Chilvery, Ashwith Kumar; Tan, Arjun; Aggarwal, Mohan

    2012-03-01

    Tsunamis exhibit the characteristics of ``canal waves'' or ``gravity waves'' which belong to the class of ``long ocean waves on shallow water.'' The memorable tsunami events including the 2004 Indian Ocean tsunami and the 2011 Pacific Ocean tsunami off the coast of Japan are analyzed by constructing simple tsunami propagation models including the following: (1) One-dimensional propagation model; (2) Two-dimensional propagation model on flat surface; (3) Two-dimensional propagation model on spherical surface; and (4) A finite line-source model on two-dimensional surface. It is shown that Model 1 explains the basic features of the tsunami including the propagation speed, depth of the ocean, dispersion-less propagation and bending of tsunamis around obstacles. Models 2 and 3 explain the observed amplitude variations for long-distance tsunami propagation across the Pacific Ocean, including the effect of the equatorial ocean current on the arrival times. Model 3 further explains the enhancement effect on the amplitude due to the curvature of the Earth past the equatorial distance. Finally, Model 4 explains the devastating effect of superposition of tsunamis from two subduction event, which struck the Phuket region during the 2004 Indian Ocean tsunami.

  11. Modeling of femoral neck cortical bone for the numerical simulation of ultrasound propagation.

    PubMed

    Grimal, Quentin; Rohrbach, Daniel; Grondin, Julien; Barkmann, Reinhard; Glüer, Claus-C; Raum, Kay; Laugier, Pascal

    2014-05-01

    Quantitative ultrasound assessment of the cortical compartment of the femur neck (FN) is investigated with the goal of achieving enhanced fracture risk prediction. Measurements at the FN are influenced by bone size, shape and material properties. The work described here was aimed at determining which FN material properties have a significant impact on ultrasound propagation around 0.5 MHz and assessing the relevancy of different models. A methodology for the modeling of ultrasound propagation in the FN, with a focus on the modeling of bone elastic properties based on scanning acoustic microscopy data, is introduced. It is found that the first-arriving ultrasound signal measured in through-transmission at the FN is not influenced by trabecular bone properties or by the heterogeneities of the cortical bone mineralized matrix. In contrast, the signal is sensitive to variations in cortical porosity, which can, to a certain extent, be accounted for by effective properties calculated with the Mori-Tanaka method. PMID:24486239

  12. 3D Finite-Difference Modeling of Acoustic Radiation from Seismic Sources

    NASA Astrophysics Data System (ADS)

    Chael, E. P.; Aldridge, D. F.; Jensen, R. P.

    2013-12-01

    Shallow seismic events, earthquakes as well as explosions, often generate acoustic waves in the atmosphere observable at local or even regional distances. Recording both the seismic and acoustic signals can provide additional constraints on source parameters such as epicenter coordinates, depth, origin time, moment, and mechanism. Recent advances in finite-difference (FD) modeling methods enable accurate numerical treatment of wave propagation across the ground surface between the (solid) elastic and (fluid) acoustic domains. Using a fourth-order, staggered-grid, velocity-stress FD algorithm, we are investigating the effects of various source parameters on the acoustic (or infrasound) signals transmitted from the solid earth into the atmosphere. Compressional (P), shear (S), and Rayleigh waves all radiate some acoustic energy into the air at the ground surface. These acoustic wavefronts are typically conical in shape, since their phase velocities along the surface exceed the sound speed in air. Another acoustic arrival with a spherical wavefront can be generated from the vicinity of the epicenter of a shallow event, due to the strong vertical ground motions directly above the buried source. Images of acoustic wavefields just above the surface reveal the radiation patterns and relative amplitudes of the various arrivals. In addition, we compare the relative effectiveness of different seismic source mechanisms for generating acoustic energy. For point sources at a fixed depth, double-couples with almost any orientation produce stronger acoustic signals than isotropic explosions, due to higher-amplitude S and Rayleigh waves. Of course, explosions tend to be shallower than most earthquakes, which can offset the differences due to mechanism. Low-velocity material in the shallow subsurface acts to increase vertical seismic motions there, enhancing the coupling to acoustic waves in air. If either type of source breaks the surface (e.g., an earthquake with surface rupture

  13. Verification of Ares I Liftoff Acoustic Environments via the Ares Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2012-01-01

    Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.

  14. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2012-01-01

    Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.

  15. Uncertain Acoustic Field Modeling and Robust Source Localization in Shallow Water

    NASA Astrophysics Data System (ADS)

    Zhao, Hangfang; Gong, Xianyi; Yu, Zibin

    2010-09-01

    Oceanic environmental uncertainty can cause significant performance degradation of the SONAR system. Understanding and modeling the uncertainty propagating from environment to acoustic field and then to steering vector is necessary for SONAR design and operation to mitigate the uncertainty effect and provide robust detection and location of targets. The statistical property of uncertainty can be described by the probability density functions or second-order moments of environmental parameters and acoustic fields. Based on the probability description, a stochastic response surface method is used to propagate the uncertainty from environment to acoustic field by polynomial chaos expansion. Then covariance matrix and associated ellipsoidal neighboring space are used to describe the uncertainty set of acoustic field and steering vector for sonar signal processing. Finally, a robust Minimum Variance (MV) matched-field processing method is derived by extending the constrained optimization of MV from single point to an uncertainty steering vector ellipsoid. We apply sea test data collected by a vertical array in shallow water to source localization.

  16. Normal mode solutions for seismo-acoustic propagation resulting from shear and combined wave point sources.

    PubMed

    Nealy, Jennifer L; Collis, Jon M; Frank, Scott D

    2016-04-01

    Normal mode solutions to range-independent seismo-acoustic problems are benchmarked against elastic parabolic equation solutions and then used to benchmark the shear elastic parabolic equation self-starter [Frank, Odom, and Collis, J. Acoust. Soc. Am. 133, 1358-1367 (2013)]. The Pekeris waveguide with an elastic seafloor is considered for a point source located in the ocean emitting compressional waves, or in the seafloor, emitting both compressional and shear waves. Accurate solutions are obtained when the source is in the seafloor, and when the source is at the interface between the fluid and elastic layers. PMID:27106346

  17. Theoretical outdoor noise propagation models: Application to practical predictions

    NASA Astrophysics Data System (ADS)

    Tuominen, H. T.; Lahti, T.

    1982-02-01

    The theoretical calculation approaches for outdoor noise propagation are reviewed. Possibilities for their application to practical engineering calculations are outlined. A calculation procedure, which is a combination and extension of several theoretical models, is described. Calculation examples are compared with the results of some propagation studies.

  18. openPSTD: The open source pseudospectral time-domain method for acoustic propagation

    NASA Astrophysics Data System (ADS)

    Hornikx, Maarten; Krijnen, Thomas; van Harten, Louis

    2016-06-01

    An open source implementation of the Fourier pseudospectral time-domain (PSTD) method for computing the propagation of sound is presented, which is geared towards applications in the built environment. Being a wave-based method, PSTD captures phenomena like diffraction, but maintains efficiency in processing time and memory usage as it allows to spatially sample close to the Nyquist criterion, thus keeping both the required spatial and temporal resolution coarse. In the implementation it has been opted to model the physical geometry as a composition of rectangular two-dimensional subdomains, hence initially restricting the implementation to orthogonal and two-dimensional situations. The strategy of using subdomains divides the problem domain into local subsets, which enables the simulation software to be built according to Object-Oriented Programming best practices and allows room for further computational parallelization. The software is built using the open source components, Blender, Numpy and Python, and has been published under an open source license itself as well. For accelerating the software, an option has been included to accelerate the calculations by a partial implementation of the code on the Graphical Processing Unit (GPU), which increases the throughput by up to fifteen times. The details of the implementation are reported, as well as the accuracy of the code.

  19. Finite-difference numerical modelling of gravitoacoustic wave propagation in a windy and attenuating atmosphere

    NASA Astrophysics Data System (ADS)

    Brissaud, Quentin; Martin, Roland; Garcia, Raphaël F.; Komatitsch, Dimitri

    2016-07-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3-D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale, we introduce a finite difference in the time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with a background flow (wind). One significant benefit of such a method is its versatility because it handles both acoustic and gravity waves in the same simulation, which enables one to observe interactions between them. Simulations can be performed for 2-D or 3-D realistic cases such as tsunamis in a full MSISE-00 atmosphere or gravity-wave generation by atmospheric explosions. We validate the computations by comparing them to analytical solutions based on dispersion relations in specific benchmark cases: an atmospheric explosion, and a ground displacement forcing.

  20. Modeling the Propagation of Mobile Phone Virus under Complex Network

    PubMed Central

    Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei

    2014-01-01

    Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively. PMID:25133209

  1. Energy model for rumor propagation on social networks

    NASA Astrophysics Data System (ADS)

    Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang

    2014-01-01

    With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.

  2. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    SciTech Connect

    Dai, Xiwen; Jing, Xiaodong Sun, Xiaofeng

    2015-05-15

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  3. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    NASA Astrophysics Data System (ADS)

    Dai, Xiwen; Jing, Xiaodong; Sun, Xiaofeng

    2015-05-01

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  4. Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1974-01-01

    Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.

  5. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.

    PubMed

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  6. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    DOE PAGESBeta

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less

  7. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    PubMed Central

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  8. Oblique propagation of ion acoustic shock waves in weakly and highly relativistic plasmas with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-09-01

    This work investigates the oblique nonlinear propagation of ion acoustic (IA) shock waves for both weakly and highly relativistic plasmas composed of nonthermal electrons and positrons with relativistic thermal ions. The KdVB-like equation, involving dispersive, weakly transverse dispersive, nonlinearity and dissipative coefficients, is derived employing the well known reductive perturbation method. The integration of this equation is carried out by the {tanh} method taking the stable shock formation condition into account. The effects of nonthermal electrons and positrons, nonthermal electrons with isothermal positrons, isothermal electrons with nonthermal positrons, and isothermal electrons and positrons on oblique propagation of IA shock waves in weakly relativistic regime are described. Furthermore, the effects of plasma parameters on oblique propagation of IA shock waves in highly relativistic regime are discussed and compared with weakly relativistic case. It is seen that the plasma parameters within certain limits significantly modify the structures of the IA shock waves in both cases. The results may be useful for better understanding of the interactions of charged particles with extra-galactic jets as well as astrophysical compact objects.

  9. Dynamical and thermal effects of nonsteady nonlinear acoustic-gravity waves propagating from tropospheric sources to the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Kshevetskii, Sergey P.

    2015-11-01

    We performed numerical simulations of nonlinear AGW propagation to the middle and upper atmosphere from a plane wave forcing at the Earth's surface with period τ = 2 × 103 s. After activating the surface wave forcing, initial pulse of acoustic and very long gravity modes in a few minutes can reach altitudes above 100 km. Dissipation of this initial pulse produces substantial mean heating and wave-induced mean winds at altitudes above 200 km. This may influence AGW propagation and produce enhanced vertical gradients of temperature, horizontal velocity and increased wave dissipation in the lower part of the wave-induced mean flows helping their downward expansions. Later, AGWs may produce layers of convective instability and peaks of the wave-induced jets at altitudes 100-120 km. Shorter AGWs with smaller horizontal wave speeds produce smaller mean heating and wave-induced mean velocities in the upper atmosphere at fixed amplitudes and periods of the surface wave excitation. Numerical simulation of nonlinear AGW propagation helps better understanding the details of dynamical and thermal influence of waves coming from the troposphere on the mean temperature and wind in the middle and upper atmosphere.

  10. Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks

    PubMed Central

    Llor, Jesús; Malumbres, Manuel Perez

    2013-01-01

    In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation), we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc.), an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc.). PMID:23396190

  11. Statistical modeling of large-scale signal path loss in underwater acoustic networks.

    PubMed

    Llor, Jesús; Malumbres, Manuel Perez

    2013-01-01

    In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation), we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc.), an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc.). PMID:23396190

  12. Experimental basis for the models of cascade propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    The picture of the hadron nucleus collision process is presented as it emerges on the basis of newly obtained experimental data. The picture is applicable to models of cascade propagation in Earth atmosphere.

  13. Nonlinear acoustics: Periodic waveguide, finite-amplitude propagation in a medium having a distribution of relaxation processes, and production of an isolated negative pulse in water

    NASA Astrophysics Data System (ADS)

    Blackstock, David T.

    1993-08-01

    Research on nonlinear acoustics has been performed during the 12-month period ending 30 September 1993. The following projects were completed: (1) propagation in a periodic waveguide, (2) finite-amplitude propagation in a medium having a distribution of relaxation processes, and (3) production of an isolated negative pulse in water. Public communication of the research was accomplished through three theses, four oral papers, one journal article published, four journal articles submitted, and one paper in a symposium proceedings.

  14. Numerical modeling of undersea acoustics using a partition of unity method with plane waves enrichment

    NASA Astrophysics Data System (ADS)

    Hospital-Bravo, Raúl; Sarrate, Josep; Díez, Pedro

    2016-05-01

    A new 2D numerical model to predict the underwater acoustic propagation is obtained by exploring the potential of the Partition of Unity Method (PUM) enriched with plane waves. The aim of the work is to obtain sound pressure level distributions when multiple operational noise sources are present, in order to assess the acoustic impact over the marine fauna. The model takes advantage of the suitability of the PUM for solving the Helmholtz equation, especially for the practical case of large domains and medium frequencies. The seawater acoustic absorption and the acoustic reflectance of the sea surface and sea bottom are explicitly considered, and perfectly matched layers (PML) are placed at the lateral artificial boundaries to avoid spurious reflexions. The model includes semi-analytical integration rules which are adapted to highly oscillatory integrands with the aim of reducing the computational cost of the integration step. In addition, we develop a novel strategy to mitigate the ill-conditioning of the elemental and global system matrices. Specifically, we compute a low-rank approximation of the local space of solutions, which in turn reduces the number of degrees of freedom, the CPU time and the memory footprint. Numerical examples are presented to illustrate the capabilities of the model and to assess its accuracy.

  15. Influence of acoustic dominant mode propagation in a trifurcated lined duct with different impedances

    NASA Astrophysics Data System (ADS)

    Ayub, M.; Tiwana, M. H.; Mann, A. B.

    2010-03-01

    In this study, we analyzed the diffraction of the acoustic dominant mode in a parallel-plate trifurcated waveguide with normal impedance boundary conditions in the case where surface impedances of the upper and lower infinite plates are different from each other. The acoustic dominant mode is incident in a soft/hard semi-infinite duct located symmetrically in the infinite lined duct. The solution of the boundary value problem using Fourier transform leads to two simultaneous modified Wiener-Hopf equations that are uncoupled using the pole removal technique. Two infinite sets of unknown coefficients are involved in the solution, which satisfy two infinite systems of linear algebraic equations. These systems are solved numerically. The new kernel functions are factorized. Some graphical results showing the influence of sundry parameters of interest on the reflection coefficient are presented.

  16. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  17. RMS ENVELOPE BACK-PROPAGATION IN THE XAL ONLINE MODEL

    SciTech Connect

    Allen, Christopher K; Sako, Hiroyuki; Ikegami, Masanori

    2009-01-01

    The ability to back-propagate RMS envelopes was added to the J-PARC XAL online model. Specifically, given an arbitrary downstream location, the online model can propagate the RMS envelopes backward to an arbitrary upstream location. This feature provides support for algorithms estimating upstream conditions from downstream data. The upgrade required significant refactoring, which we outline. We also show simulations using the new feature.

  18. Pathogen Propagation Model with Superinfection in Vegetatively Propagated Plants on Lattice Space.

    PubMed

    Sakai, Yuma; Takada, Takenori

    2016-01-01

    Many clonal plants have two reproductive patterns, seed propagation and vegetative propagation. By vegetative propagation, plants reproduce the genetically identical offspring with a low mortality, because resources are supplied from the other individuals through interconnected ramets at vegetative-propagated offspring. However, the ramets transport not only resources but also systemic pathogen. Pathogens evolve to establish and spread widely within the plant population. The superinfection, which is defined as the ability that an established pathogen spreads widely by infecting to already-infected individuals with other strains of a pathogen, is important to the evolution of pathogens. We examine the dynamics of plant reproduction and pathogen propagation considering spatial structure and the effect of superinfection on genetic diversity of pathogen by analysis of several models, 1-strain and multiple-strain models, on two-dimensional square lattice. In the analysis of 1-strain model, we derive equilibrium value by mean-field approximation and pair approximation, and its local stability by Routh-Hurwitz stability criterion. In the multiple-strain models, we analyze the dynamics by numerical simulation of mean-field approximation, pair approximation and Monte Carlo simulation. Through the analyses, we show the effect of parameter values to dynamics of models, such as transition of dominant strain of pathogen, competition between plants and pathogens and density of individuals. As a result, (i) The strain with intermediate cost becomes dominant when both superinfection rate and growth rate are low. (ii) The competition between plants and pathogens occurs in the phase of coexistence of various strains by pair approximation and Monte Carlo simulation. (iii) Too high growth rate leads to the decrease of plant population in all models. (iv) Pathogens are easy to maintain their genetic diversity with low superinfection rate. However, if they do not superinfect, the

  19. Pathogen Propagation Model with Superinfection in Vegetatively Propagated Plants on Lattice Space

    PubMed Central

    Sakai, Yuma; Takada, Takenori

    2016-01-01

    Many clonal plants have two reproductive patterns, seed propagation and vegetative propagation. By vegetative propagation, plants reproduce the genetically identical offspring with a low mortality, because resources are supplied from the other individuals through interconnected ramets at vegetative-propagated offspring. However, the ramets transport not only resources but also systemic pathogen. Pathogens evolve to establish and spread widely within the plant population. The superinfection, which is defined as the ability that an established pathogen spreads widely by infecting to already-infected individuals with other strains of a pathogen, is important to the evolution of pathogens. We examine the dynamics of plant reproduction and pathogen propagation considering spatial structure and the effect of superinfection on genetic diversity of pathogen by analysis of several models, 1-strain and multiple-strain models, on two-dimensional square lattice. In the analysis of 1-strain model, we derive equilibrium value by mean-field approximation and pair approximation, and its local stability by Routh-Hurwitz stability criterion. In the multiple-strain models, we analyze the dynamics by numerical simulation of mean-field approximation, pair approximation and Monte Carlo simulation. Through the analyses, we show the effect of parameter values to dynamics of models, such as transition of dominant strain of pathogen, competition between plants and pathogens and density of individuals. As a result, (i) The strain with intermediate cost becomes dominant when both superinfection rate and growth rate are low. (ii) The competition between plants and pathogens occurs in the phase of coexistence of various strains by pair approximation and Monte Carlo simulation. (iii) Too high growth rate leads to the decrease of plant population in all models. (iv) Pathogens are easy to maintain their genetic diversity with low superinfection rate. However, if they do not superinfect, the

  20. Semi-analytical modeling of acoustic beam divergence in homogeneous anisotropic half-spaces.

    PubMed

    Kono, Naoyuki; Hirose, Sohichi

    2016-02-01

    Beam divergences of acoustical fields in semi-infinite homogeneous anisotropic media are calculated based on a semi-analytical model. The model for a plane source in a semi-infinite homogeneous anisotropic medium is proposed as an extended model for a point source in an infinite medium. Beam divergences propagating along crystallographic axes 〈100〉, 〈110〉, and 〈111〉 in a cubic crystal, a single crystalline Ni-based alloy, are measured and compared to calculation results for verifying the model. The contribution of beam divergence attenuation to the total attenuation for propagating in anisotropic polycrystalline materials is quantitatively evaluated in isolation from scattering attenuation effects. PMID:26508085

  1. Oblique propagation of dust ion-acoustic solitary waves in a magnetized dusty pair-ion plasma

    SciTech Connect

    Misra, A. P. E-mail: apmisra@gmail.com; Barman, Arnab

    2014-07-15

    We investigate the propagation characteristics of electrostatic waves in a magnetized pair-ion plasma with immobile charged dusts. It is shown that obliquely propagating (OP) low-frequency (in comparison with the negative-ion cyclotron frequency) long-wavelength “slow” and “fast” modes can propagate, respectively, as dust ion-acoustic (DIA) and dust ion-cyclotron (DIC)-like waves. The properties of these modes are studied with the effects of obliqueness of propagation (θ), the static magnetic field, the ratios of the negative to positive ion masses (m), and temperatures (T) as well as the dust to negative-ion number density ratio (δ). Using the standard reductive perturbation technique, we derive a Korteweg-de Vries (KdV) equation which governs the evolution of small-amplitude OP DIA waves. It is found that the KdV equation admits only rarefactive solitons in plasmas with m well below its critical value m{sub c} (≫ 1) which typically depends on T and δ. It is shown that the nonlinear coefficient of the KdV equation vanishes at m = m{sub c}, i.e., for plasmas with much heavier negative ions, and the evolution of the DIA waves is then described by a modified KdV (mKdV) equation. The latter is shown to have only compressive soliton solution. The properties of both the KdV and mKdV solitons are studied with the system parameters as above, and possible applications of our results to laboratory and space plasmas are briefly discussed.

  2. Acoustic test and analyses of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Brooks, B. M.; Metzger, F. B.

    1980-01-01

    Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.

  3. High-order Hybridized Discontinuous Galerkin (HDG) method for wave propagation simulation in complex geophysical media (elastic, acoustic and hydro-acoustic); an unifying framework to couple continuous Spectral Element and Discontinuous Galerkin Methods

    NASA Astrophysics Data System (ADS)

    Terrana, Sebastien; Vilotte, Jean-Pierre; Guillot, Laurent; Mariotti, Christian

    2015-04-01

    Today seismological observation systems combine broadband seismic receivers, hydrophones and micro-barometers antenna that provide complementary observations of source-radiated waves in heterogeneous and complex geophysical media. Exploiting these observations requires accurate and multi-physics - elastic, hydro-acoustic, infrasonic - wave simulation methods. A popular approach is the Spectral Element Method (SEM) (Chaljub et al, 2006) which is high-order accurate (low dispersion error), very flexible to parallelization and computationally attractive due to efficient sum factorization technique and diagonal mass matrix. However SEMs suffer from lack of flexibility in handling complex geometry and multi-physics wave propagation. High-order Discontinuous Galerkin Methods (DGMs), i.e. Dumbser et al (2006), Etienne et al. (2010), Wilcox et al (2010), are recent alternatives that can handle complex geometry, space-and-time adaptativity, and allow efficient multi-physics wave coupling at interfaces. However, DGMs are more memory demanding and less computationally attractive than SEMs, especially when explicit time stepping is used. We propose a new class of higher-order Hybridized Discontinuous Galerkin Spectral Elements (HDGSEM) methods for spatial discretization of wave equations, following the unifying framework for hybridization of Cockburn et al (2009) and Nguyen et al (2011), which allows for a single implementation of conforming and non-conforming SEMs. When used with energy conserving explicit time integration schemes, HDGSEM is flexible to handle complex geometry, computationally attractive and has significantly less degrees of freedom than classical DGMs, i.e., the only coupled unknowns are the single-valued numerical traces of the velocity field on the element's faces. The formulation can be extended to model fractional energy loss at interfaces between elastic, acoustic and hydro-acoustic media. Accuracy and performance of the HDGSEM are illustrated and

  4. Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.

    1998-01-01

    A comparison was made between two approaches to predict acoustic emission waveforms in thin plates. A normal mode solution method for Mindlin plate theory was used to predict the response of the flexural plate mode to a point source, step-function load, applied on the plate surface. The second approach used a dynamic finite element method to model the problem using equations of motion based on exact linear elasticity. Calculations were made using properties for both isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy composite) materials. For simulations of anisotropic plates, propagation along multiple directions was evaluated. In general, agreement between the two theoretical approaches was good. Discrepancies in the waveforms at longer times were caused by differences in reflections from the lateral plate boundaries. These differences resulted from the fact that the two methods used different boundary conditions. At shorter times in the signals, before reflections, the slight discrepancies in the waveforms were attributed to limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of the finite element method are that it used the exact linear elasticity solutions, and that it can be used to model real source conditions and complicated, finite specimen geometries as well as thick plates. These advantages come at a cost of increased computational difficulty, requiring lengthy calculations on workstations or supercomputers. The Mindlin plate theory solutions, meanwhile, can be quickly generated on personal computers. Specimens with finite geometry can also be modeled. However, only limited simple geometries such as circular or rectangular plates can easily be accommodated with the normal mode solution technique. Likewise, very limited source configurations can be modeled and plate theory is applicable only to thin plates.

  5. Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

    NASA Astrophysics Data System (ADS)

    A. M., El-Hanbaly; E. K., El-Shewy; Elgarayhi, A.; A. I., Kassem

    2015-11-01

    The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  6. Nonlinear propagation of dust-ion-acoustic solitary waves in an unmagnetized dusty plasma with trapped particle distribution

    NASA Astrophysics Data System (ADS)

    Rahman, O.

    2015-12-01

    The nonlinear propagation of dust-ion-acoustic (DIA) solitary waves (SWs) in an unmagnetized four-component dusty plasma containing electrons and negative ions obeying vortex-like (trapped) velocity distribution, cold mobile positive ions and arbitrarily charged stationary dust has been theoretically investigated. The properties of small but finite amplitude DIASWs are studied by employing the reductive perturbation technique. It has been found that owing to the departure from the Maxwellian electron and Maxwellian negative ion distribution to a vortex-like one, the dynamics of such DIASWs is governed by a modified Korteweg-de Vries (mKdV) equation which admits SW solution under certain conditions. The basic properties (speed, amplitude, width, etc.) of such DIASWs are found to be significantly modified by the presence of trapped electron and trapped negative ions. The implications of our results to space and laboratory dusty electronegative plasmas (DENPs) are briefly discussed.

  7. Theoretical analysis of surface acoustic wave propagating properties of Y-cut nano lithium niobate film on silicon dioxide

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhang, Qiaozhen; Han, Tao; Zhou, Liu; Tang, Gongbin; Liu, Boquan; Ji, Xiaojun

    2015-08-01

    The surface acoustic wave (SAW) propagating characteristics of Y-cut nano LiNbO3 (LN) film on SiO2/LN substrate have been theoretically calculated. The simulated results showed a shear horizontal (SH) SAW with enhanced electromechanical coupling factor K2 owing to a dimensional effect of the nanoscale LN film. However, a Rayleigh SAW and two other resonances related to thickness vibrations caused spurious responses for wideband SAW devices. These spurious waves could be fully suppressed by properly controlling structural parameters including the electrode layer height, thickness, and the Euler angle (θ) of the LN thin film. Finally, a pure SH SAW was obtained with a wide θ range, from 0° to 5° and 165° to 180°. The largest K2 achieved for the pure SH SAW was about 35.1%. The calculated results demonstrate the promising application of nano LN film to the realization of ultra-wideband SAW devices.

  8. Effect of flow on quasi-one-dimensional acoustic wave propagation in a variable area duct of finite length

    NASA Technical Reports Server (NTRS)

    Lumsdaine, E.; Ragab, S.

    1977-01-01

    The general equation for the velocity potential of quasi-one-dimensional acoustic wave motion in a variable area, finite duct with one-dimensional flow is derived by using a perturbation technique. The nonlinear second-order partial differential equation is linearized and then solved, by either a power series expansion method or the Runge-Kutta fourth-order method, for harmonic time dependence. The boundary condition taken at the duct mouth is that of matching the impedance of the duct sound field to that of the radiation field at the duct opening. Three axial Mach number variations along the duct axis are considered and the results obtained are compared with those for the case of constant Mach number, to determine the influence of the axial velocity gradient on sound propagation. The effect of flow on the radiation impedance is also considered.

  9. Multi-level Monte Carlo finite volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Schwab, Ch.; Šukys, J.

    2016-05-01

    We consider the very challenging problem of efficient uncertainty quantification for acoustic wave propagation in a highly heterogeneous, possibly layered, random medium, characterized by possibly anisotropic, piecewise log-exponentially distributed Gaussian random fields. A multi-level Monte Carlo finite volume method is proposed, along with a novel, bias-free upscaling technique that allows to represent the input random fields, generated using spectral FFT methods, efficiently. Combined together with a recently developed dynamic load balancing algorithm that scales to massively parallel computing architectures, the proposed method is able to robustly compute uncertainty for highly realistic random subsurface formations that can contain a very high number (millions) of sources of uncertainty. Numerical experiments, in both two and three space dimensions, illustrating the efficiency of the method are presented.

  10. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    SciTech Connect

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-10-28

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  11. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    NASA Astrophysics Data System (ADS)

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-10-01

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  12. Advances in edge-diffraction modeling for virtual-acoustic simulations

    NASA Astrophysics Data System (ADS)

    Calamia, Paul Thomas

    In recent years there has been growing interest in modeling sound propagation in complex, three-dimensional (3D) virtual environments. With diverse applications for the military, the gaming industry, psychoacoustics researchers, architectural acousticians, and others, advances in computing power and 3D audio-rendering techniques have driven research and development aimed at closing the gap between the auralization and visualization of virtual spaces. To this end, this thesis focuses on improving the physical and perceptual realism of sound-field simulations in virtual environments through advances in edge-diffraction modeling. To model sound propagation in virtual environments, acoustical simulation tools commonly rely on geometrical-acoustics (GA) techniques that assume asymptotically high frequencies, large flat surfaces, and infinitely thin ray-like propagation paths. Such techniques can be augmented with diffraction modeling to compensate for the effect of surface size on the strength and directivity of a reflection, to allow for propagation around obstacles and into shadow zones, and to maintain soundfield continuity across reflection and shadow boundaries. Using a time-domain, line-integral formulation of the Biot-Tolstoy-Medwin (BTM) diffraction expression, this thesis explores various aspects of diffraction calculations for virtual-acoustic simulations. Specifically, we first analyze the periodic singularity of the BTM integrand and describe the relationship between the singularities and higher-order reflections within wedges with open angle less than 180°. Coupled with analytical approximations for the BTM expression, this analysis allows for accurate numerical computations and a continuous sound field in the vicinity of an arbitrary wedge geometry insonified by a point source. Second, we describe an edge-subdivision strategy that allows for fast diffraction calculations with low error relative to a numerically more accurate solution. Third, to address

  13. Observations and transport theory analysis of low frequency, acoustic mode propagation in the Eastern North Pacific Ocean.

    PubMed

    Chandrayadula, Tarun K; Colosi, John A; Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Howe, Bruce M

    2013-10-01

    Second order mode statistics as a function of range and source depth are presented from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX). During LOAPEX, low frequency broadband signals were transmitted from a ship-suspended source to a mode-resolving vertical line array. Over a one-month period, the ship occupied seven stations from 50 km to 3200 km distance from the receiver. At each station broadband transmissions were performed at a near-axial depth of 800 m and an off-axial depth of 350 m. Center frequencies at these two depths were 75 Hz and 68 Hz, respectively. Estimates of observed mean mode energy, cross mode coherence, and temporal coherence are compared with predictions from modal transport theory, utilizing the Garrett-Munk internal wave spectrum. In estimating the acoustic observables, there were challenges including low signal to noise ratio, corrections for source motion, and small sample sizes. The experimental observations agree with theoretical predictions within experimental uncertainty. PMID:24116512

  14. A stochastic response surface formulation for the description of acoustic propagation through an uncertain internal wave field.

    PubMed

    Gerdes, Frank; Finette, Steven

    2012-10-01

    A modeling and simulation study is performed in a littoral ocean waveguide subject to uncertainty in four quantities: source depth, tidal forcing, initial thermocline structure, and sediment sound speed. In this partially known shelf-break environment, tidal forcing over a density-stratified water column produces internal tides and solitary wave packets. The resulting uncertainty in the space-time oceanographic field is mapped into the sound speed distribution which, in turn, introduces uncertainty into the acoustic wave field. The latter is treated as a stochastic field whose intensity is described by a polynomial chaos expansion. The expansion coefficients are estimated through constrained multivariate linear regression, and an analysis of the chaos coefficients provides insight into the relative contribution of the uncertain acoustic and oceanographic quantities. Histograms of acoustic intensity are estimated and compared to a reference solution obtained through Latin Hypercube sampling. A sensitivity analysis is performed to illustrate the relative importance of the four contributions of incomplete information about the environment. The simulation methodology represents an end-to-end analysis approach including both oceanographic and acoustic field uncertainty where the latter is quantified using stochastic basis expansions in the form of a polynomial chaos representation. PMID:23039422

  15. Propagation modeling in a manufacturing environment

    SciTech Connect

    Birdwell, J.D.; Horn, R.D.; Rader, M.S.; Shourbaji, A.A.

    1995-12-31

    Wireless sensors which utilize low power spread spectrum data transmission have significant potential in industrial environments due to low cabling and installation costs. In addition, this technology imposes fewer constraints upon placement due to cable routing, allowing sensors to be installed in areas with poor access. Limitations are imposed on sensor and receiver placement by electromagnetic propagation effects in the industrial environment, including multipath and the presence of absorbing media. This paper explores the electromagnetic analysis of potential wireless sensor applications using commercially available finite element software. In addition, since the applications environment is often at least partially specified in electronic form using computer-aided drafting software, the importation of information from this software is discussed. Both three-dimensional and two-dimensional examples are presented which demonstrate the utility and limitations of the method.

  16. Modeling and validation of polyurethane based passive underwater acoustic absorber.

    PubMed

    Jayakumari, V G; Shamsudeen, Rahna K; Ramesh, R; Mukundan, T

    2011-08-01

    The acoustic behavior of an acoustically transparent polyurethane and an interpenetrating polymer network of polyurethane with polydimethyl siloxane were studied using dynamic mechanical analysis, finite element modeling, and experimental evaluation of acoustic properties in a water-filled pulse tube setup. Dynamic mechanical measurements in the temperature range -50 °C to +70 °C were carried out, and the data were used for time temperature superposition to generate material behavior at high frequencies. These inputs were used for modeling the acoustic behavior of these materials using ATILA, which is a commercial finite element code, capable of computing transmission and reflection characteristics of materials. From this data, absorption characteristics were computed. The results were compared with the experimental results obtained using a water-filled pulse tube facility. PMID:21877787

  17. Nonlinear propagation of dust-acoustic waves in an unmagnetized dusty plasma with nonthermal electron and vortex-like ion distribution

    SciTech Connect

    Paul, A.; Mandal, G.; Amin, M. R.; Mamun, A. A.

    2013-10-15

    The nonlinear propagation of dust-acoustic (DA) waves in an unmagnetized dusty plasma consisting of nonthermal electrons, vortex-like (trapped) distributed ions and mobile negative dust have been investigated by employing the reductive perturbation technique. The effects of nonthermal electrons and trapped ions are found to modify the properties of the DA solitary waves.

  18. One-dimensional cloud fluid model for propagating star formation

    NASA Technical Reports Server (NTRS)

    Titus, Timothy N.; Struck-Marcell, Curtis

    1990-01-01

    The aim of this project was to study the propagation of star formation (SF) with a self-consistent deterministic model for the interstellar gas. The questions of under what conditions does star formation propagate in this model and what are the mechanisms of the propagation are explored. Here, researchers used the deterministic Oort-type cloud fluid model of Scalo and Struck-Marcell (1984, also see the review of Struck-Marcell, Scalo and Appleton 1987). This cloud fluid approach includes simple models for the effects of cloud collisional coalescence or disruption, collisional energy dissipation, and cloud disruption and acceleration as the result of young star winds, HII regions and supernovae. An extensive one-zone parameter study is presented in Struck-Marcell and Scalo (1987). To answer the questions above, researchers carried out one-dimensional calculations for an annulus within a galactic disk, like the so-called solar neighborhood of the galactic chemical evolution. In the calculations the left-hand boundary is set equal to the right hand boundary. The calculation is obviously idealized; however, it is computationally convenient to study the first order effects of propagating star formation. The annulus was treated as if it were at rest, i.e., in the local rotating frame. This assumption may remove some interesting effects of a supersonic gas flow, but was necessary to maintain a numerical stability in the annulus. The results on the one-dimensional propagation of SF in the Oort cloud fluid model follow: (1) SF is propagated by means of hydrodynamic waves, which can be generated by external forces or by the pressure generated by local bursts. SF is not effectively propagated via diffusion or variation in cloud interaction rates without corresponding density and velocity changes. (2) The propagation and long-range effects of SF depend on how close the gas density is to the critical threshold value, i.e., on the susceptibility of the medium.

  19. Asymmetric Acoustic Propagation of Wave Packets Via the Self-Demodulation Effect.

    PubMed

    Devaux, Thibaut; Tournat, Vincent; Richoux, Olivier; Pagneux, Vincent

    2015-12-01

    This Letter presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to 10^{6}, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems. PMID:26684119

  20. Asymmetric Acoustic Propagation of Wave Packets Via the Self-Demodulation Effect

    NASA Astrophysics Data System (ADS)

    Devaux, Thibaut; Tournat, Vincent; Richoux, Olivier; Pagneux, Vincent

    2015-12-01

    This Letter presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to 1 06, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems.

  1. Acoustic wave propagation in air-bubble curtains in water. Part 1. History and theory

    SciTech Connect

    Domenico, S.N.

    1982-03-01

    Air bubbles in water increase the compressibility several orders of magnitude above that in bubble-free water, thereby greatly reducing the velocity and increasing attenuation of acoustic waves. Currently, air bubble curtains are used to prevent damage of submerged structures (e.g., dams) by shock waves from submarine explosives. Also, air-bubble curtains are used to reduce damage to water-filler tanks in which metals are formed by explosives. Published results of laboratory experiments confirm theoretic velocity and attenuation functions and demonstrate that these quantities are dependent principally upon frequency, bubble size, and fractional volume of air. 31 references.

  2. Computing Propagation Of Sound In Engine Ducts

    NASA Technical Reports Server (NTRS)

    Saylor, Silvia

    1995-01-01

    Frequency Domain Propagation Model (FREDOM) computer program accounts for acoustic loads applied to components of engines. Models propagation of noise through fluids in ducts between components and through passages within components. Used not only to analyze hardware problems, but also for design purposes. Updated version of FREQPL program easier to use. Devised specifically for use in analyzing acoustic loads in rocket engines. Underlying physical and mathematical concepts implemented also applicable to acoustic propagation in other enclosed spaces; analyzing process plumbing and ducts in industrial buildings with view toward reducing noise in work areas.

  3. Dynamic adaptive finite element analysis of acoustic wave propagation due to underwater explosion for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Emamzadeh, Seyed Shahab; Ahmadi, Mohammad Taghi; Mohammadi, Soheil; Biglarkhani, Masoud

    2015-07-01

    In this paper, an investigation into the propagation of far field explosion waves in water and their effects on nearby structures are carried out. For the far field structure, the motion of the fluid surrounding the structure may be assumed small, allowing linearization of the governing fluid equations. A complete analysis of the problem must involve simultaneous solution of the dynamic response of the structure and the propagation of explosion wave in the surrounding fluid. In this study, a dynamic adaptive finite element procedure is proposed. Its application to the solution of a 2D fluid-structure interaction is investigated in the time domain. The research includes: a) calculation of the far-field scatter wave due to underwater explosion including solution of the time-depended acoustic wave equation, b) fluid-structure interaction analysis using coupled Euler-Lagrangian approach, and c) adaptive finite element procedures employing error estimates, and re-meshing. The temporal mesh adaptation is achieved by local regeneration of the grid using a time-dependent error indicator based on curvature of pressure function. As a result, the overall response is better predicted by a moving mesh than an equivalent uniform mesh. In addition, the cost of computation for large problems is reduced while the accuracy is improved.

  4. Further Investigation of Acoustic Propagation Codes for Three-Dimensional Geometries

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Watson, Willie R.; Jones, Michael G.

    2006-01-01

    The ability to predict fan noise within complex three-dimensional aircraft engine nacelle geometries is a valuable tool in designing and assessing low-noise concepts. This work begins a systematic study to identify the areas of the design space in which propagation codes of varying fidelity may be used effectively to provide efficient design and assessment. An efficient lower-fidelity code is used in conjunction with two higher-fidelity, more computationally intensive methods to solve benchmark problems of increasing complexity. The codes represent a small sampling of the current propagation codes available or under development. Results of this initial study indicate that the lower-fidelity code provides satisfactory results for cases involving low to moderate attenuation rates, whereas, the two higher-fidelity codes perform well across the range of problems.

  5. Model for small arms fire muzzle blast wave propagation in air

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Desai, Sachi V.

    2011-11-01

    Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

  6. Modeling ground vehicle acoustic signatures for analysis and synthesis

    SciTech Connect

    Haschke, G.; Stanfield, R.

    1995-07-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems.

  7. On the propagation of long waves in acoustically treated, curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1981-01-01

    A two dimensional study is presented on the behavior of long waves in lined, curved ducts. The analysis includes a comparison between the propagation in curved and straight lined ducts. A parametric study was conducted over a range of wall admittance and duct wall separation. The complex eigenvalues of the characteristic equation, which in the case of a curved duct are also the angular wavenumbers, were obtained by successive approximations.

  8. Modelling of acoustic radiation problems associated with turbomachinery and rotating blades

    NASA Astrophysics Data System (ADS)

    Eversman, W.

    Finite element methods developed for computational predictions of turbofan and propeller acoustic radiation are presented. Account is taken of the disparate acoustic and geometric scales, the complex geometry, sound propagation in a nonuniformly flowing medium, the presence of a lining, and definition of bounds for calculations which are carried out in an unbounded domain. Density and pressure perturbations in the turbofan inlet are modeled with a linearized momentum equation. The sound radiation is represented by the Fourier components, i.e., angular modes. The same nacelle geometry is used for propeller noise, which requires inclusion of acoustic volume sources and forces. A forced convected wave equation for harmonic driving is obtained by combining continuity, momentum and state equations linearized for acoustic perturbations. The weak formulations for the two types of noise generation are solved by the Galerkin method modified with a frontal solver to reduce the required computer time. Model predictions show good agreement with experimental data for the directivity and amplitude of sound from the bellmouth inlet of the NASA-Langley Spinning Mode Synthesizer.

  9. A comparative analysis of acoustic energy models for churches.

    PubMed

    Berardi, Umberto; Cirillo, Ettore; Martellotta, Francesco

    2009-10-01

    Different models to improve prediction of energy-based acoustic parameters in churches have been proposed by different researchers [E. Cirillo and F. Martellotta, J. Acoust. Soc. Am. 118, 232-248 (2005); T. Zamarreño et al., J. Acoust. Soc. Am. 121, 234-250 (2006)]. They all suggested variations to the "revised" theory proposed by Barron and Lee [J. Acoust. Soc. Am. 84, 618-628 (1988)], starting from experimental observations. The present paper compares these models and attempts to generalize their use taking advantage of the measurements carried out in 24 Italian churches differing in style, typology, and location. The whole sample of churches was divided into two groups. The first was used to fine-tune existing models, with particular reference to the "mu model," which was originally tested only on Mudejar-Gothic churches. Correlations between model parameters and major typological and architectural factors were found, leading to a classification that greatly simplifies parameter choice. Finally, the reliability of each model was verified on the rest of the sample, showing that acoustic parameters can be predicted with reasonable accuracy provided that one of the specifically modified theories is used. The results show that the model requiring more input parameters performs slightly better than the other which, conversely, is simpler to apply. PMID:19813798

  10. Modeling beam propagation and frequency conversion for the beamlet laser

    SciTech Connect

    Auerbach, J.M.

    1996-06-01

    The development of the Beamlet laser has involved extensive and detailed modeling of laser performance and beam propagation to: (1) predict the performance limits of the laser, (2) select system configurations with higher performance, (3) analyze experiments and provide guidance for subsequent laser shots, and (4) design optical components and establish component manufacturing specifications. In contrast to modeling efforts of previous laser systems such as Nova, those for Beamlet include as much measured optical characterization data as possible. This article concentrates on modeling of beam propagation in the Beamlet laser system, including the frequency converter, and compares modeling predictions with experimental results for several Beamlet shots. It briefly describes the workstation-based propagation and frequency conversion codes used to accomplish modeling of the Beamlet.

  11. Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation

    SciTech Connect

    Saberian, E.; Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzadeh, A.; Afsari-Ghazi, M.

    2013-03-15

    The propagation of ion-acoustic (IA) solitons is studied in a plasma system, comprised of warm ions and superthermal (Kappa distributed) electrons in the presence of an electron-beam by using a hydrodynamic model. In the linear analysis, it is seen that increasing the superthermality lowers the phase speed of the IA waves. On the other hand, in a fully nonlinear investigation, the Mach number range and characteristics of IA solitons are analyzed, parametrically and numerically. It is found that the accessible region for the existence of IA solitons reduces with increasing the superthermality. However, IA solitons with both negative and positive polarities can coexist in the system. Additionally, solitary waves with both subsonic and supersonic speeds are predicted in the plasma, depending on the value of ion-temperature and the superthermality of electrons in the system. It is examined that there are upper critical values for beam parameters (i.e., density and velocity) after which, IA solitary waves could not propagate in the plasma. Furthermore, a typical interaction between IA waves and the electron-beam in the plasma is confirmed.

  12. Drive Rig Mufflers for Model Scale Engine Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2010-01-01

    Testing of air breathing propulsion systems in the 9x15 foot wind tunnel at NASA Glenn Research Center depends on compressed air turbines for power. The drive rig turbines exhaust directly to the wind tunnel test section, and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the model being tested. In order to mitigate this acoustic contamination, a muffler can be attached downstream of the drive rig turbine. The modern engine designs currently being tested produce much less noise than traditional engines, and consequently a lower noise floor is required of the facility. An acoustic test of a muffler designed to mitigate this extraneous noise is presented, and a noise reduction of 8 dB between 700 Hz and 20 kHz was documented, significantly improving the quality of acoustic measurements in the facility.

  13. Acoustic intensity calculations for axisymmetrically modeled fluid regions

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Everstine, Gordon C.

    1992-01-01

    An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.

  14. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  15. Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones.

    PubMed

    Potsika, Vassiliki T; Grivas, Konstantinos N; Protopappas, Vasilios C; Vavva, Maria G; Raum, Kay; Rohrbach, Daniel; Polyzos, Demosthenes; Fotiadis, Dimitrios I

    2014-07-01

    Quantitative ultrasound has recently drawn significant interest in the monitoring of the bone healing process. Several research groups have studied ultrasound propagation in healing bones numerically, assuming callus to be a homogeneous and isotropic medium, thus neglecting the multiple scattering phenomena that occur due to the porous nature of callus. In this study, we model ultrasound wave propagation in healing long bones using an iterative effective medium approximation (IEMA), which has been shown to be significantly accurate for highly concentrated elastic mixtures. First, the effectiveness of IEMA in bone characterization is examined: (a) by comparing the theoretical phase velocities with experimental measurements in cancellous bone mimicking phantoms, and (b) by simulating wave propagation in complex healing bone geometries by using IEMA. The original material properties of cortical bone and callus were derived using serial scanning acoustic microscopy (SAM) images from previous animal studies. Guided wave analysis is performed for different healing stages and the results clearly indicate that IEMA predictions could provide supplementary information for bone assessment during the healing process. This methodology could potentially be applied in numerical studies dealing with wave propagation in composite media such as healing or osteoporotic bones in order to reduce the simulation time and simplify the study of complicated geometries with a significant porous nature. PMID:24091149

  16. High-Order Hybridized Discontinuous Galerkin (HDG) Method for Wave Propagation Simulation in Complex Geophysical Media - Elastic, Acoustic and Hydro-Acoustic - an Unifying Framework to Couple Continuous Spectral Element and Discontinuous Galerkin Methods.

    NASA Astrophysics Data System (ADS)

    Sébastien, T.; Vilotte, J. P.; Guillot, L.; Mariotti, C.

    2014-12-01

    Today seismological observation systems combine broadband seismic receivers, hydrophones and micro-barometers antenna that provide complementary observations of source-radiated waves in heterogeneous and complex geophysical media. Exploiting these observations requires accurate and multi-physics - elastic, hydro-acoustic, infrasonic - wave simulation methods. A popular approach is the Spectral Element Method (SEM) (Chaljub et al, 2006) which is high-order accurate (low dispersion error), very flexible to parallelization and computationally attractive due to efficient sum factorization technique and diagonal mass matrix. However SEMs suffer from lack of flexibility in handling complex geometry and multi-physics wave propagation. High-order Discontinuous Galerkin Methods (DGMs), i.e. Dumbser et al (2006), Etienne et al. (2010), Wilcox et al (2010), are recent alternatives that can handle complex geometry, space-and-time adaptativity, and allow efficient multi-physics wave coupling at interfaces. However, DGMs are more memory demanding and less computationally attractive than SEMs, especially when explicit time stepping is used. We propose a new class of higher-order Hybridized Discontinuous Galerkin Spectral Elements (HDGSEM) methods for spatial discretization of wave equations, following the unifying framework for hybridization of Cockburn et al (2009) and Nguyen et al (2011), which allows for a single implementation of conforming and non-conforming SEMs. When used with energy conserving explicit time integration schemes, HDGSEM is flexible to handle complex geometry, computationally attractive and has significantly less degrees of freedom than classical DGMs, i.e., the only coupled unknowns are the single-valued numerical traces of the velocity field on the element's faces. The formulation can be extended to model fractional energy loss at interfaces between elastic, acoustic and hydro-acoustic media. Accuracy and performance of the HDGSEM are illustrated and

  17. Experimental validation of a two-dimensional shear-flow model for determining acoustic impedance

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Watson, Willie R.; Jones, Michael G.

    1987-01-01

    Tests were conducted to validate a two-dimensional shear-flow analytical model for determining the acoustic impedance of a liner test specimen in a grazing-incidence, grazing-flow environment. The tests were limited to a test specimen chosen to exhibit minimal effects of grazing flow so that the results obtained by using the shear-flow analytical model would be expected to match those obtained from normal-incidence impedance measurements. Impedances for both downstream and upstream sound propagation were generally consistent with those from normal-incidence measurements. However, sensitivity of the grazing-incidence impedance to small measurement or systematic errors in propagation constant varied dramatically over the range of test frequencies.

  18. Acoustic-radiation-force-induced shear wave propagation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Bouchard, Richard R.; Wolf, Patrick D.; Hsu, Stephen J.; Dumont, Douglas M.; Trahey, Gregg E.

    2009-02-01

    Shear wave elasticity imaging (SWEI) was employed to track acoustic radiation force (ARF)-induced shear waves in the myocardium of a beating heart. Shear waves were generated in and tracked through the myocardium of the left ventricular free wall (LVFW) in an in vivo heart that was exposed through a thoracotomy; matched studies were also preformed on an ex vivo myocardial specimen. Average shear wave velocities ranged from 2.22 to 2.53 m/s for the ex vivo specimen and 1.5 to 2.9 m/s (1.5-2.09 m/s during diastole; 2.9 m/s during systole) for in vivo specimens. Despite the known rotation of myocardial fiber orientation with tissue depth, there was no statistically significant shear wave velocity depth dependence observed in any of the experimental trials.

  19. Propagation of ion acoustic shock waves in negative ion plasmas with nonextensive electrons

    SciTech Connect

    Hussain, S.; Akhtar, N.; Mahmood, S.

    2013-09-15

    Nonlinear ion acoustic shocks (monotonic as well as oscillatory) waves in negative ion plasmas are investigated. The inertialess electron species are assumed to be nonthermal and follow Tsallis distribution. The dissipation in the plasma is considered via kinematic viscosities of both positive and negative ion species. The Korteweg-de Vries Burgers (KdVB) equation is derived using small amplitude reductive perturbation technique and its analytical solution is presented. The effects of variation of density and temperature of negative ions and nonthermal parameter q of electrons on the strength of the shock structures are plotted for illustration. The numerical solutions of KdVB equation using Runge Kutta method are obtained, and transition from oscillatory to monotonic shock structures is also discussed in detail for negative ions nonthermal plasmas.

  20. Nonlinear propagation of Electron-acoustic waves in a nonextensive electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Rafat, A.; Alam, M. S.; Mamun, A. A.

    2015-03-01

    Electron-acoustic shock waves (EASWs) in an unmagnetized electron-positron-ion plasma system (consisting of a cold mobile viscous electron fluid, hot electrons and positrons following the q-nonextensive distribution, and immobile positive ions) are studied analytically. The Burgers equation is derived by using the well-known reductive perturbation method. The basic features (viz. polarity, amplitude, width, phase speed, etc.) of EASWs are briefly addressed. The basic features of EASWs are found to be significantly modified by the effects of nonextensivity of the hot electrons and positrons, the relative number density and temperature ratios, and the kinematic viscosity of the cold electrons. The present investigation can be useful in understanding the fundamental characteristics of EASWs in various space plasmas.

  1. Concurrent Visualization of Acoustic Radiation Force Displacement and Shear Wave Propagation with 7T MRI

    PubMed Central

    Liu, Yu; Fite, Brett Z.; Mahakian, Lisa M.; Johnson, Sarah M.; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W.

    2015-01-01

    Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T) MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm), as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI) provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU) ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable. PMID:26439259

  2. The effect of non-thermal electrons on obliquely propagating electron acoustic waves in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Singh, Satyavir; Bharuthram, Ramashwar

    2016-07-01

    Small amplitude electron acoustic solitary waves are studied in a magnetized plasma consisting of hot electrons following Cairn's type non-thermal distribution function and fluid cool electrons, cool ions and an electron beam. Using reductive perturbation technique, the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation is derived to describe the nonlinear evolution of electron acoustic waves. It is observed that the presence of non-thermal electrons plays an important role in determining the existence region of solitary wave structures. Theoretical results of this work is used to model the electrostatic solitary structures observed by Viking satellite. Detailed investigation of physical parameters such as non-thermality of hot electrons, beam electron velocity and temperature, obliquity on the existence regime of solitons will be discussed.

  3. Model-based processor design for a shallow water ocean acoustic experiment

    SciTech Connect

    Candy, J.V. ); Sullivan, E.J. )

    1994-04-01

    Model-based signal processing is a well-defined methodology enabling the inclusion of environmental (propagation) models, measurement (sensor arrays) models, and noise (shipping, measurement) models into a sophisticated processing algorithm. Depending on the class of model developed from the mathematical representation of the physical phenomenology, various processors can evolve. Here the design of a space-varying, nonstationary, model-based processor (MBP) is investigated and applied to the data from a well-controlled shallow water experiment performed at Hudson Canyon. This particular experiment is very attractive for the inaugural application of the MBP because it was performed in shallow water at low frequency requiring a small number of modes. In essence, the Hudson Canyon represents a well-known ocean environment, making it ideal for this investigation. In this shallow water application, a state-space representation of the normal-mode propagation model is used. The processor is designed such that it allows [ital in] [ital situ] recursive estimation of both the pressure-field and modal functions. It is shown that the MBP can be effectively utilized to validate'' the performance of the model on noisy ocean acoustic data. In fact, a set of processors is designed, one for each source range and the results are quite good---implying that the propagation model with measured parameters adequately represents the data.

  4. Estimates of the prevalence of anomalous signal losses in the Yellow Sea derived from acoustic and oceanographic computer model simulations

    NASA Astrophysics Data System (ADS)

    Chin-Bing, Stanley A.; King, David B.; Warn-Varnas, Alex C.; Lamb, Kevin G.; Hawkins, James A.; Teixeira, Marvi

    2002-05-01

    The results from collocated oceanographic and acoustic simulations in a region of the Yellow Sea near the Shandong peninsula have been presented [Chin-Bing et al., J. Acoust. Soc. Am. 108, 2577 (2000)]. In that work, the tidal flow near the peninsula was used to initialize a 2.5-dimensional ocean model [K. G. Lamb, J. Geophys. Res. 99, 843-864 (1994)] that subsequently generated internal solitary waves (solitons). The validity of these soliton simulations was established by matching satellite imagery taken over the region. Acoustic propagation simulations through this soliton field produced results similar to the anomalous signal loss measured by Zhou, Zhang, and Rogers [J. Acoust. Soc. Am. 90, 2042-2054 (1991)]. Analysis of the acoustic interactions with the solitons also confirmed the hypothesis that the loss mechanism involved acoustic mode coupling. Recently we have attempted to estimate the prevalence of these anomalous signal losses in this region. These estimates were made from simulating acoustic effects over an 80 hour space-time evolution of soliton packets. Examples will be presented that suggest the conditions necessary for anomalous signal loss may be more prevalent than previously thought. [Work supported by ONR/NRL and by a High Performance Computing DoD grant.

  5. Aeroacoustic flowfield and acoustics of a model helicopter tail rotor at high advance ratio

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.

    1989-01-01

    Some results, relevant to rotorcraft noise generation process at high advance ratio, are presented in this paper from schlieren flow visualization and acoustic tests of a model tail rotor. The measured in-plane noise trends are consistent with the growth of the tip supersonic region seen in the schlieren visuals. Schlieren flow visuals reveal a propagating pressure wave in the second quadrant. Simultaneously measured acoustic data and the results of two-dimensional transonic Blade-Vortex Interaction analysis code ATRAN-2 indicate that this pressure wave is attributable to BVI activity in the first quadrant. This paper establishes that the transonic Blade-Vortex Interactions contribute to noise at high advance ratio level flight conditions.

  6. Spatial-temporal modeling of malware propagation in networks.

    PubMed

    Chen, Zesheng; Ji, Chuanyi

    2005-09-01

    Network security is an important task of network management. One threat to network security is malware (malicious software) propagation. One type of malware is called topological scanning that spreads based on topology information. The focus of this work is on modeling the spread of topological malwares, which is important for understanding their potential damages, and for developing countermeasures to protect the network infrastructure. Our model is motivated by probabilistic graphs, which have been widely investigated in machine learning. We first use a graphical representation to abstract the propagation of malwares that employ different scanning methods. We then use a spatial-temporal random process to describe the statistical dependence of malware propagation in arbitrary topologies. As the spatial dependence is particularly difficult to characterize, the problem becomes how to use simple (i.e., biased) models to approximate the spatially dependent process. In particular, we propose the independent model and the Markov model as simple approximations. We conduct both theoretical analysis and extensive simulations on large networks using both real measurements and synthesized topologies to test the performance of the proposed models. Our results show that the independent model can capture temporal dependence and detailed topology information and, thus, outperforms the previous models, whereas the Markov model incorporates a certain spatial dependence and, thus, achieves a greater accuracy in characterizing both transient and equilibrium behaviors of malware propagation. PMID:16252834

  7. Applied topology optimization of vibro-acoustic hearing instrument models

    NASA Astrophysics Data System (ADS)

    Søndergaard, Morten Birkmose; Pedersen, Claus B. W.

    2014-02-01

    Designing hearing instruments remains an acoustic challenge as users request small designs for comfortable wear and cosmetic appeal and at the same time require sufficient amplification from the device. First, to ensure proper amplification in the device, a critical design challenge in the hearing instrument is to minimize the feedback between the outputs (generated sound and vibrations) from the receiver looping back into the microphones. Secondly, the feedback signal is minimized using time consuming trial-and-error design procedures for physical prototypes and virtual models using finite element analysis. In the present work it is demonstrated that structural topology optimization of vibro-acoustic finite element models can be used to both sufficiently minimize the feedback signal and to reduce the time consuming trial-and-error design approach. The structural topology optimization of a vibro-acoustic finite element model is shown for an industrial full scale model hearing instrument.

  8. 2-D modeling of laterally acoustically coupled thin film bulk acoustic wave resonator filters.

    PubMed

    Pensala, Tuomas; Meltaus, Johanna; Kokkonen, Kimmo; Ylilammi, Markku

    2010-11-01

    A 2-D model is developed for calculating lateral acoustical coupling between adjacent thin film BAW resonators forming an electrical N-port. The model is based on solution and superposition of lateral eigenmodes and eigenfrequencies in a structure consisting of adjacent regions with known plate wave dispersion properties. Mechanical and electrical response of the device are calculated as a superposition of eigenmodes according to voltage drive at one electrical port at a time while extracting current induced in the other ports, leading to a full Y-parameter description of the device. Exemplary cases are simulated to show the usefulness of the model in the study of the basic design rules of laterally coupled thin film BAW resonator filters. Model predictions are compared to an experimental 1.9-GHz band-pass filter based on aluminum nitride thin film technology and lateral acoustical coupling. Good agreement is obtained in prediction of passband behavior. The eigenmode-based model forms a useful tool for fast simulation of laterally coupled acoustic devices. It allows one to gain insight into basic device physics in a very intuitive fashion compared with more detailed but heavier finite element method. Shortcomings of this model and possible improvements are discussed. PMID:21041141

  9. On Modeling Hydrogen-Induced Crack Propagation Under Sustained Load

    NASA Astrophysics Data System (ADS)

    Dadfarnia, Mohsen; Somerday, Brian p.; Schembri, Philip E.; Sofronis, Petros; Foulk, James W.; Nibur, Kevin A.; Balch, Dorian K.

    2014-08-01

    The failure of hydrogen containment components is generally associated with subcritical cracking. Understanding subcritical crack growth behavior and its dependence on material and environmental variables can lead to methods for designing structural components in a hydrogen environment and will be beneficial in developing materials resistant to hydrogen embrittlement. In order to identify the issues underlying crack propagation and arrest, we present a model for hydrogen-induced stress-controlled crack propagation under sustained loading. The model is based on the assumptions that (I) hydrogen reduces the material fracture strength and (II) crack propagation takes place when the opening stress over the characteristic distance ahead of a crack tip is greater than the local fracture strength. The model is used in a finite-element simulation of crack propagation coupled with simultaneous hydrogen diffusion in a model material through nodal release. The numerical simulations show that the same physics, i.e., diffusion-controlled crack propagation, can explain the existence of both stages I and II in the velocity versus stress intensity factor ( V- K) curve.

  10. Effects of nonlinearity on the propagation of acoustic pulses in random media

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin; Dallois, Laurent; Blanc-Benon, Philippe

    2002-11-01

    We conducted a numerical investigation into the propagation of finite-amplitude pulses in media with inhomogeneous random sound speed. An N wave (idealized sonic boom) was used as the pulse shape. Initial simulations considered a medium with a single spherical scattering object with a slow sound speed. This object acted as a focusing lens. As the amplitude of the N wave was increased nonlinear effects initially led to enhancement of focusing, reduction in shock risetime, and a shift of the peak away from the object. However, for high amplitude, energy loss at the shock led to a dramatic reduction in the amplitude of the focus and a shift towards the object. Simulations were then carried out in a two-dimensional random media. The sound speed in the random media was constructed using a Fourier mode decomposition with parameters appropriate for turbulence in the atmospheric boundary layer. For low amplitude waves the N wave was focused and defocused by regions of low and high sound speed, respectively. However, the presence of multiple paths means that the wave form no longer resembled an N-wave after propagating about 10 wavelengths. As the amplitude was increased the focusing was enhanced and more localized.

  11. Acoustic scattering from a water-filled cylindrical shell: measurements, modeling, and interpretation.

    PubMed

    España, Aubrey L; Williams, Kevin L; Plotnick, Daniel S; Marston, Philip L

    2014-07-01

    Understanding the physics governing the interaction of sound with targets in an underwater environment is essential to improving existing target detection and classification algorithms. To illustrate techniques for identifying the key physics, an examination is made of the acoustic scattering from a water-filled cylindrical shell. Experiments were conducted that measured the acoustic scattering from a water-filled cylindrical shell in the free field, as well as proud on a sand-water interface. Two modeling techniques are employed to examine these acoustic scattering measurements. The first is a hybrid 2-D/3-D finite element (FE) model, whereby the scattering in close proximity to the target is handled via a 2-D axisymmetric FE model, and the subsequent 3-D propagation to the far field is determined via a Helmholtz integral. This model is characterized by the decomposition of the fluid pressure and its derivative in a series of azimuthal Fourier modes. The second is an analytical solution for an infinitely long cylindrical shell, coupled with a simple approximation that converts the results to an analogous finite length form function. Examining these model results on a mode-by-mode basis offers easy visualization of the mode dynamics and helps distinguish the different physics driving the target response. PMID:24993199

  12. One-dimensional pressure transfer models for acoustic-electric transmission channels

    NASA Astrophysics Data System (ADS)

    Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.

    2015-09-01

    A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.

  13. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  14. Fluid mechanical model of the acoustic impedance of small orifices

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Rogers, T.

    1976-01-01

    A fluid mechanical model of the acoustic behavior of small orifices is presented which predicts orifice resistance and reactance as a function of incident sound pressure level, frequency, and orifice geometry. Agreement between predicted and measured values is excellent. The model shows the following: (1) The acoustic flow in immediate neighborhood of the orifice can be modeled as a locally spherical flow. Within this near field, the flow is, to a first approximation, unsteady and incompressible. (2) At very low sound pressure levels, the orifice viscous resistance is directly related to the effect of boundary-layer displacement along the walls containing the orifice, and the orifice reactance is directly related to the inertia of the oscillating flow in the neighborhood of the orifice. (3) For large values of the incident acoustic pressure, the impedance is dominated by nonlinear jet-like effects. (4) For low values of the pressure, the resistance and reactance are roughly equal.

  15. Modeling the Behavior of an Underwater Acoustic Relative Positioning System Based on Complementary Set of Sequences

    PubMed Central

    Aparicio, Joaquín; Jiménez, Ana; Álvarez, Fernando J.; Ureña, Jesús; De Marziani, Carlos; Diego, Cristina

    2011-01-01

    The great variability usually found in underwater media makes modeling a challenging task, but helpful for better understanding or predicting the performance of future deployed systems. In this work, an underwater acoustic propagation model is presented. This model obtains the multipath structure by means of the ray tracing technique. Using this model, the behavior of a relative positioning system is presented. One of the main advantages of relative positioning systems is that only the distances between all the buoys are needed to obtain their positions. In order to obtain the distances, the propagation times of acoustic signals coded by Complementary Set of Sequences (CSS) are used. In this case, the arrival instants are obtained by means of correlation processes. The distances are then used to obtain the position of the buoys by means of the Multidimensional Scaling Technique (MDS). As an early example of an application using this relative positioning system, a tracking of the position of the buoys at different times is performed. With this tracking, the surface current of a particular region could be studied. The performance of the system is evaluated in terms of the distance from the real position to the estimated one. PMID:22247661

  16. Modeling the behavior of an underwater acoustic relative positioning system based on complementary set of sequences.

    PubMed

    Aparicio, Joaquín; Jiménez, Ana; Alvarez, Fernando J; Ureña, Jesús; De Marziani, Carlos; Diego, Cristina

    2011-01-01

    The great variability usually found in underwater media makes modeling a challenging task, but helpful for better understanding or predicting the performance of future deployed systems. In this work, an underwater acoustic propagation model is presented. This model obtains the multipath structure by means of the ray tracing technique. Using this model, the behavior of a relative positioning system is presented. One of the main advantages of relative positioning systems is that only the distances between all the buoys are needed to obtain their positions. In order to obtain the distances, the propagation times of acoustic signals coded by Complementary Set of Sequences (CSS) are used. In this case, the arrival instants are obtained by means of correlation processes. The distances are then used to obtain the position of the buoys by means of the Multidimensional Scaling Technique (MDS). As an early example of an application using this relative positioning system, a tracking of the position of the buoys at different times is performed. With this tracking, the surface current of a particular region could be studied. The performance of the system is evaluated in terms of the distance from the real position to the estimated one. PMID:22247661

  17. Operational support for a range-dependent radio propagation model

    NASA Astrophysics Data System (ADS)

    Cook, John; Vogel, Gerard; Love, Gary

    1995-02-01

    The emerging new standard in the U.S. Navy for range-dependent radio propagation assessment is the Radio Physical Optics (RPO) model developed at the Naval Command, Control and Ocean Surveillance Center, RDT&E Division (NRaD). RPO allows one to compare the expected radio propagation loss field as a function of height along a desired bearing, provided the atmospheric propagation conditions are specified along the path. This paper describes an architecture being developed to operationally support RPO. In developing this architecture, a number of unique constraints and considerations have been dealt with to provide RPO with cross-sections of atmospheric propagation conditions. First, forecast grids from a mesoscale weather data assimilation/prediction model are accessed to provide the best estimate of the current and future refractive and meteorological conditions over the area of interest. Based on conditions near the surface, high-resolution profiles of refractivity in the evaporation duct are calculated and appended onto the bottom of the model forecast profiles. This completes the specification of refractivity down to the sea surface. These refractivity profiles are then processed by a unique algorithm that matches similar refractivity structures from profile-to-profile and reformats the data to support the indexing scheme required by RPO. After RPO has been run, the propagation loss results can be displayed and thresholded to provide expected coverage against specific targets. An example will be shown where multiple RPO runs are used to suggest positioning of available assets to maximize coverage.

  18. Modelling of hydraulic fracture propagation in inhomogeneous poroelastic medium

    NASA Astrophysics Data System (ADS)

    Baykin, A. N.; Golovin, S. V.

    2016-06-01

    In the paper a model for description of a hydraulic fracture propagation in inhomogeneous poroelastic medium is proposed. Among advantages of the presented numerical algorithm, there are incorporation of the near-tip analysis into the general computational scheme, account for the rock failure criterion on the base of the cohesive zone model, possibility for analysis of fracture propagation in inhomogeneous reservoirs. The numerical convergence of the algorithm is verified and the agreement of our numerical results with known solutions is established. The influence of the inhomogeneity of the reservoir permeability to the fracture time evolution is also demonstrated.

  19. Voronoi based microstructure modelling for elastic wave propagation

    NASA Astrophysics Data System (ADS)

    Shivaprasad, S.; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2016-02-01

    Ultrasonic assessment of materials and defects are affected by microstructural parameters like grain size and texture. When a beam of ultrasound propagates in a polycrystalline medium, it undergoes extensive scattering by grains, grain boundaries and other microstructural features such as dislocations, voids, micro cracks etc. To understand the role of anisotropy and grain size distribution on an ultrasonic beam, a model system is proposed for carrying out ultrasonic wave propagation in a model characterized by grain size distribution and grain orientation distribution. A 2D polycrystalline medium constructed using Voronoi tessellations with a specific grain size distribution is considered and orientational averaging studies are carried out.

  20. Acoustic streaming induced elimination of nonspecifically bound proteins from a surface acoustic wave biosensor: Mechanism prediction using fluid-structure interaction models

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Subramanian K. R. S.; Singh, Reetu; Bhethanabotla, Venkat R.

    2010-11-01

    Biosensors typically operate in liquid media for detection of biomarkers and suffer from fouling resulting from nonspecific binding of protein molecules to the device surface. In the current work, using a coupled field finite element fluid-structure interaction simulation, we have identified that fluid motion induced by high intensity sound waves, such as those propagating in these sensors, can lead to the efficient removal of the nonspecifically bound proteins thereby eliminating sensor fouling. We present a computational analysis of the acoustic-streaming phenomenon induced biofouling elimination by surface acoustic-waves (SAWs) propagating on a lithium niobate piezoelectric crystal. The transient solutions generated from the developed coupled field fluid solid interaction model are utilized to predict trends in acoustic-streaming induced forces for varying design parameters such as voltage intensity, device frequency, fluid viscosity, and density. We utilize these model predictions to compute the various interaction forces involved and thereby identify the possible mechanisms for removal of nonspecifically-bound proteins. For the range of sensor operating conditions simulated, our study indicates that the SAW motion acts as a body force to overcome the adhesive forces of the fouling proteins to the device surface whereas the acoustic-streaming induced hydrodynamic forces prevent their reattachment. The streaming velocity fields computed using the finite element models in conjunction with the proposed particle removal mechanism were used to identify the optimum conditions that lead to improved removal efficiency. We show that it is possible to tune operational parameters such as device frequency and input voltage to achieve effective elimination of biofouling proteins in typical biosensing media. Our simulation results agree well with previously reported experimental observations. The findings of this work have significant implications in designing reusable

  1. Effect of spatial dispersion on transient acoustic wave propagation in 3D.

    PubMed

    Every, A G

    2006-12-22

    Spatial dispersion is the variation of wave speed with wavelength. It sets in when the acoustic wavelength approaches the natural scale of length of the medium, which could, for example, be the lattice constant of a crystal, the repeat distance in a superlattice, or the grain size in a granular material. In centrosymmetric media, the first onset of dispersion is accommodated by the introduction of fourth order spatial derivatives into the wave equation. These lead to a correction to the phase velocity which is quadratic in the spatial frequency. This paper treats the effect of spatial dispersion on the point force elastodynamic Green's functions of solids. The effects of dispersion are shown to be most pronounced in the vicinity of wave arrivals. These lose their singular form, and are transformed into wave trains known as quasi-arrivals. The step and ramp function wave arrivals are treated, and it is shown that their unfolded quasi-arrival forms can be expressed in terms of integrals involving the Airy function. PMID:16828830

  2. Investigation of Hydraulic Fracture Propagation Using a Post-Peak Control System Coupled with Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Chen, Li-Hsien; Chen, Wei-Chih; Chen, Yao-Chung; Benyamin, Leo; Li, An-Jui

    2015-05-01

    This study investigates the fracture mechanism of fluid coupled with a solid resulting from hydraulic fracture. A new loading machine was designed to improve upon conventional laboratory hydraulic fracture testing and to provide a means of better understanding fracture behavior of solid media. Test specimens were made of cement mortar. An extensometer and acoustic emission (AE) monitoring system recorded the circumferential deformation and crack growth location/number during the test. To control the crack growth at the post-peak stage the input fluid rate can be adjusted automatically according to feedback from the extensometer. The complete stress-deformation curve, including pre- and post-peak stages, was therefore obtained. The crack extension/growth developed intensively after the applied stress reached the breakdown pressure. The number of cracks recorded by the AE monitoring system was in good agreement with the amount of deformation (expansion) recorded by the extensometer. The results obtained in this paper provide a better understanding of the hydraulic fracture mechanism which is useful for underground injection projects.

  3. A numerical calculation of outward propagation of solar disturbances. [solar atmospheric model with shock wave propagation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1974-01-01

    The responses of the solar atmosphere due to an outward propagation shock are examined by employing the Lax-Wendroff method to solve the set of nonlinear partial differential equations in the model of the solar atmosphere. It is found that this theoretical model can be used to explain the solar phenomena of surge and spray. A criterion to discriminate the surge and spray is established and detailed information concerning the density, velocity, and temperature distribution with respect to the height and time is presented. The complete computer program is also included.

  4. Uncertainty propagation in a cascade modelling approach to flood mapping

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rincón, J. P.; Pedrozo-Acuña, A.; Breña Naranjo, J. A.

    2014-07-01

    The purpose of this investigation is to study the propagation of meteorological uncertainty within a cascade modelling approach to flood mapping. The methodology is comprised of a Numerical Weather Prediction Model (NWP), a distributed rainfall-runoff model and a standard 2-D hydrodynamic model. The cascade of models is used to reproduce an extreme flood event that took place in the Southeast of Mexico, during November 2009. The event is selected as high quality field data (e.g. rain gauges; discharge) and satellite imagery are available. Uncertainty in the meteorological model (Weather Research and Forecasting model) is evaluated through the use of a multi-physics ensemble technique, which considers twelve parameterization schemes to determine a given precipitation. The resulting precipitation fields are used as input in a distributed hydrological model, enabling the determination of different hydrographs associated to this event. Lastly, by means of a standard 2-D hydrodynamic model, hydrographs are used as forcing conditions to study the propagation of the meteorological uncertainty to an estimated flooded area. Results show the utility of the selected modelling approach to investigate error propagation within a cascade of models. Moreover, the error associated to the determination of the runoff, is showed to be lower than that obtained in the precipitation estimation suggesting that uncertainty do not necessarily increase within a model cascade.

  5. An information propagation model considering incomplete reading behavior in microblog

    NASA Astrophysics Data System (ADS)

    Su, Qiang; Huang, Jiajia; Zhao, Xiande

    2015-02-01

    Microblog is one of the most popular communication channels on the Internet, and has already become the third largest source of news and public opinions in China. Although researchers have studied the information propagation in microblog using the epidemic models, previous studies have not considered the incomplete reading behavior among microblog users. Therefore, the model cannot fit the real situations well. In this paper, we proposed an improved model entitled Microblog-Susceptible-Infected-Removed (Mb-SIR) for information propagation by explicitly considering the user's incomplete reading behavior. We also tested the effectiveness of the model using real data from Sina Microblog. We demonstrate that the new proposed model is more accurate in describing the information propagation in microblog. In addition, we also investigate the effects of the critical model parameters, e.g., reading rate, spreading rate, and removed rate through numerical simulations. The simulation results show that, compared with other parameters, reading rate plays the most influential role in the information propagation performance in microblog.

  6. Effect of soil texture and excitation frequency on the propagation and attenuation of acoustic waves at saturated conditions

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Yeh, Chao-Lung; Jan, Chyan-Deng

    2008-08-01

    SummaryThe study of the propagation and dissipation of acoustic waves through a fluid-containing porous medium is crucial for the successful application of seismic methods to characterize subsurface hydrological properties. To gain a better understanding of changes in two important acoustic wave characteristics (speed and attenuation) due to the effect of soil texture and excitation frequency, a complex-valued dispersion relation obtained from the Biot theory of poroelasticity was solved numerically for eleven soil texture classes whose pore space is fully saturated by one of two very different fluids, air or water. Two modes of acoustic motion can be demonstrated to exist, known as the Biot fast and slow waves. Five lower excitation frequencies (100-500 Hz) were selected for numerical simulation, below which Darcy's law remains valid for describing porous media flow under wave perturbation. Numerical results show that in the frequency range we examined, the predicted phase speed of the Biot fast wave takes the same value as the Biot reference speed. The variation in speed is not obvious in a water-filled system, but becomes more significant in an air-filled system. When the pore fluid is water, an inverse linear relation exists between the phase speed of the Biot fast wave and porosity. An important physical parameter controlling its attenuation coefficient is intrinsic permeability, which renders a positive impact. A statistical analysis indicates that the attenuation coefficient of the Biot fast wave linearly increases with an increase in intrinsic permeability. In an air-saturated system, the phase speed of the Biot slow wave is found to be quadratically proportional to intrinsic permeability, whereas the attenuation coefficient of the Biot slow wave bears a quadratic relation with the inverse of intrinsic permeability. A study on the influence of pore fluid reveals that the Biot fast wave attenuates more in the water-saturated system than in the air

  7. A Thermo-Optic Propagation Modeling Capability.

    SciTech Connect

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developed for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.

  8. Finite Element Modeling of Guided Wave Propagation in Plates

    NASA Astrophysics Data System (ADS)

    Kumar KM, Manoj; Ramaswamy, Sivaramanivas; Kommareddy, Vamshi; Baskaran, Ganesan; Zongqi, Sun; Kirkire, Gautam

    2006-03-01

    This paper aims at developing a numerical model for guided wave propagation in plates and the interaction of modes with defects using Finite Element Modeling (FEM). Guided waves propagate as extensional, flexural and torsional waves. Theoretically, these modes are infinite in number, but only some of these propagate and the others are attenuated. The dispersion curves for a structure reveal the plausibility of these modes. In this paper, FEM is used to examine interaction of first few symmetric and anti-symmetric modes independently with the cracks of various sizes in a plate. A time-frequency representation of the acquired guided wave mode signals will be discussed to show the mode sensitivity with crack size.

  9. Global modeling of CME propagation in the solar wind

    NASA Astrophysics Data System (ADS)

    Pizzo, V. J.

    Begging the question of build-up, initiation, and launch, our ability to model the propagation of CMEs out into the interplanetary medium depends upon (1) how well we can characterize the timing, location, geometry, and dynamical content of the ejecta in the lower corona; (2) how well we know the background flow into which the CME propagates; and (3) how well we can describe the subsequent interaction between CME and the structured, background, quasi-steady wind. Simulations of CMEs are needed to help interpret observations of complicated transient structures and are essential to space weather applications. We assess where we stand in terms of observational and simulation capabilities for CME propagation models and offer suggestions for further development.

  10. Free films of a partially wetting liquid under the influence of a propagating MHz surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Altshuler, Gennady; Manor, Ofer

    2016-07-01

    We use both theory and experiment to study the response of thin and free films of a partially wetting liquid to a MHz vibration, propagating in the solid substrate in the form of a Rayleigh surface acoustic wave (SAW). We generalise the previous theory for the response of a thin fully wetting liquid film to a SAW by including the presence of a small but finite three phase contact angle between the liquid and the solid. The SAW in the solid invokes a convective drift of mass in the liquid and leaks sound waves. The dynamics of a film that is too thin to support the accumulation of the sound wave leakage is governed by a balance between the drift and capillary stress alone. We use theory to demonstrate that a partially wetting liquid film, supporting a weak capillary stress, will spread along the path of the SAW. A partially wetting film, supporting an appreciable capillary stress, will however undergo a concurrent dynamic wetting and dewetting at the front and the rear, respectively, such that the film will displace, rather than spread, along the path of the SAW. The result of the theory for a weak capillary stress is in agreement with the previous experimental and theoretical studies on the response of thin silicon oil films to a propagating SAW. No corresponding previous results exist for the case of an appreciable capillary stress. We thus complement the large capillary limit of our theory by undertaking an experimental procedure where we explore the response of films of water and a surfactant solutions to a MHz SAW, which is found to be in qualitative agreement with the theory at this limit.

  11. Shock Propagation Modeling in Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Haill, Thomas

    2013-06-01

    Shock compression of foams is an intriguing research area that challenges our abilities to model experiments using computer simulations that span 9 orders of magnitude in spatial scales from the atomistic scale through the mesoscale and up to the continuum levels. Experiments test shock compression of dense polymers, polymer foams, and high-Z doped foams. Random distributions of polymer fibers, variations in pore size, and non-uniformities in the bulk properties of the foam (such as mean density) lead to spread in the experimental data. Adding dopants to foams introduces new complexities and the effect of the distribution and sizes of dopant particles must be characterized and understood. Therefore we turn to computer simulation to illumine the intricacies of the experiments that cannot be directly measured. This paper overviews of our range of methods to model pure and platinum-doped poly-methyl-pentene (PMP) foams. At the nanometer scale, hydrodynamic simulations compare favorably to classical molecular dynamics (MD) simulations of porous foams, verifying models of foam vaporization under strong shock conditions. Inhomogeneous mesoscale and homogenized continuum simulations present contrasting pictures of shocked foams. Mesoscale simulations at the micron scale have diffuse shock widths that depend upon the pore size, and post-shock vorticity results in fluctuations about the mean post-shock state and lower mean pressures and temperatures. Homogenized simulations, in the limit of zero pore size, have narrow shock widths, steady post-shock states, and higher mean pressures and temperature that compare favorably with 1D analysis of experiments. We reconcile the contrasting mesoscale and continuum views using theoretical turbulent corrections to the Hugoniot jump condition to show a consistent picture of shocked foams over 9 orders of spatial scale. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

  12. Modeling low elevation GPS signal propagation in maritime atmospheric ducts

    NASA Astrophysics Data System (ADS)

    Zhang, Jinpeng; Wu, Zhensen; Wang, Bo; Wang, Hongguang; Zhu, Qinglin

    2012-05-01

    Using the parabolic wave equation (PWE) method, we model low elevation GPS L1 signal propagation in maritime atmospheric ducts. To consider sea surface impedance, roughness, and the effects of earth's curvature, we propose a new initial field model for the GPS PWE split-step solution. On the basis of the comparison between the proposed model and the conventional initial field model for a smooth, perfectly conducting sea surface on a planar earth, we conclude that both the amplitude and phase of the initial field are influenced by surface impedance and roughness, and that the interference behavior between direct and reflected GPS rays is affected by earth's curvature. The performance of the proposed model is illustrated with examples of low elevation GPS L1 signal propagation in three types of ducts: an evaporation duct, a surface-based duct, and an elevated duct. The GPS PWE is numerically implemented using the split-step discrete mixed Fourier transform algorithm to enforce impedance-type boundary conditions at the rough sea surface. Because the GPS signal is right hand circularly polarized, we calculate its power strength by combining the propagation predictions of the horizontally and the vertically polarized components. The effects of the maritime atmospheric ducts on low elevation GPS signal propagation are demonstrated according to the presented examples, and the potential applications of the GPS signals affected by ducts are discussed.

  13. Modeling Crack Propagation in Polycrystalline Microstructure Using Variational Multiscale Method

    DOE PAGESBeta

    Sun, S.; Sundararaghavan, V.

    2016-01-01

    Crack propagation in a polycrystalline microstructure is analyzed using a novel multiscale model. The model includes an explicit microstructural representation at critical regions (stress concentrators such as notches and cracks) and a reduced order model that statistically captures the microstructure at regions far away from stress concentrations. Crack propagation is modeled in these critical regions using the variational multiscale method. In this approach, a discontinuous displacement field is added to elements that exceed the critical values of normal or tangential tractions during loading. Compared to traditional cohesive zone modeling approaches, the method does not require the use of any specialmore » interface elements in the microstructure and thus can model arbitrary crack paths. The capability of the method in predicting both intergranular and transgranular failure modes in an elastoplastic polycrystal is demonstrated under tensile and three-point bending loads.« less

  14. Studying Resist Stochastics with the Multivariate Poisson Propagation Model

    DOE PAGESBeta

    Naulleau, Patrick; Anderson, Christopher; Chao, Weilun; Bhattarai, Suchit; Neureuther, Andrew

    2014-01-01

    Progress in the ultimate performance of extreme ultraviolet resist has arguably decelerated in recent years suggesting an approach to stochastic limits both in photon counts and material parameters. Here we report on the performance of a variety of leading extreme ultraviolet resist both with and without chemical amplification. The measured performance is compared to stochastic modeling results using the Multivariate Poisson Propagation Model. The results show that the best materials are indeed nearing modeled performance limits.

  15. Thermal Acoustic Wave Propagation Within a Slightly Compressible Viscous Fluid-Filled Impermeable Cylindrical Elastic Tube.

    NASA Astrophysics Data System (ADS)

    Liang, Paul Nan-Jiune

    1990-01-01

    Three dimensional mode shapes for thermoelastic waves in a viscous, compressible, fluid-filled infinite annular elastic concentric cylinder are studied using the exact coupled three dimensional equations for the vibrations in the n = 0, 1 circumferential modes. These results are related to those which arise under circumstances where uncoupled shear modes in the wall and the fluid have similar axial phase velocities and therefore are in a state sometimes called "coincidence". Three dimensional dispersion curves and modal wave plots are presented for a range of parameters including a steel tube containing water, glycerin and air. The corresponding axial mode shapes and radial mode shapes and their three dimensional equivalents are plotted so that the types of wave motion can be identified. The thermal effect for wave propagation in a fluid -filled annular elastic steel tube is found to be very important. This effect can cause a 15% difference (the average for water and glycerin) with that neglecting the thermal effect with the system equations. However, for an elastic steel tube or a fluid line alone, the thermal effect is small (< 1%) under the conditions of room temperature and the radius ratio of inner to outer radii is 0.93. The mechanism for the importance of the thermal effect in the coupled fluid-solid problem is related to the relatively higher thermal conductivity at the solid wall which conducts away heat from the relatively insulated viscous liquid boundary layer.

  16. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials

    PubMed Central

    Zhu, Xuefeng; Li, Kun; Zhang, Peng; Zhu, Jie; Zhang, Jintao; Tian, Chao; Liu, Shengchun

    2016-01-01

    The ability to slow down wave propagation in materials has attracted significant research interest. A successful solution will give rise to manageable enhanced wave–matter interaction, freewheeling phase engineering and spatial compression of wave signals. The existing methods are typically associated with constructing dispersive materials or structures with local resonators, thus resulting in unavoidable distortion of waveforms. Here we show that, with helical-structured acoustic metamaterials, it is now possible to implement dispersion-free sound deceleration. The helical-structured metamaterials present a non-dispersive high effective refractive index that is tunable through adjusting the helicity of structures, while the wavefront revolution plays a dominant role in reducing the group velocity. Finally, we numerically and experimentally demonstrate that the helical-structured metamaterials with designed inhomogeneous unit cells can turn a normally incident plane wave into a self-accelerating beam on the prescribed parabolic trajectory. The helical-structured metamaterials will have profound impact to applications in explorations of slow wave physics. PMID:27198887

  17. Effect of dust charge fluctuation on the propagation of dust-ion acoustic waves in inhomogeneous mesospheric dusty plasma

    SciTech Connect

    Mowafy, A. E.; El-Shewy, E. K.; Zahran, M. A.; Moslem, W. M.

    2008-07-15

    Investigation of positive and negative dust charge fluctuations on the propagation of dust-ion acoustic waves (DIAWs) in a weakly inhomogeneous, collisionless, unmagnetized dusty plasmas consisting of cold positive ions, stationary positively and negatively charged dust particles and isothermal electrons. The reductive perturbation method is employed to reduce the basic set of fluid equations to the variable coefficients Korteweg-de Varies (KdV) equation. At the critical ion density, the KdV equation is not appropriate for describing the system. Hence, a new set of stretched coordinates is considered to derive the modified variable coefficients KdV equation. It is found that the presence of positively charged dust grains does not only significantly modify the basic properties of solitary structure, but also changes the polarity of the solitary profiles. In the vicinity of the critical ion density, neither KdV nor the modified KdV equation is appropriate for describing the DIAWs. Therefore, a further modified KdV equation is derived, which admits both soliton and double layer solutions.

  18. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials

    NASA Astrophysics Data System (ADS)

    Zhu, Xuefeng; Li, Kun; Zhang, Peng; Zhu, Jie; Zhang, Jintao; Tian, Chao; Liu, Shengchun

    2016-05-01

    The ability to slow down wave propagation in materials has attracted significant research interest. A successful solution will give rise to manageable enhanced wave-matter interaction, freewheeling phase engineering and spatial compression of wave signals. The existing methods are typically associated with constructing dispersive materials or structures with local resonators, thus resulting in unavoidable distortion of waveforms. Here we show that, with helical-structured acoustic metamaterials, it is now possible to implement dispersion-free sound deceleration. The helical-structured metamaterials present a non-dispersive high effective refractive index that is tunable through adjusting the helicity of structures, while the wavefront revolution plays a dominant role in reducing the group velocity. Finally, we numerically and experimentally demonstrate that the helical-structured metamaterials with designed inhomogeneous unit cells can turn a normally incident plane wave into a self-accelerating beam on the prescribed parabolic trajectory. The helical-structured metamaterials will have profound impact to applications in explorations of slow wave physics.

  19. Stability of three-dimensional obliquely propagating dust acoustic waves in dusty plasma including the polarization force effect

    NASA Astrophysics Data System (ADS)

    El-Labany, S. K.; El-Taibany, W. F.; Behery, E. E.; Zedan, N. A.

    2015-12-01

    Propagation of dust acoustic solitary waves (DASWs) in a magnetized dusty plasma consisting of extremely massive, negatively/positively charged dust fluid and Boltzmann distributed electrons and ions is studied. A nonlinear Zakharov-Kuznetsov (ZK) equation adequate for describing the solitary waves is derived by applying a reductive perturbation technique. Moreover, an extended Zakharov Kuznetsov (EZK) equation is derived at the vicinity of the critical phase velocity. The effects of the polarization force are explicitly discussed and the growth rate of the produced waves is calculated. It is found that the physical parameters have strong effects on the instability criterion as well as on the growth rate. It is noted that the phase velocity decreases as the polarization force, the effective-to-ion temperature ratio, and the ion-to-electron temperature ratio increase. Moreover, the nonlinearity coefficient and the critical phase velocity increase by increasing the polarization force. The relevance of these findings to a recent plasma experiment and astrophysical plasma observations is briefly discussed.

  20. Theoretical investigation of surface acoustic wave propagation characteristics in periodic (AlN/ZnO)N /diamond multilayer structures

    NASA Astrophysics Data System (ADS)

    Qian, Lirong; Li, Cuiping; Li, Mingji; Wang, Fang; Yang, Baohe

    2014-11-01

    Propagation characteristics of surface acoustic wave (SAW) in periodic (AlN/ZnO)N/diamond multilayer structures were theoretically investigated using effective permittivity method. The phase velocity Vp, electromechanical coupling coefficient K2, and temperature coefficient of frequency (TCF) of the Sezawa mode are analyzed for different thicknesses-to-wavelength H/λ, thickness ratios of AlN to ZnO Rh, and periods of alternating ZnO and AlN layers N. Results show that, comparing with AlN/ZnO/diamond multilayer structure, the periodic (AlN/ZnO)N/diamond multilayer structure (N ≥ 2) shows excellent electromechanical coupling and temperature stable characteristics with significantly improved K2 and TCF. The largest coupling coefficient of 3.0% associated with a phase velocity of 5726 m/s and a TCF of -29.2 ppm/°C can be reached for Rh = 0.2 and N = 2. For a low TCF of -24.4 ppm/°C, a large coupling coefficient of 2.0% associated with a phase velocity of 7058 m/s can be obtained for Rh = 1.0 and N = 5. The simulated results can be used to design the low loss and good temperature stability SAW devices of gigahertz-band application.

  1. Theoretical analysis of surface acoustic wave propagating properties of Y-cut nano lithium niobate film on silicon dioxide

    SciTech Connect

    Chen, Jing Zhang, Qiaozhen; Han, Tao; Zhou, Liu; Tang, Gongbin; Liu, Boquan; Ji, Xiaojun

    2015-08-15

    The surface acoustic wave (SAW) propagating characteristics of Y-cut nano LiNbO{sub 3} (LN) film on SiO{sub 2}/LN substrate have been theoretically calculated. The simulated results showed a shear horizontal (SH) SAW with enhanced electromechanical coupling factor K{sup 2} owing to a dimensional effect of the nanoscale LN film. However, a Rayleigh SAW and two other resonances related to thickness vibrations caused spurious responses for wideband SAW devices. These spurious waves could be fully suppressed by properly controlling structural parameters including the electrode layer height, thickness, and the Euler angle (θ) of the LN thin film. Finally, a pure SH SAW was obtained with a wide θ range, from 0° to 5° and 165° to 180°. The largest K{sup 2} achieved for the pure SH SAW was about 35.1%. The calculated results demonstrate the promising application of nano LN film to the realization of ultra-wideband SAW devices.

  2. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials.

    PubMed

    Zhu, Xuefeng; Li, Kun; Zhang, Peng; Zhu, Jie; Zhang, Jintao; Tian, Chao; Liu, Shengchun

    2016-01-01

    The ability to slow down wave propagation in materials has attracted significant research interest. A successful solution will give rise to manageable enhanced wave-matter interaction, freewheeling phase engineering and spatial compression of wave signals. The existing methods are typically associated with constructing dispersive materials or structures with local resonators, thus resulting in unavoidable distortion of waveforms. Here we show that, with helical-structured acoustic metamaterials, it is now possible to implement dispersion-free sound deceleration. The helical-structured metamaterials present a non-dispersive high effective refractive index that is tunable through adjusting the helicity of structures, while the wavefront revolution plays a dominant role in reducing the group velocity. Finally, we numerically and experimentally demonstrate that the helical-structured metamaterials with designed inhomogeneous unit cells can turn a normally incident plane wave into a self-accelerating beam on the prescribed parabolic trajectory. The helical-structured metamaterials will have profound impact to applications in explorations of slow wave physics. PMID:27198887

  3. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  4. Soliton model of a photon propagating in dielectrics

    NASA Astrophysics Data System (ADS)

    Bersons, I.; Veilande, R.; Balcers, O.

    2016-06-01

    The previously proposed three-dimensional soliton model of a photon propagating in vacuum is modified to describe its propagation in a homogeneous linear dielectric medium. The one-soliton solution of the derived nonlinear equation correctly predicts the energy and the Abraham and Minkowski momenta of the photon in dielectrics. A new nonlinear equation is proposed, which has a one-soliton solution that at every point oscillates with the same frequency and falls exponentially in the longitudinal, as well as in the transverse direction from the centre of the soliton.

  5. Frequency and Time Domain Modeling of Acoustic Liner Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.

    1982-01-01

    As part of a research program directed at the acoustics of advanced subsonic propulsion systems undertaken at NASA Langley, Duke University was funded to develop a boundary condition model for bulk-reacting nacelle liners. The overall objective of the Langley program was to understand and predict noise from advanced subsonic transport engines and to develop related noise control technology. The overall technical areas included: fan and propeller source noise, acoustics of ducts and duct liners, interior noise, subjective acoustics, and systems noise prediction. The Duke effort was directed toward duct liner acoustics for the development of analytical methods to characterize liner behavior in both frequency domain and time domain. A review of duct acoustics and liner technology can be found in Reference [1]. At that time, NASA Langley was investigating the propulsion concept of an advanced ducted fan, with a large diameter housed inside a relatively short duct. Fan diameters in excess of ten feet were proposed. The lengths of both the inlet and exhaust portions of the duct were to be short, probably less than half the fan diameter. The nacelle itself would be relatively thin-walled for reasons of aerodynamic efficiency. The blade-passage frequency was expected to be less than I kHz, and very likely in the 200 to 300 Hz range. Because of the design constraints of a short duct, a thin nacelle, and long acoustic wavelengths, the application of effective liner technology would be especially challenging. One of the needs of the NASA Langley program was the capability to accurately and efficiently predict the behavior of the acoustic liner. The traditional point impedance method was not an adequate model for proposed liner designs. The method was too restrictive to represent bulk reacting liners and to allow for the characterization of many possible innovative liner concepts. In the research effort at Duke, an alternative method, initially developed to handle bulk

  6. Design, characterization and modeling of biobased acoustic foams

    NASA Astrophysics Data System (ADS)

    Ghaffari Mosanenzadeh, Shahrzad

    Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube

  7. Simplified ultraviolet and visible wavelength atmospheric propagation model.

    PubMed

    Patterson, E M; Gillespie, J B

    1989-02-01

    We have developed a program to model atmospheric propagation and lidar return at visible and UV wavelengths. This model combines a transmission code suitable for use in the visible and UV regions with a backscatter code for Mie and fluorescence lidar return calculations and a sky background radiance code into a modular menu-driven user friendly FORTRAN program for an IBM PC or PC compatible system. This propagation model includes attenuation due to molecular scattering, molecular absorption, and particulate attenuation. The wavelength dependence of our aerosol attenuation is parametrized in terms of the visual range to provide an approximate match for UV and visible horizontal attenuation data. This aerosol model is compared with the AFGL standard aerosol models and experimental data on atmospheric attenuation as a function of the visual range. PMID:20548498

  8. Effects of ion-temperature on propagation of the large-amplitude ion-acoustic solitons in degenerate electron-positron-ion plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2010-08-15

    Large-amplitude ion-acoustic solitary wave (IASW) propagation and matching criteria of existence of such waves are investigated in a degenerate dense electron-positron-ion plasma considering the ion-temperature as well as electron/positron degeneracy effects. It is shown that the ion-temperature effects play an important role in the existence criteria and allowed Mach-number range in such plasmas. Furthermore, a fundamental difference is remarked in the existence of supersonic IASW propagations between degenerate plasmas with nonrelativistic and ultrarelativistic electrons and positrons. Current study may be helpful in astrophysical as well as the laboratory inertial confinement fusion-research.

  9. Transcranial Assessment and Visualization of Acoustic Cavitation: Modeling and Experimental Validation

    PubMed Central

    Clement, Gregory T.; McDannold, Nathan

    2015-01-01

    The interaction of ultrasonically-controlled microbubble oscillations (acoustic cavitation) with tissues and biological media has been shown to induce a wide range of bioeffects that may have significant impact to therapy and diagnosis of central nervous system diseases and disorders. However, the inherently non-linear microbubble oscillations combined with the micrometer and microsecond scales involved in these interactions and the limited methods to assess and visualize them transcranially hinder both their optimal use and translation to the clinics. To overcome these challenges, we present a noninvasive and clinically relevant framework that combines numerical simulations with multimodality imaging to assess and visualize the microbubble oscillations transcranially. In the present work, acoustic cavitation was studied with an integrated US and MR imaging guided clinical FUS system in non-human primates. This multimodality imaging system allowed us to concurrently induce and visualize acoustic cavitation transcranially. A high-resolution brain CT-scan that allowed us to determine the head acoustic properties (density, speed of sound, and absorption) was also co-registered to the US and MR images. The derived acoustic properties and the location of the targets that were determined by the 3D-CT scans and the post sonication MRI respectively were then used as inputs to two-and three-dimensional Finite Difference Time Domain (2D, 3D-FDTD) simulations that matched the experimental conditions and geometry. At the experimentally-determined target locations, synthetic point sources with pressure amplitude traces derived by either a Gaussian function or the output of a microbubble dynamics model were numerically excited and propagated through the skull towards a virtual US imaging array. Then, using passive acoustic mapping that was refined to incorporate variable speed of sound, we assessed the losses and aberrations induced by the skull as a function of the acoustic

  10. Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyong; Zhu, Linhe

    2016-06-01

    The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. Rumor propagation in social networks has brought new challenges to network security and social stability. This paper, based on partial differential equations (PDEs), proposes a new SIS rumor propagation model by considering the effect of the communication between the different rumor infected users on rumor propagation. The stabilities of a nonrumor equilibrium point and a rumor-spreading equilibrium point are discussed by linearization technique and the upper and lower solutions method, and the existence of a traveling wave solution is established by the cross-iteration scheme accompanied by the technique of upper and lower solutions and Schauder’s fixed point theorem. Furthermore, we add the time delay to rumor propagation and deduce the conditions of Hopf bifurcation and stability switches for the rumor-spreading equilibrium point by taking the time delay as the bifurcation parameter. Finally, numerical simulations are performed to illustrate the theoretical results.

  11. Anisotropic electromagnetic wave propagation modeling using parabolic approximations

    NASA Astrophysics Data System (ADS)

    Brent, R. I.; Siegmann, W. L.; Jacobson, M. J.; Jacyna, G. M.

    1990-12-01

    A new method for the investigation of anisotropic electromagnetic wave propagation in the atmosphere is developed using parabolic approximations. Model equations for the electric field components are formulated which include the effects of both the inhomogeneous atmosphere and the static magnetic field of the earth. Application of parabolic-type approximations produces different systems of coupled parabolic equations. Each is valid for different relative magnitudes of components of the electric field. All admissible cases are then synthesized into one system which can be numerically examined, yielding solutions without a priori knowledge of electric field ratios. A specific example is presented and examined to understand static magnetic field effects on electromagnetic wave propagation. The influences of the earth's magnetic field are discussed and displayed in terms of electric components and the Poynting vector. Results demonstrate that the geomagnetic field can significantly influence HF atmospheric propagation.

  12. Proper orthogonal decomposition and cluster weighted modeling for sensitivity analysis of sound propagation in the atmospheric surface layer.

    PubMed

    Pettit, Chris L; Wilson, D Keith

    2007-09-01

    Outdoor sound propagation predictions are compromised by uncertainty and error in the atmosphere and terrain representations, and sometimes also by simplified or incorrect physics. A model's predictive power, i.e., its accurate representation of the sound propagation, cannot be assessed without first quantifying the ensemble sound pressure variability and sensitivity to uncertainties in the model's governing parameters. This paper describes fundamental steps toward this goal for a single-frequency point source. The atmospheric surface layer is represented through Monin-Obukhov similarity theory and the acoustic ground properties with a relaxation model. Sound propagation is predicted with the parabolic equation method. Governing parameters are modeled as independent random variables across physically reasonable ranges. Latin hypercube sampling and proper orthogonal decomposition (POD) are employed in conjunction with cluster-weighted models to develop compact representations of the sound pressure random field. Full-field sensitivity of the sound pressure field is computed via the sensitivities of the POD mode coefficients to the system parameters. Ensemble statistics of the full-field sensitivities are computed to illustrate their relative importance at every down range location. The central role of sensitivity analysis in uncertainty quantification of outdoor sound propagation is discussed and pitfalls of sampling-based sensitivity analysis for outdoor sound propagation are described. PMID:17927400

  13. A combined model for tsunami generation and propagation

    NASA Astrophysics Data System (ADS)

    Lima, Vania; Baptista, Maria Ana; Avilez-Valente, Paulo; Miranda, Miguel

    2016-04-01

    Several tsunami models apply different wave models and numerical schemes with the aim of modelling the wide variety of wave phenomena, as its generation, propagation, transformation and run-up. However, models are limited by mathematical and numerical formulations which constrain their scope of applications. Combined models are an interesting option as they allow merging the advantages of different existent models into a single one. In this work a tsunami combined model which couples the GeoClaw code, an extension of the Clawpack software for geophysical flows using adaptive finite volume methods, with the fully non-linear, phase-resolving, time-stepping Boussinesq wave model FUNWAVE-TVD for near-shore water wave propagation is presented. GeoClaw is used for the seismic tsunami generation of the 1969 Portugal tsunami and with FUNWAVE-TVD we study the propagation of the tsunami and near-shore surface elevations. Both codes have been individually benchmarked with some mandatory established benchmark problems. The results obtained from the numerical simulation are compared with existent observational data along the Portuguese coast for this historical event. This work received funding from FCT (SFRH/BD/96725/2013) and project ASTARTE - Assessment Strategy and risk Reduction For Tsunamis in Europe - Grant 603839 - FP7.

  14. Overview of the Ares I Scale Model Acoustic Test Program

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2011-01-01

    Launch environments, such as lift-off acoustic (LOA) and ignition overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. LOA environments are used directly in the development of vehicle vibro-acoustic environments and IOP is used in the loads assessment. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe for component survivability, reduction of the environment itself is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the Ares I LOA and IOP environments for the vehicle and ground systems including the Mobile Launcher (ML) and tower. An additional objective was to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. ASMAT was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116 (TS 116). The ASMAT program is described in this presentation.

  15. Using a fast Fourier method to model sound propagation in a stratified atmosphere over a stratified porous-elastic ground

    NASA Technical Reports Server (NTRS)

    Tooms, S.; Attenborough, K.

    1990-01-01

    Using a Fast Fourier integration method and a global matrix method for solution of the boundary condition equations at all interfaces simultaneously, a useful tool for predicting acoustic propagation in a stratified fluid over a stratified porous-elastic solid was developed. The model for the solid is a modified Biot-Stoll model incorporating four parameters describing the pore structure corresponding to the Rayleigh-Attenborough rigid-porous structure model. The method is also compared to another Fast Fourier code (CERL-FFP) which models the ground as an impedance surface under a horizontally stratified air. Agreement with the CERL FFP is good. The effects on sound propagation of a combination of ground elasticity, complex ground structure, and atmospheric conditions are demonstrated by theoretical results over a snow layer, and experimental results over a model ground surface.

  16. Wide-area assessment of topographical and meteorological effects on sound propagation by time-domain modeling.

    PubMed

    Heimann, Dietrich

    2013-05-01

    Noise mapping with a three-dimensional finite-difference time-domain (FDTD) model over larger areas suffers from its high computational demand. This study shows that an FDTD model in combination with a meteorological model can be used for at least qualitative assessments of topographical and meteorological effects on sound propagation in domains of even some kilometers extension. This is achieved by restricting the acoustical simulations to low frequencies which allow the use of a rather large numerical grid spacing. PMID:23656103

  17. Kinematic modeling of folding above listric propagating thrusts

    NASA Astrophysics Data System (ADS)

    Cardozo, Nestor; Brandenburg, J. P.

    2014-03-01

    We describe a kinematic approach to simulate folds above listric propagating thrusts. The model is based on a pre-defined circular thrust geometry with a maximum central angle beyond which the thrust is planar, inclined shear above the circular thrust, and trishear in front of the thrust. Provided the trajectory of thrust propagation is established, the model can be run forward and backwards. We use this last feature to implement a global simulated annealing, inverse modeling strategy. This inverse modeling strategy is applied to synthetic folds as well as two real examples in offshore Venezuela and the Niger Delta toe-thrust system. These three examples illustrate the benefits of the algorithm, particularly in predicting the possible range of models that can fit the structures. Thrust geometry, depth to detachment level, and backlimb geometry have high impact in model parameters such as backlimb shear angle and fault slip; while forelimb geometry is critical to constrain parameters such as fault propagation to fault slip ratio and trishear angle. Steep to overturned beds in forelimb areas are often not imaged by seismic, so in the absence of additional well data, considering all possible thrust-fold geometries is critical for the modeling and whatever prediction (e.g. hydrocarbon trap integrity) is made from it.

  18. Modeling the propagation of mobile malware on complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Wanping; Liu, Chao; Yang, Zheng; Liu, Xiaoyang; Zhang, Yihao; Wei, Zuxue

    2016-08-01

    In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.

  19. Finite element modelling for the investigation of edge effect in acoustic micro imaging of microelectronic packages

    NASA Astrophysics Data System (ADS)

    Shen Lee, Chean; Zhang, Guang-Ming; Harvey, David M.; Ma, Hong-Wei; Braden, Derek R.

    2016-02-01

    In acoustic micro imaging of microelectronic packages, edge effect is often presented as artifacts of C-scan images, which may potentially obscure the detection of defects such as cracks and voids in the solder joints. The cause of edge effect is debatable. In this paper, a 2D finite element model is developed on the basis of acoustic micro imaging of a flip-chip package using a 230 MHz focused transducer to investigate acoustic propagation inside the package in attempt to elucidate the fundamental mechanism that causes the edge effect. A virtual transducer is designed in the finite element model to reduce the coupling fluid domain, and its performance is characterised against the physical transducer specification. The numerical results showed that the under bump metallization (UBM) structure inside the package has a significant impact on the edge effect. Simulated wavefields also showed that the edge effect is mainly attributed to the horizontal scatter, which is observed in the interface of silicon die-to-the outer radius of solder bump. The horizontal scatter occurs even for a flip-chip package without the UBM structure.

  20. Vector wavefront propagation modeling for the TPF coronagraph

    NASA Astrophysics Data System (ADS)

    Lieber, Michael D.; Neureuther, Andrew R.; Ceperley, Dan; Kasdin, N. Jeremy; Ter-Gabrielyan, Nikolay

    2004-10-01

    The TPF mission to search for exo-solar planets is extremely challenging both technically and from a performance modeling perspective. For the visible light coronagraph approach, the requirements for 1e10 rejection of star light to planet signal has not yet been achieved in laboratory testing and full-scale testing on the ground has many more obstacles and may not be possible. Therefore, end-to-end performance modeling will be relied upon to fully predict performance. One of the key technologies developed for achieving the rejection ratios uses shaped pupil masks to selectively cancel starlight in planet search regions by taking advantage of diffraction. Modeling results published to date have been based upon scalar wavefront propagation theory to compute the residual star and planet images. This ignores the 3D structure of the mask and the interaction of light with matter. In this paper we discuss previous work with a system model of the TPF coronagraph and propose an approach for coupling in a vector propagation model using the Finite Difference Time Domain (FDTD) method. This method, implemented in a software package called TEMPEST, allows us to propagate wavefronts through a mask structure to an integrated system model to explore the vector propagation aspects of the problem. We can then do rigorous mask scatter modeling to understand the effects of real physical mask structures on the magnitude, phase, polarization, and wavelength dependence of the transmitted light near edges. Shaped mask technology is reviewed, and computational aspects and interface issues to a TPF integrated system model are also discussed.

  1. Analytical modelling of acoustic emission from buried or surface-breaking cracks under stress

    NASA Astrophysics Data System (ADS)

    Ben Khalifa, W.; Jezzine, K.; Hello, G.; Grondel, S.

    2012-03-01

    Acoustic emission (AE) is a non-destructive testing method used in various industries (aerospace, petrochemical and pressure-vessel industries in general, power generation, civil engineering, mechanical engineering, etc...) for the examination of large structures subjected to various stresses (e.g. mechanical loading).The energy released by a defect under stress (the AE phenomenon) can propagate as guided waves in thin structures or as surface Rayleigh waves in thick ones. Sensors (possibly permanently) are positioned at various locations on the structure under examination and are assumed to be sensitive to these waves. Then, post-processing tools typically based on signal processing and triangulation algorithms can be used to inverse these data, allowing one to estimate the position of the defect from which emanates the waves measured. The French Atomic Energy Commission is engaged in the development of tools for simulating AE examinations. These tools are based on specific models for the AE sources, for the propagation of guided or Rayleigh waves and for the behaviour of AE sensors. Here, the coupling of a fracture mechanics based model for AE source and surface/guided wave propagation models is achieved through an integral formulation relying on the elastodynamic reciprocity principle. As a first approximation, a simple piston-like model is used to predict the sensitivity of AE sensors. Predictions computed by our simulation tool are compared to results from the literature for validation purpose.

  2. 3D Multispectral Light Propagation Model For Subcutaneous Veins Imaging

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo methods.

  3. Asymptotic limits of some models for sound propagation in porous media and the assignment of the pore characteristic lengths.

    PubMed

    Horoshenkov, Kirill V; Groby, Jean-Philippe; Dazel, Olivier

    2016-05-01

    Modeling of sound propagation in porous media requires the knowledge of several intrinsic material parameters, some of which are difficult or impossible to measure directly, particularly in the case of a porous medium which is composed of pores with a wide range of scales and random interconnections. Four particular parameters which are rarely measured non-acoustically, but used extensively in a number of acoustical models, are the viscous and thermal characteristic lengths, thermal permeability, and Pride parameter. The main purpose of this work is to show how these parameters relate to the pore size distribution which is a routine characteristic measured non-acoustically. This is achieved through the analysis of the asymptotic behavior of four analytical models which have been developed previously to predict the dynamic density and/or compressibility of the equivalent fluid in a porous medium. In this work the models proposed by Johnson, Koplik, and Dashn [J. Fluid Mech. 176, 379-402 (1987)], Champoux and Allard [J. Appl. Phys. 70(4), 1975-1979 (1991)], Pride, Morgan, and Gangi [Phys. Rev. B 47, 4964-4978 (1993)], and Horoshenkov, Attenborough, and Chandler-Wilde [J. Acoust. Soc. Am. 104, 1198-1209 (1998)] are compared. The findings are then used to compare the behavior of the complex dynamic density and compressibility of the fluid in a material pore with uniform and variable cross-sections. PMID:27250142

  4. Acoustically-coupled flow-induced vibration of a computational vocal fold model

    PubMed Central

    Daily, David Jesse; Thomson, Scott L.

    2012-01-01

    The flow-induced vibration of synthetic vocal fold models has been previously observed to be acoustically-coupled with upstream flow supply tubes. This phenomenon was investigated using a finite element model that included flow–structure–acoustic interactions. The length of the upstream duct was varied to explore the coupling between model vibration and subglottal acoustics. Incompressible and slightly compressible flow models were tested. The slightly compressible model exhibited acoustic coupling between fluid and solid domains in a manner consistent with experimental observations, whereas the incompressible model did not, showing the slightly compressible approach to be suitable for simulating acoustically-coupled vocal fold model flow-induced vibration. PMID:23585700

  5. Acoustically-coupled flow-induced vibration of a computational vocal fold model.

    PubMed

    Daily, David Jesse; Thomson, Scott L

    2013-01-15

    The flow-induced vibration of synthetic vocal fold models has been previously observed to be acoustically-coupled with upstream flow supply tubes. This phenomenon was investigated using a finite element model that included flow-structure-acoustic interactions. The length of the upstream duct was varied to explore the coupling between model vibration and subglottal acoustics. Incompressible and slightly compressible flow models were tested. The slightly compressible model exhibited acoustic coupling between fluid and solid domains in a manner consistent with experimental observations, whereas the incompressible model did not, showing the slightly compressible approach to be suitable for simulating acoustically-coupled vocal fold model flow-induced vibration. PMID:23585700

  6. Optical Propagation Modeling for the National Ignition Facility

    SciTech Connect

    Williams, W H; Auerbach, J M; Henesian, M A; Jancaitis, K S; Manes, K R; Mehta, N C; Orth, C D; Sacks, R A; Shaw, M J; Widmayer, C C

    2004-01-12

    Optical propagation modeling of the National Ignition Facility has been utilized extensively from conceptual design several years ago through to early operations today. In practice we routinely (for every shot) model beam propagation starting from the waveform generator through to the target. This includes the regenerative amplifier, the 4-pass rod amplifier, and the large slab amplifiers. Such models have been improved over time to include details such as distances between components, gain profiles in the laser slabs and rods, transient optical distortions due to the flashlamp heating of laser slabs, measured transmitted and reflected wavefronts for all large optics, the adaptive optic feedback loop, and the frequency converter. These calculations allow nearfield and farfield predictions in good agreement with measurements.

  7. Optical propagation modeling for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Williams, Wade H.; Auerbach, Jerome M.; Henesian, Mark A.; Jancaitis, Kenneth S.; Manes, Kenneth R.; Mehta, Naresh C.; Orth, Charles D.; Sacks, Richard A.; Shaw, Michael J.; Widmayer, Clifford C.

    2004-05-01

    Optical propagation modeling of the National Ignition Facility has been utilized extensively from conceptual design several years ago through to early operations today. In practice we routinely (for every shot) model beam propagation starting from the waveform generator through to the target. This includes the regenerative amplifier, the 4-pass rod amplifier, and the large slab amplifiers. Such models have been improved over time to include details such as distances between components, gain profiles in the laser slabs and rods, transient optical distortions due to the flashlamp heating of laser slabs, measured transmitted and reflected wavefronts for all large optics, the adaptive optic feedback loop, and the frequency converter. These calculations allow nearfield and farfield predictions in good agreement with measurements.

  8. Cardiac dynamics: a simplified model for action potential propagation

    PubMed Central

    2012-01-01

    This paper analyzes a new semiphysiological ionic model, used recently to study reexitations and reentry in cardiac tissue [I.R. Cantalapiedra et al, PRE 82 011907 (2010)]. The aim of the model is to reproduce action potencial morphologies and restitution curves obtained, either from experimental data, or from more complex electrophysiological models. The model divides all ion currents into four groups according to their function, thus resulting into fast-slow and inward-outward currents. We show that this simplified model is flexible enough as to accurately capture the electrical properties of cardiac myocytes, having the advantage of being less computational demanding than detailed electrophysiological models. Under some conditions, it has been shown to be amenable to mathematical analysis. The model reproduces the action potential (AP) change with stimulation rate observed both experimentally and in realistic models of healthy human and guinea pig myocytes (TNNP and LRd models, respectively). When simulated in a cable it also gives the right dependence of the conduction velocity (CV) with stimulation rate. Besides reproducing correctly these restitution properties, it also gives a good fit for the morphology of the AP, including the notch typical of phase 1. Finally, we perform simulations in a realistic geometric model of the rabbit’s ventricles, finding a good qualitative agreement in AP propagation and the ECG. Thus, this simplified model represents an alternative to more complex models when studying instabilities in wave propagation. PMID:23194429

  9. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media

    SciTech Connect

    Vorobiev, O; Antoun, T

    2009-12-11

    This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both isotropic and anisotropic joint representations. For an isotropically jointed geologic medium, the results show that the properties of the joints can be combined with the properties of the intact rock to develop an equivalent continuum model suitable for analyzing wave propagation through the jointed medium. For an anisotropically jointed geologic medium, they found it difficult to develop an equivalent continuum (EC) model that matches the response derived from mesoscopic simulation. They also performed simulations of wave propagation through jointed media. Two appraoches are suggested for modeling the rock mass. In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the effect of joints is taken into account using a constitutive model derived from mesoscopic simulations.

  10. An efficient model for coupling structural vibrations with acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Ting, LU

    1993-01-01

    The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.

  11. Modelling of ultrasonic propagation in turbulent liquid sodium with temperature gradient

    NASA Astrophysics Data System (ADS)

    Massacret, N.; Moysan, J.; Ploix, M. A.; Jeannot, J. P.; Corneloup, G.

    2014-05-01

    The use of ultrasonic instrumentation in sodium-cooled fast reactors requires to understand and to predict how ultrasonic waves can be deflected, slowed down or speeded up, depending on the thermo-hydraulic characteristics of the liquid sodium. These thermo-hydraulic characteristics are mainly the local temperature and flow speed of the sodium. In this study we show that ray theory can be used to simulate ultrasonic propagation in a medium similar to the core of a sodium-cooled fast reactor, in order to study ultrasonic instrumentation and prepare it installation and utilisation in the sodium of the nuclear reactor. A suitable model has been developed and a set of thermo-hydraulics data has been created, taking account of the particularities of the sodium flow. The results of these simulations are then analysed within the framework of acoustic thermometry, in order to determine which disturbance must be taken into account for the correct operation of the temperature measurement.

  12. Modelling of ultrasonic propagation in turbulent liquid sodium with temperature gradient

    SciTech Connect

    Massacret, N.; Moysan, J. Ploix, M. A.; Corneloup, G.; Jeannot, J. P.

    2014-05-28

    The use of ultrasonic instrumentation in sodium-cooled fast reactors requires to understand and to predict how ultrasonic waves can be deflected, slowed down or speeded up, depending on the thermo-hydraulic characteristics of the liquid sodium. These thermo-hydraulic characteristics are mainly the local temperature and flow speed of the sodium. In this study we show that ray theory can be used to simulate ultrasonic propagation in a medium similar to the core of a sodium-cooled fast reactor, in order to study ultrasonic instrumentation and prepare it installation and utilisation in the sodium of the nuclear reactor. A suitable model has been developed and a set of thermo-hydraulics data has been created, taking account of the particularities of the sodium flow. The results of these simulations are then analysed within the framework of acoustic thermometry, in order to determine which disturbance must be taken into account for the correct operation of the temperature measurement.

  13. Modeling ocean wave propagation under sea ice covers

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun

    2015-02-01

    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  14. Modeling propagation effects from explosions in western China and India

    SciTech Connect

    Bradley, C.R.; Jones, E.M.

    1998-12-31

    The authors report on the results of finite-difference simulations of regional seismic wave propagation from a 1995 explosion at the Chinese test site at Lop Nor and from the recent Indian test. These simulations provide insight into variations in explosion seismograms recorded for these events. Previous modeling efforts by App et al., 1996, and Jones et al., 1998, have shown that many features in seismograms from explosions and earthquakes received at various stations surrounding Lop Nor can be reproduced with simple descriptions of the geologic structure along each path. However, differences in detail between simulations and the earthquake-like seismograms recorded at Station TLY in the Baikal Rift for the Lop Nor explosion have motivated further study of propagation effects. Differences between the TLY data and the simulations indicate that the use of homogeneous materials within the basins, crust, and mantle is too simplistic to capture some of the important features of the observed seismograms. Current efforts involve simulations in which 1-D and 2-D lithosphere models are merged to mimic gradients and 2-D structure, features which produce Rayleigh-wave dispersion and an improved agreement in group velocity curves. Source models have been modified to include a component of tectonic release during the Lop Nor explosion. The recent nuclear tests in India have been modeled in a similar fashion. The propagation path crosses the Moho step beneath the southern edge of the Tibetan Plateau before being received at station NIL. Similarly, the path from Lop Nor to NIL crosses a Moho step beneath the northern edge of the Tibetan Plateau and, in both cases, the effect of a step when combined with surface basin attenuation effectively block the Lg phase. Simulations show that both attenuation and crustal thickening are important when modeling propagation near the Tibetan Plateau.

  15. Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient

    SciTech Connect

    Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl

    2015-04-01

    A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturing is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.

  16. Practitioner's guide to laser pulse propagation models and simulation. Numerical implementation and practical usage of modern pulse propagation models

    NASA Astrophysics Data System (ADS)

    Couairon, A.; Brambilla, E.; Corti, T.; Majus, D.; de J. Ramírez-Góngora, O.; Kolesik, M.

    2011-11-01

    The purpose of this article is to provide practical introduction into numerical modeling of ultrashort optical pulses in extreme nonlinear regimes. The theoretic background section covers derivation of modern pulse propagation models starting from Maxwell's equations, and includes both envelope-based models and carrier-resolving propagation equations. We then continue with a detailed description of implementation in software of Nonlinear Envelope Equations as an example of a mixed approach which combines finite-difference and spectral techniques. Fully spectral numerical solution methods for the Unidirectional Pulse Propagation Equation are discussed next. The modeling part of this guide concludes with a brief introduction into efficient implementations of nonlinear medium responses. Finally, we include several worked-out simulation examples. These are mini-projects designed to highlight numerical and modeling issues, and to teach numerical-experiment practices. They are also meant to illustrate, first and foremost for a non-specialist, how tools discussed in this guide can be applied in practical numerical modeling.

  17. A generalized hydrodynamic model for acoustic mode stability in viscoelastic plasma fluid

    NASA Astrophysics Data System (ADS)

    Borah, B.; Haloi, A.; Karmakar, P. K.

    2016-05-01

    In this paper a generalized hydrodynamic (GH) model to investigate acoustic-mode excitation and stability in simplified strongly coupled bi-component plasma is proposed. The goal is centered in seeing the viscoelasticity-influences on the instability properties. The dispersive and nondispersive features are methodologically explored followed by numerical illustrations. It is seen that, unlike usual plasma acoustic mode, here the mode stability is drastically modified due to the considered viscoelastic effects contributed from both the electronic and ionic fluids. For example, it is found that there exists an excitation threshold value on angular wavenumber, K ≈3 in the K-space on the Debye scale, beyond which only dispersive characteristic features prevail. Further, it is demonstrated that the viscoelastic relaxation time plays a stabilizing influential role on the wave dynamics. In contrast, it is just opposite for the effective viscoelastic relaxation effect. Consistency with the usual viscoelasticity-free situations, with and without plasma approximation taken into account, is also established and explained. It is identified and conjectured that the plasma fluid viscoelasticity acts as unavoidable dispersive agency in attributing several new characteristics to acoustic wave excitation and propagation. The analysis is also exploited to derive a quantitative glimpse on the various basic properties and dimensionless numbers of the viscoelastic plasma. Finally, extended implications of our results tentative to different cosmic, space and astrophysical situations, amid the entailed facts and faults, are highlighted together with indicated future directions.

  18. Influence of acoustic loading on an effective single mass model of the vocal folds.

    PubMed

    Zañartu, Matías; Mongeau, Luc; Wodicka, George R

    2007-02-01

    Three-way interactions between sound waves in the subglottal and supraglottal tracts, the vibrations of the vocal folds, and laryngeal flow were investigated. Sound wave propagation was modeled using a wave reflection analog method. An effective single-degree-of-freedom model was designed to model vocal-fold vibrations. The effects of orifice geometry changes on the flow were considered by enforcing a time-varying discharge coefficient within a Bernoulli flow model. The resulting single-degree-of-freedom model allowed for energy transfer from flow to structural vibrations, an essential feature usually incorporated through the use of higher order models. The relative importance of acoustic loading and the time-varying flow resistance for fluid-structure energy transfer was established for various configurations. The results showed that acoustic loading contributed more significantly to the net energy transfer than the time-varying flow resistance, especially for less inertive supraglottal loads. The contribution of supraglottal loading was found to be more significant than that of subglottal loading. Subglottal loading was found to reduce the net energy transfer to the vocal-fold oscillation during phonation, balancing the effects of the supraglottal load. PMID:17348533

  19. An automated code generator for three-dimensional acoustic wave propagation with geometrically complex solid-wall boundaries

    NASA Astrophysics Data System (ADS)

    Dyson, Rodger William, Jr.

    1999-10-01

    Finding the sources of noise generation in a turbofan propulsion system requires a computational tool that has sufficient fidelity to simulate steep gradients in the flow field and sufficient efficiency to run on today's computer systems. The goal of this dissertation was to develop an automated code generator for the creation of software that numerically solves the linearized Euler equations on Cartesian grids in three dimensional spatial domains containing bodies with complex shapes. It is based upon the recently developed Modified Expansion Solution Approximation (MESA) series of explicit finite-difference schemes that provide spectral-like resolution with extraordinary efficiency. The accuracy of these methods can, in theory, be arbritarily high in both space and time, without the significant inefficiences of Runge- Kutta based schemes. The complexity of coding these schemes was, however, very high, resulting in code that could not compile or took so long to write in FORTRAN that they were rendered impractical. Therefore, a tool in Mathematica was developed that could automatically code the MESA schemes into FORTRAN and the MESA schemes themselves were reformulated into a very simple form-making them practical to use without automation or very powerful with it. A method for automatically creating the MESA propagation schemes and their FORTRAN code in two and three spatial dimensions is shown with up to 29th order accuracy in space and time. Also, a method for treating solid wall boundaries in two dimensions is shown with up to 11th order accuracy on grid aligned boundaries and with up to 2nd order accuracy on generalized boundaries. Finally, an automated method for parallelizing these approaches on large scale parallel computers with near perfect scalability is presented. All these methods are combined to form a turnkey code generation tool in Mathematica that once provided the CAD geometry file can automatically simulate the acoustical physics by replacing the

  20. Wave propagation modeling with non-Markov phase screens.

    PubMed

    Charnotskii, Mikhail

    2016-04-01

    A recently introduced [J. Opt. Soc. Am. A30, 479 (2013)10.1364/JOSAA.30.000479JOAOD61084-7529] sparse spectrum (SS) model of statistically homogeneous random fields makes it possible to generate 3D samples of refractive-index fluctuations with prescribed spectral density at a very reasonable computational cost. The SS technique can be used in the framework of the split-step Fourier method for numerical simulation of wave propagation in turbulence. It allows generation of the phase screen samples that are free from the limitations of the Markov approximation, which is commonly used for theoretical description and numerical modeling of optical waves propagation through turbulence. We investigate statistics of these phase screens and present a numerical algorithm for their generation. PMID:27140765