Science.gov

Sample records for acoustic radiation torque

  1. Acoustic radiation torque and the conservation of angular momentum (L).

    PubMed

    Zhang, Likun; Marston, Philip L

    2011-04-01

    This note concerns the evaluation of the static acoustic radiation torque exerted by an acoustic field on a scatterer immersed in a nonviscous fluid based on far-field scattering. The radiation torque is expressed as the integral of the time-averaged flux of angular momentum over a spherical surface far removed from the scattering object with its center at the centroid of the object. That result was given previously [G. Maidanik, J. Acoust. Soc. Am. 30, 620-623 (1956)]. Another expression given recently [Z. W. Fan et al., J. Acoust. Soc. Am. 124, 2727-2732 (2008)] is simplified to this formula. Comments are made on obtaining it directly from the general theorem of angular momentum conservation in the integral form. PMID:21476624

  2. Acoustic radiation torque on an irregularly shaped scatterer in an arbitrary sound field.

    PubMed

    Fan, Zongwei; Mei, Deqing; Yang, Keji; Chen, Zichen

    2008-11-01

    To eliminate the limitation of the conventional acoustic radiation torque theory, which is only applicable to a disklike scatterer in a plane sound field, a new theory is established to calculate the radiation torque on any irregularly shaped scatterer in any arbitrary sound field. First, with the aid of the conservation law of angular momentum, the acoustic radiation torque is expressed as the angular momentum flux through a spherical surface with the center at the scatterer's centroid. Second, the velocity potential of the scattered field is derived, taking into account the influences of the translational and rotational movements of the scatterer induced by the first order stress of the incident sound field. Finally, a general calculating formula of the acoustic radiation torque is achieved. For a disklike scatterer in a plane sound filed, results from the above formula are well identical with those conventional formulas. By studying the case of a semicircular cylinder scatterer in a standing-wave sound field, it is found that for an irregularly shaped scatterer its rotation velocity is normally nonzero and the radiation torque changes with the spatial attitude. PMID:19045760

  3. Acoustical radiation torque and force for spheres and Bessel beam extinction efficiency

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2014-11-01

    The scattering of optical and acoustical beams is relevant to the levitation and manipulation of drops. Here we examine theoretical developments in the acoustical case. We previously showed how the optical theorem for extinction can be extended to invariant beams. The example of a sphere in a Bessel beam facilitates the direct comparison with a circular disc computed using Babinet's principle and the Kirchhoff approximation. In related work, by considering traveling or standing wave first-order vortex beams we previously showed that the radiation torque is the ratio of the absorbed power and the radian acoustic frequency. By modifying the scattering to account for the viscosity of the surrounding fluid in the analysis of the absorbed power, approximations for radiation torque and force are obtained at long wavelengths in special cases and these can be compared with results published elsewhere.

  4. Acoustic radiation force and torque exerted on a small viscoelastic particle in an ideal fluid.

    PubMed

    Leão-Neto, J P; Silva, G T

    2016-09-01

    We provide a detailed analysis on the acoustic radiation force and torque exerted on a homogeneous viscoelastic particle in the long-wave limit (i.e. the particle radius is much smaller than the incident wavelength) by an arbitrary wave. We assume that the particle behaves as a linear viscoelastic solid, which obeys the fractional Kelvin-Voigt model. Simple analytical expressions for the radiation force and torque are obtained. The developed theory is used to describe the interaction of acoustic waves (traveling and standing plane waves, and zero- and first-order Bessel beams) in the MHz-range with polymeric particles, namely lexan, low-density (LDPE) and high-density (HDPE) polyethylene. We found that particle absorption is chiefly the cause of the radiation force due to a traveling plane wave and zero-order Bessel beam when the frequency is smaller than 5MHz (HDPE), 3.9MHz (LDPE), and 0.9MHz (lexan). Whereas in a standing wave field, the radiation force is mildly changed due to dispersion inside the particle. We also show that the radiation torque caused by a first-order Bessel beam varies nearly quadratic with frequency. These findings may enable new possibilities of particle handling in acoustophoretic techniques. PMID:27254398

  5. Optical theorem for acoustic non-diffracting beams and application to radiation force and torque

    PubMed Central

    Zhang, Likun; Marston, Philip L.

    2013-01-01

    Acoustical and optical non-diffracting beams are potentially useful for manipulating particles and larger objects. An extended optical theorem for a non-diffracting beam was given recently in the context of acoustics. The theorem relates the extinction by an object to the scattering at the forward direction of the beam’s plane wave components. Here we use this theorem to examine the extinction cross section of a sphere centered on the axis of the beam, with a non-diffracting Bessel beam as an example. The results are applied to recover the axial radiation force and torque on the sphere by the Bessel beam. PMID:24049681

  6. Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid.

    PubMed

    Silva, Glauber T

    2014-11-01

    Exact formulas of the acoustic radiation force and torque exerted by an arbitrary time-harmonic wave on an absorbing compressible particle that is suspended in an inviscid fluid are presented. It is considered that the particle diameter is much smaller than the incident wavelength, i.e., the so-called Rayleigh scattering limit. Moreover, the particle absorption assumed here is due to the attenuation of compressional waves only. Shear waves inside and outside the particle are neglected, since the inner and outer viscous boundary layer of the particle are supposed to be much smaller than the particle radius. The obtained radiation force formulas are used to establish the trapping conditions of a particle by a single-beam acoustical tweezer based on a spherically focused ultrasound transducer. In this case, it is shown that the particle absorption has a pivotal role in single-beam trapping at the transducer focal region. Furthermore, it is found that only the first-order Bessel vortex beam can generate the radiation torque on a small particle. In addition, numerical evaluation of the radiation force and torque exerted on a benzene and an olive oil droplet suspended in water are presented and discussed. PMID:25373943

  7. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-07-01

    This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of

  8. Fourth-order acoustic torque in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  9. Radiation Forces and Torques without Stress (Tensors)

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  10. Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid.

    PubMed

    Lopes, J Henrique; Azarpeyvand, Mahdi; Silva, Glauber T

    2016-01-01

    In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N objects suspended in an inviscid fluid are theoretically analyzed. We utilize the partial-wave expansion method with translational addition theorem and re-expansion of multipole series to solve the related multiple scattering problem. We show that the acoustic interaction force and torque can be obtained using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets' radii are comparable to the wavelength (i.e., Mie scattering regime). The results show that the acoustic interaction forces present an oscillatory spatial distribution which follows the pattern formed by interference between the external and rescattered waves. In addition, acoustic interaction torques arise on the absorbing droplets whenever a nonsymmetric wavefront is formed by the external and rescattered waves' interference. PMID:26529753

  11. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects.

    PubMed

    Zhang, Likun; Marston, Philip L

    2011-12-01

    An acoustic vortex in an inviscid fluid and its radiation torque on an axisymmetric absorbing object are analyzed beyond the paraxial approximation to clarify an analogy with an optical vortex. The angular momentum flux density tensor from the conservation of angular momentum is used as an efficient description of the transport of angular momentum. Analysis of a monochromatic nonparaxial acoustic vortex beam indicates that the local ratio of the axial (or radial) flux density of axial angular momentum to the axial (or radial) flux density of energy is exactly equal to the ratio of the beam's topological charge l to the acoustic frequency ω. The axial radiation torque exerted by the beam on an axisymmetric object centered on the beam's axis due to the transfer of angular momentum is proportional to the power absorbed by the object with a factor l/ω, which can be understood as a result of phonon absorption from the beam. Depending on the vortex's helicity, the torque is parallel or antiparallel to the beam's axis. PMID:22304145

  12. Unphysical consequences of negative absorbed power in linear passive scattering: Implications for radiation force and torque.

    PubMed

    Marston, Philip L; Zhang, Likun

    2016-06-01

    Contrary to some claims, the absorbed power associated with linear scattering of sound by passive objects in ideal fluids must be non-negative. Such unphysical claims suggest analytical or computational error, or use of an unphysical constitutive relation for material properties. The close connection with the evaluation of acoustic radiation force on targets according to Westervelt's formulation [J. Acoust. Soc. Am. 29, 26-29 (1957)], recently generalized to certain acoustic beams, is briefly reviewed along with the theory of acoustic radiation torque on axisymmetric targets with power absorption. Applications to viscous dissipation and to issues pertaining to active targets are also examined. PMID:27369138

  13. Spin reversal and orbital torques on a viscous fluid Rayleigh sphere located arbitrarily in acoustical Bessel vortex (spiraling) beams.

    PubMed

    Mitri, F G

    2016-12-01

    The goal of this work is to demonstrate the emergence of a spin torque singularity (i.e. zero spin torque) and a spin rotation reversal of a small Rayleigh lipid/fat viscous fluid sphere located arbitrarily in space in the field of an acoustical Bessel vortex beam. This counter-intuitive property of negative spin torque generation suggests a direction of spin rotation in opposite handedness of the angular momentum carried by the incident beam. Such effects may open new capabilities in methods of quantitative characterization to determine physical properties such as viscosity, viscoelasticity, compressibility, stiffness, etc., and other techniques for the rotation and positioning using acoustical tractor beams and tweezers, invisibility cloaks, and acoustically-engineered composite metamaterials to name a few examples. Based on the descriptions for the velocity potential of the incident beam and the scattering coefficients of the sphere in the long-wavelength approximation limit, simplified expressions for the spin and orbital radiation torque components are derived. For beams with (positive or negative) unit topological charge (m=±1), the axial spin torque component for a Rayleigh absorptive sphere is maximal at the center of the beam, while it vanishes for |m|>1 therein. Moreover, the longitudinal orbital torque component, causing the sphere to rotate around the center of the beam is evaluated based on the mathematical decomposition using the gradient, scattering and absorption transverse radiation force vector components. It is shown that there is no contribution of the gradient transverse force to the orbital torque, which is only caused by the scattering and absorption transverse force components. Though the incident acoustical vortex beam carrying angular momentum causes the sphere to rotate in the same orbital direction of the beam handedness, it induces a spin torque singularity (i.e. zero spin torque) and subsequent sign reversal. This phenomenon of

  14. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  15. Radiation torque exerted on a spheroid: Analytical solution

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Lock, James A.; Gouesbet, Gérard; Tropea, Cameron

    2008-07-01

    As a companion work to our previous study [F. Xu, , Phys. Rev. E. 75, 026613 (2007)] on radiation force prediction for a homogeneous spheroid, we provide in this paper the analytical solution to the radiation torque exerted by an arbitrarily shaped beam on a spheroid, which can be prolate or oblate, transparent or absorbing. Calculations based upon this theoretical development are performed for both linearly and circularly polarized incident beams, and the results are compared to those of a sphere. Stable orientations of spheroids inside a linearly and a circularly polarized Gaussian beam are predicted. We analyze two physical mechanisms, the polarization torque and the reaction force torque, which do not exist or have no contribution to the torque on a sphere but cause rotation of a spheroid. As verification, the dipole method is also developed for the torque calculation for spheroids of size much less than the wavelength, and geometrical optics is developed to qualitatively analyze the torque exerted on spheroids of large size.

  16. A wireless demodulation system for passive surface acoustic wave torque sensor

    NASA Astrophysics Data System (ADS)

    Ji, Xiaojun; Fan, Yanping; Qi, Hongli; Chen, Jing; Han, Tao; Cai, Ping

    2014-12-01

    Surface acoustic wave (SAW) resonators are utilized as torque sensors for their passive and wireless features. However, the response of a SAW torque sensor is difficult to detect because of the transient response duration and interruption of channel noise, which limit the application of SAW torque sensors. The sensitive mechanism and response function of a passive wireless SAW torque sensor are analyzed in this study. A novel demodulation system involving both hardware and software is developed for the SAW torque sensor. A clipping amplifier is utilized in the hardware to widen the dynamic response range and increase the length of the valid signal. Correlation extension and centroid algorithms are designed to lengthen the received signal and improve the estimation accuracy of the center frequency of the response signal, respectively. Meanwhile, a fast binary search algorithm is proposed to accelerate the scanning cycle according to the developed response function. Finally, the SAW torque sensor demodulation system is set up and SAW resonators with high sensitivity are fabricated on a quartz substrate. The presented demodulation system is tested, and a standard deviation of 0.28 kHz is achieved. This value is much smaller than that of classic and modern spectrum estimation methods. The sensitivity of resonance frequency shift versus torque on the shaft of the assembled senor is 2.03 kHz/Nm; the coefficient of determination is 0.999, and the linearity is 0.87%. Experimental results verify the validity and feasibility of the proposed SAW torque sensor demodulation system.

  17. Acoustic radiation stress in solids

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1986-01-01

    It is shown that the radiation-induced static strains associated with acoustic waves propagating in solids are obtained directly from the virial theorem for an elastic continuum and that the radiation stresses result from combining the virial theorem with the Boltzmann-Ehrenfest principle of adiabatic invariance. The experimental confirmation of critical theoretical predictions in solids is reported. The implications of the results for the fundamental thermal properties of crystals are addressed.

  18. Mariner Venus/Mercury 1973 solar radiation force and torques

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1974-01-01

    The need for an improvement of the mathematical model of the solar radiation force and torques for the Mariner Venus/Mercury spacecraft arises from the fact that this spacecraft will be steering toward the inner planets (Venus and Mercury), where, due to the proximity of the Sun, the effect of the solar radiation pressure is much larger than it was on the antecedent Mariner spacecraft, steering in the opposite direction. Therefore, although the model yielded excellent results in the case of the Mariner 9 Mars Orbiter, additional effects of negligible magnitudes for the previous missions of the Mariner spacecraft should now be included in the model. This study examines all such effects and incorporates them into the already existing model, as well as using the improved model for calculation of the solar radiation force and torques acting on the Mariner Venus/Mercury spacecraft.

  19. A wireless demodulation system for passive surface acoustic wave torque sensor.

    PubMed

    Ji, Xiaojun; Fan, Yanping; Qi, Hongli; Chen, Jing; Han, Tao; Cai, Ping

    2014-12-01

    Surface acoustic wave (SAW) resonators are utilized as torque sensors for their passive and wireless features. However, the response of a SAW torque sensor is difficult to detect because of the transient response duration and interruption of channel noise, which limit the application of SAW torque sensors. The sensitive mechanism and response function of a passive wireless SAW torque sensor are analyzed in this study. A novel demodulation system involving both hardware and software is developed for the SAW torque sensor. A clipping amplifier is utilized in the hardware to widen the dynamic response range and increase the length of the valid signal. Correlation extension and centroid algorithms are designed to lengthen the received signal and improve the estimation accuracy of the center frequency of the response signal, respectively. Meanwhile, a fast binary search algorithm is proposed to accelerate the scanning cycle according to the developed response function. Finally, the SAW torque sensor demodulation system is set up and SAW resonators with high sensitivity are fabricated on a quartz substrate. The presented demodulation system is tested, and a standard deviation of 0.28 kHz is achieved. This value is much smaller than that of classic and modern spectrum estimation methods. The sensitivity of resonance frequency shift versus torque on the shaft of the assembled senor is 2.03 kHz/Nm; the coefficient of determination is 0.999, and the linearity is 0.87%. Experimental results verify the validity and feasibility of the proposed SAW torque sensor demodulation system. PMID:25554317

  20. Radiation-spin interaction, Gilbert damping, and spin torque.

    PubMed

    Ho, Jeongwon; Khanna, F C; Choi, B C

    2004-03-01

    Magnetization relaxation processes, which are represented by the Gilbert damping term and the spin torque term in the Landau-Lifshitz-Gilbert (LLG) equation, are described by the radiation-spin interaction (RSI), where the radiation field is produced by magnetization precessional motion itself. It is shown that the LLG equation including the Gilbert damping term and the spin torque term is derived from the spin Hamiltonian containing the RSI. The derivation of the LLG equation is given in a self-consistent method. It is also shown that, according to RSI, the magnitude of the magnetization vector deviates from the magnetization saturation with the order of O(alpha(2)), where alpha is the Gilbert damping parameter. PMID:15089513

  1. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  2. Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Sawdy, D. T.

    1971-01-01

    An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.

  3. Acoustic emission sensor radiation damage threshold experiment

    SciTech Connect

    Beeson, K.M.; Pepper, C.E.

    1994-09-01

    Determination of the threshold for damage to acoustic emission sensors exposed to radiation is important in their application to leak detection in radioactive waste transport and storage. Proper response to system leaks is necessary to ensure the safe operation of these systems. A radiation impaired sensor could provide ``false negative or false positive`` indication of acoustic signals from leaks within the system. Research was carried out in the Radiochemical Technology Division at Oak Ridge National Laboratory to determine the beta/gamma radiation damage threshold for acoustic emission sensor systems. The individual system consisted of an acoustic sensor mounted with a two part epoxy onto a stainless steel waveguide. The systems were placed in an irradiation fixture and exposed to a Cobalt-60 source. After each irradiation, the sensors were recalibrated by Physical Acoustics Corporation. The results were compared to the initial calibrations performed prior to irradiation and a control group, not exposed to radiation, was used to validate the results. This experiment determines the radiation damage threshold of each acoustic sensor system and verifies its life expectancy, usefulness and reliability for many applications in radioactive environments.

  4. Grain alignment: Role of radiative torques and paramagnetic relaxation

    NASA Astrophysics Data System (ADS)

    Lazarian, Alexander; Andersson, B.-G.; Hoang, Thiem

    2015-05-01

    Polarization arising from aligned dust grains presents a unique opportunity to study magnetic fields in the diffuse interstellar medium and molecular clouds. Polarization from circumstellar regions, accretion disks and comet atmospheres can also be related to aligned dust.To reliably trace magnetic fields quantitative theory of grain alignment is required. Formulating the theory that would correspond to observations was one of the longstanding problems in astrophysics. Lately this problem has been successfully addressed, and in this review we summarize some of the most important theoretical advances in the theory of grain alignment by radiative torques (RATs) that act on realistic irregular dust grains. We discuss an analytical model of RATs and the ways to make RAT alignment more efficient, e.g. through paramagnetic relaxation when grains have inclusions with strong magnetic response. For very small grains for which RAT alignment is inefficient, we also discuss paramagnetic relaxation and a process termed resonance relaxation. We provide an extensive analysis of the observational tests of grain alignment theory.

  5. Material fabrication using acoustic radiation forces

    SciTech Connect

    Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ

    2015-12-01

    Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.

  6. Surprises and anomalies in acoustical and optical scattering and radiation forces

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2015-09-01

    Experiments on radiation torques and negative radiation forces by various researchers display how the underlying wave-field geometry influences radiation forces. Other situations strongly influenced by wave-field geometry include high-order caustics present in light-scattering patterns of objects as simple as oblate drops of water or oblate bubbles of air in water. Related theoretical and experimental investigations are considered. Acoustic scattering enhancements associated with various guided waves are also examined. These include guided waves having negative group velocities and guided wave radiating wavefronts having a vanishing Gaussian curvature.

  7. On the rotational stability of nonspherical particles driven by the radiation torque

    NASA Astrophysics Data System (ADS)

    Borghese, Ferdinando; Denti, Paolo; Saija, Rosalba; Iati, Maria Antonia

    2007-07-01

    We calculate the radiation torque exerted by a monochromatic plane wave, either unpolarized or linearly polarized, on aggregates of spheres and investigate the stability of the resulting rotational motion. In fact, neglecting any braking momenta we calculate the component of the electromagnetic torque orthogonal to the principal axis of maximum moment of inertia through the center of mass (transverse torque), as a function of the direction of propagation of the incident field. The aggregates we study are composed of homogeneous spheres, possibly of different materials. The electromagnetic torque is calculated through the transition matrix approach along the lines of the theory reported in our recent paper [F. Borghese, P. Denti, R. Saija and M. A. Iatı, Opt. Express 14, 9508 (2006)]. When the transverse component of the electromagnetic torque is small or vanishes the rotational motion driven by the component along the principal axis of inertia may be nearly stable.

  8. Measuring Acoustic-Radiation Stresses in Materials

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, W. T.

    1986-01-01

    System measures nonlinearity parameters of materials. Uses static strain generated by acoustic wave propagating in material. Since static strain is effectively "dc" component of waveform distortion, problems associated with phase-cancellation artifacts disappear. Further, sign of nonlinearity parameter obtained by simple inspection of measured signal polarity. These features make this system very amenable to use in field. System expected to become standard for acoustic-radiation-stress measurements for solids and liquids and for characterization of material properties related to strength and residual or applied stresses. Also expected to become standard for transducer calibration.

  9. Radiation directivity rotation by acoustic metamaterials

    SciTech Connect

    Jiang, Xue; Liang, Bin E-mail: jccheng@nju.edu.cn; Zou, Xin-ye; Cheng, Jian-chun E-mail: jccheng@nju.edu.cn; Zhang, Likun

    2015-08-31

    We use a metamaterial-based scheme to rotate the radiation directivity of sound radiated by a source surrounded by the structure. The rotation is demonstrated through both numerical simulations and experiments. The performance persists within a broadband and is entirely independent of the location and pattern of source inside, suggesting great potential in various practical scenarios where both the signal frequency and source position may vary significantly. We have also investigated the possibility to realize versatile controls of radiation direction by tailoring the structural parameters. Our design with special directivity-steering capability may open route to loudspeaker and auditorium acoustics designs and medical ultrasound applications.

  10. Radiation directivity rotation by acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Zhang, Likun; Liang, Bin; Zou, Xin-ye; Cheng, Jian-chun

    2015-08-01

    We use a metamaterial-based scheme to rotate the radiation directivity of sound radiated by a source surrounded by the structure. The rotation is demonstrated through both numerical simulations and experiments. The performance persists within a broadband and is entirely independent of the location and pattern of source inside, suggesting great potential in various practical scenarios where both the signal frequency and source position may vary significantly. We have also investigated the possibility to realize versatile controls of radiation direction by tailoring the structural parameters. Our design with special directivity-steering capability may open route to loudspeaker and auditorium acoustics designs and medical ultrasound applications.

  11. Computational study of radiation torque on arbitrary shaped particles with MLFMA.

    PubMed

    Yang, Minglin; Ren, Kuan Fang; Petkov, Theodor; Pouligny, Bernard; Loudet, Jean-Christophe; Sheng, Xinqing

    2015-09-01

    The surface integral equation (SIE) method is used for the computational study of radiation torque on arbitrarily shaped homogeneous particles. The Multilevel Fast Multipole Algorithm (MLFMA) is employed to reduce memory requirements and improve the capability of SIE. The resultant matrix equations are solved iteratively to obtain equivalent electric and magnetic currents. Then, radiation torque is computed using the vector flux of the pseudotensor over a spherical surface tightly enclosing the particle. We use, therefore, the analytical electromagnetic field expression for incident waves in the near region, instead of the far-field approximation. This avoids the error which may be caused when describing the incident beam. The numerical results of three kinds of non-spherical particles are presented to illustrate the validity and capability of the developed method. It is shown that our method can be applied to predict, in the rigorous sense, the torque from a beam of any shape on a particle of complex configuration with a size parameter as large as 650. The radiation torques on large ellipsoids are exemplified to show the performance of the method and to study the influence that different aspect ratios have on the results. Then, the code is used for the calculation of radiation torque on objects of complex shape including a biconcave cell-like particle and a motor with a non-smooth surface. PMID:26368438

  12. Microwave radiation force and torque on a disk resonator excited by a circularly polarized plane wave

    NASA Astrophysics Data System (ADS)

    Makarov, S.; Kulkarni, S.

    2004-05-01

    A numerical simulation method [S. Makarov and S. Kulkarni, Appl. Phys. Lett. 84, 1600 (2004)] is used in order to determine the radiation force and radiation torque on a parallel-plate disk resonator, whose size is comparable to wavelength. The method is based on the MOM solution of the electric-field integral equation, accurate calculation of the near field, and removal of the self-interaction terms responsible for the pinch effect. The local force/torque distribution at the normal incidence of a circularly polarized plane wave is found. It is observed that, at the resonance, the individual disks are subject to unexpectedly large local force densities, despite the fact that the net radiation force on the resonator remains very small. On the other hand, the total axial torque on the disk resonator also increases at the resonance.

  13. Magnetic resonance acoustic radiation force imaging

    PubMed Central

    McDannold, Nathan; Maier, Stephan E.

    2008-01-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are “stiffness weighted” and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery. PMID:18777934

  14. Effects of solar radiation pressure torque on the rotational motion of an artificial satellite

    NASA Technical Reports Server (NTRS)

    Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho

    1992-01-01

    The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.

  15. Modal analysis and intensity of acoustic radiation of the kettledrum.

    PubMed

    Tronchin, Lamberto

    2005-02-01

    The acoustical features of kettledrums have been analyzed by means of modal analysis and acoustic radiation (p/v ratio) measurements. Modal analysis of two different kettledrums was undertaken, exciting the system both by a hammer and a shaker. Up to 15 vibrational modes were clearly identified. Acoustic radiation was studied using two ways. Based on previous experiments of other researchers, a new parameter, called intensity of acoustic radiation (IAR), has been defined and measured. Results show a strict relationship between IAR and the frequency response function (FRF, which is the v/F ratio), and IAR also strongly relates the modal pattern to acoustic radiation. Finally, IAR is proposed for vibro-acoustical characterization of kettledrums and other musical instruments such as strings, pianos, and harpsichords. PMID:15759711

  16. Experimental Robust Control of Structural Acoustic Radiation

    NASA Technical Reports Server (NTRS)

    Cox, David E.; Gibbs, Gary P.; Clark, Robert L.; Vipperman, Jeffrey S.

    1998-01-01

    This work addresses the design and application of robust controllers for structural acoustic control. Both simulation and experimental results are presented. H(infinity) and mu-synthesis design methods were used to design feedback controllers which minimize power radiated from a panel while avoiding instability due to unmodeled dynamics. Specifically, high order structural modes which couple strongly to the actuator-sensor path were poorly modeled. This model error was analytically bounded with an uncertainty model, which allowed controllers to be designed without artificial limits on control effort. It is found that robust control methods provide the control designer with physically meaningful parameters with which to tune control designs and can be very useful in determining limits of performance. Experimental results also showed, however, poor robustness properties for control designs with ad-hoc uncertainty models. The importance of quantifying and bounding model errors is discussed.

  17. Acoustic radiation force impulse of the liver

    PubMed Central

    D’Onofrio, Mirko; Crosara, Stefano; De Robertis, Riccardo; Canestrini, Stefano; Demozzi, Emanuele; Gallotti, Anna; Pozzi Mucelli, Roberto

    2013-01-01

    Acoustic radiation force impulse (ARFI) imaging is a new and promising ultrasound-based diagnostic technique that, evaluating the wave propagation speed, allows the assessment of the tissue stiffness. ARFI is implemented in the ultrasound scanner. By short-duration acoustic radiation forces (less than 1 ms), localized displacements are generated in a selected region of interest not requiring any external compression so reducing the operator dependency. The generated wave scan provides qualitative or quantitative (wave velocity values) responses. Several non-invasive methods for assessing the staging of fibrosis are used, in order to avoid liver biopsy. Liver function tests and transient elastography are non-invasive, sensitive and accurate tools for the assessment of liver fibrosis and for the discrimination between cirrhotic and non-cirrhotic liver. Many published studies analyse ARFI performance and feasibility in studying diffuse liver diseases and compare them to other diagnostic imaging modalities such as conventional ultrasonography and transient elastography. Solid focal liver lesions, both benign and malignant, are common findings during abdominal examinations. The accurate characterization and differential diagnosis are important aims of all the imaging modalities available today. Only few papers describe the application of ARFI technology in the study of solid focal liver lesions, with different results. In the present study, the existing literature, to the best of our knowledge, about ARFI application on diffuse and focal liver pathology has been evaluated and results and statistical analyses have been compared, bringing to the conclusion that ARFI can be used in the study of the liver with similar accuracy as transient elastography in diagnosing significant fibrosis or cirrhosis and has got some advantages in respect to transient elastography since it does not require separate equipment, better displays anatomical structures and measurements can be

  18. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  19. Momentum accumulation due to solar radiation torque, and reaction wheel sizing, with configuration optimization

    NASA Technical Reports Server (NTRS)

    Hablani, Hari B.

    1993-01-01

    This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other off-normal to different extent at different times to the sun rays. The paper first develops commands for the arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom, and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are compared and contrasted.

  20. A study of the acoustical radiation force considering attenuation

    NASA Astrophysics Data System (ADS)

    Wu, RongRong; Liu, XiaoZhou; Gong, XiuFen

    2013-07-01

    Acoustical tweezer is a primary application of the radiation force of a sound field. When an ultrasound focused beam passes through a micro-particle, like a cell or living biological specimens, the particle will be manipulated accurately without physical contact and invasion, due to the three-dimensional acoustical trapping force. Based on the Ray acoustics approach in the Mie regime, this work discusses the effects on the particle caused by Gaussian focused ultrasound, studies the acoustical trapping force of spherical Mie particles by ultrasound in any position, and analyzes the numerical calculation on the two-dimensional acoustical radiation force. This article also analyzes the conditions for the acoustical trapping phenomenon, and discusses the impact of the initial position and size of the particle on the magnitude of the acoustical radiation force. Furthermore, this paper considers the ultrasonic attenuation in a particle in the case of two-dimension, studies the attenuation's effects on the acoustical trapping force, and amends the calculation to the ordinary case with attenuation.

  1. Multimodal far-field acoustic radiation pattern: An approximate equation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1977-01-01

    The far-field sound radiation theory for a circular duct was studied for both single mode and multimodal inputs. The investigation was intended to develop a method to determine the acoustic power produced by turbofans as a function of mode cut-off ratio. With reasonable simplifying assumptions the single mode radiation pattern was shown to be reducible to a function of mode cut-off ratio only. With modal cut-off ratio as the dominant variable, multimodal radiation patterns can be reduced to a simple explicit expression. This approximate expression provides excellent agreement with an exact calculation of the sound radiation pattern using equal acoustic power per mode.

  2. Acoustic radiation force-based elasticity imaging methods

    PubMed Central

    Palmeri, Mark L.; Nightingale, Kathryn R.

    2011-01-01

    Conventional diagnostic ultrasound images portray differences in the acoustic properties of soft tissues, whereas ultrasound-based elasticity images portray differences in the elastic properties of soft tissues (i.e. stiffness, viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathological lesions. Acoustic radiation force-based elasticity imaging methods use acoustic radiation force to transiently deform soft tissues, and the dynamic displacement response of those tissues is measured ultrasonically and is used to estimate the tissue's mechanical properties. Both qualitative images and quantitative elasticity metrics can be reconstructed from these measured data, providing complimentary information to both diagnose and longitudinally monitor disease progression. Recently, acoustic radiation force-based elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric, and commercial implementations of radiation force-based ultrasonic elasticity imaging are beginning to appear on the commercial market. This article provides an overview of acoustic radiation force-based elasticity imaging, including a review of the relevant soft tissue material properties, a review of radiation force-based methods that have been proposed for elasticity imaging, and a discussion of current research and commercial realizations of radiation force based-elasticity imaging technologies. PMID:22419986

  3. Chromospheric Heating by Acoustic Waves Compared to Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Sobotka, M.; Heinzel, P.; Švanda, M.; Jurčák, J.; del Moro, D.; Berrilli, F.

    2016-07-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra of Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.

  4. Acoustic radiation from lifting airfoils in compressible subsonic flow

    NASA Technical Reports Server (NTRS)

    Atassi, Hafiz M.; Subramaniam, Shankar; Scott, James R.

    1990-01-01

    The far field acoustic radiation from a lifting airfoil in a three-dimensional gust is studied. The acoustic pressure is calculated using the Kirchhoff method, instead of using the classical acoustic analogy approach due to Lighthill. The pressure on the Kirchhoff surface is calculated using an existing numerical solution of the unsteady flow field. The far field acoustic pressure is calculated in terms of these values using Kirchhoff's formula. The method is validated against existing semi-analytical results for a flat plate. The method is then used to study the problem of an airfoil in a harmonic three-dimensional gust, for a wide range of Mach numbers. The effect of variation of the airfoil thickness and angle of attack on the acoustic far field is studied. The changes in the mechanism of sound generation and propagation due to the presence of steady loading and nonuniform mean flow are also studied.

  5. Acoustic radiation from lifting airfoils in compressible subsonic flow

    NASA Technical Reports Server (NTRS)

    Atassi, Hafiz M.; Subramaniam, Shankar; Scott, James R.

    1990-01-01

    The far field acoustic radiation from a lifting airfoil in a three-dimensional gust is studied. The acoustic pressure is calculated using the Kirchhoff method, instead of using the classical acoustic analogy approach due to Lighthill. The pressure on the Kirchhoff surface is calculated using an existing numerical solution of the unsteady flow field. The far field acoustic pressure is calculated in terms of these values using Kirchhoff's formula. The method is validated against existing semi-analytical results for a flat plate. The method is then used to study the problem of an airfoil in a harmonic three-dimensional gust, for a wide range of Mach numbers. The effect of variation of the airfoil thickness and angle of attack on the acoustic far field is studied. The changes in the mechanism of sound generation and propagation due to the presence of steady loading and non-uniform mean flow are also studied.

  6. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  7. A Spectral Analysis Approach for Acoustic Radiation from Composite Panels

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Singh, Mahendra P.; Mei, Chuh

    2004-01-01

    A method is developed to predict the vibration response of a composite panel and the resulting far-field acoustic radiation due to acoustic excitation. The acoustic excitation is assumed to consist of obliquely incident plane waves. The panel is modeled by a finite element analysis and the radiated field is predicted using Rayleigh's integral. The approach can easily include other effects such as shape memory alloy (SMA) ber reinforcement, large detection thermal postbuckling, and non-symmetric SMA distribution or lamination. Transmission loss predictions for the case of an aluminum panel excited by a harmonic acoustic pressure are shown to compare very well with a classical analysis. Results for a composite panel with and without shape memory alloy reinforcement are also presented. The preliminary results demonstrate that the transmission loss can be significantly increased with shape memory alloy reinforcement. The mechanisms for further transmission loss improvement are identified and discussed.

  8. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  9. Axial acoustic radiation force on a sphere in Gaussian field

    SciTech Connect

    Wu, Rongrong; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated. Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.

  10. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  11. Acoustic Radiation Force Impulse (ARFI) Imaging: a Review

    PubMed Central

    Nightingale, Kathy

    2012-01-01

    Acoustic radiation force based elasticity imaging methods are under investigation by many groups. These methods differ from traditional ultrasonic elasticity imaging methods in that they do not require compression of the transducer, and are thus expected to be less operator dependent. Methods have been developed that utilize impulsive (i.e. < 1 ms), harmonic (pulsed), and steady state radiation force excitations. The work discussed herein utilizes impulsive methods, for which two imaging approaches have been pursued: 1) monitoring the tissue response within the radiation force region of excitation (ROE) and generating images of relative differences in tissue stiffness (Acoustic Radiation Force Impulse (ARFI) imaging); and 2) monitoring the speed of shear wave propagation away from the ROE to quantify tissue stiffness (Shear Wave Elasticity Imaging (SWEI)). For these methods, a single ultrasound transducer on a commercial ultrasound system can be used to both generate acoustic radiation force in tissue, and to monitor the tissue displacement response. The response of tissue to this transient excitation is complicated and depends upon tissue geometry, radiation force field geometry, and tissue mechanical and acoustic properties. Higher shear wave speeds and smaller displacements are associated with stiffer tissues, and slower shear wave speeds and larger displacements occur with more compliant tissues. ARFI images have spatial resolution comparable to that of B-mode, often with greater contrast, providing matched, adjunctive information. SWEI images provide quantitative information about the tissue stiffness, typically with lower spatial resolution. A review these methods and examples of clinical applications are presented herein. PMID:22545033

  12. Ducted fan acoustic radiation including the effects of nonuniform mean flow and acoustic treatment

    NASA Technical Reports Server (NTRS)

    Eversman, Walter; Roy, Indranil Danda

    1993-01-01

    Forward and aft acoustic propagation and radiation from a ducted fan is modeled using a finite element discretization of the acoustic field equations. The fan noise source is introduced as equivalent body forces representing distributed blade loading. The flow in and around the nacelle is assumed to be nonuniform, reflecting the effects of forward flight and flow into the inlet. Refraction due to the fan exit jet shear layer is not represented. Acoustic treatment on the inlet and exhaust duct surfaces provides a mechanism for attenuation. In a region enclosing the fan a pressure formulation is used with the assumption of locally uniform flow. Away from the fan a velocity potential formulation is used and the flow is assumed nonuniform but irrotational. A procedure is developed for matching the two regions by making use of local duct modal amplitudes as transition state variables and determining the amplitudes by enforcing natural boundary conditions at the interface between adjacent regions in which pressure and velocity potential are used. Simple models of rotor alone and rotor/exit guide vane generated noise are used to demonstrate the calculation of the radiated acoustic field and to show the effect of acoustic treatment. The model has been used to assess the success of four techniques for acoustic lining optimization in reducing far field noise.

  13. Acoustic radiation of a submerged cylindrical shell in low frequency.

    PubMed

    Van de Loock, Julien; Décultot, Dominique; Léon, Fernand; Chati, Farid; Maze, Gérard; Rajaona, Dominique Raphael; Klauson, Aleksander

    2013-01-01

    The evaluation of sound pressure levels produced by submerged structures is a part of regulations on underwater noise pollution. The purpose of this work is the study of the underwater acoustic radiation of a stainless steel tube subjected to vibrations generated by a shock obtained by using a hammer. The vibrations of the tube, placed successively in air and in water, are measured by using accelerometers. In water, the acoustic radiation measurements are performed by using a hydrophone. Results are presented as frequency spectra and are confronted with results of the elastic theory. PMID:23298014

  14. Reconstruction of transient acoustic radiation from a sphere.

    PubMed

    Wu, Sean F; Lu, Huancai; Bajwa, Manjit S

    2005-04-01

    Transient near-field acoustical holography (NAH) formulation is derived from the Helmholtz equation least squares (HELS) method to reconstruct acoustic radiation from a spherical surface subject to transient excitations in a free field. To facilitate derivations of temporal solutions, we make use of the Laplace transform and expansion in terms of the spherical Hankel functions and spherical harmonics, with their coefficients settled by solving a system of equations obtained by matching an assumed-form solution to the measured acoustic pressure. To derive a general form of solution for a temporal kernel, we replace the spherical Hankel functions and their derivatives by polynomials, recast infinite integrals in the inverse Laplace transform as contour integrals in a complex s-plane, and evaluate it via the residue theorem. The transient acoustic quantities anywhere including the source surface are then obtained by convoluting the temporal kernels with respect to the measured acoustic pressure. Numerical examples of reconstructing transient acoustic fields from explosively expanding, impulsively accelerating, and partially accelerating spheres, and that from a sphere subject to an arbitrarily time-dependent excitation are depicted. To illustrate the effectiveness of HELS-based transient NAH formulations, all input data are collected along an arbitrarily selected line segment and used to reconstruct transient acoustic quantities everywhere. PMID:15898648

  15. Acoustic-radiation stress in solids. I - Theory

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.

    1984-01-01

    The general case of acoustic-radiation stress associated with quasi-compressional and quasi-shear waves propagating in infinite and semiinfinite lossless solids of arbitrary crystalline symmetry is studied. The Boussinesq radiation stress is defined and found to depend directly on an acoustic nonlinearity parameter which characterizes the radiation-induced static strain, a stress-generalized nonlinearity parameter which characterizes the stress nonlinearity, and the energy density of the propagating wave. Application of the Boltzmann-Ehrenfest principle of adiabatic invariance to a self-constrained system described by the nonlinear equations of motion allows the acoustic-radiation-induced static strain to be identified with a self-constrained variation in the time-averaged product of the internal energy density and displacement gradient. The time-averaged product is scaled by the acoustic nonlinearity parameter and represents the first-order nonlinearity in the virial theorem. Finally, the relationship between the Boussinesq and the Cauchy radiation stress is obtained in a closed three-dimensional form.

  16. Tunable acoustic radiation pattern assisted by effective impedance boundary

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Quan, Li; Wang, Li-Wei; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2016-02-01

    The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no fingerprint of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No.11474160), the Fundamental Research Funds for Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201401), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  17. Numerics of surface acoustic wave (SAW) driven acoustic streaming and radiation force

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Barnkob, Rune; Kahler, Christian; Costanzo, Francesco; Jun Huang, Tony

    2015-11-01

    Recently, surface acoustic wave (SAW) based systems have shown great potential for various lab-on-a-chip applications. However, the physical understanding of the precise acoustic fields and associated acoustophoresis is rather limited. In this work, we present a numerical study of the acoustophoretic particle motion inside a SAW-actuated, liquid-filled polydimethylsiloxane (PDMS) microchannel. We utilize a perturbation approach to divide the flow variables into first- and second-order components. The first-order fields result in a time-averaged acoustic radiation force on suspended particles, as well as the time-averaged body force terms that drive the second-order fields. We model the SAW actuation by a displacement function while we utilize impedance boundary conditions to model the PDMS walls. We identify the precise acoustic fields generated inside the microchannel and investigate a range of particle sizes to characterize the transition from streaming-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Lastly, we demonstrate the ability of SAW devices to tune the position of vertical pressure node inside the microchannel by tuning the phase difference between the two incoming surface acoustic waves.

  18. Acoustically assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid writing scheme for non-volatile memory

    SciTech Connect

    Biswas, Ayan K.; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2013-12-02

    We show that the energy dissipated to write bits in spin-transfer-torque random access memory can be reduced by an order of magnitude if a surface acoustic wave (SAW) is launched underneath the magneto-tunneling junctions (MTJs) storing the bits. The SAW-generated strain rotates the magnetization of every MTJs' soft magnet from the easy towards the hard axis, whereupon passage of a small spin-polarized current through a target MTJ selectively switches it to the desired state with > 99.99% probability at room temperature, thereby writing the bit. The other MTJs return to their original states at the completion of the SAW cycle.

  19. Physics of Acoustic Radiation from Jet Engine Inlets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  20. Spinning mode acoustic radiation from the flight inlet

    NASA Technical Reports Server (NTRS)

    Moss, W. F.

    1983-01-01

    A mathematical model was developed for spinning mode acoustic radiation from a thick wall duct without flow. This model is based on a series of experiments (with and without flow). A nearly pure azimuthal spinning mode was isolated and then reflection coefficients and far field pressure (amplitude and phase) were measured. In our model the governing boundary value problem for the Helmholtz equation is first converted into an integral equation for the unknown acoustic pressure over a disk, S1, near the mouth of the duct and over the exterior surface, S2, of the duct. Assuming a pure azimuthal mode excitation, the azimuthal dependence is integrated out which yields an integral equation over the generator C1 of S1 and the generator C2 of S2. The sound pressure on C1 was approximated by a truncated modal expansion of the interior acoustic pressure. Piecewise linear spline approximation on C2 was used.

  1. Radiation dominated acoustophoresis driven by surface acoustic waves.

    PubMed

    Guo, Jinhong; Kang, Yuejun; Ai, Ye

    2015-10-01

    Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. PMID:26070191

  2. Deformation of red blood cells using acoustic radiation forces

    PubMed Central

    Mishra, Puja; Hill, Martyn; Glynne-Jones, Peter

    2014-01-01

    Acoustic radiation forces have been used to manipulate cells and bacteria in a number of recent microfluidic applications. The net force on a cell has been subject to careful investigation over a number of decades. We demonstrate that the radiation forces also act to deform cells. An ultrasonic standing wave field is created in a 0.1 mm glass capillary at a frequency of 7.9 MHz. Using osmotically swollen red-blood cells, we show observable deformations up to an aspect ratio of 1.35, comparable to deformations created by optical tweezing. In contrast to optical technologies, ultrasonic devices are potentially capable of deforming thousands of cells simultaneously. We create a finite element model that includes both the acoustic environment of the cell, and a model of the cell membrane subject to forces resulting from the non-linear aspects of the acoustic field. The model is found to give reasonable agreement with the experimental results, and shows that the deformation is the result of variation in an acoustic force that is directed outwards at all points on the cell membrane. We foresee applications in diagnostic devices, and in the possibility of mechanically stimulating cells to promote differentiation and physiological effects. PMID:25379070

  3. Magnitude of Solar Radiation Torque in the Transition Region from the Umbra to the Dark Shadow of the Earth

    NASA Astrophysics Data System (ADS)

    Cabette, R. E. S.; Zanardi, M. C.; Kolesnikov, I.

    2015-10-01

    The analysis of solar radiation pressure force and its influence on the motion of artificial satellites has been developed by researchers. Accurate models to describe the influence of the Earth's shadow on the torque and force due to solar radiation pressure have been presented. In this work the solar radiation torque (SRT) and its influence on the attitude of an artificial satellite are taken into account by the introduction of the Earth's shadow function in the equations of motion. This function assumes a unitary value when the satellite is in the fully illuminated region of its orbit, and the value zero for the full shade region. The main objective of this study is to analyze the magnitude of SRT using the equations described by quaternions during a 35 day period and to compare the results with the satellite transition through the shadow region and the time interval in this region. The duration and transition through the shadow region were obtained using the software "Shadow Conditions of Earth Satellites". The formulation is applied to the Brazilian Data Collection Satellites SCD1 and SCD2, and the torque model is presented in terms of the satellite attitude quaternion, distance of the satellite to the Sun, orbital elements, right ascension and declination of the Sun.

  4. A general low frequency acoustic radiation capability for NASTRAN

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Henderson, F. M.; Schroeder, E. A.; Lipman, R. R.

    1986-01-01

    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads.

  5. Characterizing the stiffness of Human Prostates using Acoustic Radiation Force

    PubMed Central

    Zhai, Liang; Madden, John; Foo, Wen-Chi; Mouraviev, Vladimir; Polascik, Thomas J.; Palmeri, Mark L.; Nightingale, Kathryn R.

    2012-01-01

    Acoustic Radiation Force Impulse (ARFI) imaging has been previously reported to portray normal anatomic structures and pathologies in ex vivo human prostates with good contrast and resolution. These findings were based on comparison with histological slides and McNeal’s zonal anatomy. In ARFI images, the central zone (CZ) appears darker (smaller displacement) than other anatomic zones, and prostate cancer (PCa) is darker than normal tissue in the peripheral zone (PZ). Since displacement amplitudes in ARFI images are determined by both the underlying tissue stiffness and the amplitude of acoustic radiation force which varies with acoustic attenuation, one question that arises is: how are the relative displacements in prostate ARFI images related to the underlying prostatic tissue stiffness? In linear, isotropic elastic materials and in tissues that are relatively uniform in acoustic attenuation (e.g. liver), relative displacement in ARFI images has been shown to be correlated with underlying tissue stiffness. However, the prostate is known to be heterogeneous. Variations in acoustic attenuation of prostatic structures could confound the interpretation of ARFI images due to the associated variations in the applied acoustic radiation force. Therefore, in this study, co-registered three-dimensional (3D) ARFI datasets and quantitative shear wave elasticity imaging (SWEI) datasets were acquired in freshly excised human prostates to investigate the relationship between displacement amplitudes in ARFI prostate images and the matched reconstructed shear moduli. The lateral time-to-peak (LTTP) algorithm was applied to the SWEI data to compute the shear wave speed and reconstruct the shear moduli. Five types of prostatic tissue (PZ, CZ, transition zone (TZ) and benign prostatic hyperplasia (BPH), PCa, and atrophy) were identified, whose shear moduli were quantified to be 4.1±0.8 kPa, 9.9±0.9 kPa, 4.8±0.6 kPa, 10.0±1.0 kPa and 8.0 kPa, respectively. Linear regression was

  6. Acoustic Radiation Force on a Finite-Sized Particle due to an Acoustic Field in a Viscous Compressible Fluid

    NASA Astrophysics Data System (ADS)

    Annamalai, Subramanian; Parmar, Manoj; Balachandar, S.

    2013-11-01

    Particles when subjected to acoustic waves experience a time-averaged second-order force known as the acoustic radiation force, which is of prime importance in the fields of microfluidics and acoustic levitation. Here, the acoustic radiation force on a rigid spherical particle in a viscous compressible medium due to progressive and standing waves is considered. The relevant length scales include: particle radius (a), acoustic wavelength (λ) and viscous penetration depth (δ). While a / λ and a / δ are arbitrary, δ << λ . A farfield derivation approach has been used in determining the radiated force. Expressing the flow-field as a sum of the incident and scattered fields, an analytical expression for the force is obtained as a summation over infinite series (monopole, dipole and higher sources). These results indicate that the contributions from monopole, dipole and their cross-interaction are sufficient to describe the acoustic radiation force. Subsequently, the monopole and dipole strengths are represented in terms of the particle surface and volume averages of the incoming velocity. This generalization allows one to evaluate the radiation force for an incoming wave of any functional form. However acoustic streaming effects are neglected.

  7. RADIATIVE HYDRODYNAMIC SIMULATIONS OF ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Bard, S.; Carlsson, M.

    2010-10-10

    We investigate the formation and evolution of the Ca II H line in a sunspot. The aim of our study is to establish the mechanisms underlying the formation of the frequently observed brightenings of small regions of sunspot umbrae known as 'umbral flashes'. We perform fully consistent NLTE radiation hydrodynamic simulations of the propagation of acoustic waves in sunspot umbrae and conclude that umbral flashes result from increased emission of the local solar material during the passage of acoustic waves originating in the photosphere and steepening to shock in the chromosphere. To quantify the significance of possible physical mechanisms that contribute to the formation of umbral flashes, we perform a set of simulations on a grid formed by different wave power spectra, different inbound coronal radiation, and different parameterized chromospheric heating. Our simulations show that the waves with frequencies in the range 4.5-7.0 mHz are critical to the formation of the observed blueshifts of umbral flashes while waves with frequencies below 4.5 mHz do not play a role despite their dominance in the photosphere. The observed emission in the Ca II H core between flashes only occurs in the simulations that include significant inbound coronal radiation and/or extra non-radiative chromospheric heating in addition to shock dissipation.

  8. Acoustic centering of sources with high-order radiation patterns.

    PubMed

    Shabtai, Noam R; Vorländer, Michael

    2015-04-01

    Surrounding spherical microphone arrays have recently been used in order to model the radiation pattern of acoustic sources that are assumed to be at the center of the array. Source centering algorithms are applied to the measurements in order to reduce the negative effect of acoustic source misalignment with regard to the physical center of the microphone array. Recent works aim to minimize the energy that is contained in the high-order coefficients of the radiation pattern in the spherical harmonics domain, in order to directly address the problem of increased order and spatial aliasing resulted by this misalignment. However, objective functions which directly minimize the norm of these coefficients were shown to be convex only when employed on sources with low-order radiation patterns. This work presents a source centering algorithm that operates on plane sections and aims to achieve a convex objective function on every plane section. The results of the proposed algorithm are shown to be more convex than the previous algorithms for sources with higher-order radiation pattern, usually at higher frequencies. PMID:25920846

  9. Application of the Spectral Element Method to Acoustic Radiation

    NASA Technical Reports Server (NTRS)

    Doyle, James F.; Rizzi, Stephen A. (Technical Monitor)

    2000-01-01

    This report summarizes research to develop a capability for analysis of interior noise in enclosed structures when acoustically excited by an external random source. Of particular interest was the application to the study of noise and vibration transmission in thin-walled structures as typified by aircraft fuselages. Three related topics are focused upon. The first concerns the development of a curved frame spectral element, the second shows how the spectral element method for wave propagation in folded plate structures is extended to problems involving curved segmented plates. These are of significance because by combining these curved spectral elements with previously presented flat spectral elements, the dynamic response of geometrically complex structures can be determined. The third topic shows how spectral elements, which incorporate the effect of fluid loading on the structure, are developed for analyzing acoustic radiation from dynamically loaded extended plates.

  10. Acoustic Radiation from a Mach 14 Turbulent Boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan

    2015-11-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0.18 times the recovery temperature. The emphasis is on characterizing the acoustic radiation from the turbulent boundary layer and comparing it with previous simulations at Mach 2.5 and Mach 6 to assess the Mach-number dependence of the freestream pressure fluctuations. In particular, the numerical database is used to provide insights into the pressure disturbance spectrum and amplitude scaling with respect to the freestream Mach number as well as to understand the acoustic source mechanisms at very high Mach numbers. Such information is important for characterizing the freestream disturbance environment in conventional (i.e., noisy) hypersonic wind tunnels. Spectral characteristics of pressure fluctuations at the surface are also investigated. Sponsored by Air Force Office of Scientific Research.

  11. Radiation and propagation of short acoustical pulses from underground explosions

    SciTech Connect

    Banister, J.R.

    1982-06-01

    Radiation and propagation of short acoustical pulses from underground nuclear explosions were analyzed. The cone of more intense radiation is defined by the ratio of sound speeds in the ground and air. The pressure history of the radiated pulse is a function of the vertical ground-motion history, the range, the burial depth, and the velocity of longitudinal seismic waves. The analysis of short-pulse propagation employed an N-wave model with and without enegy conservation. Short pulses with initial wave lengths less than 100 m are severely attenuated by the energy loss in shocks and viscous losses in the wave interior. The methods developed in this study should be useful for system analysis.

  12. Material selection for acoustic radiators that are light and stiff.

    PubMed

    Porter, S P; Markley, D C; Van Tol, D J; Meyer, R J

    2011-01-01

    The headmass is a key element in tonpilz transducer design. As an acoustic radiator, a successful headmass must be built from a material that is both light and stiff. To assess the suitability of ceramics for this application, the authors used the mechanical properties of candidate materials to perform a theoretical comparison based on the flexural behavior of square plates. Although not a comprehensive metric for identifying the best headmass materials, the headmass flexure may be usefully employed as a first-level selection criteria. A software routine based on thin plate and thick plate theory was created to evaluate the flexural behavior in candidate materials. PMID:21302996

  13. Nonlinear aspects of acoustic radiation force in biomedical applications

    SciTech Connect

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-10-28

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  14. Relationship between acoustic power and acoustic radiation force on absorbing and reflecting targets for spherically focusing radiators.

    PubMed

    Gélat, Pierre; Shaw, Adam

    2015-03-01

    Total acoustic output power is an important parameter required by standards for most ultrasonic medical equipment including high-intensity focused ultrasound (HIFU) systems. Radiation force balances are routinely used; however, radiation force is not strictly dependent on the ultrasound power but, rather, on the wave momentum resolved in one direction. Consequently, measurements based on radiation force become progressively less accurate as the ultrasound wave deviates further from a true plane wave. HIFU transducers can be very strongly focused with F-numbers less than one: under these conditions, the uncertainty associated with use of the radiation force method becomes very significant. International Standards IEC 61161 and IEC 62555 suggest plane-wave correction factors for unfocused transducers radiating onto an ideal absorbing target and focusing corrections for focused transducers radiating onto ideal absorbing targets and onto conical reflecting targets (IEC 61161). Previous models have relied on calculations based on the Rayleigh integral, which is not strictly correct for curved sources. In the work described here, an approach combining finite element methods with a discretization of the Helmholtz equation was developed, making it possible to model the boundary condition at the structure/fluid interface more correctly. This has been used to calculate the relationship between radiation force and total power for both absorbing and conical reflecting targets for transducers ranging from planar to an F-number of 0.5 (hemispherical) and to compare with the recommendations of IEC 61161 and IEC 62555. PMID:25683223

  15. Considerations on the acoustic energy radiated by toothed gears. [model for calculating noise intensity

    NASA Technical Reports Server (NTRS)

    Popinceanu, N. G.; Kremmer, I.

    1974-01-01

    A mechano-acoustic model is reported for calculating acoustic energy radiated by a working gear. According to this model, a gear is an acoustic coublet formed of the two wheels. The wheel teeth generate cylindrical acoustic waves while the front surfaces of the teeth behave like vibrating pistons. Theoretical results are checked experimentally and good agreement is obtained with open gears. The experiments show that the air noise effect is negligible as compared with the structural noise transmitted to the gear box.

  16. Acoustic Radiation Optimization Using the Particle Swarm Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Jeon, Jin-Young; Okuma, Masaaki

    The present paper describes a fundamental study on structural bending design to reduce noise using a new evolutionary population-based heuristic algorithm called the particle swarm optimization algorithm (PSOA). The particle swarm optimization algorithm is a parallel evolutionary computation technique proposed by Kennedy and Eberhart in 1995. This algorithm is based on the social behavior models for bird flocking, fish schooling and other models investigated by zoologists. Optimal structural design problems to reduce noise are highly nonlinear, so that most conventional methods are difficult to apply. The present paper investigates the applicability of PSOA to such problems. Optimal bending design of a vibrating plate using PSOA is performed in order to minimize noise radiation. PSOA can be effectively applied to such nonlinear acoustic radiation optimization.

  17. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    NASA Technical Reports Server (NTRS)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  18. Theoretical models for duct acoustic propagation and radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1991-01-01

    The development of computational methods in acoustics has led to the introduction of analysis and design procedures which model the turbofan inlet as a coupled system, simultaneously modeling propagation and radiation in the presence of realistic internal and external flows. Such models are generally large, require substantial computer speed and capacity, and can be expected to be used in the final design stages, with the simpler models being used in the early design iterations. Emphasis is given to practical modeling methods that have been applied to the acoustical design problem in turbofan engines. The mathematical model is established and the simplest case of propagation in a duct with hard walls is solved to introduce concepts and terminologies. An extensive overview is given of methods for the calculation of attenuation in uniform ducts with uniform flow and with shear flow. Subsequent sections deal with numerical techniques which provide an integrated representation of duct propagation and near- and far-field radiation for realistic geometries and flight conditions.

  19. Acoustic black holes: massless scalar field analytic solutions and analogue Hawking radiation

    NASA Astrophysics Data System (ADS)

    Vieira, H. S.; Bezerra, V. B.

    2016-07-01

    We obtain the analytic solutions of the radial part of the massless Klein-Gordon equation in the spacetime of both three dimensional rotating and four dimensional canonical acoustic black holes, which are given in terms of the confluent Heun functions. From these solutions, we obtain the scalar waves near the acoustic horizon. We discuss the analogue Hawking radiation of massless scalar particles and the features of the spectrum associated with the radiation emitted by these acoustic black holes.

  20. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves

    NASA Astrophysics Data System (ADS)

    Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  1. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves.

    PubMed

    Johnson, Kennita A; Vormohr, Hannah R; Doinikov, Alexander A; Bouakaz, Ayache; Shields, C Wyatt; López, Gabriel P; Dayton, Paul A

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid. PMID:27300980

  2. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  3. Material properties from acoustic radiation force step response

    PubMed Central

    Orescanin, Marko; Toohey, Kathleen S.; Insana, Michael F.

    2009-01-01

    An ultrasonic technique for estimating viscoelastic properties of hydrogels, including engineered biological tissues, is being developed. An acoustic radiation force is applied to deform the gel locally while Doppler pulses track the induced movement. The system efficiently couples radiation force to the medium through an embedded scattering sphere. A single-element, spherically-focused, circular piston element transmits a continuous-wave burst to suddenly apply and remove a radiation force to the sphere. Simultaneously, a linear array and spectral Doppler technique are applied to track the position of the sphere over time. The complex shear modulus of the gel was estimated by applying a harmonic oscillator model to measurements of time-varying sphere displacement. Assuming that the stress-strain response of the surrounding gel is linear, this model yields an impulse response function for the gel system that may be used to estimate material properties for other load functions. The method is designed to explore the force-frequency landscape of cell-matrix viscoelasticity. Reported measurements of the shear modulus of gelatin gels at two concentrations are in close agreement with independent rheometer measurements of the same gels. Accurate modulus measurements require that the rate of Doppler-pulse transmission be matched to a priori estimates of gel properties. PMID:19425636

  4. Structural acoustics model of the violin radiativity profile.

    PubMed

    Bissinger, George

    2008-12-01

    Violin radiativity profiles are dominated by the Helmholtz-like A0 cavity mode ( approximately 280 Hz), first corpus bending modes B1(-) and B1(+) ( approximately 500 Hz), and BH and bridge-filter peaks ( approximately 2.4 kHz and approximately 3.5 kHz, respectively), with falloff above approximately 4 kHz. The B1 modes-dependent on two low-lying free-plate modes--are proposed to excite A0 via coupling to B1-driven in-phase f-hole volume flows. VIOCADEAS data show that A0 radiativity increases primarily as A0-B1(-) frequency difference decreases, consistent with Meinel's 1937 experiment for too-thick/too-thin plate thicknesses, plus sound post removal and violin octet baritone results. The vibration-->acoustic energy filter, F(RAD), computed from shape-material-independent radiation and total damping, peaks at the critical frequency f(crit), estimated from a free-plate mode by analogy to flat-plate bending. Experimentally, f(crit) decreased as this plate mode (and B1(+)) frequency increased. Simulations show that increasing plate thicknesses lowers f(crit), reduces F(RAD), and moves the spectral balance toward lower frequencies. Incorporating string-->corpus filters (including bridge versus bridge-island impedances) provides a model for overall violin radiativity. This model-with B1 and A0-B1 couplings, and f(crit) (computed from a free-plate mode important to B1) strongly affecting the lowest and highest parts of the radiativity profile-substantiates prior empirical B1--sound quality linkages. PMID:19206824

  5. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    SciTech Connect

    Nikolaeva, Anastasiia V. Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2015-10-28

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  6. Experimental Study of Acoustic Radiation Force of an Ultrasound Beam on Absorbing and Scattering Objects

    PubMed Central

    Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2016-01-01

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter. PMID:27147775

  7. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2015-10-01

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  8. The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect.

    PubMed

    Ma, Zhichao; Guo, Jinhong; Liu, Yan Jun; Ai, Ye

    2015-09-01

    In this study, we present a simple technique capable of assembling and patterning suspended CNTs using a standing surface acoustic wave (SSAW) field. Individual CNTs could be assembled into larger CNT bundles and patterned in periodic positions on a substrate surface. The mechanism of the SSAW-based patterning technique has been investigated using both numerical simulation and experimental study. It has been found that the acoustic radiation effect due to the acoustic pressure field and the dielectrophoretic (DEP) effect induced by the electric field co-existing in the patterning process however play different roles depending on the properties of the suspended particles and the suspension medium. In the SSAW-based patterning of highly conductive CNTs with high aspect ratio geometry, the positive DEP effect dominates over the acoustic radiation effect. In contrast, the acoustic radiation effect dominates over the DEP effect when manipulating less conductive, spherical or low aspect ratio particles or biological cells. These results provide a meaningful insight into the mechanism of SSAW-based patterning, which is of great help to guide the effective use of this patterning technique for various applications. PMID:26239679

  9. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    NASA Astrophysics Data System (ADS)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  10. Acoustic and elastic multiple scattering and radiation from cylindrical structures

    NASA Astrophysics Data System (ADS)

    Amirkulova, Feruza Abdukadirovna

    Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance and is required in a wide variety of physical contexts such as the implementation of "invisibility" cloaks, the effective parameter characterization, and the fabrication of dynamically tunable structures, etc. The dissertation develops fast, rapidly convergent iterative techniques to expedite the solution of MS problems. The formulation of MS problems reduces to a system of linear algebraic equations using Graf's theorem and separation of variables. The iterative techniques are developed using Neumann expansion and Block Toeplitz structure of the linear system; they are very general, and suitable for parallel computations and a large number of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the theoretical predictions are compared to computations obtained by COMSOL. To formulate the MS problem, the transition matrix is obtained by analyzing an acoustic and an elastic single scattering of incident waves by elastic isotropic and anisotropic solids. The mathematical model of wave scattering from multilayered cylindrical and spherical structures is developed by means of an exact solution of dynamic 3D elasticity theory. The recursive impedance matrix algorithm is derived for radially heterogeneous anisotropic solids. An explicit method for finding the impedance in piecewise uniform, transverse-isotropic material is proposed; the solution is compared to elasticity theory solutions involving Buchwald potentials. Furthermore, active exterior cloaking devices are modeled for acoustic and elastic media using multipole sources. A cloaking device can render an object invisible to some incident waves as seen by some external observer. The active cloak is generated by a discrete set of multipole sources that destructively interfere with an

  11. Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field

    NASA Astrophysics Data System (ADS)

    Farsund, Ø.; Felderhof, B. U.

    1996-02-01

    The force and torque exerted on a body of arbitrary shape and constitution by a stationary radiation field are in principle given by integrals of Minkowski's stress tensor over a surface surrounding the body. Similarly the absorbed energy is given by an integral of the Poynting vector. These integrals are notoriously difficult to evaluate, and so far only spherical bodies have been considered. It is shown here that the integrals may be cast into a simpler form by use of Debye potentials. General expressions for the integrals are derived as sums of bilinear expressions in the coefficients of the expansion of the incident and scattered waves in terms of vector spherical waves. The expressions are simplified for small particles, such as atoms, for which the electric dipole approximation may be used. It is shown that the calculation is also relevant for bodies with nonlinear electromagnetic response.

  12. Weakly Dissipative Dust Ion-Acoustic Solitons in the Presence of Electromagnetic Radiation

    SciTech Connect

    Golub', A. P.; Izvekova, Y. N.; Losseva, T. V.; Popel, S. I.; Shukla, P. K.

    2011-11-29

    We present the model, which describes nonlinear dust ion-acoustic (DIA) perturbations in complex plasmas with electromagnetic radiation. We study time-evolution of the individual DIA soliton and interaction of two DIA solitons.

  13. Ultrafast strain gauge: Observation of THz radiation coherently generated by acoustic waves

    SciTech Connect

    Armstrong, M; Reed, E; Kim, K; Glownia, J; Howard, W M; Piner, E; Roberts, J

    2008-08-14

    The study of nanoscale, terahertz frequency (THz) acoustic waves has great potential for elucidating material and chemical interactions as well as nanostructure characterization. Here we report the first observation of terahertz radiation coherently generated by an acoustic wave. Such emission is directly related to the time-dependence of the stress as the acoustic wave crosses an interface between materials of differing piezoelectric response. This phenomenon enables a new class of strain wave metrology that is fundamentally distinct from optical approaches, providing passive remote sensing of the dynamics of acoustic waves with ultrafast time resolution. The new mechanism presented here enables nanostructure measurements not possible using existing optical or x-ray approaches.

  14. Ultrasonic Measurement of Microdisplacement Induced by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Nagaoka, Ryo; Izumi, Takuya; Komatsu, Yosuke; Kobayashi, Kazuto; Saijo, Yoshifumi

    2013-07-01

    Quantitative evaluation of human skin aging is achieved by measuring the viscoelasticity of the skin. In the present study, microdisplacement induced by acoustic radiation force (ARF) is quantitatively measured by high-frequency ultrasonography (HFUS) and the result is confirmed by laser-Doppler velocimetry (LDV). Poly(vinyl alcohol) (PVA) with 1% cellulose particles was used as the biological phantom. A concave piezoelectric zirconate titanate (PZT) transducer with a diameter and focal length of 3 cm was used as an applicator to generate ARF. Microdisplacement at each depth of PVA was measured by the phased tracking method at 100 MHz of ultrasound with a repetition rate of 2000 Hz. When 80 tone-burst pulses were applied, the displacement measured by HFUS was 9 µm and the same result was obtained by LDV. As the displacement at each depth of PVA is measurable using ARF and the HFUS system, the system could be applied to measuring the viscoelasticity of the layered structure of the human skin.

  15. Analysis of clot formation with acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Longo, Diane M.; Lawrence, Michael B.; Walker, William F.

    2002-04-01

    Inappropriate blood coagulation plays an important role in diseases including stroke, heart attack, and deep vein thrombosis (DVT). DVT arises when a blood clot forms in a large vein of the leg. DVT is detrimental because the blood flow may be partially or completely obstructed. More importantly, a potentially fatal situation may arise if part of the clot travels to the arteries in the lungs, forming a pulmonary embolism (PE). Characterization of the mechanical properties of DVT could improve diagnosis and suggest appropriate treatment. We are developing a technique to assess mechanical properties of forming thrombi. The technique uses acoustic radiation force as a means to produce small, localized displacements within the sample. Returned ultrasound echoes are processed to estimate the time dependent displacement of the sample. Appropriate mechanical modeling and signal processing produce plots depicting relative mechanical properties (relative elasticity and relative viscosity) and force-free parameters (time constant, damping ratio, and natural frequency). We present time displacement curves of blood samples obtained during coagulation, and show associated relative and force-free parameter plots. These results show that the Voigt model with added mass accurately characterizes blood behavior during clot formation.

  16. Acoustic Radiation Force Impulse (ARFI) Imaging-Based Needle Visualization

    PubMed Central

    Rotemberg, Veronica; Palmeri, Mark; Rosenzweig, Stephen; Grant, Stuart; Macleod, David; Nightingale, Kathryn

    2011-01-01

    Ultrasound-guided needle placement is widely used in the clinical setting, particularly for central venous catheter placement, tissue biopsy and regional anesthesia. Difficulties with ultrasound guidance in these areas often result from steep needle insertion angles and spatial offsets between the imaging plane and the needle. Acoustic Radiation Force Impulse (ARFI) imaging leads to improved needle visualization because it uses a standard diagnostic scanner to perform radiation force based elasticity imaging, creating a displacement map that displays tissue stiffness variations. The needle visualization in ARFI images is independent of needle-insertion angle and also extends needle visibility out of plane. Although ARFI images portray needles well, they often do not contain the usual B-mode landmarks. Therefore, a three-step segmentation algorithm has been developed to identify a needle in an ARFI image and overlay the needle prediction on a coregistered B-mode image. The steps are: (1) contrast enhancement by median filtration and Laplacian operator filtration, (2) noise suppression through displacement estimate correlation coefficient thresholding and (3) smoothing by removal of outliers and best-fit line prediction. The algorithm was applied to data sets from horizontal 18, 21 and 25 gauge needles between 0–4 mm offset in elevation from the transducer imaging plane and to 18G needles on the transducer axis (in plane) between 10° and 35° from the horizontal. Needle tips were visualized within 2 mm of their actual position for both horizontal needle orientations up to 1.5 mm off set in elevation from the transducer imaging plane and on-axis angled needles between 10°–35° above the horizontal orientation. We conclude that segmented ARFI images overlaid on matched B-mode images hold promise for improved needle visibility in many clinical applications. PMID:21608445

  17. Reconstructing transient acoustic radiation from an arbitrary object with a uniform surface velocity distribution.

    PubMed

    Wu, Sean F

    2014-08-01

    This paper presents the general formulations for reconstructing the transient acoustic field generated by an arbitrary object with a uniformly distributed surface velocity in free space. These formulations are derived from the Kirchhoff-Helmholtz integral theory that correlates the transient acoustic pressure at any field point to those on the source surface. For a class of acoustic radiation problems involving an arbitrarily oscillating object with a uniformly distributed surface velocity, for example, a loudspeaker membrane, the normal surface velocity is frequency dependent but is spatially invariant. Accordingly, the surface acoustic pressure is expressible as the product of the surface velocity and the quantity that can be solved explicitly by using the Kirchhoff-Helmholtz integral equation. This surface acoustic pressure can be correlated to the field acoustic pressure using the Kirchhoff-Helmholtz integral formulation. Consequently, it is possible to use nearfield acoustic holography to reconstruct acoustic quantities in entire three-dimensional space based on a single set of acoustic pressure measurements taken in the near field of the target object. Examples of applying these formulations to reconstructing the transient acoustic pressure fields produced by various arbitrary objects are demonstrated. PMID:25096086

  18. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    SciTech Connect

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen; Liu, Xiaozhou

    2014-10-14

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  19. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    NASA Astrophysics Data System (ADS)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Xiaozhou; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen

    2014-10-01

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  20. The directional sensitivity of the acoustic radiation force to particle diameter.

    PubMed

    Ran, W; Saylor, J R

    2015-06-01

    When viscous corrections to the inviscid acoustic radiation force theory are implemented and applied to a standing wave field, the direction of the acoustic radiation force on particles varies from theory to theory. Specifically, some theories predict that the direction of the force depends on the particle diameter, while others reveal that the direction of the force is independent of particle diameter. The present study is an experimental investigation of the direction of the acoustic radiation force which suggests that particle diameter does affect the direction. Experiments were conducted in air using an ultrasonic standing wave field with a nominal frequency of 30 kHz. Smoke particles and fine water droplets having a range of diameters were flowed into the region of a standing wave field. The direction of the acoustic radiation force was determined by observing whether the particles accumulated in the nodes or the anti-nodes of the standing wave. Results show a change in the direction of the acoustic radiation force at a particle diameter of 0.3±0.1 μm, which corresponds to a particle diameter to acoustic-boundary-layer thickness ratio of 0.023±0.008. PMID:26093419

  1. Acoustic Radiation Force Impulse Measurement in Renal Transplantation

    PubMed Central

    Lee, Juhan; Oh, Young Taik; Joo, Dong Jin; Ma, Bo Gyoung; Lee, A-lan; Lee, Jae Geun; Song, Seung Hwan; Kim, Seung Up; Jung, Dae Chul; Chung, Yong Eun; Kim, Yu Seun

    2015-01-01

    Abstract Interstitial fibrosis and tubular atrophy (IF/TA) is a common cause of kidney allograft loss. Several noninvasive techniques developed to assess tissue fibrosis are widely used to examine the liver. However, relatively few studies have investigated the use of elastographic methods to assess transplanted kidneys. The aim of this study was to explore the clinical implications of the acoustic radiation force impulse (ARFI) technique in renal transplant patients. A total of 91 patients who underwent living donor renal transplantation between September 2010 and January 2013 were included in this prospective study. Shear wave velocity (SWV) was measured by ARFI at baseline and predetermined time points (1 week and 6 and 12 months after transplantation). Protocol biopsies were performed at 12 months. Instead of reflecting IF/TA, SWVs were found to be related to time elapsed after transplantation. Mean SWV increased continuously during the first postoperative year (P < 0.001). In addition, mixed model analysis showed no correlation existed between SWV and serum creatinine (r = −0.2426, P = 0.0771). There was also no evidence of a relationship between IF/TA and serum creatinine (odds ratio [OR] = 1.220, P = 0.7648). Furthermore, SWV temporal patterns were dependent on the kidney weight to body weight ratio (KW/BW). In patients with a KW/BW <3.5 g/kg, mean SWV continuously increased for 12 months, whereas it decreased after 6 months in those with a KW/BW ≥3.5 g/kg. No significant correlation was observed between SWV and IF/TA or renal dysfunction. However, SWV was found to be related to the time after transplantation. Renal hemodynamics influenced by KW/BW might impact SWV values. PMID:26426636

  2. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  3. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles. PMID:22087995

  4. A numerical method for the calculation of dynamic response and acoustic radiation from an underwater structure

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Joseph, P. F.

    2005-05-01

    An approach combining finite element with boundary element methods is proposed to calculate the elastic vibration and acoustic field radiated from an underwater structure. The FEM software NASTRAN is employed for computation of the structural vibration. An uncoupled boundary element method, based on the potential decomposition technique, is described to determine the acoustic added mass and damping coefficients that result due to fluid loading effects. The acoustic matrices of added mass and damping coefficients are then added to the structural mass and damping matrices, respectively, by the DMAP modules of NASTRAN. Numerical results are shown to be in good agreement with experimental data. The complex eigenvalue analyses of underwater structure are obtained by NASTRAN solution sequence SOL107. Results obtained from this study suggest that the natural frequencies of underwater structures are only weakly dependent on the acoustic frequency if the acoustic wavelength is roughly twice as large as the maximum structural dimension.

  5. Acoustic Radiation from High-Speed Turbulent Boundary Layers in a Tunnel-Like Environment

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2015-01-01

    Direct numerical simulation of acoustic radiation from a turbulent boundary layer in a cylindrical domain will be conducted under the flow conditions corresponding to those at the nozzle exit of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) operated under noisy-flow conditions with a total pressure p(sub t) of 225 kPa and a total temperature of T(sub t) equal to 430 K. Simulations of acoustic radiation from a turbulent boundary layer over a flat surface are used as a reference configuration to illustrate the effects of the cylindrical enclosure. A detailed analysis of acoustic freestream disturbances in the cylindrical domain will be reported in the final paper along with a discussion pertaining to the significance of the flat-plate acoustic simulations and guidelines concerning the modeling of the effects of an axisymmetric tunnel wall on the noise field.

  6. Acoustic intensity-based method for sound radiations in a uniform flow.

    PubMed

    Yu, Chao; Zhou, Zhengfang; Zhuang, Mei

    2009-11-01

    An acoustic intensity-based method (AIBM) is extended and verified for predicting sound radiation in a subsonic uniform flow. The method assumes that the acoustic propagation is governed by the modified Helmholtz equation on and outside of a control surface, which encloses all the noise sources and nonlinear effects. With acoustic pressure derivative and its co-located acoustic pressure as input from an open control surface, the unique solution of the modified Helmholtz equation is obtained by solving the least squares problem. The AIBM is coupled with near-field Computational Fluid Dynamics (CFD)/Computational Aeroacoustics (CAA) methods to predict sound radiation of model aeroacoustic problems. The effectiveness of this hybrid approach has been demonstrated by examples of both tonal and broadband noise. Since the AIBM method is stable and accurate based on the input acoustic data from an open surface in a radiated field, it is therefore advantageous for the far-field prediction of aerodynamics noise propagation when an acoustic input from a closed control surface, like the Ffowcs Williams-Hawkings surface, is not available [Philos. Trans. R. Soc. London, Ser. A 264, 321-342 (1969)]. PMID:19894800

  7. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  8. Production of Local Acoustic Radiation Force to Constrain Direction of Microcapsules in Flow

    NASA Astrophysics Data System (ADS)

    Kohji Masuda,; Nobuyuki Watarai,; Ryusuke Nakamoto,; Yusuke Muramatsu,

    2010-07-01

    We have ever reported our attempt to control the direction of microcapsules in flow by acoustic radiation force. However, the diameter of capsules was too large to be applied in vivo. Furthermore, the acoustic radiation force affected only the focal area because focused ultrasound was used. Thus, we have improved our experiment by using microcapsules as small as blood cells and introducing a plane wave of ultrasound. We prepared an artificial blood vessel including a Y-form bifurcation established in two observation areas. Then, we newly defined the induction index to evaluate the difference in capsule density in two downstream paths. As a result, the optimum angle of ultrasound emission to induct to the desired path was derived. The induction index increased in proportion to the central frequency of ultrasound, which is affected by the aggregation of capsules to receive more acoustic radiation force.

  9. Eccentricity effects on acoustic radiation from a spherical source suspended within a thermoviscous fluid sphere.

    PubMed

    Hasheminejad, Seyyed M; Azarpeyvand, Mahdi

    2003-11-01

    Acoustic radiation from a spherical source undergoing angularly periodic axisymmetric harmonic surface vibrations while eccentrically suspended within a thermoviscous fluid sphere, which is immersed in a viscous thermally conducting unbounded fluid medium, is analyzed in an exact fashion. The formulation uses the appropriate wave-harmonic field expansions along with the translational addition theorem for spherical wave functions and the relevant boundary conditions to develop a closed-form solution in form of infinite series. The analytical results are illustrated with a numerical example in which the vibrating source is eccentrically positioned within a chemical fluid sphere submerged in water. The modal acoustic radiation impedance load on the source and the radiated far-field pressure are evaluated and discussed for representative values of the parameters characterizing the system. The proposed model can lead to a better understanding of dynamic response of an underwater acoustic lens. It is equally applicable in miniature transducer analysis and design with applications in medical ultrasonics. PMID:14682628

  10. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  11. Generation of a reference radiation pattern of string instruments using automatic excitation and acoustic centering.

    PubMed

    Shabtai, Noam R; Behler, Gottfried; Vorländer, Michael

    2015-11-01

    Radiation patterns of musical instruments are important for the understanding of music perception in concert halls, and may be used to improve the plausibility of virtual acoustic systems. Many attempts have been performed to measure the spatial response of musical instruments using surrounding spherical microphone arrays with a limited number of microphones. This work presents a high-resolution spatial sampling of the radiation pattern of an electrically excited violin, and addresses technical problems that arise due to mechanical reasons of the excitation apparatus using acoustic centering. PMID:26627818

  12. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    SciTech Connect

    Qi, Wenjuan; Li, Rui; Ma, Teng; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  13. Tunable optical lens array using viscoelastic material and acoustic radiation force

    SciTech Connect

    Koyama, Daisuke Kashihara, Yuta; Matsukawa, Mami; Hatanaka, Megumi; Nakamura, Kentaro

    2015-10-28

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.

  14. Liver reserve function assessment by acoustic radiation force impulse imaging

    PubMed Central

    Sun, Xiao-Lan; Liang, Li-Wei; Cao, Hui; Men, Qiong; Hou, Ke-Zhu; Chen, Zhen; Zhao, Ya-E

    2015-01-01

    AIM: To evaluate the utility of liver reserve function by acoustic radiation force impulse (ARFI) imaging in patients with liver tumors. METHODS: Seventy-six patients with liver tumors were enrolled in this study. Serum biochemical indexes, such as aminotransferase (ALT), aspartate aminotransferase (AST), serum albumin (ALB), total bilirubin (T-Bil), and other indicators were observed. Liver stiffness (LS) was measured by ARFI imaging, measurements were repeated 10 times, and the average value of the results was taken as the final LS value. Indocyanine green (ICG) retention was performed, and ICG-K and ICG-R15 were recorded. Child-Pugh (CP) scores were carried out based on patient’s preoperative biochemical tests and physical condition. Correlations among CP scores, ICG-R15, ICG-K and LS values were observed and analyzed using either the Pearson correlation coefficient or the Spearman rank correlation coefficient. Kruskal-Wallis test was used to compare LS values of CP scores, and the receiver-operator characteristic (ROC) curve was used to analyze liver reserve function assessment accuracy. RESULTS: LS in the ICG-R15 10%-20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.19 ± 0.27 vs 1.59 ± 0.32, P < 0.01). LS in the ICG-R15 > 20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.92 ± 0.29 vs 1.59 ± 0.32, P < 0.01). The LS value in patients with CP class A was lower than in patients with CP class B (1.57 ± 0.34 vs 1.86 ± 0.27, P < 0.05), while the LS value in patients with CP class B was lower than in patients with CP class C (1.86 ± 0.27 vs 2.47 ± 0.33, P < 0.01). LS was positively correlated with ICG-R15 (r = 0.617, P < 0.01) and CP score (r = 0.772, P < 0.01). Meanwhile, LS was negatively correlated with ICG-K (r = -0.673, P < 0.01). AST, ALT and T-Bil were positively correlated with LS, while ALB was negatively

  15. An improved method for the calculation of Near-Field Acoustic Radiation Modes

    NASA Astrophysics Data System (ADS)

    Liu, Zu-Bin; Maury, Cédric

    2016-02-01

    Sensing and controlling Acoustic Radiation Modes (ARMs) in the near-field of vibrating structures is of great interest for broadband noise reduction or enhancement, as ARMs are velocity distributions defined over a vibrating surface, that independently and optimally contribute to the acoustic power in the acoustic field. But present methods only provide far-field ARMs (FFARMs) that are inadequate for the acoustic near-field problem. The Near-Field Acoustic Radiation Modes (NFARMs) are firstly studied with an improved numerical method, the Pressure-Velocity method, which rely on the eigen decomposition of the acoustic transfers between the vibrating source and a conformal observation surface, including sound pressure and velocity transfer matrices. The active and reactive parts of the sound power are separated and lead to the active and reactive ARMs. NFARMs are studied for a 2D baffled beam and for a 3D baffled plate, and so as differences between the NFARMS and the classical FFARMs. Comparisons of the NFARMs are analyzed when varying frequency and observation distance to the source. It is found that the efficiencies and shapes of the optimal active ARMs are independent on the distance while that of the reactive ones are distinctly related on.

  16. Influence of the outer scales of temperature and dynamic turbulence on the characteristics of transmitted acoustic radiation

    NASA Astrophysics Data System (ADS)

    Shamanaeva, L. G.; Belov, V. V.; Burkatovskaya, Yu. B.; Krasnenko, N. P.

    2015-11-01

    In the present work, the problem of propagation of monochromatic acoustic radiation in the lower 500-meter layer of the plain stratified moving turbulent atmosphere is solved by the Monte Carlo method. The influence of the parameters of models of the outer scales of temperature and dynamic turbulence on the intensity of transmitted acoustic radiation intensity is investigated.

  17. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  18. 3D Finite-Difference Modeling of Acoustic Radiation from Seismic Sources

    NASA Astrophysics Data System (ADS)

    Chael, E. P.; Aldridge, D. F.; Jensen, R. P.

    2013-12-01

    Shallow seismic events, earthquakes as well as explosions, often generate acoustic waves in the atmosphere observable at local or even regional distances. Recording both the seismic and acoustic signals can provide additional constraints on source parameters such as epicenter coordinates, depth, origin time, moment, and mechanism. Recent advances in finite-difference (FD) modeling methods enable accurate numerical treatment of wave propagation across the ground surface between the (solid) elastic and (fluid) acoustic domains. Using a fourth-order, staggered-grid, velocity-stress FD algorithm, we are investigating the effects of various source parameters on the acoustic (or infrasound) signals transmitted from the solid earth into the atmosphere. Compressional (P), shear (S), and Rayleigh waves all radiate some acoustic energy into the air at the ground surface. These acoustic wavefronts are typically conical in shape, since their phase velocities along the surface exceed the sound speed in air. Another acoustic arrival with a spherical wavefront can be generated from the vicinity of the epicenter of a shallow event, due to the strong vertical ground motions directly above the buried source. Images of acoustic wavefields just above the surface reveal the radiation patterns and relative amplitudes of the various arrivals. In addition, we compare the relative effectiveness of different seismic source mechanisms for generating acoustic energy. For point sources at a fixed depth, double-couples with almost any orientation produce stronger acoustic signals than isotropic explosions, due to higher-amplitude S and Rayleigh waves. Of course, explosions tend to be shallower than most earthquakes, which can offset the differences due to mechanism. Low-velocity material in the shallow subsurface acts to increase vertical seismic motions there, enhancing the coupling to acoustic waves in air. If either type of source breaks the surface (e.g., an earthquake with surface rupture

  19. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  20. An efficient model for coupling structural vibrations with acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Ting, LU

    1993-01-01

    The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.

  1. Application of an ultrasonic focusing radiator for acoustic levitation of submillimeter samples

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1981-01-01

    An acoustic apparatus has been specifically developed to handle samples of submillimeter size in a gaseous medium. This apparatus consists of an acoustic levitation device, deployment devices for small liquid and solid samples, heat sources for sample heat treatment, acoustic alignment devices, a cooling system and data-acquisition instrumentation. The levitation device includes a spherical aluminum dish of 12 in. diameter and 0.6 in. thickness, 130 pieces of PZT transducers attached to the back side of the dish and a spherical concave reflector situated in the vicinity of the center of curvature of the dish. The three lowest operating frequencies for the focusing-radiator levitation device are 75, 105 and 163 kHz, respectively. In comparison with other levitation apparatus, it possesses a large radiation pressure and a high lateral positional stability. This apparatus can be used most advantageously in the study of droplets and spherical shell systems, for instance, for fusion target applications.

  2. Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    2000-01-01

    A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.

  3. Acoustic radiation damping of flat rectangular plates subjected to subsonic flows

    NASA Technical Reports Server (NTRS)

    Lyle, Karen Heitman

    1993-01-01

    The acoustic radiation damping for various isotropic and laminated composite plates and semi-infinite strips subjected to a uniform, subsonic and steady flow has been predicted. The predictions are based on the linear vibration of a flat plate. The fluid loading is characterized as the perturbation pressure derived from the linearized Bernoulli and continuity equations. Parameters varied in the analysis include Mach number, mode number and plate size, aspect ratio and mass. The predictions are compared with existing theoretical results and experimental data. The analytical results show that the fluid loading can significantly affect realistic plate responses. Generally, graphite/epoxy and carbon/carbon plates have higher acoustic radiation damping values than similar aluminum plates, except near plate divergence conditions resulting from aeroelastic instability. Universal curves are presented where the acoustic radiation damping normalized by the mass ratio is a linear function of the reduced frequency. A separate curve is required for each Mach number and plate aspect ratio. In addition, acoustic radiation damping values can be greater than or equal to the structural component of the modal critical damping ratio (assumed as 0.01) for the higher subsonic Mach numbers. New experimental data were acquired for comparison with the analytical results.

  4. Active Path Selection of Fluid Microcapsules in Artificial Blood Vessel by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Masuda, Kohji; Muramatsu, Yusuke; Ueda, Sawami; Nakamoto, Ryusuke; Nakayashiki, Yusuke; Ishihara, Ken

    2009-07-01

    Micrometer-sized microcapsules collapse upon exposure to ultrasound. Use of this phenomenon for a drug delivery system (DDS), not only for local delivery of medication but also for gene therapy, should be possible. However, enhancing the efficiency of medication is limited because capsules in suspension diffuse in the human body after injection, since the motion of capsules in blood flow cannot be controlled. To control the behavior of microcapsules, acoustic radiation force was introduced. We detected local changes in microcapsule density by producing acoustic radiation force in an artificial blood vessel. Furthermore, we theoretically estimated the conditions required for active path selection of capsules at a bifurcation point in the artificial blood vessel. We observed the difference in capsule density at both in the bifurcation point and in alternative paths downstream of the bifurcation point for different acoustic radiation forces. Comparing the experimental results with those obtained theoretically, the conditions for active path selection were calculated from the acoustic radiation force and fluid resistance of the capsules. The possibility of controlling capsule flow towards a specific point in a blood vessel was demonstrated.

  5. Intravascular Ultrasound Catheter to Enhance Microbubble-Based Drug Delivery via Acoustic Radiation Force

    PubMed Central

    Kilroy, Joseph P.; Klibanov, Alexander L.; Wamhoff, Brian R.; Hossack, John A.

    2015-01-01

    Previous research has demonstrated that acoustic radiation force enhances intravascular microbubble adhesion to blood vessels in the presence of flow for molecular-targeted ultrasound imaging and drug delivery. A prototype acoustic radiation force intravascular ultrasound (ARFIVUS) catheter was designed and fabricated to displace a microbubble contrast agent in flow representative of conditions encountered in the human carotid artery. The prototype ARFIVUS transducer was designed to match the resonance frequency of 1.4- to 2.6-μm-diameter microbubbles modeled by an experimentally verified 1-D microbubble acoustic radiation force translation model. The transducer element was an elongated Navy Type I (hard) lead zirconate titanate (PZT) ceramic designed to operate at 3 MHz. Fabricated devices operated with center frequencies of 3.3 and 3.6 MHz with −6-dB fractional bandwidths of 55% and 50%, respectively. Microbubble translation velocities as high as 0.86 m/s were measured using a high-speed streak camera when insonating with the ARFIVUS transducer. Finally, the prototype was used to displace microbubbles in a flow phantom while imaging with a commercial 45-MHz imaging IVUS transducer. A sustained increase of 31 dB in average video intensity was measured following insonation with the ARFIVUS, indicating microbubble accumulation resulting from the application of acoustic radiation force. PMID:23143566

  6. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    PubMed

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  7. Integration of Acoustic Radiation Force and Optical Imaging for Blood Plasma Clot Stiffness Measurement

    PubMed Central

    Wang, Caroline W.; Perez, Matthew J.; Helmke, Brian P.; Viola, Francesco; Lawrence, Michael B.

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  8. A contactless methodology of picking up micro-particles from rigid surfaces by acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Yang, Keji; Fan, Zongwei; Ju, Bing-Feng

    2012-01-01

    Controlled movement and pick up of small object from a rigid surface is a primary challenge in many applications. In this paper, a contactless methodology of picking up micro-particles within deionized water from rigid surfaces by acoustic radiation force is presented. In order to achieve this, an acoustic radiation force was generated by 1.75 MHz transducers. A custom built setup facilitates the optimization of the sound field by varying the parameters such as sound source size and source position. The three-dimensional pressure distributions are measured and its relative sound field is also characterized accordingly. The standing wave field has been formed and it is mainly composed of two obliquely incident plane waves and their reflectors. We demonstrated the gripping and positioning of silica beads, SiO2, and aluminum micro-particles of 100 μm to 500 μm in size with this method using acoustic radiation force. The acoustic radiation force generated is well controlled, contactless, and in the tens of nano-Newton range which allowed us to manipulate relative big micro objects such as MEMS components as well as moving objects such as living cells. The proposed method provided an alternative form of contactless operating environment with scalable dimensions suitable for the manipulating of small objects. This permits high-throughput processing and reduction in time required for MEMS assembling, cell biomechanics, and biotechnology applications.

  9. Comparison with Analytical Solution: Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2000-01-01

    An acoustic source inside of a 2-D jet excites an instability wave in the shear layer resulting in sound radiating away from the shear layer. Solve the linearized Euler equations to predict the sound radiation outside of the jet. The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary condition along the x-axis.

  10. Separation of Yeast Cells from MS2 Viruses Using Acoustic Radiation Force

    SciTech Connect

    Jung, B; Fisher, K; Ness, K; Rose, K A; Mariella, Jr., R P

    2008-03-27

    We report a rapid and robust separation of Saccharomyces cerevisiae and MS2 bacteriophage using acoustic focusing in a microfluidic device. A piezoelectric transducer (PZT) generates acoustic standing waves in the microchannel. These standing waves induce acoustic radiation force fields that direct microparticles towards the nodes (i.e., pressure minima) or the anti-nodes (i.e., pressure maxima) of the standing waves depending on the relative compressidensity between the particle and the suspending liquid.[1] For particles larger than 2 {micro}m, the transverse velocities generated by these force fields enable continuous, high throughput separation. Extensive work in the last decade [2-4] has demonstrated acoustic focusing for manipulating microparticles or biological samples in microfluidic devices. This prior work has primarily focused on experimental realization of acoustic focusing without modeling or with limited one-dimensional modeling estimates. We recently developed a finite element modeling tool to predict the two-dimensional acoustic radiation force field perpendicular to the flow direction in microfluidic devices.[1] Here we compare results from this model with experimental parametric studies including variations of the PZT driving frequencies and voltages as well as various particle sizes and compressidensities. These experimental parametric studies also provide insight into the development of an adjustable 'virtual' pore-size filter as well as optimal operating conditions for various microparticle sizes. Figure 1 shows a typical experimental acoustic focusing result for microparticles (diameter = 2.0 {micro}m) in a 500 {micro}m wide by 200 {micro}m deep microchannel. In this case, the PZT driving frequency and voltage are, respectively, 1.459 MHz and 6.6 V. The microparticles tightly focus (full width half maximum (FWHM) {approx}30 {micro}m) less than 30 s after the initiation of the acoustic field. We simulated the same geometry and operating

  11. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    SciTech Connect

    Mitri, F. G.

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  12. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-12-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  13. Effect of holed reflector on acoustic radiation force in noncontact ultrasonic dispensing of small droplets

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroki; Wada, Yuji; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We investigated the fundamental aspects of droplet dispensing, which is an important procedure in the noncontact ultrasonic manipulation of droplets in air. A holed reflector was used to dispense a droplet from a 27.4 kHz standing-wave acoustic field to a well. First, the relationship between the hole diameter of the reflector and the acoustic radiation force acting on a levitated droplet was clarified by calculating the acoustic impedance of the point just above the hole. When the hole diameter was half of (or equal to) the acoustic wavelength λ, the acoustic radiation force was ∼80% (or 50%) of that without a hole. The maximal diameters of droplets levitated above the holes through flat and half-cylindrical reflectors were then experimentally investigated. For instance, with the half-cylindrical reflector, the maximal diameter was 5.0 mm for a hole diameter of 6.0 mm, and droplets were levitatable up to a hole diameter of 12 mm (∼λ).

  14. Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.

    1986-01-01

    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a "Gutin" propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.

  15. Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.

    1986-01-01

    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a 'Gutin' propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.

  16. Acoustic radiation force expressed using complex phase shifts and momentum-transfer cross sections.

    PubMed

    Zhang, Likun; Marston, Philip L

    2016-08-01

    Acoustic radiation force is expressed using complex phase shifts of partial wave scattering functions and the momentum-transfer cross section, herein incorporated into acoustics from quantum mechanisms. Imaginary parts of the phase shifts represent dissipation in the object and/or in the boundary layer adjacent to the object. The formula simplifies the force as summation of functions of complex phase shifts of adjacent partial waves involving differences of real parts and sums of imaginary parts, providing an efficient way of exploring the force parameter-space. The formula for the force is proportional to a generalized momentum-transfer cross section for plane waves and no dissipation. PMID:27586777

  17. Adjustable virtual pore-size filter for automated sample preparation using acoustic radiation force

    SciTech Connect

    Jung, B; Fisher, K; Ness, K; Rose, K; Mariella, R

    2008-05-22

    We present a rapid and robust size-based separation method for high throughput microfluidic devices using acoustic radiation force. We developed a finite element modeling tool to predict the two-dimensional acoustic radiation force field perpendicular to the flow direction in microfluidic devices. Here we compare the results from this model with experimental parametric studies including variations of the PZT driving frequencies and voltages as well as various particle sizes and compressidensities. These experimental parametric studies also provide insight into the development of an adjustable 'virtual' pore-size filter as well as optimal operating conditions for various microparticle sizes. We demonstrated the separation of Saccharomyces cerevisiae and MS2 bacteriophage using acoustic focusing. The acoustic radiation force did not affect the MS2 viruses, and their concentration profile remained unchanged. With optimized design of our microfluidic flow system we were able to achieve yields of > 90% for the MS2 with > 80% of the S. cerevisiae being removed in this continuous-flow sample preparation device.

  18. Finite Element Prediction of Acoustic Scattering and Radiation from Submerged Elastic Structures

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Henderson, F. M.; Lipman, R. R.

    1984-01-01

    A finite element formulation is derived for the scattering and radiation of acoustic waves from submerged elastic structures. The formulation uses as fundamental unknowns the displacement in the structure and a velocity potential in the field. Symmetric coefficient matrices result. The outer boundary of the fluid region is terminated with an approximate local wave-absorbing boundary condition which assumes that outgoing waves are locally planar. The finite element model is capable of predicting only the near-field acoustic pressures. Far-field sound pressure levels may be determined by integrating the surface pressures and velocities over the wet boundary of the structure using the Helmholtz integral. Comparison of finite element results with analytic results show excellent agreement. The coupled fluid-structure problem may be solved with general purpose finite element codes by using an analogy between the equations of elasticity and the wave equation of linear acoustics.

  19. Off-axial acoustic radiation force of repulsor and tractor bessel beams on a sphere.

    PubMed

    Silva, Glauber T; Lopes, J Henrique; Mitri, Farid G

    2013-06-01

    Acoustic Bessel beams are known to produce an axial radiation force on a sphere centered on the beam axis (on-axial configuration) that exhibits both repulsor and tractor behaviors. The repulsor and the tractor forces are oriented along the beam's direction of propagation and opposite to it, respectively. The behavior of the acoustic radiation force generated by Bessel beams when the sphere lies outside the beam's axis (off-axial configuration) is unknown. Using the 3-D radiation force formulas given in terms of the partial wave expansion coefficients for the incident and scattered waves, both axial and transverse components of the force exerted on a silicone- oil sphere are obtained for a zero- and a first-order Bessel vortex beam. As the sphere departs from the beam's axis, the tractor force becomes weaker. Moreover, the behavior of the transverse radiation force field may vary with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on ka values. These results are particularly important for the design of acoustical tractor beam devices operating with Bessel beams. PMID:25004483

  20. Particle Transport across Bi-Fluid Interface Using Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Lim, Kian-Meng

    A bi-fluid micro-flow system is proposed for separating particles from its original solvent and re-diluting them into another solvent simultaneously. In this micro-flow system, two different miscible solvents flow parallel to each other through a 2-inlet-2-outlet micro-channel, where an acoustic standing wave is set up. Due to the differences in acoustic properties of these solvents, the pressure node of the acoustic wave is shifted from the middle line of the channel. Under the action of the acoustic radiation force, particles with positive ϕ-factors are extracted from their original solvent and re-suspended into the other solvent, wherein the pressure node resides. Particles suspended in the new solvent are collected at one of the two outlets downstream. Experiments were conducted on a prototype using two aqueous solutions: deionized water and 40% glycerin aqueous solution with polystyrene micro-particles. The results show that under the action of the acoustic standing wave, most of the particles were successfully transported from its original solvent to the other solvent and collected at the outlet.

  1. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.

    PubMed

    Hahn, Philipp; Leibacher, Ivo; Baasch, Thierry; Dual, Jurg

    2015-11-21

    The numerical prediction of acoustofluidic particle motion is of great help for the design, the analysis, and the physical understanding of acoustofluidic devices as it allows for a simple and direct comparison with experimental observations. However, such a numerical setup requires detailed modeling of the acoustofluidic device with all its components and thorough understanding of the acoustofluidic forces inducing the particle motion. In this work, we present a 3D trajectory simulation setup that covers the full spectrum, comprising a time-harmonic device model, an acoustic streaming model of the fluid cavity, a radiation force simulation, and the calculation of the hydrodynamic drag. In order to make quantitatively accurate predictions of the device vibration and the acoustic field, we include the viscous boundary layer damping. Using a semi-analytical method based on Nyborg's calculations, the boundary-driven acoustic streaming is derived directly from the device simulation and takes into account cavity wall vibrations which have often been neglected in the literature. The acoustic radiation forces and the hydrodynamic drag are calculated numerically to handle particles of arbitrary shape, structure, and size. In this way, complex 3D particle translation and rotation inside experimental microdevices can be predicted. We simulate the rotation of a microfiber in an amplitude-modulated 2D field and analyze the results with respect to experimental observations. For a quantitative verification, the motion of an alumina microdisk is compared to a simple experiment. Demonstrating the potential of the simulation setup, we compute the trajectory of a red blood cell inside a realistic microdevice under the simultaneous effects of acoustic streaming and radiation forces. PMID:26448531

  2. Computing the acoustic radiation force exerted on a sphere using the translational addition theorem.

    PubMed

    Silva, Glauber T; Baggio, André L; Lopes, J Henrique; Mitri, Farid G

    2015-03-01

    In this paper, the translational addition theorem for spherical functions is employed to calculate the acoustic radiation force produced by an arbitrary shaped beam on a sphere arbitrarily suspended in an inviscid fluid. The procedure is also based on the partial-wave expansion method, which depends on the beam-shape and scattering coefficients. Given a set of beam-shape coefficients (BSCs) for an acoustic beam relative to a reference frame, the translational addition theorem can be used to obtain the BSCs relative to the sphere positioned anywhere in the medium. The scattering coefficients are obtained from the acoustic boundary conditions across the sphere's surface. The method based on the addition theorem is particularly useful to avoid quadrature schemes to obtain the BSCs. We use it to compute the acoustic radiation force exerted by a spherically focused beam (in the paraxial approximation) on a silicone-oil droplet (compressible fluid sphere). The analysis is carried out in the Rayleigh (i.e., the particle diameter is much smaller than the wavelength) and Mie (i.e., the particle diameter is of the order of the wavelength or larger) scattering regimes. The obtained results show that the paraxial focused beam can only trap particles in the Rayleigh scattering regime. PMID:25768823

  3. Modelling of acoustic radiation problems associated with turbomachinery and rotating blades

    NASA Astrophysics Data System (ADS)

    Eversman, W.

    Finite element methods developed for computational predictions of turbofan and propeller acoustic radiation are presented. Account is taken of the disparate acoustic and geometric scales, the complex geometry, sound propagation in a nonuniformly flowing medium, the presence of a lining, and definition of bounds for calculations which are carried out in an unbounded domain. Density and pressure perturbations in the turbofan inlet are modeled with a linearized momentum equation. The sound radiation is represented by the Fourier components, i.e., angular modes. The same nacelle geometry is used for propeller noise, which requires inclusion of acoustic volume sources and forces. A forced convected wave equation for harmonic driving is obtained by combining continuity, momentum and state equations linearized for acoustic perturbations. The weak formulations for the two types of noise generation are solved by the Galerkin method modified with a frontal solver to reduce the required computer time. Model predictions show good agreement with experimental data for the directivity and amplitude of sound from the bellmouth inlet of the NASA-Langley Spinning Mode Synthesizer.

  4. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    NASA Astrophysics Data System (ADS)

    Lipkens, Bart; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    2015-10-01

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  5. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    SciTech Connect

    Lipkens, Bart; Ilinskii, Yurii A. Zabolotskaya, Evgenia A.

    2015-10-28

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  6. Phase decorrelation, streamwise vortices and acoustic radiation in mixing layers

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Zohar, Y.; Moser, R. D.; Rogers, M. M.; Lele, S. K.; Buell, J. C.

    1988-01-01

    Several direct numerical simulations were performed and analyzed to study various aspects of the early development of mixing layers. Included are the phase jitter of the large-scale eddies, which was studied using a 2-D spatially-evolving mixing layer simulation; the response of a time developing mixing layer to various spanwise disturbances; and the sound radiation from a 2-D compressible time developing mixing layer.

  7. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    SciTech Connect

    Treweek, Benjamin C. Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  8. Three-dimensional visualization of shear wave propagation generated by dual acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.

  9. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    NASA Astrophysics Data System (ADS)

    Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  10. Hawking radiation from an acoustic black hole on an ion ring.

    PubMed

    Horstmann, B; Reznik, B; Fagnocchi, S; Cirac, J I

    2010-06-25

    In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it. PMID:20867352

  11. Optical acoustic experimental investigation of propagation femtosecond laser radiation in air and biological tissues

    NASA Astrophysics Data System (ADS)

    Bochkarev, N. N.; Kabanov, A. M.; Protasevich, E. S.; Stepanov, A. N.

    2008-01-01

    Using two optical acoustic approaches we experimentally investigated spatial location of filament zone of propagation channel of focused laser radiation. For femtosecond pulses passing in air it was shown that nonlinear focus length had spatial scale of 1/P at initial power P moderate for self-focusing and at optical system focus distance significantly lower than Rayleigh beam length. The results of experimental optical acoustic investigation of femto- and nanosecond pulses attenuation by some biological tissues (muscular tissue, adipose tissue, cutaneous covering, and milk) and optical breakdown thresholds on these one are presented. It was shown that penetration depth of short laser pulse radiation into biological tissues is the same as for longer one. However, amplitude of acoustic response to a process of interaction of femtosecond laser pulse with biological tissue is larger in several times than that to interaction with nanosecond pulses of the same power and spectral distribution. The obtained threshold values can be interesting for tabulation of limit allowable levels of irradiation at work with laser radiation. Such values are unknown for femtosecond laser pulses today.

  12. Noise control using a plate radiator and an acoustic resonator

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor)

    1996-01-01

    An active noise control subassembly for reducing noise caused by a source (such as an aircraft engine) independent of the subassembly. A noise radiating panel is bendably vibratable to generate a panel noise canceling at least a portion of the source noise. A piezoceramic actuator plate is connected to the panel. A front plate is spaced apart from the panel and the first plate, is positioned generally between the source noise and the panel, and has a sound exit port. A first pair of spaced-apart side walls each generally abut the panel and the front plate so as to generally enclose a front cavity to define a resonator.

  13. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Behzad, Mehdi

    2014-10-01

    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.

  14. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  15. Prediction of acoustic radiation from functionally graded shells of revolution in light and heavy fluids

    NASA Astrophysics Data System (ADS)

    Qu, Yegao; Meng, Guang

    2016-08-01

    This paper presents a semi-analytical method for the vibro-acoustic analysis of a functionally graded shell of revolution immersed in an infinite light or heavy fluid. The structural model of the shell is formulated on the basis of a modified variational method combined with a multi-segment technique, whereas a spectral Kirchhoff-Helmholtz integral formulation is employed to model the exterior fluid field. The material properties of the shell are estimated by using the Voigt's rule of mixture and the Mori-Tanaka's homogenization scheme. Displacement and sound pressure variables of each segment are expanded in the form of a mixed series using Fourier series and Chebyshev orthogonal polynomials. A set of collocation nodes distributed over the roots of Chebyshev polynomials are employed to establish the algebraic system of the acoustic integral equations, and the non-uniqueness solution is eliminated using a combined Helmholtz integral equation formulation. Loosely and strongly coupled schemes are implemented for the structure-acoustic interaction problem of a functionally graded shell immersed in a light and heavy fluid, respectively. The present method provides a flexible way to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of functionally graded shells of revolution in an analytical manner. Numerical tests are presented for sound radiation problems of spherical, cylindrical, conical and coupled shells. The individual contributions of the circumferential modes to the radiated sound pressure and sound power of functionally graded shells are observed. Effects of the material profile on the sound radiation of the shells are also investigated.

  16. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    PubMed

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. PMID:26726146

  17. Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere.

    PubMed

    Baresch, Diego; Thomas, Jean-Louis; Marchiano, Régis

    2013-01-01

    This work aims to model the acoustic radiation forces acting on an elastic sphere placed in an inviscid fluid. An expression of the axial and transverse forces exerted on the sphere is derived. The analysis is based on the scattering of an arbitrary acoustic field expanded in the spherical coordinate system centered on the spherical scatterer. The sphere is allowed to be arbitrarily located. The special case of high order Bessel beams, acoustical vortices, are considered. These types of beams have a helicoidal wave front, i.e., a screw-type phase singularity and hence, the beam has a central dark core of zero amplitude surrounded by an intense ring. Depending on the sphere's radius, different radial equilibrium positions may exist and the sphere can be set in rotation around the beam axis by an azimuthal force. This confirms the pseudo-angular moment transfer from the beam to the sphere. Cases where the axial force is directed opposite to the direction of the beam propagation are investigated and the potential use of Bessel beams as tractor beams is demonstrated. Numerical results provide an impetus for further designing acoustical tweezers for potential applications in particle entrapment and remote controlled manipulation. PMID:23297880

  18. Numerical investigation of acoustic radiation from vortex-airfoil interaction

    NASA Astrophysics Data System (ADS)

    Legault, Anne; Ji, Minsuk; Wang, Meng

    2012-11-01

    Numerical simulations of vortices interacting with a NACA 0012 airfoil and a flat-plate airfoil at zero angle of attack are carried out to assess the applicability and accuracy of classical theories. Unsteady lift and sound are computed and compared with the predictions by theories of Sears and Amiet, which assume a thin-plate airfoil in an inviscid flow. A Navier-Stokes solver is used in the simulations, and therefore viscous effects are taken into consideration. For the thin-plate airfoil, the effect of viscosity is negligible. For a NACA 0012 airfoil, the viscous contribution to the unsteady lift and sound mainly comes from coherent vortex shedding in the wake of the airfoil and the interaction of the incoming vortices with the airfoil wake, which become stronger at higher Reynolds numbers for a 2-D laminar flow. When the flow is turbulent at chord Reynolds number of 4 . 8 ×105 , however, the viscous contribution becomes negligible as coherent vortex shedding is not present. Sound radiation from vortex-airfoil interaction at turbulent Reynolds numbers is computed numerically via Lighthill's theory and the result is compared with the predictions of Amiet and Curle. The effect of the airfoil thickness is also examined. Supported by ONR Grant N00014-09-1-1088.

  19. NONLINEAR EVOLUTION OF THE RADIATION-DRIVEN MAGNETO-ACOUSTIC INSTABILITY

    SciTech Connect

    Fernandez, Rodrigo; Socrates, Aristotle

    2013-04-20

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux-the radiation-driven magneto-acoustic instability (RMI, a.k.a. the ''photon bubble'' instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.

  20. Nonlinear Evolution of the Radiation-driven Magneto-acoustic Instability

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Socrates, Aristotle

    2013-04-01

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux—the radiation-driven magneto-acoustic instability (RMI, a.k.a. the "photon bubble" instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes & Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.

  1. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  2. Effect of Existence of Red Blood Cells in Trapping Performance of Microbubbles by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Masuda, Kohji; Nakamoto, Ryusuke; Watarai, Nobuyuki; Koda, Ren; Taguchi, Yuto; Kozuka, Teruyuki; Miyamoto, Yoshitaka; Kakimoto, Takashi; Enosawa, Shin; Chiba, Toshio

    2011-07-01

    We have proposed a method to control microbubbles by making use of acoustic radiation force, which is generated with acoustic propagation, to correspond to therapeutic applications of ultrasound. By preventing bubbles from passing through the desired target area, the local concentration of bubbles can be enhanced. However, we have never experimentally confirmed this phenomenon under in vivo conditions or close to those. Thus, we carried out an experiment to evaluate the trapping performance of bubbles using a suspension of red blood cells (RBCs) and an artificial blood vessel. By defining the trapping index to evaluate the amount of trapped microbubbles, we have confirmed that the trapping performance was enhanced according to the concentration of RBCs and the sound pressure, but not according to the central frequency of ultrasound. The results indicate that the existence of RBCs near microbubbles contributed to the increase in the size of aggregations propelled against the vessel wall.

  3. Modelling of wind tunnel wall effects on the radiation characteristics of acoustic sources

    NASA Technical Reports Server (NTRS)

    Eversman, W.; Baumeister, K. J.

    1984-01-01

    It is pointed out that the relatively high fuel economy available from propeller-driven aircraft has renewed interest in high speed, highly loaded multiple blade turboprop propulsion systems. Undesirable features related to community noise and the high intensity cabin noise have stimulated new research on the acoustic characteristics of turboprops. The present investigation has the objective to develop a mathematical model of the essential features of the radiation of acoustic disturbances from propellers in a duct and in free space in order to quantify the success with which duct testing can be expected to approximate free field conditions. In connection with the importance of source directionality, a detailed model is considered which consists of a finite element representation of the Gutin propeller theory valid in both the near and far field.

  4. Preparation Torque Limit for Composites Joined with Mechanical Fasteners

    NASA Technical Reports Server (NTRS)

    Thomas, Frank P.; Yi, Zhao

    2005-01-01

    Current design guidelines for determining torque ranges for composites are based on tests and analysis from isotropic materials. Properties of composites are not taken into account. No design criteria based upon a systematic analytical and test analyses is available. This paper is to study the maximum torque load a composite component could carry prior to any failure. Specifically, the torque-tension tests are conducted. NDT techniques including acoustic emission, thermography and photomicroscopy are also utilized to characterize the damage modes.

  5. a Computational Method for the Analysis of Acoustic Radiation from Turbofan Inlets

    NASA Astrophysics Data System (ADS)

    Raviprakash, G. K.

    1992-01-01

    A computational method is presented for the analysis of the noise radiation from turbofan inlets. The method developed considers the effect of mean flow and can be used at high frequencies. The techniques for generating the grid, solving the acoustic equations, applying radiating conditions on the far-field boundary, imposing inlet-fan interface conditions as well as solving the steady compressible flow equations are embodied in the Inlet Acoustic Analysis Method. The theoretical basis, formulated for 3-D acoustics within an axisymmetric domain, considers the effect of non-uniform mean flow. The discretization of the field equations is done using a finite volume type differencing. This leads to a block tri-diagonal system of equations which is then efficiently solved. A new and powerful method is developed for the application of radiating conditions. A layer potential representation is used in obtaining numerically local radiating conditions. The locally radiating conditions, developed using the single layer source representation, can be used even at the interior eigenvalues. Using this technique, the radiating conditions can be applied very close to the inlet, and hence the computational efficiency can be significantly increased. The irrotationality conditions for the axisymmetric compressible flow are discretized for solving the mean flow field. An iterative scheme is developed to solve for the stream function, the density, and the speed of sound. The inlet-fan interface conditions are incorporated to properly specify the source of noise. The noise source is either directly specified or the interface potential distribution is split into a combination of an imposed right traveling disturbance and an unknown combination of left traveling disturbances, that come out as part of the solution process. The grid generation procedure utilizes algebraic transformations as well as the grid blending technique. This process is automated to accommodate variations in the grid

  6. A computational method for the analysis of acoustic radiation from turbofan inlets

    NASA Astrophysics Data System (ADS)

    Raviprakash, G. K.

    A computational method is presented for the analysis of the noise radiation from turbofan inlets. The method developed considers the effect of mean flow and can be used at high frequencies. The techniques for generating the grid, solving the acoustic equations, applying radiating conditions on the far-field boundary, imposing inlet-fan interface conditions as well as solving the steady compressible flow equations are embodied in the Inlet Acoustic Analysis Method. The theoretical basis, formulated for 3-D acoustics within an axisymmetric domain, considers the effect of non-uniform mean flow. The discretization of the field equations is done using a finite volume type differencing. This leads to a block tri-diagonal system of equations which is then efficiently solved. A new and powerful method is developed for the application of radiating conditions. A layer potential representation is used in obtaining numerically local radiating conditions. The locally radiating conditions, developed using the single layer source representation, can be used even at the interior eigenvalues. Using this technique, the radiating conditions can be applied very close to the inlet, and hence the computational efficiency can be significantly increased. The irrotationality conditions for the axisymmetric compressible flow are discretized for solving the mean flow field. An iterative scheme is developed to solve for the stream function, the density, and the speed of sound. The inlet-fan interface conditions are incorporated to properly specify the source of noise. The noise source is either directly specified or the interface potential distribution is split into a combination of an imposed right traveling disturbance and an unknown combination of left traveling disturbances, that come out as part of the solution process. The grid generation procedure utilizes algebraic transformations as well as the grid blending techniques. This process is automated to accommodate variations in the grid

  7. A 3-D elasticity theory based model for acoustic radiation from multilayered anisotropic plates.

    PubMed

    Shen, C; Xin, F X; Lu, T J

    2014-05-01

    A theoretical model built upon three-dimensional elasticity theory is developed to investigate the acoustic radiation from multilayered anisotropic plates subjected to a harmonic point force excitation. Fourier transform technique and stationary phase method are combined to predict the far-field radiated sound pressure of one-side water immersed plate. Compared to equivalent single-layer plate models, the present model based on elasticity theory can differentiate radiated sound pressure between dry-side and wet-side excited cases, as well as discrepancies induced by different layer sequences for multilayered anisotropic plates. These results highlight the superiority of the present theoretical model especially for handling multilayered anisotropic structures. PMID:24815294

  8. Influence of an oscillating circuit on the radiation of transient acoustic waves by an electroelastic cylinder.

    PubMed

    Babaev, A E; Babaev, A A; Yanchevskiy, I V

    2010-04-01

    The problem of nonstationary wave radiation in an infinitely long thick-wall piezoelectric cylinder in fluid medium is considered. The influence of an oscillating circuit with lumped parameters on characteristics of transient process is taken into consideration. Problem formulation is executed within the forced electrostatic theory, acoustic approximations, and quasistatic theory for electric circuit. The solution method is based on the integral Laplace transform in time. This allows analytically reducing the problem to solving a system of Volterra integral equations with retarded arguments. The numerical results of calculations are presented and analyzed. PMID:20370009

  9. Estimation of mechanical properties of gelatin using a microbubble under acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Shirota, Eriko; Ando, Keita

    2015-12-01

    This paper is concerned with observations of the translation of a microbubble (80 μm or 137 μm in radius) in a viscoelastic medium (3 w% gelatin), which is induced by acoustic radiation force originating from 1 MHz focused ultrasound. An optical system using a high-speed camera was designed to visualize the bubble translation and deformation. If the bubble remains its spherical shape under the sonication, the bubble translation we observed can be described by theory based on the Voigt model for linear viscoelastic solids; mechanical properties of the gelatin are calculated from measurements of the terminal displacement under the sonication.

  10. Experimental Study of the Acoustic Navigation of a Helicopter by Its Noise Radiation

    NASA Astrophysics Data System (ADS)

    Antonov, V. P.; Kuz'menko, A. K.; Svet, V. D.; Spitsyn, E. I.

    2000-11-01

    Results of experimental measurements of the coordinates and trajectories of an MI-8 helicopter flight are presented for various types of maneuvers and the landing approach. The current coordinates are measured in real time by acoustic differential navigation methods using the noise radiation of a helicopter. It is shown that, when a measuring base with a microphone spacing of 2 m or less is used, the spatial correlation coefficient for the signals in the frequency band from 200 to 5000 Hz approaches unity. This makes it possible to estimate the position of the helicopter with rms errors less than 0.4 m at all stages of flight and at the landing approach.

  11. Detection scheme for acoustic quantum radiation in Bose-Einstein condensates.

    PubMed

    Schützhold, Ralf

    2006-11-10

    Based on doubly detuned Raman transitions between (meta)stable atomic or molecular states and recently developed atom counting techniques, a detection scheme for sound waves in dilute Bose-Einstein condensates is proposed whose accuracy might reach down to the level of a few or even single phonons. This scheme could open up a new range of applications including the experimental observation of quantum radiation phenomena such as the Hawking effect in sonic black-hole analogues or the acoustic analogue of cosmological particle creation. PMID:17155600

  12. Sound propagation in and radiation from acoustically lined flow ducts: A comparison of experiment and theory

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr.; Dean, P. D.; Wynne, G. A.; Burrin, R. H.

    1973-01-01

    The results of an experimental and theoretical study of many of the fundamental details of sound propagation in hard wall and soft wall annular flow ducts are reported. The theory of sound propagation along such ducts and the theory for determining the complex radiation impedance of higher order modes of an annulus are outlined, and methods for generating acoustic duct modes are developed. The results of a detailed measurement program on propagation in rigid wall annular ducts with and without airflow through the duct are presented. Techniques are described for measuring cut-on frequencies, modal phase speed, and radial and annular mode shapes. The effects of flow velocity on cut-on frequencies and phase speed are measured. Comparisons are made with theoretical predictions for all of the effects studies. The two microphone method of impedance is used to measure the effects of flow on acoustic liners. A numerical study of sound propagation in annular ducts with one or both walls acoustically lined is presented.

  13. Risk of a second cancer from scattered radiation in acoustic neuroma treatment

    NASA Astrophysics Data System (ADS)

    Yoon, Myonggeun; Lee, Hyunho; Sung, Jiwon; Shin, Dongoh; Park, Sungho; Chung, Weon Kuu; Jahng, Geon-Ho; Kim, Dong Wook

    2014-06-01

    The present study aimed to compare the risk of a secondary cancer from scattered and leakage doses in patients receiving intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) of a secondary cancer were estimated using the corresponding secondary doses measured at various organs by using radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, liver, bowel, bladder, prostate (or ovary), and rectum were 14.6, 1.7, 0.9, 0.8, 0.6, 0.6, and 0.6 cGy, respectively, for IMRT whereas they were 19.1, 1.8, 2.0, 0.6, 0.4, 0.4, and 0.4 cGy, respectively, for VMAT, and 22.8, 4.6, 1.4, 0.7, 0.5, 0.5, and 0.5 cGy, respectively, for SRS. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A lifetime attributable risk evaluation estimated that more than 0.03% of acoustic neuroma (AN) patients would get radiation-induced cancer within 20 years of receiving radiation therapy. The organ with the highest radiation-induced cancer risk after radiation treatment for AN was the thyroid. We found that the LAR could be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.

  14. The effects of acoustic radiation force on contrast agents: Experimental and theoretial analysis

    NASA Astrophysics Data System (ADS)

    Dayton, Paul Alexander

    The goal of this research is to understand the response of ultrasound contrast agents to acoustic radiation force. Ultrasound contrast agents are encapsulated microbubbles similar in size and rheologic behavior to human erythrocytes. A core of either air or a high- molecular weight gas makes these microbubbles extremely compressible and highly echogenic. Clinically, the detection of blood is difficult without contrast agents because the echoes from blood cells are typically 30-40 dB less than tissue echoes. Ultrasound contrast agents have been shown to be extremely useful in assisting delineation of perfused tissue in echocardiography, and are being increasingly used for tumor detection in radiology. The high compressibility of gas-filled contrast agents makes these microbubbles susceptible to translation due to radiation force. Thus, it is important to understand the effects of this force in order to avoid erroneous measurements based on the location and flow velocity of microbubbles. In addition, the ability to displace and concentrate microbubbles may be an advantage in targeted imaging, targeted therapy, or industrial applications where it is desired to localize microbubbles in a region. In this study, experimental and theoretical tools are combined to investigate the interaction between microbubbles and an acoustic pulse. Several unique experimental systems allow visualization and analysis of the radius-time curves of individual microbubbles, the displacement of individual microbubbles in-vitro, and the displacement of microbubbles in-vivo. Theoretical analysis illustrates that the effect of radiation force on microbubbles is directly proportional to the product of the bubble volume and the acoustic pressure gradient. A model designed to simulate the radius-time behavior of individual microbubbles is verified from experimental data, and used to estimate the magnitude of radiation force. The resulting bubble translation is determined using a second model

  15. Stabilization and Low-Frequency Oscillation of Capillary Bridges with Modulated Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.

    1996-01-01

    In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.

  16. Inhomogeneous Radiation Boundary Conditions Simulating Incoming Acoustic Waves for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Fang, Jun; Kurbatskii, Konstantin A.

    1996-01-01

    A set of nonhomogeneous radiation and outflow conditions which automatically generate prescribed incoming acoustic or vorticity waves and, at the same time, are transparent to outgoing sound waves produced internally in a finite computation domain is proposed. This type of boundary condition is needed for the numerical solution of many exterior aeroacoustics problems. In computational aeroacoustics, the computation scheme must be as nondispersive ans nondissipative as possible. It must also support waves with wave speeds which are nearly the same as those of the original linearized Euler equations. To meet these requirements, a high-order/large-stencil scheme is necessary The proposed nonhomogeneous radiation and outflow boundary conditions are designed primarily for use in conjunction with such high-order/large-stencil finite difference schemes.

  17. Acoustic radiation pressure: A 'phase contrast' agent for x-ray phase contrast imaging

    SciTech Connect

    Bailat, Claude J.; Hamilton, Theron J.; Rose-Petruck, Christoph; Diebold, Gerald J.

    2004-11-08

    We show that the radiation pressure exerted by a beam of ultrasound can be used for contrast enhancement in high-resolution x-ray imaging of tissue and soft materials. Interfacial features of objects are highlighted as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. The potential of the method is demonstrated by imaging microscopic tumor phantoms embedded into tissue with a thickness typically presented in mammography. The detection limit of micrometer size masses exceeds the resolution of currently available mammography imaging systems. The directionality of the acoustic radiation force and its localization in space permits the imaging of ultrasound-selected tissue volumes. The results presented here suggest that the method may permit the detection of tumors in soft tissue in their early stage of development.

  18. The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization.

    PubMed

    Allen, Jason D; Ham, Katherine L; Dumont, Douglas M; Sileshi, Bantayehu; Trahey, Gregg E; Dahl, Jeremy J

    2011-08-01

    Stroke is the third leading cause of death and long-term disability in the USA. Currently, surgical intervention decisions in asymptomatic patients are based upon the degree of carotid artery stenosis. While there is a clear benefit of endarterectomy for patients with severe (> 70%) stenosis, in those with high/moderate (50-69%) stenosis the evidence is less clear. Evidence suggests ischemic stroke is associated less with calcified and fibrous plaques than with those containing softer tissue, especially when accompanied by a thin fibrous cap. A reliable mechanism for the identification of individuals with atherosclerotic plaques which confer the highest risk for stroke is fundamental to the selection of patients for vascular interventions. Acoustic radiation force impulse (ARFI) imaging is a new ultrasonic-based imaging method that characterizes the mechanical properties of tissue by measuring displacement resulting from the application of acoustic radiation force. These displacements provide information about the local stiffness of tissue and can differentiate between soft and hard areas. Because arterial walls, soft tissue, atheromas, and calcifications have a wide range in their stiffness properties, they represent excellent candidates for ARFI imaging. We present information from early phantom experiments and excised human limb studies to in vivo carotid artery scans and provide evidence for the ability of ARFI to provide high-quality images which highlight mechanical differences in tissue stiffness not readily apparent in matched B-mode images. This allows ARFI to identify soft from hard plaques and differentiate characteristics associated with plaque vulnerability or stability. PMID:21447606

  19. Shear-layer acoustic radiation in an excited subsonic jet: experimental study

    NASA Astrophysics Data System (ADS)

    Fleury, Vincent; Bailly, Christophe; Juvé, Daniel

    2005-10-01

    The subharmonic acoustic radiation of a tone excited subsonic jet shear-layer has been investigated experimentally. Two jet velocities U=20 mṡs and U=40 mṡs were studied. For U=20 mṡs, the natural boundary-layer at the nozzle exit is laminar. When the perturbation is applied, the fluctuations of the first and the second subharmonics of the excitation frequency are detected in the shear-layer. In addition, the first subharmonic near pressure field along the spreading jet is constituted of two strong maxima of sinusoidal shape. The far-field directivity pattern displays two lobes separated by an extinction angle θ at around 85° from the jet axis. These observations follow the results of Bridges about the vortex pairing noise. On the other hand, for U=40 mṡs, the initial boundary-layer is transitional and only the first subharmonic is observed in the presence of the excitation. The near pressure field is of Gaussian shape in the jet periphery and the acoustic far-field is superdirective as observed by Laufer and Yen. The state of the initial shear-layer seems to be the key feature to distinguish these two different radiation patterns. To cite this article: V. Fleury et al., C. R. Mecanique 333 (2005).

  20. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition.

    PubMed

    Dron, Olivier; Aider, Jean-Luc

    2013-09-01

    It is well-known that particles can be focused at mid-height of a micro-channel using Acoustic Radiation Force (ARF) tuned at the resonance frequency (h=λ/2). The resonance condition is a strong limitation to the use of acoustophoresis (particles manipulation using acoustic force) in many applications. In this study we show that it is possible to focus the particles anywhere along the height of a micro-channel just by varying the acoustic frequency, in contradiction with the resonance condition. This result has been thoroughly checked experimentally. The different physical properties as well as wall materials have been changed. The wall materials is finally the only critical parameters. One of the specificity of the micro-channel is the thickness of the carrier and reflector layer. A preliminary analysis of the experimental results suggests that the acoustic focusing beyond the classic resonance condition can be explained in the framework of the multilayered resonator proposed by Hill [1]. Nevertheless, further numerical studies are needed in order to confirm and fully understand how the acoustic pressure node can be moved over the entire height of the micro channel by varying the acoustic frequency. Despite some uncertainties about the origin of the phenomenon, it is robust and can be used for improved acoustic sorting or manipulation of particles or biological cells in confined set-ups. PMID:23628114

  1. SU-E-T-208: Incidence Cancer Risk From the Radiation Treatment for Acoustic Neuroma Patient

    SciTech Connect

    Kim, D; Chung, W; Shin, D; Yoon, M

    2014-06-01

    Purpose: The present study aimed to compare the incidence risk of a secondary cancer from therapeutic doses in patients receiving intensitymodulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Methods: Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their incidnece excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) were estimated using the corresponding therapeutic doses measured at various organs by radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. Results: When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, normal liver, colon, bladder, prostate (or ovary), and rectum were measured. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A LAR were estimated that more than 0.03% of AN patients would get radiation-induced cancer. Conclusion: The tyroid was highest radiation-induced cancer risk after radiation treatment for AN. We found that LAR can be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.

  2. Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid

    PubMed Central

    Sapozhnikov, Oleg A.; Bailey, Michael R.

    2013-01-01

    A theoretical approach is developed to calculate the radiation force of an arbitrary acoustic beam on an elastic sphere in a liquid or gas medium. First, the incident beam is described as a sum of plane waves by employing conventional angular spectrum decomposition. Then, the classical solution for the scattering of a plane wave from an elastic sphere is applied for each plane-wave component of the incident field. The net scattered field is expressed as a superposition of the scattered fields from all angular spectrum components of the incident beam. With this formulation, the incident and scattered waves are superposed in the far field to derive expressions for components of the radiation stress tensor. These expressions are then integrated over a spherical surface to analytically describe the radiation force on an elastic sphere. Limiting cases for particular types of incident beams are presented and are shown to agree with known results. Finally, the analytical expressions are used to calculate radiation forces associated with two specific focusing transducers. PMID:23363086

  3. A Advanced Boundary Element Formulation for Acoustic Radiation and Scattering in Three Dimensions.

    NASA Astrophysics Data System (ADS)

    Soenarko, Benjamin

    A computational method is presented for determining acoustic fields produced by arbitrary shaped three-dimensional bodies. The formulation includes both radiation and scattering problems. In particular an isoparametric element formulation is introduced in which both the surface geometry and the acoustic variables on the surface of the body are represented by second order shape functions within the local coordinate system. A general result for the surface velocity potential and the exterior field is derived. This result is applicable to non-smooth bodies, i.e. it includes the case where the surface may have a non-unique normal (e.g. at the edge of a cube). Test cases are shown involving spherical, cylindrical and cubical geometry for both radiation and scattering problems. The present formulation is also extended to include half-space problems in which the effect of the reflected wave from an infinite plane is taken into account. By selecting an appropriate Green's function, the surface integral over the plane is nullified; thus all the computational efforts can be performed only on the radiating or scattering body at issue and thereby greatly simplify the solution. A special formulation involving axisymmetric bodies and boundary conditions is also presented. For this special case, the surface integrals are reduced to line integrals and an integral over the angle of revolution. The integration over the angle is performed partly analytically in terms of elliptic integrals and partly numerically using simple Gaussian quadrature formula. Since the rest of the integrals involve only line integrals along the generator of the body, any discretization scheme can be easily obtained to achieve a desired degree of accuracy in evaluating these integrals.

  4. ACOUSTIC RADIATION FORCE-DRIVEN ASSESSMENT OF MYOCARDIAL ELASTICITY USING THE DISPLACEMENT RATIO RATE (DRR) METHOD

    PubMed Central

    Bouchard, Richard R.; Hsu, Stephen J.; Palmeri, Mark L.; Rouze, Ned C.; Nightingale, Kathryn R.; Trahey, Gregg E.

    2011-01-01

    A noninvasive method of characterizing myocardial stiffness could have significant implications in diagnosing cardiac disease. Acoustic radiation force (ARF)–driven techniques have demonstrated their ability to discern elastic properties of soft tissue. For the purpose of myocardial elasticity imaging, a novel ARF-based imaging technique, the displacement ratio rate (DRR) method, was developed to rank the relative stiffnesses of dynamically varying tissue. The basis and performance of this technique was demonstrated through numerical and phantom imaging results. This new method requires a relatively small temporal (<1 ms) and spatial (tenths of mm2) sampling window and appears to be independent of applied ARF magnitude. The DRR method was implemented in two in vivo canine studies, during which data were acquired through the full cardiac cycle by imaging directly on the exposed epicardium. These data were then compared with results obtained by acoustic radiation force impulse (ARFI) imaging and shear wave velocimetry, with the latter being used as the gold standard. Through the cardiac cycle, velocimetry results portray a range of shear wave velocities from 0.76–1.97 m/s, with the highest velocities observed during systole and the lowest observed during diastole. If a basic shear wave elasticity model is assumed, such a velocity result would suggest a period of increased stiffness during systole (when compared with diastole). Despite drawbacks of the DRR method (i.e., sensitivity to noise and limited stiffness range), its results predicted a similar cyclic stiffness variation to that offered by velocimetry while being insensitive to variations in applied radiation force. PMID:21645966

  5. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  6. Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

    NASA Technical Reports Server (NTRS)

    Agarwal, Anurag; Morris, Philip J.

    2000-01-01

    A parallel numerical simulation of the radiation of sound from an acoustic source inside a 2-D jet is presented in this paper. This basic benchmark problem is used as a test case for scattering problems that are presently being solved by using the Impedance Mismatch Method (IMM). In this technique, a solid body in the domain is represented by setting the acoustic impedance of each medium, encountered by a wave, to a different value. This impedance discrepancy results in reflected and scattered waves with appropriate amplitudes. The great advantage of the use of this method is that no modifications to a simple Cartesian grid need to be made for complicated geometry bodies. Thus, high order finite difference schemes may be applied simply to all parts of the domain. In the IMM, the total perturbation field is split into incident and scattered fields. The incident pressure is assumed to be known and the equivalent sources for the scattered field are associated with the presence of the scattering body (through the impedance mismatch) and the propagation of the incident field through a non-uniform flow. An earlier version of the technique could only handle uniform flow in the vicinity of the source and at the outflow boundary. Scattering problems in non-uniform mean flow are of great practical importance (for example, scattering from a high lift device in a non-uniform mean flow or the effects of a fuselage boundary layer). The solution to this benchmark problem, which has an acoustic wave propagating through a non-uniform mean flow, serves as a test case for the extensions of the IMM technique.

  7. Features of Propagation of the Acoustic-Gravity Waves Generated by High-Power Periodic Radiation

    NASA Astrophysics Data System (ADS)

    Chernogor, L. F.; Frolov, V. L.

    2013-09-01

    We present the results of the bandpass filtering of temporal variations of the Doppler frequency shift of radio signals from a vertical-sounding Doppler radar located near the city of Kharkov when the ionosphere was heated by high-power periodic (with 10 and 15-min periods) radiation from the Sura facility. The filtering was done in the ranges of periods that are close to the acoustic cutoff period and the Brunt—Väisälä period (4-6, 8-12, and 13-17 min). Oscillations with periods of 4-6 min and amplitudes of 50-100 mHz were not recorded in fact. Oscillations with periods of 8-12 and 13-17 min and amplitudes of 60-100 mHz were detected in almost all the sessions. In the former and the latter oscillations, the time of delay with respect to the heater switch-on was close to 100 min and about 40-50 min, respectively. These values correspond to group propagation velocities of about 160 and 320-400 m/s. The Doppler shift oscillations were caused by the acoustic-gravity waves which led to periodic variations in the electron number density with a relative amplitude of about 0.1-1.0%. It was demonstrated that the acoustic-gravity waves were not recorded when the effective power of the Sura facility was equal to 50 MW and they were confidently observed when the effective power was increased up to 130 MW. It is shown that the period of the wave processes was determined by the period of the heating-pause cycles, and the duration of the wave trains did not depend on the duration of the series of heating-pause cycles. The data suggest that the generation mechanism of recorded wave disturbances is different from the mechanism proposed in 1970-1990.

  8. Generation and Radiation of Acoustic Waves from a 2-D Shear Layer using the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    In the present work, the generation and radiation of acoustic waves from a 2-D shear layer problem is considered. An acoustic source inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation. The numerical solution is obtained by solving the Euler equations using the space time conservation element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All other conditions are the same except that the Crocco's relation has a slightly different form. In the following, after a brief sketch of the CE/SE method, the numerical results for this problem are presented.

  9. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  10. Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet.

    PubMed

    Destgeer, Ghulam; Ha, Byunghang; Park, Jinsoo; Sung, Hyung Jin

    2016-04-01

    We demonstrate an acoustofluidic device using Lamb waves (LWs) to manipulate polystyrene (PS) microparticles suspended in a sessile droplet of water. The LW-based acoustofluidic platform used in this study is advantageous in that the device is actuated over a range of frequencies without changing the device structure or electrode pattern. In addition, the device is simple to operate and cheap to fabricate. The LWs, produced on a piezoelectric substrate, attenuate inside the fluid and create acoustic streaming flow (ASF) in the form of a poloidal flow with toroidal vortices. The PS particles experience direct acoustic radiation force (ARF) in addition to being influenced by the ASF, which drive the concentration of particles to form a ring. This phenomenon was previously attributed to the ASF alone, but the present experimental results confirm that the ARF plays an important role in forming the particle ring, which would not be possible in the presence of only the ASF. We used a range of actuation frequencies (45-280 MHz), PS particle diameters (1-10 μm), and droplet volumes (5, 7.5, and 10 μL) to experimentally demonstrate this phenomenon. PMID:26937678

  11. A simulation technique for 3D MR-guided acoustic radiation force imaging

    PubMed Central

    Payne, Allison; de Bever, Josh; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  12. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  13. Acoustic-radiation-force-induced shear wave propagation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Bouchard, Richard R.; Wolf, Patrick D.; Hsu, Stephen J.; Dumont, Douglas M.; Trahey, Gregg E.

    2009-02-01

    Shear wave elasticity imaging (SWEI) was employed to track acoustic radiation force (ARF)-induced shear waves in the myocardium of a beating heart. Shear waves were generated in and tracked through the myocardium of the left ventricular free wall (LVFW) in an in vivo heart that was exposed through a thoracotomy; matched studies were also preformed on an ex vivo myocardial specimen. Average shear wave velocities ranged from 2.22 to 2.53 m/s for the ex vivo specimen and 1.5 to 2.9 m/s (1.5-2.09 m/s during diastole; 2.9 m/s during systole) for in vivo specimens. Despite the known rotation of myocardial fiber orientation with tissue depth, there was no statistically significant shear wave velocity depth dependence observed in any of the experimental trials.

  14. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion

    NASA Astrophysics Data System (ADS)

    Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.

    2012-03-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  15. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    PubMed

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425

  16. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion

    PubMed Central

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-01-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g., Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep (RFIC) method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with Shearwave Dispersion Ultrasound Vibrometry (SDUV) is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425

  17. Image quality, tissue heating, and frame rate trade-offs in acoustic radiation force impulse imaging.

    PubMed

    Bouchard, Richard R; Dahl, Jeremy J; Hsu, Stephen J; Palmeri, Mark L; Trahey, Gregg E

    2009-01-01

    The real-time application of acoustic radiation force impulse (ARFI) imaging requires both short acquisition times for a single ARFI image and repeated acquisition of these frames. Due to the high energy of pulses required to generate appreciable radiation force, however, repeated acquisitions could result in substantial transducer face and tissue heating. We describe and evaluate several novel beam sequencing schemes which, along with parallel-receive acquisition, are designed to reduce acquisition time and heating. These techniques reduce the total number of radiation force impulses needed to generate an image and minimize the time between successive impulses. We present qualitative and quantitative analyses of the trade-offs in image quality resulting from the acquisition schemes. Results indicate that these techniques yield a significant improvement in frame rate with only moderate decreases in image quality. Tissue and transducer face heating resulting from these schemes is assessed through finite element method modeling and thermocouple measurements. Results indicate that heating issues can be mitigated by employing ARFI acquisition sequences that utilize the highest track-to-excitation ratio possible. PMID:19213633

  18. Concurrent Visualization of Acoustic Radiation Force Displacement and Shear Wave Propagation with 7T MRI

    PubMed Central

    Liu, Yu; Fite, Brett Z.; Mahakian, Lisa M.; Johnson, Sarah M.; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W.

    2015-01-01

    Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T) MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm), as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI) provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU) ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable. PMID:26439259

  19. Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2008-07-01

    Starting from the exact acoustic scattering from a sphere immersed in an ideal fluid and centered along the propagation axis of a standing or quasi-standing zero-order Bessel beam, explicit partial-wave representations for the radiation force are derived. A standing or a quasi-standing acoustic field is the result of propagating two equal or unequal amplitude zero-order Bessel beams, respectively, along the same axis but in opposite sense. The Bessel beam is characterized by the half-cone angle β of its plane wave components, such that β = 0 represents a plane wave. It is assumed here that the half-cone angle β for each of the counter-propagating acoustic Bessel beams is equal. Fluid, elastic and viscoelastic spheres immersed in water are treated as examples. Results indicate the capability of manipulating spherical targets based on their mechanical and acoustical properties. This condition provides an impetus for further designing acoustic tweezers operating with standing or quasi-standing Bessel acoustic waves. Potential applications include particle manipulation in micro-fluidic lab-on-chips as well as in reduced gravity environments.

  20. Generation of acoustic waves by focused infrared neodymium-laser radiation

    NASA Astrophysics Data System (ADS)

    Ward, Barry

    1991-02-01

    When the radiation from a sufficiently powerful pulsed laser is focused into the transparent gaseous, liquid or solid media, dielectric breakdown may occur around the beam waist giving rise to a short-lived high-temperature plasma which quickly heats the surrounding material. As a consequence of various energy-coupling mechanisms, this phenomenon causes the emission of one or more high-frequency ultrasonic acoustic waves whose speeds of propagation are dependent upon the physical properties of the host medium. In the high-speed photographic studies described, the 1.06 micron near-infrared radiation from an 8-ns, 10-mJ Q-switched Nd:YAG laser is focused in or onto a variety of fluid and solid materials. The rapid variations in density around the resulting plasma events are visualized using a Mach-Zehnder interferometer with a sub-nanosecond dye-laser light source and a video-imaging system. Calculations of the corresponding transient pressure distributions are then enacted from the digitally-recorded interferograms using a semi-automatic procedure under the control of a personal computer. Measurements of position, displacement, and velocity are also carried out using the same optical apparatus in schlieren and focused shadowgraph high-speed photographic measurements. The experimental work outlined in the following chapters is divided into three broad fields of interest. In the first of these, a study of the laser-generation of spherical shock waves in atmospheric air is carried out. In the second, the neodymium-laser beam is focused onto different solid-fluid interfaces resulting in the formation of bulk longitudinal and shear waves and surface acoustic waves. The interactions of these waves with various obstacles and defects are investigated with reference to their application to non-destructive testing. In the third and most important field, a detailed study of the dynamics of laser-induced cavitation bubbles in water is carried out. With regard to the associated

  1. Nonlinear effects of flow unsteadiness on the acoustic radiation of a heaving airfoil

    NASA Astrophysics Data System (ADS)

    Manela, Avshalom

    2013-12-01

    The study considers the combined effects of boundary animation (small-amplitude heaving) and incoming flow unsteadiness (incident vorticity) on the vibroacoustic signature of a thin rigid airfoil in low-Mach number flow. The potential-flow problem is analysed using the Brown and Michael equation, yielding the incident vortex trajectory and time evolution of trailing edge wake. The dynamical description serves as an effective source term to evaluate the far-field sound using Powell-Howe analogy. The results identify the fluid-airfoil system as a dipole-type source, and demonstrate the significance of nonlinear eddy-airfoil interactions on the acoustic radiation. Based on the value of scaled heaving frequency ωa/U (with ω the dimensional heaving frequency, a the airfoil half-chord, and U the mean flow speed), the system behaviour can be divided into two characteristic regimes: (i) for ωa/U≪1, the effect of heaving is minor, and the acoustic response is well approximated by considering the interaction of a line vortex with a stationary airfoil; (ii) for ωa/U≫1, the impact of heaving is dominant, radiating sound through an “airfoil motion” dipole oriented along the direction of heaving. In between (for ωa/U~O(1)), an intermediate regime takes place. The results indicate that trailing edge vorticity has a two-fold impact on the acoustic far field: while reducing pressure fluctuations generated by incident vortex interaction with the airfoil, trailing edge vortices transmit sound along the mean-flow direction, characterized by airfoil heaving frequency. The “silencing” effect of trailing edge vorticity is particularly efficient when the incident vortex passes close to the airfoil trailing edge: at that time, application of the Kutta condition implies the release of a trailing edge vortex in the opposite direction to the incident vortex; the released vortex then detaches from the airfoil and follows the incident vortex, forming a “silent” vortex pair

  2. Vibroacoustics of the piano soundboard: Reduced models, mobility synthesis, and acoustical radiation regime

    NASA Astrophysics Data System (ADS)

    Boutillon, Xavier; Ege, Kerem

    2013-09-01

    In string musical instruments, the sound is radiated by the soundboard, subject to the strings excitation. This vibration of this rather complex structure is described here with models which need only a small number of parameters. Predictions of the models are compared with the results of experiments that have been presented in Ege et al. [Vibroacoustics of the piano soundboard: (non)linearity and modal properties in the low- and mid-frequency ranges, Journal of Sound and Vibration 332 (5) (2013) 1288-1305]. The apparent modal density of the soundboard of an upright piano in playing condition, as seen from various points of the structure, exhibits two well-separated regimes, below and above a frequency flim that is determined by the wood characteristics and by the distance between ribs. Above flim, most modes appear to be localised, presumably due to the irregularity of the spacing and height of the ribs. The low-frequency regime is predicted by a model which consists of coupled sub-structures: the two ribbed areas split by the main bridge and, in most cases, one or two so-called cut-off corners. In order to assess the dynamical properties of each of the subplates (considered here as homogeneous plates), we propose a derivation of the (low-frequency) modal density of an orthotropic homogeneous plate which accounts for the boundary conditions on an arbitrary geometry. Above flim, the soundboard, as seen from a given excitation point, is modelled as a set of three structural wave-guides, namely the three inter-rib spacings surrounding the excitation point. Based on these low- and high-frequency models, computations of the point-mobility and of the apparent modal densities seen at several excitation points match published measurements. The dispersion curve of the wave-guide model displays an acoustical radiation scheme which differs significantly from that of a thin homogeneous plate. It appears that piano dimensioning is such that the subsonic regime of acoustical

  3. Broadband control of plate radiation using a piezoelectric, double-amplifier active-skin and structural acoustic sensing

    PubMed

    Johnson; Fuller

    2000-02-01

    The potential of a piezoelectric, double-amplifier active-skin with structural acoustic sensing (SAS) is demonstrated for the reduction of broadband acoustic radiation from a clamped, aluminum plate. The active-skin is a continuous covering of the vibrating portions of the plate with active, independently controllable piezoelectric, double-amplifier elements and is designed to affect control by altering the continuous structural radiation impedance rather than structural vibration. In simulation, acoustic models are sought for the primary and secondary sources that incorporate finite element methods. Simulation indicates that a total radiated power attenuation in excess of 10 dB may be achieved between 250 and 750 Hz with microphone error sensing, while under SAS the radiated power is reduced by nearly 8 dB in the same frequency range. In experiment, the adaptive feed forward filtered-x LMS (least mean square) algorithm, implemented on a Texas Instruments C40 DSP, was used in conjunction with the 6I6O control system. With microphone error sensing, 11.8-dB attenuation was achieved in the overall radiated power between 175 and 600 Hz, while inclusion of SAS resulted in a 7.3-dB overall power reduction in this frequency band. PMID:10687697

  4. A Correlated Study of the Response of a Satellite to Acoustic Radiation Using Statistical Energy Analysis and Acoustic Test Data

    SciTech Connect

    CAP,JEROME S.; TRACEY,BRIAN

    1999-11-15

    Aerospace payloads, such as satellites, are subjected to vibroacoustic excitation during launch. Sandia's MTI satellite has recently been certified to this environment using a combination of base input random vibration and reverberant acoustic noise. The initial choices for the acoustic and random vibration test specifications were obtained from the launch vehicle Interface Control Document (ICD). In order to tailor the random vibration levels for the laboratory certification testing, it was necessary to determine whether vibration energy was flowing across the launch vehicle interface from the satellite to the launch vehicle or the other direction. For frequencies below 120 Hz this issue was addressed using response limiting techniques based on results from the Coupled Loads Analysis (CLA). However, since the CLA Finite Element Analysis FEA model was only correlated for frequencies below 120 Hz, Statistical Energy Analysis (SEA) was considered to be a better choice for predicting the direction of the energy flow for frequencies above 120 Hz. The existing SEA model of the launch vehicle had been developed using the VibroAcoustic Payload Environment Prediction System (VAPEPS) computer code [1]. Therefore, the satellite would have to be modeled using VAPEPS as well. As is the case for any computational model, the confidence in its predictive capability increases if one can correlate a sample prediction against experimental data. Fortunately, Sandia had the ideal data set for correlating an SEA model of the MTI satellite--the measured response of a realistic assembly to a reverberant acoustic test that was performed during MTI's qualification test series. The first part of this paper will briefly describe the VAPEPS modeling effort and present the results of the correlation study for the VAPEPS model. The second part of this paper will present the results from a study that used a commercial SEA software package [2] to study the effects of in-plane modes and to

  5. Acoustic radiation force due to a diverging wave: Demonstration and theory

    NASA Astrophysics Data System (ADS)

    Denardo, Bruce C.; Freemyers, Stanley G.; Schock, Michael P.; Sundem, Scott T.

    2014-02-01

    A radiation force is the time-averaged force exerted by any kind of wave on a body. In the case of a divergent traveling acoustic wave, it is known that a relatively small rigid body can experience a radiation force that is directed toward the source. We show that this effect can be readily demonstrated with a styrofoam sphere pendulum near a horizontally directed loudspeaker that is emitting sound of sufficiently high amplitude and low frequency. The attraction is surprising because repulsive forces are exerted by a traveling plane wave and by an outward jetting or "wind" from the loudspeaker. We argue that the attractive force near a source that is small compared to the wavelength can be roughly understood and calculated as a time-averaged Bernoulli effect, if scattering is ignored. The result is within a factor of two of rigorous published results based on scattering calculations, when these results are specialized to the case of a rigid body whose average density is much greater than the density of the fluid. However, repulsion occurs when the average density of the body is less than the density of the fluid, in which case our Bernoulli result completely fails.

  6. Direct opto-acoustic in vitro measurement of the spatial distribution of laser radiation in biological media

    SciTech Connect

    Pelivanov, Ivan M; Belov, Sergej A; Solomatin, Vladimir S; Khokhlova, Tanya D; Karabutov, Aleksander A

    2006-12-31

    The problem of opto-acoustic (AO) diagnostics of light scattering and absorption in biological media is considered. The objects under study were milk, bovine and porcine liver, and bovine muscle tissue. The forward and backward schemes for recording acoustic signals were used in experiments. The spatial distribution of the light intensity was measured for each biological medium from the temporal profile of the excited OA pulse and the absorption coefficient and reduced scattering coefficient were determined. Opto-acoustic signals were excited by a 1064-nm pulsed Nd:YAG laser and a tunable Ti:sapphire laser at 779 nm. It is shown that the proposed method can be used for obtaining a priori information on a biological medium in problems of optical and AO tomography. (special issue devoted to multiple radiation scattering in random media)

  7. Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control

    PubMed Central

    Kumar, Shalki; Lily, Kuo; Sen, H. Tutkun; Iordachita, Iulian; Kazanzides, Peter

    2016-01-01

    Objective Acoustic radiation force (ARF)-based approaches to measure tissue elasticity require transmission of a focused high-energy acoustic pulse from a stationary ultrasound probe and ultrasound-based tracking of the resulting tissue displacements to obtain stiffness images or shear wave speed estimates. The method has established benefits in biomedical applications such as tumor detection and tissue fibrosis staging. One limitation, however, is the dependence on applied probe pressure, which is difficult to control manually and prohibits standardization of quantitative measurements. To overcome this limitation, we built a robot prototype that controls probe contact forces for shear wave speed quantification. Methods The robot was evaluated with controlled force increments applied to a tissue-mimicking phantom and in vivo abdominal tissue from three human volunteers. Results The root-mean-square error between the desired and measured forces was 0.07 N in the phantom and higher for the fatty layer of in vivo abdominal tissue. The mean shear wave speeds increased from 3.7 to 4.5 m/s in the phantom and 1.0 to 3.0 m/s in the in vivo fat for compressive forces ranging from 2.5 to 30 N. The standard deviation of shear wave speeds obtained with the robotic approach were low in most cases (< 0.2 m/s) and comparable to that obtained with a semiquantitative landmark-based method. Conclusion Results are promising for the introduction of robotic systems to control the applied probe pressure for ARF-based measurements of tissue elasticity. Significance This approach has potential benefits in longitudinal studies of disease progression, comparative studies between patients, and large-scale multidimensional elasticity imaging. PMID:26552071

  8. SU-E-CAMPUS-T-02: Exploring Radiation Acoustics CT Dosimeter Design Aspects for Proton Therapy

    SciTech Connect

    Alsanea, F; Moskvin, V; Stantz, K

    2014-06-15

    Purpose: Investigate the design aspects and imaging dose capabilities of the Radiation Acoustics Computed Tomography (RA CT) dosimeter for Proton induced acoustics, with the objective to characterize a pulsed pencil proton beam. The focus includes scanner geometry, transducer array, and transducer bandwidth on image quality. Methods: The geometry of the dosimeter is a cylindrical water phantom (length 40cm, radius 15cm) with 71 ultrasound transducers placed along the length and end of the cylinder to achieve a weighted set of projections with spherical sampling. A 3D filtered backprojection algorithm was used to reconstruct the dosimetric images and compared to MC dose distribution. First, 3D Monte Carlo (MC) Dose distributions for proton beam energies (range of 12cm, 16cm, 20cm, and 27cm) were used to simulate the acoustic pressure signal within this scanner for a pulsed proton beam of 1.8x107 protons, with a pulse width of 1 microsecond and a rise time of 0.1 microseconds. Dose comparison within the Bragg peak and distal edge were compared to MC analysis, where the integrated Gaussian was used to locate the 50% dose of the distal edge. To evaluate spatial fidelity, a set of point sources within the scanner field of view (15×15×15cm3) were simulated implementing a low-pass bandwidth response function (0 to 1MHz) equivalent to a multiple frequency transducer array, and the FWHM of the point-spread-function determined. Results: From the reconstructed images, RACT and MC range values are within 0.5mm, and the average variation of the dose within the Bragg peak are within 2%. The spatial resolution tracked with transducer bandwidth and projection angle sampling, and can be kept at 1.5mm. Conclusion: This design is ready for fabrication to start acquiring measurements. The 15 cm FOV is an optimum size for imaging dosimetry. Currently, simulations comparing transducer sensitivity, bandwidth, and proton beam parameters are being evaluated to assess signal-to-noise.

  9. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.

    PubMed

    Shih, Cho-Chiang; Lai, Ting-Yu; Huang, Chih-Chung

    2016-08-01

    The ability to measure the elastic properties of plaques and vessels is significant in clinical diagnosis, particularly for detecting a vulnerable plaque. A novel concept of combining intravascular ultrasound (IVUS) imaging and acoustic radiation force impulse (ARFI) imaging has recently been proposed. This method has potential in elastography for distinguishing between the stiffness of plaques and arterial vessel walls. However, the intensity of the acoustic radiation force requires calibration as a standard for the further development of an ARFI-IVUS imaging device that could be used in clinical applications. In this study, a dual-frequency transducer with 11MHz and 48MHz was used to measure the association between the biological tissue displacement and the applied acoustic radiation force. The output intensity of the acoustic radiation force generated by the pushing element ranged from 1.8 to 57.9mW/cm(2), as measured using a calibrated hydrophone. The results reveal that all of the acoustic intensities produced by the transducer in the experiments were within the limits specified by FDA regulations and could still displace the biological tissues. Furthermore, blood clots with different hematocrits, which have elastic properties similar to the lipid pool of plaques, with stiffness ranging from 0.5 to 1.9kPa could be displaced from 1 to 4μm, whereas the porcine arteries with stiffness ranging from 120 to 291kPa were displaced from 0.4 to 1.3μm when an acoustic intensity of 57.9mW/cm(2) was used. The in vitro ARFI images of the artery with a blood clot and artificial arteriosclerosis showed a clear distinction of the stiffness distributions of the vessel wall. All the results reveal that ARFI-IVUS imaging has the potential to distinguish the elastic properties of plaques and vessels. Moreover, the acoustic intensity used in ARFI imaging has been experimentally quantified. Although the size of this two-element transducer is unsuitable for IVUS imaging, the

  10. Iterative solution of multiple radiation and scattering problems in structural acoustics using the BL-QMR algorithm

    SciTech Connect

    Malhotra, M.

    1996-12-31

    Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.

  11. Violin f-hole contribution to far-field radiation via patch near-field acoustical holography.

    PubMed

    Bissinger, George; Williams, Earl G; Valdivia, Nicolas

    2007-06-01

    The violin radiates either from dual ports (f-holes) or via surface motion of the corpus (top+ribs+back), with no clear delineation between these sources. Combining "patch" near-field acoustical holography over just the f-hole region of a violin with far-field radiativity measurements over a sphere, it was possible to separate f-hole from surface motion contributions to the total radiation of the corpus below 2.6 kHz. A0, the Helmholtz-like lowest cavity resonance, radiated essentially entirely through the f-holes as expected while A1, the first longitudinal cavity mode with a node at the f-holes, had no significant f-hole radiation. The observed A1 radiation comes from an indirect radiation mechanism, induced corpus motion approximately mirroring the cavity pressure profile seen for violinlike bowed string instruments across a wide range of sizes. The first estimates of the fraction of radiation from the f-holes F(f) indicate that some low frequency corpus modes thought to radiate only via surface motion (notably the first corpus bending modes) had significant radiation through the f-holes, in agreement with net volume changes estimated from experimental modal analysis. F(f) generally trended lower with increasing frequency, following corpus mobility decreases. The f-hole directivity (top/back radiativity ratio) was generally higher than whole-violin directivity. PMID:17552736

  12. Computer and laboratory modeling of radiation-acoustic detector for charged particles pulse beams and plasma parameters measuring

    SciTech Connect

    Kresnin, Yu.A.; Stervoedov, N.G.

    1996-12-31

    Model investigations and laboratory tests of detectors for charged particles pulse beams and plasma parameters measuring are presented. Detector represents combination of classic Faraday cup with electrical way of signal getting and radiation-acoustic meter of pulse beams parameters. Radiation-acoustic meter consists of two parts--thin detector, transparent for beams of high energy particles, and thick detector with full absorption. Ultrasonic oscillations, which arise during interaction of charged particles pulse beams or plasma with detector material, are transformed by piezoelectric detector into electric signals, whose amplitude-frequency and time characteristics functionally depended on beams parameters. All the signals come into microcontroller device Intel MSC51. This device produces calculations of following beam parameters: average energy, pulse charge, pulse currents, density, beam size and pulse time. Calculated characteristics of meter well coincide with experimental measurements, carried out at accelerators in particles energy range from 1 to 100 Mev.

  13. Inverse problem of nonlinear acoustics: Synthesizing intense signals to intensify the thermal and radiation action of ultrasound

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Gurbatov, S. N.

    2016-07-01

    Inverse problems of nonlinear acoustics have important applied significance. On the one hand, they are necessary for nonlinear diagnostics of media, materials, manufactured articles, building units, and biological and geological structures. On the other hand, they are needed for creating devices that ensure optimal action of acoustic radiation on a target. However, despite the many promising applications, this direction remains underdeveloped, especially for strongly distorted high-intensity waves containing shock fronts. An example of such an inverse problem is synthesis of the spatiotemporal structure of a field in a radiating system that ensures the highest possible energy density in the focal region. This problem is also related to the urgent problems of localizing wave energy and the theory of strongly nonlinear waves. Below we analyze some quite general and simple inverse nonlinear problems.

  14. Angular Acceleration Without Torque?

    NASA Astrophysics Data System (ADS)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.2

  15. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  16. Acoustic field modeling for physiotherapy ultrasound applicators by using approximated functions of measured non-uniform radiation distributions.

    PubMed

    Gutiérrez, Mario Ibrahín; Calás, Héctor; Ramos, Antonio; Vera, Arturo; Leija, Lorenzo

    2012-08-01

    The strongest therapeutic effects in ultrasonic physiotherapy are mainly produced at the first centimeters, i.e. close to the applicator surface and, in general, only in the near-field zone. The acoustic field produced in practice by this type of transducers differs from the classical models because the vibration distribution on the real transducer surfaces is non-uniform. However, neither models using uniform distribution, nor those using typical non-uniform distribution patterns for the source accurately represent the radiation of this kind of transducers. Although this therapy is widely used and many efforts have been made in experimentally studying the patterns of ultrasound radiation produced during physiotherapy applications (IEC-61689, 1998), additional modeling researches still would be needed in order to achieve improved models giving field patterns closer to the measured ultrasonic results. In this paper, acoustic patterns produced from two source radiation functions are proposed and evaluated for field modeling of physiotherapy applicators. Both the functions are approximations to the pressure distribution measured close to the emitting surface and they are based on the modulation of the classical simply-supported function using either sinusoidal or Bessel-type distributions. The simply-supported function is accounted for the radiator-fixing condition and the modulation function simulates the complex vibration distribution of this kind of transducer. The modulator Bessel function is based on reports about Bessel-type vibration distributions found in piezoelectric disk resonators. The use of a selected sinusoidal segment represents another analytical option for obtaining an approximated behavior of the measured data in a real applicator. Both the field models are implemented using the finite element method (FEM) to obtain the numerical solution of wave equation at each point in the radiated space. The solution is reached by considering axisymmetric

  17. Evidence of Longitudinal Acoustic Phonon Generation in Si Doping Superlattices by Ge Prism-Coupled THz Laser Radiation

    NASA Astrophysics Data System (ADS)

    Wilson, T.; Kasper, E.; Oehme, M.; Schulze, J.; Korolev, K.

    2014-11-01

    We report on the direct excitation of 246 GHz longitudinal acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation of the same frequency. A longitudinally polarized evanescent laser light field is coupled to the superlattice through a germanium prism providing total internal reflection at the superlattice interface. The ballistic phonon signal is detected by a superconducting aluminum bolometer. The sample is immersed in low-temperature liquid helium.

  18. Acoustic radiation force impulse elastography for hepatocellular carcinoma-associated radiofrequency ablation

    PubMed Central

    Kwon, Hee-Jin; Kang, Myong-Jin; Cho, Jin-Han; Oh, Jong-Young; Nam, Kyung-Jin; Han, Sang-Yeong; Lee, Sung Wook

    2011-01-01

    AIM: To evaluate the potential usefulness of acoustic radiation force impulse (ARFI) images for evaluation of hepatocellular carcinomas (HCC)-associated radiofrequency ablation. METHODS: From January 2010 to June 2010, a total of 38 patients with HCC including recurred HCCs after RFA underwent ARFI elastography. The brightness of tumor was checked and the shear wave velocity was measured for the quantification of stiffness. According to the brightness, the tumors were classified as brighter, same color and darker compared with adjacent parenchyma. Using the same methods, 8 patients with recurred HCCs after RFA state were evaluated about the brightness compared with adjacent RFA ablation area. RESULTS: In the 38 patients with HCCs, 20 (52.6%) were brighter than surrounding cirrhotic parenchyma. Another 13 (34.2%) were darker. The others (5 cases, 13.2%) were seen as the same color as the adjacent liver parenchyma. Post-RFA lesions were darker than previous tumor and surrounding parenchyma in all 38 cases. However, recurred HCCs were brighter than the treated site in all 8 cases. CONCLUSION: Using ARFI technique is helpful for differential diagnosis in order to detect recurred HCCs more easily in patients with confusing status. PMID:21528062

  19. Testicular microlithiasis and preliminary experience of acoustic radiation force impulse imaging

    PubMed Central

    Osther, Palle Jørn Sloth; Rafaelsen, Søren Rafael

    2016-01-01

    Background Elastography of the testis can be used as a part of multiparametric examination of the scrotum. Purpose To determine the testicular stiffness using acoustic radiation force impulse imaging (ARFI) technique in men with testicular microlithiasis (TML). Material and Methods In 2013, 12 patients with diagnosed testicular microlithiasis in 2008 (mean age, 51 years; age range, 25–76 years) underwent a 5-year follow-up B-mode ultrasonography with three ARFI elastography measurements of each testis. We used a Siemens Acuson S3000 machine. Results No malignancy was found at the 5-year follow-up B-mode and elastography in 2013. However, we found an increase in TML; in the previous ultrasonography in 2008, eight men had bilateral TML, whereas in 2013, 10 men were diagnosed with bilateral TML. The mean elasticity of testicles with TML was 0.82 m/s (interquartile range [IQR], 0.72–0.88 m/s; range, 65–1.08 m/s). Conclusion Elastography velocity of testis with TML seems to be in the same velocity range as in men with normal testis tissue. PMID:27504193

  20. Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence.

    PubMed

    Park, Jinhyoung; Lee, Jungwoo; Lau, Sien Ting; Lee, Changyang; Huang, Ying; Lien, Ching-Ling; Kirk Shung, K

    2012-04-01

    Acoustic radiation force impulse (ARFI) imaging has been developed as a non-invasive method for quantitative illustration of tissue stiffness or displacement. Conventional ARFI imaging (2-10 MHz) has been implemented in commercial scanners for illustrating elastic properties of several organs. The image resolution, however, is too coarse to study mechanical properties of micro-sized objects such as cells. This article thus presents a high-frequency coded excitation ARFI technique, with the ultimate goal of displaying elastic characteristics of cellular structures. Tissue mimicking phantoms and zebrafish embryos are imaged with a 100-MHz lithium niobate (LiNbO₃) transducer, by cross-correlating tracked RF echoes with the reference. The phantom results show that the contrast of ARFI image (14 dB) with coded excitation is better than that of the conventional ARFI image (9 dB). The depths of penetration are 2.6 and 2.2 mm, respectively. The stiffness data of the zebrafish demonstrate that the envelope is harder than the embryo region. The temporal displacement change at the embryo and the chorion is as large as 36 and 3.6 μm. Consequently, this high-frequency ARFI approach may serve as a remote palpation imaging tool that reveals viscoelastic properties of small biological samples. PMID:22101757

  1. Study on the radial vibration and acoustic field of an isotropic circular ring radiator.

    PubMed

    Lin, Shuyu; Xu, Long

    2012-01-01

    Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius. PMID:21802702

  2. Optical tracking of acoustic radiation force impulse-induced dynamics in a tissue-mimicking phantom

    PubMed Central

    Bouchard, Richard R.; Palmeri, Mark L.; Pinton, Gianmarco F.; Trahey, Gregg E.; Streeter, Jason E.; Dayton, Paul A.

    2009-01-01

    Optical tracking was utilized to investigate the acoustic radiation force impulse (ARFI)-induced response, generated by a 5-MHz piston transducer, in a translucent tissue-mimicking phantom. Suspended 10-μm microspheres were tracked axially and laterally at multiple locations throughout the field of view of an optical microscope with 0.5-μm displacement resolution, in both dimensions, and at frame rates of up to 36 kHz. Induced dynamics were successfully captured before, during, and after the ARFI excitation at depths of up to 4.8 mm from the phantom’s proximal boundary. Results are presented for tracked axial and lateral displacements resulting from on-axis and off-axis (i.e., shear wave) acquisitions; these results are compared to matched finite element method modeling and independent ultrasonically based empirical results and yielded reasonable agreement in most cases. A shear wave reflection, generated by the proximal boundary, consistently produced an artifact in tracked displacement data later in time (i.e., after the initial ARFI-induced displacement peak). This tracking method provides high-frame-rate, two-dimensional tracking data and thus could prove useful in the investigation of complex ARFI-induced dynamics in controlled experimental settings. PMID:19894849

  3. Burton-Miller-type singular boundary method for acoustic radiation and scattering

    NASA Astrophysics Data System (ADS)

    Fu, Zhuo-Jia; Chen, Wen; Gu, Yan

    2014-08-01

    This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller's formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton-Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.

  4. Viscoelastic characterization of thin tissues using acoustic radiation force and model-based inversion

    NASA Astrophysics Data System (ADS)

    Guzina, Bojan B.; Tuleubekov, Kairat; Liu, Dalong; Ebbini, Emad S.

    2009-07-01

    By means of the viscoelastodynamic model for a two-layer solid-fluid system and a detailed account of the locally induced acoustic radiation force, a rational analytical and computational framework is established for the viscoelastic characterization of thin tissues from high-frequency ultrasound (HFUS) measurements. For practical applications, the back-analysis is set up to interpret the frequency response function, signifying the tissue's axial displacement (captured by the imaging transducer) per squared voltage driving the 'pushing' transducer, as experimental input. On parametrizing the tissue's viscoelastic behavior in terms of the standard linear model, the proposed methodology is applied to a set of measurements performed on tissue-mimicking phantom constructs with thicknesses ranging from 0.5 to 4 mm. The results demonstrate that the model-based inversion, which carefully mimics the local boundary conditions and applied ultrasound excitation, yields viscoelastic properties for the phantom that are virtually invariant over the range of specimen thicknesses tested. Beyond its immediate application to in vitro viscoelastic characterization of thin excised tissues and tissue constructs, the proposed methodology may also find use in the characterization of skin or skin lesions over bone in vivo.

  5. In Vivo Cardiac, Acoustic-Radiation-Force-Driven, Shear Wave Velocimetry

    PubMed Central

    Hsu, Stephen J.; Wolf, Patrick D.; Trahey, Gregg E.

    2009-01-01

    Shear wave elasticity imaging (SWEI) was employed to track acoustic radiation force impulse (ARFI) -induced shear waves in the mid-myocardium of the left ventricular free wall (LVFW) of a beating canine heart. Shear waves were generated and tracked with a linear ultrasound transducer that was placed directly on the exposed epicardium. Acquinsition was ECG-gated arid coincided with the mid-diastolic portion of the cardiac cycle. Axial displacement profiles consistent with shear wave propagation were clearly evident in all SWEI acquisitions (i.e., those including an ARFI excitation); displacement data from control cases (i.e., sequences lacking an ARFI excitation) offered no evidence of shear wave propagation and yielded a peak absolute mean displacement below 0.31 μm after motion filtering. Shear wave velocity estimates ranged from 0.82 to 2.65 m/s and were stable across multiple heartbeats for the same interrogation region, with coefficients of variation less than 19% for all matched acquisitions. Variations in velocity estimates suggest a spatial dependence of shear wave velocity through the mid-myocardium of the LVFW, with velocity estimates changing, in limited cases, through depth and lateral position. PMID:19771962

  6. Generation and Radiation of Acoustic Waves from a 2D Shear Layer

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2000-01-01

    A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable. Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the downstream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic. Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of noise. The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness is constant. With the source amplitude small enough, the problem is governed by the following set of linear equations given in dimensional form.

  7. The ‘sixth sense’ of ultrasound: probing nonlinear elasticity with acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Guzina, Bojan B.; Dontsov, Egor V.; Urban, Matthew W.; Fatemi, Mostafa

    2015-05-01

    Prompted by a recent finding that the magnitude of the acoustic radiation force (ARF) in isotropic tissue-like solids depends linearly on a particular third-order modulus of elasticity—hereon denoted by C, this study investigates the possibility of estimating C from the amplitude of the ARF-generated shear waves. The featured coefficient of nonlinear elasticity, which captures the incipient nonlinear interaction between the volumetric and deviatoric modes of deformation, has so far received only a limited attention in the context of soft tissues due to the fact that the latter are often approximated as (i) fluid-like when considering ultrasound waves, and (ii) incompressible under static deformations. On establishing the analytical and computational platform for the proposed sensing methodology, the study proceeds with applying the prototype technique toward estimating via ARF the third-order modulus C in a series of tissue-mimicking phantoms. To help validate the concept and its implementation, the germane third-order modulus is independently estimated in each phantom via an established technique known as acoustoelasticity. The C-estimates obtained respectively via acoustoelasticity and the new theory of ARF show a significant degree of consistency. The key features of the new sensing methodology are that: (a) it requires no external deformation of a material other than that produced by the ARF, and (b) it estimates the nonlinear C-modulus locally, over the focal region of an ultrasound beam—where the shear waves are being generated.

  8. The 'sixth sense' of ultrasound: probing nonlinear elasticity with acoustic radiation force.

    PubMed

    Guzina, Bojan B; Dontsov, Egor V; Urban, Matthew W; Fatemi, Mostafa

    2015-05-01

    Prompted by a recent finding that the magnitude of the acoustic radiation force (ARF) in isotropic tissue-like solids depends linearly on a particular third-order modulus of elasticity-hereon denoted by C, this study investigates the possibility of estimating C from the amplitude of the ARF-generated shear waves. The featured coefficient of nonlinear elasticity, which captures the incipient nonlinear interaction between the volumetric and deviatoric modes of deformation, has so far received only a limited attention in the context of soft tissues due to the fact that the latter are often approximated as (i) fluid-like when considering ultrasound waves, and (ii) incompressible under static deformations. On establishing the analytical and computational platform for the proposed sensing methodology, the study proceeds with applying the prototype technique toward estimating via ARF the third-order modulus C in a series of tissue-mimicking phantoms. To help validate the concept and its implementation, the germane third-order modulus is independently estimated in each phantom via an established technique known as acoustoelasticity. The C-estimates obtained respectively via acoustoelasticity and the new theory of ARF show a significant degree of consistency. The key features of the new sensing methodology are that: (a) it requires no external deformation of a material other than that produced by the ARF, and (b) it estimates the nonlinear C-modulus locally, over the focal region of an ultrasound beam-where the shear waves are being generated. PMID:25905553

  9. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    PubMed

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26255624

  10. Assessment of Placental Stiffness Using Acoustic Radiation Force Impulse Elastography in Pregnant Women with Fetal Anomalies

    PubMed Central

    Göya, Cemil; Tunç, Senem; Teke, Memik; Hattapoğlu, Salih

    2016-01-01

    Objective We aimed to evaluate placental stiffness measured by acoustic radiation force impulse (ARFI) elastography in pregnant women in the second trimester with a normal fetus versus those with structural anomalies and non-structural findings. Materials and Methods Forty pregnant women carrying a fetus with structural anomalies diagnosed sonographically at 18–28 weeks of gestation comprised the study group. The control group consisted of 34 healthy pregnant women with a sonographically normal fetus at a similar gestational age. Placental shear wave velocity (SWV) was measured by ARFI elastography and compared between the two groups. Structural anomalies and non-structural findings were scored based on sonographic markers. Placental stiffness measurements were compared among fetus anomaly categories. Doppler parameters of umbilical and uterine arteries were compared with placental SWV measurements. Results All placental SWV measurements, including minimum SWV, maximum SWV, and mean SWV were significantly higher in the study group than the control group ([0.86 ± 0.2, 0.74 ± 0.1; p < 0.001], [1.89 ± 0.7, 1.59 ± 0.5; p = 0.04], and [1.26 ± 0.4, 1.09 ± 0.2; p = 0.01]), respectively. Conclusion Placental stiffness evaluated by ARFI elastography during the second trimester in pregnant women with fetuses with congenital structural anomalies is higher than that of pregnant women with normal fetuses. PMID:26957906

  11. van der Waals torque

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  12. Variable ultrasound trigger delay for improved magnetic resonance acoustic radiation force imaging

    NASA Astrophysics Data System (ADS)

    Mougenot, Charles; Waspe, Adam; Looi, Thomas; Drake, James M.

    2016-01-01

    Magnetic resonance acoustic radiation force imaging (MR-ARFI) allows the quantification of microscopic displacements induced by ultrasound pulses, which are proportional to the local acoustic intensity. This study describes a new method to acquire MR-ARFI maps, which reduces the measurement noise in the quantification of displacement as well as improving its robustness in the presence of motion. Two MR-ARFI sequences were compared in this study. The first sequence ‘variable MSG’ involves switching the polarity of the motion sensitive gradient (MSG) between odd and even image frames. The second sequence named ‘static MSG’ involves a variable ultrasound trigger delay to sonicate during the first or second MSG for odd and even image frames, respectively. As previously published, the data acquired with a variable MSG required the use of reference data acquired prior to any sonication to process displacement maps. In contrary, data acquired with a static MSG were converted to displacement maps without using reference data acquired prior to the sonication. Displacement maps acquired with both sequences were compared by performing sonications for three different conditions: in a polyacrylamide phantom, in the leg muscle of a freely breathing pig and in the leg muscle of pig under apnea. The comparison of images acquired at even image frames and odd image frames indicates that the sequence with a static MSG provides a significantly better steady state (p  <  0.001 based on a Student’s t-test) than the images acquired with a variable MSG. In addition no reference data prior to sonication were required to process displacement maps for data acquired with a static MSG. The absence of reference data prior to sonication provided a 41% reduction of the spatial distribution of noise (p  <  0.001 based on a Student’s t-test) and reduced the sensitivity to motion for displacements acquired with a static MSG. No significant differences were expected and

  13. The utility of acoustic radiation force impulse imaging in diagnosing acute appendicitis and staging its severity

    PubMed Central

    Göya, Cemil; Hamidi, Cihad; Okur, Mehmet Hanifi; İçer, Mustafa; Oğuz, Abdullah; Hattapoğlu, Salih; Çetinçakmak, Mehmet Güli; Teke, Memik

    2014-01-01

    PURPOSE The aim of this study was to investigate the feasibility of using acoustic radiation force impulse (ARFI) imaging to diagnose acute appendicitis. METHODS Abdominal ultrasonography (US) and ARFI imaging were performed in 53 patients that presented with right lower quadrant pain, and the results were compared with those obtained in 52 healthy subjects. Qualitative evaluation of the patients was conducted by Virtual Touch™ tissue imaging (VTI), while quantitative evaluation was performed by Virtual Touch™ tissue quantification (VTQ) measuring the shear wave velocity (SWV). The severity of appendix inflammation was observed and rated using ARFI imaging in patients diagnosed with acute appendicitis. Alvarado scores were determined for all patients presenting with right lower quadrant pain. All patients diagnosed with appendicitis received appendectomies. The sensitivity and specificity of ARFI imaging relative to US was determined upon confirming the diagnosis of acute appendicitis via histopathological analysis. RESULTS The Alvarado score had a sensitivity and specificity of 70.8% and 20%, respectively, in detecting acute appendicitis. Abdominal US had 83.3% sensitivity and 80% specificity, while ARFI imaging had 100% sensitivity and 98% specificity, in diagnosing acute appendicitis. The median SWV value was 1.11 m/s (range, 0.6–1.56 m/s) for healthy appendix and 3.07 m/s (range, 1.37–4.78 m/s) for acute appendicitis. CONCLUSION ARFI imaging may be useful in guiding the clinical management of acute appendicitis, by helping its diagnosis and determining the severity of appendix inflammation. PMID:25323836

  14. Acoustic radiation force impulse imaging for assessing liver fibrosis in alcoholic liver disease

    PubMed Central

    Kiani, Anita; Brun, Vanessa; Lainé, Fabrice; Turlin, Bruno; Morcet, Jeff; Michalak, Sophie; Le Gruyer, Antonia; Legros, Ludivine; Bardou-Jacquet, Edouard; Gandon, Yves; Moirand, Romain

    2016-01-01

    AIM: To evaluate the performance of elastography by ultrasound with acoustic radiation force impulse (ARFI) in determining fibrosis stage in patients with alcoholic liver disease (ALD) undergoing alcoholic detoxification in relation to biopsy. METHODS: Eighty-three patients with ALD undergoing detoxification were prospectively enrolled. Each patient underwent ARFI imaging and a liver biopsy on the same day. Fibrosis was staged according to the METAVIR scoring system. The median of 10 valid ARFI measurements was calculated for each patient. RESULTS: Sixty-nine males and thirteen females (one patient excluded due to insufficient biopsy size) were assessed with a mean alcohol consumption of 132.4 ± 128.8 standard drinks per week and mean cumulative year duration of 17.6 ± 9.5 years. Sensitivity and specificity were respectively 82.4% (0.70-0.95) and 83.3% (0.73-0.94) (AUROC = 0.87) for F ≥ 2 with a cut-off value of 1.63m/s; 82.4% (0.64-1.00) and 78.5% (0.69-0.89) (AUROC = 0.86) for F ≥ 3 with a cut-off value of 1.84m/s; and 92.3% (0.78-1.00] and 81.6% (0.72-0.90) (AUROC = 0.89) for F = 4 with a cut-off value of 1.94 m/s. CONCLUSION: ARFI is an accurate, non-invasive and easy method for assessing liver fibrosis in patients with ALD undergoing alcoholic detoxification. PMID:27239119

  15. In vivo study of transverse carpal ligament stiffness using acoustic radiation force impulse (ARFI) imaging.

    PubMed

    Shen, Zhilei Liu; Vince, D Geoffrey; Li, Zong-Ming

    2013-01-01

    The transverse carpal ligament (TCL) forms the volar boundary of the carpal tunnel and may provide mechanical constraint to the median nerve, leading to carpal tunnel syndrome. Therefore, the mechanical properties of the TCL are essential to better understand the etiology of carpal tunnel syndrome. The purpose of this study was to investigate the in vivo TCL stiffness using acoustic radiation force impulse (ARFI) imaging. The shear wave velocity (SWV) of the TCL was measured using Virtual Touch IQ(TM) software in 15 healthy, male subjects. The skin and the thenar muscles were also examined as reference tissues. In addition, the effects of measurement location and ultrasound transducer compression on the SWV were studied. The SWV of the TCL was dependent on the tissue location, with greater SWV values within the muscle-attached region than those outside of the muscle-attached region. The SWV of the TCL was significantly smaller without compression (5.21 ± 1.08 m/s) than with compression (6.62 ± 1.18 m/s). The SWV measurements of the skin and the thenar muscles were also affected by transducer compression, but to different extents than the SWV of the TCL. Therefore to standardize the ARFI imaging procedure, it is recommended that a layer of ultrasound gel be maintained to minimize the effects of tissue compression. This study demonstrated the feasibility of ARFI imaging for assessing the stiffness characteristics of the TCL in vivo, which has the potential to identify pathomechanical changes of the tissue. PMID:23861919

  16. Acoustic Radiation Force Impulse Elastography for Focal Hepatic Tumors: Usefulness for Differentiating Hemangiomas from Malignant Tumors

    PubMed Central

    Kim, Ji Eun; Bae, Kyung Soo; Han, Joon Koo; Choi, Byung Ihn

    2013-01-01

    Objective The purpose of this study is to investigate whether acoustic radiation force impulse (ARFI) elastography with ARFI quantification and ARFI 2-dimensional (2D) imaging is useful for differentiating hepatic hemangiomas from malignant hepatic tumors. Materials and Methods One-hundred-and-one tumors in 74 patients were included in this study: 28 hemangiomas, 26 hepatocellular carcinomas (HCCs), three cholangiocarcinomas (CCCs), 20 colon cancer metastases and 24 other metastases. B-mode ultrasound, ARFI 2D imaging, and ARFI quantification were performed in all tumors. Shear wave velocities (SWVs) of the tumors and the adjacent liver and their SWV differences were compared among the tumor groups. The ARFI 2D images were compared with B-mode images regarding the stiffness, conspicuity and size of the tumors. Results The mean SWV of the hemangiomas was significantly lower than the malignant hepatic tumor groups: hemangiomas, 1.80 ± 0.57 m/sec; HCCs, 2.66 ± 0.94 m/sec; CCCs, 3.27 ± 0.64 m/sec; colon cancer metastases, 3.70 ± 0.61 m/sec; and other metastases, 2.82 ± 0.96 m/sec (p < 0.05). The area under the receiver operating characteristics curve of SWV for differentiating hemangiomas from malignant tumors was 0.86, with a sensitivity of 96.4% and a specificity of 65.8% at a cut-off value of 2.73 m/sec (p < 0.05). In the ARFI 2D images, the malignant tumors except HCCs were stiffer and more conspicuous as compared with the hemangiomas (p < 0.05). Conclusion ARFI elastography with ARFI quantification and ARFI 2D imaging may be useful for differentiating hepatic hemangiomas from malignant hepatic tumors. PMID:24043967

  17. Acoustic Radiation Force Impulse Measurement in Renal Transplantation: A Prospective, Longitudinal Study With Protocol Biopsies.

    PubMed

    Lee, Juhan; Oh, Young Taik; Joo, Dong Jin; Ma, Bo Gyoung; Lee, A-lan; Lee, Jae Geun; Song, Seung Hwan; Kim, Seung Up; Jung, Dae Chul; Chung, Yong Eun; Kim, Yu Seun

    2015-09-01

    Interstitial fibrosis and tubular atrophy (IF/TA) is a common cause of kidney allograft loss. Several noninvasive techniques developed to assess tissue fibrosis are widely used to examine the liver. However, relatively few studies have investigated the use of elastographic methods to assess transplanted kidneys. The aim of this study was to explore the clinical implications of the acoustic radiation force impulse (ARFI) technique in renal transplant patients. A total of 91 patients who underwent living donor renal transplantation between September 2010 and January 2013 were included in this prospective study. Shear wave velocity (SWV) was measured by ARFI at baseline and predetermined time points (1 week and 6 and 12 months after transplantation). Protocol biopsies were performed at 12 months. Instead of reflecting IF/TA, SWVs were found to be related to time elapsed after transplantation. Mean SWV increased continuously during the first postoperative year (P < 0.001). In addition, mixed model analysis showed no correlation existed between SWV and serum creatinine (r = -0.2426, P = 0.0771). There was also no evidence of a relationship between IF/TA and serum creatinine (odds ratio [OR] = 1.220, P = 0.7648). Furthermore, SWV temporal patterns were dependent on the kidney weight to body weight ratio (KW/BW). In patients with a KW/BW < 3.5 g/kg, mean SWV continuously increased for 12 months, whereas it decreased after 6 months in those with a KW/BW ≥ 3.5 g/kg.No significant correlation was observed between SWV and IF/TA or renal dysfunction. However, SWV was found to be related to the time after transplantation. Renal hemodynamics influenced by KW/BW might impact SWV values. PMID:26426636

  18. Acoustic Radiation Force Impulse Elastography in the Diagnosis of Thyroid Nodules: Useful or Not Useful?

    PubMed

    Zhang, Yi-Feng; Xu, Hui-Xiong; Xu, Jun-Mei; Liu, Chang; Guo, Le-Hang; Liu, Lin-Na; Zhang, Jing; Xu, Xiao-Hong; Qu, Shen; Xing, Mingzhao

    2015-10-01

    The goal of this study is to evaluate the diagnostic performance of acoustic radiation force impulse (ARFI) elastography for differentiating benign from malignant thyroid nodules. One hundred and seventy-four pathologically proven thyroid nodules (139 benign, 35 malignant) in 154 patients (mean age: 49.2 ± 12.1 y; range: 16-72 y) were included in this study. Conventional ultrasound (US) and ARFI elastography using virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ) were performed to examine the thyroid nodules. Two blinded readers with different amounts of experience independently scored the likelihood of malignancy on the basis of a five-point scale in three different image-reading sets. The diagnostic performances among different image-reading sets and between the two readers were compared. The diagnostic specificity of both readers improved significantly after reading the VTI images or both VTI and VTQ images (all p < 0.05). After review of the results of both VTI and VTQ, the numbers of correctly diagnosed nodules increased in nodules <1.0 cm for both readers and in both nodular goiter and papillary thyroid carcinoma for the junior reader (p < 0.05). The nodules with definite diagnoses (i.e., confidence levels including definite benign and definite malignant cases) increased after review of VTI and VTQ images versus conventional US for the senior reader (p < 0.05). In conclusion, adding ARFI elastography improves the specificity in diagnosing malignant thyroid nodules compared with conventional US on its own. ARFI elastography particularly facilitates the specific diagnosis for thyroid nodules smaller than 1.0 cm. ARFI elastography is also able to increase the diagnostic confidence of the readers. PMID:26119458

  19. Breast Lesions Evaluated by Color-Coded Acoustic Radiation Force Impulse (ARFI) Imaging.

    PubMed

    Zhou, JianQiao; Yang, ZhiFang; Zhan, WeiWei; Zhang, JingWen; Hu, Na; Dong, YiJie; Wang, YingYing

    2016-07-01

    The goal of our study was to investigate the value of color-coded Virtual Touch tissue imaging (VTI) using acoustic radiation force impulse (ARFI) technology in the characterization of breast lesions and to compare it with conventional ultrasound (US). Conventional US and color-coded VTI were performed in 196 solid breast lesions in 196 consecutive women (age range 17-91 y; mean 48.17 ± 14.46 y). A four-point scale VTI score was assigned for each lesion according to the color pattern both in the lesion and in the surrounding breast tissue. The mean VTI score was significantly higher for malignant lesions (3.80 ± 0.66, range 1-4) than for benign ones (2.02 ± 1.20, range 1-4) (p < 0.001), and the optimal cut-off value was between score 3 and score 4. The area under the receiver operating characteristic (ROC) curve for combined conventional US and VTI (0.945) was significantly higher than that for conventional US (0.902) and for VTI (0.871) (p = 0.0021 and p < 0.001, respectively). It was concluded that color-coded VTI with the proposed four-point scale score system combined with conventional US might have the potential to aid in the characterization of benign and malignant breast lesions. PMID:27131841

  20. Mapping viscoelastic properties by multi-line (ML) acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Gomyo, Mikako; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2015-03-01

    In these days ultrasound studies of non-invasive diagnostic methods using the elastic property of tissue have showed very promising results. Biological soft tissues are viscoelastic in nature; therefore several recent studies have shown the feasibility of shear wave dispersion in order to express viscosity which is considered to be valid for early diagnoses. Shear wave Dispersion Ultrasound Vibrometry (SDUV) has been conducted under ex vivo and in vivo conditions, which could estimate the value of shear elasticity and viscosity from a 40 x 40 mm2 area. In this study, our proposed Multi-line (ML) acoustic radiation force method could map shear elasticity and viscosity at 0.2 x 0.2 mm2 pixel in 25.6 mm width and 29.6 mm depth area. ML uses seven focus points in depth to create much planar shear wave than ever, and twenty pushing line to obtain data such a broader area than ever. These sequences contribute to express precise values of shear elasticity and viscosity at each pixel. A 10% gelatin phantom with a 10% gelatin and 1% xanthan gum mixture inclusion was prepared for ML experiment, and one homogenous phantom made of the same concentrations as the background of ML experiments was for ML and SDUV experiments three times to validate. The ML measurement resulted μ1 = 1.129±0.118 kPa, μ2 = 0.893±0.090 Pa・s in the 10% gelatin background; their corresponding SDUV measurement were μ1 = 1.250±0.129 kPa, μ2 = 0.833±0.098 Pa・s in 10% gelatin phantom. Though further evaluations such as frequency and rheological model are required, the results could show the effectiveness of this proposed method in mapping viscoelasticity and the feasibility of in vivo and ex vivo experiments.

  1. The performance of acoustic radiation force impulse imaging in predicting liver fibrosis in chronic liver diseases.

    PubMed

    Lin, Yi-Hung; Yeh, Ming-Lun; Huang, Ching-I; Yang, Jeng-Fu; Liang, Po-Cheng; Huang, Chung-Feng; Dai, Chia-Yen; Lin, Zu-Yau; Chen, Shinn-Cherng; Huang, Jee-Fu; Yu, Ming-Lung; Chuang, Wan-Long

    2016-07-01

    Sonography-based noninvasive liver fibrosis assessment is promising in the prediction of treatment efficacy and prognosis in chronic liver disease (CLD) patients. Acoustic radiation force impulse imaging (ARFI) is a newly-developed transient elastography (TE) method integrated into a conventional ultrasound machine. The study aimed to assess the performance of ARFI imaging in the diagnosis of liver fibrosis in Taiwanese CLD patients. We also aimed to search for the optimal cut-off values in different fibrosis stages. A total of 60 CLD patients (40 males; mean age, 51.8±11 years) were consecutively included. They received standard ARFI measurement within 2 weeks at the time of liver biopsy. There were eight patients with Metavir fibrosis stage 0 (F0), 16 patients with F1, 20 patients with F2, eight patients with F3, and eight patients with F4, respectively. The mean values among patient with F0, F1, F2, F3, and F4 were 1.17±0.13, 1.30±0.17, 1.31±0.24, 2.01±0.45, and 2.69±0.91, respectively (p<0.001). The optimal cut-off ARFI value for significant fibrosis (F≥2) was 1.53 with the accuracy of 0.733, while it was 1.66 for advanced fibrosis (F≥3) with the accuracy of 0.957. Our study demonstrated that ARFI imaging is competent for fibrosis diagnosis, particularly in CLD patients with advanced fibrosis. PMID:27450025

  2. Fabricated torque shaft

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  3. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  4. Displaceable Gear Torque Controlled Driver

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  5. Effects of head geometry simplifications on acoustic radiation of vowel sounds based on time-domain finite-element simulations.

    PubMed

    Arnela, Marc; Guasch, Oriol; Alías, Francesc

    2013-10-01

    One of the key effects to model in voice production is that of acoustic radiation of sound waves emanating from the mouth. The use of three-dimensional numerical simulations allows to naturally account for it, as well as to consider all geometrical head details, by extending the computational domain out of the vocal tract. Despite this advantage, many approximations to the head geometry are often performed for simplicity and impedance load models are still used as well to reduce the computational cost. In this work, the impact of some of these simplifications on radiation effects is examined for vowel production in the frequency range 0-10 kHz, by means of comparison with radiation from a realistic head. As a result, recommendations are given on their validity depending on whether high frequency energy (above 5 kHz) should be taken into account or not. PMID:24116430

  6. A rapid magnetic resonance acoustic radiation force imaging sequence for ultrasonic refocusing

    NASA Astrophysics Data System (ADS)

    Mougenot, Charles; Pichardo, Samuel; Engler, Steven; Waspe, Adam; Constanciel Colas, Elodie; Drake, James M.

    2016-08-01

    Magnetic resonance guided acoustic radiation force imaging (MR-ARFI) is being used to correct for aberrations induced by tissue heterogeneities when using high intensity focusing ultrasound (HIFU). A compromise between published MR-ARFI adaptive solutions is proposed to achieve efficient refocusing of the ultrasound beam in under 10 min. In addition, an ARFI sequence based on an EPI gradient echo sequence was used to simultaneously monitor displacement and temperature with a large SNR and low distortion. This study was conducted inside an Achieva 3T clinical MRI using a Philips Sonalleve MR-HIFU system to emit a 1 ms pulsed sonication with duty cycle of 2.3% at 300 Wac inside a polymer phantom. Virtual elements defined by a Hadamard array with sonication patterns composed of 6 phase steps were used to characterize 64 groups of 4 elements to find the optimal phase of the 256 elements of the transducer. The 384 sonication patterns were acquired in 580 s to identify the set of phases that maximize the displacement at the focal point. Three aberrators (neonatal skull, 8 year old skull and a checkered pattern) were added to each sonication pattern to evaluate the performance of this refocusing algorithm (n  =  4). These aberrators reduced the relative intensities to 95.3%, 69.6% and 25.5% for the neonatal skull, 8 year old skull, and checkered pattern virtual aberrators respectively. Using a 10 min refocusing algorithm, relative intensities of 101.6%, 91.3% and 93.3% were obtained. Better relative intensities of 103.9%, 94.3% and 101% were achieved using a 25 min refocusing algorithm. An average temperature increase of 4.2 °C per refocusing test was induced for the 10 min refocusing algorithm, resulting in a negligible thermal dose of 2 EM. A rapid refocusing of the beam can be achieved while keeping thermal effects to a minimum.

  7. Primary biliary cirrhosis degree assessment by acoustic radiation force impulse imaging and hepatic fibrosis indicators

    PubMed Central

    Zhang, Hai-Chun; Hu, Rong-Fei; Zhu, Ting; Tong, Ling; Zhang, Qiu-Qin

    2016-01-01

    AIM: To evaluate the assessment of primary biliary cirrhosis degree by acoustic radiation force impulse imaging (ARFI) and hepatic fibrosis indicators. METHODS: One hundred and twenty patients who developed liver cirrhosis secondary to primary biliary cirrhosis were selected as the observation group, with the degree of patient liver cirrhosis graded by Child-Pugh (CP) score. Sixty healthy individuals were selected as the control group. The four indicators of hepatic fibrosis were detected in all research objects, including hyaluronic acid (HA), laminin (LN), type III collagen (PC III), and type IV collagen (IV-C). The liver parenchyma hardness value (LS) was then measured by ARFI technique. LS and the four indicators of liver fibrosis (HA, LN, PC III, and IV-C) were observed in different grade CP scores. The diagnostic value of LS and the four indicators of liver fibrosis in determining liver cirrhosis degree with PBC, whether used alone or in combination, were analyzed by receiver operating characteristic (ROC) curve. RESULTS: LS and the four indicators of liver fibrosis within the three classes (A, B, and C) of CP scores in the observation group were higher than in the control group, with C class > B class > A class; the differences were statistically significant (P < 0.01). Although AUC values of LS within the three classes of CP scores were higher than in the four indicators of liver fibrosis, sensitivity and specificity were unstable. The ROC curves of LS combined with the four indicators of liver fibrosis revealed that: AUC and sensitivity in all indicators combined in the A class of CP score were higher than in LS alone, albeit with slightly decreased specificity; AUC and specificity in all indicators combined in the B class of CP score were higher than in LS alone, with unchanged sensitivity; AUC values (0.967), sensitivity (97.4%), and specificity (90%) of all indicators combined in the C class of CP score were higher than in LS alone (0.936, 92.1%, 83

  8. A rapid magnetic resonance acoustic radiation force imaging sequence for ultrasonic refocusing.

    PubMed

    Mougenot, Charles; Pichardo, Samuel; Engler, Steven; Waspe, Adam; Colas, Elodie Constanciel; Drake, James M

    2016-08-01

    Magnetic resonance guided acoustic radiation force imaging (MR-ARFI) is being used to correct for aberrations induced by tissue heterogeneities when using high intensity focusing ultrasound (HIFU). A compromise between published MR-ARFI adaptive solutions is proposed to achieve efficient refocusing of the ultrasound beam in under 10 min. In addition, an ARFI sequence based on an EPI gradient echo sequence was used to simultaneously monitor displacement and temperature with a large SNR and low distortion. This study was conducted inside an Achieva 3T clinical MRI using a Philips Sonalleve MR-HIFU system to emit a 1 ms pulsed sonication with duty cycle of 2.3% at 300 Wac inside a polymer phantom. Virtual elements defined by a Hadamard array with sonication patterns composed of 6 phase steps were used to characterize 64 groups of 4 elements to find the optimal phase of the 256 elements of the transducer. The 384 sonication patterns were acquired in 580 s to identify the set of phases that maximize the displacement at the focal point. Three aberrators (neonatal skull, 8 year old skull and a checkered pattern) were added to each sonication pattern to evaluate the performance of this refocusing algorithm (n  =  4). These aberrators reduced the relative intensities to 95.3%, 69.6% and 25.5% for the neonatal skull, 8 year old skull, and checkered pattern virtual aberrators respectively. Using a 10 min refocusing algorithm, relative intensities of 101.6%, 91.3% and 93.3% were obtained. Better relative intensities of 103.9%, 94.3% and 101% were achieved using a 25 min refocusing algorithm. An average temperature increase of 4.2 °C per refocusing test was induced for the 10 min refocusing algorithm, resulting in a negligible thermal dose of 2 EM. A rapid refocusing of the beam can be achieved while keeping thermal effects to a minimum. PMID:27401452

  9. Shape oscillations of acoustically levitated drops in water: Early research with Bob Apfel on modulated radiation pressure

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2001-05-01

    In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.

  10. The effect of the size of the opening on the acoustic power radiated by a reed woodwind instrument

    NASA Astrophysics Data System (ADS)

    Guilloteau, Alexis; Guillemain, Philippe; Kergomard, Jean; Jousserand, Michael

    2015-05-01

    For a given note, the maker of woodwind instruments can choose between different sizes for the toneholes under the condition that the location is appropriate. The present paper aims at analyzing the consequences of this choice on the power radiated by a hole, which depends on the coupling between the acoustic resonator and the excitation mechanism of the self-sustained oscillation, thus on the blowing pressure. For that purpose a simplified reed instrument is investigated, with a cylindrical pipe and a unique orifice at the pipe termination. The orifice diameter was varied between the pipe diameter and a size such that the instrument did not play. The pipe length was in each case adjusted to keep the resonance frequency constant. A simple analytical model predicts that, for a given mouth pressure of the instrumentalist, the radiated power does not depend on the size of the hole if it is wide enough and if resonator losses are ignored. Numerical solution of a model including losses confirms this result: the difference in radiated power between two diaphragm sizes remains smaller than the difference obtained if the radiated power would be proportional to the orifice cross section area. This is confirmed by experiments using an artificial mouth, but the results show that the linear losses are underestimated, and that significant nonlinear losses occur. The measurements are limited to the acoustic pressure at a given distance of the orifice. Experiments also show that rounding edges of the orifice reduces nonlinear losses resulting in an increase of the power radiated and of the extinction threshold, and resulting in a larger dynamical range.

  11. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation

    NASA Astrophysics Data System (ADS)

    Ogam, Erick; Depollier, Claude; Fellah, Z. E. A.

    2010-09-01

    Gas-saturated porous skeleton materials such as geomaterials, polymeric and metallic foams, or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss are still few. Accurate acoustic methods of characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we develop an acoustic method for the recovery of the material parameters of a rigid-frame, air-saturated polymeric foam cylinder. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field shows that it is also dependent on the intrinsic acoustic parameters of the porous cylinder, namely, porosity, tortuosity, and flow resistivity (permeability). The inverse problem of the recovery of the flow resistivity and porosity is solved by seeking the minima of the objective functions consisting of the sum of squared residuals of the differences between the experimental and theoretical scattered field data.

  12. Negative Optical Torque

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Ng, Jack; Ding, Kun; Fung, Kin Hung; Lin, Zhifang; Chan, C. T.

    2014-09-01

    Light carries angular momentum, and as such it can exert torques on material objects. Applications of these opto-mechanical effects were limited initially due to their smallness in magnitude, but later becomes powerful and versatile after the invention of laser. Novel and practical approaches for harvesting light for particle rotation have since been demonstrated, where the structure is always subjected to a positive optical torque along a certain axis if the incident angular momentum has a positive projection on the same axis. We report here an interesting phenomenon of ``negative optical torque'', meaning that incoming photons carrying angular momentum rotate an object in the opposite sense. Surprisingly this can be realized quite straightforwardly in simple planar structures. Field retardation is a necessary condition and discrete rotational symmetry of material object plays an important role. The optimal conditions are explored and explained.

  13. Ironless armature torque motor

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  14. Calculation of ionospheric effects due to acoustic radiation from an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Rudenko, G. V.; Uralov, A. M.

    1995-03-01

    Within the framework of the ionospheric detection of underground nuclear tests, we have developed analytic computing technique for the acoustic effect of a confined nuclear explosion on upper layers of the Earth's atmosphere. The relationship is obtained, which relates the nuclear test parameters (depth, explosion yield, and mechanical properties of the rock) to the vertical displacement of the ionosphere produced by the shock wave over the explosion's epicenter. It is also shown that most of the acoustic energy produced by a confined underground nuclear explosion escapes upward, with only a small fraction being captured by the atmospheric waveguide.

  15. Estimation of mechanical properties of a viscoelastic medium using a laser-induced microbubble interrogated by an acoustic radiation force.

    PubMed

    Yoon, Sangpil; Aglyamov, Salavat R; Karpiouk, Andrei B; Kim, Seungsoo; Emelianov, Stanislav Y

    2011-10-01

    An approach to assess the mechanical properties of a viscoelastic medium using laser-induced microbubbles is presented. To measure mechanical properties of the medium, dynamics of a laser-induced cavitation microbubble in viscoelastic medium under acoustic radiation force was investigated. An objective lens with a 1.13 numerical aperture and an 8.0 mm working distance was designed to focus a 532 nm wavelength nanosecond pulsed laser beam and to create a microbubble at the desired location. A 3.5 MHz ultrasound transducer was used to generate acoustic radiation force to excite a laser-induced microbubble. Motion of the microbubble was tracked using a 25 MHz imaging transducer. Agreement between a theoretical model of bubble motion in a viscoelastic medium and experimental measurements was demonstrated. Young's modulii reconstructed using the laser-induced microbubble approach were compared with those measured using a direct uniaxial method over the range from 0.8 to 13 kPa. The results indicate good agreement between methods. Thus, the proposed approach can be used to assess the mechanical properties of a viscoelastic medium. PMID:21973379

  16. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.

    PubMed

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping

    2015-05-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan. PMID:25927794

  17. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method

    PubMed Central

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2015-01-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan. PMID:25927794

  18. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    NASA Astrophysics Data System (ADS)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2001-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  19. Multiple-Cantilever Torque Sensor

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.; Schier, J. Alan; Socha, Michael

    1989-01-01

    Sensitivity to spurious loads small. High stiffness, high resolution, and ease of fabrication among features of specially designed torque sensor. Device flexible and sensitive to torque about its cylindrical axis and stiff enough to be insensitive to bending about any perpendicular axis. Measures and transmits torque between driving and driven plates.

  20. Torque, Cognitive Ability, and Schooling.

    ERIC Educational Resources Information Center

    Csapo, Marg

    1985-01-01

    West African Hausan Children (N=110) aged 5-6 were administered a torque test and relationshps between the torque task and visual spatial tasks were analyzed. Findings supported the assumption that educational experience related to circling accounts for decrease in torque, or that the educational experiences have potential influence on cortical…

  1. Elasticity imaging of speckle-free tissue regions with moving acoustic radiation force and phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng; Wang, Ruikang; O'Donnell, Matthew

    2016-03-01

    Phase-sensitive optical coherence tomography (PhS-OCT) can be utilized for quantitative shear-wave elastography using speckle tracking. However, current approaches cannot directly reconstruct elastic properties in speckle-less or speckle-free regions, for example within the crystalline lens in ophthalmology. Investigating the elasticity of the crystalline lens could improve understanding and help manage presbyopia-related pathologies that change biomechanical properties. We propose to reconstruct the elastic properties in speckle-less regions by sequentially launching shear waves with moving acoustic radiation force (mARF), and then detecting the displacement at a specific speckle-generating position, or limited set of positions, with PhS-OCT. A linear ultrasound array (with a center frequency of 5 MHz) interfaced with a programmable imaging system was designed to launch shear waves by mARF. Acoustic sources were electronically translated to launch shear waves at laterally shifted positions, where displacements were detected by speckle tracking images produced by PhS-OCT operating in M-B mode with a 125-kHz A-line rate. Local displacements were calculated and stitched together sequentially based on the distance between the acoustic source and the detection beam. Shear wave speed, and the associated elasticity map, were then reconstructed based on a time-of-flight algorithm. In this study, moving-source shear wave elasticity imaging (SWEI) can highlight a stiff inclusion within an otherwise homogeneous phantom but with a CNR increased by 3.15 dB compared to a similar image reconstructed with moving-detector SWEI. Partial speckle-free phantoms were also investigated to demonstrate that the moving-source sequence could reconstruct the elastic properties of speckle-free regions. Results show that harder inclusions within the speckle-free region can be detected, suggesting that this imaging method may be able to detect the elastic properties of the crystalline lens.

  2. Simplified Rotation In Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  3. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: Example of a high-order Bessel beam of quasi-standing waves

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves’ amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  4. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2014-03-01

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere's radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study.

  5. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  6. Hex ball torque test

    NASA Technical Reports Server (NTRS)

    Robinson, B. A.; Foster, C. L.

    1986-01-01

    A series of torque tests were performed on four flight-type hex ball universal joints in order to characterize and determine the actual load-carrying capability of this device. The universal joint is a part of manual actuation rods for scientific instruments within the Hubble Space Telescope. It was found that the hex ball will bind slightly during the initial load application. This binding did not affect the function of the universal joint, and the units would wear-in after a few additional loading cycles. The torsional yield load was approximately 50 ft-lb, and was consistent among the four test specimens. Also, the torque required to cause complete failure exceeded 80 ft-lb. It is concluded that the hex ball universal joint is suitable for its intended applications.

  7. Negative Optical Torque

    PubMed Central

    Chen, Jun; Ng, Jack; Ding, Kun; Fung, Kin Hung; Lin, Zhifang; Chan, C. T.

    2014-01-01

    Light carries angular momentum, and as such it can exert torques on material objects. Applications of these opto-mechanical effects were limited initially due to their smallness in magnitude, but later becomes powerful and versatile after the invention of laser. Novel and practical approaches for harvesting light for particle rotation have since been demonstrated, where the structure is always subjected to a positive optical torque along a certain axis if the incident angular momentum has a positive projection on the same axis. We report here an interesting phenomenon of “negative optical torque”, meaning that incoming photons carrying angular momentum rotate an object in the opposite sense. Surprisingly this can be realized quite straightforwardly in simple planar structures. Field retardation is a necessary condition and discrete rotational symmetry of material object plays an important role. The optimal conditions are explored and explained. PMID:25226863

  8. Single- and Multiple- Track Location Shear Wave and Acoustic Radiation Force Impulse Imaging: Matched Comparison of Contrast, CNR, and Resolution

    PubMed Central

    Hollender, Peter J.; Rosenzweig, Stephen J.; Nightingale, Kathryn R.; Trahey, Gregg E.

    2014-01-01

    Acoustic radiation force impulse (ARFI) imaging and shear wave elasticity imaging (SWEI) use the dynamic response of tissue to impulsive mechanical stimulus to characterize local elasticity. A variant of conventional, multiple track location SWEI (MTL-SWEI), denoted single track location SWEI (STL-SWEI) offers the promise of creating speckle-free shear wave images. This work compares the three imaging modalities using a high push and track beam density combined acquisition sequence to image inclusions of different sizes and contrasts. STL-SWEI is shown to have significantly higher CNR than MTL-SWEI, allowing for operation at higher resolution. ARFI and STL-SWEI perform similarly in the larger inclusions, with STL-SWEI providing better visualization of small targets ≤2.5 mm in diameter. The processing of each modality introduces different trade-offs between smoothness and resolution of edges and structures; these are discussed in detail. PMID:25701531

  9. A Fluctuating Torque

    NASA Astrophysics Data System (ADS)

    Zamorano, Nelson; Gómez, Alfredo

    2013-04-01

    The existence of a fluctuating torque generates a wide variety of possible orbits. This situation contrasts with those examples where the torque vanishes and the angular momentum remains constant. Here we study a two dimensional example with a logarithmic effective potential V(x,y)= 12,,^2o,[ x^2 + (y/b)^2], with a small deviation from the axis symmetry given by the constant b with b < 1. Briefly, the effective potential models the gravitational force exerted by the N point particles on a test object. This potential is used to learn about the dynamics of galaxies and among other features, generates a fluctuating torque which is our main interest here. There is not an analytical solution for these two equations of motion. A simple numerical approach (provided) is required. Also, a change on the initial conditions may generate a different shape for the orbit. This apparently simple potential, represents a challenge for the students. We propose it as a good pedagogical tool for reviewing the main concepts of newtonian dynamics.

  10. Enhanced acoustic startle responding in rats with radiation-induced hippocampal granule cell hypoplasia

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.

    1989-01-01

    Irradiation of the neonatal rat hippocampus reduces the proliferation of granule cells in the dentate gyrus and results in locomotor hyperactivity, behavioral preservation, and deficits on some learned tasks. In order to address the role of changes in stimulus salience and behavioral inhibition in animals with this type of brain damage, irradiated and normal rats were compared in their startle reactions to an acoustic stimulus. Irradiated rats startled with a consistently higher amplitude than control and were more likely to exhibit startle responses. These animals with hippocampal damage also failed to habituate to the startle stimulus and, under certain circumstances, showed potentiated startle responses after many tone presentations.

  11. Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotorod, and acoustic startle

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Haerich, Paul; Zuccarelli, Cara N.; Smith, Anna L.; Zendejas, Eric D.; Nelson, Gregory A.

    2002-01-01

    Two experiments were carried out to investigate the consequences of exposure to proton radiation, such as might occur for astronauts during space flight. C57BL/6 mice were exposed, either with or without 15-g/cm2 aluminum shielding, to 0-, 3-, or 4-Gy proton irradiation mimicking features of a solar particle event. Irradiation produced transient direct deficits in open-field exploratory behavior and acoustic startle habituation. Rotorod performance at 18 rpm was impaired by exposure to proton radiation and was impaired at 26 rpm, but only for mice irradiated with shielding and at the 4-Gy dose. Long-term (>2 weeks) indirect deficits in open-field activity appeared as a result of impaired experiential encoding immediately following exposure. A 2-week recovery prior to testing decreased most of the direct effects of exposure, with only rotorod performance at 26 rpm being impaired. These results suggest that the performance deficits may have been mediated by radiation damage to hippocampal, cerebellar, and possibly, forebrain dopaminergic function.

  12. Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotorod, and acoustic startle.

    PubMed

    Pecaut, Michael J; Haerich, Paul; Zuccarelli, Cara N; Smith, Anna L; Zendejas, Eric D; Nelson, Gregory A

    2002-12-01

    Two experiments were carried out to investigate the consequences of exposure to proton radiation, such as might occur for astronauts during space flight. C57BL/6 mice were exposed, either with or without 15-g/cm2 aluminum shielding, to 0-, 3-, or 4-Gy proton irradiation mimicking features of a solar particle event. Irradiation produced transient direct deficits in open-field exploratory behavior and acoustic startle habituation. Rotorod performance at 18 rpm was impaired by exposure to proton radiation and was impaired at 26 rpm, but only for mice irradiated with shielding and at the 4-Gy dose. Long-term (>2 weeks) indirect deficits in open-field activity appeared as a result of impaired experiential encoding immediately following exposure. A 2-week recovery prior to testing decreased most of the direct effects of exposure, with only rotorod performance at 26 rpm being impaired. These results suggest that the performance deficits may have been mediated by radiation damage to hippocampal, cerebellar, and possibly, forebrain dopaminergic function. PMID:12641177

  13. Nonlinear vibration and radiation from a panel with transition to chaos induced by acoustic waves

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Frendi, Abdelkader; Brown, Donald E.

    1992-01-01

    The dynamic response of an aircraft panel forced at resonance and off-resonance by plane acoustic waves at normal incidence is investigated experimentally and numerically. Linear, nonlinear (period doubling) and chaotic responses are obtained by increasing the sound pressure level of the excitation. The response time history is sensitive to the input level and to the frequency of excitation. The change in response behavior is due to a change in input conditions, triggered either naturally or by modulation of the bandwidth of the incident waves. Off-resonance, bifurcation is diffused and difficult to maintain, thus the panel response drifts into a linear behavior. The acoustic pressure emanated by the panel is either linear or nonlinear as is the vibration response. The nonlinear effects accumulate during the propagation with distance. Results are also obtained on the control of the panel response using damping tape on aluminum panel and using a graphite epoxy panel having the same size and weight. Good agreement is obtained between the experimental and numerical results.

  14. Determining Equilibrium Position For Acoustical Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  15. Predicting Where a Radiation Will Occur: Acoustic and Molecular Surveys Reveal Overlooked Diversity in Indian Ocean Island Crickets (Mogoplistinae: Ornebius)

    PubMed Central

    Warren, Ben H.; Baudin, Rémy; Franck, Antoine; Hugel, Sylvain; Strasberg, Dominique

    2016-01-01

    Recent theory suggests that the geographic location of island radiations (local accumulation of species diversity due to cladogenesis) can be predicted based on island area and isolation. Crickets are a suitable group for testing these predictions, as they show both the ability to reach some of the most isolated islands in the world, and to speciate at small spatial scales. Despite substantial song variation between closely related species in many island cricket lineages worldwide, to date this characteristic has not received attention in the western Indian Ocean islands; existing species descriptions are based on morphology alone. Here we use a combination of acoustics and DNA sequencing to survey these islands for Ornebius crickets. We uncover a small but previously unknown radiation in the Mascarenes, constituting a three-fold increase in the Ornebius species diversity of this archipelago (from two to six species). A further new species is detected in the Comoros. Although double archipelago colonisation is the best explanation for species diversity in the Seychelles, in situ cladogenesis is the best explanation for the six species in the Mascarenes and two species of the Comoros. Whether the radiation of Mascarene Ornebius results from intra- or purely inter- island speciation cannot be determined on the basis of the phylogenetic data alone. However, the existence of genetic, song and ecological divergence at the intra-island scale is suggestive of an intra-island speciation scenario in which ecological and mating traits diverge hand-in-hand. Our results suggest that the geographic location of Ornebius radiations is partially but not fully explained by island area and isolation. A notable anomaly is Madagascar, where our surveys are consistent with existing accounts in finding no Ornebius species present. Possible explanations are discussed, invoking ecological differences between species and differences in environmental history between islands. PMID:26871932

  16. Predicting Where a Radiation Will Occur: Acoustic and Molecular Surveys Reveal Overlooked Diversity in Indian Ocean Island Crickets (Mogoplistinae: Ornebius).

    PubMed

    Warren, Ben H; Baudin, Rémy; Franck, Antoine; Hugel, Sylvain; Strasberg, Dominique

    2016-01-01

    Recent theory suggests that the geographic location of island radiations (local accumulation of species diversity due to cladogenesis) can be predicted based on island area and isolation. Crickets are a suitable group for testing these predictions, as they show both the ability to reach some of the most isolated islands in the world, and to speciate at small spatial scales. Despite substantial song variation between closely related species in many island cricket lineages worldwide, to date this characteristic has not received attention in the western Indian Ocean islands; existing species descriptions are based on morphology alone. Here we use a combination of acoustics and DNA sequencing to survey these islands for Ornebius crickets. We uncover a small but previously unknown radiation in the Mascarenes, constituting a three-fold increase in the Ornebius species diversity of this archipelago (from two to six species). A further new species is detected in the Comoros. Although double archipelago colonisation is the best explanation for species diversity in the Seychelles, in situ cladogenesis is the best explanation for the six species in the Mascarenes and two species of the Comoros. Whether the radiation of Mascarene Ornebius results from intra- or purely inter- island speciation cannot be determined on the basis of the phylogenetic data alone. However, the existence of genetic, song and ecological divergence at the intra-island scale is suggestive of an intra-island speciation scenario in which ecological and mating traits diverge hand-in-hand. Our results suggest that the geographic location of Ornebius radiations is partially but not fully explained by island area and isolation. A notable anomaly is Madagascar, where our surveys are consistent with existing accounts in finding no Ornebius species present. Possible explanations are discussed, invoking ecological differences between species and differences in environmental history between islands. PMID:26871932

  17. CONTROL OF LASER RADIATION PARAMETERS. GENERATION OF ULTRASHORT PULSES: Analysis of mode locking in a laser with a traveling-acoustic-wave modulator

    NASA Astrophysics Data System (ADS)

    Veselovskaya, T. V.; Klochan, E. L.; Lariontsev, E. G.

    1990-12-01

    A theoretical analysis is made of active mode locking in a solid-state laser with an acoustooptic modulator based on traveling acoustic waves. It is postulated that the acoustooptic modulator is placed in a V-shaped resonator so that diffraction feedback is established in the modulator. It is found that the transmission coefficient of the acoustooptic modulator is a function of time. The mode locking achieved in a V-shaped resonator is equivalent to that observed in lasers with intracavity frequency modulation of the radiation. An investigation is made of the stability of mode locking in a resonator with a traveling-acoustic-wave acoustooptic modulator.

  18. Heart sounds as a result of acoustic dipole radiation of heart valves

    NASA Astrophysics Data System (ADS)

    Kasoev, S. G.

    2005-11-01

    Heart sounds are associated with impulses of force acting on heart valves at the moment they close under the action of blood-pressure difference. A unified model for all the valves represents this impulse as an acoustic dipole. The near pressure field of this dipole creates a distribution of the normal velocity on the breast surface with features typical of auscultation practice: a pronounced localization of heart sound audibility areas, an individual area for each of the valves, and a noncoincidence of these areas with the projections of the valves onto the breast surface. In the framework of the dipole theory, the optimum size of the stethoscope’s bell is found and the spectrum of the heart sounds is estimated. The estimates are compared with the measured spectrum.

  19. Convergence of intense aerial acoustic waves radiated by a rectangular transverse vibrating plate

    NASA Astrophysics Data System (ADS)

    Nakai, Tomoki; Asami, Takuya; Miura, Hikaru

    2016-07-01

    A stripe-mode rectangular transverse vibrating plate can be used as a sound source that emits intense ultrasonic waves in air by placing a jut driving point outside the vibrating plate. The aim of this research was to use this vibrating plate to focus sound waves in the direction perpendicular to the nodal lines of the vibrating plate, which differs from the conventional direction. In this study, we investigated new methods for focusing the emitted sound waves by arranging reflective plates around the vibrating plate, using a design equation for each node between nodes in the vibrating plate, and placing additional reflective plates at an outer position beyond the convergence point, and found that a powerful acoustic field can be formed at an arbitrary position.

  20. Comparison of Different Measurement Technologies for the In-Flight Assessment of Radiated Acoustic Intensity

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Palumbo, Daniel L.; Buehrle, Ralph D.; Williams, Earl G.; Valdivia, Nicolas; Herdic, Peter C.; Sklanka, Bernard

    2005-01-01

    A series of tests was planned and conducted in the Interior Noise Test Facility at Boeing Field, on the NASA Aries 757 flight research aircraft, and in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center. These tests were designed to answer several questions concerning the use of array methods in flight. One focus of the tests was determining whether and to what extent array methods could be used to identify the effects of an acoustical treatment applied to a limited portion of an aircraft fuselage. Another focus of the tests was to verify that the arrays could be used to localize and quantify a known source purposely placed in front of the arrays. Thus the issues related to backside sources and flanking paths present in the complicated sound field were addressed during these tests. These issues were addressed through the use of reference transducers, both accelerometers mounted to the fuselage and microphones in the cabin, that were used to correlate the pressure holograms. measured by the microphone arrays using either SVD methods or partial coherence methods. This correlation analysis accepts only energy that is coherent with the sources sensed by the reference transducers, allowing a noise control engineer to only identify and study those vibratory sources of interest. The remainder of this paper will present a detailed description of the test setups that were used in this test sequence and typical results of the NAH/IBEM analysis used to reconstruct the sound fields. Also, a comparison of data obtained in the laboratory environments and during flights of the 757 aircraft will be made.

  1. Seismic attenuation parameters in the W-Bohemia/Vogtland region from elastic and acoustic radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter; Eulenfeld, Tom; Wegler, Ulrich

    2016-04-01

    We estimate frequency-dependent seismic scattering and intrinsic attenuation parameters for the crustal structure beneath the W-Bohemia/Vogtland swarm earthquake region close to the border of Czech Republic and Germany. The parameter estimations are based on fitting synthetic envelopes modeled using elastic and acoustic radiative transfer theory to observed seismogram envelopes from 14 shallow local events from the October 2008 W-Bohemia/Vogtland earthquake swarm. The two different methods yield similar results for the estimated crustal parameters and show a comparable frequency dependence of both transport mean free path and intrinsic absorption path length. Results suggest, that intrinsic seismic attenuation is larger than attenuation due to scattering of seismic energy in the W-Bohemia/Vogtland region for the investigated epicentral distance range and frequency bands from 3 to 24 Hz. From the elastic simulations we conclude, that forward scattering is required to explain the data, however, the strength of forward scattering is not resolvable. The elastic approach shows smaller errors in the parameter estimation compared to the results of the acoustic simulations. The frequency dependence of the transport mean free path suggests a random medium described by a nearly exponential autocorrelation function. However the parameters describing this random medium, fluctuation strength and correlation length, cannot be estimated independently, but only a combination of the parameters related to the transport mean free path of the medium can be computed. We furthermore conclude from the results of the elastic simulations, that it is not possible to resolve the value of the mean free path of the random medium.

  2. Seismic scattering and absorption parameters in the W-Bohemia/Vogtland region from elastic and acoustic radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter J.; Eulenfeld, Tom; Wegler, Ulrich

    2015-12-01

    In this study, frequency-dependent seismic scattering and intrinsic attenuation parameters for the crustal structure beneath the W-Bohemia/Vogtland swarm earthquake region close to the border of Czech Republic and Germany are estimated. Synthetic seismogram envelopes are modelled using elastic and acoustic radiative transfer theory. Scattering and absorption parameters are determined by fitting these synthetic envelopes to observed seismogram envelopes from 14 shallow local events from the October 2008 W-Bohemia/Vogtland earthquake swarm. The two different simulation approaches yield similar results for the estimated crustal parameters and show a comparable frequency dependence of both transport mean free path and intrinsic absorption path length. Both methods suggest that intrinsic attenuation is dominant over scattering attenuation in the W-Bohemia/Vogtland region for the investigated epicentral distance range and frequency bands from 3 to 24 Hz. Elastic simulations of seismogram envelopes suggest that forward scattering is required to explain the data, however, the degree of forward scattering is not resolvable. Errors in the parameter estimation are smaller in the elastic case compared to results from the acoustic simulations. The frequency decay of the transport mean free path suggests a random medium described by a nearly exponential autocorrelation function. The fluctuation strength and correlation length of the random medium cannot be estimated independently, but only a combination of the parameters related to the transport mean free path of the medium can be computed. Furthermore, our elastic simulations show, that using our numerical method, it is not possible to resolve the value of the mean free path of the random medium.

  3. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  4. Active Control of Fan Noise-Feasibility Study. Volume 2: Canceling Noise Source-Design of an Acoustic Plate Radiator Using Piezoceramic Actuators

    NASA Technical Reports Server (NTRS)

    Pla, F. G.; Rajiyah, H.

    1995-01-01

    The feasibility of using acoustic plate radiators powered by piezoceramic thin sheets as canceling sources for active control of aircraft engine fan noise is demonstrated. Analytical and numerical models of actuated beams and plates are developed and validated. An optimization study is performed to identify the optimum combination of design parameters that maximizes the plate volume velocity for a given resonance frequency. Fifteen plates with various plate and actuator sizes, thicknesses, and bonding layers were fabricated and tested using results from the optimization study. A maximum equivalent piston displacement of 0.39 mm was achieved with the optimized plate samples tested with only one actuator powered, corresponding to a plate deflection at the center of over 1 millimeter. This is very close to the deflection required for a full size engine application and represents a 160-fold improvement over previous work. Experimental results further show that performance is limited by the critical stress of the piezoceramic actuator and bonding layer rather than by the maximum moment available from the actuator. Design enhancements are described in detail that will lead to a flight-worthy acoustic plate radiator by minimizing actuator tensile stresses and reducing nonlinear effects. Finally, several adaptive tuning methods designed to increase the bandwidth of acoustic plate radiators are analyzed including passive, active, and semi-active approaches. The back chamber pressurization and volume variation methods are investigated experimentally and shown to be simple and effective ways to obtain substantial control over the resonance frequency of a plate radiator. This study shows that piezoceramic-based plate radiators can be a viable acoustic source for active control of aircraft engine fan noise.

  5. Magnetic Coupling Delivers Increased Torque

    NASA Technical Reports Server (NTRS)

    Carter, Edward L.

    1989-01-01

    Fixed magnetic pins reduce reluctance of gap in magnetic coupling. Concentrate flux and increase torque transmitted. Coupling arranged as face or radial drive. Addition of flux pins to gap between magnetically coupled shafts in bioreactor experiment increases transferred torque by almost 50 percent.

  6. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  7. Momentum Confinement at Low Torque

    SciTech Connect

    Solomon, W M; Burrell, K H; deGrassie, J S; Budny, R; Groebner, R J; Heidbrink, W W; Kinsey, J E; Kramer, G J; Makowski, M A; Mikkelsen, D; Nazikian, R; Petty, C C; Politzer, P A; Scott, S D; Van Zeeland, M A; Zarnstorff, M C

    2007-06-26

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  8. Near- to far-field characteristics of acoustic radiation through plug flow jets.

    PubMed

    Gabard, G

    2008-11-01

    This paper reports a theoretical study of the radiation of sound through jet exhausts. It focuses on the transition from near field to far field by considering the features of the near-field solution and how these features translate to the far field. The main focus of this work is the importance in some cases of lateral waves radiating from the jet. While the presence of lateral waves has long been recognized, there has been no systematic investigation of the practical consequences of these waves in the prediction of sound propagation through round jets. The physical mechanisms involved in the generation of these waves are presented as well as the conditions under which they become significant. Another issue is the possibility of "channeled waves" inside the jet associated with strong sound radiation in the forward arc. This paper also discusses the validity of the far-field approximation when lateral waves are present. It is shown that the standard far-field approximation can be improved by adding correction terms that account for the presence of the lateral waves and channeled waves. The challenge posed to computational aeroacoustics by these near-field effects is also discussed. PMID:19045763

  9. Acoustic backscattering enhancements for circular elastic plates and acrylic targets, the application of acoustic holography to the study of scattering from planar elastic objects, and other research on the radiation of sound

    NASA Astrophysics Data System (ADS)

    Hefner, Brian Todd

    2000-08-01

    Backscattering enhancements on both circular elastic plates and acrylic targets are investigated as well as several techniques for the study of the radiation of sound. For sound scattered from a circular plate, two backscattering enhancements associated with the extensional wave are observed. The first of these enhancements involves extensional wave excitation along the diameter of the plate. When the extensional wave strikes the plate edge, reflection occurs which produces radiation into the backscattering direction. For those portions of the leaky wave which strike the edge at oblique incidence, there is mode conversion into a trapped shear wave. For certain angles of incidence on the plate edge, this wave can undergo multiple reflections and convert back into a leaky wave directed in the backscattering direction. Each of these enhancements are modeled using quantitative ray methods. Acoustic holography is also used to image the surface motion of the plate to identify the causes of these enhancements and to assess the validity of the ray model. Backscattering enhancements associated with antisymmetric Lamb wave excitation are also investigated. Scattering at the first-order antisymmetric wave coupling angle is studied using acoustic holography. Significant mode- conversion between the zeroth and first-order antisymmetric waves is observed which plays a significant role in the scattering processes. Quantitative ray models were also used to examine the backscattering from acrylic targets. Polymer solids typically have shear and Rayleigh wave phase velocities which are less than the speed of sound in water. For solid acrylic spheres, low frequency resonances are observed both experimentally and in the exact backscattering form functions which are due to coupling between the incident field and the subsonic Rayleigh wave on the sphere. The effects of material absorption, which is generally high in polymers, is examined in both the exact solutions and the quantitative

  10. The effect of acoustic radiation force on osteoblasts in cell/hydrogel constructs for bone repair.

    PubMed

    Veronick, James; Assanah, Fayekah; Nair, Lakshmi S; Vyas, Varun; Huey, Bryan; Khan, Yusuf

    2016-05-01

    Ultrasound, or the application of acoustic energy, is a minimally invasive technique that has been used in diagnostic, surgical, imaging, and therapeutic applications. Low-intensity pulsed ultrasound (LIPUS) has been used to accelerate bone fracture repair and to heal non-union defects. While shown to be effective the precise mechanism behind its utility is still poorly understood. In this study, we considered the possibility that LIPUS may be providing a physical stimulus to cells within bony defects. We have also evaluated ultrasound as a means of producing a transdermal physical force that could stimulate osteoblasts that had been encapsulated within collagen hydrogels and delivered to bony defects. Here we show that ultrasound does indeed produce a measurable physical force and when applied to hydrogels causes their deformation, more so as ultrasound intensity was increased or hydrogel stiffness decreased. MC3T3 mouse osteoblast cells were then encapsulated within hydrogels to measure the response to this force. Statistically significant elevated gene expression for alkaline phosphatase and osteocalcin, both well-established markers of osteoblast differentiation, was noted in encapsulated osteoblasts (p < 0.05), suggesting that the physical force provided by ultrasound may induce bone formation in part through physically stimulating cells. We have also shown that this osteoblastic response is dependent in part on the stiffness of the encapsulating hydrogel, as stiffer hydrogels resulted in reducing or reversing this response. Taken together this approach, encapsulating cells for implantation into a bony defect that can potentially be transdermally loaded using ultrasound presents a novel regenerative engineering approach to enhanced fracture repair. PMID:27229906

  11. Thermal Spin Transfer Torques

    NASA Astrophysics Data System (ADS)

    Bauer, Gerrit

    2009-03-01

    The coupling between spin and charge in electronic transport is studied in the field of spintronics. Heat currents are coupled to both charge and spin currents as well [1]. This extension of spintronics to what may be called ``spin caloritronics'' recently enjoys renewed attention [2]. The spin-transfer torque associated with electric currents can excite magnetizations in nanostructures, switching magnetic configuration in spin valves and move domain walls in magnetic wires when exceeding critical values of the order of 10^7Acm-2 [3]. Also heat currents transfer spin angular momentum [4], either intrinsically or via the thermoelectric generation of particle spin currents. We predict that temperature differences of the order of 100 K over typical metallic nanostructures cause effects equivalent to the critical charge current densities. In this talk I will give a brief review of various aspects of spin caloritronics with emphasis on thermal spin transfer torques. This work has been carried out in collaboration with Moosa Hatami, Qinfang Zhang, Paul Kelly, Hans Joakim Skadsem, Arne Brataas and Sadamichi Maekawa. [4pt] [1] M. Johnson and R.H. Silsbee, Phys. Rev. B 35, 4959 (1987).[0pt] [2] International Workshop on Spin Caloritronics, Lorentz Center of Leiden University, 9-13 February 2009, http://www.lorentzcenter.nl/lc/web/2009/323/info.php3?wsid=323[0pt] [3] D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).[0pt] [4] M. Hatami, G.E.W. Bauer, Q. Zhang, and P.J. Kelly, Phys. Rev. Lett. 99, 066603 (2007).

  12. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease.

    PubMed

    Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen

    2015-09-01

    Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis. PMID:26116161

  13. In vivo quantification of liver stiffness in a rat model of hepatic fibrosis with acoustic radiation force.

    PubMed

    Wang, Michael H; Palmeri, Mark L; Guy, Cynthia D; Yang, Liu; Hedlund, Laurence W; Diehl, Anna Mae; Nightingale, Kathryn R

    2009-10-01

    with those obtained by Salameh et al. (2007) and Yin et al. (2007b) using animal models of liver fibrosis and MR elastography. This suggests that stiffness measurement using acoustic radiation force can provide a quantitative assessment of the extent of fibrosis in the liver and can be potentially used for the diagnosis, management and study of liver fibrosis. PMID:19683381

  14. Visualization and characterization of the acoustic radiation force assisted displacement of particles using an OCT technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Razani, Marjan; Zam, Azhar; Arezza, Nico J. J.; Wang, Yan J.; Kolios, Michael C.

    2016-03-01

    In this study, we present a technique to image the enhanced particle displacement generated using an acoustic radiation force (ARF) excitation source. A swept-source OCT (SS-OCT) system with a center wavelength of 1310nm, a bandwidth of ~100nm, and an A-scan rate of 100 kHz (MEMS-VCSEL OCT Thorlabs) was used to detect gold nanoparticle (70nm in diameter) displacement .ARF was applied after the nanoparticles passed through a porous membrane and diffused into a collagen (6% collagen) matrix. B-mode, M-B mode, 3D and Speckle Variance (SV) images were acquired before and after the ARF beam was on. Differential OCT speckle variance images with and without the ARF were used to measure the particle displacement. The images were used to detect the microscopic enhancement of nanoparticle displacement generated by the ARF. Using this OCT imaging technique, the extravasation of particles though a porous membrane and characterization of the enhanced particle displacement in a collagen gel after using an ARF excitation was achieved.

  15. Active induction of in vivo microbubbles by acoustic radiation force at the bifurcation of blood vessel and its evaluation.

    PubMed

    Masuda, Kohji; Koido, Jun; Miyazawa, Shinya; Wada, Hikaru; Hosaka, Naoto; Mochizuki, Takashi

    2015-08-01

    Alhough the development of drug delivery system using microbubbles and ultrasound is expected, because microbubbles diffuse in bloodstream, we have so far reported our attempts for active control of the microbubbles in flow by acoustic radiation force in order to increase local concentration of the microbubbles. However, there was no evidence that in vivo microbubbles act as similar as in vitro experiments, because there were limitations for reproduction of in vivo conditions. In this study, we have elucidated the relationship between brightness variation and microbubbles concentration in the suspension to estimate the absolute concentration in an invisible condition considering in vivo experiment. Then we conducted an experiment of active induction of microbubbles in a Y-form bifurcation of artificial blood vessel, where experimental conditions were with focused ultrasound, the central frequency of 5 MHz, flow velocity of 30 mm/s, and maximum sound pressure of 300 kPa-pp, respectively. Then we applied the conditions for active induction of in vivo microbubbles to compare with in vitro experiments. We used a bifurcation of blood vessel in an ear of a rabbit because the bifurcation shape in its blood vessel is visible. As the results of the experiment, the microbubbles concentration in the induced path was almost two times higher than that in the other path, which agrees with the results from in vitro experiments. PMID:26736523

  16. Factors Influencing the Diagnostic Accuracy of Acoustic Radiation Force Impulse Elastography in Patients with Chronic Hepatitis B

    PubMed Central

    Park, Mi Sung; Kim, Sun Wook; Yoon, Ki Tae; Kim, Seung Up; Park, Soo Young; Tak, Won Young; Kweon, Young Oh; Cho, Mong; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Han, Kwang-Hyub

    2016-01-01

    Background/Aims To determine factors predictive of discordance in staging liver fibrosis using liver biopsy (LB) and acoustic radiation force impulse (ARFI) elastography in patients with chronic hepatitis B (CHB). Methods Consecutive patients with CHB who underwent LB and ARFI elastography on the same day from November 2010 to March 2013 were prospectively recruited from three tertiary hospitals. Results We analyzed 105 patients (median age of 47 years). The F0–1, F2, F3, and F4 fibrosis stages were identified in 27 (25.7%), 27 (25.7%), 21 (20.0%), and 30 (28.6%) patients, respectively. The areas under the receiver operating characteristics curves for ARFI elastography in assessing ≥F2, ≥F3, and F4 was 0.814, 0.848, and 0.752, respectively. The discordance of at least one stage between LB and ARFI was observed in 68 patients (64.8%) and of at least two stages in 16 patients (15.2%). In a multivariate analysis, advanced fibrosis stage (F3–4) was the only factor that was negatively correlated with one-stage discordance (p=0.042). Moreover, advanced fibrosis stage was negatively (p=0.016) correlated and body mass index (BMI) was positively (p=0.006) correlated with two-stage discordance. Conclusions Advanced fibrosis stage (F3–4) was a predictor of nondiscordance between LB and ARFI elastography; BMI also influenced the accuracy of ARFI elastography. PMID:26087790

  17. Prediction of Renal Allograft Acute Rejection Using a Novel Non-Invasive Model Based on Acoustic Radiation Force Impulse.

    PubMed

    Yang, Cheng; Jin, Yunjie; Wu, Shengdi; Li, Long; Hu, Mushuang; Xu, Ming; Rong, Ruiming; Zhu, Tongyu; He, Wanyuan

    2016-09-01

    Point shear wave elastography based on acoustic radiation force impulse is a novel technology used to quantify tissue stiffness by measuring shear wave speed. A total of 115 kidney transplantation recipients were consecutively enrolled in this prospective study. The patients were subdivided into two groups using 1 mo post-transplantation as the cutoff time for determining the development of acute rejection (AR). Shear wave speed was significantly higher in the AR group than in the non-AR group. We created a model called SEV, comprising shear wave speed, estimated glomerular filtration rate and kidney volume change, that could successfully discriminate patients with or without AR. The area under the receiver operating characteristic curve of SEV was 0.89, which was higher than values for other variables; it was even better in patients within 1 mo post-transplantation (0.954), but was lower than the estimated glomerular filtration rate in patients after 1 mo post-transplantation. Therefore, the SEV model may predict AR after renal transplantation with a high degree of accuracy, and it may be more useful in the early post-operative stage after renal transplantation. PMID:27267289

  18. Evaluation of Stiffness of the Spastic Lower Extremity Muscles in Early Spinal Cord Injury by Acoustic Radiation Force Impulse Imaging

    PubMed Central

    Cho, Kang Hee

    2015-01-01

    Objective To investigate intrinsic viscoelastic changes using shear wave velocities (SWVs) of spastic lower extremity muscles in patients with early spinal cord injury (SCI) via acoustic radiation force impulse (ARFI) imaging and to evaluate correlation between the SWV values and spasticity. Methods Eighteen patients with SCI within 3 months and 10 healthy adults participated. We applied the ARFI technique to measure SWV of gastrocnemius muscle (GCM) and long head of biceps femoris muscle. Spasticity of ankle and knee joint was assessed by original Ashworth Scale. Results Ten patients with SCI had spasticity. Patients with spasticity had significantly faster SWV for GCM and biceps femoris muscle than those without spasticity (Mann-Whitney U test, p=0.007 and p=0.008) and normal control (p=0.011 and p=0.037, respectively). The SWV values of GCM correlated with the ankle spasticity (Spearman rank teat, p=0.026). There was significant correlation between the SWV values for long head of biceps femoris muscle and knee spasticity (Spearman rank teat, p=0.022). Conclusion ARFI demonstrated a difference in muscle stiffness in the GCM between patients with spastic SCI and those without spasticity. This finding suggested that stiffness of muscles increased in spastic lower extremity of early SCI patients. ARFI imaging is a valuable tool for noninvasive assessment of the stiffness of the spastic muscle and has the potential to identify pathomechanical changes of the tissue associated with SCI. PMID:26161345

  19. Renal elasticity quantification by acoustic radiation force impulse applied to the evaluation of kidney diseases: a review.

    PubMed

    Zaffanello, Marco; Piacentini, Giorgio; Bruno, Costanza; Brugnara, Milena; Fanos, Vassilios

    2015-04-01

    For centuries, clinicians have used palpation to evaluate abdominal organs. After exploring almost all the different methods of interaction between x-rays, ultrasound, and magnetic fields on tissues, recent interest has focused on the evaluation of their mechanical properties.Acoustic radiation force impulse (ARFI) is a recent, established ultrasound-based diagnostic technique that allows physicians to obtain a measure of the elastic properties of an organ. Shear wave velocity, obtained by the ARFI technique, depends on the elasticity of tissues.To date, there are studies on the ARFI technique applied to normal kidneys, chronic kidney diseases, and kidney transplants. Mechanical properties of the kidney, such as stiffness and deformity, depend on various conditions that alter its histology, in particular the amount of fibrosis in the renal parenchyma; urinary pressure and renal blood perfusion may be other important contributing factors. Unfortunately, the ARFI technique applied to native renal pathologies is still limited, and not all studies are comparable because they used different methods. Therefore, the results reported in recent literature encourage further improvement of this method and the drawing up of standardized guidelines of investigation. PMID:25738649

  20. Acoustic Radiation Force Beam Sequence Performance for Detection and Material Characterization of Atherosclerotic Plaques: Preclinical, Ex Vivo Results

    PubMed Central

    Behler, Russell H.; Czernuszewicz, Tomasz J.; Wu, Chih-Da; Nichols, Timothy C.; Zhu, Hongtu; Homeister, Jonathon W.; Merricks, Elizabeth P.; Caughey, Melissa C.; Gallippi, Caterina M.

    2014-01-01

    This work presents preclinical data demonstrating performance of acoustic radiation force (ARF) based elasticity imaging with five different beam sequences for atherosclerotic plaque detection and material characterization. Twelve trained, blinded readers evaluated parametric images taken ex vivo under simulated in vivo conditions of 22 porcine femoral arterial segments. Receiver operating characteristic (ROC) curve analysis was carried out to quantify reader performance using spatially-matched immunohistochemistry for validation. The beam sequences employed had high sensitivity and specificity for detecting Type III+ plaques (Sens: 85%, Spec: 79%), lipid pools (Sens: 80%, Spec: 86%), fibrous caps (Sens: 86%, spec: 82%), calcium (Sens: 96%, Spec: 85%), collagen (Sens: 78%, Spec: 77%), and disrupted internal elastic lamina (Sens: 92%, Spec: 75%). 1:1 single-receive tracking yielded the highest median areas under the ROC curve (AUC), but was not statistically significantly higher than 4:1 parallel-receive tracking. Excitation focal configuration did not result in statistically different AUCs. Overall, these results suggest ARF-based imaging is relevant to detecting and characterizing plaques and support its use for diagnosing and monitoring atherosclerosis. PMID:24297014

  1. Hepatic and Splenic Acoustic Radiation Force Impulse Shear Wave Velocity Elastography in Children with Liver Disease Associated with Cystic Fibrosis

    PubMed Central

    Cañas, Teresa; Maciá, Araceli; Muñoz-Codoceo, Rosa Ana; Fontanilla, Teresa; González-Rios, Patricia; Miralles, María; Gómez-Mardones, Gloria

    2015-01-01

    Background. Liver disease associated with cystic fibrosis (CFLD) is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI) imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF) were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence. PMID:26609528

  2. Noninvasive In Vivo Characterization of Human Carotid Plaques with Acoustic Radiation Force Impulse (ARFI) Ultrasound: Comparison with Histology Following Endarterectomy

    PubMed Central

    Czernuszewicz, Tomasz J.; Homeister, Jonathon W.; Caughey, Melissa C.; Farber, Mark A.; Fulton, Joseph J.; Ford, Peter F.; Marston, William A.; Vallabhaneni, Raghuveer; Nichols, Timothy C.; Gallippi, Caterina M.

    2014-01-01

    Ischemic stroke from thromboembolic sources is linked to carotid artery atherosclerotic disease with a trend toward medical management in asymptomatic patients. Extent of disease is currently diagnosed by noninvasive imaging techniques that measure luminal stenosis, but it has been suggested that a better biomarker for determining risk of future thromboembolic events is plaque morphology and composition. Specifically, plaques that are composed of mechanically-soft lipid/necrotic regions covered by thin fibrous caps are the most vulnerable to rupture. An ultrasound technique that noninvasively interrogates the mechanical properties of soft tissue, called acoustic radiation force impulse (ARFI) imaging, has been developed as a new modality for atherosclerotic plaque characterization using phantoms and atherosclerotic pigs, but the technique has yet to be validated in vivo in humans. In this preliminary study, in vivo ARFI imaging is presented in a case-study format from four patients undergoing clinically-indicated carotid endarterectomy and compared to histology. In two type Va plaques, characterized by lipid/necrotic cores covered by fibrous caps, mean ARFI displacements in focal regions were high relative to the surrounding plaque material, suggesting soft features covered by stiffer layers within the plaques. In two type Vb plaques, characterized by heavy calcification, mean ARFI peak displacements were low relative to the surrounding plaque and arterial wall, suggesting stiff tissue. This pilot study demonstrates the feasibility and challenges of transcutaneous ARFI for characterizing the material and structural composition of carotid atherosclerotic plaques via mechanical properties, in humans, in vivo. PMID:25619778

  3. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.

    PubMed

    Guo, Min; Abbott, Derek; Lu, Minhua; Liu, Huafeng

    2016-03-01

    Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with 64 × 128 fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues. PMID:26768475

  4. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    PubMed Central

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew

    2015-01-01

    Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970

  5. Miniature probe for mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qu, Yueqiao; Ma, Teng; He, Youmin; Yu, Mingyue; Li, Rui; Zhu, Jiang; Dai, Cuixia; Piao, Zhonglie; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2016-03-01

    Changes in tissue biomechanical properties often signify the onset and progression of diseases, such as in determining the vulnerability of atherosclerotic plaques. Acoustic radiation force optical coherence elastography (ARF-OCE) has been used in the detection of tissue elasticity to obtain high-resolution elasticity maps. We have developed a probe-based ARF-OCE technology that utilizes a miniature 10 MHz ring ultrasonic transducer for excitation and Doppler optical coherence tomography (OCT) for detection. The transducer has a small hole in the center for the OCT light to propagate through. This allows for a confocal stress field and light detection within a small region for high sensitivity and localized excitation. This device is a front-facing probe that is only 3.5 mm in diameter and it is the smallest ARF-OCE catheter to the best of our knowledge. We have tested the feasibility of the probe by measuring the point displacement of an agarose tissue-mimicking phantom using different ARF excitation voltages. Small displacement values ranging from 30 nm to 90 nm have been detected and are shown to be directly proportional to the excitation voltage as expected. We are currently working on obtaining 2D images using a scanning mechanism. We will be testing to capture 2D elastograms of phantoms to further verify feasibility, and eventually characterize the mechanical properties of cardiovascular tissue. With its high portability and sensitivity, this novel technology can be applied to the diagnosis and characterization of vulnerable atherosclerotic plaques.

  6. Post Treatment of Acoustic Neuroma

    MedlinePlus

    Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video Pre-Treatment Treatment Options Summary Treatment Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions ...

  7. Dynamic Acoustic Radiation Force Retains Bone Structural and Mechanical Integrity in a Functional Disuse Osteopenia Model

    PubMed Central

    Uddin, Sardar M. Z.; Qin, Yi-Xian

    2015-01-01

    Disuse osteopenia and bone loss have been extensively reported in long duration space mission and long term bed rest. The pathology of the bone loss is similar to osteoporosis but highly confined to weight bearing bones. The current anabolic and/or anti-resorptive drugs have systemic effects and are costly over extended time, with concerns of long term fracture risk. This study use Low Intensity Pulsed Ultrasound (LIPUS) as a non-invasive acoustic force and anabolic stimulus to countermeasure disuse induced bone loss. Four-month old C57BL/6 mice were randomized to five groups, 1) age-matched (AM), 2) non-suspended sham (NS), 3) nonsuspended –LIPUS (NU), 4) suspended sham (SS), and 5) suspended-LIPUS (SU) groups. After four weeks of suspension, µCT analyses showed significant decreases in trabecular bone volume fraction (BV/TV) (−36%, p<0.005), bone tissue mineral density (TMD) (−3%, p<0.05), trabecular thickness (Tb.Th) (−12.5%, p<0.005), and increase in bone surface/bone volume (+BS/BV) (+16%, p<0.005), relative to age-matched (AM). Application of LIPUS for 20 min/day for 5 days/week, significantly increased TMD (+3%, p<0.05), Tb.Th (+6%, p<0.05), and decreased BS/BV (−10%, p<0.005), relative to suspension alone (SS) mice. Histomorphometry analyses showed a breakdown of bone microstructure under disuse conditions consist with µCT results. In comparison to SS mice, LIPUS treated bone showed increased structural integrity with increased bone formation rates at metaphysical endosteal and trabecular surfaces (+0.104±0.07 vs 0.031±0.30 µm3/µm2/d) relative to SS. Four-point bending mechanical tests of disused SS femurs showed reduced elastic modulus (−53%, p<0.05), yield (−33%, p<0.05) and ultimate strength (−45%, p<0.05) at the femoral diaphysis relative to AM bone. LIPUS stimulation mitigated the adverse effects of disuse on bone elastic modulus (+42%, p<0.05), yield strength (+29%, p<0.05), and ultimate strength (+39%, p<0.05) relative to SS

  8. The effect of the coupling between the top plate and the fingerboard on the acoustic power radiated by a classical guitar (L).

    PubMed

    García-Mayén, Héctor; Santillán, Arturo

    2011-03-01

    An experimental investigation on the coupling between the fingerboard and the top plate of a classical guitar at low frequencies is presented. The study was carried out using a finished top plate under fixed boundary conditions and a commercial guitar. Radiated sound power was determined in one-third octave bands up to the band of 1 kHz based on measurements of sound intensity. The results provide evidence that the way in which the fingerboard and top plate are coupled is not a relevant factor in the radiated acoustic power of the classical guitar in the studied frequency range. PMID:21428477

  9. Plasma torque and nonambipolar transport

    SciTech Connect

    Boozer, Allen H.

    2009-05-15

    Poloidal symmetry breaking in toroidal plasmas causes a damping of poloidal rotation and toroidal symmetry breaking a damping of toroidal rotation. These torques are transmitted by the magnetic field to the outside world. An upper limit exists on the torque that can be transmitted by magnetic asymmetries. This limit is enforced by shielding asymmetries from the plasma, which can be an important effect for toroidal asymmetries. The torque interaction of plasmas with magnetic fields can be either through an anisotropic pressure or by the drive for magnetic islands. The physics of both types of interactions are considered and paradoxical effects are clarified.

  10. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  11. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  12. Acoustic dispersive prism

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  13. Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds.

    PubMed

    Mason, Nicholas A; Shultz, Allison J; Burns, Kevin J

    2014-08-01

    The concept of a macroevolutionary trade-off among sexual signals has a storied history in evolutionary biology. Theory predicts that if multiple sexual signals are costly for males to produce or maintain and females prefer a single, sexually selected trait, then an inverse correlation between sexual signal elaborations is expected among species. However, empirical evidence for what has been termed the 'transfer hypothesis' is mixed, which may reflect different selective pressures among lineages, evolutionary covariates or methodological differences among studies. Here, we examine interspecific correlations between song and plumage elaboration in a phenotypically diverse, widespread radiation of songbirds, the tanagers. The tanagers (Thraupidae) are the largest family of songbirds, representing nearly 10% of all songbirds. We assess variation in song and plumage elaboration across 301 species, representing the largest scale comparative study of multimodal sexual signalling to date. We consider whether evolutionary covariates, including habitat, structural and carotenoid-based coloration, and subfamily groupings influence the relationship between song and plumage elaboration. We find that song and plumage elaboration are uncorrelated when considering all tanagers, although the relationship between song and plumage complexity varies among subfamilies. Taken together, we find that elaborate visual and vocal sexual signals evolve independently among tanagers. PMID:24943371

  14. Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds

    PubMed Central

    Mason, Nicholas A.; Shultz, Allison J.; Burns, Kevin J.

    2014-01-01

    The concept of a macroevolutionary trade-off among sexual signals has a storied history in evolutionary biology. Theory predicts that if multiple sexual signals are costly for males to produce or maintain and females prefer a single, sexually selected trait, then an inverse correlation between sexual signal elaborations is expected among species. However, empirical evidence for what has been termed the ‘transfer hypothesis’ is mixed, which may reflect different selective pressures among lineages, evolutionary covariates or methodological differences among studies. Here, we examine interspecific correlations between song and plumage elaboration in a phenotypically diverse, widespread radiation of songbirds, the tanagers. The tanagers (Thraupidae) are the largest family of songbirds, representing nearly 10% of all songbirds. We assess variation in song and plumage elaboration across 301 species, representing the largest scale comparative study of multimodal sexual signalling to date. We consider whether evolutionary covariates, including habitat, structural and carotenoid-based coloration, and subfamily groupings influence the relationship between song and plumage elaboration. We find that song and plumage elaboration are uncorrelated when considering all tanagers, although the relationship between song and plumage complexity varies among subfamilies. Taken together, we find that elaborate visual and vocal sexual signals evolve independently among tanagers. PMID:24943371

  15. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  16. Quick torque coupling

    DOEpatents

    Luft, Peter A.

    2009-05-12

    A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.

  17. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for...

  18. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for...

  19. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for...

  20. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for...

  1. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Torque calibration. 1065.310 Section... Conditions § 1065.310 Torque calibration. (a) Scope and frequency. Calibrate all torque-measurement systems including dynamometer torque measurement transducers and systems upon initial installation and after...

  2. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Torque calibration. 1065.310 Section... Conditions § 1065.310 Torque calibration. (a) Scope and frequency. Calibrate all torque-measurement systems including dynamometer torque measurement transducers and systems upon initial installation and after...

  3. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for...

  4. Acoustic Radiation Force Impulse Imaging (ARFI) on an IVUS Circular Array

    PubMed Central

    Patel, Vivek; Dahl, Jeremy; Bradway, David; Doherty, Joshua; Lee, Seung Yun; Smith, Stephen

    2014-01-01

    Our long-term goal is the detection and characterization of vulnerable plaque in the coronary arteries of the heart using IVUS catheters. Vulnerable plaque, characterized by a thin fibrous cap and a soft, lipid-rich, necrotic core is a pre-cursor to heart attack and stroke. Early detection of such plaques may potentially alter the course of treatment of the patient in order to prevent ischemic events. We have previously described the characterization of carotid plaques using external linear arrays operating at 9 MHz. In addition, we previously modified circular array IVUS catheters by short-circuiting several neighboring elements to produce fixed beam-widths for intra-vascular hyperthermia applications. In this paper we modified Volcano Visions 8.2 French, 9 MHz catheters and Volcano Platinum 3.5 French, 20 MHz catheters by short circuiting portions of the array for ARFI applications. The catheters had an effective transmit aperture size of 2 mm and 1.5 mm respectively. The catheters were connected to a Verasonics scanner and driven with pushing pulses of 180 V p-p to acquire ARFI data from a soft gel phantom with a Young’s modulus of 2.9 kPa. The dynamic response of the tissue-mimicking material demonstrates a typical ARFI motion of 1–2 microns as the gel phantom displaces away and recovers back to its normal position. The hardware modifications applied to our IVUS catheters mimic potential beamforming modifications that could be implemented on IVUS scanners. Our results demonstrate that the generation of radiation force from IVUS catheters and the development of intra-vascular ARFI may be feasible. PMID:24554291

  5. Contactless and non-invasive delivery of micro-particles lying on a non-customized rigid surface by using acoustic radiation force.

    PubMed

    Meng, Jianxin; Mei, Deqing; Jia, Kun; Fan, Zongwei; Yang, Keji

    2014-07-01

    In the existing acoustic micro-particle delivery methods, the micro-particles always lie and slide on the surface of platform in the whole delivery process. To avoid the damage and contamination of micro-particles caused by the sliding motion, this paper deals with a novel approach to trap micro-particles from non-customized rigid surfaces and freely manipulate them. The delivery process contains three procedures: detaching, transporting, and landing. Hence, the micro-particles no longer lie on the surface, but are levitated in the fluid, during the long range transporting procedure. It is very meaningful especially for the fragile and easily contaminated targets. To quantitatively analyze the delivery process, a theoretical model to calculate the acoustic radiation force exerting upon a micro-particle near the boundary in half space is built. An experimental device is also developed to validate the delivery method. A 100 μm diameter micro-silica bead adopted as the delivery target is detached from the upper surface of an aluminum platform and levitated in the fluid. Then, it is transported along the designated path with high precision in horizontal plane. The maximum deviation is only about 3.3 μm. During the horizontal transportation, the levitation of the micro-silica bead is stable, the maximum fluctuation is less than 1 μm. The proposed method may extend the application of acoustic radiation force and provide a promising tool for microstructure or cell manipulation. PMID:24568691

  6. Pressurized fluid torque driver control and method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  7. Differentiation of benign and malignant focal liver lesions: value of virtual touch tissue quantification of acoustic radiation force impulse elastography.

    PubMed

    Guo, Le-Hang; Wang, Shu-Jun; Xu, Hui-Xiong; Sun, Li-Ping; Zhang, Yi-Feng; Xu, Jun-Mei; Wu, Jian; Fu, Hui-Jun; Xu, Xiao-Hong

    2015-03-01

    The purpose of this study was to investigate the value of virtual tissue quantification (VTQ) of acoustic radiation force impulse elastography for the differential diagnosis of benign and malignant focal liver lesions (FLLs). Thus, a total of 134 FLLs in 134 patients were included. VTQ measurement was performed for each lesion in which the shear wave velocity (SWV) was measured. The difference in SWV and SWV ratio of FLL to surrounding liver between malignant and benign FLLs was evaluated, and the cutoff value was investigated. Receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic performance. A total of 134 lesions including 55 (41.0%) malignant FLLs and 79 (59.0%) benign ones were analyzed. The SWV of malignant and benign FLLs was 2.95 ± 1.00 m/s and 1.69 ± 0.89 m/s, respectively. Significant difference in SWV was presented between malignant and benign FLLs (p < 0.001). The SWV ratio of each FLL to the surrounding liver parenchyma was 1.83 ± 1.32 for malignant and 1.26 ± 0.78 for benign FLLs (p < 0.001). The area under the ROC curve in distinguishing malignant from benign lesions was 0.824 for SWV and 0.660 for SWV ratio. The cutoff value for differential diagnosis was 2.13 m/s for SWV and 1.37 for SWV ratio. The associated sensitivity and specificity were 83.3 and 77.9% for SWV and 59.6 and 77.3% for SWV ratio, respectively. In conclusion, VTQ provides quantitative stiffness information of FLLs and is helpful in the differential diagnosis between malignant and benign FLLs, particularly for the patients who are not candidates for contrast-enhanced imaging such as CT, MRI or contrast-enhanced ultrasound. PMID:25691297

  8. A Novel Model to Predict Esophageal Varices in Patients with Compensated Cirrhosis Using Acoustic Radiation Force Impulse Elastography

    PubMed Central

    Park, Yehyun; Kim, Seung Up; Park, Soo Young; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Tak, Won Young; Kweon, Young Oh; Han, Kwang-Hyub

    2015-01-01

    Background & Aims Few noninvasive methods can accurately identify esophageal varices (EVs) in patients with compensated cirrhosis. We developed and validated a novel, acoustic radiation force impulse (ARFI) elastography-based prediction model for high-risk EVs (HEVs) in patients with compensated cirrhosis. Methods A total of 143 patients with compensated cirrhosis between February, 2010 and February, 2013 (training set) and 148 between June, 2010 and May, 2013 (validation set) who underwent ARFI elastography and endoscopy were prospectively recruited. Independent predictors of HEVs were used to construct a prediction model. Results Based on multivariate analysis, we developed two new statistical models, a varices risk score and ARFI-spleen diameter-to-platelet ratio score (ASPS), the latter of which was calculated as ARFI velocity × spleen diameter/platelet count. The area under receiver operating characteristic curve (AUROC) of the varices risk score and ASPS to predict HEVs were 0.935 (95% confidence interval [CI] 0.882–0.970) and 0.946 (95% CI 0.895–0.977), respectively. When ASPS, a simpler model with a higher AUROC, was applied in the validation set, acceptable diagnostic accuracy for HEVs was observed (AUROC = 0.814 [95% CI 0.743–0.885]). To detect HEVs, a negative predictive value of 98.3% was achieved at ASPS <2.83, whereas a positive predictive value of 100% was achieved at ASPS >5.28. Conclusions ASPS, a novel noninvasive ARFI-based prediction model, can accurately identify HEVs in patients with compensated cirrhosis. ASPS <2.83 may safely rule out the presence of HEVs, whereas patients with ASPS >5.28 should be considered for endoscopic examinations or appropriate prophylactic treatment. PMID:25826654

  9. Acoustic radiation force impulse induced strain elastography and point shear wave elastography for evaluation of thyroid nodules

    PubMed Central

    Huang, Xian; Guo, Le-Hang; Xu, Hui-Xiong; Gong, Xue-Hao; Liu, Bo-Ji; Xu, Jun-Mei; Zhang, Yi-Feng; Li, Xiao-Long; Li, Dan-Dan; Qu, Shen; Fang, Lin

    2015-01-01

    The aim of the study was to evaluate the diagnostic performance of acoustic radiation force impulse (ARFI) induced strain elastography (SE), point shear wave elastography (p-SWE), and their combined use in differentiating thyroid nodules. This retrospective study included 155 thyroid nodules (94 benign and 61 malignant) in 136 patients. Ultrasound, ARFI-induced SE and p-SWE were performed on each nodule. Receiver operating characteristic curve (ROC) analyses were performed to assess the diagnostic efficacy of ARFI-induced SE, p-SWE and their combined use to distinguish benign from malignant thyroid nodules with histological results used as the reference standard. The areas under the ROC for ARFI-induced SE, p-SWE, and their combined use were 0.828, 0.829, and 0.840, respectively (both P > 0.05). The specificity of ARFI-induced SE was higher than that of p-SWE as well as their combined use (both P < 0.05). The combination of the two methods significantly improved the diagnostic sensitivity and NPV compared with either ARFI-induced SE or p-SWE alone (both P < 0.05). For nodules ≤ 10 mm, the combination of the two methods significantly improved the diagnostic sensitivity only. For nodules > 10 mm, there were no significant differences in sensitivity and NPV among the three methods in differentiating thyroid nodules (all P > 0.05). In conclusions, ARFI-induced SE and p-SWE are both valuable tools for detecting malignant thyroid nodules. The combined use of ARFI-induced SE and p-SWE improves the diagnostic sensitivity and NPV significantly whereas ARFI-induced SE alone achieves the highest specificity. PMID:26379890

  10. Quantitative shear wave optical coherence elastography (SW-OCE) with acoustic radiation force impulses (ARFI) induced by phase array transducer

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.

  11. Applications of velocity potential function to acoustic duct propagation and radiation from inlets using finite element theory

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Majjigi, R. K.

    1979-01-01

    A finite element velocity potential program was developed to study acoustic wave propagation in complex geometries. For irrotational flows, relatively low sound frequencies, and plane wave input, the finite element solutions showed significant effects of inlet curvature and flow gradients on the attenuation of a given acoustic liner in a realistic variable area turbofan inlet. The velocity potential approach can not be used to estimate the effects of rotational flow on acoustic propagation, since the potential acoustic disturbances propagate at the speed of the media in sheared flow. Approaches are discussed that are being considered for extending the finite element solution to include the far field, as well as the internal portion of the duct. A new matrix partitioning approach is presented that can be incorporated in previously developed programs to allow the finite element calculation to be marched into the far field. The partitioning approach provided a large reduction in computer storage and running times.

  12. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.

    PubMed

    Lamprecht, Andreas; Lakämper, Stefan; Baasch, Thierry; Schaap, Iwan A T; Dual, Jurg

    2016-07-01

    Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 μm beads, resulting in an effective stiffness of 2.6 nN m(-1) for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs. PMID:27302661

  13. Split torque transmission load sharing

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Rashidi, M.; Kish, J. G.

    1992-01-01

    Split torque transmissions are attractive alternatives to conventional planetary designs for helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but have not been used extensively for lack of experience, especially with obtaining proper load sharing. Two split torque designs that use different load sharing methods have been studied. Precise indexing and alignment of the geartrain to produce acceptable load sharing has been demonstrated. An elastomeric torque splitter that has large torsional compliance and damping produces even better load sharing while reducing dynamic transmission error and noise. However, the elastomeric torque splitter as now configured is not capable over the full range of operating conditions of a fielded system. A thrust balancing load sharing device was evaluated. Friction forces that oppose the motion of the balance mechanism are significant. A static analysis suggests increasing the helix angle of the input pinion of the thrust balancing design. Also, dynamic analysis of this design predicts good load sharing and significant torsional response to accumulative pitch errors of the gears.

  14. Nanomagnonic devices based on the spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Urazhdin, S.; Demidov, V. E.; Ulrichs, H.; Kendziorczyk, T.; Kuhn, T.; Leuthold, J.; Wilde, G.; Demokritov, S. O.

    2014-07-01

    Magnonics is based on signal transmission and processing by spin waves (or their quanta, called magnons) propagating in a magnetic medium. In the same way as nanoplasmonics makes use of metallic nanostructures to confine and guide optical-frequency plasmon-polaritons, nanomagnonics uses nanoscale magnetic waveguides to control the propagation of spin waves. Recent advances in the physics of nanomagnetism, such as the discovery of spin-transfer torque, have created possibilities for nanomagnonics. In particular, it was recently demonstrated that nanocontact spin-torque devices can radiate spin waves, serving as local nanoscale sources of signals for magnonic applications. However, the integration of spin-torque sources with nanoscale magnetic waveguides, which is necessary for the implementation of integrated spin-torque magnonic circuits, has not been achieved to date. Here, we suggest and experimentally demonstrate a new approach to this integration, utilizing dipolar field-induced magnonic nanowaveguides. The waveguides exhibit good spectral matching with spin-torque nano-oscillators and enable efficient directional transmission of spin waves. Our results provide a practical route for the implementation of integrated magnonic circuits utilizing spin transfer.

  15. Nanomagnonic devices based on the spin-transfer torque.

    PubMed

    Urazhdin, S; Demidov, V E; Ulrichs, H; Kendziorczyk, T; Kuhn, T; Leuthold, J; Wilde, G; Demokritov, S O

    2014-07-01

    Magnonics is based on signal transmission and processing by spin waves (or their quanta, called magnons) propagating in a magnetic medium. In the same way as nanoplasmonics makes use of metallic nanostructures to confine and guide optical-frequency plasmon-polaritons, nanomagnonics uses nanoscale magnetic waveguides to control the propagation of spin waves. Recent advances in the physics of nanomagnetism, such as the discovery of spin-transfer torque, have created possibilities for nanomagnonics. In particular, it was recently demonstrated that nanocontact spin-torque devices can radiate spin waves, serving as local nanoscale sources of signals for magnonic applications. However, the integration of spin-torque sources with nanoscale magnetic waveguides, which is necessary for the implementation of integrated spin-torque magnonic circuits, has not been achieved to date. Here, we suggest and experimentally demonstrate a new approach to this integration, utilizing dipolar field-induced magnonic nanowaveguides. The waveguides exhibit good spectral matching with spin-torque nano-oscillators and enable efficient directional transmission of spin waves. Our results provide a practical route for the implementation of integrated magnonic circuits utilizing spin transfer. PMID:24813697

  16. Acoustic Radiation Force Impulse Elastography: A Useful Tool for Differential Diagnosis of Thyroid Nodules and Recommending Fine-Needle Aspiration

    PubMed Central

    Zhang, Yi-Feng; Xu, Jun-Mei; Xu, Hui-Xiong; Liu, Chang; Bo, Xiao-Wan; Li, Xiao-Long; Guo, Le-Hang; Liu, Bo-Ji; Liu, Lin-Na; Xu, Xiao-Hong

    2015-01-01

    Abstract To investigate the diagnostic performance of combined use of conventional ultrasound (US) and elastography, including conventional strain elastography such as elasticity imaging (EI) and acoustic radiation force impulse (ARFI) elastography, and to evaluate their usefulness in recommending fine-needle aspiration (FNA). A total of 556 pathologically proven thyroid nodules were evaluated by US, EI, and ARFI examinations in this study. Three blinded readers scored the likelihood of malignancy for 4 datasets (ie, US alone, US and EI, US and virtual touch tissue imaging [VTI], and US and virtual touch tissue quantification [VTQ]). The diagnostic performances of 4 datasets in differentiating malignant from benign thyroid nodules were evaluated. The decision-making changes for FNA recommendation in the indeterminate nodules or the probably benign nodules on conventional US were evaluated after review of elastography. The diagnostic performance in terms of area under the ROC curve did not show any change after adding EI, VTI, or VTQ for analysis; and no differences were found among different readers; however, the specificity and positive predictive value (PPV) improved significantly after adding VTI or VTQ for analysis in the senior reader. For the indeterminate nodules on US that were pathologically benign, VTQ made correct decision-making changes from FNA biopsy to follow-up in a mean of 82.6% nodules, which was significantly higher than those achieved by EI (46.8%) and VTI (54.4%) (both P < 0.05). With regard to the probably benign nodules on US that were pathologically malignant, EI made the highest correct decision-making change from follow-up to FNA biopsy in a mean of 62.6% nodules (compared with 41.5% on VTQ, P < 0.05). The results indicated that ARFI increases the specificity and PPV in diagnosing thyroid nodules. US combined VTQ might be helpful in reducing unnecessary FNA for indeterminate nodules on US whereas US combined EI is useful to detect

  17. The diagnosis value of acoustic radiation force impulse (ARFI) elastography for thyroid malignancy without highly suspicious features on conventional ultrasound

    PubMed Central

    Liu, Bo-Ji; Lu, Feng; Xu, Hui-Xiong; Guo, Le-Hang; Li, Dan-Dan; Bo, Xiao-Wan; Li, Xiao-Long; Zhang, Yi-Feng; Xu, Jun-Mei; Xu, Xiao-Hong; Qu, Shen

    2015-01-01

    Objective: The aim of this study was to evaluate the potential diagnostic performance of acoustic radiation force impulse (ARFI) elastography in identifying malignancy in nodules that do not appear highly suspicious on conventional ultrasound (US). Methods: 330 pathologically confirmed thyroid nodules (40 malignant and 290 benign; mean size, 22.0±11.6 mm) not suspicious of malignancy on conventional US in 330 patients (mean age 52.8±11.7 years) underwent ARFI elastography before surgery. ARFI elastography included qualitative ARFI-induced strain elastography (SE) and quantitative point shear wave elastography (p-SWE). ARFI-induced SE image was assessed by SE score, while p-SWE was denoted with shear wave velocity (SWV, m/s). The diagnostic performance of four criteria sets was evaluated: criteria set 1 (ARFI-induced SE), criteria set 2 (p-SWE), criteria set 3 (either set 1 or 2), criteria set 4 (both set 1 and 2). Receiver operating characteristic curve (ROC) analyses were performed to assess the diagnostic performance. Results: SE score ≥4 was more frequently found in malignant nodules (32/40) than in benign nodules (30/290, P<0.001). The mean SWV of malignant nodules (3.64±2.23 m/s) was significantly higher than that of benign nodules (2.02±0.69 m/s) (P<0.001). ARFI-induced SE (set 1) had a sensitivity of 80.0% (32/40) and a specificity of 89.7% (260/290) with a cut-off point of SE score ≥4; p-SWE (set 2) had a sensitivity of 80.0% (32/40) and a specificity of 57.9% (168/290) with a cut-off point of SWV ≥2.15 m/s. When ARFI-induced SE and p-SWE were combined, set 3 had the highest sensitivity (92.5%, 37/40) while set 4 had the highest specificity (95.2%, 276/290). Conclusion: ARFI elastography can be used for differential diagnosis of malignant thyroid nodules without highly suspicious features on US. The combination of ARFI-induced SE and p-SWE leads to improved sensitivity and specificity. PMID:26629025

  18. Spin-torque building blocks.

    PubMed

    Locatelli, N; Cros, V; Grollier, J

    2014-01-01

    The discovery of the spin-torque effect has made magnetic nanodevices realistic candidates for active elements of memory devices and applications. Magnetoresistive effects allow the read-out of increasingly small magnetic bits, and the spin torque provides an efficient tool to manipulate - precisely, rapidly and at low energy cost - the magnetic state, which is in turn the central information medium of spintronic devices. By keeping the same magnetic stack, but by tuning a device's shape and bias conditions, the spin torque can be engineered to build a variety of advanced magnetic nanodevices. Here we show that by assembling these nanodevices as building blocks with different functionalities, novel types of computing architecture can be envisaged. We focus in particular on recent concepts such as magnonics and spintronic neural networks. PMID:24343514

  19. Spin-torque building blocks

    NASA Astrophysics Data System (ADS)

    Locatelli, N.; Cros, V.; Grollier, J.

    2014-01-01

    The discovery of the spin-torque effect has made magnetic nanodevices realistic candidates for active elements of memory devices and applications. Magnetoresistive effects allow the read-out of increasingly small magnetic bits, and the spin torque provides an efficient tool to manipulate -- precisely, rapidly and at low energy cost -- the magnetic state, which is in turn the central information medium of spintronic devices. By keeping the same magnetic stack, but by tuning a device's shape and bias conditions, the spin torque can be engineered to build a variety of advanced magnetic nanodevices. Here we show that by assembling these nanodevices as building blocks with different functionalities, novel types of computing architecture can be envisaged. We focus in particular on recent concepts such as magnonics and spintronic neural networks.

  20. Fine-tuning motor torque

    SciTech Connect

    O`Connor, L.

    1996-01-01

    Direct-torque control, a new method of regulating the output of ac induction motors, provides a swift response to input commands. A new variable-speed ac motor drive system that responds to torque input commands 10 times faster than current state-of-the-art drives has been developed by ABB Industrial Systems Inc. in New Berlin, Wis. The new control system, called the ACS 600, provides an alternative to drive systems that use sophisticated flux vector control or more routine pulse width modulation--the primary methods of regulating the output of ac induction motors. The ACS 600 is suitable for use in single motor applications that require a standard level of performance, such as conveyors, fans, and pumps. But it will likely be more valuable in applications that require the linking of multiple motors, such as textile production, and in applications that require tight control over torque, such as cranes, elevators, and centrifuges.

  1. Hybrid optical and acoustic force based sorting

    NASA Astrophysics Data System (ADS)

    O'Mahoney, Paul; Brodie, Graham W.; Wang, Han; Demore, Christine E. M.; Cochran, Sandy; Spalding, Gabriel C.; MacDonald, Michael P.

    2014-09-01

    We report the combined use of optical sorting and acoustic levitation to give particle sorting. Differing sizes of microparticles are sorted optically both with and without the aid of acoustic levitation, and the results compared to show that the use of acoustic trapping can increase sorting efficiency. The use of a transparent ultrasonic transducer is also shown to streamline the integration of optics and acoustics. We also demonstrate the balance of optical radiation pressure and acoustic levitation to achieve vertical sorting.

  2. Prediction of acoustic radiation from axisymmetric surfaces with arbitrary boundary conditions using the boundary element method on a distributed computing system.

    PubMed

    Wright, Louise; Robinson, Stephen P; Humphrey, Victor F

    2009-03-01

    This paper presents a computational technique using the boundary element method for prediction of radiated acoustic waves from axisymmetric surfaces with nonaxisymmetric boundary conditions. The aim is to predict the far-field behavior of underwater acoustic transducers based on their measured behavior in the near-field. The technique is valid for all wavenumbers and uses a volume integral method to calculate the singular integrals required by the boundary element formulation. The technique has been implemented on a distributed computing system to take advantage of its parallel nature, which has led to significant reductions in the time required to generate results. Measurement data generated by a pair of free-flooding underwater acoustic transducers encapsulated in a polyurethane polymer have been used to validate the technique against experiment. The dimensions of the outer surface of the transducers (including the polymer coating) were an outer diameter of 98 mm with an 18 mm wall thickness and a length of 92 mm. The transducers were mounted coaxially, giving an overall length of 185 mm. The cylinders had resonance frequencies at 13.9 and 27.5 kHz, and the data were gathered at these frequencies. PMID:19275294

  3. Comparison Between a Reference Torque Standard Machine and a Deadweight Torque Standard Machine to BE Used in Torque Calibration

    NASA Astrophysics Data System (ADS)

    Meng, Feng; Zhang, Zhimin; Lin, Jing

    The paper describes the reference torque standard machine with high accuracy and multifunction, developed by our institute, and introduces the structure and working principle of this machine. It has three main functions. The first function is the hydraulic torque wrench calibration function. The second function is torque multiply calibration function. The third function is reference torque standard machine function. We can calibrate the torque multipliers, hydraulic wrenches and transducers by this machine. A comparison experiment has been done between this machine and a deadweight torque standard machine. The consistency between the 30 kNm reference torque machine and the 2000 Nm dead-weight torque standard machine under the claimed uncertainties was verified.

  4. Particle analysis in an acoustic cytometer

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  5. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1. [jet engine noise radiation through coannular exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots.

  6. The direct problem of acoustic diffraction of an audible probe radiation by an air-saturated porous cylinder

    NASA Astrophysics Data System (ADS)

    Ogam, Erick; Depollier, Claude; Fellah, Z. E. A.

    2010-12-01

    Gas-saturated, solid skeleton, porous media like geomaterials, polymeric and metallic foams or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss, are still few. Accurate acoustic methods for the characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we have developed a method based on the theory and experiment of diffraction of acoustic waves by a rigid-frame, air-saturated polymeric foam in cylindrical form in the audible frequency regime. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field show that it is also dependent on the intrinsic microstructural parameters of the porous cylinder namely, porosity, tortuosity, and the flow resistivity (related to permeability).

  7. Applications of velocity potential function to acoustic duct propagation and radiation from inlets using finite element theory

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Majjigi, R. K.

    1979-01-01

    A finite element velocity potential program has been developed to study acoustic wave propagation in complex geometries. For irrotational flows, relatively low sound frequencies, and plane wave input, the finite element solutions show significant effects of inlet curvature and flow gradients on the attenuation of a given acoustic liner in a realistic variable area turbofan inlet. In addition, as shown in the paper, the velocity potential approach can not be used to estimate the effects of rotational flow on acoustic propagation since the potential acoustic disturbances propagate at the speed of the media in sheared flow. Approaches are discussed that are being considered for extending the finite element solution to include the far field as well as the internal portion of the duct. A new matrix partitioning approach is presented that can be incorporated in previously developed programs to allow the finite element calculation to be marched into the far field. The partitioning approach provides a large reduction in computer storage and running times.

  8. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1)...

  9. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously...

  10. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1)...

  11. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously...

  12. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously...

  13. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously...

  14. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1)...

  15. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1)...

  16. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  17. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously...

  18. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1)...

  19. Improved Force-And-Torque Sensor Assembly

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.

    1991-01-01

    Improved sensor assembly measures forces and torques of interaction between supporting and supported object. Measures all three components of force and all three components of torque. Force measurements uncoupled from torque measurements. Price for improved measurement capability, complexity and flexibility, excessive in some applications.

  20. Direct torque control of permanent magnet drives

    SciTech Connect

    French, C.; Acarnley, P.

    1995-12-31

    Many permanent magnet motor drives use an open loop form of torque control, based on the assumption that output torque is proportional to applied current. In a practical motor this assumption may not always be correct, due to sub-optimal alignment of magnets, non-uniformity of magnetic material, current sensor non-linearities and current controller limitations. These factors, together with non-optimized current references, can lead to high values of torque ripple and copper loss. This paper describes a method of estimating the electro-magnetic torque from the rate of change of co-energy with respect to position, thus taking account of mutual torque, reluctance torque and saturation effects. The paper shows how the estimator can be used in a direct torque control scheme. The direct torque controller maximizes the torque:copper loss ratio. Implementation of the direct torque controller in a DSP based drive system is described, with steady-state and transient experimental results illustrating the effectiveness of the direct torque control scheme.

  1. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation.

    PubMed

    Chen, Jiangang; Hou, Gary Y; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R² = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm(-1) MHz(-1), which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm(-1) MHz(-1)) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation. PMID:26371501

  2. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation

    NASA Astrophysics Data System (ADS)

    Chen, Jiangang; Hou, Gary Y.; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n=5 ) and in vitro canine livers (n=3 ) were tested, as well as HIFU lesions in in vitro canine livers (n=5 ). Results demonstrated that attenuations obtained from the phantoms showed a good correlation ({{R}2}=0.976 ) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm-1 MHz-1, which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm-1 MHz-1) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.

  3. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  4. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOEpatents

    Vo-Dinh, Tuan; Norton, Stephen J.

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  5. Low-Torque Seal Development

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Borowski, Richard

    2009-01-01

    The EcoTurn Class K production prototypes have passed all AAR qualification tests and received conditional approval. The accelerated life test on the second set of seals is in progress. Due to the performance of the first set, no problems are expected.The seal has demonstrated superior performance over the HDL seal in the test lab with virtually zero torque and excellent contamination exclusion and grease retention.

  6. Transition from progressive to quasi-standing waves behavior of the radiation force of acoustic waves—Example of a high-order Bessel beam on a rigid sphere

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2010-08-01

    Prior computations have predicted the time-averaged acoustic radiation force on fluid spheres in water when illuminated by an acoustic high-order Bessel beam (HOBB) of quasi-standing waves. These computations are extended to the case of a rigid sphere in water which perfectly mimics a fluid sphere in air. Numerical results for the radiation force function of a HOBB quasi-standing wave tweezers are obtained for beams of zero, first and second order, and discussed with particular emphasis on the amplitude ratio describing the transition from progressive waves to quasi-standing waves behavior. This investigation may be helpful in the development of acoustic tweezers and methods for manipulating objects in reduced gravity environments and space related applications.

  7. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  8. Spin Transfer Torque in Graphene

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  9. Reduction of phase noise in nanowire spin orbit torque oscillators

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Verba, Roman; Tiberkevich, Vasil; Schneider, Tobias; Smith, Andrew; Duan, Zheng; Youngblood, Brian; Lenz, Kilian; Lindner, Jürgen; Slavin, Andrei N.; Krivorotov, Ilya N.

    2015-11-01

    Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. The spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated by spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of the Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity.

  10. Reduction of phase noise in nanowire spin orbit torque oscillators

    PubMed Central

    Yang, Liu; Verba, Roman; Tiberkevich, Vasil; Schneider, Tobias; Smith, Andrew; Duan, Zheng; Youngblood, Brian; Lenz, Kilian; Lindner, Jürgen; Slavin, Andrei N.; Krivorotov, Ilya N.

    2015-01-01

    Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. The spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated by spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of the Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity. PMID:26592432

  11. Electromagnetic torque and force in axially symmetric liquid-crystal droplets.

    PubMed

    Jánossy, István

    2008-10-15

    Circularly polarized light exerts torque on birefringent objects. In the case of axially symmetric particles, however, the moment of radiation force balances the direct optical torque. This explains the observation that radial liquid-crystal droplets, in contrast to planar droplets, do not spin in circularly polarized light. The conclusion is in agreement with considerations based on the angular momentum conservation of light [Phys. Rev. Lett.96, 163905 (2006)]. PMID:18923626

  12. Zero Secular Torque on Asteroids from Impinging Solar Photons in the YORP Effect: A Simple Proof

    NASA Technical Reports Server (NTRS)

    Rubincam, David Perry; Paddack, Stephen J.

    2010-01-01

    YORP torques, where "YORP" stands for "Yarokovsky-O'Keefe-Radzievskii-Paddack." arise mainly from sun light reflected off a Solar System object and the infrared radiation emi tted by it. We show here, through the most elementary demonstration that we Can devise, that secular torques from impinging solar photons are generally negligible and thus cause little secular evolution of an asteroid's obliquity or spin rate.

  13. Acoustic Source Bearing Estimation (ASBE) computer program development

    NASA Technical Reports Server (NTRS)

    Wiese, Michael R.

    1987-01-01

    A new bearing estimation algorithm (Acoustic Source Analysis Technique - ASAT) and an acoustic analysis computer program (Acoustic Source Bearing Estimation - ASBE) are described, which were developed by Computer Sciences Corporation for NASA Langley Research Center. The ASBE program is used by the Acoustics Division/Applied Acoustics Branch and the Instrument Research Division/Electro-Mechanical Instrumentation Branch to analyze acoustic data and estimate the azimuths from which the source signals radiated. Included are the input and output from a benchmark test case.

  14. Acoustically swept rotor. [helicopter noise reduction

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Boxwell, D. A.; Vause, R. (Inventor)

    1979-01-01

    Impulsive noise reduction is provided in a rotor blade by acoustically sweeping the chord line from root to tip so that the acoustic radiation resulting from the summation of potential singularities used to model the flow about the blade tend to cancel for all times at an observation point in the acoustic far field.

  15. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  16. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  17. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    NASA Astrophysics Data System (ADS)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs

  18. Seasonal Distributions of Mountain Torques during FGGE.

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Ying; Schaack, Todd K.

    1984-10-01

    Based on surface pressure and terrain height analyses from the National Meteorological Center, mountain torques are calculated for January, April, July and October 1979 during the First GARP Global Experiment. The zonally integrated mountain torques are generally in good agreement with previous studies. For all four months, positive torque exists in the tropical latitudes as well as in the polar and subtropical latitudes of the Northern Hemisphere; negative torque exists in northern middle latitudes and most of the Southern Hemisphere. An exception occurs in July when the mountain torque is negative between 5 and 25°N and positive in the Southern Hemisphere subtropics. Over latitudes where large terrain variation exists such as near 20°S due to the Andes, the estimate obtained in this study is larger in magnitude than that from previous work. The difference is due to the differences in both grid resolution and the particular atmospheric data and topography selected.The meridional profiles of individual continental mountain torques are examined to illustrate geographical contributions to the net zonal torque. The positive mountain torque in northern high latitudes is due mainly to North America and Greenland. Both North America and Eurasia contribute to the sink of angular momentum in northern middle latitudes and the source in the subtropical latitudes. The negative torque between 5 and 25°N in July is due to the influence of the Indian monsoon trough on Arabia and Africa. The negative mountain torque over South America dominates the positive torque over Africa and Australia in the Southern Hemisphere in January and October.Although the monthly averaged zonally integrated mountain torque assumes lesser importance when compared to the frictional torque, regional mountain torque at the synoptic time scale is quite large and can have considerable influence on the large scale circulation. Hemispheric torques are in qualitative agreement with previous work. Due to

  19. Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers

    SciTech Connect

    Skinner, T. D. Irvine, A. C.; Heiss, D.; Kurebayashi, H.; Ferguson, A. J.; Wang, M.; Hindmarch, A. T.; Rushforth, A. W.

    2014-02-10

    Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven ferromagnetic resonance technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, was analysed to determine the symmetries and relative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the sum of the field-like torque and Oersted torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers.

  20. Torque magnetometry in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Li, Lu

    This thesis describes torque magnetometry studies on unconventional superconductors. Torque magnetometry measures the anisotropic magnetization of samples by recording their torque signals in a tilted magnetic field. Applied to superconductors, this method provides a reliable way to measure the field dependence of magnetization with high resolution under extreme conditions: DC magnetic fields from zero to 45.2 T, and temperature from 300 mK to 300K. The results can be used to determine many important parameters, such as the upper critical field H c2, the superconducting condensation energy, the onset temperature of diamagnetic signals, and so on. We carried out the torque magnetometry measurements on unconventional superconductors---high Tc superconductors and the p-wave superconductor Sr2RuO4---and uncovered new features that do not exist in conventional BCS superconductors. In high Tc superconductors, our torque magnetometry studies focus on the properties of the vortex liquid state. First, by comparing the observed magnetization curves with the Nernst effect results in Bi 2Sr2CaCu2O8+delta, we confirm that the unusually large Nernst effect signals originate from the surviving vortex liquid state above Tc. Second, the M-H curves near the critical temperature Tc suggest that the nature of the transition is the Kosterlitz-Thouless transition. Near Tc, the magnetization response at low field is strongly nonlinear, and the T dependence of the magnetic susceptibility in the low-field limit approaches the predicted curve from the Kosterlitz-Thouless transition. Third, the measurements in intense magnetic field up to 45 T reveal the unusual, weak T-dependence of Hc2. These observations strongly support the existence of the vortex liquid state above Tc. The superconducting state is destroyed by the phase fluctuation of the pair condensate, while the pair condensate keeps its amplitude above T c. Further studies in single-layered high Tc superconductors reveal more

  1. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  2. Acoustic noise from volcanoes - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Woulff, G.; Mcgetchin, T. R.

    1976-01-01

    The paper discusses some theoretical aspects of acoustic investigation of volcanoes and describes a field experiment involving the recording, analysis, and interpretation of acoustic radiation from energetic fumaroles at Volcan Acatenango, Guatemala, during mid-January 1973. Particular attention is given to deriving information about the flow velocity of the erupting medium from acoustics as a means to study eruption dynamics. Theoretical considerations suggest that acoustic power radiated during gaseous volcanic eruptions may be related to gas exit velocity according to appropriate power laws. Eruption acoustics proves useful as a means of quantitative monitoring of volcanic activity.

  3. Comments on “The boundary point method for the calculation of exterior acoustic radiation problem” [S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761 772

    NASA Astrophysics Data System (ADS)

    Chen, J. T.; Chen, I. L.; Lee, Y. T.

    2008-03-01

    Zhang and Chen [The boundary point method for the calculation of exterior acoustic radiation problem, Journal of Sound and Vibration 228 (1999) 761-772] proposed a boundary point method (BPM) for exterior acoustic problems. The idea is similar to the CHUNKY CHIEF by Wu [A weighted residual formulation for the CHIEF method in acoustic, Journal of Acoustical Society of America 90 (1991) 1608-1614], but Chunky CHIEF provides constraints using null-field equations while the BPM used the CHUNKY BLOCK singularity outside the domain. The mathematical structure is similar to Trefftz method and method of fundamental solutions [J.T. Chen et al., On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations, Computers & Mathematics with Applications 53 (2007) 851-879], since the interpolation function satisfies the governing equation. Later, Wu commented twice [Sean F. Wu, Comments on "The boundary point method for the calculation of exterior acoustic radiation" (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772), Journal of Sound and Vibration, 298 (2006) 1173]; Sean F. Wu, Comments on "Reply to the comments on 'The boundary point method for the calculation of exterior acoustic radiation' (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772)", Journal of Sound and Vibration, 298 (2006) 1176-1177] that the formulation of BPM is wrong and the authors replied also twice [X.Z. Chen, C.X. Bi, Reply to the comments on "The boundary point method for the calculation of exterior acoustic radiation" (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772), Journal of Sound and Vibration, 298 (2006) 1174-1175; [X.Z. Chen, C.X. Bi, Reply to the comments on "Reply to the comments on 'The boundary point method for the calculation of exterior acoustic radiation' (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772)", Journal of Sound

  4. First-order torques and solid-body spinning velocities in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Rudnick, I.

    1977-01-01

    The letter reports an observation of first-order nonzero time-averaged torques and solid-body spinning velocities in intense acoustic fields. The experimental apparatus consisted of a vertical cylindrical rod supported on an air bearing and passing through a box with two loudspeakers centered on adjoining vertical sides. The rim velocity of the cylinder and the torque on the cylinder are measured as functions of air-particle velocity and the phase difference between the x and y components of the particle velocity. It is found that both rim velocity and torque are linear functions of particle velocity. Difficulties in constructing a proper theoretical description of the observed effects are discussed.

  5. The role of interaction torque and muscle torque in the control of downward squatting.

    PubMed

    Fujisawa, Hiroyuki; Suzuki, Hiroto; Murakami, Kenichi; Kawakami, Shingo; Suzuki, Makoto

    2016-01-01

    [Purpose] The purposes of this study were first to analyze the multijoint dynamics of downward squatting, and to examine the contribution of interaction torque and muscle torque to net torque, and second, to examine mechanisms of movement control. [Subjects] The subjects were 31 healthy men with a mean age of 21.0 ± 1.2 years (range, 19-24 years). [Methods] Squatting tasks with the trunk in two positions, an erect and anterior tilt position, were performed by the subjects. Net, interaction, muscle, and gravity torque were calculated according to the Lagrange equation using 3D tracking data. [Results] The contribution ratio of interaction torque to net torque was approximately 90%, irrespective of the joint and task. In contrast, muscle torque showed complicated behavior to compensate for gravity torque. A combined muscle and gravity torque profile showed flexion or dorsiflexion immediately after the initiation of the movement, and it later changed to extension or plantar flexion. [Conclusion] The torque that contributes almost exclusively to the net torque was interaction torque. The combination of muscle and gravity torque at the knee joint and the hip joint is important for movement control, independent of the starting position. PMID:27065552

  6. The role of interaction torque and muscle torque in the control of downward squatting

    PubMed Central

    Fujisawa, Hiroyuki; Suzuki, Hiroto; Murakami, Kenichi; Kawakami, Shingo; Suzuki, Makoto

    2016-01-01

    [Purpose] The purposes of this study were first to analyze the multijoint dynamics of downward squatting, and to examine the contribution of interaction torque and muscle torque to net torque, and second, to examine mechanisms of movement control. [Subjects] The subjects were 31 healthy men with a mean age of 21.0 ± 1.2 years (range, 19–24 years). [Methods] Squatting tasks with the trunk in two positions, an erect and anterior tilt position, were performed by the subjects. Net, interaction, muscle, and gravity torque were calculated according to the Lagrange equation using 3D tracking data. [Results] The contribution ratio of interaction torque to net torque was approximately 90%, irrespective of the joint and task. In contrast, muscle torque showed complicated behavior to compensate for gravity torque. A combined muscle and gravity torque profile showed flexion or dorsiflexion immediately after the initiation of the movement, and it later changed to extension or plantar flexion. [Conclusion] The torque that contributes almost exclusively to the net torque was interaction torque. The combination of muscle and gravity torque at the knee joint and the hip joint is important for movement control, independent of the starting position. PMID:27065552

  7. Numerical inverse method predicting acoustic spinning modes radiated by a ducted fan from free-field test data.

    PubMed

    Lewy, Serge

    2008-07-01

    Spinning modes generated by a ducted turbofan at a given frequency determine the acoustic free-field directivity. An inverse method starting from measured directivity patterns is interesting in providing information on the noise sources without requiring tedious spinning-mode experimental analyses. According to a previous article, equations are based on analytical modal splitting inside a cylindrical duct and on a Rayleigh or a Kirchhoff integral on the duct exit cross section to get far-field directivity. Equations are equal in number to free-field measurement locations and the unknowns are the propagating mode amplitudes (there are generally more unknowns than equations). A MATLAB procedure has been implemented by using either the pseudoinverse function or the backslash operator. A constraint comes from the fact that squared modal amplitudes must be positive which involves an iterative least squares fitting. Numerical simulations are discussed along with several examples based on tests performed by Rolls-Royce in the framework of a European project. It is assessed that computation is very fast and it well fits the measured directivities, but the solution depends on the method and is not unique. This means that the initial set of modes should be chosen according to any known physical property of the acoustic sources. PMID:18646973

  8. Landau-Lifshitz theory of thermomagnonic torque

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2015-07-01

    We derive the thermomagnonic torque associated with smooth magnetic textures subjected to a temperature gradient in the framework of the stochastic Landau-Lifshitz-Gilbert equation. Our approach captures on equal footing two distinct contributions: (i) a local entropic torque that is caused by a temperature dependence of the effective exchange field, the existence of which had been previously suggested based on numerics, and (ii) the well-known spin-transfer torque induced by thermally induced magnon flow. The dissipative components of two torques have the same structure, following a common phenomenology, but opposite signs, with the twice as large entropic torque leading to a domain-wall motion toward the hotter region. We compare the efficiency of the torque-driven domain-wall motion with the recently proposed Brownian thermophoresis.

  9. Investigation of Motorcycle Steering Torque Components

    NASA Astrophysics Data System (ADS)

    Cossalter, V.; Lot, R.; Massaro, M.; Peretto, M.

    2011-10-01

    When driving along a circular path, the rider controls a motorcycle mainly by the steering torque. This work addresses an in-depth analysis of the steady state cornering and in particular the decomposition of the motorcycle steering torque in its main components, such as road-tyre forces, gyroscopic torques, centrifugal and gravity effects. A detailed and experimentally validated multibody model of the motorcycle is used herein to analyze the steering torque components at different speeds and lateral accelerations. First the road tests are compared with the numerical results for three different vehicles and then a numerical investigation is carried out to decompose the steering torque. Finally, the effect of longitudinal acceleration and deceleration on steering torque components is presented.

  10. Magnetic field control. [electromechanical torquing device

    NASA Technical Reports Server (NTRS)

    Haeussermann, W. (Inventor)

    1982-01-01

    A torque control for an electromechanical torquing device of a type where a variable clearance occurs between a rotor and field is described. A Hall effect device senses the field present, which would vary as a function of spacing between field and rotor. The output of the Hall effect device controls the power applied to the field so as to provide a well defined field and thus a controlled torque to the rotor which is well defined.

  11. Identification of a Stirling engine's torque characteristics

    SciTech Connect

    Reader, G.T.; Hooper, C.; Taylor, D.R.

    1983-08-01

    The Stirling engine has many advantages claimed for it when compared to other reciprocating heat engines, one of these claimed advantages being the so-called 'smooth torque' characteristic. On further investigation of this virtue it was found that no definitive description of 'smooth torque' existed. With the expansion in recent years of the quantity of Stirling Engine test data it is apparent that some means of obtaining a numerical value for the smoothness of a torque is required. This paper defines a coefficient which enables the smoothness of a torque output to be measured in a definitive way so that comparisons can be made objectively.

  12. Torque limited drive for manual valves

    DOEpatents

    Elliott, Philip G.; Underwood, Daniel E.

    1989-06-06

    The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.

  13. Torque limited drive for manual valves

    DOEpatents

    Elliott, Philip G.; Underwood, Daniel E.

    1989-01-01

    The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.

  14. Torque on an exoplanet from an anisotropic evaporative wind

    NASA Astrophysics Data System (ADS)

    Teyssandier, Jean; Owen, James E.; Adams, Fred C.; Quillen, Alice C.

    2015-09-01

    Winds from short-period Earth and Neptune mass exoplanets, driven by high-energy radiation from a young star, may evaporate a significant fraction of a planet's mass. If the momentum flux from the evaporative wind is not aligned with the planet/star axis, then it can exert a torque on the planet's orbit. Using steady-state one-dimensional evaporative wind models, we estimate this torque using a lag angle that depends on the product of the speed of the planet's upper atmosphere and a flow time-scale for the wind to reach its sonic radius. We estimate the regime of planet radius, mass and stellar radiation flux in which a wind is capable of exerting a significant torque on the planet's orbit, and we find that it could be important for some of the observed planets. We also estimate the momentum flux from time-dependent one-dimensional hydrodynamical simulations. Similar to the Yarkovsky effect, the wind causes the planet to drift outwards if atmospheric circulation is prograde (super-rotating) and in the opposite direction if the circulation is retrograde. A close-in super-Earth mass planet that loses a large fraction of its mass in a wind could drift a few per cent of its semimajor axis. While this change is small, it places constraints on the evolution of resonant pairs such as Kepler 36b and c.

  15. Acoustic positioning and orientation prediction

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Aveni, Glenn (Inventor); Putterman, Seth (Inventor); Rudnick, Joseph (Inventor)

    1990-01-01

    A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.

  16. Application of torque margin ratios for Eddy Current Dampers

    NASA Astrophysics Data System (ADS)

    Starin, Scott; Rodriguez, Tony

    2003-09-01

    Eddy Current Dampers (ECDs) offer higher robustness, torque capacity and linearity than Fluid Dampers. One of the perceived disadvantages of ECDs when compared to Fluid Dampers is the magnitude of zero speed Coulomb torque. However, the magnitude of total Coulomb torque must be analyzed and considered when applying torque margin ratios, depending on the construction of the ECD and method of reaction torque generation.

  17. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  18. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273

  19. Magnetically Torqued Thin Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kluźniak, W.; Rappaport, S.

    2007-12-01

    We compute the properties of a geometrically thin, steady accretion disk surrounding a central rotating, magnetized star. The magnetosphere is assumed to entrain the disk over a wide range of radii. The model is simplified in that we adopt two (alternate) ad hoc, but plausible, expressions for the azimuthal component of the magnetic field as a function of radial distance. We find a solution for the angular velocity profile tending to corotation close to the central star and smoothly matching a Keplerian curve at a radius where the viscous stress vanishes. The value of this ``transition'' radius is nearly the same for both of our adopted B-field models. We then solve analytically for the torques on the central star and for the disk luminosity due to gravity and magnetic torques. When expressed in a dimensionless form, the resulting quantities depend on one parameter alone, the ratio of the transition radius to the corotation radius. For rapid rotators, the accretion disk may be powered mostly by spin-down of the central star. These results are independent of the viscosity prescription in the disk. We also solve for the disk structure for the special case of an optically thick alpha disk. Our results are applicable to a range of astrophysical systems including accreting neutron stars, intermediate polar cataclysmic variables, and T Tauri systems.

  20. Acoustic and electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Jones, Douglas Samuel

    Theoretical models of EM and acoustic wave propagation are presented in an introductory text intended for intermediate-level science and engineering students. Chapters are devoted to the mathematical representation of acoustic and EM fields, the special theory of relativity, radiation, resonators, waveguide theory, refraction, surface waves, scattering by smooth objects, diffraction by edges, and transient waves. The mathematical tools required for the analysis (Bessel, Legendre, Mathieu, parabolic-cylinder, and spheroidal functions; tensor calculus; and the asymptotic evaluation of integrals) are covered in appendices.

  1. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  2. Acoustic tractor beam.

    PubMed

    Démoré, Christine E M; Dahl, Patrick M; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P; Spalding, Gabriel C

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system. PMID:24836252

  3. Acoustic Tractor Beam

    NASA Astrophysics Data System (ADS)

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  4. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... 177. Battista RA. Gamma knife radiosurgery for vestibular schwannoma. Otolaryngol Clin North Am . 2009;42:635-654. ...

  5. High torque bellows seal rotary drive

    NASA Technical Reports Server (NTRS)

    Diaguila, A. J.; Macomber, J. W.; Adams, D. W.

    1972-01-01

    Bellows seal rotary drive device was developed which allows high torque transmission through sealed compartments. Bearing friction which would normally be carried by sealing bellows in comparable devices is absorbed by universal-gimbal joint. It can be used to transmit high torque, low speed, rotary motion through sealed barriers to prevent contamination or escape of fluids.

  6. Displaying Force and Torque of A Manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Dotson, R. S.; Primus, H. C.

    1984-01-01

    Display combines bar charts, vector diagrams, and numerical values to inform operator of forces and torques exerted by end effector of manipulator. On voice or keyboard command, eight-channel strip-chart recorder traces force and torque components and claw position of raw measurements from eight strain gage sensors in end effector. Especially helpful when operator's view of end effector is obscured.

  7. Performance of a constant torque pedal device.

    PubMed Central

    Sherwin, K.

    1979-01-01

    A constant-torque oscillatory pedal-crank device using vertical movement of the feet is described and its performance compared to a conventional rotational cycle. Using a generator to measure the power output the constant-torque device produced 33% less power and thus has no practical value as an alternative to the conventional pedal-crank system. Images Figure 3 PMID:526783

  8. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine...

  9. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine...

  10. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine...

  11. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine...

  12. High-torque power wrench, a concept

    NASA Technical Reports Server (NTRS)

    Cox, E. F.

    1968-01-01

    High-torque power wrench is small enough to be handled by one or two men yet has sufficient torque to remove 1-1/2- to 4-inch nuts from high-pressure tanks and valves. The action can be made automatic by use of solenoid-operated valves and suitable switches.

  13. Forces and torques between nonintersecting straight currents

    NASA Astrophysics Data System (ADS)

    Binder, P.-M.; Cross, Felicity; Silva, J. K.

    2016-07-01

    We analyse two very long current-carrying straight wires that point in arbitrary directions without touching. We find general expressions for the forces and torques for arbitrary points on one wire due to the other. This allows us to make calculations for the overall forces and torques and statements about the stability of parallel and anti-parallel current arrangements.

  14. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine...

  15. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  16. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  17. RADIOACTIVE MATERIAL PACKAGING TORQUE REQUIREMENTS COMPLIANCE

    SciTech Connect

    Watkins, R.; Leduc, D.

    2011-03-24

    Shipping containers used to transport radioactive material (RAM) in commerce employ a variety of closure mechanisms. Often, these closure mechanisms require a specific amount of torque be applied to a bolt, nut or other threaded fastener. It is important that the required preload is achieved so that the package testing and analysis is not invalidated for the purpose of protecting the public. Torque compliance is a means of ensuring closure preload, is a major factor in accomplishing the package functions of confinement/containment, sub-criticality, and shielding. This paper will address the importance of applying proper torque to package closures, discuss torque value nomenclature, and present one methodology to ensure torque compliance is achieved.

  18. Estimating Torque Imparted on Spacecraft Using Telemetry

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  19. Spin-transfer torques in helimagnets

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil M. D.; Brataas, Arne

    2013-05-01

    We theoretically investigate current-induced magnetization dynamics in chiral-lattice helimagnets. Spin-orbit coupling in noncentrosymmetric crystals induces a reactive spin-transfer torque that has not been previously considered. We demonstrate how the torque is governed by the crystal symmetry and acts as an effective magnetic field along the current direction in cubic B20-type crystals. The effects of the new torque are computed for current-induced dynamics of spin spirals and the Doppler shift of spin waves. In current-induced spin-spiral motion, the new torque tilts the spiral structure. The spin waves of the spiral structure are initially displaced by the new torque, while the dispersion relation is unaffected.

  20. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  1. Acoustic radiation from a fluid-filled, subsurface vascular tube with internal turbulent flow due to a constriction

    PubMed Central

    Yazicioglu, Yigit; Royston, Thomas J.; Spohnholtz, Todd; Martin, Bryn; Loth, Francis; Bassiouny, Hisham S.

    2006-01-01

    The vibration of a thin-walled cylindrical, compliant viscoelastic tube with internal turbulent flow due to an axisymmetric constriction is studied theoretically and experimentally. Vibration of the tube is considered with internal fluid coupling only, and with coupling to internal-flowing fluid and external stagnant fluid or external tissue-like viscoelastic material. The theoretical analysis includes the adaptation of a model for turbulence in the internal fluid and its vibratory excitation of and interaction with the tube wall and surrounding viscoelastic medium. Analytical predictions are compared with experimental measurements conducted on a flow model system using laser Doppler vibrometry to measure tube vibration and the vibration of the surrounding viscoelastic medium. Fluid pressure within the tube was measured with miniature hydrophones. Discrepancies between theory and experiment, as well as the coupled nature of the fluid–structure interaction, are described. This study is relevant to and may lead to further insight into the patency and mechanisms of vascular failure, as well as diagnostic techniques utilizing noninvasive acoustic measurements. PMID:16158674

  2. Acoustic levitation of a large solid sphere

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  3. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  4. Motion of a group of microparticles in a viscoelastic medium under the action of acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Andreev, V. G.; Shanin, A. V.; Demin, I. Yu.

    2014-11-01

    We theoretically and experimentally substantiate the method of detecting microcalcifications in mammary gland tissue. Calcium salts accumulate in soft tissues, primarily forming clusters of individual microparticles. We study the motion of solid microparticles distributed in a viscoelastic medium. Displacement of particles is caused by the radiation force occurring as a consequence of energy scattering and absorption of an ultrasound beam focused in the particle region. The radiation force acts over the course of 200 μs, after which the medium with distributed particles relaxes to the initial state. Motion of the medium is tracked by the cross-correlation method with short probing pulses following at a frequency of 5 kHz. The presence of solid microparticles leads to a change in the character of motion of the medium after pulsed ultrasound action. The amplitude and duration of displacements increases in comparison to the homogeneous medium, and the motion character itself becomes significantly complicated.

  5. Acoustic Mechanical Feedthroughs

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  6. Robust acoustic wave manipulation of bubbly liquids

    NASA Astrophysics Data System (ADS)

    Gumerov, N. A.; Akhatov, I. S.; Ohl, C.-D.; Sametov, S. P.; Khazimullin, M. V.; Gonzalez-Avila, S. R.

    2016-03-01

    Experiments with water-air bubbly liquids when exposed to acoustic fields of frequency ˜100 kHz and intensity below the cavitation threshold demonstrate that bubbles ˜30 μm in diameter can be "pushed" away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  7. Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates.

    PubMed

    Mitri, F G

    2015-09-01

    The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. PMID:25773968

  8. Torque Ripple Reduction of Reluctance Torque Assisted Motors Using Asymmetric Flux Barriers

    NASA Astrophysics Data System (ADS)

    Hiramoto, Kenji; Takeda, Yoji; Sanada, Masayuki; Morimoto, Shigeo

    Interior permanent magnet synchronous motor (IPMSM) is efficient and can be operated in wide speed region; therefore it is used widely. However, torque ripple of reluctance torque assisted motors, for example IPMSM and synchronous reluctance motor (SynRM), is very large. The skew is known in the prior art as a torque ripple reduction method of AC motors. Although the skew is effective for torque ripple reduction, structure is complicated and it has the disadvantage that average torque will decrease. The discontinuous variation of magnetic resistance between flux barriers and teeth cause the torque ripple. In this paper, in order to ease the discontinuous variation of magnetic resistance, flux barriers are asymmetrically designed so that the relative position relation between flux barriers and teeth may not be in agreement as much as possible. As a result, the torque ripple can be reduced dramatically without the average torque decrease. The experimental motor has been fabricated and the results of measuring torque ripple prove the validity of the torque ripple reduction using asymmetric flux barriers.

  9. Research on new dynamic torque calibration system

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wang, Zhong Yu; Yin, Xiao

    2016-06-01

    Dynamic torque calibration method based on rotating table and interferometric system is studied in this paper. A load mass with certain moment of inertia are screwed on the top of torque transducer, the dynamic torque is realized by load object are traceable to angular acceleration and moment of inertia of the object by M (t)=I θ ¨(t) , where I is the total moment of inertia acting on the sensing element of the torque transducer and θ ¨ is the time and spatial-dependent angular acceleration of the load object which is directly measured by a laser interferometer. This paper will introduce a dynamic torque calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses servomotor to generate dynamic torque in the range from 0.1Nm to 200Nm, and heterodyne laser interferometers cooperated with column grating are used for angular acceleration measurement. An airbearing system is developed to increase the performance of the dynamic turque calibration system. This paper introduce the setup of the dynamic torque calibration system.

  10. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-01

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young’s moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  11. Combined acoustic radiation force impulse, aminotransferase to platelet ratio index and Forns index assessment for hepatic fibrosis grading in hepatitis B

    PubMed Central

    Dong, Chang-Feng; Xiao, Jia; Shan, Ling-Bo; Li, Han-Ying; Xiong, Yong-Jia; Yang, Gui-Lin; Liu, Jing; Yao, Si-Min; Li, Sha-Xi; Le, Xiao-Hua; Yuan, Jing; Zhou, Bo-Ping; Tipoe, George L; Liu, Ying-Xia

    2016-01-01

    AIM: To investigate the combined diagnostic accuracy of acoustic radiation force impulse (ARFI), aspartate aminotransferase to platelet ratio index (APRI) and Forns index for a non-invasive assessment of liver fibrosis in patients with chronic hepatitis B (CHB). METHODS: In this prospective study, 206 patients had CHB with liver fibrosis stages F0-F4 classified by METAVIR and 40 were healthy volunteers were measured by ARFI, APRI and Forns index separately or combined as indicated. RESULTS: ARFI, APRI or Forns index demonstrated a significant correlation with the histological stage (all P < 0.001). According to the AUROC of ARFI and APRI for evaluating fibrotic stages more than F2, ARFI showed an enhanced diagnostic accuracy than APRI (P < 0.05). The combined measurement of ARFI and APRI exhibited better accuracy than ARFI alone when evaluating ≥ F2 fibrotic stage (Z = 2.77, P = 0.006). Combination of ARFI, APRI and Forns index did not obviously improve the diagnostic accuracy compared to the combination of ARFI and APRI (Z = 0.958, P = 0.338). CONCLUSION: ARFI + APRI showed enhanced diagnostic accuracy than ARFI or APRI alone for significant liver fibrosis and ARFI + APRI + Forns index shows the same effect with ARFI + APRI. PMID:27190578

  12. Acoustic Radiation Force Impulse Technology in the Differential Diagnosis of Solid Breast Masses with Different Sizes: Which Features Are Most Efficient?

    PubMed Central

    Bai, Min; Zhang, Hui-Ping; Xing, Jin-Fang; Shi, Qiu-Sheng; Gu, Ji-Ying; Li, Fan; Chen, Hui-Li; Zhang, Xue-Mei; Fang, Yun; Du, Lian-Fang

    2015-01-01

    Purpose. To evaluate diagnostic performance of acoustic radiation force impulse (ARFI) technology for solid breast masses with different sizes and determine which features are most efficient. Materials and Methods. 271 solid breast masses in 242 women were examined with ARFI, and their shear wave velocities (SWVs), Virtual Touch tissue imaging (VTI) patterns, and area ratios (ARs) were measured and compared with their histopathological outcomes. Receiver operating characteristic curves (ROC) were calculated to assess diagnostic performance of ARFI for small masses (6–14 mm) and big masses (15–30 mm). Results. SWV of mass was shown to be positively associated with mass size (P < 0.001). For small masses, area under ROC (Az) of AR was larger than that of SWV (P < 0.001) and VTI pattern (P < 0.001); no significant difference was found between Az of SWV and that of VTI pattern (P = 0.906). For big masses, Az of VTI pattern was less than that of SWV (P = 0.008) and AR (P = 0.002); no significant difference was identified between Az of SWV and that of AR (P = 0.584). Conclusions. For big masses, SWV and AR are both efficient measures; nevertheless, for small masses, AR seems to be the best feature. PMID:26258138

  13. Kidney Shear Wave Speed Values in Subjects with and without Renal Pathology and Inter-Operator Reproducibility of Acoustic Radiation Force Impulse Elastography (ARFI) - Preliminary Results

    PubMed Central

    Bob, Flaviu; Bota, Simona; Sporea, Ioan; Sirli, Roxana; Petrica, Ligia; Schiller, Adalbert

    2014-01-01

    Aim to assess the inter-operator reproducibility of kidney shear wave speed, evaluated by means of Acoustic Radiation Force Impulse (ARFI) elastography, and the factors which influence it. Methods Our prospective pilot study included 107 subjects with or without kidney pathology in which kidney shear wave speed was evaluated by means of ARFI elastography. Intraclass correlation coefficient (ICC) was used to assess ARFI elastography reproducibility. Results A strong agreement was obtained between kidney shear wave speed measurements obtained by the two operators: ICC = 0.71 (right kidney) and 0.69 (left kidney). Smaller ICCs were obtained in “healthy subjects”, as compared to patients with kidney diseases (0.68 vs. 0.75), in women as compared with men (0.59 vs. 0.78), in subjects younger than 50 years as compared with those aged at least 50 years (0.63 vs. 0.71), in obese as compared with normal weight and overweight subjects (0.36 vs. 0.66 and 0.78) and in case of measurements depth <4 cm or >6 cm as compared with those performed at a depth of 4–6 cm from the skin (0.32 and 0.60 vs. 0.81). Conclusion ARFI elastography is a reproducible method for kidney shear wave speed assessment. PMID:25426849

  14. Assessment of the Stiffness of Major Salivary Glands in Primary Sjögren's Syndrome through Quantitative Acoustic Radiation Force Impulse Imaging.

    PubMed

    Zhang, Shanshan; Zhu, Jiaan; Zhang, Xia; He, Jing; Li, Jianguo

    2016-03-01

    The purpose of the study described here was to evaluate salivary gland stiffness in primary Sjögren's syndrome (pSS) via acoustic radiation force impulse imaging, including Virtual Touch tissue quantification (VTQ) and Virtual Touch tissue imaging quantification (VTIQ). Twenty-one patients with pSS and 11 healthy patients were included, and the paired parotid and submandibular glands of all of the patients were examined using VTQ and VTIQ. Differences between the two groups were compared with independent and paired t-tests. The VTQ value for the parotid in the pSS group was significantly higher than that obtained for the control group (1.33 ± 0.22 and 1.18 ± 0.04 m/s, respectively, p < 0.01). The VTIQ values for the parotid and submandibular gland were both significantly higher in the pSS group than in the control group (p < 0.05). In the pSS group, a positive correlation was observed between the VTQ and VTIQ results for the parotid and submandibular glands. In summary, the stiffness of the major salivary glands in patients with pSS was increased compared with that of patients with normal glands. This finding indicates that VTQ and VTIQ imaging may be valuable adjuncts to gray-scale ultrasonography for the clinical diagnosis of pSS. PMID:26715188

  15. Setting tool with retractable torque fingers

    SciTech Connect

    Nevels, D.L.; Baugh, J.L.

    1986-07-08

    A method is described of setting a liner in a well bore using a setting tool of the type adapted to be made up in a pipe string for releasably engaging a setting sleeve in a well bore, comprising the steps of: connecting a mandrel in the pipe string which has a setting nut with external connecting threads for engaging mating connecting threads located on the interior of a setting sleeve disposed about the mandrel, the mandrel being slidably disposed within the setting nut when the setting nut is engaging the setting sleeve, the mandrel being slidable between an extended, running-in position and a weight set-down position; mounting a torque collar on the mandrel exterior, the torque collar having at least one torque finger mounted thereon which is axially slidable on an external surface of the torque collar in a plane which is parallel to the longitudinal axis of the tool, the setting sleeve having at least one end notch adapted to receive the axially slidable torque finger; initially latching the mandrel to the setting sleeve with each torque finger received within its respective end notch; setting weight down on the pipe string from the well surface to release the latch and allow relative movement between the connecting threads of the setting nut and setting sleeve; applying right hand torque to the pipe string to release the connecting threads of the setting nut from the setting sleeve; temporarily lifting the pipe string and setting tool to test the disengagement of the setting nut; again resting the setting tool on the setting sleeve; rotating the pipe string to realign the torque finger and the setting sleeve end notch and reengage the torque finger with the end notch; and continuing to rotate to the right to rotate the setting sleeve during subsequent well bore operations.

  16. Identifying Clinically Significant Prostate Cancers using 3-D In Vivo Acoustic Radiation Force Impulse Imaging with Whole-Mount Histology Validation.

    PubMed

    Palmeri, Mark L; Glass, Tyler J; Miller, Zachary A; Rosenzweig, Stephen J; Buck, Andrew; Polascik, Thomas J; Gupta, Rajan T; Brown, Alison F; Madden, John; Nightingale, Kathryn R

    2016-06-01

    Overly aggressive prostate cancer (PCa) treatment adversely affects patients and places an unnecessary burden on our health care system. The inability to identify and grade clinically significant PCa lesions is a factor contributing to excessively aggressive PCa treatment, such as radical prostatectomy, instead of more focal, prostate-sparing procedures such as cryotherapy and high-dose radiation therapy. We have performed 3-D in vivo B-mode and acoustic radiation force impulse (ARFI) imaging using a mechanically rotated, side-fire endorectal imaging array to identify regions suspicious for PCa in 29 patients being treated with radical prostatectomies for biopsy-confirmed PCa. Whole-mount histopathology analyses were performed to identify regions of clinically significant/insignificant PCa lesions, atrophy and benign prostatic hyperplasia. Regions of suspicion for PCa were reader-identified in ARFI images based on boundary delineation, contrast, texture and location. These regions of suspicion were compared with histopathology identified lesions using a nearest-neighbor regional localization approach. Of all clinically significant lesions identified on histopathology, 71.4% were also identified using ARFI imaging, including 79.3% of posterior and 33.3% of anterior lesions. Among the ARFI-identified lesions, 79.3% corresponded to clinically significant PCa lesions, with these lesions having higher indices of suspicion than clinically insignificant PCa. ARFI imaging had greater sensitivity for posterior versus anterior lesions because of greater displacement signal-to-noise ratio and finer spatial sampling. Atrophy and benign prostatic hyperplasia can cause appreciable prostate anatomy distortion and heterogeneity that confounds ARFI PCa lesion identification; however, in general, ARFI regions of suspicion did not coincide with these benign pathologies. PMID:26947445

  17. Acoustically-driven microfluidic systems

    SciTech Connect

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  18. Acoustic techniques in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Sinha, D.N.

    1995-07-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  19. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  20. Acoustic Rectification in Dispersive Media

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  1. Torquing preload in a lubricated bolt

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. L.

    1978-01-01

    The tension preload obtained by torquing a 7/8 in. diam UNC high strength bolt was determined for lubricated and dry conditions. Consistent preload with a variation of + or - 3% was obtained when the bolt head area was lubricated prior to each torque application. Preload tensions nearly 70% greater than the value predicted with the commonly used formula occurred with the lubricated bolt. A reduction to 39% of the initial preload was observed during 50 torque applications without relubrication. Little evidence of wear was noted after 203 cycles of tightening.

  2. Electromagnetic Torque in Tokamaks with Toroidal Asymmetries

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas Christopher

    Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric

  3. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. PMID:26558995

  4. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  5. Theory on acoustic sources

    NASA Technical Reports Server (NTRS)

    Wright, S. E.

    1978-01-01

    A theory is described for the radiation emission emission from acoustic multipole sources. The sources can be stationary or moving at speeds including supersonic and experience stationary or moving disturbances. The effect of finite source distributions and disturbances is investigated as well as the manner in which they interact. Distinction is made between source distributions that responsed as a function of time and those that respond as a function of space.

  6. Controlled sample orientation and rotation in an acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Gaspar, Mark S. (Inventor); Trinh, Eugene H. (Inventor)

    1988-01-01

    A system is described for use with acoustic levitators, which can prevent rotation of a levitated object or control its orientation and/or rotation. The acoustic field is made nonsymmetrical about the axis of the levitator, to produce an orienting torque that resists sample rotation. In one system, a perturbating reflector is located on one side of the axis of the levitator, at a location near the levitated object. In another system, the main reflector surface towards which incoming acoustic waves are directed is nonsymmetrically curved about the axis of the levitator. The levitated object can be reoriented or rotated in a controlled manner by repositioning the reflector producing the nonsymmetry.

  7. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  8. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  9. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  10. Feedback-based mitigation of torque harmonics in interior permanent magnet synchronous machines

    NASA Astrophysics Data System (ADS)

    Vaks, Nir

    Harmonics in the electromagnetic torque are a source of concern in permanent magnet synchronous machine (PMSM) drives. The harmonics are created by non-idealities in the electromagnetic fields produced by the magnets and the stator excitation. They lead to vibration that can cause premature wear of the drivetrain components as well as acoustic noise that may be bothersome to users. In this research, current- and voltage-based control schemes have been developed to mitigate the harmonics in a class of PMSMs in which the magnets are placed interior to the rotor iron. Interior permanent magnet synchronous machines (IPMSMs) have recently gained popularity for applications including hybrid electric vehicles and robot joint control. In the current-based control, a low-cost piezoelectric sensor is used to measure torque harmonics. A conjugate gradient algorithm is then applied to search for harmonics in the stator current that produce a commanded average torque while eliminating the measured torque harmonics. The algorithm is based upon analytical closed-form expressions for the average and harmonic components of torque that have been derived for IPMSMS with arbitrary back-emf waveforms. In the voltage-based control, a time-domain model of the machine is used to map the outputs of the conjugate gradient algorithm to commanded stator voltages. Since both utilize feedback, the controls are insensitive to changes in machine parameters that result from magnetic saturation, temperature, or parameter drift. In addition, the user has flexibility to select the harmonic(s) of torque to be eliminated.

  11. Torque-mixing magnetic resonance spectroscopy.

    PubMed

    Losby, J E; Fani Sani, F; Grandmont, D T; Diao, Z; Belov, M; Burgess, J A J; Compton, S R; Hiebert, W K; Vick, D; Mohammad, K; Salimi, E; Bridges, G E; Thomson, D J; Freeman, M R

    2015-11-13

    A universal, torque-mixing method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by magnetic induction, the transverse component of a precessing dipole moment can be measured in sensitive broadband spectroscopy, here using a resonant mechanical torque sensor. Unlike induction, the torque amplitude allows equilibrium magnetic properties to be monitored simultaneously with the spin dynamics. Comprehensive electron spin resonance spectra of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature reveal assisted switching between magnetization states and mode-dependent spin resonance interactions with nanoscale surface imperfections. The rich detail allows analysis of even complex three-dimensional spin textures. The flexibility of microelectromechanical and optomechanical devices combined with broad generality and capabilities of torque-mixing magnetic resonance spectroscopy offers great opportunities for development of integrated devices. PMID:26564851

  12. Torque equilibrium attitude control for Skylab reentry

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1979-01-01

    All the available torque equilibrium attitudes (most were useless from the standpoint of lack of electrical power) and the equilibrium seeking method are presented, as well as the actual successful application during the 3 weeks prior to Skylab reentry.

  13. Improved computed torque control for industrial robots

    NASA Technical Reports Server (NTRS)

    Uebel, Mark; Minis, Ioannis; Cleary, Kevin

    1992-01-01

    The authors examine the computed torque control problem for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators due to the dynamics introduced by the joint drive systems. The proposed approach overcomes this problem by combining a novel computed torque algorithm with simple torque controllers at each joint of the robot. The control scheme is applied to a seven degree-of-freedom industrial manipulator, and the system performance in standard tasks is evaluated using both dynamic simulation and actual experiments. The results show that the proposed controller leads to improved tracking performance over a conventional PD (proportional plus derivative) controller.

  14. Exhaust powered drive shaft torque enhancer

    SciTech Connect

    Koch, A.B.

    1986-09-30

    This patent describes a power producing combination including an internal combustion engine and a mounting frame therefor, and power transmission means including rotating drive shaft means connected to the engine. The improvement described here is a drive shaft torque enhancing device, the device comprising: a multiplicity of blades secured to the drive shaft, equally spaced therearound, each generally lying in a plane containing the axis of the drive shaft; torque enhancer feed duct means for selectively directing a stream of exhaust gases from the engine to impact against the blades to impart torque to the drive shaft; and wherein the power producing combination is used in a vehicle, the vehicle having braking means including a brake pedal; and the power producing combination further comprising torque enhancer disengagement means responsive to motion of the brake pedal.

  15. Torque and Learning and Behavior Problems in Children.

    ERIC Educational Resources Information Center

    Zendel, Ivan H.; Pihl, R. O.

    1980-01-01

    Findings indicate minimal differences, on diagnostic tests, between children who exhibited torque and those who did not. Torque is defined as the circling of any X in a clockwise direction. Torque is not associated with learning problems in school. Diagnostic utility of torque should be carefully considered. (Author)

  16. Large amplitude oscillation of magnetization in spin-torque oscillator stabilized by field-like torque

    SciTech Connect

    Taniguchi, Tomohiro Kubota, Hitoshi; Imamura, Hiroshi; Tsunegi, Sumito

    2015-05-07

    Oscillation frequency of spin torque oscillator with a perpendicularly magnetized free layer and an in-plane magnetized pinned layer is theoretically investigated by taking into account the field-like torque. It is shown that the field-like torque plays an important role in finding the balance between the energy supplied by the spin torque and the dissipation due to the damping, which results in a steady precession. The validity of the developed theory is confirmed by performing numerical simulations based on the Landau-Lifshitz-Gilbert equation.

  17. Large amplitude oscillation of magnetization in spin-torque oscillator stabilized by field-like torque

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2015-05-01

    Oscillation frequency of spin torque oscillator with a perpendicularly magnetized free layer and an in-plane magnetized pinned layer is theoretically investigated by taking into account the field-like torque. It is shown that the field-like torque plays an important role in finding the balance between the energy supplied by the spin torque and the dissipation due to the damping, which results in a steady precession. The validity of the developed theory is confirmed by performing numerical simulations based on the Landau-Lifshitz-Gilbert equation.

  18. Torque-mixing Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    A universal, mechanical torque method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by induction, a signal proportional to the transverse component of a precessing dipole moment can be measured as a pure mechanical torque in broadband, frequency-swept spectroscopy. Comprehensive electron spin resonance of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature are presented to demonstrate the method. The rich detail allows analysis of even complex 3D spin textures.

  19. Mandibular lip bumper for molar torque control.

    PubMed

    Celentano, Giuseppe; Longobardi, Annalisa; Cannavale, Rosangela; Perillo, Letizia

    2011-01-01

    Treatment effects of lip bumpers alone include flaring of the mandibular incisors, distalization and uprighting of the mandibular first molars, and buccal expansion of the canines, premolars, and molar. Lip forces are transmitted through this appliance onto the molars. Moreover the lip bumper is able to derotate, expand or constrict, upright and reinforce the anchorage whereas torque control is lacking. Aim of this paper is the presentation of a new type of lip bumper that allows the molar torque control. PMID:21515237

  20. A reactive torque control law for gyroscopically controlled space vehicles

    NASA Technical Reports Server (NTRS)

    Farmer, J. E.

    1973-01-01

    A method of control is developed based on the reactive torques as seen by the individual CMG gimbals. The application of a torque to the gimbal of a CMG rotates the momentum vector and applies a torque to the spacecraft according to well-known laws. The response (rotation) of the vehicle produces a reverse or reaction torque opposing the torque producing the gimbal movement. The reactive torque and the pseudoinverse control schemes are contrasted in order to point out the simplicity of the first method. Simulation was performed only to the extent necessary to prove that reactive torque stabilization and control is feasible.

  1. Extraneous torque and compensation control on the electric load simulator

    NASA Astrophysics Data System (ADS)

    Jiao, Zongxia; Li, Chenggong; Ren, Zhiting

    2003-09-01

    In this paper a novel motor-drive load simulator based on compensation control strategy is proposed and designed. Through analyzing the torque control system consisting of DC torque motor, PWM module and torque sensor, it is shown that performance of the motor-drive load simulator is possible to be as good as that of the electro-hydraulic load simulator in the range of small torque. In the course of loading, the rotation of the actuator would cause a strong disturbance torque through the motor back-EMF, which produces extraneous torque similar as in electro-hydraulic load simulator. This paper analyzes the cause of extraneous torque inside the torque motor in detail and presents an appropriate compensation control with which the extraneous torque can be compensated and the good performance of the torque control system can be obtained. The results of simulation indicate that the compensation is very effective and the track performance is according with the request.

  2. Knudsen torque on heated micro beams

    SciTech Connect

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    2014-12-09

    Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction of the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3μm at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects.

  3. Electrochemical Processes Enhanced by Acoustic Liquid Manipulation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2004-01-01

    Acoustic liquid manipulation is a family of techniques that employ the nonlinear acoustic effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. Researchers at the NASA Glenn Research Center are exploring new methods of manipulating liquids for a variety of space applications, and we have found that acoustic techniques may also be used in the normal Earth gravity environment to enhance the performance of existing fluid processes. Working in concert with the NASA Commercial Technology Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation (Elgin, IL), researchers at Glenn have applied nonlinear acoustic principles to industrial applications. Collaborating with Alchemitron Corporation, we have adapted the devices to create acoustic streaming in a conventional electroplating process.

  4. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-07-01

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  5. Imaging Transverse Isotropic Properties of Muscle by Monitoring Acoustic Radiation Force Induced Shear Waves using a 2D Matrix Ultrasound Array

    PubMed Central

    Wang, Michael; Byram, Brett; Palmeri, Mark; Rouze, Ned; Nightingale, Kathryn

    2013-01-01

    A 2D matrix ultrasound array is used to monitor acoustic radiation force impulse (ARFI) induced shear wave propagation in 3D in excised canine muscle. From a single acquisition, both the shear wave phase and group velocity can be calculated to estimate the shear wave speed (SWS) along and across the fibers, as well as the fiber orientation in 3D. The true fiber orientation found using the 3D Radon Transform on B-mode volumes of the muscle was used to verify the fiber direction estimated from shear wave data. For the simplified imaging case when the ARFI push can be oriented perpendicular to the fibers, the error in estimating the fiber orientation using phase and group velocity measurements was 3.5 ±2.6° and 3.4 ±1.4° (mean ± standard deviation), respectively, over six acquisitions in different muscle samples. For the more general case when the push is oblique to the fibers, the angle between the push and the fibers is found using the dominant orientation of the shear wave displacement magnitude. In 30 acquisitions on six different muscle samples with oblique push angles up to 40°, the error in the estimated fiber orientation using phase and group velocity measurements was 5.4±2.9° and 5.3±3.2°, respectively, after estimating and accounting for the additional unknown push angle. Either the phase or group velocity measurements can be used to estimate fiber orientation and SWS along and across the fibers. Although it is possible to perform these measurements when the push is not perpendicular to the fibers, highly oblique push angles induce lower shear wave amplitudes which can cause inaccurate SWS measurements. PMID:23686942

  6. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  7. Acoustic Radiation Force Impulse (ARFI) and Transient Elastography (TE) for evaluation of liver fibrosis in HIV-HCV co-infected patients

    PubMed Central

    2014-01-01

    Background Transient elastography (TE) is widely used for non-invasive assessment of liver fibrosis in HIV-HCV co-infected patients. TE, however, cannot determine liver morphology. Acoustic radiation force impulse (ARFI) imaging is a novel procedure enabling assessment of liver fibrosis during a conventional ultrasonographic examination. This study evaluated the correlation between liver fibrosis measurements by TE and ARFI. Methods Each of 46 HIV-HCV patients underwent both ARFI and TE within 6 months. Patients were evaluated by the “equivalent METAVIR” scoring system, using previously established cut-off values. Agreements between the ARFI and TE scores were estimated by Kappa coefficients, with Kappa values ≥0.40, ≥0.60, and ≥0.80 defined as moderate, good and very good agreement, respectively. Results ARFI and TE yielded "Equivalent Metavir" fibrosis scores of F1 in 26 and 31 patients, respectively; F2 in nine and seven, respectively; F3 in three and two, respectively; and F4 in eight and six, respectively. The two methods showed very good agreement in predicting overall stages [Kappa = 0.82] and for F ≥3 [Kappa = 0.80] and moderate agreement in predicting significant fibrosis F ≥2 [Kappa = 0.50]. Morphologic ultrasound analysis concomitant to ARFI detected two hepatocarcinomas. Conclusions ARFI showed promising results in the non-invasive assessment of liver fibrosis in HIV-HCV patients, with liver fibrosis staging similar to that of TE. Moreover, ARFI can assess morphology and fibrosis during the same session. PMID:25041708

  8. Evaluation of Transient Elastography, Acoustic Radiation Force Impulse Imaging (ARFI), and Enhanced Liver Function (ELF) Score for Detection of Fibrosis in Morbidly Obese Patients

    PubMed Central

    Karlas, Thomas; Dietrich, Arne; Peter, Veronica; Wittekind, Christian; Lichtinghagen, Ralf; Garnov, Nikita; Linder, Nicolas; Schaudinn, Alexander; Busse, Harald; Prettin, Christiane; Keim, Volker; Tröltzsch, Michael; Schütz, Tatjana; Wiegand, Johannes

    2015-01-01

    Background Liver fibrosis induced by non-alcoholic fatty liver disease causes peri-interventional complications in morbidly obese patients. We determined the performance of transient elastography (TE), acoustic radiation force impulse (ARFI) imaging, and enhanced liver fibrosis (ELF) score for fibrosis detection in bariatric patients. Patients and Methods 41 patients (median BMI 47 kg/m2) underwent 14-day low-energy diets to improve conditions prior to bariatric surgery (day 0). TE (M and XL probe), ARFI, and ELF score were performed on days -15 and -1 and compared with intraoperative liver biopsies (NAS staging). Results Valid TE and ARFI results at day -15 and -1 were obtained in 49%/88% and 51%/90% of cases, respectively. High skin-to-liver-capsule distances correlated with invalid TE measurements. Fibrosis of liver biopsies was staged as F1 and F3 in n = 40 and n = 1 individuals. However, variations (median/range at d-15/-1) of TE (4.6/2.6–75 and 6.7/2.9–21.3 kPa) and ARFI (2.1/0.7–3.7 and 2.0/0.7–3.8 m/s) were high and associated with overestimation of fibrosis. The ELF score correctly classified 87.5% of patients. Conclusion In bariatric patients, performance of TE and ARFI was poor and did not improve after weight loss. The ELF score correctly classified the majority of cases and should be further evaluated. PMID:26528818

  9. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  10. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  11. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  12. Reduction of unsteady wind torques on an open port airborne optical turret

    NASA Technical Reports Server (NTRS)

    Thomas, J. P., Jr.; Vankuren, J. T.

    1980-01-01

    Techniques for reducing the unsteady torques acting on the inner gimbal of a turret were developed. The reductions in the unsteady torques were obtained by using fixes that alter undesirable flow characteristics or change the acoustic properties of the turret cavity. These fixes were designed to be used in the subsonic and transonic flow regimes. The flow field about the turret generally three dimensional and turbulent, and shock waves formed because of the rapid acceleration of the compressible gas about the blunt turret. The situation was further complicated by the presence of the cavity flow, and the fact that the mouth of the cavity must sweep through a wide angular variation relative to the direction of the freestream. Results indicate that significant reductions of the unsteady pressures measured in the turret cavity could be obtained by the use of porous wind screens around the aperature of the cavity mouth.

  13. Spin wave excitation patterns generated by spin torque oscillators

    NASA Astrophysics Data System (ADS)

    Macià, F.; Hoppensteadt, F. C.; Kent, A. D.

    2014-01-01

    Spin torque nano-oscillators (STNO) are nanoscale devices that can convert a direct current into short wavelength spin wave excitations in a ferromagnetic layer. We show that arrays of STNO can be used to create directional spin wave radiation similarly to electromagnetic antennas. Combining STNO excitations with planar spin waves also creates interference patterns. We show that these interference patterns are static and have information on the wavelength and phase of the spin waves emitted from the STNO. We describe a means of actively controlling spin wave radiation patterns with the direct current flowing through STNO, which is useful in on-chip communication and information processing and could be a promising technique for studying short wavelength spin waves in different materials.

  14. Self-oscillation in spin torque oscillator stabilized by field-like torque

    SciTech Connect

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-04-14

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation.

  15. Experimental Observations for Determining the Maximum Torque Values to Apply to Composite Components Mechanically Joined With Fasteners (MSFC Center Director's Discretionary Fund Final Report, Proj. 03-13}

    NASA Technical Reports Server (NTRS)

    Thomas, F. P.

    2006-01-01

    Aerospace structures utilize innovative, lightweight composite materials for exploration activities. These structural components, due to various reasons including size limitations, manufacturing facilities, contractual obligations, or particular design requirements, will have to be joined. The common methodologies for joining composite components are the adhesively bonded and mechanically fastened joints and, in certain instances, both methods are simultaneously incorporated into the design. Guidelines and recommendations exist for engineers to develop design criteria and analyze and test composites. However, there are no guidelines or recommendations based on analysis or test data to specify a torque or torque range to apply to metallic mechanical fasteners used to join composite components. Utilizing the torque tension machine at NASA s Marshall Space Flight Center, an initial series of tests were conducted to determine the maximum torque that could be applied to a composite specimen. Acoustic emissions were used to nondestructively assess the specimens during the tests and thermographic imaging after the tests.

  16. Force, Torque and Stiffness: Interactions in Perceptual Discrimination

    PubMed Central

    Wu, Bing; Klatzky, Roberta L.; Hollis, Ralph L.

    2011-01-01

    Three experiments investigated whether force and torque cues interact in haptic discrimination of force, torque and stiffness, and if so, how. The statistical relation between force and torque was manipulated across four experimental conditions: Either one type of cue varied while the other was constant, or both varied so as to be positively correlated, negatively correlated, or uncorrelated. Experiment 1 showed that the subjects’ ability to discriminate force was improved by positively correlated torque but impaired with uncorrelated torque, as compared to the constant torque condition. Corresponding effects were found in Experiment 2 for the influence of force on torque discrimination. These findings indicate that force and torque are integrated in perception, rather than being processed as separate dimensions. A further experiment demonstrated facilitation of stiffness discrimination by correlated force and torque, whether the correlation was positive or negative. The findings suggest new means of augmenting haptic feedback to facilitate perception of the properties of soft objects. PMID:21359137

  17. Active motion assisted by correlated stochastic torques.

    PubMed

    Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter

    2011-07-01

    The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque. PMID:21867138

  18. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  19. Torque shudder protection device and method

    DOEpatents

    King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.

    1997-01-01

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.

  20. Torque shudder protection device and method

    DOEpatents

    King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.

    1997-03-11

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.

  1. Torque equilibrium attitude control for Skylab reentry

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1980-01-01

    The method of torque equilibrium attitude control used to control the reentry of Skylab to an altitude below 150 km without the use of thruster fuel once the attitude was established is discussed. The Skylab attitude and pointing control system, which included rate gyros, sun sensors, star tracker, the Apollo telescope mount digital computer, control moment gyros and cold-gas attitude thrusters, is presented. The 12 torque equilibrium attitudes found at which aerodynamic, gravity gradient and gyroscopic torques would balance are indicated, and the three of those at which the solar power supply would be adequate for attitude control are illustrated. The equilibrium seeking method employed is then examined, and the operation and performance of the torque equilibrium attitude control system during the three weeks prior to Skylab reentry are discussed. It is concluded that the torque equilibrium attitude control method developed for Skylab was successful in performing its assigned mission, and will be valuable for the design of future, low-altitude spacecraft or tethered vehicles.

  2. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  3. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices

    PubMed Central

    He, Li; Li, Huan; Li, Mo

    2016-01-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon’s polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072

  4. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.

    PubMed

    He, Li; Li, Huan; Li, Mo

    2016-09-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072

  5. On the Inverse Problems of Nonlinear Acoustics and Acoustic Turbulence

    NASA Astrophysics Data System (ADS)

    Gurbatov, S. N.; Rudenko, O. V.

    2015-12-01

    We consider the problem of retrieval of the radiated acoustic signal parameters from the measured wave field in some cross section of the nonlinear medium. The possibilities of solving regular and statistical inverse problems are discussed on the basis of the solution of the Burgers equation for zero and infinitesimal viscosities.

  6. Atmospheric Gravitational Torque Variations Based on Various Gravity Fields

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Rowlands, David; Smith, David E. (Technical Monitor)

    2001-01-01

    Advancements in the study of the Earth's variable rate of rotation and the motion of its rotation axis have given impetus to the analysis of the torques between the atmosphere, oceans and solid Earth. The output from global general circulation models of the atmosphere (pressure, surface stress) is being used as input to the torque computations. Gravitational torque between the atmosphere, oceans and solid Earth is an important component of the torque budget. Computation of the gravitational torque involves the adoption of a gravitational model from a wide variety available. The purpose of this investigation is to ascertain to what extent this choice might influence the results of gravitational torque computations.

  7. Variable torque prescription: state of art.

    PubMed

    Lacarbonara, Mariano; Accivile, Ettore; Abed, Maria R; Teresa, Dinoi M; Monaco, Annalisa; Marzo, Giuseppe; Capogreco, Mario

    2015-01-01

    The variable prescription is widely described under the clinical aspect: the clinics is the result of the evolution of the state-of-the-art, aspect that is less considered in the daily literature. The state-of-the-art is the key to understand not only how we reach where we are but also to learn how to manage propely the torque, focusing on the technical and biomechanical purpos-es that led to the change of the torque values over time. The aim of this study is to update the clinicians on the aspects that affect the torque under the biomechanical sight, helping them to understand how to managing it, following the "timeline changes" in the different techniques so that the Variable Prescription Orthodontic (VPO) would be a suitable tool in every clinical case. PMID:25674173

  8. Variable Torque Prescription: State of Art.

    PubMed Central

    Lacarbonara, Mariano; Accivile, Ettore; Abed, Maria R.; Dinoi, Maria Teresa; Monaco, Annalisa; Marzo, Giuseppe; Capogreco, Mario

    2015-01-01

    The variable prescription is widely described under the clinical aspect: the clinics is the result of the evolution of the state-of-the-art, aspect that is less considered in the daily literature. The state-of-the-art is the key to understand not only how we reach where we are but also to learn how to manage propely the torque, focusing on the technical and biomechanical purpos-es that led to the change of the torque values over time. The aim of this study is to update the clinicians on the aspects that affect the torque under the biomechanical sight, helping them to understand how to managing it, following the “timeline changes” in the different techniques so that the Variable Prescription Orthodontic (VPO) would be a suitable tool in every clinical case. PMID:25674173

  9. AX-5 space suit bearing torque investigation

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  10. Torque limit of PM motors for field-weakening region operation

    DOEpatents

    Royak, Semyon; Harbaugh, Mark M.

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  11. Reduced elbow extension torque during vibrations.

    PubMed

    Friesenbichler, Bernd; Coza, Aurel; Nigg, Benno M

    2012-08-31

    Impact sports and vibration platforms trigger vibrations within soft tissues and the skeleton. Although the long-term effects of vibrations on the body have been studied extensively, the acute effects of vibrations are little understood. This study determined the influence of acute vibrations at different frequencies and elbow angles on maximal isometric elbow extension torque and muscle activity. Vibrations were generated by a pneumatic vibrator attached to the lever of a dynamometer, and were applied on the forearm of 15 healthy female subjects. The subjects were instructed to push maximally against the lever at three different elbow angles, while extension torque and muscle activity were quantified and compared between vibration and non-vibration (control) conditions. A change in vibration frequency had no significant effects on torque and muscle activity although vibrations in general decreased the maximal extension torque relative to the control by 1.8% (±5.7%, p>0.05), 7.4% (±7.9%, p<0.01), and 5.0% (±8.2%, p<0.01) at elbow angles of 60°, 90°, and 120°, respectively. Electromyographic activity increased significantly between ∼30% and 40% in both triceps and biceps with vibrations. It is speculated that a similar increase in muscle activity between agonist and antagonist, in combination with an unequal increase in muscle moment arms about the elbow joint, limit the maximal extension torque during exposure to vibrations. This study showed that maximal extension torque decreased during vibration exposure while muscle activity increased and suggests that vibrations may be counterproductive during activities requiring maximal strength but potentially beneficial for strength training. PMID:22771229

  12. Diffusion of torqued active Brownian particles

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.

    An analytical approach is used to study the diffusion of active Brownian particles that move at constant speed in three-dimensional space, under the influence of passive (external) and active (internal) torques. The Smoluchowski equation for the position distribution of the particles is obtained from the Kramer-Fokker-Planck equation corresponding to Langevin equations for active Brownian particles subject to torques. In addition of giving explicit formulas for the mean square-displacement, the non-Gaussian behavior is analyzed through the kurtosis of the position distribution that exhibits an oscillatory behavior in the short-time limit. FJS acknowledges support from PAPIIT-UNAM through the grant IN113114

  13. Force/Torque Display For Telerobotic Systems

    NASA Technical Reports Server (NTRS)

    Wise, Marion A.

    1989-01-01

    Pictorial cathode-ray-tube (CRT) display of force and/or torque (F/T) data for telerobotic systems used as output monitor from multiaxis sensor or as command display. Relative positions of two circles represent forces and torques acting on object, derived from signals from F/T sensor composed of strain gauges. Graphical presentation generated on two different graphics systems, one in color and one in black and white. High-level programming facilitates use of additional convenient features in software extending usefulness of sensor data and display. Useful in laboratory experiments, monitoring performance of automated system and for present data on status of system to operator at control station.

  14. Recent Advances of Reluctance Torque Assisted Motors

    NASA Astrophysics Data System (ADS)

    Ohyama, Kazunobu

    The history of motor technology began with the discovery of electromagnetic induction by Faraday. Various kinds of motors were developed by the recent progress of the fundamental technology (magnetic structure, magnetic material, drive circuit, control method). Especially, motors using the reluctance torque have many advantages and some of them are used as high efficient motors. This paper overviews recent advances of reluctance torque assisted motors such as Switched Reluctance Motor (SRM), Synchronous Reluctance Motor (SynRM) and Interior Permanent Magnet Synchronous Motor (IPMSM).

  15. Cryogenic acoustic loss of pure and alloyed titanium

    NASA Astrophysics Data System (ADS)

    Matacz, A. L.; Veitch, P. J.; Blair, D. G.

    Low acoustic loss, high yield strength cryogenic materials are required for various high precision experiments, resonant-bar gravitational radiation antennae in particular. We report here acoustic loss measurements of commerically pure and alloyed titanium samples between 4.2 and 300 K. It is shown that machining damage of the surface significantly increased the acoustic loss of pure titanium, particularly below 100 K, and that the high strength alloy Ti-6AI-4V had significantly greater acoustic loss than pure titanium.

  16. New Simple Torque-Sensorless Torque Control for Quasi-Perfect Compensation of 6th Harmonic Torque Ripple Due to Nonsinusoidal Distribution of Back EMF of PMSM

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji; Kishida, Hideo

    This paper proposes a new torque-sensorless torque control method for permanent-magnet synchronous motors (PMSMs). The proposed method can almost perfectly compensate the 6th harmonic torque ripple that is caused by the nonsinusoidal distributions of the back EMF and rotor magnetic flux of PMSMs. The torque control system is, in principle, constructed on the basis of the vector control, but has two new dedicated speed-varying devices—a harmonic torque observer and current controller. The speed-varying harmonic torque observer can estimate the harmonic component over a wide speed range, even in the case where the produced torque is constant, and generate a suitable compensating signal. The speed-varying current controller shows stable control performance over a wide speed range, it can fully track the compensated current command containing the dc and 6th harmonic components. The effectiveness of the proposed method is examined and verified through extensive numerical experiments.

  17. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  18. Head-to-Head Comparison between Collagen Proportionate Area and Acoustic Radiation Force Impulse Elastography in Liver Fibrosis Quantification in Chronic Hepatitis C

    PubMed Central

    Chen, Sheng-Hung; Peng, Cheng-Yuan; Lai, Hsueh-Chou; Chang, I-Ping; Lee, Chiung-Ju; Su, Wen-Pang; Lin, Chia-Hsin; Kao, Jung-Ta; Chuang, Po-Heng

    2015-01-01

    Background The aim of this study was to compare the diagnostic performances of the collagen proportionate area (CPA) and liver stiffness measurement (LSM) for liver fibrosis quantification in chronic hepatitis C (CHC). Methods A total of 137 eligible consecutive Taiwanese patients (74 women and 63 men; age 21–80 years; median age 54 years), with CHC underwent LSM by using acoustic radiation force impulse (ARFI) elastography and an immediate percutaneous liver biopsy for METAVIR scoring. Liver tissue sections were stained using picrosirius red. Areas of the stained collagen and the tissue parenchyma were calculated in pixels. The ratio between the two areas was expressed as a CPA percentage. The result of LSM was presented as shear wave velocity (SWV). Results METAVIR fibrosis (F) stages were dichotomized using the CPA (%) and SWV (m/s), and the optimal cut-off values were 7.47 and 1.59 for F1 versus F2–4; 12.56 and 1.73 for F1, 2 versus F3, 4; 15.32 and 1.96 for F1–3 versus F4. To dichotomize F1 versus F2–4, the areas under receiver operating characteristic curves for the CPA was 0.9349 (95% confidence interval: 0.8943–0.9755) and for SWV was 0.8434 (0.7762–0.9105) (CPA versus SWV, P = 0.0063). For F1, 2 versus F3, 4, the CPA was 0.9436 (0.9091–0.9781); SWV was 0.8997 (0.8444–0.9551) (P = 0.1587). For F1–3 versus F4, the CPA was 0.8647 (0.7944–0.9349); SWV was 0.9036 (0.8499–0.9573) (P = 0.2585). The CPA could be predicted in a linear regression formula by using SWV and platelet count (R2 = 0.524). Conclusions The CPA and ARFI elastography are promising tools for liver fibrosis evaluation. The CPA was superior to ARFI elastography in the diagnosis of significant fibrosis (≥ F2). The CPA may be independent of severe necroinflammation, which may augment liver stiffness. PMID:26461105

  19. B-Mode and Acoustic Radiation Force Impulse (ARFI) Imaging of Prostate Zonal Anatomy: Comparison with 3T T2-Weighted MR Imaging

    PubMed Central

    Palmeri, Mark L.; Miller, Zachary A.; Glass, Tyler J.; Garcia-Reyes, Kirema; Gupta, Rajan T.; Rosenzweig, Stephen J.; Kauffman, Christopher; Polascik, Thomas J.; Buck, Andrew; Kulbacki, Evan; Madden, John; Lipman, Samantha L.; Rouze, Ned C.; Nightingale, Kathryn R.

    2015-01-01

    Prostate cancer (PCa) is the most common non-cutaneous malignancy among men in the United States and the second leading cause of cancer-related death. Multi-parametric magnetic resonance imaging (mpMRI) has gained recent popularity to characterize PCa. Acoustic Radiation Force Impulse (ARFI) imaging has the potential to aid PCa diagnosis and management by using tissue stiffness to evaluate prostate zonal anatomy and lesions. MR and B-mode/ARFI in vivo imaging datasets were compared with one another and with gross pathology measurements made immediately after radical prostatectomy. Images were manually segmented in 3D Slicer to delineate the central gland (CG) and prostate capsule, and 3D models were rendered to evaluate zonal anatomy dimensions and volumes. Both imaging modalities showed good correlation between estimated organ volume and gross pathologic weights. Ultrasound and MR total prostate volumes were well correlated (R2 = 0.77), but B-mode images yielded prostate volumes that were larger (16.82% ± 22.45%) than MR images, due to overestimation of the lateral dimension (18.4% ± 13.9%), with less significant differences in the other dimensions (7.4% ± 17.6%, anterior-to-posterior, and −10.8% ± 13.9%, apex-to-base). ARFI and MR CG volumes were also well correlated (R2 = 0.85). CG volume differences were attributed to ARFI underestimation of the apex-to-base axis (−28.8% ± 9.4%) and ARFI overestimation of the lateral dimension (21.5% ± 14.3%). B-mode/ARFI imaging yielded prostate volumes and dimensions that were well correlated with MR T2-weighted image (T2WI) estimates, with biases in the lateral dimension due to poor contrast caused by extraprostatic fat. B-mode combined with ARFI imaging is a promising low-cost, portable, real-time modality that can complement mpMRI for PCa diagnosis, treatment planning, and management. PMID:25060914

  20. A Risk Model for Predicting Central Lymph Node Metastasis of Papillary Thyroid Microcarcinoma Including Conventional Ultrasound and Acoustic Radiation Force Impulse Elastography.

    PubMed

    Xu, Jun-Mei; Xu, Hui-Xiong; Li, Xiao-Long; Bo, Xiao-Wan; Xu, Xiao-Hong; Zhang, Yi-Feng; Guo, Le-Hang; Liu, Lin-Na; Qu, Shen

    2016-01-01

    The aim of this prospective study was to propose a new rating system using a risk model including conventional ultrasound (US) and acoustic radiation force impulse (ARFI) elastography for predicting central lymph node metastasis (LNM) in patients with papillary thyroid microcarcinoma (PTMC).A total of 252 patients with PTMCs were enrolled, who were preoperatively evaluated by US and ARFI elastography including virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ). Risk factors of independent variables for central LNM were analyzed by univariate and multivariate analyses. A multivariate analysis was performed to create a predicting model and rating system.Of the 252 patients, 72 (28.6%) had central LNMs. Multivariate analysis revealed that rare internal flow (odds ratio [OR]: 4.454), multiple suspicious foci on US (OR: 5.136), capsule involvement (OR: 20.632), and VTI area ratio (VAR) > 1 (OR: 5.621) were independent risk factors for central LNM. The final predicting model was obtained and the risk score (RS) was defined as 1.5 × (if rare internal flow) + 1.6 × (if multiple suspicious foci on US) + 1.7 × (if VAR > 1) + 3.0 × (if capsule involvement). The rating system was divided into 5 stages. Stage I, <1.5; Stage II, 1.5 to 3.0; Stage III, 3.1 to 4.7; Stage IV, 4.8 to 6.3; and Stage V, 6.4 to 7.8. The risk rates of central LNM were 3.4% (2/59) in Stage I, 13.3% (13/98) in Stage II, 54.2% (39/72) in Stage III, 72.2% (13/18) in Stage IV, and 100% (5/5) in Stage V (P < 0.001).The results indicated that rare internal flow, multiple suspicious foci, capsule involvement on US, and VAR > 1 on ARFI elastography are the risk factors for predicting central LNM. The risk model developed in the study clearly predicts the risk of central LNM in patients with PTMC and thus has a potential to avoid unnecessary central compartment node dissection. PMID:26817907