Science.gov

Sample records for acoustic resonance box

  1. Acoustic Resonators

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2012-11-01

    Recently my collection of historical physics teaching apparatus was given a group of 19th-century tuning forks on resonant boxes. Figure 1 shows the smallest fork sitting on the largest one. The large tuning fork oscillates at 128 Hz and has a resonator that is 57.9 cm long. The small fork has a frequency 10 times higher, but its resonator has a length of 11.0 cm instead of the 5.8 cm that simple scaling would suggest. How is this possible?

  2. Optical structure based on the acoustic Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Pelouard, Jean-Luc; Pardo, Fabrice; Haidar, Riad

    2015-02-01

    Here, based on an analogy between acoustics and electromagnetism wave equations, we present an electromagnetic resonator analogous to the Helmholtz resonator in acoustics. This structure is made of a tiny slit above a box and exhibits appealing properties for applications such as thermal emission, bio-sensing or spectroscopy.

  3. Acoustic detection of microbubble resonance

    NASA Astrophysics Data System (ADS)

    Thomas, D. H.; Looney, P.; Steel, R.; Pelekasis, N.; McDicken, W. N.; Anderson, T.; Sboros, V.

    2009-06-01

    Large numbers of acoustic signals from single lipid-shelled Definity® microbubbles have been measured using a calibrated microacoustic system and a two population response observed. Theoretical results based on the Mooney-Rivlin strain softening shell model have been used to identify these populations as primary resonant and off-primary resonant scatter. An experimentally measured size distribution was used to provide the initial resting radius for the simulations, and the responses agree well with the experimental data. In this way, the primary resonant or off-primary resonant behavior of a microbubble can be studied, with potential benefits to both signal processing techniques and microbubble manufacture.

  4. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H.; Fleming, James G.; Tuck, Melanie R.

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  5. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to

  6. Acoustic resonance frequency locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  7. The Sound Field Around a Tuning Fork and the Role of a Resonance Box

    NASA Astrophysics Data System (ADS)

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2015-02-01

    Atypical two-tine tuning fork is barely audible when held vibrating at an arm's length. It is enough, however, to touch its base to a table or, better, to a resonance box and the emitted sound becomes much louder. An inquiring student may pose questions: Why is a bare tuning fork such a weak emitter of sound?What is the role of the resonance box?Where does energy connected with larger intensity of emitted acoustic waves come from?

  8. Acoustic resonance phase locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  9. Acoustic resonance for nonmetallic mine detection

    SciTech Connect

    Kercel, S.W.

    1998-04-01

    The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

  10. Measuring the acoustic response of Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Monteiro, Martín; Marti, Arturo C.; Vogt, Patrik; Kasper, Lutz; Quarthal, Dominik

    2015-04-01

    Many experiments have been proposed to investigate acoustic phenomena in college and early undergraduate levels, in particular the speed of sound,1-9 by means of different methods, such as time of flight, transit time, or resonance in tubes. In this paper we propose to measure the acoustic response curves of a glass beaker filled with different gases, used as an acoustic resonator. We show that these curves expose many interesting peaks and features, one of which matches the resonance peak predicted for a Helmholtz resonator fairly well, and gives a decent estimate for the speed of sound in some cases. The measures are obtained thanks to the capabilities of smartphones.

  11. Quantum corral resonance widths: lossy scattering as acoustics.

    PubMed

    Barr, Matthew C; Zaletel, Michael P; Heller, Eric J

    2010-09-08

    We present an approach to predicting extrinsic electron resonance widths within quantum corral nanostructures based on analogies with acoustics. Established quantum mechanical methods for calculating resonance widths, such as multiple scattering theory, build up the scattering atom by atom, ignoring the structure formed by the atoms, such as walls or enclosures. Conversely, particle-in-a-box models, assuming continuous walls, have long been successful in predicting quantum corral energy levels, but not resonance widths. In acoustics, partial reflection from walls and various enclosures has long been incorporated for determining reverberation times. Pursuing an exact analogy between the local density of states of a quantum corral and the acoustic impedance of a concert hall, we show electron lifetimes in nanoscopic structures of arbitrary convex shape are well accounted for by the Sabine formula for acoustic reverberation times. This provides a particularly compact and intuitive prescription for extrinsic finite lifetimes in a particle-in-a-box with leaky walls, including quantum corral atomic walls, given single particle scattering properties.

  12. Humanitarian mine detection by acoustic resonance

    SciTech Connect

    Kercel, S.W.

    1998-03-01

    The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL additional insight into the problems of developing practical

  13. High Q Miniature Sapphire Acoustic Resonator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, R. L.

    2010-01-01

    We have demonstrated high Q measurements in a room temperature Miniature Sapphire Acoustic Resonator (MSAR). Initial measurements of bulk acoustic modes in room temperature sapphire at 39 MHz have demonstrated a Q of 8.8 x 10(exp 6). The long term goal of this work is to integrate such a high Q resonator with small, low noise quartz oscillator electronics, providing a fractional frequency stability better than 1 x 10(exp -14) @ 1s.

  14. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  15. Materials for Bulk Acoustic Resonators and Filters

    NASA Astrophysics Data System (ADS)

    Loebl, Hans-Peter

    2003-03-01

    Highly selective solidly mounted bulk acoustic wave (BAW) band pass filters are suited for mobile and wireless systems in the GHz frequency range between 0.8 and 10 GHz. Electro-acoustic thin film BAW resonators are the building blocks these BAW filters. Piezoelectric materials used in these resonators include mainly AlN or ZnO which can be deposited by dedicated thin film sputter deposition techniques. Using these piezo-electric materials and using suited materials for the acoustic Bragg reflector, BAW resonators with high quality factors can be fabricated. The achievable filter bandwidth is approximately 4Alternatively, also ferroelectric thin films might be used to achieve higher coupling coefficient and thus filter bandwidth. BAW resonators and filters have been designed and fabricated on 6" Silicon and glass wafers. Results are presented for resonators and filters operating between 1.95 and 8 GHz. The talk will give an overview of the material aspects which are important for BAW devices. It will be shown that modeling of the resonator and filter response using 1D electro-acoustic simulation (1,2) which includes losses is essential to extract acoustic and electrical material parameters. (1) Solidly Mounted Bulk Acoustic Wave Filters for the Ghz Frequency Range, H.P. Loebl, C. Metzmacher , D.N.Peligrad , R. Mauczok , M. Klee , W. Brand , R.F. Milsom , P.Lok , F.van Straten , A. Tuinhout , J.W.Lobeek, IEEE 2002 Ultrasonics Symposium Munich, October 2002. (2) Combined Acoustic-Electromagnetic Simulation Of Thin-Film Bulk Acoustic Wave Filters, R.F. Milsom, H-P. Löbl, D.N. Peligrad, J-W. Lobeek, A. Tuinhout, R. H. ten Dolle IEEE 2002 Ultrasonics Symposium Munich, October 2002.

  16. Coupled modes of the resonance box of the guitar.

    PubMed

    Elejabarrieta, M J; Ezcurra, A; Santamaria, C

    2002-05-01

    Vibrations of the resonance box of the guitar have been studied by means of the modal analysis technique and the finite-element method. An expert craftsman constructed the guitar box with all the structures, internal and external, characteristic of a real instrument for the experimental measurements. The boundary conditions were chosen in order to clarify the soundboard-back interaction only via the internal air coupling. The numerical model allows one to study the influence of each component on the whole box, and the contribution of the modes of the components (wooden box and its parts, and air), to the coupled modes by calculating their participation factors. The coupled modes of the guitar box are discussed taking into account both the finite-element and modal analysis results.

  17. Extraordinary acoustic transmission mediated by Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Koju, Vijay; Rowe, Ebony; Robertson, William M.

    2014-07-01

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  18. Extraordinary acoustic transmission mediated by Helmholtz resonators

    SciTech Connect

    Koju, Vijay; Rowe, Ebony; Robertson, William M.

    2014-07-15

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  19. Acoustic Resonator Optimisation for Airborne Particle Manipulation

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Billson, Duncan R.; Hutchins, David A.; Alan, Tuncay; Neild, Adrian

    Advances in micro-electromechanical systems (MEMS) technology and biomedical research necessitate micro-machined manipulators to capture, handle and position delicate micron-sized particles. To this end, a parallel plate acoustic resonator system has been investigated for the purposes of manipulation and entrapment of micron sized particles in air. Numerical and finite element modelling was performed to optimise the design of the layered acoustic resonator. To obtain an optimised resonator design, careful considerations of the effect of thickness and material properties are required. Furthermore, the effect of acoustic attenuation which is dependent on frequency is also considered within this study, leading to an optimum operational frequency range. Finally, experimental results demonstrated good particle levitation and capture of various particle properties and sizes ranging to as small as 14.8 μm.

  20. An acoustic double fishnet using Helmholtz resonators.

    PubMed

    Murray, A R J; Summers, I R; Sambles, J R; Hibbins, A P

    2014-09-01

    The acoustic transmission of a closely spaced pair of patterned and perforated rigid plates is explored in air. The structure resembles an acoustic double fishnet design, with each plate modified such that the gap between them acts as an array of Helmholtz resonators. This allows the center frequency of the stop band to be reduced by a factor greater than 2 from the value obtained for the conventional acoustic double fishnet design. Experimental results accord well with the predictions of a finite element model.

  1. Ring waveguide resonator on surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Biryukov, S. V.; Martin, G.; Weihnacht, M.

    2007-04-01

    A simple regular electrode structure for surface acoustic wave (SAW) devices is proposed. The structure consists of an interdigital transducer in the form of a ring placed on the Z cut of a hexagonal piezoelectric crystal. Finite thickness electrodes produce the known slowing effect for a SAW in comparison with this SAW on a free surface. The closed "slow" electrode region with the "fast" surrounding region forms an open waveguide resonator structure with the acoustic field concentrated in the electrode region. If the radius of the structure is large enough for a given wavelength, an acceptable level of radiation losses can be reached. The electrical admittance of such resonator does not have sidelobes.

  2. Prototype acoustic resonance spectroscopy monitor

    SciTech Connect

    Sinha, D.N.; Olinger, C.T.

    1996-03-01

    This report reports on work performed for the International Atomic Energy Agency (IAEA) through the Program Office for Technical Assistance (POTAS). In this work, we investigate possible applications of nondestructive acoustics measurements to facilitate IAEA safeguards at bulk processing facilities. Two different acoustic techniques for verifying the internal structure of a processing tank were investigated. During this effort we also examined two acoustic techniques for assessing the fill level within a processing tank. The fill-level measurements could be made highly portable and have an added safeguards advantage that they can also detect stratification of fill material. This later application may be particularly useful in confirming the absence of stratification in plutonium processing tanks before accountability samples are withdrawn.

  3. Magnetic resonance acoustic radiation force imaging.

    PubMed

    McDannold, Nathan; Maier, Stephan E

    2008-08-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are "stiffness weighted" and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery.

  4. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  5. Acoustic resonator and method of making same

    DOEpatents

    Kline, G.R.; Lakin, K.M.

    1983-10-13

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  6. Acoustic resonator and method of making same

    DOEpatents

    Kline, G.R.; Lakin, K.M.

    1985-03-05

    A method is disclosed of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers. 4 figs.

  7. Acoustic resonator and method of making same

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-03-05

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  8. The influence of proscenium boxes on acoustic response in historical opera halls.

    PubMed

    Šumarac Pavlović, Dragana; Mijić, Miomir; Mašović, Draško

    2015-09-01

    In some historical opera halls there are boxes located around the proscenium, commonly called proscenium or "director" boxes. These boxes have a certain influence on the initial part of the impulse response of an opera hall on the singer-auditorium, singer-singer, and singer-orchestra pit paths. During the reconstruction of the Ljubljana opera hall, measurement of a scaled model was performed to quantify the influence of proscenium boxes on the hall's impulse response. Some variation in box configuration on the acoustic response was also tested. This paper describes the results of this research.

  9. Porous silicon bulk acoustic wave resonator with integrated transducer

    PubMed Central

    2012-01-01

    We report that porous silicon acoustic Bragg reflectors and AlN-based transducers can be successfully combined and processed in a commercial solidly mounted resonator production line. The resulting device takes advantage of the unique acoustic properties of porous silicon in order to form a monolithically integrated bulk acoustic wave resonator. PMID:22776697

  10. Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures

    DTIC Science & Technology

    2012-08-02

    August 2, 2012 Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures Report Documentation Page Form...COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures 5a...Publications •H. H. Huang and C. T. Sun, “Locally Resonant Acoustic Metamaterials with 2D Anisotropic Effective Mass Density,” Philosophical Magazine

  11. Recent developments of film bulk acoustic resonators

    NASA Astrophysics Data System (ADS)

    Gao, Junning; Liu, Guorong; Li, Jie; Li, Guoqiang

    2016-06-01

    Film bulk acoustic wave resonator (FBAR) experienced skyrocketing development in the past 15 years, owing to the explosive development of mobile communication. It stands out in acoustic filters mainly because of high quality factor, which enables low insertion loss and sharp roll off. Except for the massive application in wireless communication, FBARs are also promising sensors because of the high sensitivity and readily integration ability to miniaturize circuits. On the ground of summarizing FBAR’s application in wireless communication as filters and in sensors including electronic nose, bio field, and pressure sensing, this paper review the main challenges of each application faced. The number of filters installed in the mobile phone has being grown explosively, which leads to overcrowded bands and put harsh requirements on component size and power consumption control for each unit. Data flow and rate are becoming increasingly demanding as well. This paper discusses three promising technical strategies addressing these issues. Among which coupled resonator filter is given intense attention because it is able to vigorously reduce the filter size by stacking two or more resonators together, and it is a great technique to increase data flow and rate. Temperature compensation methods are discussed considering their vital influence on frequency stability. Finally, materials improvement and novel materials exploration for band width modulation, tunable band acquisition, and quality factor improvement are discussed. The authors appeal attention of the academic society to bring AlN epitaxial thin film into the FBAR fabrication and have proposed a configuration to implement this idea.

  12. Acoustic bandpass filters employing shaped resonators

    NASA Astrophysics Data System (ADS)

    Červenka, M.; Bednařík, M.

    2016-11-01

    This work deals with acoustic bandpass filters realized by shaped waveguide-elements inserted between two parts of an acoustic transmission line with generally different characteristic impedance. It is shown that the formation of a wide passband is connected with the eigenfrequency spectrum of the filter element which acts as an acoustic resonator and that the required filter shape substantially depends on whether the filter characteristic impedance is higher or lower than the characteristic impedance of the waveguide. It is further shown that this class of filters can be realized even without the need of different characteristic impedance. A heuristic technique is proposed to design filter shapes with required transmission properties; it is employed for optimization of low-frequency bandpass filters as well as for design of bandpass filters with wide passband surrounded by wide stopbands as it is typical for phononic crystals, however, in this case the arrangement is much simpler as it consists of only one simple-shaped homogeneous element.

  13. Resonant capacitive MEMS acoustic emission transducers

    NASA Astrophysics Data System (ADS)

    Ozevin, D.; Greve, D. W.; Oppenheim, I. J.; Pessiki, S. P.

    2006-12-01

    We describe resonant capacitive MEMS transducers developed for use as acoustic emission (AE) detectors, fabricated in the commercial three-layer polysilicon surface micromachining process (MUMPs). The 1 cm square device contains six independent transducers in the frequency range between 100 and 500 kHz, and a seventh transducer at 1 MHz. Each transducer is a parallel plate capacitor with one plate free to vibrate, thereby causing a capacitance change which creates an output signal in the form of a current under a dc bias voltage. With the geometric proportions we employed, each transducer responds with two distinct resonant frequencies. In our design the etch hole spacing was chosen to limit squeeze film damping and thereby produce an underdamped vibration when operated at atmospheric pressure. Characterization experiments obtained by capacitance and admittance measurements are presented, and transducer responses to physically simulated AE source are discussed. Finally, we report our use of the device to detect acoustic emissions associated with crack initiation and growth in weld metal.

  14. Suppression of Helmholtz resonance using inside acoustic liner

    NASA Astrophysics Data System (ADS)

    Hong, Zhiliang; Dai, Xiwen; Zhou, Nianfa; Sun, Xiaofeng; Jing, Xiaodong

    2014-08-01

    When a Helmholtz resonator is exposed to grazing flow, an unstable shear layer at the opening can cause the occurrence of acoustic resonance under appropriate conditions. In this paper, in order to suppress the flow-induced resonance, the effects of inside acoustic liners placed on the side wall or the bottom of a Helmholtz resonator are investigated. Based on the one-dimensional sound propagation theory, the time domain impedance model of a Helmholtz resonator with inside acoustic liner is derived, and then combined with a discrete vortex model the resonant behavior of the resonator under grazing flow is simulated. Besides, an experiment is conducted to validate the present model, showing significant reduction of the peak sound pressure level achieved by the use of the side-wall liners. And the simulation results match reasonably well with the experimental data. The present results reveal that the inside acoustic liner can not only absorb the resonant sound pressure, but also suppress the fluctuation motion of the shear layer over the opening of the resonator. In all, the impact of the acoustic liners is to dampen the instability of the flow-acoustic coupled system. This demonstrates that it is a convenient and effective method for suppressing Helmholtz resonance by using inside acoustic liner.

  15. Measurement of the Q value of an acoustic resonator.

    PubMed

    Biwa, Tetsushi; Ueda, Yuki; Nomura, Hiroshi; Mizutani, Uichiro; Yazaki, Taichi

    2005-08-01

    A cylindrical acoustic resonator was externally driven at the first resonance frequency by a compression driver. The acoustic energy stored in the resonator and the power dissipated per unit time were evaluated through the simultaneous measurements of acoustic pressure and velocity, in order to determine the Q value of the resonator. The resulting Q value, being employed as a measure of the damping in a resonator, was obtained as 36. However, the Q value determined from a frequency response curve known as a conventional technique turned out to be 25, which is 30% less than that obtained in the present method. By further applying these two methods in the case of a resonator having an acoustic load inside, we present an accurate measurement of the Q value of the resonator by making full use of its definition.

  16. Passive separation control by acoustic resonance

    NASA Astrophysics Data System (ADS)

    Yang, S. L.; Spedding, G. R.

    2013-10-01

    At transitional Reynolds numbers, the laminar boundary layer separation and possible reattachment on a smooth airfoil, or wing section, are notoriously sensitive to small variations in geometry or in the fluid environment. We report here on the results of a pilot study that adds to this list of sensitivities. The presence of small holes in the suction surface of an Eppler 387 wing has a transformative effect upon the aerodynamics, by changing the mean chordwise separation line location. These changes are not simply a consequence of the presence of the small cavities, which by themselves have no effect. Acoustic resonance in the backing cavities generates tones that interact with intrinsic flow instabilities. Possible consequences for passive flow control strategies are discussed together with potential problems in measurements through pressure taps in such flow regimes.

  17. Temporal and Spatial Acoustical Factors for Listeners in the Boxes of Historical Opera Theatres

    NASA Astrophysics Data System (ADS)

    Sakai, H.; Ando, Y.; Prodi, N.; Pompoli, R.

    2002-11-01

    Acoustical measurements were conducted in a horseshoe-shaped opera house to clarify the acoustical quality of a sound field for listeners inside the boxes of an historical opera house. In order to investigate the effects of multiple reflections between the walls inside a box and scattering by the heads of people, the location of the receiver and the number of persons in the box were varied. In each configuration, four orthogonal factors and supplementary factors were derived as temporal and spatial factors by analysis of binaural impulse responses. Each factor is compared to that at a typical location in the stalls of the same theatre. An omni-directional sound source was located on the stage to emulate a singer or in the orchestra pit to reproduce the location of the musicians. Thus, in this paper, temporal and spatial factors in relation to subjective evaluation are characterized against changes in the listening conditions inside a box, and procedures for improvement and design methods for boxes are proposed. The main conclusions reached are as follows. As strong reflections from the lateral walls of a hall are screened by the front or side walls of a box for a receiver in a seat deeper in the box, the maximum listening level ( LL) in the boxes was observed at the front of the box, and the maximum range of LL values for each box was found to be 5 dB. Concerning the initial time delay gap ( Δt1), a more uniform listening environment was obtained in boxes further back in the theatre than in one closer to the stage. The subsequent reverberation time ( Tsub) lengthens for boxes closer to the stage due to the stage house with its huge volume, and a peak is observed at 1 kHz. For the box at the back, Tsub monotonically decreases with frequency in the same way as in the stalls, and moreover, its values approach those in the stalls. As the contribution of multiple reflections relatively increases for a receiver deeper in the box, the IACC in such positions decreases in

  18. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    SciTech Connect

    Cheng, Ying; Liu, XiaoJun; Zhou, Chen; Wei, Qi; Wu, DaJian

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  19. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    NASA Astrophysics Data System (ADS)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  20. Multi-resonance tunneling of acoustic waves in two-dimensional locally-resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; He, Wei; Zhang, Jitao; Zhu, Liang; Yu, Lingang; Ma, Jian; Zou, Yang; Li, Min; Wu, Yu

    2017-03-01

    Multi-resonance tunneling of acoustic waves through a two-dimensional phononic crystal (PC) is demonstrated by substituting dual Helmholtz resonators (DHRs) for acoustically-rigid scatterers in the PC. Due to the coupling of the incident waves with the acoustic multi-resonance modes of the DHRs, acoustic waves can tunnel through the PC at specific frequencies which lie inside the band gaps of the PC. This wave tunneling transmission can be further broadened by using the multilayer Helmholtz resonators. Thus, a PC consisting of an array of dual/multilayer Helmholtz resonators can serve as an acoustic band-pass filter, used to pick out acoustic waves with certain frequencies from noise.

  1. Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures

    SciTech Connect

    Nakagawa, Seiji

    1998-08-01

    In recent years, acoustic resonance has drawn great attention as a quantitative tool for characterizing properties of materials and detecting defects in both engineering and geological materials. In quasi-brittle materials such as rock and concrete, inherent fractures have a significant influence on their mechanical and hydraulic properties. Most of these fractures are partially open, providing internal boundaries that are visible to propagating seismic waves. Acoustic resonance occurs as a result of constructive and destructive interferences of propagating waves. Therefore the geometrical and mechanical properties of the fracture are also interrogated by the acoustic resonance characteristics of materials. The objective of this dissertation is to understand the acoustic resonance characteristics of fractured rock and concrete.

  2. Acoustic noise during functional magnetic resonance imaging.

    PubMed

    Ravicz, M E; Melcher, J R; Kiang, N Y

    2000-10-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions.

  3. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  4. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  5. Acoustic resonance spectroscopy for the advanced undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Franco-Villafañe, J. A.; Flores-Olmedo, E.; Báez, G.; Gandarilla-Carrillo, O.; Méndez-Sánchez, R. A.

    2012-11-01

    We present a simple experiment that allows advanced undergraduates to learn the principles and applications of spectroscopy. The technique, known as acoustic resonance spectroscopy, is applied to study a vibrating rod. The setup includes electromagnetic-acoustic transducers, an audio amplifier and a vector network analyzer. Typical results of compressional, torsional and bending waves are analyzed and compared with analytical results.

  6. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Crow, Brian C.; Cullen, Jordan M.; McKenzie, William W.; Koju, Vijay; Robertson, William M.

    2015-02-01

    The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR) is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

  7. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    SciTech Connect

    Crow, Brian C.; Cullen, Jordan M.; McKenzie, William W.; Koju, Vijay; Robertson, William M.

    2015-02-15

    The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR) is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

  8. Acoustic resonance phenomena in air bleed channels in aviation engines

    NASA Astrophysics Data System (ADS)

    Aleksentsev, A. A.; Sazhenkov, A. N.; Sukhinin, S. V.

    2016-11-01

    The existence of axial-radial acoustic resonance oscillations of the basic air flow in bleed channels of aviation engines is demonstrated theoretically and experimentally. Numerical and analytical methods are used to determine the frequency of acoustic resonance oscillations for the lowest modes of open and closed bleed channels of the PS-90A engine. Experimental investigations reveal new acoustic resonance phenomena arising in the air flow in bleed channel cavities in the core duct of this engine owing to instability of the basic air flow. The results of numerical, analytical, and experimental studies of the resonance frequencies reached in the flow in bleed channel cavities in the core duct of the PS-90A engine are found to be in reasonable agreement. As a result, various types of resonance oscillations in bleed channels can be accurately described.

  9. Optical bottle versus acoustic bottle and antibottle resonators.

    PubMed

    Sumetsky, M

    2017-03-01

    The theory of slow acoustic modes propagating along the optical fiber and being controlled by the nanoscale variation of the effective fiber radius (analogous to the theory of slow optical whispering gallery modes) is developed. Surprisingly, it is shown that, in addition to acoustic bottle resonators (which are similar to optical bottle resonators), there exist antibottle resonators, the neck-shaped deformations of the fiber that can fully confine acoustic modes. It is also shown that an eigenfrequency of the mechanical vibrations of a silica parabolic bottle resonator can match the separation between the eigenfrequencies of a series of its optical modes, thereby enabling the resonant mechanical excitation of these series. The developed theory paves the groundwork for slow-mode optomechanics in an optical fiber.

  10. Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator

    NASA Astrophysics Data System (ADS)

    Elayouch, A.; Addouche, M.; Farhat, M.; Amin, M.; Bağcı, H.; Khelif, A.

    2016-11-01

    We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties. Our study reveals that the phenomenon of acoustically induced transparency is accompanied by an effect of near-zero density. Indeed, the dynamic effective parameters obtained from experimental data show the presence of a frequency band where the effective mass density is close to zero, with high transmission levels reaching 0.7. Furthermore, we demonstrate that such effective parameters lead to wave guiding in a 90-degrees-bent channel. This kind of acoustic metamaterial can, therefore, give rise to acoustic functions like controlling the wavefront, which may lead to very promising applications in acoustic cloacking or imaging.

  11. Acoustic metamaterials: From local resonances to broad horizons.

    PubMed

    Ma, Guancong; Sheng, Ping

    2016-02-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature.

  12. Acoustic metamaterials: From local resonances to broad horizons

    PubMed Central

    Ma, Guancong; Sheng, Ping

    2016-01-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. PMID:26933692

  13. Acoustic resonances in cylinder bundles oscillating in a compressibile fluid

    SciTech Connect

    Lin, W.H.; Raptis, A.C.

    1984-12-01

    This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determined from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.

  14. Active cancellation of acoustical resonances with an FPGA FIR filter.

    PubMed

    Ryou, Albert; Simon, Jonathan

    2017-01-01

    We present a novel approach to enhancing the bandwidth of a feedback-controlled mechanical system by digitally canceling acoustical resonances (poles) and anti-resonances (zeros) in the open-loop response via an FPGA FIR filter. By performing a real-time convolution of the feedback error signal with an inverse filter, we can suppress arbitrarily many poles and zeros below 100 kHz, each with a linewidth down to 10 Hz. We demonstrate the efficacy of this technique by canceling the ten largest mechanical resonances and anti-resonances of a high-finesse optical resonator, thereby enhancing the unity gain frequency by more than an order of magnitude. This approach is applicable to a broad array of stabilization problems including optical resonators, external cavity diode lasers, and scanning tunneling microscopes and points the way to applying modern optimal control techniques to intricate linear acoustical systems.

  15. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    DOEpatents

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  16. Effects of specimen resonances on acoustic-ultrasonic testing

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Kahn, E. B.; Lee, S. S.

    1983-01-01

    The effects of specimen resonances on acoustic ultrasonic (AU) nondestructive testing were investigated. Selected resonant frequencies and the corresponding normal mode nodal patterns of the aluminum block are measured up to 75.64 kHz. Prominent peaks in the pencil lead fracture and sphere impact spectra from the two transducer locations corresponded exactly to resonant frequencies of the block. It is established that the resonant frequencies of the block dominated the spectral content of the output signal. The spectral content of the output signals is further influenced by the transducer location relative to the resonant frequency nodal lines. Implications of the results are discussed in relation to AU parameters and measurements.

  17. Acoustic Emission Monitoring of Multicell Reinforced Concrete Box Girders Subjected to Torsion

    PubMed Central

    Bagherifaez, Marya; Behnia, Arash; Majeed, Abeer Aqeel; Hwa Kian, Chai

    2014-01-01

    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis. PMID:25180203

  18. Acoustic emission monitoring of multicell reinforced concrete box girders subjected to torsion.

    PubMed

    Bagherifaez, Marya; Behnia, Arash; Majeed, Abeer Aqeel; Hwa Kian, Chai

    2014-01-01

    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis.

  19. Particle manipulation by a non-resonant acoustic levitator

    SciTech Connect

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2015-01-05

    We present the analysis of a non-resonant acoustic levitator, formed by an ultrasonic transducer and a concave reflector. In contrast to traditional levitators, the geometry presented herein does not require the separation distance between the transducer and the reflector to be a multiple of half wavelength. The levitator behavior is numerically predicted by applying a numerical model to calculate the acoustic pressure distribution and the Gor'kov theory to obtain the potential of the acoustic radiation force that acts on a levitated particle. We also demonstrate that levitating particles can be manipulated by controlling the reflector position while maintaining the transducer in a fixed position.

  20. Acoustic superlens using Helmholtz-resonator-based metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Xishan; Yin, Jing; Yu, Gaokun; Peng, Linhui; Wang, Ning

    2015-11-01

    Acoustic superlens provides a way to overcome the diffraction limit with respect to the wavelength of the bulk wave in air. However, the operating frequency range of subwavelength imaging is quite narrow. Here, an acoustic superlens is designed using Helmholtz-resonator-based metamaterials to broaden the bandwidth of super-resolution. An experiment is carried out to verify subwavelength imaging of double slits, the imaging of which can be well resolved in the frequency range from 570 to 650 Hz. Different from previous works based on the Fabry-Pérot resonance, the corresponding mechanism of subwavelength imaging is the Fano resonance, and the strong coupling between the neighbouring Helmholtz resonators separated at the subwavelength interval leads to the enhanced sound transmission over a relatively wide frequency range.

  1. Acoustic superlens using Helmholtz-resonator-based metamaterials

    SciTech Connect

    Yang, Xishan; Yin, Jing; Yu, Gaokun Peng, Linhui; Wang, Ning

    2015-11-09

    Acoustic superlens provides a way to overcome the diffraction limit with respect to the wavelength of the bulk wave in air. However, the operating frequency range of subwavelength imaging is quite narrow. Here, an acoustic superlens is designed using Helmholtz-resonator-based metamaterials to broaden the bandwidth of super-resolution. An experiment is carried out to verify subwavelength imaging of double slits, the imaging of which can be well resolved in the frequency range from 570 to 650 Hz. Different from previous works based on the Fabry-Pérot resonance, the corresponding mechanism of subwavelength imaging is the Fano resonance, and the strong coupling between the neighbouring Helmholtz resonators separated at the subwavelength interval leads to the enhanced sound transmission over a relatively wide frequency range.

  2. Nonlinear Resonant Oscillations of Gas in Optimized Acoustical Resonators and the Effect of Central Blockage

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Finkbeiner, Joshua; Raman, Ganesh; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    Optimizing resonator shapes for maximizing the ratio of maximum to minimum gas pressure at an end of the resonator is investigated numerically. It is well known that the resonant frequencies and the nonlinear standing waveform in an acoustical resonator strongly depend on the resonator geometry. A quasi-Newton type scheme was used to find optimized axisymmetric resonator shapes achieving the maximum pressure compression ratio with an acceleration of constant amplitude. The acoustical field was solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects were obtained through an automation scheme based on continuation method. Results are presented for optimizing three types of geometry: a cone, a horn-cone and a half cosine-shape. For each type, different optimized shapes were found when starting with different initial guesses. Further, the one-dimensional model was modified to study the effect of an axisymmetric central blockage on the nonlinear standing wave.

  3. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  4. Modeling the acoustic excitation of a resonator

    NASA Astrophysics Data System (ADS)

    Mandre, Shreyas; Mahadevan, Lakshminarayanan

    2007-11-01

    The sounding of a beverage bottle when blown on is a familiar but very little understood phenomenon. A very similar mechanism is used by musical wind instruments, like organ pipes and flutes, for sound production. This phenomenon falls under the general umbrella of flow induced oscillations and is representative of a more generic mechanism. The modeling of this phenomenon essentially involves two components. The first is the resonator, which bears the oscillations and this component is very well understood. The resonator, however, needs an external energy input to sustain the oscillations, which is provided by the jet of air blown. The dynamics of the jet and its interaction with the resonator is the primary focus of this talk. In particular, we provide a linearized model based on first principles to explain the feedback of energy from the jet to the resonator and compare the predictions with experimental results.

  5. Quantitative Determination of Lateral Mode Dispersion in Film Bulk Acoustic Resonators through Laser Acoustic Imaging

    SciTech Connect

    Ken Telschow; John D. Larson III

    2006-10-01

    Film Bulk Acoustic Resonators are useful for many signal processing applications. Detailed knowledge of their operation properties are needed to optimize their design for specific applications. The finite size of these resonators precludes their use in single acoustic modes; rather, multiple wave modes, such as, lateral wave modes are always excited concurrently. In order to determine the contributions of these modes, we have been using a newly developed full-field laser acoustic imaging approach to directly measure their amplitude and phase throughout the resonator. This paper describes new results comparing modeling of both elastic and piezoelectric effects in the active material with imaging measurement of all excited modes. Fourier transformation of the acoustic amplitude and phase displacement images provides a quantitative determination of excited mode amplitude and wavenumber at any frequency. Images combined at several frequencies form a direct visualization of lateral mode excitation and dispersion for the device under test allowing mode identification and comparison with predicted operational properties. Discussion and analysis are presented for modes near the first longitudinal thickness resonance (~900 MHz) in an AlN thin film resonator. Plate wave modeling, taking account of material crystalline orientation, elastic and piezoelectric properties and overlayer metallic films, will be discussed in relation to direct image measurements.

  6. Surface acoustic wave vapor sensors based on resonator devices

    NASA Astrophysics Data System (ADS)

    Grate, Jay W.; Klusty, Mark

    1991-05-01

    Surface acoustic wave (SAW) devices fabricated in the resonator configuration have been used as organic vapor sensors and compared with delay line devices more commonly used. The experimentally determined mass sensitivities of 200, 300, and 400 MHz resonators and 158 MHz delay lines coated with Langmuir-Blodgett films of poly(vinyl tetradecanal) are in excellent agreement with theoretical predictions. The response of LB- and spray-coated sensors to various organic vapors were determined, and scaling laws for mass sensitivities, vapor sensitivities, and detection limits are discussed. The 200 MHz resonators provide the lowest noise levels and detection limits of all the devices examined.

  7. Multimode acoustic transparency and slow sound effects in hybrid subwavelength resonators

    NASA Astrophysics Data System (ADS)

    Deng, Yu-Qiang; Qi, Dong-Xiang; Tuo, Ming-Jun; Liu, Lian-Zi; Zhang, Rui-Li; Peng, Ru-Wen; Wang, Mu

    2017-03-01

    In this paper, we demonstrate that a series of hybrid Helmholtz resonators, which introduce “acoustic transparent atoms”, “acoustic nontransparent atoms”, and “acoustic quasitransparent atoms” simultaneously, can generate multimode acoustic transparency and the slow sound effect. Dual-mode acoustic transparency can be achieved by employing a waveguide incorporating three different Helmholtz resonators. Additional modes are introduced by adding further acoustic quasitransparent atoms. This can be explained by the destructive interference among different resonators. Furthermore, slow sound propagation is demonstrated in our multimode acoustic transparency systems by employing time-domain simulations. Our results may have potential applications for sound control in one-dimensional waveguides.

  8. Acoustic Eigenvalues of Quasispherical Resonators: Beyond the Triaxial Ellipsoid Approximation

    NASA Astrophysics Data System (ADS)

    Mehl, James B.

    2010-07-01

    Quasispherical resonators are cavity resonators whose acoustic and electromagnetic modes are used in precision measurements, with shapes designed to split the ℓ = 1 triplet modes to facilitate precise determination of the eigenfrequencies. The shapes can be represented in spherical coordinates by {r=a[1-\\varepsilon fancyscript{F}(θ,φ)]} where {age max(r), \\varepsilon ≪ 1} is a positive scale parameter, and {fancyscript{F}} is a non-negative function. Shape perturbation theory predicts that the fractional differences between the eigenvalues of the radial acoustic modes and the mean eigenvalues of the ℓ = 1 triplet electromagnetic and acoustic modes can be written in the form {fancyscript{C} \\varepsilon^2+fancyscript{C}^'\\varepsilon^3+ldots} , where the coefficients {fancyscript{C}} and {fancyscript{C}^' depend on the multiplet. The coefficients {fancyscript{C}} can be calculated analytically for acoustic modes for arbitrary QSR shapes. The third-order coefficient {fancyscript{C}^' cannot be calculated analytically but has been determined using finite-element methods for some cases. This article shows how the acoustic values of {fancyscript{C}} can be determined using the results of coordinate measuring machines.

  9. Switchable and Tunable Ferroelectric Bulk Acoustic Wave Resonators and Filters

    NASA Astrophysics Data System (ADS)

    Saddik, George Nabih

    Ferroelectric materials such as barium titanate (BaTiO 3 or BTO), strontium titanate (SrTiO3 or STO), and their solid solution barium strontium titanate (BaxSr1-xTiO 3 or BST) have been under investigation for over 50 years. BTO, STO, and BST are high-k dielectric materials, with a field dependent permittivity and a perovskite crystal structure. At room temperature BTO is a ferroelectric with a ferroelectric to paraelectric transition temperature of about 116°C (Curie temperature), while STO has no ferroelectric phase. The formation of a solid solution between BTO and STO allows for the engineering of the Curie temperature; the Curie temperature decreses as the mole ratio of barium decreases. Extensive research went into understanding the properties of BST and developing RF circuits such as tunable capacitors, tunable matching networks, tunable filters, phase shifters and harmonic generators. BST tunable capacitors have always had anomalous resonances in the one port scattering parameter measurements, although they are very small they degrade the quality factor of the device, and research went into reducing these resonances as much as possible. The goal of this thesis is to investigate these anomalous resonances and exploit them into RF devices and circuits. Careful investigation showed that these resonances were field induced piezoelectric resonance. Piezoelectric materials such as AlN, ZnO, and PZT are used in many applications, such as resonators, and filters. Thin film bulk acoustic wave resonators (FBAR) have been in use by research and industry since the early 1980s, and in high volume production for cell phone duplexers since early 2000s. FBAR filters and duplexers have several advantages over surface acoustic wave (SAW) and ceramic devices such as high quality factors necessary for sharp filter skirts, small size, high performance, and ease of integration. There are two approaches to designing bulk acoustic wave resonators. The first is an FBAR where a

  10. Acoustically driven programmable liquid motion using resonance cavities

    PubMed Central

    Langelier, Sean M.; Chang, Dustin S.; Zeitoun, Ramsey I.; Burns, Mark A.

    2009-01-01

    Performance and utility of microfluidic systems are often overshadowed by the difficulties and costs associated with operation and control. As a step toward the development of a more efficient platform for microfluidic control, we present a distributed pressure generation scheme whereby independently tunable pressure sources can be simultaneously controlled by using a single acoustic source. We demonstrate how this scheme can be used to perform precise droplet positioning as well as merging, splitting, and sorting within open microfluidic networks. We further show how this scheme can be implemented for control of continuous-flow systems, specifically for generation of acoustically tunable liquid gradients. Device operation hinges on a resonance-decoding and rectification mechanism by which the frequency content in a composite acoustic input is decomposed into multiple independently buffered output pressures. The device consists of a bank of 4 uniquely tuned resonance cavities (404, 484, 532, and 654 Hz), each being responsible for the actuation of a single droplet, 4 identical flow-rectification structures, and a single acoustic source. Cavities selectively amplify resonant tones in the input signal, resulting in highly elevated local cavity pressures. Fluidic-rectification structures then serve to convert the elevated oscillating cavity pressures into unidirectional flows. The resulting pressure gradients, which are used to manipulate fluids in a microdevice, are tunable over a range of ≈0–200 Pa with a control resolution of 10 Pa. PMID:19620719

  11. Simulation and fabrication of thin film bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Xixi, Han; Yi, Ou; Zhigang, Li; Wen, Ou; Dapeng, Chen; Tianchun, Ye

    2016-07-01

    In this paper, we present the simulation and fabrication of a thin film bulk acoustic resonator (FBAR). In order to improve the accuracy of simulation, an improved Mason model was introduced to design the resonator by taking the coupling effect between electrode and substrate into consideration. The resonators were fabricated by the eight inch CMOS process, and the measurements show that the improved Mason model is more accurate than a simple Mason model. The Q s (Q at series resonance), Q p (Q at parallel resonance), Q max and k t 2 of the FBAR were measured to be 695, 814, 1049, and 7.01% respectively, showing better performance than previous reports. Project supported by the National Natural Science Foundation of China (Nos. 61274119, 61306141, 61335008) and the Natural Science Foundation of Jiangsu Province (No. BK20131099).

  12. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    SciTech Connect

    Dai, Xiwen; Jing, Xiaodong Sun, Xiaofeng

    2015-05-15

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  13. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.

    PubMed

    Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric

    2006-07-01

    In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.

  14. Nonlinear standing waves in 2-D acoustic resonators.

    PubMed

    Cervenka, Milan; Bednarik, Michal

    2006-12-22

    This paper deals with 2-D simulation of finite-amplitude standing waves behavior in rectangular acoustic resonators. Set of three partial differential equations in third approximation formulated in conservative form is derived from fundamental equations of gas dynamics. These equations form a closed set for two components of acoustic velocity vector and density, the equations account for external driving force, gas dynamic nonlinearities and thermoviscous dissipation. Pressure is obtained from solution of the set by means of an analytical formula. The equations are formulated in the Cartesian coordinate system. The model equations set is solved numerically in time domain using a central semi-discrete difference scheme developed for integration of sets of convection-diffusion equations with two or more spatial coordinates. Numerical results show various patterns of acoustic field in resonators driven using vibrating piston with spatial distribution of velocity. Excitation of lateral shock-wave mode is observed when resonant conditions are fulfilled for longitudinal as well as for transversal direction along the resonator cavity.

  15. Ferroelectric film bulk acoustic wave resonators for liquid viscosity sensing

    NASA Astrophysics Data System (ADS)

    Vorobiev, A.; Gevorgian, S.

    2013-08-01

    A concept of accurate liquid viscosity sensing, using bulk acoustic wave (BAW) resonators, is proposed. The proposed BAW resonators use thin ferroelectric films with the dc field induced piezoelectric effect allowing for generation of pure longitudinal acoustic waves in the thickness excitation mode. This makes it possible to utilize exclusively shear liquid particle displacement at the resonator side walls and, therefore, accurate viscosity evaluation. The BAW resonators with the dc field induced piezoelectric effect in 0.67BiFeO3-0.33BaTiO3 ferroelectric films are fabricated and their liquid viscosity sensing properties are characterized. The resonator response is analyzed using simple model of a harmonic oscillator damped by a viscous force. It is shown that the resonator Q-factor is inversely proportional to the square root of the viscosity-density product. The viscosity measurement resolution is estimated to be as high as 0.005 mPa.s, which is 0.5% of the water viscosity.

  16. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.

  17. Scaling of membrane-type locally resonant acoustic metamaterial arrays.

    PubMed

    Naify, Christina J; Chang, Chia-Ming; McKnight, Geoffrey; Nutt, Steven R

    2012-10-01

    Metamaterials have emerged as promising solutions for manipulation of sound waves in a variety of applications. Locally resonant acoustic materials (LRAM) decrease sound transmission by 500% over acoustic mass law predictions at peak transmission loss (TL) frequencies with minimal added mass, making them appealing for weight-critical applications such as aerospace structures. In this study, potential issues associated with scale-up of the structure are addressed. TL of single-celled and multi-celled LRAM was measured using an impedance tube setup with systematic variation in geometric parameters to understand the effects of each parameter on acoustic response. Finite element analysis was performed to predict TL as a function of frequency for structures with varying complexity, including stacked structures and multi-celled arrays. Dynamic response of the array structures under discrete frequency excitation was investigated using laser vibrometry to verify negative dynamic mass behavior.

  18. Acoustic resonance in MEMS scale cylindrical tubes with side branches

    NASA Astrophysics Data System (ADS)

    Schill, John F.; Holthoff, Ellen L.; Pellegrino, Paul M.; Marcus, Logan S.

    2014-05-01

    Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace gas detection. This method routinely exhibits detection limits at the parts-per-million (ppm) or parts-per-billion (ppb) level for gaseous samples. PAS also possesses favorable detection characteristics when the system dimensions are scaled to a microelectromechanical system (MEMS) design. One of the central issues related to sensor miniaturization is optimization of the photoacoustic cell geometry, especially in relationship to high acoustical amplification and reduced system noise. Previous work relied on a multiphysics approach to analyze the resonance structures of the MEMS scale photo acoustic cell. This technique was unable to provide an accurate model of the acoustic structure. In this paper we describe a method that relies on techniques developed from musical instrument theory and electronic transmission line matrix methods to describe cylindrical acoustic resonant cells with side branches of various configurations. Experimental results are presented that demonstrate the ease and accuracy of this method. All experimental results were within 2% of those predicted by this theory.

  19. Resonant Acoustic Determination of Complex Elastic Moduli

    NASA Technical Reports Server (NTRS)

    Brown, David A.; Garrett, Steven L.

    1991-01-01

    A simple, inexpensive, yet accurate method for measuring the dynamic complex modulus of elasticity is described. Using a 'free-free' bar selectively excited in three independent vibrational modes, the shear modulus is obtained by measuring the frequency of the torsional resonant mode and the Young's modulus is determined from measurement of either the longitudinal or flexural mode. The damping properties are obtained by measuring the quality factor (Q) for each mode. The Q is inversely proportional to the loss tangent. The viscoelastic behavior of the sample can be obtained by tracking a particular resonant mode (and thus a particular modulus) using a phase locked loop (PLL) and by changing the temperature of the sample. The change in the damping properties is obtained by measuring the in-phase amplitude of the PLL which is proportional to the Q of the material. The real and imaginary parts or the complex modulus can be obtained continuously as a function of parameters such as temperature, pressure, or humidity. For homogeneous and isotropic samples only two independent moduli are needed in order to characterize the complete set of elastic constants, thus, values can be obtained for the dynamic Poisson's ratio, bulk modulus, Lame constants, etc.

  20. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    PubMed

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  1. Optical Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Haïdar, Riad; Pardo, Fabrice

    2014-08-01

    Helmholtz resonators are widely used acoustic components able to select a single frequency. Here, based on an analogy between acoustics and electromagnetism wave equations, we present an electromagnetic 2D Helmholtz resonator made of a metallic slit-box structure. At the resonance, the light is funneled in the λ/800 apertures, and is subsequently absorbed in the cavity. As in acoustics, there is no higher order of resonance, which is an appealing feature for applications such as photodetection or thermal emission. Eventually, we demonstrate that the slit is of capacitive nature while the box behaves inductively. We derive an analytical formula for the resonance wavelength, which does not rely on wave propagation and therefore does not depend on the permittivity of the material filling the box. Besides, in contrast with half-wavelength resonators, the resonance wavelength can be engineered by both the slit aspect ratio and the box area.

  2. Magnetic resonance spectroscopic study of parkinsonism related to boxing.

    PubMed

    Davie, C A; Pirtosek, Z; Barker, G J; Kingsley, D P; Miller, P H; Lees, A J

    1995-06-01

    Proton magnetic resonance spectroscopy, localised to the lentiform nucleus, was carried out in three ex-professional boxers who developed a parkinsonian syndrome, six patients with idiopathic Parkinson's disease, and six age matched controls. The three ex-boxers all showed a pronounced reduction in the absolute concentration of N-acetylaspartate compared with the patients with idiopathic Parkinson's disease and the control group. This reduction is likely to reflect neuronal loss occurring in the putamen and globus pallidus and supports the hypothesis that the extrapyramidal syndrome that may occur in ex-boxers is a distinct entity from idiopathic Parkinson's disease.

  3. Acoustic Band Gap Formation in Two-Dimensional Locally Resonant Sonic Crystals Comprised of Helmholtz Resonators

    NASA Astrophysics Data System (ADS)

    Chalmers, L.; Elford, D. P.; Kusmartsev, F. V.; Swallowe, G. M.

    2010-12-01

    We present a new type of sonic crystal technology offering a novel method of achieving broad acoustic band gaps. The proposed design of a locally resonating sonic crystal (LRSC) is constructed from "C"-shaped Helmholtz resonators as opposed to traditional solid scattering units. This unique construction enables a two band gap system to be generated in which the first -- a Bragg type band gap, arises due to the periodic nature of the crystal, whilst the second gap results from resonance of the air column within the resonators. The position of this secondary band gap is found to be dependent upon the dimensions of the resonating cavity. The band gap formation is investigated theoretically using finite element methods, and confirmed through experimental testing. It is noted that the resonance band gaps detected cover a much broader frequency range (in the order of kHz) than has been achieved to date. In addition the possibility of overlapping such a wide band gap with the characteristic Bragg gap generated by the structure itself could yield gaps of even greater range. A design of sonic crystal is proposed, that comprises of several resonators with differing cavity sizes. Such a structure generates multiple resonance gaps corresponding to the various resonator sizes, which may be overlapped to form yet larger band gaps. This multiple resonance gap system can occur in two configurations. Firstly a simple mixed array can be created by alternating resonator sizes in the array and secondly using a System coined the Matryoshka (Russian doll) array in which the resonators are distributed inside one another. The proposed designs of LRSC's offer a real potential for acoustic shielding using sonic crystals, as both the size and position of the band gaps generated can be controlled. This is an application which has been suggested and investigated for several years with little progress. Furthermore the frequency region attenuated by resonance is unrelated to the crystals lattice

  4. Acoustic Band Gap Formation in Two-Dimensional Locally Resonant Sonic Crystals Comprised of Helmholtz Resonators

    NASA Astrophysics Data System (ADS)

    Chalmers, L.; Elford, D. P.; Kusmartsev, F. V.; Swallowe, G. M.

    We present a new type of sonic crystal technology offering a novel method of achieving broad acoustic band gaps. The proposed design of a locally resonating sonic crystal (LRSC) is constructed from "C"-shaped Helmholtz resonators as opposed to traditional solid scattering units. This unique construction enables a two band gap system to be generated in which the first — a Bragg type band gap, arises due to the periodic nature of the crystal, whilst the second gap results from resonance of the air column within the resonators. The position of this secondary band gap is found to be dependent upon the dimensions of the resonating cavity. The band gap formation is investigated theoretically using finite element methods, and confirmed through experimental testing. It is noted that the resonance band gaps detected cover a much broader frequency range (in the order of kHz) than has been achieved to date. In addition the possibility of overlapping such a wide band gap with the characteristic Bragg gap generated by the structure itself could yield gaps of even greater range. A design of sonic crystal is proposed, that comprises of several resonators with differing cavity sizes. Such a structure generates multiple resonance gaps corresponding to the various resonator sizes, which may be overlapped to form yet larger band gaps. This multiple resonance gap system can occur in two configurations. Firstly a simple mixed array can be created by alternating resonator sizes in the array and secondly using a system coined the Matryoshka (Russian doll) array in which the resonators are distributed inside one another. The proposed designs of LRSC's offer a real potential for acoustic shielding using sonic crystals, as both the size and position of the band gaps generated can be controlled. This is an application which has been suggested and investigated for several years with little progress. Furthermore the frequency region attenuated by resonance is unrelated to the crystals

  5. Subwavelength acoustic focusing by surface-wave-resonance enhanced transmission in doubly negative acoustic metamaterials

    SciTech Connect

    Zhou, Xiaoming; Badreddine Assouar, M. Oudich, Mourad

    2014-11-21

    We present analytical and numerical analyses of a yet unseen lensing paradigm that is based on a solid metamaterial slab in which the wave excitation source is attached. We propose and demonstrate sub-diffraction-limited acoustic focusing induced by surface resonant states in doubly negative metamaterials. The enhancement of evanescent waves across the metamaterial slab produced by their resonant coupling to surface waves is evidenced and quantitatively determined. The effect of metamaterial parameters on surface states, transmission, and wavenumber bandwidth is clearly identified. Based on this concept consisting of a wave source attached on the metamaterial, a high resolution of λ/28.4 is obtained with the optimum effective physical parameters, opening then an exciting way to design acoustic metamaterials for ultrasonic focused imaging.

  6. A sound absorptive element comprising an acoustic resonance nanofibrous membrane.

    PubMed

    Kalinova, Klara

    2015-01-01

    As absorption of sound of lower frequencies is quite problematic with fibrous material made up of coarser fibers, development of highly efficient sound absorption material is called for. This is why this work deals with the development of new high sound absorption material. To absorb the low frequencies, especially the structures based on resonance principle of nanofibrous layers are used, when through resonance of some elements the acoustic energy is transferred into thermal energy. The goal of the invention is achieved by a sound absorbing means which contains resonance membrane formed by a layer of polymeric nanofibers, which is attached to a frame. For production of nanofibrous membranes, the cord electrospinning was used. The resonance membrane was then, upon impact of sound waves of low frequency, brought into forced vibrations, whereby the kinetic energy of the membrane was converted into thermal energy by friction of individual nanofibers, by the friction of the membrane with ambient air and possibly with other layers of material arranged in its proximity, and some of the energy was also transmitted to the frame, through which the vibrations of the resonance membrane were damped. The density and shape of the mesh of frame formations determine the resonance frequency of the acoustic means. The goal of the invention is therefore to eliminate or at least reduce the disadvantages of the present state of the art and to propose sound absorbing means that would be capable of absorbing, with good results sounds in as broadest frequency range as possible. Here, we also discussed some patents relevant to the topic.

  7. Resonant Acoustic Measurement of Vapor Phase Transport Phenomenon

    NASA Astrophysics Data System (ADS)

    Schuhmann, R. J.; Garrett, S. L.; Matson, J. V.

    2002-12-01

    A major impediment to accurate non steady-state diffusion measurements is the ability to accurately measure and track a rapidly changing gas concentration without disturbing the system. Non-destructive methods that do not interfere with system dynamics have been developed in the past. These methods, however, have tended to be cumbersome or inaccurate at low concentrations. A new experimental approach has been developed to measure gaseous diffusion in free air and through porous materials. The method combines the traditional non steady-state laboratory methodology with resonant acoustic gas analysis. A phase-locked-loop (PLL) resonance frequency tracker is combined with a thermally insulated copper resonator. A piston sealed with a metal bellows excites the fundamental standing wave resonance of the resonator. The PLL maintains a constant phase difference (typically 90§) between the accelerometer mounted on the piston and a microphone near the piston to track the resonance frequency in real time. A capillary or glass bead filled core is fitted into an o-ring sealed opening at the end of the resonator opposite the bellows. The rate at which the tracer gas is replaced by air within the resonator is controlled by the diffusion coefficient of the gas in free air through the capillary (DA) or by the effective diffusion coefficient of the gas through the core (De). The mean molecular weight of the gas mixture in the resonator is directly determined six times each minute from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Average system stability (temperature divided by frequency squared) is better than 350 ppm. DA values for a 0.3-inch diameter capillary were in excellent agreement with published values. De values for porous media samples (0.5 mm glass beads) of four different lengths (1 through 4 inches) using three different tracer gases (He, CH4, Kr) will be reported. Comments will be offered regarding tracer gas

  8. Acoustic metamaterials with coupled local resonators for broadband vibration suppression

    NASA Astrophysics Data System (ADS)

    Hu, Guobiao; Tang, Lihua; Das, Raj; Gao, Shiqiao; Liu, Haipeng

    2017-02-01

    This paper investigates a modified acoustic metamaterial system with local resonators coupled through linear springs. The proposed acoustic metamaterial system can provide three band gaps for broadband vibration suppression. First, the band structure of the modified acoustic metamaterial is calculated by using Bloch's theorem under the assumption of infinite lattice. The existence of three band gaps is confirmed in the band structure. Effects of mass and spring parameters on the band gap behaviour of the modified metamaterial are investigated through a dimensionless parametric study. Based on the parametric study, optimal dimensionless parameters are proposed to achieve maximal total band gap width in the low frequency range. Subsequently, a more realistic finite lattice model is established. The transmittances of the conventional and modified metamaterial systems are compared. The three band gaps predicted from transmittances and broadband vibration suppression behaviour are consistent with the predictions from infinite lattice model using Bloch's theorem. Finally, the time-domain responses are simulated and the superiority of the modified acoustic metamaterial over the conventional one is demonstrated.

  9. Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus

    NASA Astrophysics Data System (ADS)

    Jing, Xiaodong; Meng, Yang; Sun, Xiaofeng

    2015-11-01

    Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, such a low-modulus resonator can be made extremely lightweight. Deep subwavelength resonance is achieved when the SR is tuned by adjusting the shell thickness, benefiting from the large density contrast between the shell material and the encapsulated gas. The SR resonates with near-perfect monopole symmetry, as demonstrated by the theoretical and experimental results, which are in excellent agreement. For a lattice of SRs, a band gap occurs and blocks near-total transmission, and the effective bulk modulus exhibits a prominent negative band, while the effective mass density remains unchanged. Our study shows that the SR is suitable for building 3D acoustic metamaterials and provides a basis for constructing left-handed materials as a new means of creating a negative bulk modulus.

  10. Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus.

    PubMed

    Jing, Xiaodong; Meng, Yang; Sun, Xiaofeng

    2015-11-05

    Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, such a low-modulus resonator can be made extremely lightweight. Deep subwavelength resonance is achieved when the SR is tuned by adjusting the shell thickness, benefiting from the large density contrast between the shell material and the encapsulated gas. The SR resonates with near-perfect monopole symmetry, as demonstrated by the theoretical and experimental results, which are in excellent agreement. For a lattice of SRs, a band gap occurs and blocks near-total transmission, and the effective bulk modulus exhibits a prominent negative band, while the effective mass density remains unchanged. Our study shows that the SR is suitable for building 3D acoustic metamaterials and provides a basis for constructing left-handed materials as a new means of creating a negative bulk modulus.

  11. Resonant mode interactions and the bifurcation of combustion-driven acoustic oscillations in resonance tubes

    SciTech Connect

    Margolis, S.B. . Combustion Research Facility)

    1994-12-01

    Acoustic oscillations in practical combustion devices such as pulse combustors and rocket motors, whether desirable or not, are properly interpreted as combustion instabilities. A nonlinear stability analysis of the corresponding fluid motions than shows that the nonsteady behavior is governed by infinitely coupled systems of nonlinear evolution equations for the amplitudes of the classical acoustic modes. However, under certain conditions, it has been conjectured that relatively low-order truncations can give qualitatively correct physical results. In the present work, one particular model of a pulse combustor is considered, and a parameter regime in the neighborhood of a primary acoustic bifurcation where either one or a pair of purely longitudinal acoustic modes achieves a positive linear growth rate is focused upon. In the first case, it is formally shown that a decoupling occurs such that a two-mode approximation consisting of the linearly unstable mode and its first resonant harmonic completely determines the dynamics of the oscillation. In the later case, it is again demonstrated that a decoupling occurs, and although mode interactions require the retention of additional modes besides the two linearly unstable modes and their first resonant harmonics, a relatively low-order dynamical system still governs the bifurcation behavior. The presence of two linearly unstable modes is then shown to lead to more complicated dynamics, including the stable secondary bifurcation of a multiperiodic acoustic oscillation from one of the single-period primary branches.

  12. Acoustic Resonance and Vortex Shedding from Tube Banks of Boiler Plant

    NASA Astrophysics Data System (ADS)

    Hamakawa, Hiromitsu; Matsue, Hiroto; Nishida, Eiichi; Fukano, Tohru

    This paper focuses on the relationship between acoustic resonance and vortex shedding from the tube banks of a boiler plant. We have built a model similar to the actual boiler plant to clarify the characteristics of acoustic resonance phenomena and vortex shedding. The model used in-line tube banks with a small tube pitch ratio. We examined the relationship between the acoustic resonance of the actual plant and that of the model, and measured the sound pressure level, acoustic pressure mode shape, spectrum of velocity fluctuation, and gap velocity. Gap velocity was defined as the mean velocity in the smallest gaps between two neighboring tubes in the transverse direction. As a result, the resonant frequencies and mode shapes of the acoustic resonances in the actual boiler plant agreed well with those in the similar model. We found many peak frequencies in the sound pressure level spectrum when acoustic resonances occurred. The typical Strouhal numbers at the onset velocity of acoustic resonances were about 0.19, 0.26 and 0.52. Periodic velocity fluctuation caused by vortex shedding was observed inside the tube banks without acoustic resonance. The Strouhal number measured for vortex shedding was 0.15. Acoustic resonances of higher-order modes were generated in this plant.

  13. Micro acoustic resonant chambers for heating/agitating/mixing (MARCHAM)

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita M.; Takano, Nobuyuki; Grunthaner, Frank

    2016-04-01

    A variety of applications require the mixing and/or heating of a slurry made from a powder/fluid mixture. One of these applications, Sub Critical Water Extraction (SCWE), is a process where water and an environmental powder sample (sieved soil, drill cuttings, etc.) are heated in a sealed chamber to temperatures greater than 200 degrees Celsius by allowing the pressure to increase, but without reaching the critical point of water. At these temperatures, the ability of water to extract organics from solid particulate increases drastically. This paper describes the modeling and experimentation on the use of an acoustic resonant chamber which is part of an amino acid detection instrument called Astrobionibbler [Noell et al. 2014, 2015]. In this instrument we use acoustics to excite a fluid- solid fines mixture in different frequency/amplitude regimes to accomplish a variety of sample processing tasks. Driving the acoustic resonant chamber at lower frequencies can create circulation patterns in the fluid and mixes the liquid and fines, while driving the chamber at higher frequencies one can agitate the fluid and powder and create a suspension. If one then drives the chamber at high amplitude at resonance heating of the slurry occurs. In the mixing and agitating cell the particle levitation force depends on the relative densities and compressibility's of the particulate and fluid and on the kinetic and potential energy densities associated with the velocity and pressure fields [Glynne-Jones, Boltryk and Hill 2012] in the cell. When heating, the piezoelectric transducer and chamber is driven at high power in resonance where the solid/fines region is modelled as an acoustic transmission line with a large loss component. In this regime, heat is pumped into the solution/fines mixture and rapidly heats the sample. We have modeled the piezoelectric transducer/chamber/ sample using Mason's equivalent circuit. In order to assess the validity of the model we have built and

  14. Acoustic force measurement in a dual-temperature resonant chamber

    NASA Technical Reports Server (NTRS)

    Robey, Judith L.; Trinh, Eugene H.; Wang, Taylor G.

    1987-01-01

    The acoustic radiation force was measured for a dual-temperature resonant chamber. This rectangular chamber has its long dimension approximately 8.5 times the square cross-sectional dimension, and the opposite ends are at widely different temperatures. Force profiles were obtained for two hot end temperatures of 520 C and 760 C, while the cool end remained at approximately room temperature. Force magnitudes as high as 17 dyn for a sample 1.2 cm in diameter at 760 C and at 162-dB input level were measured.

  15. The Sound Field around a Tuning Fork and the Role of a Resonance Box

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2015-01-01

    Atypical two-tine tuning fork is barely audible when held vibrating at an arm's length. It is enough, however, to touch its base to a table or, better, to a resonance box and the emitted sound becomes much louder. An inquiring student may pose questions: (1) Why is a bare tuning fork such a weak emitter of sound? (2) What is the role of the…

  16. Slow light and slow acoustic phonons in optophononic resonators

    NASA Astrophysics Data System (ADS)

    Villafañe, V.; Soubelet, P.; Bruchhausen, A. E.; Lanzillotti-Kimura, N. D.; Jusserand, B.; Lemaître, A.; Fainstein, A.

    2016-11-01

    Slow and confined light have been exploited in optoelectronics to enhance light-matter interactions. Here we describe the GaAs/AlAs semiconductor microcavity as a device that, depending on the excitation conditions, either confines or slows down both light and optically generated acoustic phonons. The localization of photons and phonons in the same place of space amplifies optomechanical processes. Picosecond laser pulses are used to study through time-resolved reflectivity experiments the coupling between photons and both confined and slow acoustic phonons when the laser is tuned either with the cavity (confined) optical mode or with the stop-band edge (slow) optical modes. A model that fully takes into account the modified propagation of the acoustic phonons and light in these resonant structures is used to describe the laser detuning dependence of the coherently generated phonon spectra and amplitude under these different modes of laser excitation. We observe that confined light couples only to confined mechanical vibrations, while slow light can generate both confined and slow coherent vibrations. A strong enhancement of the optomechanical coupling using confined photons and vibrations, and also with properly designed slow photon and phonon modes, is demonstrated. The prospects for the use of these optoelectronic devices in confined and slow optomechanics are addressed.

  17. Uncertainty analysis of a structural-acoustic problem using imprecise probabilities based on p-box representations

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Yu, Dejie; Xia, Baizhan; Beer, Michael

    2016-12-01

    Imprecise probabilities can capture epistemic uncertainty, which reflects limited available knowledge so that a precise probabilistic model cannot be established. In this paper, the parameters of a structural-acoustic problem are represented with the aid of p-boxes to capture epistemic uncertainty in the model. To perform the necessary analysis of the structural-acoustic problem with p-boxes, a first-order matrix decomposition perturbation method (FMDPM) for interval analysis is proposed, and an efficient interval Monte Carlo method based on FMDPM is derived. In the implementation of the efficient interval Monte Carlo method based on FMDPM, constant matrices are obtained, first, through an uncertain parameter extraction on the basis of the matrix decomposition technique. Then, these constant matrices are employed to perform multiple interval analyses by using the first-order perturbation method. A numerical example is provided to illustrate the feasibility and effectiveness of the presented approach.

  18. Random acoustic metamaterial with a subwavelength dipolar resonance.

    PubMed

    Duranteau, Mickaël; Valier-Brasier, Tony; Conoir, Jean-Marc; Wunenburger, Régis

    2016-06-01

    The effective velocity and attenuation of longitudinal waves through random dispersions of rigid, tungsten-carbide beads in an elastic matrix made of epoxy resin in the range of beads volume fraction 2%-10% are determined experimentally. The multiple scattering model proposed by Luppé, Conoir, and Norris [J. Acoust. Soc. Am. 131(2), 1113-1120 (2012)], which fully takes into account the elastic nature of the matrix and the associated mode conversions, accurately describes the measurements. Theoretical calculations show that the rigid particles display a local, dipolar resonance which shares several features with Minnaert resonance of bubbly liquids and with the dipolar resonance of core-shell particles. Moreover, for the samples under study, the main cause of smoothing of the dipolar resonance of the scatterers and the associated variations of the effective mass density of the dispersions is elastic relaxation, i.e., the finite time required for the shear stresses associated to the translational motion of the scatterers to propagate through the matrix. It is shown that its influence is governed solely by the value of the particle to matrix mass density contrast.

  19. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    PubMed

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  20. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation

    PubMed Central

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  1. ‘Weighing’ a gas with microwave and acoustic resonances

    NASA Astrophysics Data System (ADS)

    Gillis, K. A.; Mehl, J. B.; Schmidt, J. W.; Moldover, M. R.

    2015-04-01

    With calibrations of large flow meters in mind, we established the feasibility of determining the mass M of argon gas contained within a 0.3 m3 commercially manufactured pressure vessel (‘tank’) with a relative standard uncertainty of ur(M) = 0.0016 at 0.6 MPa by combining the measured argon pressure and the measured microwave and acoustic resonance frequencies within the pressure vessel with an accurate equation of state for argon. (All stated uncertainties correspond to the 68% confidence level.) Previously, we used microwaves to determine the tank’s internal volume Vmicro with ur(V) = 0.0006 and to determine the thermal expansion of the volume (Moldover et al 2015 Meas. Sci. Tech. 26 015304). Here, we show that the microwave results accurately predict the wavenumbers kcalc of the four lowest-frequency acoustic modes of the gas. When we compared kcalc to the measured wavenumbers kmeas, which included corrections for known perturbations, such as the tank’s calculated pressure-dependent center-of-mass motion (but not the tank’s vibrational modes), the inconsistency of the ratio kmeas/kcalc among the modes was the largest component of ur(M). Because the resonance frequencies f calc of the acoustic modes depend on the average speed of sound (and therefore the average temperature) of the gas in the tank, first-order perturbation theory predicts that f calc for a rigid cylindrical cavity is independent of linear temperature gradients. Consistent with this prediction, the average of f meas for the 3 lowest-frequency, non-degenerate longitudinal modes changed only Δfmeas / f meas = (0.2 ± 1.3) × 10-4 when, near ambient temperature, we heated the tank’s top 13 K warmer than its bottom. However, we observed a linear dependence on ΔT for the average of f meas for the nearly-degenerate doublet modes, which the rigid cylinder theory does not predict. We argue that the linear dependence on ΔT was caused by anisotropic changes in the tank

  2. Resonant interaction of acoustic waves with subaqueous bedforms: Sand dunes in the South China Sea.

    PubMed

    Chiu, Linus Y S; Chang, Andrea Y Y; Reeder, D Benjamin

    2015-12-01

    The large subaqueous sand dunes in the South China Sea are expected to produce the coupling of energy between acoustic normal modes. In this letter, resonant interaction between acoustic propagating modes and subaqueous bedforms are numerically investigated as a function of bedform wavelength, acoustic frequency and bedform packet length. The results demonstrate that bedform wavelength impacts acoustic mode coupling behavior, with the principal transfer of energy occurring between acoustic modes whose eigenvalue difference is equal to the peak value in the bedform wavenumber spectrum. The observed effect of wavelength is greater than that of acoustic frequency and bedform packet length.

  3. Monaural sound localization based on structure-induced acoustic resonance.

    PubMed

    Kim, Keonwook; Kim, Youngwoong

    2015-02-06

    A physical structure such as a cylindrical pipe controls the propagated sound spectrum in a predictable way that can be used to localize the sound source. This paper designs a monaural sound localization system based on multiple pyramidal horns around a single microphone. The acoustic resonance within the horn provides a periodicity in the spectral domain known as the fundamental frequency which is inversely proportional to the radial horn length. Once the system accurately estimates the fundamental frequency, the horn length and corresponding angle can be derived by the relationship. The modified Cepstrum algorithm is employed to evaluate the fundamental frequency. In an anechoic chamber, localization experiments over azimuthal configuration show that up to 61% of the proper signal is recognized correctly with 30% misfire. With a speculated detection threshold, the system estimates direction 52% in positive-to-positive and 34% in negative-to-positive decision rate, on average.

  4. Acoustic solitons in waveguides with Helmholtz resonators: transmission line approach.

    PubMed

    Achilleos, V; Richoux, O; Theocharis, G; Frantzeskakis, D J

    2015-02-01

    We report experimental results and study theoretically soliton formation and propagation in an air-filled acoustic waveguide side loaded with Helmholtz resonators. We propose a theoretical modeling of the system, which relies on a transmission-line approach, leading to a nonlinear dynamical lattice model. The latter allows for an analytical description of the various soliton solutions for the pressure, which are found by means of dynamical systems and multiscale expansion techniques. These solutions include Boussinesq-like and Korteweg-de Vries pulse-shaped solitons that are observed in the experiment, as well as nonlinear Schrödinger envelope solitons, that are predicted theoretically. The analytical predictions are in excellent agreement with direct numerical simulations and in qualitative agreement with the experimental observations.

  5. Ultra-High Q Acoustic Resonance in Superfluid ^4He

    NASA Astrophysics Data System (ADS)

    De Lorenzo, L. A.; Schwab, K. C.

    2017-02-01

    We report the measurement of the acoustic quality factor of a gram-scale, kilohertz-frequency superfluid resonator, detected through the parametric coupling to a superconducting niobium microwave cavity. For temperatures between 400 mK and 50 mK, we observe a T^{-4} temperature dependence of the quality factor, consistent with a 3-phonon dissipation mechanism. We observe Q factors up to 1.4× 10^8, consistent with the dissipation due to dilute ^3He impurities, and expect that significant further improvements are possible. These experiments are relevant to exploring quantum behavior and decoherence of massive macroscopic objects, the laboratory detection of continuous gravitational waves from pulsars, and the probing of possible limits to physical length scales.

  6. Study of the onset of the acoustic streaming in parallel plate resonators with pulse ultrasound.

    PubMed

    Castro, Angelica; Hoyos, Mauricio

    2016-03-01

    In a previous study, we introduced pulse mode ultrasound as a new method for reducing and controlling the acoustic streaming in parallel plate resonators (Hoyos and Castro, 2013). Here, by modifying other parameters such as the resonator geometry and the particle size, we have found a threshold for particle manipulation with ultrasonic standing waves in confined resonators without the influence of the acoustic streaming. We demonstrate that pulse mode ultrasound open the possibility of manipulating particles smaller than 1 μm size.

  7. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures.

    PubMed

    Yu, Ganghua; Li, Deyu; Cheng, Li

    2008-12-01

    The effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in an enclosure and the multimodal coupling-based Helmholtz resonator design are investigated. Using the analytical solution of a resonator-enclosure interaction model, an energy reduction index is defined in a frequency band to optimize the resonator resistance. The dual process of energy dissipation and radiation of the resonator is quantified. Optimal resistance of the resonator and its physical effect on the resonator-enclosure interaction are numerically evaluated and categorized in terms of frequency bandwidths. Predictions on the resonator performance are confirmed by experiments. Comparisons with existing models based on different optimization criteria are also performed. It is shown that the proposed model serves as an effective design tool to determine the internal resistance of the resonator in order to achieve sound reduction in the frequency band enclosing acoustic resonances.

  8. Effects of acoustic wave resonance oscillation on immobilized enzyme

    NASA Astrophysics Data System (ADS)

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-03-01

    In aiming at developing a new method to artificially activate enzyme catalysts immobilized on surface, the effects of resonance oscillation of bulk acoustic waves were studied. Glucose oxidase (GOD) was immobilized by a covalent coupling method on a ferroelectric lead zirconate titanate (PZT) device that was able to generate thickness-extensional resonance oscillation (TERO). Glucose oxidation by the GOD enzyme was studied in a microreactor. The generation of TERO immediately increased the catalytic activity of immobilized GOD by a factor of 2-3. With turn-off of TERO, no significant activity decrease occurred, and 80-90% of the enhanced activity was maintained while the reaction proceeded. The almost complete reversion of the activity to the original low level before TERO generation was observed when the immobilized GOD was exposed to a glucose substrate-free solution. These results indicated that the presence of glucose substrate was essential for TERO-induced GOD activation and preservation of the increased activity level. The influences of reaction temperature, glucose concentration, pH, and rf electric power on the TERO activation showed that TERO strengthened the interactions of the immobilized enzyme with glucose substrate and hence promoted the formation of an activation complex.

  9. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    PubMed

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  10. Noise control for a ChamberCore cylindrical structure using long T-shaped acoustic resonators

    NASA Astrophysics Data System (ADS)

    Li, Deyu; Vipperman, Jeffrey S.

    2003-10-01

    The Air Force Research Laboratory, Space Vehicles Directorate has developed a new advanced composite launch vehicle fairing (referred to as ``ChamberCore''). The ChamberCore is sandwich-type structure fabricated from multi-layered composite face sheets separated by channels that form passive acoustic chambers. These acoustic chambers have a potential to create an acoustic resonator network that can be used to attenuate noise inside the closed ChamberCore cylindrical structure. In this study, first, the feasibility of using cylindrical Helmholtz resonators to control noise in a mock-scale ChamberCore composite cylinder is investigated. The targeted frequencies for noise control are the first four acoustic cavity resonances of the ChamberCore cylinder. The optimal position of the Helmholtz resonators for controlling each targeted cavity mode is discussed, and the effects of resonator spacing on noise attenuation are also experimentally evaluated. Next, six long T-shaped acoustic resonators are designed and constructed within the acoustic chambers of the structure and investigated. Several tests are conducted to evaluate the noise control ability of the resonators in the ChamberCore cylinder. Reductions ranging from 3.2 to 6.0 dB were observed in the overall mean-square noise reduction spectrum at the targeted inner cavity resonance frequencies. [Work supported by AFRL/DV.

  11. Investigations of High Pressure Acoustic Waves in Resonators with Seal-like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher; Steinetz, Bruce; Finkbeiner, Joshua

    2003-01-01

    A conical resonator (having a dissonant acoustic design) was tested in four configurations: (1) baseline resonator with closed ends and no blockage, (2) closed resonator with internal blockage, (3) ventilated resonator with no blockage, and (4) ventilated resonator with an applied pressure differential. These tests were conducted to investigate the effects of blockage and ventilation holes on dynamic pressurization. Additionally, the investigation was to determine the ability of acoustic pressurization to impede flow through the resonator. In each of the configurations studied, the entire resonator was oscillated at the gas resonant frequency while dynamic pressure, static pressure, and temperature of the fluid were measured. In the final configuration, flow through the resonator was recorded for three oscillation conditions. Ambient condition air was used as the working fluid.

  12. Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-based structures

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Yuan, Baoguo; Cheng, Ying; Liu, Xiaojun

    2016-02-01

    We have realized the acoustic rainbow trapping in the low frequency region (200-500 Hz) through micro Mie resonance-based structures. The structure has eight channels with a high refractive index obtained by coiling space, that can excite strong interactions with incident waves and support various orders of multipoles due to the Mie resonances of the microstructure. By utilizing the structure, the precise spatial modulation of the acoustic wave is demonstrated both theoretically and experimentally. The effect of trapping broadband acoustic waves and spatially separating different frequency components are ascribed to the monopolar Mie resonances of the structures. The trapping frequency is derived and the trapping positions can be tuned arbitrarily. With enhanced wave-structure interactions and tailored frequency responses, such micro structures show precise spectral-spatial control of acoustic waves and open a diverse venue for high performance acoustic wave detection, sensing, filtering, and a nondestructive test.

  13. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  14. Nonlinear effects in acoustic metamaterial based on a cylindrical pipe with ordered Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Lan, Jun; Li, Yifeng; Yu, Huiyang; Li, Baoshun; Liu, Xiaozhou

    2017-04-01

    We theoretically investigate the nonlinear effects of acoustic wave propagation and dispersion in a cylindrical pipe with periodically arranged Helmholtz resonators. By using the classical perturbation method in nonlinear acoustics and considering a nonlinear response up to the third-order at the fundamental frequency, the expressions of the nonlinear impedance ZNHR of the Helmholtz resonator and effective nonlinear bulk modulus Bneff of the composite structure are derived. In order to confirm the nonlinear properties of the acoustic metamaterial, the transmission spectra have been studied by means of the acoustic transmission line method. Moreover, we calculate the effective acoustic impedance and dispersion relation of the system using the acoustic impedance theory and Bloch theory, respectively. It is found that with the increment of the incident acoustic pressure level, owing to the nonlinearity of the Helmholtz resonators, the resonant frequency ω0 shifts toward the lower frequency side and the forbidden bandgap of the transmission spectrum is shown to be broadened. The perturbation method employed in this paper extends the general analytical framework for a nonlinear acoustic metamaterial.

  15. Towards optimal design of locally resonant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Krushynska, A. O.; Kouznetsova, V. G.; Geers, M. G. D.

    2014-11-01

    The paper presents an in-depth analysis of solid locally resonant acoustic metamaterials (LRAMs) consisting of rubber-coated inclusions. Dispersion properties of two-dimensional LRAMs are studied by means of finite-element modal analysis. For an incompressible rubber, only one practically important spectral band gap is found for in-plane modes in a low-frequency range. This result is in striking contrast with the compressible coating case, previously studied in the literature. For inclusions with a circular cross-section, the lower bound of the band gap can be evaluated exactly by means of the derived analytical solution, which is also valid for compressible coatings and can therefore be used to determine lower bounds of higher band gaps as well. The influence of geometric and material parameters, filling fraction and inclusion shape on the width of the lowest band gap is investigated in detail. Based on the results of this analysis, an optimal microstructure of LRAMs yielding the widest low-frequency band gap is proposed. To achieve the band gap at the lowest possible frequencies in LRAMs suitable for practical applications, the use of the tungsten core material is advised, as a safe and economically viable alternative to commonly considered lead and gold. Two configurations of LRAM with various sizes of coated tungsten cylindrical inclusions with circular cross-section are considered. The evolution of dispersion spectra due to the presence of different inclusions is investigated, and the parameters for optimal design of LRAMs are determined.

  16. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOEpatents

    Sinha, D.N.

    1999-03-23

    Apparatus and method are disclosed for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described. 5 figs.

  17. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOEpatents

    Sinha, Dipen N.

    1999-01-01

    Apparatus and method for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described.

  18. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Zhang, Yuning; Li, Shengcai

    2017-03-01

    The multi-frequency acoustic excitation has been employed to enhance the effects of oscillating bubbles in sonochemistry for many years. In the present paper, nonlinear dynamic oscillations of bubble under dual-frequency acoustic excitation are numerically investigated within a broad range of parameters. By investigating the power spectra and the response curves of oscillating bubbles, two unique features of bubble oscillations under dual-frequency excitation (termed as "combination resonance" and "simultaneous resonance") are revealed and discussed. Specifically, the amplitudes of the combination resonances are quantitatively compared with those of other traditional resonances (e.g. main resonances, harmonics). The influences of several paramount parameters (e.g., the bubble radius, the acoustic pressure amplitude, the energy allocation between two component waves) on nonlinear bubble oscillations are demonstrated.

  19. Realization of acoustic wave directivity at low frequencies with a subwavelength Mie resonant structure

    NASA Astrophysics Data System (ADS)

    Lu, Gengxi; Ding, Erliang; Wang, Yangyang; Peng, Xiuyuan; Cui, Jun; Liu, Xiaozhou; Liu, Xiaojun

    2017-03-01

    We realized high-efficiency acoustic directivity at low frequencies based on monopolar Mie resonance. This is caused by micro structures that have a high refractive index relative to the background medium. The structures can strongly control the radiation pattern though the acoustic wavelength is much larger than its dimensions. We herein discuss how to enhance the directivity through modifying the structure's parameters. Furthermore, our structure is proposed for use in obtaining an acoustic collimated beam without sidelobes. The structure characteristics and applications are demonstrated both theoretically and experimentally. Potential applications of our structures include acoustic device miniaturization, noise control, and medical ultrasonics.

  20. Metamaterial buffer for broadband non-resonant impedance matching of obliquely incident acoustic waves.

    PubMed

    Fleury, Romain; Alù, Andrea

    2014-12-01

    Broadband impedance matching and zero reflection of acoustic waves at a planar interface between two natural materials is a rare phenomenon, unlike its optical counterpart, frequently observed for polarized light incident at the Brewster angle. In this article, it is shown that, by inserting a metamaterial layer between two acoustic materials with different impedance, it is possible to artificially realize an extremely broadband Brewster-like acoustic intromission angle window, in which energy is totally transmitted from one natural medium to the other. The metamaterial buffer, composed of acoustically hard materials with subwavelength tapered apertures, provides an interesting way to match the impedances of two media in a broadband fashion, different from traditional methods like quarter-wave matching or Fabry-Pérot resonances, inherently narrowband due to their resonant nature. This phenomenon may be interesting for a variety of applications including energy harvesting, acoustic imaging, ultrasonic transducer technology, and noise control.

  1. Comparison of structural response and fatigue endurance of aircraft flap-like box structures subjected to acoustic loading.

    PubMed

    Xiao, Y; White, R G; Aglietti, G S

    2005-05-01

    The results of an extensive test program to characterize the behavior of typical aircraft structures under acoustic loading and to establish their fatigue endurance are presented. The structures tested were the three flap-like box-type of structures. Each structure consisted of one flat (bottom) and one curved (top) stiffener stiffened skin panel, front, and rear spars, and ribs that divided the structures into three bays. The three structures, constructed from three different materials (aircraft standard aluminum alloy, Carbon Fibre Reinforced Plastic, and a Glass Fibre Metal Laminate, i.e., GLARE) had the same size and configuration, with only minor differences due to the use of different materials. A first set of acoustic tests with excitations of intensity ranging from 140 to 160 dB were carried out to obtain detailed data on the dynamic response of the three structures. The FE analysis of the structures is also briefly described and the results compared with the experimental data. The fatigue endurance of the structures was then determined using random acoustic excitation with an overall sound pressure level of 161 dB, and details of crack propagation are reported.

  2. Comparison of structural response and fatigue endurance of aircraft flap-like box structures subjected to acoustic loading

    NASA Astrophysics Data System (ADS)

    Xiao, Y.; White, R. G.; Aglietti, G. S.

    2005-05-01

    The results of an extensive test program to characterize the behavior of typical aircraft structures under acoustic loading and to establish their fatigue endurance are presented. The structures tested were the three flap-like box-type of structures. Each structure consisted of one flat (bottom) and one curved (top) stiffener stiffened skin panel, front, and rear spars, and ribs that divided the structures into three bays. The three structures, constructed from three different materials (aircraft standard aluminum alloy, Carbon Fibre Reinforced Plastic, and a Glass Fibre Metal Laminate, i.e., GLARE) had the same size and configuration, with only minor differences due to the use of different materials. A first set of acoustic tests with excitations of intensity ranging from 140 to 160 dB were carried out to obtain detailed data on the dynamic response of the three structures. The FE analysis of the structures is also briefly described and the results compared with the experimental data. The fatigue endurance of the structures was then determined using random acoustic excitation with an overall sound pressure level of 161 dB, and details of crack propagation are reported. .

  3. Acoustic Resonance Spectroscopy (ARS) Munition Classification System enhancements. Final report

    SciTech Connect

    Vela, O.A.; Huggard, J.C.

    1997-09-18

    Acoustic Resonance Spectroscopy (ARS) is a non-destructive evaluation technology developed at the Los Alamos National Laboratory (LANL). This technology has resulted in three generations of instrumentation, funded by the Defense Special Weapons Agency (DSWA), specifically designed for field identification of chemical weapon (CW) munitions. Each generation of ARS instrumentation was developed with a specific user in mind. The ARS1OO was built for use by the U.N. Inspection Teams going into Iraq immediately after the Persian Gulf War. The ARS200 was built for use in the US-Russia Bilateral Chemical Weapons Treaty (the primary users for this system are the US Onsite Inspection Agency (OSIA) and their Russian counterparts). The ARS300 was built with the requirements of the Organization for the Prohibition of Chemical Weapons (OPCW) in mind. Each successive system is an improved version of the previous system based on learning the weaknesses of each and, coincidentally, on the fact that more time was available to do a requirements analysis and the necessary engineering development. The ARS300 is at a level of development that warrants transferring the technology to a commercial vendor. Since LANL will supply the computer software to the selected vendor, it is possible for LANL to continue to improve the decision algorithms, add features where necessary, and adjust the user interface before the final transfer occurs. This paper describes the current system, ARS system enhancements, and software enhancements. Appendices contain the Operations Manual (software Version 3.01), and two earlier reports on enhancements.

  4. Enhanced acoustoelectric coupling in acoustic energy harvester using dual Helmholtz resonators.

    PubMed

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this paper, enhanced acoustoelectric transduction in an acoustic energy harvester using dual Helmholtz resonators has been reported. The harvester uses a pair of cavities mechanically coupled with a compliant perforated plate to enhance the acoustic coupling between the cavity and the plate. The experimental results show that the volume optimization of the second cavity can significantly increase the generated electric voltage up to 400% and raise the output power to 16 times as large as that of a harvester using a single Helmholtz resonator at resonant frequencies primarily related to the plate.

  5. Passive control of flow-excited acoustic resonance in rectangular cavities using upstream mounted blocks

    NASA Astrophysics Data System (ADS)

    Shaaban, Mahmoud; Mohany, Atef

    2015-04-01

    A passive method for controlling the flow-excited acoustic resonance resulting from subsonic flows over rectangular cavities in channels is investigated. A cavity with length to depth ratio of is tested in air flow of Mach number up to 0.45. When the acoustic resonance is excited, the sound pressure level in the cavity reaches 162 dB. Square blocks are attached to the surface of the channel and centred upstream of the cavity leading edge to suppress the flow-excited acoustic resonance in the cavity. Six blocks of different widths are tested at three different upstream distances. The results show that significant attenuation of up to 30 dB of the excited sound pressure level is achieved using a block with a width to height ratio of 3, while blocks that fill the whole width of the channel amplify the pressure of the excited acoustic resonance. Moreover, it is found that placing the block upstream of the cavity causes the onset of the acoustic resonance to occur at higher flow velocities. In order to investigate the nature of the interactions that lead to suppression of the acoustic resonance and to identify the changes in flow patterns due to the placement of the block, 2D measurements of turbulence intensity in the shear layer and the block wake region are performed. The location of the flow reattachment point downstream of the block relative to the shear layer separation point has a major influence on the suppression level of the excited acoustic resonance. Furthermore, higher attenuation of noise is related to lower span-wise correlation of the shear-layer perturbation.

  6. Sputtered SiO2 as low acoustic impedance material for Bragg mirror fabrication in BAW resonators.

    PubMed

    Olivares, Jimena; Wegmann, Enrique; Capilla, José; Iborra, Enrique; Clement, Marta; Vergara, Lucía; Aigner, Robert

    2010-01-01

    In this paper we describe the procedure to sputter low acoustic impedance SiO(2) films to be used as a low acoustic impedance layer in Bragg mirrors for BAW resonators. The composition and structure of the material are assessed through infrared absorption spectroscopy. The acoustic properties of the films (mass density and sound velocity) are assessed through X-ray reflectometry and picosecond acoustic spectroscopy. A second measurement of the sound velocity is achieved through the analysis of the longitudinal lambda/2 resonance that appears in these silicon oxide films when used as uppermost layer of an acoustic reflector placed under an AlN-based resonator.

  7. Acoustic resonators for noise control in enclosures: Modelling, design and optimization

    NASA Astrophysics Data System (ADS)

    Yu, Ganghua

    This work systematically investigates the acoustic interaction between an enclosure and resonators, and establishes systematic design tools based upon the interaction theory to optimize the physical characteristics and the locations of resonators. A general theoretical model is first established to predict the acoustic performance of multiple resonators placed in an acoustic enclosure of arbitrary shape. Analytical solutions for the sound pressure inside the enclosure are obtained when a single resonator is installed, which provide insight into the physics of the acoustic interaction between the enclosure and resonators. The theoretical model is experimentally validated, showing the effectiveness and reliability of the theoretical model. Using the validated acoustic interaction model and the analytical solutions, the internal resistance of a resonator is optimized to improve its performance in a frequency band enclosing acoustic resonances. An energy reduction index is defined to conduct the optimization. The dual process of the energy dissipation and radiation of the resonator is quantified. Optimal resistance and its physical effect on the enclosure-resonator interaction are numerically evaluated and categorized in terms of frequency bandwidths. Predictions on the resonator performance are confirmed by experiments. Comparisons with existing models based on different optimization criteria are also performed. It is shown that the proposed model serves as an effective design tool to determine the optimal internal-resistance of the resonator in a chosen frequency band. Due to the multi-modal coupling, the resonator performance is also affected by its location besides its physical characteristics. When multiple resonators are used, the mutual interaction among resonators leads to the requirement of a systematic optimization tool to determine their locations. In the present work, different optimization methodologies are explored. These include a sequential design

  8. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    SciTech Connect

    Hahn, P. Dual, J.

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  9. Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators.

    PubMed

    Groby, J-P; Lagarrigue, C; Brouard, B; Dazel, O; Tournat, V; Nennig, B

    2015-01-01

    This paper studies the acoustical properties of hard-backed porous layers with periodically embedded air filled Helmholtz resonators. It is demonstrated that some enhancements in the acoustic absorption coefficient can be achieved in the viscous and inertial regimes at wavelengths much larger than the layer thickness. This enhancement is attributed to the excitation of two specific modes: Helmholtz resonance in the viscous regime and a trapped mode in the inertial regime. The enhancement in the absorption that is attributed to the Helmholtz resonance can be further improved when a small amount of porous material is removed from the resonator necks. In this way the frequency range in which these porous materials exhibit high values of the absorption coefficient can be extended by using Helmholtz resonators with a range of carefully tuned neck lengths.

  10. Effects of relevant parameters on the bandgaps of acoustic metamaterials with multi-resonators

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoqin; Wang, Jun; Wang, Rongqi; Lin, Jieqiong

    2016-04-01

    Locally resonant acoustic metamaterials with multi-resonators are generally regarded as a fine trend for managing the bandgaps, the different effects of relevant structural parameters on the bandgaps, which will be numerically investigated in this paper. A two-step homogenization method is extended to achieve the effective mass of multi-resonators metamaterial in the lattice system. As comparison, the dispersive wave propagation in lattice system and continuum model is studied. Then, the different effects of relevant parameters on the center frequencies and bandwidth of bandgaps are perfectly revealed, and the steady-state responses in the continuum models with purposed relevant parameters are additionally clarified. The related results can well confirm that the bandgaps exist around the undamped natural frequencies of internal resonators, and also their bandwidth can be efficiently controlled with the ensured center frequencies. Moreover, the design of purposed multi-resonators acoustic metamaterial in vibration control is presented and discussed by an example.

  11. Acoustic mode driven by fast electrons in TJ-II Electron Cyclotron Resonance plasmas

    NASA Astrophysics Data System (ADS)

    Sun, B. J.; Ochando, M. A.; López-Bruna, D.

    2016-08-01

    Intense harmonic oscillations in radiation signals (δ I/I∼ 5{%}) are commonly observed during Electron Cyclotron Resonance (ECR) heating in TJ-II stellarator plasmas at low line-averaged electron density, 0.15 < \\bar{n}e < 0.6 ×1019 \\text{m}-3 . The frequency agrees with acoustic modes. The poloidal modal structure is compatible with Geodesic Acoustic Modes (GAM) but an n \

  12. Determination of the Secondary Bjerknes Force in Acoustic Resonators on Ground and in Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Castro, Luz Angelica; Hoyos, Mauricio

    2016-04-01

    We propose an experimental methodology to determine the secondary Bjerknes force between rigid particles. Measurements done for different particles sizes showed acoustical inter particles interactions. We use and extend the methodology presented in a previous work. The determination of this force will lead us a better understanding of the aggregation process in acoustic resonators. We report in this work, the results of two parabolic flights campaigns performed at the Airbus A300 ZERO-G (Novespace, France).

  13. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    PubMed

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  14. An extension of the transfer matrix method to analyzing acoustic resonators with gradually varying cross-sectional area

    NASA Astrophysics Data System (ADS)

    Min, Qi; He, Wan-Quan; Wang, Quan-Biao; Tian, Jia-Jin

    2016-11-01

    The transfer matrix method was used to analyze the acoustical properties of stepped acoustic resonator in the previous paper. The present paper extends the application of the transfer matrix method to analyzing acoustic resonators with gradually varying cross-sectional area. The transfer matrices and the resonant conditions are derived for acoustic resonators with four different kinds of gradually varying geometric shape: tapered, trigonometric, exponential and hyperbolic. Based on the derived transfer matrices, the acoustic properties of these resonators are derived, including the resonant frequency, phase and radiation impedance. Compared with other analytical methods based on the wave equation and boundary conditions, the transfer matrix method is simple to implement and convenient for computation.

  15. Resonant attenuation of surface acoustic waves by a disordered monolayer of microspheres

    NASA Astrophysics Data System (ADS)

    Eliason, J. K.; Vega-Flick, A.; Hiraiwa, M.; Khanolkar, A.; Gan, T.; Boechler, N.; Fang, N.; Nelson, K. A.; Maznev, A. A.

    2016-02-01

    Attenuation of surface acoustic waves (SAWs) by a disordered monolayer of polystyrene microspheres is investigated. Surface acoustic wave packets are generated by a pair of crossed laser pulses in a glass substrate coated with a thin aluminum film and detected via the diffraction of a probe laser beam. When a 170 μm-wide strip of micron-sized spheres is placed on the substrate between the excitation and detection spots, strong resonant attenuation of SAWs near 240 MHz is observed. The attenuation is caused by the interaction of SAWs with a contact resonance of the microspheres, as confirmed by acoustic dispersion measurements on the microsphere-coated area. Frequency-selective attenuation of SAWs by such a locally resonant metamaterial may lead to reconfigurable SAW devices and sensors, which can be easily manufactured via self-assembly techniques.

  16. Micro- and Macro-Fluid Dynamics and Acoustics of Resonant Liners

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Watson, Willie (Technical Monitor)

    2002-01-01

    The objectives of this project are to perform direct numerical simulation of the micro-fluid and acoustic fields of a resonant acoustic liner and to investigate the physical processes by which incident sound waves are damped by the acoustic liner. We would like to report that our research work and results have fulfilled both objectives of the grant. The following is a summary of the important accomplishments: (1) Two dimensional direct numerical simulation of the flow and acoustic field around the cavity of resonant liner were successfully carried out; (2) The simulations of (1) were extended to include a laminar grazing flow; (3) The numerical simulations provided strong evidence that there are two principal mechanisms by which a resonant liner damps out an incident acoustic wave; (4) A validation test was performed by comparing the computed dissipation coefficients (not impedance) with impedance tube measurements done at GTRI; and (5) Some resources of this grant were used to support the development of new CAA methods. (Our work on numerical simulation of acoustic liners has benefited by the availability of these improved methods).

  17. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Liu, Jianfang; Lv, Qingqing; Gu, Shoudong; Jiao, Xiaoyang; Li, Minjiao; Zhang, Shasha

    2016-09-01

    The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.

  18. Resonant mechanical meta-interface suppressing transmission of acoustic waves without mode conversion

    NASA Astrophysics Data System (ADS)

    Gusev, Vitalyi E.

    2015-02-01

    Physical principles for the creation of meta-interfaces between two elastic media supporting transmission of only mode-converted acoustic waves by use of arrays of resonant mechanical elements that transfer shear and compression/dilatation forces are revealed. Analytical modelling of mechanical structural vibrations according to a lumped-element approximation for mechanical elements oriented obliquely to the interface shows that such meta-interfaces can be applied to the directional transmission of the acoustic waves between solids and liquids. Applications include the acoustic isolation of solid objects in a liquid environment and the reduction of the detection efficiency of solid-object vibrations.

  19. Initial Evaluation of Acoustic Emission SHM of PRSEUS Multi-bay Box Tests

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2016-01-01

    A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) HWB Multi-Bay Test Article were conducted during the second quarter of 2015 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This report documents the Acoustic Emission (AE) data collected during those tests along with an initial analysis of the data. A more detailed analysis will be presented in future publications.

  20. A Study of Standing Pressure Waves Within Open and Closed Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2002-01-01

    The first section of the results presented herein was conducted on an axisymmetric resonator configured with open ventilation ports on either end of the resonator, but otherwise closed and free from obstruction. The remaining section presents the results of a similar resonator shape that was closed, but contained an axisymmetric blockage centrally located through the axis of the resonator. Ambient air was used as the working fluid. In each of the studies, the resonator was oscillated at the resonant frequency of the fluid contained within the cavity while the dynamic pressure, static pressure, and temperature of the fluid were recorded at both ends of the resonator. The baseline results showed a marked reduction in the amplitude of the dynamic pressure waveforms over previous studies due to the use of air instead of refrigerant as the working fluid. A sharp reduction in the amplitude of the acoustic pressure waves was expected and recorded when the configuration of the resonators was modified from closed to open. A change in the resonant frequency was recorded when blockages of differing geometries were used in the closed resonator, while acoustic pressure amplitudes varied little from baseline measurements.

  1. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  2. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOEpatents

    Sinha, Dipen N.; Anthony, Brian W.

    1997-01-01

    A method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries.

  3. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOEpatents

    Sinha, D.N.; Anthony, B.W.

    1997-02-25

    A method is described for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries. 3 figs.

  4. Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating

    NASA Astrophysics Data System (ADS)

    Ling-Zhi, Huang; Yong, Xiao; Ji-Hong, Wen; Hai-Bin, Yang; Xi-Sen, Wen

    2016-02-01

    This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agreements between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure. Project supported by the National Natural Science Foundation of China (Grant Nos. 51305448 and 51275519).

  5. Acoustic minor losses in high amplitude resonators with single-sided junctions

    NASA Astrophysics Data System (ADS)

    Doller, Andrew J.

    Steady flow engineering handbooks like Idelchik20 do not exist for investigators interested in acoustic (oscillating) fluid flows in complex resonators. Measurements of acoustic minor loss coefficients are presented in this dissertation for a limited number of resonator configurations having single-sided junctions. While these results may be useful, the greater purpose of this work is to provide a set of controlled measurements that can be used to benchmark computational models of acoustic flows used for more complicated resonator structures. The experiments are designed around a driver operating at 150 Hz enabling acoustic pressures in excess of 10k Pa in liquid cooled, temperature controlled resonators with 90°, 45° and 25° junctions. These junctions join a common 109 cm long 4.7 cm diameter section to a section of 8.4 mm diameter tube making two sets of resonators: one set with a small diameter length approximately a quarter-wavelength (45 cm), the other approximately a half-wavelength (112 cm). The long resonators have a velocity node at the junction; the short resonators have a velocity anti-node generating the greatest minor losses. Input power is measured by an accelerometer and a pressure transducer at the driver. A pressure sensor at the rigid termination measures radiation pressure from the driver and static junction pressure, as well as the acoustic pressure used to calculate linear thermal and viscous resonator wall losses. At the largest amplitudes, the 90° junction was found to dissipate as much as 0.3 Watt, 1/3 the power of linear losses alone. For each junction, the power dissipation depends on acoustic pressure differently: pressure cubed for the 90°, pressure to the 3.76 for the 45° and pressure to the 4.48 for the 25°. Common among all resonators, blowing acoustic half-cycle minor losses (KB) are excited at lower amplitudes than the suction half-cycle (KS) minor losses. Data collected for the 90° junction shows KB reaches an asymptotic

  6. Streptavidin Modified ZnO Film Bulk Acoustic Resonator for Detection of Tumor Marker Mucin 1

    NASA Astrophysics Data System (ADS)

    Zheng, Dan; Guo, Peng; Xiong, Juan; Wang, Shengfu

    2016-09-01

    A ZnO-based film bulk acoustic resonator has been fabricated using a magnetron sputtering technology, which was employed as a biosensor for detection of mucin 1. The resonant frequency of the thin-film bulk acoustic resonator was located near at 1503.3 MHz. The average electromechanical coupling factor {K}_{eff}^2 and quality factor Q were 2.39 % and 224, respectively. Using the specific binding system of avidin-biotin, the streptavidin was self-assembled on the top gold electrode as the sensitive layer to indirectly test the MUC1 molecules. The resonant frequency of the biosensor decreases in response to the mass loading in range of 20-500 nM. The sensor modified with the streptavidin exhibits a high sensitivity of 4642.6 Hz/nM and a good selectivity.

  7. Wireless actuation of bulk acoustic modes in micromechanical resonators

    NASA Astrophysics Data System (ADS)

    Mateen, Farrukh; Brown, Benjamin; Erramilli, Shyamsunder; Mohanty, Pritiraj

    2016-08-01

    We report wireless actuation of a Lamb wave micromechanical resonator from a distance of over 1 m with an efficiency of over 15%. Wireless actuation of conventional micromechanical resonators can have broad impact in a number of applications from wireless communication and implantable biomedical devices to distributed sensor networks.

  8. Resonant-type MEMS transducers excited by two acoustic emission simulation techniques

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2004-07-01

    Acoustic emission testing is a passive nondestructive testing technique used to identify the onset and characteristics of damage through the detection and analysis of transient stress waves. Successful detection and implementation of acoustic emission requires good coupling, high transducer sensitivity and ability to discriminate noise from real signals. We report here detection of simulated acoustic emission signals using a MEMS chip fabricated in the multi-user polysilicon surface micromachining (MUMPs) process. The chip includes 18 different transducers with 10 different resonant frequencies in the range of 100 kHz to 1 MHz. It was excited by two different source simulation techniques; pencil lead break and impact loading. The former simulation was accomplished by breaking 0.5 mm lead on the ceramic package. Four transducer outputs were collected simultaneously using a multi-channel oscilloscope. The impact loading was repeated for five different diameter ball bearings. Traditional acoustic emission waveform analysis methods were applied to both data sets to illustrate the identification of different source mechanisms. In addition, a sliding window Fourier transform was performed to differentiate frequencies in time-frequency-amplitude domain. The arrival and energy contents of each resonant frequency were investigated in time-magnitude plots. The advantages of the simultaneous excitation of resonant transducers on one chip are discussed and compared with broadband acoustic emission transducers.

  9. Comment on "Resonant acoustic scattering by swimbladder-bearing fish" [J. Acoust. Soc. Am. 64, 571-580 (1978)] (L).

    PubMed

    Baik, Kyungmin

    2013-01-01

    Love's model for the acoustic scattering by a spherical viscous fluid shell filled with gas and surrounded by inviscid liquid [J. Acoust. Soc. Am. 64, 571-580 (1978)] is reviewed. For certain material parameters, discrepancies are observed in Love's scattering cross section when compared with the exact solution near resonance. Those errors are corrected in this study. It is shown that there is excellent agreement between the corrected formulation and the exact solution in the resonance region where ka=1 and ε = b/a ≥ 2.5, where k is the acoustic wavenumber, and a and b are the inner and outer radii of the shell, respectively. Errors between Love's equation and the exact solution are not significant for the case of swimbladder-bearing fish where the bubble radius is typically greater than about 0.05 m, but could be large for bubbles and gas-bearing zooplankton where the radius is less than about 0.05 m.

  10. Acoustic Resonators for Far-Field Control of Sound on a Subwavelength Scale

    NASA Astrophysics Data System (ADS)

    Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2011-08-01

    We prove experimentally that broadband sounds can be controlled and focused at will on a subwavelength scale by using acoustic resonators. We demonstrate our approach in the audible range with soda cans, that is, Helmholtz resonators, and commercial computer speakers. We show that diffraction-limited sound fields convert efficiently into subdiffraction modes in the collection of cans that can be controlled coherently in order to obtain focal spots as thin as 1/25 of a wavelength in air. We establish that subwavelength acoustic pressure spots are responsible for a strong enhancement of the acoustic displacement at focus, which permits us to conclude with a visual experiment exemplifying the interest of our concept for subwavelength sensors and actuators.

  11. A novel instrument to measure acoustic resonances of the vocal tract during phonation

    NASA Astrophysics Data System (ADS)

    Epps, J.; Smith, J. R.; Wolfe, J.

    1997-10-01

    Acoustic resonances of the vocal tract give rise to formants (broad bands of acoustic power) in the speech signal when the vocal tract is excited by a periodic signal from the vocal folds. This paper reports a novel instrument which uses a real-time, non-invasive technique to measure these resonances accurately during phonation. A broadband acoustic current source is located just outside the mouth of the subject and the resulting acoustic pressure is measured near the lips. The contribution of the speech signal to the pressure spectrum is then digitally suppressed and the resonances are calculated from the input impedance of the vocal tract as a function of the frequency. The external excitation signal has a much smaller harmonic spacing than does the periodic signal from the vocal folds and consequently the resonances are determined much more accurately due to the closer sampling. This is particularly important for higher pitched voices and we demonstrate that this technique can be markedly superior to the curve-fitting technique of linear prediction. The superior frequency resolution of this instrument which results from external vocal tract excitation can provide the precise, stable, effective, articulatory feedback considered essential for some language-learning and speech-therapy applications.

  12. Remote vibration measurement: A wireless passive surface acoustic wave resonator fast probing strategy

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Droit, C.; Ballandras, S.; Alzuaga, S.; Martin, G.; Sandoz, P.

    2012-05-01

    Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.

  13. Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy.

    PubMed

    Friedt, J-M; Droit, C; Ballandras, S; Alzuaga, S; Martin, G; Sandoz, P

    2012-05-01

    Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.

  14. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    NASA Astrophysics Data System (ADS)

    Droit, C.; Martin, G.; Ballandras, S.; Friedt, J.-M.

    2010-05-01

    We demonstrate the wireless conversion of frequency modulation to amplitude modulation by radio frequency resonators as means of accurately determining the resonance frequency of passive acoustoelectronic sensors. The emitted frequency modulated radio frequency pulses are generated by a pulsed radar for probing a surface acoustic wave based sensor. The sharp sign transition of the amplitude modulated received signal provides a signal on which a feedback loop is locked to monitor the resonance signal. The strategy is demonstrated using a full software implementation on a generic hardware, resulting in 2 Hz resolution at 1 s integration time limited by the proportional feedback loop.

  15. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.

    PubMed

    Droit, C; Martin, G; Ballandras, S; Friedt, J-M

    2010-05-01

    We demonstrate the wireless conversion of frequency modulation to amplitude modulation by radio frequency resonators as means of accurately determining the resonance frequency of passive acoustoelectronic sensors. The emitted frequency modulated radio frequency pulses are generated by a pulsed radar for probing a surface acoustic wave based sensor. The sharp sign transition of the amplitude modulated received signal provides a signal on which a feedback loop is locked to monitor the resonance signal. The strategy is demonstrated using a full software implementation on a generic hardware, resulting in 2 Hz resolution at 1 s integration time limited by the proportional feedback loop.

  16. Porogranular materials composed of elastic Helmholtz resonators for acoustic wave absorption.

    PubMed

    Griffiths, Stéphane; Nennig, Benoit; Job, Stéphane

    2017-01-01

    A theoretical and experimental study of the acoustic absorption of granular porous media made of non-cohesive piles of spherical shells is presented. These shells are either rigid or elastic, possibly drilled with a neck (Helmholtz resonators), and either porous or impervious. A description is given of acoustic propagation through these media using the effective medium models proposed by Johnson (rigid particles) and Boutin (rigid Helmholtz resonators), which are extended to the configurations studied in this work. A solution is given for the local equation of elasticity of a shell coupled to the viscous flow of air through the neck and the micropores. The models and the simulations are compared to absorption spectra measured in reflection in an impedance tube. The effective medium models and the measurements show excellent agreement for configurations made of rigid particles and rigid Helmholtz resonators that induce an additional peak of absorption at low frequency. A shift of the Helmholtz resonance toward low frequencies, due to the softness of the shells is revealed by the experiments for elastic shells made of soft elastomer and is well reproduced by the simulations. It is shown that microporous shells enhance and broaden acoustic absorption compared to stiff or elastic resonators.

  17. Nondestructive evaluation of explosively welded clad rods by resonance acoustic spectroscopy.

    PubMed

    Fan, Y; Tysoe, B; Sim, J; Mirkhani, K; Sinclair, A N; Honarvar, F; Sildva, Harry; Szecket, Alexander; Hardwick, Roy

    2003-07-01

    A resonance acoustic spectroscopy technique is assessed for nondestructive evaluation of explosively welded clad rods. Each rod is modeled as a two-layered cylinder with a spring-mass system to represent a thin interfacial layer containing the weld. A range of interfacial profiles is generated in a set of experimental samples by varying the speed of the explosion that drives the copper cladding into the aluminum core. Excellent agreement is achieved between measured and calculated values of the resonant frequencies of the system, through appropriate adjustment of the interfacial mass and spring constants used in the wave scattering calculations. Destructive analysis of the interface in the experimental specimens confirms that key features of the interfacial profile may be inferred from resonance acoustic spectroscopy analysis applied to ultrasonic measurements.

  18. Effects of Acoustic and Fluid Dynamic Interactions in Resonators: Applications in Thermoacoustic Refrigeration

    NASA Astrophysics Data System (ADS)

    Antao, Dion Savio

    Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization

  19. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  20. Selective magnetic resonance imaging of magnetic nanoparticles by Acoustically Induced Rotary Saturation (AIRS)

    PubMed Central

    Zhu, Bo; Witzel, Thomas; Jiang, Shan; Huang, Susie Y.; Rosen, Bruce R.; Wald, Lawrence L.

    2016-01-01

    Purpose We introduce a new method to selectively detect iron oxide contrast agents using an acoustic wave to perturb the spin-locked water signal in the vicinity of the magnetic particles. The acoustic drive can be externally modulated to turn the effect on and off, allowing sensitive and quantitative statistical comparison and removal of confounding image background variations. Methods We demonstrate the effect in spin-locking experiments using piezoelectric actuators to generate vibrational displacements of iron oxide samples. We observe a resonant behavior of the signal changes with respect to the acoustic frequency where iron oxide is present. We characterize the effect as a function of actuator displacement and contrast agent concentration. Results The resonant effect allows us to generate block-design “modulation response maps” indicating the contrast agent’s location, as well as positive contrast images with suppressed background signal. We show the AIRS effect stays approximately constant across acoustic frequency, and behaves monotonically over actuator displacement and contrast agent concentration. Conclusion AIRS is a promising method capable of using acoustic vibrations to modulate the contrast from iron oxide nanoparticles and thus perform selective detection of the contrast agents, potentially enabling more accurate visualization of contrast agents in clinical and research settings. PMID:25537578

  1. Acoustic Eigenvalues of a Quasispherical Resonator: Second Order Shape Perturbation Theory for Arbitrary Modes

    PubMed Central

    Mehl, James B.

    2007-01-01

    The boundary-shape formalism of Morse and Ingard is applied to the acoustic modes of a deformed spherical resonator (quasisphere) with rigid boundaries. For boundary shapes described by r = a [1 − ε ℱ(θ, ϕ)], where ε is a small scale parameter and ℱ is a function of order unity, the frequency perturbation is calculated to order ε2. The formal results apply to acoustic modes whose angular dependence is designated by the indices ℓ and m. Specific examples are worked out for the radial (ℓ = 0) and triplet (ℓ = 1) modes, for prolate and oblate spheroids, and for triaxial ellipsoids. The exact eigenvalues for the spheroids, and eigenvalue determined with finite-element calculations, are shown to agree with perturbation theory through terms of order ε2. This work is an extension of the author’s previous papers on the acoustic eigenfrequencies of deformed spherical resonators, which were limited to the second-order perturbation for radial modes [J. Acoust. Soc. Am. 71, 1109-1113 (1982)] and the first order-perturbation for arbitrary modes [J. Acoust. Soc. Am. 79, 278–285 (1986)]. PMID:27110463

  2. Acoustic Eigenvalues of a Quasispherical Resonator: Second Order Shape Perturbation Theory for Arbitrary Modes.

    PubMed

    Mehl, James B

    2007-01-01

    The boundary-shape formalism of Morse and Ingard is applied to the acoustic modes of a deformed spherical resonator (quasisphere) with rigid boundaries. For boundary shapes described by r = a [1 - ε ℱ(θ, ϕ)], where ε is a small scale parameter and ℱ is a function of order unity, the frequency perturbation is calculated to order ε (2). The formal results apply to acoustic modes whose angular dependence is designated by the indices ℓ and m. Specific examples are worked out for the radial (ℓ = 0) and triplet (ℓ = 1) modes, for prolate and oblate spheroids, and for triaxial ellipsoids. The exact eigenvalues for the spheroids, and eigenvalue determined with finite-element calculations, are shown to agree with perturbation theory through terms of order ε (2). This work is an extension of the author's previous papers on the acoustic eigenfrequencies of deformed spherical resonators, which were limited to the second-order perturbation for radial modes [J. Acoust. Soc. Am. 71, 1109-1113 (1982)] and the first order-perturbation for arbitrary modes [J. Acoust. Soc. Am. 79, 278-285 (1986)].

  3. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500-2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  4. Ultrasound imparted air-recoil resonance (UIAR) method for acoustic power estimation: theory and experiment.

    PubMed

    Kaiplavil, Sreekumar; Rivens, Ian; ter Haar, Gail

    2013-07-01

    Ultrasound imparted air-recoil resonance (UIAR), a new method for acoustic power estimation, is introduced with emphasis on therapeutic high-intensity focused ultrasound (HIFU) monitoring applications. Advantages of this approach over existing practices include fast response; electrical and magnetic inertness, and hence MRI compatibility; portability; high damage threshold and immunity to vibration and interference; low cost; etc. The angle of incidence should be fixed for accurate measurement. However, the transducer-detector pair can be aligned in any direction with respect to the force of gravity. In this sense, the operation of the device is orientation independent. The acoustic response of a pneumatically coupled pair of Helmholtz resonators, with one of them acting as the sensor head, is used for the estimation of acoustic power. The principle is valid in the case of pulsed/ burst as well as continuous ultrasound exposure, the former being more sensitive and accurate. An electro-acoustic theory has been developed for describing the dynamics of pressure flow and resonance in the system considering various thermo- viscous loss mechanisms. Experimental observations are found to be in agreement with theoretical results. Assuming the window damage threshold (~10 J·mm(-2)) and accuracy of RF power estimation are the upper and lower scale-limiting factors, the performance of the device was examined for an RF power range of 5 mW to 100 W with a HIFU transducer operating at 1.70 MHz, and an average nonlinearity of ~1.5% was observed. The device is also sensitive to sub-milliwatt powers. The frequency response was analyzed at 0.85, 1.70, 2.55, and 3.40 MHz and the results are presented with respective theoretical estimates. Typical response time is in the millisecond regime. Output drift is about 3% for resonant and 5% for nonresonant modes. The principle has been optimized to demonstrate a general-purpose acoustic power meter.

  5. Synthetic-gauge-field-induced Dirac semimetal state in an acoustic resonator system

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Zhang, Baile

    2016-12-01

    Recently, a proposal of synthetic gauge field in reduced two-dimensional (2D) system from three-dimensional (3D) acoustic structure shows an analogue of the gapped Haldane model with fixed k z , and achieves the gapless Weyl semimetal phase in 3D momentum space. Here, extending this approach of synthetic gauge flux, we propose a reduced square lattice of acoustic resonators, which exhibits Dirac nodes with broken effective time-reversal symmetry. Protected by an additional hidden symmetry, these Dirac nodes with quantized values of topological charge are characterized by nonzero winding number and the finite structure exhibits flat edge modes that cannot be destroyed by perturbations.

  6. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect

    Parra, Ph.D., Jorge O.

    2002-06-10

    The objective of the project was to develop an advanced imaging method, including pore scale imaging, to integrate nuclear magnetic resonance (NMR) techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This will be accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging were linked with a balanced petrographical analysis of cores and theoretical modeling.

  7. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect

    Parra, J.O.

    2001-01-26

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate magnetic resonance (MR) techniques and acoustic measurements to improve predictability of the pay zone in two hydrocarbon reservoirs. This was accomplished by extracting the fluid property parameters using MR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurements were compared with petrographic analysis results to determine the relative roles of petrographic elements such as porosity type, mineralogy, texture, and distribution of clay and cement in creating permeability heterogeneity.

  8. Stratospheric Observatory for Infrared Astronomy (SOFIA) Acoustical Resonance Technical Assessment Report

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Kehoe, Michael W.; Gupta, Kajal K.; Kegerise, Michael A.; Ginsberg, Jerry H.; Kolar, Ramesh

    2009-01-01

    A request was submitted on September 2, 2004 concerning the uncertainties regarding the acoustic environment within the Stratospheric Observatory for Infrared Astronomy (SOFIA) cavity, and the potential for structural damage from acoustical resonance or tones, especially if they occur at or near a structural mode. The requestor asked for an independent expert opinion on the approach taken by the SOFIA project to determine if the project's analysis, structural design and proposed approach to flight test were sound and conservative. The findings from this assessment are recorded in this document.

  9. Resonant coupling of Rayleigh waves through a narrow fluid channel causing extraordinary low acoustic transmission.

    PubMed

    Garcia-Chocano, Victor M; Nagaraj; Lòpez-Rios, Tomàs; Gumen, Lyudmila; Sànchez-Dehesa, Josè; Krokhin, Arkadii

    2012-10-01

    Coupling of Rayleigh waves propagating along two metal surfaces separated by a narrow fluid channel is predicted and experimentally observed. Although the coupling through a fluid (water) is weak, a strong synchronization in propagation of Rayleigh waves even for the metals with sufficiently high elastic contrast (brass and aluminum) is observed. Dispersion equation for two polarizations of the coupled Rayleigh waves is derived and experimentally confirmed. Excitation of coupled Rayleigh waves in a channel of finite length leads to anomalously low transmission of acoustic energy at discrete set of resonant frequencies. This effect may find useful applications in the design of acoustic metamaterial screens and reflectors.

  10. The influence of wall resonances on the levitation of objects in a single-axis acoustic processing chamber

    NASA Technical Reports Server (NTRS)

    Ross, B. B.

    1980-01-01

    Instabilities were observed in high temperature, single axis acoustic processing chambers. At certain temperatures, strong wall resonances were generated within the processing chamber itself and these transverse resonances were thought sufficient to disrupt the levitation well. These wall resonances are apparently not strong enough to cause instabilities in the levitation well.

  11. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.

    1998-01-01

    A slashing process for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.

  12. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.; Kupperman, D.S.

    1998-05-19

    A slashing process is disclosed for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns. 2 figs.

  13. Vibroacoustic modeling of an acoustic resonator tuned by dielectric elastomer membrane with voltage control

    NASA Astrophysics Data System (ADS)

    Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen

    2017-01-01

    This paper investigates the acoustic properties of a duct resonator tuned by an electro-active membrane. The resonator takes the form of a side-branch cavity which is attached to a rigid duct and covered by a pre-stretched Dielectric Elastomer (DE) in the neck area. A three-dimensional, analytical model based on the sub-structuring approach is developed to characterize the complex structure-acoustic coupling between the DE membrane and its surrounding acoustic media. We show that such resonator provides sound attenuation in the medium frequency range mainly by means of sound reflection, as a result of the membrane vibration. The prediction accuracy of the proposed model is validated against experimental test. The pre-stretched DE membrane with fixed edges responds to applied voltage change with a varying inner stress and, by the same token, its natural frequency and vibrational response can be tuned to suit particular frequencies of interest. The peaks in the transmission loss (TL) curves can be shifted towards lower frequencies when the voltage applied to the DE membrane is increased. Through simulations on the effect of increasing the voltage level, the TL shifting mechanism and its possible tuning range are analyzed. This paves the way for applying such resonator device for adaptive-passive noise control.

  14. Vapor sensing by means of a ZnO-on-Si surface acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Martin, S. J.; Schweizer, K. S.; Schwartz, S. S.; Gunshor, R. L.

    Surface Acoustic Wave (SAW) devices can function as sensitive detectors of vapors. The high surface acoustic energy density of the device makes it extremely sensitive to the presence of molecules adsorbed from the gas phase. Mass loading by the adsorbate is the primary mechanism for the surface wave velocity perturbation. If the device is used as the frequency control element of an oscillator, perturbations in wave velocity on the order of 10 parts per billion may be resolved by means of a frequency counter. Zno-on-Si SAW resonators have been examined as vapor sensors. The piezoelectric ZnO layer permits transduction between electrical and acoustic energies, as well as endowing the surface with particular adsorptive properties. These devices exhibit C-values up to 12,000 at a resonant frequency of 109 MHZ. The resonant frequency of the device shifts upon exposure to a vapor-air mixture, with a transient response which is distinct for each of the organic vapors tested. Due to the permeability of the polycrystalline ZnO layer, the instantaneous reversibility of the resonant frequency shift is found to depend on the type of adsorbed molecule.

  15. Location optimization of a long T-shaped acoustic resonator array in noise control of enclosures

    NASA Astrophysics Data System (ADS)

    Yu, Ganghua; Cheng, Li

    2009-11-01

    Acoustic resonators are widely used in various noise control applications. In the pursuit of better performance and broad band control, multiple resonators or a resonator array are usually needed. The interaction among resonators significantly impacts on the control performance and leads to the requirement for a systematic design tool to determine their locations. In this work, simulated annealing (SA) algorithm is employed to optimize the locations of a set of long T-shaped acoustic resonators (TARs) for noise control inside an enclosure. Multiple optimal configurations are shown to exist. The control performance in terms of sound pressure level reduction, however, seems to be independent of the initial resonator-locations. Optimal solutions obtained from the SA approach are shown to outperform other existing methods for a TAR array design. Numerical simulations are systematically verified by experiments. Optimal locations are then synthesized, leading to a set of criteria, applicable to the present configuration, to guide engineering applications. It is concluded that the proposed optimization approach provides a systematic and effective tool to optimize the locations of TARs in noise control inside enclosures.

  16. Resonant excitation of intense acoustic waves in crystals

    SciTech Connect

    Alshits, V. I. Bessonov, D. A.; Lyubimov, V. N.

    2013-06-15

    The resonant excitation of an intense elastic wave through nonspecular reflection of a special pump wave in a crystal is described. The choice of the plane and angle of incidence is dictated by the requirement that the excited reflected wave be close to the bulk eigenmode with its energy flow along a free boundary. The resonance parameters have been found for a medium with an arbitrary anisotropy. General relations are concretized for monoclinic, rhombic, and hexagonal systems. A criterion is formulated for an optimal selection of crystals in which the resonant reflection is close to the conversion one, when almost all of the energy from the incident beam of the pump wave falls into the near-surface narrow high-intensity reflected beam. Estimates and illustrations are given for such crystals as an example. The intensity of the reflected beam increases with its narrowing, but its diffraction divergence also increases with this narrowing. Nevertheless, the intensity of the beam can be increased by a factor of 5-10 at sufficiently high frequencies while keeping its divergence at an acceptable level. Amplification by two orders of magnitude can be achieved by compressing the beam in two dimensions through its double reflection.

  17. Acoustic Magnetic Resonance Investigations Utilizing Direct, Backward Wave, and SQUID Detection.

    NASA Astrophysics Data System (ADS)

    Mozurkewich, George, Jr.

    Acoustic magnetic resonance investigations were undertaken utilizing three distinct methods of detection. (1) In direct detection, increased ultrasonic attenuation due to resonant absorption is monitored directly. (2) In backward wave spectroscopy, resonant absorption introduces ultrasonic nonlinearities which generate a backward propagating wave. The amplitude of the resulting echo reflects the resonant susceptibility. (3) In SQUID detection, which is proposed here for the first time, changes in the magnetization of the spin system are detected using a superconducting quantum interference device. Using direct detection, nuclear acoustic resonance of ('183)W in metallic tungsten has been observed for the first time. Because ('183)W is isotopically dilute (14%) and has a small gyromagnetic ratio (179 Hz/G), the predicted dipolar linewidth is only 0.10 G. The observed, inhomogenously broadened lineshape (0.44 G peak to peak, with additional structure on the high field side) is attributed to spatial variation of the sample's demagnetizing field. Theoretical fits to the lineshape are calculated and discussed. The Knight shift is (1.0397 (+OR-) 0.0026)%. The neutral acceptor in indium doped silicon was examined using the recently developed technique of backward wave phonon spectroscopy. The high power results show multiple quantum transitions and a broad background feature which peaks near 2T and extends beyond 8T (spectrometer frequency = 6 GHz). It is shown that the background signal arises largely from transitions between Kramers doublets at sites with static strain of order 100 (mu)eV. In addition, a new interface phenomenon, the enhanced backward wave, is described. A new method of detection of acoustic magnetic resonance, using a SQUID magnetometer, is proposed. An attempt to realize such a detection system did not succeed. Reasons for the failure are analyzed, and design modifications are suggested. A SQUID detection system should be valuable for very weak

  18. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  19. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  20. Detection of DNA hybridisation in a diluted serum matrix by surface plasmon resonance and film bulk acoustic resonators.

    PubMed

    Auer, Sanna; Nirschl, Martin; Schreiter, Matthias; Vikholm-Lundin, Inger

    2011-05-01

    Nanomolar quantities of single-stranded DNA products ~100 nucleotides long can be detected in diluted 1% serum by surface plasmon resonance (SPR) and film bulk acoustic resonators (FBARs). We have used a novel FBAR sensor in parallel with SPR and obtained promising results with both the acoustic and the optical device. Oligonucleotides and a repellent lipoamide, Lipa-DEA, were allowed to assemble on the sensor chip surfaces for only 15 min by dispensing. Lipa-DEA surrounds the analyte-binding probes on the surface and effectively reduces the non-specific binding of bovine serum albumin and non-complementary strands. In a highly diluted serum matrix, the non-specific binding is, however, a hindrance, and the background response must be reduced. Nanomolar concentrations of short complementary oligos could be detected in buffer, whereas the response was too low to be measured in serum. DNA strands that are approximately 100 base pairs long at concentrations as low as 1-nM could be detected both in buffer and in 1% serum by both SPR and the FBAR resonator.

  1. Noise control using a plate radiator and an acoustic resonator

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor)

    1996-01-01

    An active noise control subassembly for reducing noise caused by a source (such as an aircraft engine) independent of the subassembly. A noise radiating panel is bendably vibratable to generate a panel noise canceling at least a portion of the source noise. A piezoceramic actuator plate is connected to the panel. A front plate is spaced apart from the panel and the first plate, is positioned generally between the source noise and the panel, and has a sound exit port. A first pair of spaced-apart side walls each generally abut the panel and the front plate so as to generally enclose a front cavity to define a resonator.

  2. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    SciTech Connect

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen E-mail: dongxiang87@gmail.com; Qi, Dong-Xiang E-mail: dongxiang87@gmail.com

    2015-04-15

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.

  3. Effect of flow on the acoustic resonances of an open-ended duct

    NASA Technical Reports Server (NTRS)

    Ingard, U.; Singhal, V. K.

    1975-01-01

    The effect of flow on the acoustic resonances of an open-ended, hard-walled duct is analyzed. The flow produces acoustic losses both in the interior of the duct and at the ends. Unless the duct is very long, typically 100 times the diameter, the losses at the ends dominate. At flow Mach numbers in excess of 0.4 the losses are so large that axial duct resonances are almost completely suppressed. The plane-wave Green's function for the duct with flow is expressed in terms of the (experimentally determined) pressure reflection coefficients at the ends of the duct, and the flow dependence of the complex eigenfrequencies of the duct is obtained. Some observations concerning the noise produced by the flow in the duct are also reported.

  4. A branch of energetic-particle driven geodesic acoustic modes due to magnetic drift resonance

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Kasuya, N.; Itoh, K.; Hallatschek, K.; Lesur, M.; Kosuga, Y.; Itoh, S.-I.

    2016-10-01

    Eigenmode analysis of geodesic acoustic modes (GAMs) driven by fast ions is performed, based on a set of gyrokinetic equations. Resonance to the magnetic drift of the fast ions can destabilize GAMs. A new branch is found in the family of GAMs, whose frequency is close to the magnetic drift frequency of the fast ions. The poloidal eigenfunction of this branch has bump structures in the poloidal direction where the resonance of the magnetic drift with the mode is strong. The ion heating rate by the GAMs is evaluated in the framework of quasi-linear theory. The heating is localized poloidally around the resonance locations. Owing to the bumps in the eigenfunction, the magnitude of the heating is much larger than that estimated without the magnetic drift resonance.

  5. Properties of ultrasonic acoustic resonances for exploitation in comb construction by social hornets and honeybees

    NASA Astrophysics Data System (ADS)

    Kadmon, Jonathan; Ishay, Jacob S.; Bergman, David J.

    2009-06-01

    Physical and mathematical considerations are presented in support of the suggestion that social hornets and bees, which construct brood combs with large arrays of cells in a honeycomb structure, exploit ultrasonic acoustic resonances in those cells in order to achieve the great accuracy of the hexagonal symmetry exhibited by these honeycomb-structured arrays. We present a numerical calculation of those resonances for the case of a perfect-hexagon duct utilizing a Bloch-Floquet-type theorem. We calculate the rate of energy dissipation in those resonances and use that, along with other considerations, to identify the resonance that is best suited for the suggested use by bees and hornets. Previously recorded ultrasonic data on social hornets and honeybees are cited which agree with some of our predictions and thus provide support for the above-mentioned suggestion.

  6. Acoustic resonance spectroscopy (ARS): ARS300 operations manual, software version 2.01

    SciTech Connect

    1996-07-25

    Acoustic Resonance Spectroscopy (ARS) is a nondestructive evaluation technology developed at the Los Alamos National Laboratory. The ARS technique is a fast, safe, and nonintrusive technique that is particularly useful when a large number of objects need to be tested. Any physical object, whether solid, hollow, or fluid filled, has many modes of vibration. These modes of vibration, commonly referred to as the natural resonant modes or resonant frequencies, are determined by the object`s shape, size, and physical properties, such as elastic moduli, speed of sound, and density. If the object is mechanically excited at frequencies corresponding to its characteristic natural vibrational modes, a resonance effect can be observed when small excitation energies produce large amplitude vibrations in the object. At other excitation frequencies, i.e., vibrational response of the object is minimal.

  7. Properties of ultrasonic acoustic resonances for exploitation in comb construction by social hornets and honeybees.

    PubMed

    Kadmon, Jonathan; Ishay, Jacob S; Bergman, David J

    2009-06-01

    Physical and mathematical considerations are presented in support of the suggestion that social hornets and bees, which construct brood combs with large arrays of cells in a honeycomb structure, exploit ultrasonic acoustic resonances in those cells in order to achieve the great accuracy of the hexagonal symmetry exhibited by these honeycomb-structured arrays. We present a numerical calculation of those resonances for the case of a perfect-hexagon duct utilizing a Bloch-Floquet-type theorem. We calculate the rate of energy dissipation in those resonances and use that, along with other considerations, to identify the resonance that is best suited for the suggested use by bees and hornets. Previously recorded ultrasonic data on social hornets and honeybees are cited which agree with some of our predictions and thus provide support for the above-mentioned suggestion.

  8. Stellar acoustics. I - Adiabatic pulse propagation and modal resonance in polytropic models of bump Cepheids

    NASA Astrophysics Data System (ADS)

    Whitney, C. A.

    1983-11-01

    An understanding of the Hertzsprung progression among bump Cepheids is sought in a dualistic viewpoint which combines the idea of propagating pulse echoes with that of modal resonance. Attention is focused on the spherically symmetric pulses that can be regenerated once per cycle if their round trip propagation time equals the period of the overall pulsation. The acoustic properties of polytropic models reveal that the conditions for such reinforcement are likely to be met in models for which the periods of the fundamental and the second overtone pulsation are in the ratio 2:1. Systematic departures from precise resonance may be responsible for the Hertzsprung progression.

  9. Resonance reflection of acoustic waves in piezoelectric bi-crystalline structures.

    PubMed

    Darinskii, Alexander N; Weihnacht, Manfred

    2005-05-01

    The paper studies the bulk wave reflection from internal interfaces in piezoelectric media. The interfaces of two types have been considered. Infinitesimally thin metallic layer inserted into homogeneous piezoelectric crystal of arbitrary symmetry. Rigidly bonded crystals whose piezoelectric coefficients differ by sign but the other material constants are identical. Analytic expressions for the coefficients of mode conversion have been derived. An analysis has been carried out of specific singularities arising when the angle of incidence is such that the resonance excitation of leaky interface acoustic waves occurs. The conditions for the resonance total reflection have been established. The computations performed for lithium niobate (LiNbO3) illustrate general conclusions.

  10. Contrast Enhancement for Thermal Acoustic Breast Cancer Imaging via Resonant Stimulation

    DTIC Science & Technology

    2008-03-01

    Wang, “Time-domain reconstruction for thermoa- coustic tomography in a speherical geometry,” IEEE Trans. Med. Imag., vol. 21, no. 7, pp. 814–822, Jul...comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS...excited into resonance via EM stimulation, the effective acoustic scattering cross-section may increase by a factor in excess of 100 based on

  11. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition.

    PubMed

    Dron, Olivier; Aider, Jean-Luc

    2013-09-01

    It is well-known that particles can be focused at mid-height of a micro-channel using Acoustic Radiation Force (ARF) tuned at the resonance frequency (h=λ/2). The resonance condition is a strong limitation to the use of acoustophoresis (particles manipulation using acoustic force) in many applications. In this study we show that it is possible to focus the particles anywhere along the height of a micro-channel just by varying the acoustic frequency, in contradiction with the resonance condition. This result has been thoroughly checked experimentally. The different physical properties as well as wall materials have been changed. The wall materials is finally the only critical parameters. One of the specificity of the micro-channel is the thickness of the carrier and reflector layer. A preliminary analysis of the experimental results suggests that the acoustic focusing beyond the classic resonance condition can be explained in the framework of the multilayered resonator proposed by Hill [1]. Nevertheless, further numerical studies are needed in order to confirm and fully understand how the acoustic pressure node can be moved over the entire height of the micro channel by varying the acoustic frequency. Despite some uncertainties about the origin of the phenomenon, it is robust and can be used for improved acoustic sorting or manipulation of particles or biological cells in confined set-ups.

  12. Sensitivity study of multilayer thin-film bulk acoustic resonator for mass sensor application

    NASA Astrophysics Data System (ADS)

    Liu, Haiqiang; Li, Fang; Qin, Lifeng; Wang, Qing-Ming

    2016-10-01

    The sensitivity of multilayer thin-film bulk acoustic resonators (MTFBARs) used as mass sensors is investigated. MTFBAR sensors with the structure of a mass-sensitive layer/electrode layer/piezo layer/electrode layer were used. Two methods, one using electric impedance and the other displacement, were adopted for the determination of sensitivity. Simulation results show that the two methods agree well, and the characteristic acoustic impedance and thickness of the non-piezo layers strongly affect mass sensitivity. It was found that high acoustic impedance in the non-piezo layer is not helpful for sensitivity improvement. Sensitivity is improved by choosing an appropriate thickness for the low acoustic impedance non-piezo layer, and the maximum sensitivity can be obtained by choosing suitable thickness combinations for the layers. Moreover, it was found that MTFBAR quality factor and sensitivity are simultaneously improved by adopting a high-quality-factor non-piezo layer with low acoustic impedance for an air working environment, whereas a balance between quality factor and sensitivity is found through optimization of the non-piezo layers for a water working environment. These results can be used for the design and application of MTFBAR mass sensors.

  13. Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Han, K.; Carmon, T.; Fan, X.; Bahl, G.

    2014-09-01

    Opto-mechano-fluidic resonators (OMFRs) are a unique optofluidics platform that can measure the acoustic properties of fluids and bioanalytes in a fully-contained microfluidic system. By confining light in ultra-high-Q whispering gallery modes of OMFRs, optical forces such as radiation pressure and electrostriction can be used to actuate and sense structural mechanical vibrations spanning MHz to GHz frequencies. These vibrations are hybrid fluid-shell modes that entrain any bioanalyte present inside. As a result, bioanalytes can now reflect their acoustic properties on the optomechanical vibrational spectrum of the device, in addition to optical property measurements with existing optofluidics techniques. In this work, we investigate acoustic sensing capabilities of OMFRs using computational eigenfrequency analysis. We analyze the OMFR eigenfrequency sensitivity to bulk fluid-phase materials as well as nanoparticles, and propose methods to extract multiple acoustic parameters from multiple vibrational modes. The new informational degrees-of-freedom provided by such opto-acoustic measurements could lead to surprising new sensor applications in the near future.

  14. Demonstration of slow sound propagation and acoustic transparency with a series of detuned resonators

    NASA Astrophysics Data System (ADS)

    Santillán, Arturo; Bozhevolnyi, Sergey I.

    2014-05-01

    We present experimental results demonstrating the phenomenon of acoustic transparency with a significant slowdown of sound propagation realized with a series of paired detuned acoustic resonators (DAR) side-attached to a waveguide. The phenomenon mimics the electromagnetically induced transparency in atomic physics. By arranging four identical DAR pairs along the waveguide with an equal subwavelength separation between adjacent pairs, we show that this arrangement features unique properties of narrow-band transmission and strong dispersion. In particular, we demonstrate side-lobe suppression of more than 20 dB on both sides of the transparency window, and we quantify directly (using a pulse propagation) the acoustic slowdown effect, resulting in the sound group velocity of ˜9.8 m/s (i.e. in the group refractive index of 35). We find very similar values of the group refractive index by using measurements of the phase of the transmitted wave. It is also shown that a direct coupling exists between the DAR in each pair, which cannot be explained by the interference of waves radiated from those resonators. This detrimental coupling becomes noticeable for small values of detuning and also if the cross-sectional area of the neck of the resonators is increased.

  15. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.

    PubMed

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-10-14

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  16. Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Lombard, Bruno; Mercier, Jean-François

    2014-02-01

    Acoustic wave propagation in a one-dimensional waveguide connected with Helmholtz resonators is studied numerically. Finite amplitude waves and viscous boundary layers are considered. The model consists of two coupled evolution equations: a nonlinear PDE describing nonlinear acoustic waves, and a linear ODE describing the oscillations in the Helmholtz resonators. The thermal and viscous losses in the tube and in the necks of the resonators are modeled by fractional derivatives. A diffusive representation is followed: the convolution kernels are replaced by a finite number of memory variables that satisfy local ordinary differential equations. A splitting method is then applied to the evolution equations: their propagative part is solved using a standard TVD scheme for hyperbolic equations, whereas their diffusive part is solved exactly. Various strategies are examined to compute the coefficients of the diffusive representation; finally, an optimization method is preferred to the usual quadrature rules. The numerical model is validated by comparisons with exact solutions. The properties of the full nonlinear solutions are investigated numerically. In particular, the existence of acoustic solitary waves is confirmed.

  17. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    PubMed Central

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878

  18. Acoustic resonances and sound scattering by a shear layer

    NASA Technical Reports Server (NTRS)

    Koutsoyannis, S. P.; Karamcheti, K.; Galant, D. C.

    1979-01-01

    The energy reflection coefficient is evaluated numerically for plane waves incident on a plane shear layer having a linear velocity profile. The shear layer is found to exhibit no resonances and no Brewster angles. The behavior of the reflection coefficient depends crucially on the parameter tau, a nondimensional measure of the disturbance Strouhal number with respect to the disturbance Mach number in the mean flow direction. For moderate values of tau, the amplified reflection regime degenerates into the total reflection one, whereas in the ordinary reflection regime the variation of the reflection coefficient with tau depends on whether or not the corresponding vortex sheet has a Brewster angle. The results indicate that caution should be exercised in uncritically modeling a finite thickness shear layer by a corresponding vortex sheet.

  19. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    PubMed

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.

  20. Random matrix theory and acoustic resonances in plates with an approximate symmetry.

    PubMed

    Andersen, A; Ellegaard, C; Jackson, A D; Schaadt, K

    2001-06-01

    We discuss a random matrix model of systems with an approximate symmetry and present the spectral fluctuation statistics and eigenvector characteristics for the model. An acoustic resonator like, e.g., an aluminum plate may have an approximate symmetry. We have measured the frequency spectrum and the widths for acoustic resonances in thin aluminum plates, cut in the shape of the so-called three-leaf clover. Due to the mirror symmetry through the middle plane of the plate, each resonance of the plate belongs to one of two mode classes and we show how to separate the modes into these two classes using their measured widths. We compare the spectral statistics of each mode class with results for the Gaussian orthogonal ensemble. By cutting a slit of increasing depth on one face of the plate, we gradually break the mirror symmetry and study the transition that takes place as the two classes are mixed. Presenting the spectral fluctuation statistics and the distribution of widths for the resonances, we find that this transition is well described by the random matrix model.

  1. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses.

    PubMed

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-12-09

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus.

  2. Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum.

    PubMed

    Sridhar, A; Kouznetsova, V G; Geers, M G D

    This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only.

  3. Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum

    NASA Astrophysics Data System (ADS)

    Sridhar, A.; Kouznetsova, V. G.; Geers, M. G. D.

    2016-03-01

    This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only.

  4. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses

    NASA Astrophysics Data System (ADS)

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-12-01

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus.

  5. Input impedance matching of acoustic transducers operating at off-resonant frequencies.

    PubMed

    Son, Kyu Tak; Lee, Chin C

    2010-12-01

    The input impedance matching technique of acoustic transducers at off-resonant frequencies is reported. It uses an inherent impedance property of transducers and thus does not need an external electric matching circuit or extra acoustic matching section. The input electrical equivalent circuit includes a radiation component and a dielectric capacitor. The radiation component consists of a radiation resistance and a radiation reactance. The total reactance is the sum of the radiation reactance and the dielectric capacitive reactance. This reactance becomes zero at two frequencies where the impedance is real. The transducer size can be properly chosen so that the impedance at one of the zero-crossing frequencies is close to 50 Ω, the output impedance of signal generators. At this off-resonant operating frequency, the reflection coefficient of the transducer is minimized without using any matching circuit. Other than the size, the impedance can also be fine tuned by adjusting the thickness of material that bonds the transducer plate to the substrates. The acoustic impedance of the substrate and that of the bonding material can also be used as design elements in the transducer structure to achieve better transducer matching. Lead titanate piezoelectric plates were bonded on Lucite, liquid crystal polymer (LCP), and bismuth (Bi) substrates to produce various transducer structures. Their input impedance was simulated using a transducer model and compared with measured values to illustrate the matching principle.

  6. Protein-modified shear mode film bulk acoustic resonator for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Liu, Weihui; Xu, Yan; Chen, Da; Li, Dehua; Zhang, Luyin

    2014-09-01

    In this paper, we present a shear mode film bulk acoustic biosensor based on micro-electromechanical technology. The film bulk acoustic biosensor is a diaphragmatic structure consisting of a lateral field excited ZnO piezoelectric film piezoelectric stack built on an Si3N4 membrane. The device works at near 1.6 GHz with Q factors of 579 in water and 428 in glycerol. A frequency shift of 5.4 MHz and a small decline in the amplitude are found for the measurements in glycerol compared with those in water because of the viscous damping derived from the adjacent glycerol. For bio-sensing demonstration, the resonator was modified with biotin molecule to detect protein-ligand interactions in real-time and in situ. The resonant frequency of the biotin-modified device drops rapidly and gradually reaches equilibrium when exposed to the streptavidin solution due to the biotin-streptavidin interaction. The proposed film bulk acoustic biosensor shows promising applications for disease diagnostics, prognosis, and drug discovery.

  7. Rapid profiling of enteric coated drug delivery spheres via broadband acoustic resonance dissolution spectroscopy (BARDS).

    PubMed

    Fitzpatrick, D; Evans-Hurson, R; Fu, Y; Burke, T; Krüse, J; Vos, B; McSweeney, S G; Casaubieilh, P; Keating, J J

    2014-03-07

    There is an increased trend towards the use of drug and enteric coated sugar spheres for controlled oral delivery of active pharmaceutical ingredients (API). This trend is driven by increased efficacy and ease of formulation of different dosage levels. However, difficulties exist in determining the thickness of drug and enteric coatings in a time efficient manner during manufacture, quality assurance and stability testing. The thickness of the coating determines the dosage of the API and the thickness of the enteric coating determines the release rate of the drug in the gastro-intestinal tract. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) offers a rapid new approach to characterising the enteric coating thickness and the raw materials used in their manufacture. BARDS applications are based on reproducible changes in the compressibility of a solvent during dissolution which is monitored acoustically due to associated changes in the speed of sound in solution. It is demonstrated how core delivery sugar spheres have unique acoustic spectra attributable to the mean size distribution of the spheres. A steady state acoustic lag time is associated with the disintegration of the enteric coating, in basic solution. This lag time can be manipulated by varying the concentration of the base which affects the rate at which the coating dissolves. It is anticipated that the thickness/loading of the spheres can be estimated from the lag time.

  8. Tsunami mitigation by resonant triad interaction with acoustic-gravity waves.

    PubMed

    Kadri, Usama

    2017-01-01

    Tsunamis have been responsible for the loss of almost a half million lives, widespread long lasting destruction, profound environmental effects, and global financial crisis, within the last two decades. The main tsunami properties that determine the size of impact at the shoreline are its wavelength and amplitude in the ocean. Here, we show that it is in principle possible to reduce the amplitude of a tsunami, and redistribute its energy over a larger space, through forcing it to interact with resonating acoustic-gravity waves. In practice, generating the appropriate acoustic-gravity modes introduces serious challenges due to the high energy required for an effective interaction. However, if the findings are extended to realistic tsunami properties and geometries, we might be able to mitigate tsunamis and so save lives and properties. Moreover, such a mitigation technique would allow for the harnessing of the tsunami's energy.

  9. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    SciTech Connect

    Yang, Aichao; Li, Ping Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-15

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density at 170–206 Hz.

  10. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams.

    PubMed

    Yang, Aichao; Li, Ping; Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-01

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170-206 Hz has 28-188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137-1.43 mW output power corresponding to 0.035-0.36 μW cm(-3) volume power density at 170-206 Hz.

  11. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Droit, C.; Martin, G.; Ballandras, S.

    2010-01-01

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band—selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media—based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  12. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    SciTech Connect

    Friedt, J.-M; Droit, C.; Martin, G.; Ballandras, S.

    2010-01-15

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  13. Multilayer graphene electrodes for one-port surface acoustic wave resonator mass sensor

    NASA Astrophysics Data System (ADS)

    Leong, Ainan; Swamy, Varghese; Ramakrishnan, N.

    2017-02-01

    A one-port surface acoustic wave (SAW) resonator mass sensor composed of multilayer graphene (MLG) electrodes was investigated by the finite element method (FEM) and analyses were carried out to study the enhancement of sensitivity and the secondary effects caused by MLG electrodes on the performance of the resonator. Unlike metal electrodes, MLG electrode offers elastic loading to the contact surface, as evidenced by the increase in the surface velocity of the SAW device. In terms of the sensitivity of the mass sensor, MLG electrode showed the largest center frequency shift in response to a change in mass loading, as well as when used as a gas sensor to detect volatile organic compounds (VOCs). Also, MLG electrodes offered the least triple transit signal (TTS) and bulk acoustic wave (BAW) generations compared with Al and Au–Cr electrodes. Thus, the one-port SAW resonator with graphene electrodes not only possesses excellent performance characteristics but also gives rise to new opportunities in the development of highly sensitive mass sensors.

  14. Time-domain analysis of resonant acoustic nonlinearity arising from cracks in multilayer ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Johnson, Ward L.; Kim, Sudook A.; White, Grady S.; Herzberger, Jaemi; Peterson, Kirsten L.; Heyliger, Paul R.

    2016-02-01

    Acoustic nonlinearity of cracked and uncracked multilayer ceramic capacitors (MLCCs) was characterized through time-domain analysis of resonant waveforms following tone-burst excitation. A phase-sensitive receiver was employed to measure the phase, relative to a reference sinusoid, of decaying oscillations of a resonant mode near 1 MHz that was excited through ferroelectric coupling within the barium-titanate-based ceramic of the MLCC. Amplitude dependence of the resonant frequency during decay of the oscillations was characterized through measurements of changes in the resonant phase versus time. Waveforms were analyzed by fitting the recorded RF amplitude versus time to a decaying exponential and inserting the parameters of this fit into a second function to fit the time-dependent phase, with amplitude dependence of the resonant frequency incorporated in the second function. The measurements and analyses were performed on unmounted type-1210 MLCCs before and after quenching in ice water from elevated temperatures. This thermal treatment generated surface-breaking cracks in a fraction of the specimens. Measurements of a nonlinear parameter B of the capacitors before quenching were used to set a range corresponding to plus and minus three standard deviations (±3σ) relative to the mean of a Gaussian fit to the distribution of this parameter. 93 % of the values of B determined for heat-treated MLCCs with cracks were outside of this ±3σ range of the as-received MLCCs, while only 10 % of the values of B for heat-treated MLCCs without visible cracks were outside this range. These results indicate that time-domain nonlinear measurements with tone-burst excitation are a promising approach for rapid nondestructive detection of cracks that have no significant initial effect on the electrical characteristics of an MLCC but can evolve into conductive pathways during service and lead to electrical-device failure. They also illustrate the potential of this approach for

  15. Asymptotic solutions for shocked resonant acoustic oscillations between concentric spheres and coaxial cylinders

    NASA Astrophysics Data System (ADS)

    Seymour, Brian R.; Mortell, Michael P.; Amundsen, David E.

    2012-02-01

    For resonant oscillations of a gas in a straight tube with a closed end, shocks form and all harmonics are generated, see Chester ["Resonant oscillations in a closed tube," J. Fluid Mech. 18, 44 (1964)], 10.1017/S0022112064000040. When the gas is confined between two concentric spheres or coaxial cylinders, the radially symmetric resonant oscillations may be continuous or shocked. For a fixed small Mach number of the input, the flow is continuous for sufficiently small L, defined as the ratio of the inner radius to the difference of the radii, see Seymour et al. ["Resonant oscillations of an inhomogeneous gas between concentric spheres," Proc. R. Soc. London, Ser. A 467, 2149 (2011)], 10.1098/rspa.2010.0576. However, shocks appear in the resonant flow for either larger values of L or larger input Mach number. A nonlinear geometric acoustics approximation is used to analyse the shocked motion of the gas when L ≫ 1. This approximation and the exact numerical solution are compared for the shocked wave profiles and shock strengths, and the approximation is valid for surprisingly small values of L. The flow in the plane wave case for a straight tube is recovered in the limit L → ∞ for both the spherical and cylindrical cases, providing a check on the results. The shocked solutions given here complement those continuous solutions previously derived from a dominant first mode approximation.

  16. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-09-01

    In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.

  17. Investigating the emotional response to room acoustics: A functional magnetic resonance imaging study.

    PubMed

    Lawless, M S; Vigeant, M C

    2015-10-01

    While previous research has demonstrated the powerful influence of pleasant and unpleasant music on emotions, the present study utilizes functional magnetic resonance imaging (fMRI) to assess the positive and negative emotional responses as demonstrated in the brain when listening to music convolved with varying room acoustic conditions. During fMRI scans, subjects rated auralizations created in a simulated concert hall with varying reverberation times. The analysis detected activations in the dorsal striatum, a region associated with anticipation of reward, for two individuals for the highest rated stimulus, though no activations were found for regions associated with negative emotions in any subject.

  18. Effectiveness of T-shaped acoustic resonators in low-frequency sound transmission control of a finite double-panel partition

    NASA Astrophysics Data System (ADS)

    Li, Deyu; Zhang, Xiao-Hong; Cheng, Li; Yu, Ganghua

    2010-10-01

    Double-panel partitions are widely used for sound insulation purposes. Their insulation efficiency is, however, deteriorated at low frequencies due to the structural and acoustic resonances. To tackle this problem, this paper proposes the use of long T-shaped acoustic resonators in a double-panel partition embedded along the edges. In order to facilitate the design and assess the performance of the structure, a general vibro-acoustic model, characterizing the interaction between the panels, air cavity, and integrated acoustic resonators, is developed. The effectiveness of the technique as well as the optimal locations of the acoustic resonators is examined at various frequencies where the system exhibits different coupling characteristics. The measured optimal locations are also compared with the predicted ones to verify the developed theory. Finally, the performance of the acoustic resonators in broadband sound transmission control is demonstrated.

  19. 3.4 GHz composite thin film bulk acoustic wave resonator for miniaturized atomic clocks

    NASA Astrophysics Data System (ADS)

    Artieda, Alvaro; Muralt, Paul

    2011-06-01

    Triple layer SiO2/AlN/SiO2 composite thin film bulk acoustic wave resonators (TFBARs) were studied for applications in atomic clocks. The TFBAR's were tuned to 3.4 GHz, corresponding to half the hyperfine splitting of the ground state of rubidium 87Rb atoms. The quality factor (Q) was equal to 2300 and the temperature coefficient of the resonance frequency fr amounted to 1.5 ppm/K. A figure of merit Qfr of ˜ 0.8 × 1013 Hz and a thickness mode coupling factor of 1% were reached. Such figures are ideal for frequency sources in an oscillator circuit that tracks the optical signal in atomic clocks.

  20. General band gap condition in one-dimensional resonator-based acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Liu, Yafei; Hou, Zhilin; Fu, Xiujun

    2016-03-01

    A one-dimensional model for resonator-based acoustic metamaterials is introduced. The condition for band gap in such kind of structure is obtained. According to this condition, the dispersion relation is in general a result of the scattering phase and propagating phase. The phenomenon that the band gap is less dependent on lattice structure appears only in the special system in which the coupling between the resonators and the host medium is weak enough. For strong coupled systems, the dispersion of wave can be significantly adjusted by the propagating phase. Based on the understanding, a general guide for band gap optimization is given and the mechanism for structures with the defect states at subwavelength scale is revealed.

  1. 3.4 GHz composite thin film bulk acoustic wave resonator for miniaturized atomic clocks

    SciTech Connect

    Artieda, Alvaro; Muralt, Paul

    2011-06-27

    Triple layer SiO{sub 2}/AlN/SiO{sub 2} composite thin film bulk acoustic wave resonators (TFBARs) were studied for applications in atomic clocks. The TFBAR's were tuned to 3.4 GHz, corresponding to half the hyperfine splitting of the ground state of rubidium {sup 87}Rb atoms. The quality factor (Q) was equal to 2300 and the temperature coefficient of the resonance frequency f{sub r} amounted to 1.5 ppm/K. A figure of merit Qf{sub r} of {approx} 0.8 x 10{sup 13} Hz and a thickness mode coupling factor of 1% were reached. Such figures are ideal for frequency sources in an oscillator circuit that tracks the optical signal in atomic clocks.

  2. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    NASA Technical Reports Server (NTRS)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  3. Discriminating Hepatocellular Carcinoma in Rats Using a High-Tc SQUID Detected Nuclear Resonance Spectrometer in a Magnetic Shielding Box

    PubMed Central

    Huang, Kai-Wen; Chen, Hsin-Hsien; Yang, Hong-Chang; Horng, Herng-Er; Liao, Shu-Hsien; Yang, Shieh Yueh; Chieh, Jen-Jie; Wang, Li-Ming

    2012-01-01

    In this study, we report the spin-lattice relaxation rate of hepatocellular carcinoma (HCC) and normal liver tissue in rats using a high-Tc superconducting quantum interference device (SQUID) based nuclear magnetic resonance (NMR) spectrometer. The resonance spectrometer used for discriminating liver tumors in rats via the difference in longitudinal relaxation time in low magnetic fields was set up in a compact and portable magnetic shielding box. The frequency-domain NMR signals of HCC tissues and normal liver tissues were analyzed to study their respective longitudinal relaxation rate T1−1. The T1−1 of liver tissues for ten normal rats and ten cancerous rats were investigated respectively. The averaged T1−1 value of normal liver tissue was (6.41±0.66) s−1, and the averaged T1−1 value of cancerous tissue was (3.38±0.15) s−1. The ratio of T1−1 for normal liver tissues and cancerous liver tissues of the rats investigated is estimated to be 1.9. Since this significant statistical difference, the T1−1 value can be used to distinguish the HCC tissues from normal liver tissues. This method of examining liver and tumor tissues has the advantages of being convenient, easy to operate, and stable. PMID:23071710

  4. Discriminating hepatocellular carcinoma in rats using a high-Tc SQUID detected nuclear resonance spectrometer in a magnetic shielding box.

    PubMed

    Huang, Kai-Wen; Chen, Hsin-Hsien; Yang, Hong-Chang; Horng, Herng-Er; Liao, Shu-Hsien; Yang, Shieh Yueh; Chieh, Jen-Jie; Wang, Li-Ming

    2012-01-01

    In this study, we report the spin-lattice relaxation rate of hepatocellular carcinoma (HCC) and normal liver tissue in rats using a high-T(c) superconducting quantum interference device (SQUID) based nuclear magnetic resonance (NMR) spectrometer. The resonance spectrometer used for discriminating liver tumors in rats via the difference in longitudinal relaxation time in low magnetic fields was set up in a compact and portable magnetic shielding box. The frequency-domain NMR signals of HCC tissues and normal liver tissues were analyzed to study their respective longitudinal relaxation rate T(1) (-1). The T(1) (-1) of liver tissues for ten normal rats and ten cancerous rats were investigated respectively. The averaged T(1) (-1) value of normal liver tissue was (6.41±0.66) s(-1), and the averaged T(1) (-1) value of cancerous tissue was (3.38±0.15) s(-1). The ratio of T(1) (-1) for normal liver tissues and cancerous liver tissues of the rats investigated is estimated to be 1.9. Since this significant statistical difference, the T(1) (-1) value can be used to distinguish the HCC tissues from normal liver tissues. This method of examining liver and tumor tissues has the advantages of being convenient, easy to operate, and stable.

  5. A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy

    PubMed Central

    Krebs, C. R.; Li, Ling; Wolberg, Alisa S.; Oldenburg, Amy L.

    2015-01-01

    Abnormal blood clot stiffness is an important indicator of coagulation disorders arising from a variety of cardiovascular diseases and drug treatments. Here, we present a portable instrument for elastometry of microliter volume blood samples based upon the principle of resonant acoustic spectroscopy, where a sample of well-defined dimensions exhibits a fundamental longitudinal resonance mode proportional to the square root of the Young’s modulus. In contrast to commercial thromboelastography, the resonant acoustic method offers improved repeatability and accuracy due to the high signal-to-noise ratio of the resonant vibration. We review the measurement principles and the design of a magnetically actuated microbead force transducer applying between 23 pN and 6.7 nN, providing a wide dynamic range of elastic moduli (3 Pa–27 kPa) appropriate for measurement of clot elastic modulus (CEM). An automated and portable device, the CEMport, is introduced and implemented using a 2 nm resolution displacement sensor with demonstrated accuracy and precision of 3% and 2%, respectively, of CEM in biogels. Importantly, the small strains (<0.13%) and low strain rates (<1/s) employed by the CEMport maintain a linear stress-to-strain relationship which provides a perturbative measurement of the Young’s modulus. Measurements of blood plasma CEM versus heparin concentration show that CEMport is sensitive to heparin levels below 0.050 U/ml, which suggests future applications in sensing heparin levels of post-surgical cardiopulmonary bypass patients. The portability, high accuracy, and high precision of this device enable new clinical and animal studies for associating CEM with blood coagulation disorders, potentially leading to improved diagnostics and therapeutic monitoring. PMID:26233406

  6. A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Krebs, C. R.; Li, Ling; Wolberg, Alisa S.; Oldenburg, Amy L.

    2015-07-01

    Abnormal blood clot stiffness is an important indicator of coagulation disorders arising from a variety of cardiovascular diseases and drug treatments. Here, we present a portable instrument for elastometry of microliter volume blood samples based upon the principle of resonant acoustic spectroscopy, where a sample of well-defined dimensions exhibits a fundamental longitudinal resonance mode proportional to the square root of the Young's modulus. In contrast to commercial thromboelastography, the resonant acoustic method offers improved repeatability and accuracy due to the high signal-to-noise ratio of the resonant vibration. We review the measurement principles and the design of a magnetically actuated microbead force transducer applying between 23 pN and 6.7 nN, providing a wide dynamic range of elastic moduli (3 Pa-27 kPa) appropriate for measurement of clot elastic modulus (CEM). An automated and portable device, the CEMport, is introduced and implemented using a 2 nm resolution displacement sensor with demonstrated accuracy and precision of 3% and 2%, respectively, of CEM in biogels. Importantly, the small strains (<0.13%) and low strain rates (<1/s) employed by the CEMport maintain a linear stress-to-strain relationship which provides a perturbative measurement of the Young's modulus. Measurements of blood plasma CEM versus heparin concentration show that CEMport is sensitive to heparin levels below 0.050 U/ml, which suggests future applications in sensing heparin levels of post-surgical cardiopulmonary bypass patients. The portability, high accuracy, and high precision of this device enable new clinical and animal studies for associating CEM with blood coagulation disorders, potentially leading to improved diagnostics and therapeutic monitoring.

  7. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.

    PubMed

    Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin

    2014-07-25

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.

  8. Evaluation on Micro Cracks in Ceramic Bearing Balls by Using the Floating Resonance of Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Cho, Hideo; Komatsu, Kouichi; Ishikawa, Satoru; Tanimoto, Kiyoshi; Takii, Hirokazu; Yamanaka, Kazushi

    2003-05-01

    Although resonant ultrasound spectroscopy is useful for testing the surface and the inside of objects, the acoustic properties (resonance frequency, mode amplitude ratio, attenuation, etc.) are disturbed by the contact made with supports and transducers. To eliminate this disturbance, we developed the floating resonance (FR) method in which the acoustic properties of bulk and surface acoustic waves (SAWs) are evaluated using laser ultrasound after floating the objects, thus avoiding the contact with the supports and transducers. In this work we applied the FR method to detect artificial flaws on the surface of ceramic bearing balls and a slit as shallow as 50 μm was successfully detected from the attenuation of SAWs after multiple round trips with as many as 20 turns.

  9. Influence of resonators on the acoustic and propulsion performance characteristics of a ramjet ejector chamber under conditions with vibration hydrogen combustion

    NASA Astrophysics Data System (ADS)

    Potapkin, A. V.; Moskvichev, D. Yu.

    2008-09-01

    The influence of acoustic resonators on the acoustic and propulsion performance characteristics of a ramjet ejector chamber under conditions with vibration hydrogen combustion was experimentally examined. In the study, resonators having identical throats and different cavity diameters were used. For fixed-volume resonators the best propulsion performance characteristics were achieved in the case in which the cavity diameter differed little from the resonator throat diameter.

  10. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    PubMed

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.

  11. Monitoring accelerated carbonation on standard Portland cement mortar by nonlinear resonance acoustic test

    NASA Astrophysics Data System (ADS)

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Borrachero, M. V.; Payá, J.

    2015-03-01

    Carbonation is an important deleterious process for concrete structures. Carbonation begins when carbon dioxide (CO2) present in the atmosphere reacts with portlandite producing calcium carbonate (CaCO3). In severe carbonation conditions, C-S-H gel is decomposed into silica gel (SiO2.nH2O) and CaCO3. As a result, concrete pore water pH decreases (usually below 10) and eventually steel reinforcing bars become unprotected from corrosion agents. Usually, the carbonation of the cementing matrix reduces the porosity, because CaCO3 crystals (calcite and vaterite) occupy more volume than portlandite. In this study, an accelerated carbonation-ageing process is conducted on Portland cement mortar samples with water to cement ratio of 0.5. The evolution of the carbonation process on mortar is monitored at different levels of ageing until the mortar is almost fully carbonated. A nondestructive technique based on nonlinear acoustic resonance is used to monitor the variation of the constitutive properties upon carbonation. At selected levels of ageing, the compressive strength is obtained. From fractured surfaces the depth of carbonation is determined with phenolphthalein solution. An image analysis of the fractured surfaces is used to quantify the depth of carbonation. The results from resonant acoustic tests revealed a progressive increase of stiffness and a decrease of material nonlinearity.

  12. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.

    PubMed

    Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2012-10-01

    The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit.

  13. Acoustic scattering by elastic cylinders of elliptical cross-section and splitting up of resonances

    SciTech Connect

    Ancey, S. Bazzali, E. Gabrielli, P. Mercier, M.

    2014-05-21

    The scattering of a plane acoustic wave by an infinite elastic cylinder of elliptical cross section is studied from a modal formalism by emphasizing the role of the symmetries. More precisely, as the symmetry is broken in the transition from the infinite circular cylinder to the elliptical one, the splitting up of resonances is observed both theoretically and experimentally. This phenomenon can be interpreted using group theory. The main difficulty stands in the application of this theory within the framework of the vectorial formalism in elastodynamics. This method significantly simplifies the numerical treatment of the problem, provides a full classification of the resonances, and gives a physical interpretation of the splitting up in terms of symmetry breaking. An experimental part based on ultrasonic spectroscopy complements the theoretical study. A series of tank experiments is carried out in the case of aluminium elliptical cylinders immersed in water, in the frequency range 0 ≤ kr ≤ 50, where kr is the reduced wave number in the fluid. The symmetry is broken by selecting various cylinders of increasing eccentricity. More precisely, the greater the eccentricity, the higher the splitting up of resonances is accentuated. The experimental results provide a very good agreement with the theoretical ones, the splitting up is observed on experimental form functions, and the split resonant modes are identified on angular diagrams.

  14. Acoustic resonance excitation of turbulent heat transfer and flow reattachment downstream of a fence

    NASA Astrophysics Data System (ADS)

    Selcan, Claudio; Cukurel, Beni; Shashank, Judah

    2016-10-01

    The current work investigates the aero-thermal impact of standing sound waves, excited in a straight channel geometry, on turbulent, separating and reattaching flow over a fence. Effects of distinct frequency resonant forcing (ReH = 10,050 and f = 122 Hz) are quantified by wall static pressure measurements and detailed convective heat transfer distributions via liquid crystal thermometry. Acoustic boundary conditions are numerically predicted and the computed longitudinal resonance mode shapes are experimentally verified by surface microphone measurements. Findings indicate the presence of a resonant sound field to exert strong influence on local heat transfer downstream of the fence, whereas the boundary layer upstream of the obstacle remains notable unaffected. Upstream shift of the maximum heat transfer location and an earlier pressure recovery indicate a reduction in time averaged flow reattachment length of up to 37 %. Although the streamwise peak Nusselt increased by only 5 %, the heat transfer level in the vicinity of the unexcited reattachment zone was locally enhanced up to 25 %. Despite prominent impact of resonant forcing on the fence wake flow, the total pressure drop penalty remained invariant. Observations demonstrate the significant aero-thermal implications of shear layer excitation by standing sound waves superimposed on the channel flow field.

  15. Complex Contact-Based Dynamics of Microsphere Monolayers Revealed by Resonant Attenuation of Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Hiraiwa, M.; Abi Ghanem, M.; Wallen, S. P.; Khanolkar, A.; Maznev, A. A.; Boechler, N.

    2016-05-01

    Contact-based vibrations play an essential role in the dynamics of granular materials. Significant insights into vibrational granular dynamics have previously been obtained with reduced-dimensional systems containing macroscale particles. We study contact-based vibrations of a two-dimensional monolayer of micron-sized spheres on a solid substrate that forms a microscale granular crystal. Measurements of the resonant attenuation of laser-generated surface acoustic waves reveal three collective vibrational modes that involve displacements and rotations of the microspheres, as well as interparticle and particle-substrate interactions. To identify the modes, we tune the interparticle stiffness, which shifts the frequency of the horizontal-rotational resonances while leaving the vertical resonance unaffected. From the measured contact resonance frequencies we determine both particle-substrate and interparticle contact stiffnesses and find that the former is an order of magnitude larger than the latter. This study paves the way for investigating complex contact-based dynamics of microscale granular crystals and yields a new approach to studying micro- to nanoscale contact mechanics in multiparticle networks.

  16. Mass sensitivity analysis and designing of surface acoustic wave resonators for chemical sensors

    NASA Astrophysics Data System (ADS)

    Kshetrimayum, Roshan; Yadava, R. D. S.; Tandon, R. P.

    2009-05-01

    The sensitivity of surface acoustic wave (SAW) chemical sensors depends on several factors such as the frequency and phase point of SAW device operation, sensitivity of the SAW velocity to surface mass loading, sensitivity of the SAW oscillator resonance to the loop phase shift, film thickness and oscillator electronics. This paper analyzes the influence of the phase point of operation in SAW oscillator sensors based on two-port resonator devices. It is found that the mass sensitivity will be enhanced if the SAW device has a nonlinear dependence on the frequency (delay ~ frequency-1). This requires the device to generate and operate in a ωτg(ω) = const region in the device passband, where ω denotes the angular frequency of oscillation and τg(ω) denotes the phase slope of the SAW resonator device. A SAW coupled resonator filter (CRF) that take advantage of mode coupling is considered in realizing such a device to help in shaping the phase transfer characteristics of a high mass sensitivity sensor. The device design and simulation results are presented within the coupling-of-modes formalism.

  17. Development and testing of cabin sidewall acoustic resonators for the reduction of cabin tone levels in propfan-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.; Prydz, R. A.; Balena, F. J.

    1991-01-01

    The use of Helmholtz resonators to increase the sidewall transmission loss (TL) in aircraft cabin sidewalls is evaluated. Development, construction, and test of an aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Laboratory and flight test results are discussed. Resonators (448) were located between the enclosure trim panels and the fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a propfan fundamental blade passage frequency (235 Hz). After flight testing on the PTA aircraft, noise reduction (NR) tests were performed with the enclosure in the Kelly Johnson Research and Development Center Acoustics Laboratory. Broadband and tonal excitations were used in the laboratory. Tonal excitation simulated the propfan flight test excitation. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. Increases in NR of up to 11 dB were measured. The effects of flanking, sidewall absorption, cabin absorption, resonator loading of trim panels, and panel vibrations are presented. Resonator and sidewall panel design and test are discussed.

  18. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.

    PubMed

    Rajabi, M; Hasheminejad, Seyyed M

    2009-12-01

    The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.

  19. Gaseous Absorption and Dispersion of Sound in a Resonant Cylindrical Cavity: AN Acoustic and Photoacoustic Study

    NASA Astrophysics Data System (ADS)

    Beckwith, Clyfe Gordon

    This research investigated the feasibility of accurately measuring Virial coefficients in an acoustically resonant cylindrical cavity. Gases studied were: Argon, Helium, Nitrogen, Carbon Dioxide, and Methane. Parameters considered were: resonant frequencies (f_ {rm r}- also a measure of speed of sound), quality factors (Q), and signal amplitudes. We studied the longitudinal modes smaller than 2000 Hz, at room temperature and at pressures of 200, 500, and 800 mm of Hg. The choice of the longitudinal modes was predetermined by our wish to compare acoustic and photoacoustic resonance techniques of the same mode. The acoustic excitation is limited to the longitudinal modes and is achieved by placing a loudspeaker close to one end of the cavity. Photoacoustically we excite a small concentration of molecular Iodine, mixed in with the buffer gases, by a periodically interrupted Xenon light beam. By increasing the length of the cavity we could decrease the space between the modes of frequency. Our observations focused on the behaviors that (a) f_{rm r} shifted with pressure, (b) the f_{rm r} deviated from the simple laws of harmonics, and (c) the amplitudes for the two techniques varied differently with frequency. Effect (a) is due to the fact that the gases are not "ideal", and due to the presence of boundary layers caused by thermal conduction and viscosity gradients. Effect (b) arises because of the f_{rm r}'s mode dependence, caused by the wave scattering due to imperfect geometrical symmetries. Effect (c) is governed by the coupling factors. All measurements could theoretically be justified to within instrumental error, the only noted discrepancy is the lack of a theoretical mode dependence. We conclude that it is feasible to study the accuracy of Virial coefficients of simple gases provided that the boundary layer loss effects and the mode dependent wave scattering can be quantified; in regions of high pressures and high frequencies the Virial effects dominate the

  20. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration

    PubMed Central

    Hao, Wenchang; Liu, Jiuling; Liu, Minghua; Liang, Yong; He, Shitang

    2016-01-01

    The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO2) deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device. PMID:27104540

  1. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration.

    PubMed

    Hao, Wenchang; Liu, Jiuling; Liu, Minghua; Liang, Yong; He, Shitang

    2016-04-20

    The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO₂) deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device.

  2. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses

    PubMed Central

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-01-01

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus. PMID:26647655

  3. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures: Final Report

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S B

    2006-11-02

    This is final report on NA-22 project LL251DP, where the goal was to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begun to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. Since our funding was cut in FY06, I will discuss where this project can go in the future with this technology.

  4. The dependence of acoustic properties of a crack on the resonance mode and geometry

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2001-01-01

    We examine the dependence of the acoustic properties of a crack containing magmatic or hydrothermal fluids on the resonance mode and geometry to quantify the source properties of long-period (LP) events observed in volcanic areas. Our results, based on spectral analyses of synthetic waveforms generated with a fluid-driven crack model, indicate that the basic features of the dimensionless frequency (??) and quality factor (Qr) for a crack containing various types of fluids are not strongly affected by the choice of mode, although the actual ranges of Q?? and ?? both depend on the mode. The dimensionless complex frequency systematically varies with changes in the crack geometry, showing increases in both Qr and ?? as the crack length to aperture ratio decreases. The present results may be useful for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events.

  5. Channel noise enhances signal detectability in a model of acoustic neuron through the stochastic resonance paradigm.

    PubMed

    Liberti, M; Paffi, A; Maggio, F; De Angelis, A; Apollonio, F; d'Inzeo, G

    2009-01-01

    A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.

  6. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S

    2005-10-04

    This report reviews progress made on NA22 project LL251DP to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. We have met all milestones and deliverables for FY05, as shown in Table 1. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begin to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. The results obtained in FY05 further support the feasibility of successful demonstration of an NAR experiment for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs.

  7. Nuclear Magnetic Resonance Structural Mapping Reveals Promiscuous Interactions between Clathrin-Box Motif Sequences and the N-Terminal Domain of the Clathrin Heavy Chain

    PubMed Central

    2016-01-01

    The recruitment and organization of clathrin at endocytic sites first to form coated pits and then clathrin-coated vesicles depend on interactions between the clathrin N-terminal domain (TD) and multiple clathrin binding sequences on the cargo adaptor and accessory proteins that are concentrated at such sites. Up to four distinct protein binding sites have been proposed to be present on the clathrin TD, with each site proposed to interact with a distinct clathrin binding motif. However, an understanding of how such interactions contribute to clathrin coat assembly must take into account observations that any three of these four sites on clathrin TD can be mutationally ablated without causing loss of clathrin-mediated endocytosis. To take an unbiased approach to mapping binding sites for clathrin-box motifs on clathrin TD, we used isothermal titration calorimetry (ITC) and nuclear magnetic resonance spectroscopy. Our ITC experiments revealed that a canonical clathrin-box motif peptide from the AP-2 adaptor binds to clathrin TD with a stoichiometry of 3:1. Assignment of 90% of the total visible amide resonances in the TROSY-HSQC spectrum of 13C-, 2H-, and 15N-labeled TD40 allowed us to map these three binding sites by analyzing the chemical shift changes as clathrin-box motif peptides were titrated into clathrin TD. We found that three different clathrin-box motif peptides can each simultaneously bind not only to the previously characterized clathrin-box site but also to the W-box site and the β-arrestin splice loop site on a single TD. The promiscuity of these binding sites can help explain why their mutation does not lead to larger effects on clathrin function and suggests a mechanism by which clathrin may be transferred between different proteins during the course of an endocytic event. PMID:25844500

  8. Optimization of Capacitive Acoustic Resonant Sensor Using Numerical Simulation and Design of Experiment

    PubMed Central

    Haque, Rubaiyet Iftekharul; Loussert, Christophe; Sergent, Michelle; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    Optimization of the acoustic resonant sensor requires a clear understanding of how the output responses of the sensor are affected by the variation of different factors. During this work, output responses of a capacitive acoustic transducer, such as membrane displacement, quality factor, and capacitance variation, are considered to evaluate the sensor design. The six device parameters taken into consideration are membrane radius, backplate radius, cavity height, air gap, membrane tension, and membrane thickness. The effects of factors on the output responses of the transducer are investigated using an integrated methodology that combines numerical simulation and design of experiments (DOE). A series of numerical experiments are conducted to obtain output responses for different combinations of device parameters using finite element methods (FEM). Response surface method is used to identify the significant factors and to develop the empirical models for the output responses. Finally, these results are utilized to calculate the optimum device parameters using multi-criteria optimization with desirability function. Thereafter, the validating experiments are designed and deployed using the numerical simulation to crosscheck the responses. PMID:25894937

  9. Internal defect inspection in magnetic tile by using acoustic resonance technology

    NASA Astrophysics Data System (ADS)

    Xie, Luofeng; Yin, Ming; Huang, Qinyuan; Zhao, Yue; Deng, Zhenbo; Xiang, Zhaowei; Yin, Guofu

    2016-11-01

    This paper focuses on the validity of a nondestructive methodology for magnetic tile internal defect inspection based on acoustic resonance. The principle of this methodology is to analyze the acoustic signal collected from the collision of magnetic tile with a metal block. To accomplish the detection process, the separating part of the detection system is designed and discussed in detail in this paper. A simplified mathematical model is constructed to analyze the characteristics of the impact of magnetic tile with a metal block. The results demonstrate that calculating the power spectrum density (PSD) can diagnose the internal defect of magnetic tile. Two different data-driven multivariate algorithms are adopted to obtain the feature set, namely principal component analysis (PCA) and hierarchical nonlinear principal component analysis (h-NLPCA). Three different classifiers are then performed to deal with magnetic tile classification problem based on features extracted by PCA or h-NLPCA. The classifiers adopted in this paper are fuzzy neural networks (FNN), variable predictive model based class discrimination (VPMCD) method and support vector machine (SVM). Experimental results show that all six methods are successful in identifying the magnetic tile internal defect. In this paper, the effect of environmental noise is also considered, and the classification results show that all the methods have high immunity to background noise, especially PCA-SVM and h-NLPCA-SVM. Considering the accuracy rate, computation cost problem and the ease of implementation, PCA-SVM turns out to be the best method for this purpose.

  10. Near resonance acoustic scattering from organized schools of juvenile Atlantic bluefin tuna (Thunnus thynnus).

    PubMed

    Weber, Thomas C; Lutcavage, Molly E; Schroth-Miller, Madeline L

    2013-06-01

    Schools of Atlantic bluefin tuna (Thunnus thynnus) can exhibit highly organized spatial structure within the school. This structure was quantified for dome shaped schools using both aerial imagery collected from a commercial spotter plane and 400 kHz multibeam echo sounder data collected on a fishing vessel in 2009 in Cape Cod Bay, MA. Observations from one school, containing an estimated 263 fish within an approximately ellipsoidal volume of 1900 m(3), were used to seed an acoustic model that estimated the school target strength at frequencies between 10 and 2000 Hz. The fish's swimbladder resonance was estimated to occur at approximately 50 Hz. The acoustic model examined single and multiple scattering solutions and also a completely incoherent summation of scattering responses from the fish. Three levels of structure within the school were examined, starting with fish locations that were constrained by the school boundaries but placed according to a Poisson process, then incorporating a constraint on the distance to the nearest neighbor, and finally adding a constraint on the bearing to the nearest neighbor. Results suggest that both multiple scattering and spatial organization within the school should be considered when estimating the target strength of schools similar to the ones considered here.

  11. The mass load effect on the resonant acoustic frequencies of colloidal semiconductor nanoplatelets

    NASA Astrophysics Data System (ADS)

    Girard, Adrien; Saviot, Lucien; Pedetti, Silvia; Tessier, Mickaël D.; Margueritat, Jérémie; Gehan, Hélène; Mahler, Benoit; Dubertret, Benoit; Mermet, Alain

    2016-07-01

    Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances.Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR07383A

  12. Magical Boxes

    ERIC Educational Resources Information Center

    Costello, Judith

    2005-01-01

    Students get excited when they realize that they can transform a flat sheet of paper into a box. By using different sizes of paper, they can make different sizes of boxes and put a box inside a box, inside a box. These magical boxes within boxes can contain unwanted emotions or special treasures. The project described in this article incorporates…

  13. Acoustic resonator with Al electrodes on an AlN layer and using a GaAs substrate

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-12-03

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  14. High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-05-01

    A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.

  15. Experimental study on acoustic subwavelength imaging of holey-structured metamaterials by resonant tunneling.

    PubMed

    Su, Haijing; Zhou, Xiaoming; Xu, Xianchen; Hu, Gengkai

    2014-04-01

    A holey-structured metamaterial is proposed for near-field acoustic imaging beyond the diffraction limit. The structured lens consists of a rigid slab perforated with an array of cylindrical holes with periodically modulated diameters. Based on the effective medium approach, the structured lens is characterized by multilayered metamaterials with anisotropic dynamic mass, and an analytic model is proposed to evaluate the transmission properties of incident evanescent waves. The condition is derived for the resonant tunneling, by which evanescent waves can completely transmit through the structured lens without decaying. As an advantage of the proposed lens, the imaging frequency can be modified by the diameter modulation of internal holes without the change of the lens thickness in contrast to the lens due to the Fabry-Pérot resonant mechanism. In this experiment, the lens is assembled by aluminum plates drilled with cylindrical holes. The imaging experiment demonstrates that the designed lens can clearly distinguish two sources separated in the distance below the diffraction limit at the tunneling frequency.

  16. Kiwi fruit (Actinidia chinensis) quality determination based on surface acoustic wave resonator combined with electronic nose.

    PubMed

    Wei, Liu; Guohua, Hui

    2015-01-01

    In this study, electronic nose (EN) combined with a 433 MHz surface acoustic wave resonator (SAWR) was used to determine Kiwi fruit quality under 12-day storage. EN responses to Kiwi samples were measured and analyzed by principal component analysis (PCA) and stochastic resonance (SR) methods. SAWR frequency eigen values were also measured to predict freshness. Kiwi fruit sample's weight loss index and human sensory evaluation were examined to characteristic its quality and freshness. Kiwi fruit's quality predictive models based on EN, SAWR, and EN combined with SAWR were developed, respectively. Weight loss and human sensory evaluation results demonstrated that Kiwi fruit's quality decline and overall acceptance decrease during the storage. Experiment result indicated that the PCA method could qualitatively discriminate all Kiwi fruit samples with different storage time. Both SR and SAWR frequency analysis methods could successfully discriminate samples with high regression coefficients (R = 0.98093 and R = 0.99014, respectively). The validation experiment results showed that the mixed predictive model developed using EN combined with SAWR present higher quality prediction accuracy than the model developed either by EN or by SAWR. This method exhibits some advantages including high accuracy, non-destructive, low cost, etc. It provides an effective way for fruit quality rapid analysis.

  17. Real-time monitoring of human blood clotting using a lateral excited film bulk acoustic resonator

    NASA Astrophysics Data System (ADS)

    Chen, Da; Wang, Jingjng; Wang, Peng; Guo, Qiuquan; Zhang, Zhen; Ma, Jilong

    2017-04-01

    Frequent assay of hemostatic status is an essential issue for the millions of patients using anticoagulant drugs. In this paper, we presented a micro-fabricated film bulk acoustic sensor for the real-time monitoring of blood clotting and the measurement of hemostatic parameters. The device was made of an Au/ZnO/Si3N4 film stack and excited by a lateral electric field. It operated under a shear mode resonance with the frequency of 1.42 GHz and had a quality factor of 342 in human blood. During the clotting process of blood, the resonant frequency decreased along with the change of blood viscosity and showed an apparent step-ladder curve, revealing the sequential clotting stages. An important hemostatic parameter, prothrombin time, was quantitatively determined from the frequency response for different dilutions of the blood samples. The effect of a typical anticoagulant drug (heparin) on the prothrombin time was exemplarily shown. The proposed sensor displayed a good consistency and clinical comparability with the standard coagulometric methods. Thanks to the availability of direct digital signals, excellent potentials of miniaturization and integration, the proposed sensor has promising application for point-of-care coagulation technologies.

  18. Determination of acoustic nonlinearity parameter (β) using nonlinear resonance ultrasound spectroscopy: Theory and experiment.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel J

    2017-02-01

    The present article investigates the possibility of using nonlinear resonance ultrasound spectroscopy to determine the acoustic nonlinearity parameter (β) and third order elastic constant by developing an inverse problem. A theoretical framework was developed for nonlinear forced vibration of a cantilever beam using material nonlinearity (stress-strain nonlinearity). The resulting nonlinear equation was solved using method of multiple time scales to obtain the nonlinear frequency shifts. The present works focuses only on classical nonlinearity and, therefore, a diverse group of intact, classic nonlinear materials were chosen. The samples were tested using nonlinear resonance ultrasound spectroscopy, and the developed theory was used to invert the experimental frequency shifts to obtain the nonlinearity parameters. The third order elastic constants and β were calculated using their analytical relationship with the nonlinearity parameter. The experimentally determined C111 and β values for all various materials agree well with literature values. In addition to determining β, determination of the sign, or phase of β was also explored theoretically and experimentally.

  19. Kiwi fruit (Actinidia chinensis) quality determination based on surface acoustic wave resonator combined with electronic nose

    PubMed Central

    Wei, Liu; Guohua, Hui

    2015-01-01

    In this study, electronic nose (EN) combined with a 433 MHz surface acoustic wave resonator (SAWR) was used to determine Kiwi fruit quality under 12-day storage. EN responses to Kiwi samples were measured and analyzed by principal component analysis (PCA) and stochastic resonance (SR) methods. SAWR frequency eigen values were also measured to predict freshness. Kiwi fruit sample's weight loss index and human sensory evaluation were examined to characteristic its quality and freshness. Kiwi fruit's quality predictive models based on EN, SAWR, and EN combined with SAWR were developed, respectively. Weight loss and human sensory evaluation results demonstrated that Kiwi fruit's quality decline and overall acceptance decrease during the storage. Experiment result indicated that the PCA method could qualitatively discriminate all Kiwi fruit samples with different storage time. Both SR and SAWR frequency analysis methods could successfully discriminate samples with high regression coefficients (R = 0.98093 and R = 0.99014, respectively). The validation experiment results showed that the mixed predictive model developed using EN combined with SAWR present higher quality prediction accuracy than the model developed either by EN or by SAWR. This method exhibits some advantages including high accuracy, non-destructive, low cost, etc. It provides an effective way for fruit quality rapid analysis. PMID:25551334

  20. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances.

    PubMed

    Kang, M S; Joly, N Y; Russell, P St J

    2013-02-15

    We report the experimental demonstration of a passively mode-locked Er-doped fiber ring laser operating at the 337th harmonic (1.80 GHz) of the cavity. The laser makes use of highly efficient Raman-like optoacoustic interactions between the guided light and gigahertz acoustic resonances trapped in the micron-sized solid glass core of a photonic crystal fiber. At sufficient pump power levels the laser output locks to a repetition rate corresponding to the acoustic frequency. A stable optical pulse train with a side-mode suppression ratio higher than 45 dB was obtained at low pump powers (~60 mW).

  1. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  2. Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor.

    PubMed

    Chen, Da; Wang, Jingjing; Xu, Yan; Li, Dehua; Zhang, Luyin; Li, Zhaoxin

    2013-03-15

    An acetylcholinesterase-coated thin film bulk acoustic resonator has been developed for the detection of organophosphorus pesticides. The thin film bulk acoustic resonator acts as a robust mass-sensitive transducer for bio-sensing. This device works in thickness shear mode with a resonance at 1.97 GHz. The detection is based on the inhibitory effects of organophosphorus compounds on the enzymatic activity of the acetylcholinesterase immobilized on one of the faces of the acoustic resonator. The enzyme reaction in the substrate solution and the inhibitory effect is observed are real time by measuring the frequency shift. The presence of organophosphorus pesticides can be detected from the diminution of the frequency shift compared with the levels found in their absence. The device exhibits linear responses, good reproducibility, simple operation, portability and a low detection limit of 5.3×10(-11) M for paraoxon. The detection results of organophosphorus pesticide residues in practical samples show that the proposed sensor has the feasibility and sensing accuracy comparable to gas chromatography.

  3. Sensing characteristics of pure-shear film bulk acoustic resonator in viscous liquids

    NASA Astrophysics Data System (ADS)

    Chen, Da; Song, Shuren; Zhang, Dexue; Wang, Peng; Liu, Weihui

    2017-03-01

    We presented a pure-shear film bulk acoustic resonator (FBAR) and investigated its sensing characteristics in viscous liquids. In the resonator, the electrodes were located on the surface of c-axis-oriented AlN film to generate the lateral electric field and excite the shear acoustic resonance. Compared with the typical quasi-shear film bulk acoustic resonator based on inclined c-axis-oriented AlN or ZnO piezoelectric film, the proposed device exhibits significantly higher Q-factors and a notably improved detection limit, particularly in water and viscous liquids. The frequency shifts show a linear dependency on the square root of the product of the liquid viscosity and density of the glycerol solution in the viscosity range of 1-5 mPaṡs. Furthermore, we measured the mass sensitivity through real-time monitoring of the frequency change during the volatilization process of the loaded saline solutions. The proposed device shows the mass sensitivity of 465 Hzṡcm2/ng and the mass resolutions of 0.17 ng/cm2 in air, 0.25 ng/cm2 in water and 2.08 ng/cm2 in 50% glycerol solution, respectively. The obtained results clearly indicate that the proposed device is capable of using in liquid phase detection with high sensitivity requirements.

  4. The design of Helmholtz resonator based acoustic lenses by using the symmetric Multi-Level Wave Based Method and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Atak, Onur; Huybrechs, Daan; Pluymers, Bert; Desmet, Wim

    2014-07-01

    Sonic crystals can be used as acoustic lenses in certain frequencies and the design of such systems by creating vacancies and using genetic algorithms has been proven to be an effective method. So far, rigid cylinders have been used to create such acoustic lens designs. On the other hand, it has been proven that Helmholtz resonators can be used to construct acoustic lenses with higher refraction index as compared to rigid cylinders, especially in low frequencies by utilizing their local resonances. In this paper, these two concepts are combined to design acoustic lenses that are based on Helmholtz resonators. The Multi-Level Wave Based Method is used as the prediction method. The benefits of the method in the context of design procedure are demonstrated. In addition, symmetric boundary conditions are derived for more efficient calculations. The acoustic lens designs that use Helmholtz resonators are compared with the acoustic lens designs that use rigid cylinders. It is shown that using Helmholtz resonator based sonic crystals leads to better acoustic lens designs, especially at the low frequencies where the local resonances are pronounced.

  5. Jeweled Boxes

    ERIC Educational Resources Information Center

    Coy, Mary

    2009-01-01

    While an empty cardboard box from a ream of copy paper may be the most coveted box among teachers in the author's school, for other people, brass boxes from India, Khokhlova lacquer boxes from Russia, and puzzle boxes from Japan are more the type that are collected and admired. Whether it is used for storage or decoration, a box can evoke a sense…

  6. Detecting sensitization in aluminum alloys using acoustic resonance and EMAT ultrasound

    NASA Astrophysics Data System (ADS)

    Cobb, Adam; Macha, Erica; Bartlett, Jonathan; Xia, Yanquan

    2017-02-01

    Sensitization of 5xxx series aluminum alloys is characterized by the gradual precipitation of the alloying element magnesium as a beta phase (Al3Mg2) along the grain boundaries after prolonged exposure to the environment. While the 5xxx alloy is corrosion resistant, these beta phases are corrosive and thus their formation increases the susceptibility of the alloy to intergranular corrosion and stress corrosion cracking. The standardized approach for measuring the degree of sensitization (DoS) is the ASTM G67 test standard. This test, however, is time consuming, difficult to perform, and destructive, as it involves measurement of a mass loss after exposing the alloy to a nitric acid solution. Given the limitations of this test standard, there is a need to develop a nondestructive evaluation (NDE) solution that is easy-to-use, non-intrusive, and faster than current inspection methods while suitable for use outside a laboratory. This paper describes the development of an NDE method for quantifying the DoS value in an alloy using ultrasonic measurements. The work builds upon prior efforts described in the literature that use electromagnetic acoustic transducers (EMATs) to quantify DoS based on velocity measurements. The prior approaches used conventional ultrasonic inspection techniques with short-duration excitation signals (less than 3 cycles) to allow identification of the echo time-of-flight and amplitude decay pattern, but their success was limited by EMAT transducer inefficiency in general, especially at higher frequencies. To overcome these challenges, this paper presents a modified ultrasonic measurement strategy using long-duration excitation signals (greater than 100 cycles), where multiple reverberations in the material overlap. By sweeping through test frequencies, it is possible to establish an acoustic resonance when the wavelength is an integer multiple of twice the material thickness. This approach allows for greatly improved signal to noise ratios as

  7. Focusing of the lowest-order antisymmetric Lamb mode behind a gradient-index acoustic metalens with local resonators

    NASA Astrophysics Data System (ADS)

    Zhao, Jinfeng; Bonello, Bernard; Boyko, Olga

    2016-05-01

    We have investigated the focusing of the lowest-order antisymmetric Lamb mode (A0) behind a positive gradient-index (GRIN) acoustic metalens consisting of air holes drilled in a silicon plate with silicon pillars erected on one face of the lens. We have analyzed the focusing in the near field as the result of the coupling between the flexural resonant mode of the pillars and the vibration mode of the air/silicon phononic crystal. We highlight the role played by the polarization coherence between the resonant mode and the vibration of the plate. We demonstrate both numerically and experimentally the focusing behind the lens over a spot less than half a wavelength, paving a way for performance of acoustic lenses beyond the diffraction limit. Our findings can be easily extended to other types of elastic wave.

  8. Dual-mode resonant instabilities of the surface dust-acoustic wave in a Lorentzian plasma slab

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-08-15

    The dual-mode resonant instabilities of the dust-acoustic surface wave propagating at the plasma-vacuum interfaces of the generalized Lorentzian dusty plasma slab are kinetically investigated. The dispersion relation is derived for the two propagation modes: symmetric and anti-symmetric waves. We have found that the temporal growth rate of the resonant instability increases with an increase of the slab thickness for both modes. Especially, the nonthermality of plasmas enhances the growth rate of the anti-symmetric resonant wave, and the nonthermal effect is enhanced as the slab thickness is increased. It is also found that the growth rate increases with increasing angular frequency of the rotating dust grain due to the enhanced resonant energy exchange.

  9. Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading.

    PubMed

    García-Gancedo, L; Pedrós, J; Zhao, X B; Ashley, G M; Flewitt, A J; Milne, W I; Ford, C J B; Lu, J R; Luo, J K

    2012-01-01

    Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics.

  10. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging.

    PubMed

    Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta

    2015-01-12

    Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research.

  11. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    PubMed Central

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-01-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW. PMID:27485470

  12. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-08-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW.

  13. Emergence of colour symmetry in free-vibration acoustic resonance of a nonlinear hyperelastic material

    PubMed Central

    Tarumi, Ryuichi

    2013-01-01

    We investigated free-vibration acoustic resonance (FVAR) of two-dimensional St Venant–Kirchhoff-type hyperelastic materials and revealed the existence and structure of colour symmetry embedded therein. The hyperelastic material is isotropic and frame indifferent and includes geometrical nonlinearity in its constitutive equation. The FVAR state is formulated using the principle of stationary action with a subsidiary condition. Numerical analysis based on the Ritz method revealed the existence of four types of nonlinear FVAR modes associated with the irreducible representations of a linearized system. Projection operation revealed that the FVAR modes can be classified on the basis of a single colour (black or white) and three types of bicolour (black and white) magnetic point groups: , , and . These results demonstrate that colour symmetry naturally arises in the finite amplitude nonlinear FVAR modes, and its vibrational symmetries are explained in terms of magnetic point groups rather than the irreducible representations that have been used for linearized systems. We also predicted a grey colour nonlinear FVAR mode which cannot be derived from a linearized system. PMID:24204182

  14. High-throughput screening and scale-up of cocrystals using resonant acoustic mixing.

    PubMed

    Nagapudi, Karthik; Umanzor, Evelyn Yanez; Masui, Colin

    2017-02-14

    This paper explores the effectiveness of resonant acoustic mixing RAM for screening and scale up of cocrystals. 16 cocrystal systems were selected as test cases based on previous literature precedent. A 96 well plate set up in conjunction with zirconia beads was used for cocrystal screening using RAM. A success rate of 80% was obtained in the screen for plates containing solvent or solvent plus Zirconia beads. A proof of concept production of hydrated and anhydrous cocrystals of 1:1 Theophylline Citric acid system at a 400mg scale was demonstrated using solvent and bead assisted RAM. Finally the parameters affecting the scale up of 2:1 Theophylline Oxalic acid cocrystals was explored in a systematic fashion using a Design of Experiments DOE approach. The RAM parameters of acceleration and mixing time were optimized using the DOE approach. A quantitative XRPD method was developed to determine the extent of conversion to the cocrystal when using RAM Mixing time of 2h and an acceleration of 60G were determined to be optimal. The optimized parameters were used to demonstrate scale up of 2:1 Theophylline Oxalic acid cocrystals at an 80 gram scale with a net yield of 94%. RAM is thus established as an environmentally friendly mechanochemical technique for both high throughput screening and scaled up production of cocrystals.

  15. High-Q AlN/SiO2 symmetric composite thin film bulk acoustic wave resonators.

    PubMed

    Artieda, Alvaro; Muralt, Paul

    2008-11-01

    High-Q, bulk acoustic wave composite resonators based on a symmetric layer sequence of SiO(2)-AlN-SiO(2) sandwiched between electrodes have been developed. Acoustic isolation was achieved by means of deep silicon etching to obtain membrane type thin film bulk acoustic wave resonators (TFBARs). Three different device versions were investigated. The SiO(2) film thicknesses were varied (0 nm, 70 nm, 310 nm, and 770 nm) while the piezoelectric AlN film had a constant thickness of 1.2 microm. The sputter-deposited AlN film grown on the amorphous, sputter-deposited SiO(2) layer exhibited a d(33,f) of 4.0 pm/V. Experimental results of quality factors (Q) and coupling coefficients (k(t)(2)) are in agreement with finite element calculations. A Q of 2000 is observed for the first harmonic of the 310 nm oxide devices. The most intense resonance of the 770 nm oxide device is the third harmonic reaching Q factors of 1450. The temperature drift reveals the impact of the SiO(2) layers, which is more pronounced on the first harmonic, reducing the TCF to 4 ppm/K for the 3rd harmonic of the 310 nm oxide devices.

  16. Variable ultrasound trigger delay for improved magnetic resonance acoustic radiation force imaging

    NASA Astrophysics Data System (ADS)

    Mougenot, Charles; Waspe, Adam; Looi, Thomas; Drake, James M.

    2016-01-01

    Magnetic resonance acoustic radiation force imaging (MR-ARFI) allows the quantification of microscopic displacements induced by ultrasound pulses, which are proportional to the local acoustic intensity. This study describes a new method to acquire MR-ARFI maps, which reduces the measurement noise in the quantification of displacement as well as improving its robustness in the presence of motion. Two MR-ARFI sequences were compared in this study. The first sequence ‘variable MSG’ involves switching the polarity of the motion sensitive gradient (MSG) between odd and even image frames. The second sequence named ‘static MSG’ involves a variable ultrasound trigger delay to sonicate during the first or second MSG for odd and even image frames, respectively. As previously published, the data acquired with a variable MSG required the use of reference data acquired prior to any sonication to process displacement maps. In contrary, data acquired with a static MSG were converted to displacement maps without using reference data acquired prior to the sonication. Displacement maps acquired with both sequences were compared by performing sonications for three different conditions: in a polyacrylamide phantom, in the leg muscle of a freely breathing pig and in the leg muscle of pig under apnea. The comparison of images acquired at even image frames and odd image frames indicates that the sequence with a static MSG provides a significantly better steady state (p  <  0.001 based on a Student’s t-test) than the images acquired with a variable MSG. In addition no reference data prior to sonication were required to process displacement maps for data acquired with a static MSG. The absence of reference data prior to sonication provided a 41% reduction of the spatial distribution of noise (p  <  0.001 based on a Student’s t-test) and reduced the sensitivity to motion for displacements acquired with a static MSG. No significant differences were expected and

  17. Frequency flicker of 2.3 GHz AlN-sapphire high-overtone bulk acoustic resonators

    NASA Astrophysics Data System (ADS)

    Boudot, Rodolphe; Martin, Gilles; Friedt, Jean-Michel; Rubiola, Enrico

    2016-12-01

    We report the detailed characterization of 2.3 GHz AlN-Sapphire high-overtone bulk acoustic resonators (HBARs), with a typical loaded Q-factor of 25-30 × 103, 15-20 dB insertion loss, and resonances separated by about 10 MHz. The temperature coefficient of frequency of HBARs is measured to be about -25 ppm/K. We observe at high-input microwave power a significant distortion of the HBAR resonance lineshape, attributed to non-linear effects. The power-induced fractional frequency variation of the HBAR resonance is measured to be about -5 × 10-10/μW. The residual phase noise of a HBAR is measured in the range of -110 to -130 dBrad2/Hz at 1 Hz Fourier frequency, yielding resonator fractional frequency fluctuations at the level of -205 to -225 dB/Hz at 1 Hz and an ultimate HBAR-limited oscillator Allan deviation about 7 × 10-12 at 1 s integration time. The 1/f noise of the HBAR resonator is found to increase with the input microwave power. A HBAR resonator is used for the development of a low phase noise 2.3 GHz oscillator. An absolute phase noise of -60, -120, and -145 dBrad2/Hz for offset frequencies of 10 Hz, 1 kHz, and 10 kHz, respectively, in excellent agreement with the Leeson effect, is measured.

  18. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy.

    PubMed

    Carvalho, Bruno R; Wang, Yuanxi; Mignuzzi, Sandro; Roy, Debdulal; Terrones, Mauricio; Fantini, Cristiano; Crespi, Vincent H; Malard, Leandro M; Pimenta, Marcos A

    2017-03-09

    Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2.

  19. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy

    PubMed Central

    Carvalho, Bruno R.; Wang, Yuanxi; Mignuzzi, Sandro; Roy, Debdulal; Terrones, Mauricio; Fantini, Cristiano; Crespi, Vincent H.; Malard, Leandro M.; Pimenta, Marcos A.

    2017-01-01

    Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2. PMID:28276472

  20. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Bruno R.; Wang, Yuanxi; Mignuzzi, Sandro; Roy, Debdulal; Terrones, Mauricio; Fantini, Cristiano; Crespi, Vincent H.; Malard, Leandro M.; Pimenta, Marcos A.

    2017-03-01

    Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2.

  1. Effect of grazing flow on the acoustic impedance of Helmholtz resonators consisting of single and clustered orifices

    NASA Technical Reports Server (NTRS)

    Hersch, A. S.; Walker, B.

    1979-01-01

    A semiempirical fluid mechanical model is derived for the acoustic behavior of thin-walled single orifice Helmholtz resonators in a grazing flow environment. The incident and cavity sound fields are connected in terms of an orifice discharge coefficient whose values are determined experimentally using the two-microphone method. Measurements show that at high grazing flow speeds, acoustical resistance is almost linearly proportional to the grazing flow speed and almost independent of incident sound pressure. The corresponding values of reactance are much smaller and tend towards zero. For thicker-walled orifice plates, resistance and reactance were observed to be less sensitive to grazing flow as the ratio of plate thickness to orifice diameter increased. Loud tones were observed to radiate from a single orifice Helmholtz resonator due to interaction between the grazing flow shear layer and the resonator cavity. Measurements showed that the tones radiated at a Strouhal number equal to 0.26. The effects of grazing flow on the impedance of Helmholtz resonators consisting of clusters of orifices was also studied. In general, both resistance and reaction were found to be virtually independent of orifice relative spacing and number. These findings are valid with and without grazing flow.

  2. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations.

    PubMed

    Hagsäter, S M; Jensen, T Glasdam; Bruus, H; Kutter, J P

    2007-10-01

    We show that full-image micro-PIV analysis in combination with images of transient particle motion is a powerful tool for experimental studies of acoustic radiation forces and acoustic streaming in microfluidic chambers under piezo-actuation in the MHz range. The measured steady-state motion of both large 5 microm and small 1 microm particles can be understood in terms of the acoustic eigenmodes or standing ultra-sound waves in the given experimental microsystems. This interpretation is supported by numerical solutions of the corresponding acoustic wave equation.

  3. Acoustic-resonance spectrometry as a process analytical technology for rapid and accurate tablet identification.

    PubMed

    Medendorp, Joseph; Lodder, Robert A

    2006-03-01

    This research was performed to test the hypothesis that acoustic-resonance spectrometry (ARS) is able to rapidly and accurately differentiate tablets of similar size and shape. The US Food and Drug Administration frequently orders recalls of tablets because of labeling problems (eg, the wrong tablet appears in a bottle). A high-throughput, nondestructive method of online analysis and label comparison before shipping could obviate the need for recall or disposal of a batch of mislabeled drugs, thus saving a company considerable expense and preventing a major safety risk. ARS is accurate and precise as well as inexpensive and nondestructive, and the sensor, is constructed from readily available parts, suggesting utility as a process analytical technology (PAT). To test the classification ability of ARS, 5 common household tablets of similar size and shape were chosen for analysis (aspirin, ibuprofen, acetaminophen, vitamin C, and vitamin B12). The measures of successful tablet identification were intertablet distances in nonparametric multidimensional standard deviations (MSDs) greater than, 3 and intratablet MSDs less than 3, as calculated from an extended bootstrap erroradjusted single sample technique. The average intertablet MSD was 65.64, while the average intratablet MSD from cross-validation was 1.91. Tablet mass (r(2)=0.977), thickness (r(2)=0.977), and density (r(2)=0.900) were measured very accurately from the AR spectra, each with less than 10% error. Tablets were identified correctly with only 250 ms data collection time. These results demonstrate that ARS effectively identified and characterized the 5 types of tablets and could potentially serve as a rapid high-throughput online pharmaceutical sensor.

  4. Dynamic exchange via spin currents in acoustic and optical modes of ferromagnetic resonance in spin-valve structures

    NASA Astrophysics Data System (ADS)

    Timopheev, A. A.; Pogorelov, Yu. G.; Cardoso, S.; Freitas, P. P.; Kakazei, G. N.; Sobolev, N. A.

    2014-04-01

    Two ferromagnetic (FM) layers magnetically decoupled by a thick, normal metal spacer layer can be dynamically coupled via spin currents emitted by the spin pump and absorbed through the spin-torque effects at the neighboring interfaces. A decrease of damping in both layers due to a partial compensation of the angular momentum leakage in each layer was previously observed at the coincidence of the two FM resonances. In the case of nonzero magnetic coupling, such a dynamic exchange will depend on the mutual precession of the magnetic moments in the layers. A difference in the linewidth of the resonance peaks is expected for the acoustic and optical regimes of precession. However, the interlayer coupling (IC) hybridizes the resonance responses of the layers and therefore can also change their linewidths. The interplay between the two mechanisms has never been considered before. In the present work, the joint influence of the hybridization and nonlocal damping on the linewidth has been studied in weakly coupled NiFe/CoFe/Cu/CoFe/MnIr spin-valve multilayers. It has been found that the dynamic exchange by spin currents is different in the optical and acoustic modes, and this difference is dependent on the IC strength. In contrast to the acoustic precession mode, the dynamic exchange in the optical mode works as an additional damping source. A simulation in the framework of the Landau-Lifshitz-Gilbert formalism for two FM layers coupled magnetically and by spin currents has been done to separate the effects of the nonlocal damping from the resonance modes hybridization. In our samples, both mechanisms bring about linewidth changes of the same order of magnitude but lead to a distinctly different angular behavior. The obtained results are relevant for a broad class of coupled magnetic multilayers with ballistic regime of the spin transport.

  5. Effects of thermal annealing of W/SiO2 multilayer Bragg reflectors on resonance characteristics of film bulk acoustic resonator devices with cobalt electrodes

    NASA Astrophysics Data System (ADS)

    Yim, Munhyuk; Kim, Dong-Hyun; Chai, Dongkyu; Yoon, Giwan

    2004-05-01

    In this article, we present the thermal annealing effects of the W/SiO2 multilayer reflectors in ZnO-based film bulk acoustic resonator (FBAR) devices with cobalt (Co) electrodes in comparison with those with aluminum (Al) electrodes. Various thermal annealing conditions have been implemented on the W/SiO2 multilayer reflectors formed on p-type (100) silicon substrates. The resonance characteristics could be significantly improved due to the thermal annealing and were observed to depend strongly on the annealing conditions applied to the reflectors. Particularly, the FBAR devices with the W/SiO2 multilayer reflectors annealed at 400 °C/30 min have shown superior resonance characteristics in terms of return loss and quality factor. In addition, the use of Co electrodes has resulted in the further improvement of the resonance characteristics as compared with the Al electrodes. As a result, the combined use of both the thermal annealing and Co electrodes seems very useful to more effectively improve the resonance characteristics of the FBAR devices with the W/SiO2 multilayer reflectors. .

  6. Microwave measurements of the length and thermal expansion of a cylindrical resonator for primary acoustic gas thermometry

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Feng, X. J.; Zhang, J. T.; Lin, H.; Duan, Y. N.; Duan, Y. Y.

    2017-01-01

    In the application of acoustic gas thermometry to determine the Boltzmann constant and thermodynamic temperatures using resonant cavities, the internal dimensions or the thermal expansion of the cavity have to be known accurately. For this purpose, measurement of the microwave resonances has proved to be an accurate and convenient experimental technique for dimensional measurement of acoustic resonators. We report measurements of the length and longitudinal thermal expansion of a prototype cylindrical cavity made of oxygen-free copper. We studied four non-degenerate transverse magnetic modes for three isotherms at 243, 258 and 273 K. Two procedures were investigated for calculating the length and longitudinal thermal expansion of the cavity at the temperatures examined. The results from both methods agree well. The relative standard uncertainties for the measurements of length and longitudinal thermal expansion are less than 0.47  ×  10-6 and 0.04  ×  10-6, respectively, from 243 to 273 K. The low uncertainty achieved here provides confidence to pursue a determination of the Boltzmann constant and thermodynamic temperature with a cylindrical cavity and microwave techniques.

  7. Biotin-streptavidin binding interactions of dielectric filled silicon bulk acoustic resonators for smart label-free biochemical sensor applications.

    PubMed

    Heidari, Amir; Yoon, Yong-Jin; Park, Woo-Tae; Su, Pei-Chen; Miao, Jianmin; Lin, Julius Tsai Ming; Park, Mi Kyoung

    2014-03-07

    Sensor performance of a dielectric filled silicon bulk acoustic resonator type label-free biosensor is verified with biotin-streptavidin binding interactions as a model system. The mass sensor is a micromachined silicon square plate with a dielectric filled capacitive excitation mechanism. The resonance frequency of the biotin modified resonator decreased 315 ppm when exposed to streptavidin solution for 15 min with a concentration of 10(-7) M, corresponding to an added mass of 3.43 ng on the resonator surface. An additional control is added by exposing a bovine serum albumin (BSA)-covered device to streptavidin in the absence of the attached biotin. No resonance frequency shift was observed in the control experiment, which confirms the specificity of the detection. The sensor-to-sensor variability is also measured to be 4.3%. Consequently, the developed sensor can be used to observe in biotin-streptavidin interaction without the use of labelling or molecular tags. In addition, biosensor can be used in a variety of different immunoassay tests.

  8. Biotin-Streptavidin Binding Interactions of Dielectric Filled Silicon Bulk Acoustic Resonators for Smart Label-Free Biochemical Sensor Applications

    PubMed Central

    Heidari, Amir; Yoon, Yong-Jin; Park, Woo-Tae; Su, Pei-Chen; Miao, Jianmin; Lin, Julius Tsai Ming; Park, Mi Kyoung

    2014-01-01

    Sensor performance of a dielectric filled silicon bulk acoustic resonator type label-free biosensor is verified with biotin-streptavidin binding interactions as a model system. The mass sensor is a micromachined silicon square plate with a dielectric filled capacitive excitation mechanism. The resonance frequency of the biotin modified resonator decreased 315 ppm when exposed to streptavidin solution for 15 min with a concentration of 10−7 M, corresponding to an added mass of 3.43 ng on the resonator surface. An additional control is added by exposing a bovine serum albumin (BSA)-covered device to streptavidin in the absence of the attached biotin. No resonance frequency shift was observed in the control experiment, which confirms the specificity of the detection. The sensor-to-sensor variability is also measured to be 4.3%. Consequently, the developed sensor can be used to observe in biotin-streptavidin interaction without the use of labelling or molecular tags. In addition, biosensor can be used in a variety of different immunoassay tests. PMID:24608003

  9. Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer

    NASA Astrophysics Data System (ADS)

    Pijolat, M.; Loubriat, S.; Queste, S.; Mercier, D.; Reinhardt, A.; Defaÿ, E.; Deguet, C.; Clavelier, L.; Moriceau, H.; Aïd, M.; Ballandras, S.

    2009-11-01

    As layer transfer techniques have been notably improved in the past years, lithium niobate (LiNbO3) appears as a candidate for the next generation of ultrawide band radio frequency (rf) filters. Depending on the crystalline orientation, LiNbO3 can achieve electromechanical coupling factors Kt2 more than six times larger than those of sputtered aluminum nitride films. In this letter, a process based on direct bonding, grinding, polishing, and deep reactive ion etching is proposed to fabricate a single crystal LiNbO3 film bulk acoustic resonator. From the fabricated test vehicles, Kt2 of 43% is measured confirming the values predicted by theoretical computations.

  10. A rapid magnetic resonance acoustic radiation force imaging sequence for ultrasonic refocusing

    NASA Astrophysics Data System (ADS)

    Mougenot, Charles; Pichardo, Samuel; Engler, Steven; Waspe, Adam; Constanciel Colas, Elodie; Drake, James M.

    2016-08-01

    Magnetic resonance guided acoustic radiation force imaging (MR-ARFI) is being used to correct for aberrations induced by tissue heterogeneities when using high intensity focusing ultrasound (HIFU). A compromise between published MR-ARFI adaptive solutions is proposed to achieve efficient refocusing of the ultrasound beam in under 10 min. In addition, an ARFI sequence based on an EPI gradient echo sequence was used to simultaneously monitor displacement and temperature with a large SNR and low distortion. This study was conducted inside an Achieva 3T clinical MRI using a Philips Sonalleve MR-HIFU system to emit a 1 ms pulsed sonication with duty cycle of 2.3% at 300 Wac inside a polymer phantom. Virtual elements defined by a Hadamard array with sonication patterns composed of 6 phase steps were used to characterize 64 groups of 4 elements to find the optimal phase of the 256 elements of the transducer. The 384 sonication patterns were acquired in 580 s to identify the set of phases that maximize the displacement at the focal point. Three aberrators (neonatal skull, 8 year old skull and a checkered pattern) were added to each sonication pattern to evaluate the performance of this refocusing algorithm (n  =  4). These aberrators reduced the relative intensities to 95.3%, 69.6% and 25.5% for the neonatal skull, 8 year old skull, and checkered pattern virtual aberrators respectively. Using a 10 min refocusing algorithm, relative intensities of 101.6%, 91.3% and 93.3% were obtained. Better relative intensities of 103.9%, 94.3% and 101% were achieved using a 25 min refocusing algorithm. An average temperature increase of 4.2 °C per refocusing test was induced for the 10 min refocusing algorithm, resulting in a negligible thermal dose of 2 EM. A rapid refocusing of the beam can be achieved while keeping thermal effects to a minimum.

  11. A METHODOLOGY TO INTEGRATE MAGNETIC RESONANCE AND ACOUSTIC MEASUREMENTS FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Jorge O. Parra; Chris L. Hackert; Lorna L. Wilson

    2002-09-20

    The work reported herein represents the third year of development efforts on a methodology to interpret magnetic resonance and acoustic measurements for reservoir characterization. In this last phase of the project we characterize a vuggy carbonate aquifer in the Hillsboro Basin, Palm Beach County, South Florida, using two data sets--the first generated by velocity tomography and the second generated by reflection tomography. First, we integrate optical macroscopic (OM), scanning electron microscope (SEM) and x-ray computed tomography (CT) images, as well as petrography, as a first step in characterizing the aquifer pore system. This pore scale integration provides information with which to evaluate nuclear magnetic resonance (NMR) well log signatures for NMR well log calibration, interpret ultrasonic data, and characterize flow units at the field scale between two wells in the aquifer. Saturated and desaturated NMR core measurements estimate the irreducible water in the rock and the variable T{sub 2} cut-offs for the NMR well log calibration. These measurements establish empirical equations to extract permeability from NMR well logs. Velocity and NMR-derived permeability and porosity relationships integrated with velocity tomography (based on crosswell seismic measurements recorded between two wells 100 m apart) capture two flow units that are supported with pore scale integration results. Next, we establish a more detailed picture of the complex aquifer pore structures and the critical role they play in water movement, which aids in our ability to characterize not only carbonate aquifers, but reservoirs in general. We analyze petrography and cores to reveal relationships between the rock physical properties that control the compressional and shear wave velocities of the formation. A digital thin section analysis provides the pore size distributions of the rock matrix, which allows us to relate pore structure to permeability and to characterize flow units at the

  12. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  13. Non-linear Alfvén wave interaction leading to resonant excitation of an acoustic mode in the laboratory

    SciTech Connect

    Dorfman, S.; Carter, T. A.

    2015-05-15

    The nonlinear three-wave interaction process at the heart of the parametric decay process is studied by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. A simple damped, driven oscillator model making use of the MHD equations well-predicts most of the observations, but the width of the resonance curve is still under investigation.

  14. Label-free detection of protein-ligand interactions in real time using micromachined bulk acoustic resonators

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Pang, Wei; Marma, Mong S.; Lee, Chuang-Yuan; Kamal-Bahl, Sanat; Kim, Eun Sok; McKenna, Charles E.

    2010-03-01

    In this paper, we present a micromachined film bulk acoustic resonator (FBAR) to detect protein-ligand interactions in real-time. The surface of the FBAR device has a thin layer of gold deposited on it to immobilize thiol-modified biotin. The resonant frequency of the biotin modified FBAR was measured to decrease by 170 ppm when exposed to streptavidin solution with a concentration of 5×10-7 M, corresponding to an added mass of 120 pg on the FBAR surface due to the biotin-streptavidin interaction. Consequently, the biotin modified FBAR can be used to observe in real time the biotin-streptavidin interaction without the use of labeling or molecular tags. The FBAR can be used in a variety of protein-ligand systems, and be designed for testing in array formats to give high throughput screening for drug discovery.

  15. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Romero-García, Vicent; Pagneux, Vincent; Groby, Jean-Philippe

    2017-01-01

    We theoretically and experimentally report subwavelength resonant panels for low-frequency quasiperfect sound absorption including transmission by using the accumulation of cavity resonances due to the slow sound phenomenon. The subwavelength panel is composed of periodic horizontal slits loaded by identical Helmholtz resonators (HRs). Due to the presence of the HRs, the propagation inside each slit is strongly dispersive, with near-zero phase velocity close to the resonance of the HRs. In this slow sound regime, the frequencies of the cavity modes inside the slit are down-shifted and the slit behaves as a subwavelength resonator. Moreover, due to strong dispersion, the cavity resonances accumulate at the limit of the band gap below the resonance frequency of the HRs. Near this accumulation frequency, simultaneously symmetric and antisymmetric quasicritical coupling can be achieved. In this way, using only monopolar resonators quasiperfect absorption can be obtained in a material including transmission.

  16. Do mirror glasses have the same effect on brain activity as a mirror box? Evidence from a functional magnetic resonance imaging study with healthy subjects.

    PubMed

    Milde, Christopher; Rance, Mariela; Kirsch, Pinar; Trojan, Jörg; Fuchs, Xaver; Foell, Jens; Bekrater-Bodmann, Robin; Flor, Herta; Diers, Martin

    2015-01-01

    Since its original proposal, mirror therapy has been established as a successful neurorehabilitative intervention in several neurological disorders to recover motor function or to relieve pain. Mirror therapy seems to operate by reactivating the contralesional representation of the non-mirrored limb in primary motor- and somatosensory cortex. However, mirror boxes have some limitations which prompted the use of additional mirror visual feedback devices. The present study evaluated the utility of mirror glasses compared to a mirror box. We also tested the hypothesis that increased interhemispheric communication between the motor hand areas is the mechanism by which mirror visual feedback recruits the representation of the non-mirrored limb. Therefore, mirror illusion capacity and brain activations were measured in a within-subject design during both mirror visual feedback conditions in counterbalanced order with 20 healthy subjects inside a magnetic resonance imaging scanner. Furthermore, we analyzed task-dependent functional connectivity between motor hand representations using psychophysiological interaction analysis during both mirror tasks. Neither the subjective quality of mirror illusions nor the patterns of functional brain activation differed between the mirror tasks. The sensorimotor representation of the non-mirrored hand was recruited in both mirror tasks. However, a significant increase in interhemispheric connectivity between the hand areas was only observed in the mirror glasses condition, suggesting different mechanisms for the recruitment of the representation of the non-mirrored hand in the two mirror tasks. We conclude that the mirror glasses might be a promising alternative to the mirror box, as they induce similar patterns of brain activation. Moreover, the mirror glasses can be easy applied in therapy and research. We want to emphasize that the neuronal mechanisms for the recruitment of the affected limb representation might differ depending on

  17. Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure

    DOEpatents

    Sinha, Dipen N.; Wray, William O.

    1994-01-01

    Apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established.

  18. Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure

    DOEpatents

    Sinha, D.N.; Wray, W.O.

    1994-12-27

    The apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established. 3 figures.

  19. Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Abrahamson, A. Louis; Jones, Michael G.

    1988-01-01

    An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities.

  20. Mechanical back-action of a spin-wave resonance in a magnetoelastic thin film on a surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Gowtham, P. G.; Labanowski, D.; Salahuddin, S.

    2016-07-01

    Surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, through the magnetoelastic interaction, excite traveling spin-wave resonance in a magnetic film deposited on the substrate. This spin-wave resonance in the magnetic film creates a time-ynamic surface stress of magnetoelastic origin that acts back on the surface of the piezoelectric and modifies the SAW propagation. Unlike previous analyses that treat the excitation as a magnon-phonon polariton, here the magnetoelastic film is treated as a perturbation modifying boundary conditions on the SAW. We use acoustical perturbation theory to find closed-form expressions for the back-action surface stress and strain fields and the resultant SAW velocity shifts and attenuation. We demonstrate that the shear stres fields associated with this spin-wave back-action also generate effective surface currents on the piezoelectric both in phase and out of phase with the driving SAW potential. Characterization of these surface currents and their applications in determination of the magnetoelastic coupling are discussed. The perturbative calculation is carried out explicitly to first order (a regime corresponding to many experimental situations of current interest) and we provide a sketch of the implications of the theory at higher order.

  1. Acoustic-resonance spectrometry as a process analytical technology for the quantification of active pharmaceutical ingredient in semi-solids.

    PubMed

    Medendorp, Joseph; Buice, Robert G; Lodder, Robert A

    2006-09-01

    The purpose of this study was to demonstrate acoustic resonance spectrometry (ARS) as an alternative process analytical technology to near infrared (NIR) spectroscopy for the quantification of active pharmaceutical ingradient (API) in semi-solids such as creams, gels, ointments, and lotions. The ARS used for this research was an inexpensive instrument constructed from readily available parts. Acoustic-resonance spectra were collected with a frequency spectrum from 0 to 22.05 KHz. NIR data were collected from 1100 to 2500 nm. Using 1-point net analyte signal (NAS) calibration, NIR for the API (colloidal oatmeal [CO]) gave anr (2) prediction accuracy of 0.971, and a standard error of performance (SEP) of 0.517%CO. ARS for the API resulted in anr (2) of 0.983 and SEP of 0.317%CO. NAS calibration is compared with principal component regression. This research demonstrates that ARS can sometimes outperform NIR spectrometry and can be an effective analytical method for the quantification of API in semi-solids. ARS requires no sample preparation, provides larger penetration depths into lotions than optical techniques, and measures API concentrations faster and more accurately. These results suggest that ARS is a useful process analytical technology (PAT).

  2. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect

    Parra, Jorge O.; Hackert, Chris L.; Collier, Hughbert A.; Bennett, Michael

    2002-01-29

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate NMR techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This is accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging are being linked with a balanced petrographical analysis of the core and theoretical model.

  3. Acoustic determination of cracks in welded joints. [by resonant structural vibration measurements

    NASA Technical Reports Server (NTRS)

    Baltanoiu, M.; Criciotoiu, E.

    1974-01-01

    The acoustic analysis method permits detection of any cracks that might take place and their manner of propagation. The study deals with the cracks produced in experiments to determine the welding technology for a welded gray cast iron workpiece by using piezoelectric transducers to determine vibration acceleration.

  4. Contrast Enhancement for Thermal Acoustic Breast Cancer Imaging via Resonant Stimulation

    DTIC Science & Technology

    2009-03-01

    Olsen and J. C. Lin, “Acoustic imaging of a model of a human hand using pulsed microwave irradiation,” Bioelectromagnetics, vol. 4, pp. 397–400, 1983. [2...E. Steen and B. Olstad, “Volume rendering of 3-D medical ultrasound data using direct feature mapping,” IEEE Trans. Med. Imag., vol. 13, no. 6, pp

  5. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    SciTech Connect

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  6. Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples

    NASA Astrophysics Data System (ADS)

    Nakagawa, Seiji

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 °C, and concurrently with x-ray CT imaging. The described split Hopkinson resonant bar test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples, and a natural rock sample.

  7. Nuclear Quadrupole Resonance (NQR) Method and Probe for Generating RF Magnetic Fields in Different Directions to Distinguish NQR from Acoustic Ringing Induced in a Sample

    DTIC Science & Technology

    1997-08-01

    77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically

  8. A film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system

    NASA Astrophysics Data System (ADS)

    Zhang, Mengying; Zhao, Zhan; Du, Lidong; Fang, Zhen

    2017-04-01

    This paper presented a high-performance pressure sensor based on a film bulk acoustic resonator (FBAR). The support film of the FBAR chip was made of silicon nitride and the part under the resonator area was etched to enhance the sensitivity and improve the linearity of the pressure sensor. A micro resistor temperature sensor and a micro resistor heater were integrated in the chip to monitor and control the operating temperature. The sensor chip was fabricated, and packaged in an oscillator circuit for differential pressure detection. When the detected pressure ranged from  ‑100 hPa to 600 hPa, the sensitivity of the improved FBAR pressure sensor was  ‑0.967 kHz hPa‑1, namely  ‑0.69 ppm hPa‑1, which was 19% higher than that of existing sensors with a complete support film. The nonlinearity of the improved sensor was less than  ±0.35%, while that of the existing sensor was  ±5%. To eliminate measurement errors from humidity, the temperature control system integrated in the sensor chip controlled the temperature of the resonator up to 75 °C, with accuracy of  ±0.015 °C and power of 20 mW.

  9. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure

    PubMed Central

    Bian, Xiaolei; Jin, Hao; Wang, Xiaozhi; Dong, Shurong; Chen, Guohao; Luo, J. K.; Deen, M. Jamal; Qi, Bensheng

    2015-01-01

    A new type of ultraviolet (UV) light sensor based on film bulk acoustic wave resonator (FBAR) is proposed. The new sensor uses gold and a thin n-type ZnO layer deposited on the top of piezoelectric layer of FBAR to form a Schottky barrier. The Schottky barrier's capacitance can be changed with UV light, resulting in an enhanced shift in the entire FBAR's resonant frequency. The fabricated UV sensor has a 50 nm thick n-ZnO semiconductor layer with a carrier concentration of ~ 1017 cm−3. A large frequency downshift is observed when UV light irradiates the FBAR. With 365 nm UV light of intensity 1.7 mW/cm2, the FBAR with n-ZnO/Au Schottky diode has 250 kHz frequency downshift, much larger than the 60 kHz frequency downshift in a conventional FBAR without the n-ZnO layer. The shift in the new FBAR's resonant frequency is due to the junction formed between Au and n-ZnO semiconductor and its properties changes with UV light. The experimental results are in agreement with the theoretical analysis using an equivalent circuit model of the new FBAR structure. PMID:25773146

  10. Quantitative Interferometry in the Severe Acoustic Environment of Resonant Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Raman, Ganesh

    1999-01-01

    Understanding fundamental fluidic dynamic and acoustic processes in high-speed jets requires quantitative velocity, density and temperature measurements. In this paper we demonstrate a new, robust Liquid Crystal Point Diffraction Interferometer (LCPDI) that includes phase stepping and can provide accurate data even in the presence of intense acoustic fields. This novel common path interferometer (LCPDI) was developed to overcome difficulties with the Mach Zehnder interferometer in vibratory environments and is applied here to the case of a supersonic shock- containing jet. The environmentally insensitive LCPDI that is easy to align and capable of measuring optical wavefronts with high accuracy is briefly described, then integrated line of sight density data from the LCPDI for two underexpanded jets are presented.

  11. Contrast Enhancement for Thermal Acoustic Breast Cancer Imaging via Resonant Stimulation

    DTIC Science & Technology

    2010-03-01

    data-independent and suf- fer from low -resolution, high sidelobe levels , and poor interference rejection capabilities. The data-adaptive ARMOR can...high-resolution, low sidelobe level , and much improved inter- ference suppression capability. APPENDIX THERMAL ACOUSTIC SIMULATIONS We consider the...dB main beam is matched to the tumor region well, and the sidelobe level is low . Fig. 2(b) is the DAS beampattern which is calculated using (16). It

  12. Prediction of the Strain Response of Poly-AlN/(100)Si Surface Acoustic Wave Resonator and Experimental Analysis

    PubMed Central

    Chen, Shuo; You, Zheng

    2016-01-01

    The strain sensitivity of the Aluminum Nitride (AlN)/Silicon (Si) surface acoustic wave resonator (SAWR) is predicted based on a modeling method introduced in this work, and further compared with experimental results. The strain influence on both the period of the inter-digital transducer (IDT) and the sound velocity is taken into consideration when modeling the strain response. From the modeling results, AlN and Si have opposite responses to strain; hence, for the AlN/Si-based SAWR, both a positive and a negative strain coefficient factor can be achieved by changing the thickness of the AlN layer, which is confirmed by strain response testing based on a silicon cantilever structure with two AlN configurations (1 μm and 3 μm in thickness, respectively). PMID:27128922

  13. Mean grain size detection of DP590 steel plate using a corrected method with electromagnetic acoustic resonance.

    PubMed

    Wang, Bin; Wang, Xiaokai; Hua, Lin; Li, Juanjuan; Xiang, Qing

    2017-04-01

    Electromagnetic acoustic resonance (EMAR) is a considerable method to determine the mean grain size of the metal material with a high precision. The basic ultrasonic attenuation theory used for the mean grain size detection of EMAR is come from the single phase theory. In this paper, the EMAR testing was carried out based on the ultrasonic attenuation theory. The detection results show that the double peaks phenomenon occurs in the EMAR testing of DP590 steel plate. The dual phase structure of DP590 steel is the inducement of the double peaks phenomenon in the EMAR testing. In reaction to the phenomenon, a corrected method with EMAR was put forward to detect the mean grain size of dual phase steel. Compared with the traditional attenuation evaluation method and the uncorrected method with EMAR, the corrected method with EMAR shows great effectiveness and superiority for the mean grain size detection of DP590 steel plate.

  14. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images

    PubMed Central

    Hesford, Andrew J.; Tillett, Jason C.; Astheimer, Jeffrey P.; Waag, Robert C.

    2014-01-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast. PMID:25096103

  15. Acoustic waves from mechanical impulses due to fluorescence resonant energy (Förster) transfer: Blowing a whistle with light

    NASA Astrophysics Data System (ADS)

    Zurita-Sánchez, J. R.; Henkel, C.

    2012-02-01

    We present a momentum transfer mechanism mediated by electromagnetic fields that originates in a system of two nearby molecules: one excited (donor D*) and the other in ground state (acceptor A). An intermolecular force related to fluorescence resonant energy or Förster transfer (FRET) arises in the unstable D*A molecular system, which differs from the equilibrium van der Waals interaction. Due to the its finite lifetime, a mechanical impulse is imparted to the relative motion in the system. We analyze the FRET impulse when the molecules are embedded in free space and find that its magnitude can be much greater than the single recoil photon momentum, getting comparable with the thermal momentum (Maxwell-Boltzmann distribution) at room temperature. In addition, we propose that this FRET impulse can be exploited in the generation of acoustic waves inside a film containing layers of donor and acceptor molecules, when a picosecond laser pulse excites the donors. This acoustic transient is distinguishable from that produced by thermal stress due to laser absorption, and may therefore play a role in photoacoustic spectroscopy. The effect can be seen as exciting a vibrating system like a string or organ pipe with light; it may be used as an opto-mechanical transducer.

  16. Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo.

    PubMed

    Crake, Calum; Owen, Joshua; Smart, Sean; Coviello, Christian; Coussios, Constantin-C; Carlisle, Robert; Stride, Eleanor

    2016-12-01

    Previous work has indicated the potential of magnetically functionalized microbubbles to localize and enhance cavitation activity under focused ultrasound exposure in vitro. The aim of this study was to investigate magnetic targeting of microbubbles for promotion of cavitation in vivo. Fluorescently labelled magnetic microbubbles were administered intravenously in a murine xenograft model. Cavitation was induced using a 0.5-MHz focused ultrasound transducer at peak negative focal pressures of 1.2-2.0 MPa and monitored in real-time using B-mode imaging and passive acoustic mapping. Magnetic targeting was found to increase the amplitude of the cavitation signal by approximately 50% compared with untargeted bubbles. Post-exposure magnetic resonance imaging indicated deposition of magnetic nanoparticles in tumours. Magnetic targeting was similarly associated with increased fluorescence intensity in the tumours after the experiments. These results suggest that magnetic targeting could potentially be used to improve delivery of cavitation-mediated therapy and that passive acoustic mapping could be used for real-time monitoring of this process.

  17. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.

    PubMed

    Sarvazyan, A; Fillinger, L

    2009-03-01

    The ability to generate short focused ultrasonic pulses with duration on the order of one period of carrier frequency depends on the bandwidth of the transmitter as the pulse duration is inversely proportional to the bandwidth. Conventional focusing arrays used for focusing ultrasound have limited bandwidth due to the resonant nature of the piezoelements generating ultrasound. Theoretically it is possible to build a broadband phased array composed of "non-resonant" elements: wedge-shaped or flat-concave piezotransducers, though there are numerous technical difficulties in designing arrays with hundreds of elements of complex shape. This task is much easier to realize in an alternative technique of ultrasound focusing based on the principles of Time Reversed Acoustics (TRA) because in TRA systems, effective focusing can be achieved with just a few, or even one, transducers. The goal of this study is to demonstrate the possibility of broadband focusing of ultrasonic waves using a TRA system with non-resonant transducers and to explore the factors affecting the performance of such a system. A new type of TRA reverberators, such as water-filled thin-wall plastic vessels, which can be used with the submersible piezotransducers fixed internally in the reverberator, are proposed and tested. The experiments are conducted in a water tank with the walls and bottom covered by a sound absorbing lining. A needle hydrophone mounted on a 3D positioning system is used as a beacon for the TRA focusing and then for measuring the spatial distribution of the focused ultrasound field. The bandwidth and spatial distribution of the signal focused by the TRA system using a single channel with the resonant versus non-resonant transducers have been analyzed. Two types of non-resonant transducers were tested: a flat-concave transducer with a diameter of 30 mm, and a thickness varying from 2 mm in the center to 11 mm at the edge, and a specially designed submersible transducer having an

  18. Hydro-acoustic resonance behavior in presence of a precessing vortex rope: observation of a lock-in phenomenon at part load Francis turbine operation

    NASA Astrophysics Data System (ADS)

    Favrel, A.; Landry, C.; Müller, A.; Yamamoto, K.; Avellan, F.

    2014-03-01

    Francis turbines operating at part load condition experience the development of a cavitating helical vortex rope in the draft tube cone at the runner outlet. The precession movement of this vortex rope induces local convective pressure fluctuations and a synchronous pressure pulsation acting as a forced excitation for the hydraulic system, propagating in the entire system. In the draft tube, synchronous pressure fluctuations with a frequency different to the precession frequency may also be observed in presence of cavitation. In the case of a matching between the precession frequency and the synchronous surge frequency, hydro-acoustic resonance occurs in the draft tube inducing high pressure fluctuations throughout the entire hydraulic system, causing torque and power pulsations. The risk of such resonances limits the possible extension of the Francis turbine operating range. A more precise knowledge of the phenomenon occurring at such resonance conditions and prediction capabilities of the induced pressure pulsations needs therefore to be developed. This paper proposes a detailed study of the occurrence of hydro-acoustic resonance for one particular part load operating point featuring a well-developed precessing vortex rope and corresponding to 64% of the BEP. It focuses particularly on the evolution of the local interaction between the pressure fluctuations at the precession frequency and the synchronous surge mode passing through the resonance condition. For this purpose, an experimental investigation is performed on a reduced scale model of a Francis turbine, including pressure fluctuation measurements in the draft tube and in the upstream piping system. Changing the pressure level in the draft tube, resonance occurrences are highlighted for different Froude numbers. The evolution of the hydro-acoustic response of the system suggests that a lock-in effect between the excitation frequency and the natural frequency may occur at low Froude number, inducing a hydro-acoustic

  19. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

  20. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    PubMed Central

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction. PMID:26781863

  1. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators.

    PubMed

    Romero-García, V; Theocharis, G; Richoux, O; Merkel, A; Tournat, V; Pagneux, V

    2016-01-19

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

  2. A magnetic resonance imaging-based articulatory and acoustic study of "retroflex" and "bunched" American English /r/.

    PubMed

    Zhou, Xinhui; Espy-Wilson, Carol Y; Boyce, Suzanne; Tiede, Mark; Holland, Christy; Choe, Ann

    2008-06-01

    Speakers of rhotic dialects of North American English show a range of different tongue configurations for /r/. These variants produce acoustic profiles that are indistinguishable for the first three formants [Delattre, P., and Freeman, D. C., (1968). "A dialect study of American English r's by x-ray motion picture," Linguistics 44, 28-69; Westbury, J. R. et al. (1998), "Differences among speakers in lingual articulation for American English /r/," Speech Commun. 26, 203-206]. It is puzzling why this should be so, given the very different vocal tract configurations involved. In this paper, two subjects whose productions of "retroflex" /r/ and "bunched" /r/ show similar patterns of F1-F3 but very different spacing between F4 and F5 are contrasted. Using finite element analysis and area functions based on magnetic resonance images of the vocal tract for sustained productions, the results of computer vocal tract models are compared to actual speech recordings. In particular, formant-cavity affiliations are explored using formant sensitivity functions and vocal tract simple-tube models. The difference in F4/F5 patterns between the subjects is confirmed for several additional subjects with retroflex and bunched vocal tract configurations. The results suggest that the F4/F5 differences between the variants can be largely explained by differences in whether the long cavity behind the palatal constriction acts as a half- or a quarter-wavelength resonator.

  3. Bento Boxes

    ERIC Educational Resources Information Center

    Hasio, Cindy

    2010-01-01

    Bento boxes are common objects in Japanese culture, designed to hold enough lunch for one person. They have individual compartments and sometimes multiple tiers for rice, vegetables, and other side dishes. They are made of materials ranging from wood, cloth, aluminum, or plastic. In general, the greater the number of foods, the better the box is…

  4. Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes

    NASA Astrophysics Data System (ADS)

    Miles, R. N.

    1992-03-01

    This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.

  5. Analysis and optimization of acoustic wave micro-resonators integrating piezoelectric zinc oxide layers

    NASA Astrophysics Data System (ADS)

    Mortada, O.; Zahr, A. H.; Orlianges, J.-C.; Crunteanu, A.; Chatras, M.; Blondy, P.

    2017-02-01

    This paper reports on the design, simulation, fabrication, and test results of ZnO-based contour-mode micro-resonators integrating piezoelectric zinc oxide (ZnO) layers. The inter-digitated (IDT) type micro-resonators are fabricated on ZnO films and suspended top of 2 μm thick silicon membranes using silicon-on insulator technology. We analyze several possibilities of increasing the quality factor (Q) and the electromechanical coupling coefficient (kt2) of the devices by varying the numbers and lengths of the IDT electrodes and using different thicknesses of the ZnO layer. We designed and fabricated IDTs of different finger numbers (n = 25, 40, 50, and 80) and lengths (L = 100/130/170/200 μm) for three different thicknesses of ZnO films (200, 600, and 800 nm). The measured Q factor confirms that reducing the length and the number of IDT fingers enables us to reach better electrical performances at resonant frequencies around 700 MHz. The extracted results for an optimized micro-resonator device having an IDT length of 100 μm and 40 finger electrodes show a Q of 1180 and a kt2 of 7.4%. We demonstrate also that the reduction of the ZnO thickness from 800 nm to 200 nm increases the quality factor from 430 to 1600, respectively, around 700 MHz. Experimental data are in very good agreement with theoretical simulations of the fabricated devices

  6. Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes

    NASA Technical Reports Server (NTRS)

    Miles, R. N.

    1992-01-01

    This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.

  7. Resonant voice in acting students: perceptual and acoustic correlates of the trained Y-Buzz by Lessac.

    PubMed

    Barrichelo-Lindström, Viviane; Behlau, Mara

    2009-09-01

    This study aimed to investigate perceptually and acoustically Lessac's Y-Buzz and sustained productions of Brazilian Portuguese habitual /i/ vowels pre- and posttraining and to verify the presence of formant tuning and its association with the perception of a more resonant voice. The subjects of this study were 54 acting students, 31 female and 23 male, with no voice problems, distributed in seven groups. Each group received four weekly sessions of training. For the pretraining recording, they were asked to sustain the vowel /i/ in a habitual mode three times at self-selected comfortable frequencies and intensity. After training, they repeated the habitual /i/ and also the trained Y-Buzz. Five voice specialists rated how resonant each sample sounded. The fundamental frequency (F(0)), the first four formant frequencies, the distance between the frequencies of F(1) and F(0) were measured, as well as the harmonic frequency (H(2)) frequency and the difference between F(1) and H(2) in the case of male voices (Praat 4.4.33, Institute of Phonetic Sciences, University of Amsterdam, The Netherlands). The trained Y-Buzz was considered more resonant than the habitual /i/ samples, regardless the gender and demonstrated a lowering of the four formant frequencies. F(1) was especially lower in both groups (288Hz-female and 285Hz-male), statistically significant in the female group. The F(1)-F(0) difference was significantly smaller for the female Y-Buzz (52Hz), as well as F(1)-H(2) in the case of the male Y-Buzz (12Hz), suggesting formant tuning. It was not possible to establish association between the perceptual grades and measures F(1)-F(0) or F(1)-H(2).

  8. Equilibrium shape and location of a liquid drop acoustically positioned in a resonant rectangular chamber

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.; Barmatz, M.; Shipley, C.

    1988-01-01

    The effect of a standing wave field in a rectangular chamber on the shape and location of an acoustically positioned drop or bubble is calculated. The sample deformation and equilibrium position are obtained from an analysis of the spherical harmonic projections of the total surface stress tensor. The method of calculation relies on the assumed condition that the sample is only slightly distorted from a spherical form. The equilibrium location of a levitated drop is combined with a formula introduced by Hasegawa (1979) to calcualte the ka dependence of the radiation force function. The present theory is valid for large as well as small ka values. Calculations in the small ka limit agree with previous theories and experimental results. Examples are presented for nonplane-wave modes as well as plane-wave rectangular modes.

  9. Fissile and Non-Fissile Material Detection Using Nuclear Acoustic Resonance Signatures

    SciTech Connect

    Bernhard R. Tittmann; P.M. Lenahan; David Spears; Rhys Williams

    2008-11-25

    The objective of this project is to develop anovel technique for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs. We propse the development of a detection system based on magnetic resonance principles (NAR), which would work where radiation detection is not possible. The approach would be non-intrusive, penetrating, applicable to many materials of interest for Nonproliferation, and be able to identify the nuclear samples under investigation.

  10. Pulse echo and combined resonance techniques: a full set of LGT acoustic wave constants and temperature coefficients.

    PubMed

    Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira

    2009-04-01

    This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.

  11. Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency

    NASA Technical Reports Server (NTRS)

    Dean, L. W.

    1975-01-01

    An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.

  12. Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves

    NASA Astrophysics Data System (ADS)

    Muthupillai, R.; Lomas, D. J.; Rossman, P. J.; Greenleaf, J. F.; Manduca, A.; Ehman, R. L.

    1995-09-01

    A nuclear magnetic resonance imaging (MRI) method is presented for quantitatively mapping the physical response of a material to harmonic mechanical excitation. The resulting images allow calculation of regional mechanical properties. Measurements of shear modulus obtained with the MRI technique in gel materials correlate with independent measurements of static shear modulus. The results indicate that displacement patterns corresponding to cyclic displacements smaller than 200 nanometers can be measured. The findings suggest the feasibility of a medical imaging technique for delineating elasticity and other mechanical properties of tissue.

  13. Film Boxes.

    ERIC Educational Resources Information Center

    Osterer, Irv

    2002-01-01

    Presents an art lesson in which students created three-dimensional designs for 35mm film packages to improve graphic arts learning. Describes how the students examined and created film boxes using QuarkXPress software. (CMK)

  14. Acoustic resonance at the dawn of life: musical fundamentals of the psychoanalytic relationship.

    PubMed

    Pickering, Judith

    2015-11-01

    This paper uses a case vignette to show how musical elements of speech are a crucial source of information regarding the patient's emotional states and associated memory systems that are activated at a given moment in the analytic field. There are specific psychoacoustic markers associated with different memory systems which indicate whether a patient is immersed in a state of creative intersubjective relatedness related to autobiographical memory, or has been triggered into a traumatic memory system. When a patient feels immersed in an atmosphere of intersubjective mutuality, dialogue features a rhythmical and tuneful form of speech featuring improvized reciprocal imitation, theme and variation. When the patient is catapulted into a traumatic memory system, speech becomes monotone and disjointed. Awareness of such acoustic features of the traumatic memory system helps to alert the analyst that such a shift has taken place informing appropriate responses and interventions. Communicative musicality (Malloch & Trevarthen 2009) originates in the earliest non-verbal vocal communication between infant and care-giver, states of primary intersubjectivity. Such musicality continues to be the primary vehicle for transmitting emotional meaning and for integrating right and left hemispheres. This enables communication that expresses emotional significance, personal value as well as conceptual reasoning.

  15. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  16. Monolithic integrated system with an electrowetting-on-dielectric actuator and a film-bulk-acoustic-resonator sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Menglun; Cui, Weiwei; Chen, Xuejiao; Wang, Chao; Pang, Wei; Duan, Xuexin; Zhang, Daihua; Zhang, Hao

    2015-02-01

    Although digital microfluidics has shown great potential in a wide range of applications, a lab-on-a-chip with integrated digital droplet actuators and powerful biochemical sensors is still lacking. To address the demand, a fully integrated chip with electrowetting-on-dielectric (EWOD) and a film bulk acoustic resonator (FBAR) sensor is introduced, where an EWOD actuator manipulates digital droplets and the FBAR sensor detects the presence of substances in the droplets, respectively. The piezoelectric layer of the FBAR sensor and the dielectric layer of the EWOD share the same aluminum nitride (AlN) thin film, which is a key factor to achieve the full integration of the two completely different devices. The liquid droplets are reliably managed by the EWOD actuator to sit on or move off the FBAR sensor precisely. Sessile drop experiments and limit of detection (LOD) experiments are carried out to characterize the EWOD actuator and the FBAR sensor, respectively. Taking advantage of the digital droplet operation, a ‘dry sensing mode’ of the FBAR sensor in the lab-on-a-chip microsystem is proposed, which has a much higher signal to noise ratio than the conventional ‘wet sensing mode’. Hg2+ droplets with various concentrations are transported and sensed to demonstrate the capability of the integrated system. The EWOD-FBAR chip is expected to play an important role in many complex lab-on-a-chip applications.

  17. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    SciTech Connect

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.; Frederick, G.S.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigma STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.

  18. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla

    PubMed Central

    2010-01-01

    Background To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms. Results ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately Δt = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately Δt = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms. Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 ± 0.5, ACT = 2.4 ± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 ± 0.5, POX = 2.0 ± 0.5, p = 0.34). Conclusions The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T. PMID:21080933

  19. Exploding Boxes

    ERIC Educational Resources Information Center

    Kinney; Jan

    2011-01-01

    How do you teach the "same old, same old" in an interesting and inexpensive way? Art teachers are forever looking for new angles on the good-old elements and principles. And, as budgets tighten, they are trying to be as frugal as possible while still holding their students' attention. Enter exploding boxes! In conceptualizing the three types of…

  20. Evolution of elastic and thermal properties during TMOS-gel formation determined by ringing bottle acoustic resonance spectroscopy, impulsive stimulated scattering, photopyroelectric spectroscopy and the hot ball method

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Agustin Flores Cuautle, Jose Jesus; Kouyate, Mansour; Bernardus Roozen, Nicolaas; Goossens, Jozefien; Menon, Preethy; Kuriakose Malayil, Maju; Salenbien, Robbe; Nair Rajesh, Ravindran; Glorieux, Christ; Griesmar, Pascal; Martinez, Loïc; Serfaty, Stéphane

    2016-03-01

    The evolution of the elastic and thermal properties of a tetramethylorthosilicate (TMOS)-based gel that exhibits an extraordinary ringing effect when enclosed in a bottle is investigated during the sol-gel transition. The results demonstrate the feasibility of three proposed experimental methods for monitoring of gels during their formation. The shear stiffening evolution during gelation is monitored by ringing bottle, resonant acoustic spectroscopy and by an ultrasonic technique using piezo electric excitation and detection. The evolution of the longitudinal modulus and the thermal diffusivity of the gel during stiffening are simultaneously determined by a combined photoacoustic and photothermal method based on heterodyne diffraction detection of impulsive stimulated scattering by, respectively, a propagating acoustic wave grating and a decaying thermal expansion grating that were both thermo elastically generated using a pulsed laser. Also, the feasibility of an inverse photopyroelectric method and a hot ball technique to monitor the thermal transport efficiency and thermal impedance of a forming gel by tracking the thermal conductivity, the thermal diffusivity, and the thermal effusivity is demonstrated. The network polymerization and stiffening during the sol-gel transition in TMOS-gel corresponds with substantial changes in the shear acoustic velocity and in all thermal properties, while the longitudinal acoustic velocity is only weakly affected.

  1. Artificial Seismic Shadow Zone by Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Hoon; Das, Mukunda P.

    2013-08-01

    We developed a new method of earthquake-proof engineering to create an artificial seismic shadow zone using acoustic metamaterials. By designing huge empty boxes with a few side-holes corresponding to the resonance frequencies of seismic waves and burying them around the buildings that we want to protect, the velocity of the seismic wave becomes imaginary. The meta-barrier composed of many meta-boxes attenuates the seismic waves, which reduces the amplitude of the wave exponentially by dissipating the seismic energy. This is a mechanical method of converting the seismic energy into sound and heat. We estimated the sound level generated from a seismic wave. This method of area protection differs from the point protection of conventional seismic design, including the traditional cloaking method. The artificial seismic shadow zone is tested by computer simulation and compared with a normal barrier.

  2. Sound attenuation using microelectromechanical systems fabricated acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Yunker, William N.; Stevens, Colin B.; Flowers, George T.; Dean, Robert N.

    2013-01-01

    Unlike traditional rotational gyroscopes, microelectromechanical systems (MEMS) gyroscopes use a vibrating proof mass rather than a rotational mass to sense changes in angular rate. They are also smaller and less expensive than traditional gyroscopes. MEMS gyroscopes are known to be susceptible to the effects of acoustic noise, in particular high frequency and high power acoustic noise. Most notably, this has been proven true in aerospace applications where the noise can reach levels in excess of 120 dB and the noise frequency can exceed 20 kHz. The typical resonant frequency for the proof mass of a MEMS gyroscope is between 3 and 20 kHz. High power, high frequency acoustic noise can disrupt the output signal of the gyroscope to the point that the output becomes unreliable. In recent years, considerable research has focused on the fascinating properties found in metamaterials. A metamaterial is an artificially fabricated device or structure that is engineered to produce desired material responses that can either mimic known behaviors or produce responses that do not occur naturally in materials found in nature. Acoustic metamaterials, in particular, have shown great promise in the field of sound attenuation. This paper proposes a method to mitigate the performance degradation of the MEMS gyroscope in the presence of high power, high frequency acoustic noise by using a new acoustic metamaterial in the form of a two-dimensional array of micromachined Helmholtz resonators. The Helmholtz resonators are fabricated in a silicon wafer using standard MEMS manufacturing techniques and are designed to attenuate sound at the resonant frequency of the gyroscope proof mass. The resonator arrays were diced from the silicon wafer in one inch squares and assembled into a box open on one end in a manner to attenuate sound on all sides of the gyroscope, and to seal the gyroscope inside the box. The resulting acoustic metamaterial device was evaluated in an acoustic chamber and was

  3. Technical Note: Compact three-tesla magnetic resonance imager with high-performance gradients passes ACR image quality and acoustic noise tests

    PubMed Central

    Weavers, Paul T.; Shu, Yunhong; Tao, Shengzhen; Huston, John; Lee, Seung-Kyun; Graziani, Dominic; Mathieu, Jean-Baptiste; Trzasko, Joshua D.; Foo, Thomas K.-F.; Bernstein, Matt A.

    2016-01-01

    Purpose: A compact, three-tesla magnetic resonance imaging (MRI) system has been developed. It features a 37 cm patient aperture, allowing the use of commercial receiver coils. Its design allows simultaneously for gradient amplitudes of 85 millitesla per meter (mT/m) sustained and 700 tesla per meter per second (T/m/s) slew rates. The size of the gradient system allows for these simultaneous performance targets to be achieved with little or no peripheral nerve stimulation, but also raises a concern about the geometric distortion as much of the imaging will be done near the system’s maximum 26 cm field-of-view. Additionally, the fast switching capability raises acoustic noise concerns. This work evaluates the system for both the American College of Radiology’s (ACR) MRI image quality protocol and the Food and Drug Administration’s (FDA) nonsignificant risk (NSR) acoustic noise limits for MR. Passing these two tests is critical for clinical acceptance. Methods: In this work, the gradient system was operated at the maximum amplitude and slew rate of 80 mT/m and 500 T/m/s, respectively. The geometric distortion correction was accomplished by iteratively determining up to the tenth order spherical harmonic coefficients using a fiducial phantom and position-tracking software, with seventh order correction utilized in the ACR test. Acoustic noise was measured with several standard clinical pulse sequences. Results: The system passes all the ACR image quality tests. The acoustic noise as measured when the gradient coil was inserted into a whole-body MRI system conforms to the FDA NSR limits. Conclusions: The compact system simultaneously allows for high gradient amplitude and high slew rate. Geometric distortion concerns have been mitigated by extending the spherical harmonic correction to higher orders. Acoustic noise is within the FDA limits. PMID:26936710

  4. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  5. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.

  6. Polarity-inverted ScAlN film growth by ion beam irradiation and application to overtone acoustic wave (000-1)/(0001) film resonators

    SciTech Connect

    Suzuki, Masashi; Yanagitani, Takahiko; Odagawa, Hiroyuki

    2014-04-28

    Polarity inversion in wurtzite film is generally achieved by the epitaxial growth on a specific under-layer. We demonstrate polarity inversion of c-axis oriented ScAlN films by substrate ion beam irradiation without using buffer layer. Substrate ion beam irradiation was induced by either sputtering a small amount of oxide (as a negative ion source) onto the cathode or by applying a RF bias to the substrate. Polarity of the films was determined by a press test and nonlinear dielectric measurement. Second overtone thickness extensional mode acoustic resonance and suppression of fundamental mode resonance, indicating complete polarity inversion, were clearly observed in bilayer highly oriented (000-1)/(0001) ScAlN film.

  7. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  8. Toward an adjustable nonlinear low frequency acoustic absorber

    NASA Astrophysics Data System (ADS)

    Mariani, R.; Bellizzi, S.; Cochelin, B.; Herzog, P.; Mattei, P. O.

    2011-10-01

    A study of the targeted energy transfer (TET) phenomenon between an acoustic resonator and a thin viscoelastic membrane has recently been presented in the paper [R. Bellet et al., Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber, Journal of Sound and Vibration 329 (2010) 2768-2791], providing a new path to passive sound control in the low frequency domain where no efficient dissipative device exists. This paper presents experimental results showing that a loudspeaker used as a suspended piston working outside its range of linearity can also be used as a nonlinear acoustic absorber. The main advantage of this technology of absorber is the perspective to adjust independently the device parameters (mass, nonlinear stiffness and damping) according to the operational conditions. To achieve this purpose, quasi-static and dynamic tests have been performed on three types of commercial devices (one with structural modifications), in order to define the constructive characteristics that it should present. An experimental setup has been developed using a one-dimensional acoustic linear system coupled through a box (acting as a weak spring) to a loudspeaker used as a suspended piston acting as an essentially nonlinear oscillator. The tests carried out on the whole vibro-acoustic system have showed the occurrence of the acoustic TET from the acoustic media to the suspended piston and demonstrated the efficiency of this new kind of absorber at low frequencies over a wide frequency range. Moreover, the experimental analyses conducted with different NES masses have confirmed that it is possible to optimize the noise absorption with respect to the excitation level of the acoustic resonator.

  9. Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter

    NASA Astrophysics Data System (ADS)

    Ceban, V.; Macovei, M. A.

    2015-11-01

    The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.

  10. Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter

    SciTech Connect

    Ceban, V. Macovei, M. A.

    2015-11-15

    The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.

  11. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  12. Acoustic Treatment Design Scaling Methods. Volume 4; Numerical Simulation of the Nonlinear Acoustic Impedance of a Perforated Plate Single-Degree-of-Freedom Resonator Using a Time-Domain Finite Difference Method

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1999-01-01

    Single-degree-of-freedom resonators consisting of honeycomb cells covered by perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine ducts. The acoustic resistance and mass reactance of such liners are known to vary with the intensity of the sound incident upon the panel. Since the pressure drop across a perforated liner facesheet increases quadratically with the flow velocity through the facesheet, this is known as the nonlinear resistance effect. In the past, two different empirical frequency domain models have been used to predict the Sound Pressure Level effect of the incident wave on the perforated liner impedance, one that uses the incident particle velocity in isolated narrowbands, and one that models the particle velocity as the overall velocity. In the absence of grazing flow, neither frequency domain model is entirely accurate in predicting the nonlinear effect that is measured for typical perforated sheets. The time domain model is developed in an attempt to understand and improve the model for the effect of spectral shape and amplitude of multi-frequency incident sound pressure on the liner impedance. A computer code for the time-domain finite difference model is developed and predictions using the models are compared to current frequency-domain models.

  13. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study.

    PubMed

    Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H

    2016-11-28

    BACKGROUND The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. MATERIAL AND METHODS The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5-4.5 kHz sweeps. RESULTS The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. CONCLUSIONS The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation.

  14. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study

    PubMed Central

    Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H.

    2016-01-01

    Background The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. Material/Methods The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5–4.5 kHz sweeps. Results The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. Conclusions The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation. PMID:27893698

  15. Nitrogen [N]-incorporated ZnO piezoelectric thin films and their application for ultra-small film bulk acoustic wave resonator device fabrication

    SciTech Connect

    Lee, Eunju; Zhang Ruirui; Yoon, Giwan

    2011-10-01

    Nitrogen [N]-incorporated ZnO films with columnar grains of a preferred c-axis orientation were deposited on p-Si (100) wafers, using an RF magnetron sputter deposition technique. For the N incorporation into the ZnO films, an N{sub 2}O gas was used as a doping source and also various process conditions such as N{sub 2}O gas fraction and RF power were applied. Besides, some of the ZnO films were treated with the post annealing process. And then, the micro-structural characteristics of the N-incorporated ZnO films were investigated by a scanning electron microscope, an X-ray diffractometer, and an atomic force microscope techniques. Finally, employing the N-incorporated ZnO films, the solidly mounted resonator-type film bulk acoustic wave resonator devices were fabricated and their resonance characteristics were extracted. As a result, an excellent return loss (S{sub 11}) of- 63 dB was observed at{approx} 0.6 GHz, better than ever reported.

  16. Acoustic bubble traps

    NASA Astrophysics Data System (ADS)

    Geisler, Reinhard; Kurz, Thomas; Lauterborn, Werner

    2000-07-01

    A small, oscillating bubble in a liquid can be trapped in the antinode of an acoustic standing wave field. Bubble stability is required for the study of single bubble sonoluminescence (SBSL). The properties of the acoustic resonator are essential for the stable trapping of sonoluminescing bubbles. Resonators can be chosen according to the intended application: size and geometry can be varied in a wide range. In this work, the acoustic responses of different resonators were measured by means of holographic interferometry, hydrophones and a laser vibrometer. Also, high-speed photography was used to observe the bubble dynamics. Several single, stable sonoluminescent bubbles were trapped simultaneously within an acoustic resonator in the pressure antinodes of a higher harmonic mode (few bubble sonoluminescence, FBSL).

  17. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators.

    PubMed

    Guianvarc'h, Cécile; Gavioso, Roberto M; Benedetto, Giuliana; Pitre, Laurent; Bruneau, Michel

    2009-07-01

    Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.

  18. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators

    SciTech Connect

    Guianvarc'h, Cecile; Pitre, Laurent; Bruneau, Michel

    2009-07-15

    Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.

  19. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  20. Case-study magnetic resonance imaging and acoustic investigation of the effects of vocal warm-up on two voice professionals.

    PubMed

    Laukkanen, Anne-Maria; Horáček, Jaromir; Havlík, Radan

    2012-07-01

    Vocal warm-up (WU)-related changes were studied in one male musical singer and one female speech trainer. They sustained vowels before and after WU in a magnetic resonance imaging (MRI) device. Acoustic recordings were made in a studio. The vocal tract area increased after WU, a formant cluster appeared between 2 and 4.5 kHz, and SPL increased. Evidence of larynx lowering was only found for the male. The pharyngeal inlet over the epilaryngeal outlet ratio (A(ph)/A(e)) increased by 10%-28%, being 3-4 for the male and 5-7 for the female. The results seem to represent different voice training traditions. A singer's formant cluster may be achievable without a high A(ph)/A(e) (≥ 6), but limitations of the 2D method should be taken into account.

  1. Comparison of three lines of broiler breeders differing in ascites susceptibility or growth rate. 1. Relationship between acoustic resonance data and embryonic or hatching parameters.

    PubMed

    Tona, K; Kemps, B; Bruggeman, V; Bamelis, F; De Smit, L; Onagbesan, O; De Baerdemaeker, J; Decuypere, E

    2005-09-01

    Ascites is a prevalent cardiovascular disease among modern broilers with negative impacts on production and animal welfare. The peak of mortality due to ascites occurs at the end of the growing period, but the etiology of this problem may start during embryonic development. A few recent reports have demonstrated that the signs of ascites susceptibility are manifested during the late stages of incubation. In the current study, we used a nondestructive method based on egg acoustic resonance parameters [resonant frequency (RF) and damping] to establish a relationship between embryo physiological events during early development in broiler eggs and susceptibility to ascites. The hatching eggs of 3 broiler lines differing in ascites susceptibility were used for this study: ascites-resistant dam line (DAR), ascites-sensitive dam line (DAS), and ascites-sensitive sire line (SASL). These lines were selected on the basis of fast growth, high breast meat yield, and ascites induction at low temperatures such that the order of ascites susceptibility in terms of mortality was SASL > DAS > DAR. Eggs were incubated under standard conditions in forced-draft incubators. We measured egg weights at setting, albumen pH, Haugh units (HU) at setting, and embryo weights at d 11 and 18, at internal pipping (IP), and at hatch. The durations of IP, external pipping (EP), and hatching were also determined. At 2 hourly periods during incubation, egg RF and damping were also measured. There were differences in egg weights between DAR and SASL vs. DAS, but albumen HU, albumen pH, and the ratio of yolk weight to egg weight were similar. There were differences in RF, damping, embryonic growth rates, and hatching events. Changes in resonant frequency and damping, which certainly suggest eggshell differences among lines, were not totally related to variations in physiological events during early and late embryonic development. A comparison between DAR and DAS, between DAS and SASL, or DAR and SASL

  2. Double-negative acoustic metamaterial.

    PubMed

    Li, Jensen; Chan, C T

    2004-11-01

    We show here the existence of acoustic metamaterial, in which both the effective density and bulk modulus are simultaneously negative, in the true and strict sense of an effective medium. Our double-negative acoustic system is an acoustic analogue of Veselago's medium in electromagnetism, and shares many unique consequences, such as negative refractive index. The double negativity in acoustics is derived from low-frequency resonances, as in the case of electromagnetism, but the negative density and modulus are derived from a single resonance structure as distinct from electromagnetism in which the negative permeability and negative permittivity originates from different resonance mechanisms.

  3. Observations on some acoustic methods used in studying the elastic properties of metals. [resonant frequency measurements on metal beams

    NASA Technical Reports Server (NTRS)

    Velceanu, C. I.

    1974-01-01

    An experimental setup is reported that permits very accurate measurements of the resonance frequencies of long cylindrical beams fixed in the middle and whose size can vary within wide limits. It also permits measurement of the width of the resonance curve. It is shown that the Poisson effect can be brought to light for relatively long beams and for relatively short beams. Poisson ratio, values obtained with this method argue in favor of using the low frequency region for determining elastic constants of solids.

  4. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  5. Acoustic borehole logging

    SciTech Connect

    Medlin, W.L.; Manzi, S.J.

    1990-10-09

    This patent describes an acoustic borehole logging method. It comprises traversing a borehole with a borehole logging tool containing a transmitter of acoustic energy having a free-field frequency spectrum with at least one characteristic resonant frequency of vibration and spaced-apart receiver, repeatedly exciting the transmitter with a swept frequency tone burst of a duration sufficiently greater than the travel time of acoustic energy between the transmitter and the receiver to allow borehole cavity resonances to be established within the borehole cavity formed between the borehole logging tool and the borehole wall, detecting acoustic energy amplitude modulated by the borehole cavity resonances with the spaced-apart receiver, and recording an amplitude verses frequency output of the receiver in correlation with depth as a log of the borehole frequency spectrum representative of the subsurface formation comprising the borehole wall.

  6. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-01

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad2/Hz at 1 kHz offset and -150 dB rad2/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10-9 at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10-11 τ-1/2 up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  7. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    SciTech Connect

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-15

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2–4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be −23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is −105 dB rad{sup 2}/Hz at 1 kHz offset and −150 dB rad{sup 2}/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10{sup −9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10{sup −11} τ{sup −1/2} up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  8. Effects of core position of locally resonant scatterers on low-frequency acoustic absorption in viscoelastic panel

    NASA Astrophysics Data System (ADS)

    Zhong, Jie; Wen, Ji-Hong; Zhao, Hong-Gang; Yin, Jian-Fei; Yang, Hai-Bin

    2015-08-01

    Locally resonant sonic materials, due to their ability to control the propagation of low-frequency elastic waves, have become a promising option for underwater sound absorption materials. In this paper, the finite element method is used to investigate the absorption characteristics of a viscoelastic panel periodically embedded with a type of infinite-long non-coaxially cylindrical locally resonant scatterers (LRSs). The effect of the core position in the coating layer of the LRS on the low-frequency (500 Hz-3000 Hz) sound absorption property is investigated. With increasing the longitudinal core eccentricity e, there occur few changes in the absorptance at the frequencies below 1500 Hz, however, the absorptance above 1500 Hz becomes gradually better and the valid absorption (with absorptance above 0.8) frequency band (VAFB) of the viscoelastic panel becomes accordingly broader. The absorption mechanism is revealed by using the displacement field maps of the viscoelastic panel and the steel slab. The results show two typical resonance modes. One is the overall resonance mode (ORM) caused by steel backing, and the other is the core resonance mode (CRM) caused by LRS. The absorptance of the viscoelastic panel by ORM is induced mainly by the vibration of the steel slab and affected little by core position. On the contrary, with increasing the core eccentricity, the CRM shifts toward high frequency band and decouples with the ORM, leading to two separate absorption peaks and the broadened VAFB of the panel. Project supported by the National Natural Science Foundation of China (Grant No. 51275519).

  9. Acoustic transducer based on dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Graf, Christian; Maas, Jügen

    2012-04-01

    Dielectric electroactive polymers are thin films based on elastomeric material coated with compliant and conductive electrodes. By applying an electrical field, the polymer performs large deformations, which can be utilized to generate sound waves. When using such kind of electrostatic loudspeakers, no additional resonating sound boxes are required and the vibrating mass is very lightweight, resulting in an excellent impulse and wide-band frequency response. For the loudspeaker's operation both an electrical bias voltage and a mechanical bias stress have to be applied. In this contribution different possibilities are presented to generate the mechanical bias stress. The design of an appropriate power electronics for the acoustic transducer, which is build of standard components, is also described. Finally, the loudspeaker concepts are evaluated by experiments in an anechoic room.

  10. Small-scale field-aligned currents and ionospheric disturbances induced by vertical acoustic resonance during the 2015 eruption of Chile's Calbuco volcano

    NASA Astrophysics Data System (ADS)

    Aoyama, T.; Iyemori, T.; Nakanishi, K.; Nishioka, M.

    2015-12-01

    Wave packet structure of small-scale magnetic fluctuations were observed by SWARM satellites just above the volcano and it's magnetic conjugate point after the eruption of Chile's Calbuco volcano on April 22, 2015. These magnetic fluctuations in low and middle latitudes generated by small-scale field aligned currents (FACs), and have about 10-30 seconds period along the satellites' orbit [Nakanishi et al., 2014] and about 200 (340) seconds temporal scale for meridional (longitudinal) magnetic components [Iyemori et al., 2015]. We also observed ionospheric disturbances and ground geomagnetic fluctuations just after the eruption. The 4-min period oscillations of total electron content (TEC) were observed by GPS receivers near the volcano. The 260 and 215 seconds spectral peaks in D component of ground based geomagnetic observation were found. Such oscillations and spectral peaks didn't exist before the eruption. All of these observations may have the same origin, i.e., vertical acoustic resonance between the ionosphere and the ground. In this presentation, we estimate the propagation velocity of the TEC oscillations and the spatial scale of the disturbance region in the E-layer where the FACs are generated by the ionospheric dynamo.

  11. Few-bubble luminescence in the acoustic field of a spherical resonator in aqueous solutions of sodium and terbium compounds

    NASA Astrophysics Data System (ADS)

    Sharipov, G. L.; Gareev, B. M.; Abdrakhmanov, A. M.

    2013-09-01

    Stabilization and the luminescence mode during slight motion around the equilibrium position of a few (two to eight) bubbles in 2-6 mol/L aqueous solutions of NaCl, NaOH, TbCl saturated with argon were achieved in a device for monitoring single-bubble sonoluminescence in a spherical resonator. Examples are presented of this variety of multibubble sonoluminescence illustrating various spatial-spectral distributions of cavitation bubbles, which contain either emitters comprising only the solvent continuum or also metal emitters (Na*, Tb3+*). Stabilization of bubbles in the form of closely (0.5-1 mm) located pairs of bubbles is of particular interest, in one of which only the solvent luminesces, and in the other, a metal.

  12. Generation of shock-free pressure waves in shaped resonators by boundary driving.

    PubMed

    Luo, C; Huang, X Y; Nguyen, N T

    2007-05-01

    Investigation of high amplitude pressure oscillations generated by boundary driving in shaped resonators has been carried out both theoretically and experimentally. In the theoretical modeling, the acoustic resonance in an axisymmetric resonator is studied by the Galerkin method. The resonator is exponentially expanded and the boundary driving is provided by a piston at one end. The pressure wave forms, amplitudes, resonance frequencies, and ratio of pressures at the two ends of the resonator are calculated for various expansion flare constants and driving strengths. These results are partially compared with those generated by shaking the resonator. They are also verified in the experiment, in which an exponentially expanded resonator is connected to a speaker box functioning as the piston. The experiment is further extended to a horn-shaped resonator with a rectangular cross section. The boundary driving in this case is generated by a circular piezoelectric disk, which forms one sidewall of the resonator cavity. The characteristics of axisymmetric resonators, such as the resonance frequency and amplitude ratio of pressures at the two ends, are observed in this low aspect ratio rectangular resonator with the sidewall driving.

  13. Elastic relaxations associated with the Pm3m-R3c transition in LaA103 III: superattenuation of acoustic resonances

    SciTech Connect

    Darling, Timothy W; Carpenter, M A; Buckley, A; Taylor, P A; Mcknight, R E A

    2009-01-01

    Resonant Ultrasound Spectroscopy has been used to characterize elastic softening and a variety of new acoustic dissipation processes associated with the Pm{bar 3}m {leftrightarrow} R{bar 3}c transition in single crystal and ceramic samples of LaAlO{sub 3}. Softening of the cubic structure ahead of the transition point is not accompanied by an increase in dissipation but follows different temperature dependences for the bulk modulus, 1/3(C{sub 11} + 2C{sub 12}), and the shear components 1/2(C{sub 11}-C{sub 12}) and C{sub 44} as if the tilting instability contains two slightly different critical temperatures. The transition itself is marked by the complete disappearance of resonance peaks (superattenuation), which then reappear below {approx}700 K in spectra from single crystals. Comparison with low frequency, high stress data from the literature indicate that the dissipation is not due to macroscopic displacement of needle twins. An alternative mechanism, local bowing of twin walls under low dynamic stress, is proposed. Pinning of the walls with respect to this displacement process occurs below {approx}350 K. Anelasticity maps, analogous to plastic deformation mechanism maps, are proposed to display dispersion relations and temperature/frequency/stress fields for different twin wall related dissipation mechanisms. An additional dissipation process, with an activation energy of 43 {+-} 6 kJ.mole{sup -1}, occurs in the vicinity of 250 K. The mechanism for this is not known, but it is associated with C{sub 44} and therefore appears to be related in some way to the cubic {leftrightarrow} rhombohedral transition at {approx}817 K. Slight softening in the temperature interval {approx}220 {yields} 70 K of resonance peaks determined by shear elastic constants hints at an incipient E{sub g} ferroelastic instability in LaAlO{sub 3}. The softening interval ends with a further dissipation peak at {approx} 60 K, the origin of which is discussed in terms of freezing of atomic

  14. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  15. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  16. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  17. An Improved Box Theater

    NASA Astrophysics Data System (ADS)

    Huster, Michael E.

    2011-09-01

    While designing an optics lab for a conceptual physics course, I came across a "box theater" activity. The box theater is a pinhole camera obscura made from a box that students put over their heads and shoulders. I use the activity as a capstone experience to explain optical systems. (Classroom demonstrations of the camera obscura have been described by others.2) First, the students build and experiment with a camera obscura made from a plastic cup and a convex lens with a focal length of 7.5 cm, and then "wear" the box theater. The difficulty with the box theater is the dimness of the image. A cloth drape has to be hung from the bottom of the box around the shoulders of the students to prevent light leakage, and the students have to wait a few minutes for their eyes to adjust to the darkness.

  18. Acoustic phonons, surface plasmons and surface acoustic plasmons in a superlattice and their nonreciprocal device applications

    NASA Astrophysics Data System (ADS)

    Derov, John S.

    1987-05-01

    The literature was surveyed to determine potential applications of acoustic and plasma phenomena in superlattices. The use of folded zone acoustic phonons and acoustic surface plasmons in 3 to 5 compounds like AlGaAs/GaAs superlattices is addressed. A dielectric phonon filter is presented and an acoustic resonator is considered. Surface plasmons and surface acoustic plasmons are discussed and a transducer, delay line and mixer are proposed as applications. A 500 GHz isolator utilizing surface magnetoplasmons is also presented.

  19. Acoustic Ground-Impedance Meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1983-01-01

    Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.

  20. Acoustic Neuroma

    MedlinePlus

    ... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...

  1. Resonance damping of the terahertz-frequency transverse acoustic phonon in the relaxor ferroelectric KT a1 -xN bxO3

    NASA Astrophysics Data System (ADS)

    Toulouse, J.; Iolin, E.; Hennion, B.; Petitgrand, D.; Erwin, R.

    2016-12-01

    The damping (Γ a ) of the transverse acoustic (TA) phonon in single crystals of the relaxor KT a1 -xN bxO3 with x =0.15 -0.17 was studied by means of high resolution inelastic cold neutron scattering near the (200) Brillouin Zone (BZ) point where diffuse scattering is absent, although it is present near (110). In a wide range of temperatures centered on the phase transition, T =195 K ÷108 K , the TA phonon width (damping) exhibits a step increase around momentum q =0.07 , goes through a shallow maximum at q =0.09 -0.12 , and remains high above and up to the highest momentum studied of q =0.16 . These experimental results are explained in terms of a resonant interaction between the TA phonon and the collective or correlated reorientation through tunneling of the off-center N b+5 ions. The observed TA damping is successfully reproduced in a simple model that includes an interaction between the TA phonon and a dispersionless localized mode (LM) with frequency ωL and damping ΓL(ΓL<ωL) , itself coupled to the transverse optic (TO) mode. Maximum damping of the TA phonon occurs when its frequency is ωa≈ωL . The values of ωL and ΓL are moderately dependent on temperature, but the oscillator strength, M2, of the resonant damping exhibits a strong maximum in the range T ˜120 K ÷150 K in which neutron diffuse scattering near the (110) BZ point is also maximum and the dielectric susceptibility exhibits the relaxor behavior. The maximum value of M appears to be due to the increasing number of polar nanodomains. In support of the proposed model, the observed value of ωL≈0.7 THz is found to be similar to the estimate previously obtained by Girshberg and Yacoby [J. Phys.: Condens. Matter 24, 015901 (2012)], 10.1088/0953-8984/24/1/015901. Alternatively, the TA phonon damping can be successfully fitted in the framework of an empirical Havriliak-Negami (HN) relaxation model that includes a strong resonancelike transient contribution.

  2. Short-core acoustic resonant bar test and x-ray CT imaging on sandstone samples during super-critical CO2 flooding and dissolution

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kneafsey, T. J.; Daley, T. M.; Freifeld, B. M.

    2010-12-01

    Geological sequestration of CO2 requires accurate monitoring of the spatial distribution and pore-level saturation of super-critical (sc-) CO2 for both optimizing reservoir performance and satisfying regulatory requirements. Fortunately, thanks to the high compliance of sc-CO2 compared to brine under in-situ temperatures and pressures, injection of sc-CO2 into initially brine-saturated rock will lead to significant reductions in seismic velocity and increased attenuation of seismic waves. Because of the frequency-dependent nature of this relationship, its determination requires testing at low frequencies (10 Hz-10 kHz) that are not usually employed in the laboratory. In this paper, we present the changes in seismic wave velocities and attenuation in sandstone cores during sc-CO2 core flooding and during subsequent brine re-injection and CO2 removal via convection and dissolution. The experiments were conducted at frequencies near 1 kHz using a variation of the acoustic resonant bar technique, called the Split Hopkinson Resonant Bar (SHRB) method, which allows measurements under elevated temperatures and pressures (up to 120°C, 35 MPa), using a short (several cm long) core. Concurrent x-ray CT scanning reveals sc-CO2 saturation and distribution within the cores. The injection experiments revealed different CO2 patch size distributions within the cores between the injection phase and the convection/dissolution phase of the tests. The difference was reflected particularly in the P-wave velocities and attenuation. Also, compared to seismic responses, which were separately measured during a gas CO2 injection/drainage test, the seismic responses from the sc-CO2 test showed measurable changes over a wider range of brine saturation. Considering the proximity of the frequency band employed by our measurement to the field seismic measurements, this result implies that seismic monitoring of sc-CO2, if constrained by laboratory data and interpreted using a proper

  3. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: Examination of noise conduction through the ear canal, head, and bodya)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.

    2007-01-01

    Approaches were examined for reducing acoustic noise levels heard by subjects during functional magnetic resonance imaging (fMRI), a technique for localizing brain activation in humans. Specifically, it was examined whether a device for isolating the head and ear canal from sound (a “helmet”) could add to the isolation provided by conventional hearing protection devices (i.e., earmuffs and earplugs). Both subjective attenuation (the difference in hearing threshold with versus without isolation devices in place) and objective attenuation (difference in ear-canal sound pressure) were measured. In the frequency range of the most intense fMRI noise (1–1.4 kHz), a helmet, earmuffs, and earplugs used together attenuated perceived sound by 55–63 dB, whereas the attenuation provided by the conventional devices alone was substantially less: 30–37 dB for earmuffs, 25–28 dB for earplugs, and 39–41 dB for earmuffs and earplugs used together. The data enabled the clarification of the relative importance of ear canal, head, and body conduction routes to the cochlea under different conditions: At low frequencies (≤500 Hz), the ear canal was the dominant route of sound conduction to the cochlea for all of the device combinations considered. At higher frequencies (>500 Hz), the ear canal was the dominant route when either earmuffs or earplugs were worn. However, the dominant route of sound conduction was through the head when both earmuffs and earplugs were worn, through both ear canal and body when a helmet and earmuffs were worn, and through the body when a helmet, earmuffs, and earplugs were worn. It is estimated that a helmet, earmuffs, and earplugs together will reduce the most intense fMRI noise levels experienced by a subject to 60–65 dB SPL. Even greater reductions in noise should be achievable by isolating the body from the surrounding noise field. PMID:11206150

  4. GLOVE BOX ATTACHMENT

    DOEpatents

    Butts, H.L.

    1962-02-13

    This invention comprises a housing unit to be fitted between a glove box port and a glove so that a slidable plate within the housing seals off the glove box port for evacuation of the glove box without damage to the glove. The housing and the glove may be evacuated without damage to the glove since movement of the glove is restricted during evacuation by the slidable plate. (AEC)

  5. Thinking outside the Box

    ERIC Educational Resources Information Center

    Fanshawe, Simon; Sriskandarajah, Dhananjayan

    2010-01-01

    Britain is not only more diverse than ever before, but that diversity itself is growing more diverse. Britain's simplistic "tick-box" approach to identity is in danger of inhibiting the very equality it seeks to promote. To question the tick-box is not to accuse local authorities of "political correctness gone mad". The notion…

  6. Math in the Box

    ERIC Educational Resources Information Center

    DeYoung, Mary J.

    2009-01-01

    This article describes how to make an origami paper box and explores the algebra, geometry, and other mathematics that unfolds. A set of origami steps that transforms the paper into an open box can hold mathematical surprises for both students and teachers. An origami lesson can engage students in an open-ended exploration of the relationship…

  7. Straw in a Box

    ERIC Educational Resources Information Center

    Jerrard, Richard; Schneider, Joel; Smallberg, Ralph; Wetzel, John

    2006-01-01

    A problem on a state's high school exit exam asked for the longest straw that would fit in a box. The examiners apparently wanted the length of a diagonal of the box, but the figure accompanying the question suggested otherwise--that the radius of the straw be considered. This article explores that more general problem.

  8. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  9. Detecting Contaminant Particles Acoustically

    NASA Technical Reports Server (NTRS)

    Wyett, L. M.

    1986-01-01

    Apparatus "listens" for particles in interior of complex turbomachinery. Contact microphones are attached at several points on pump housing. Acoustic transducer also attached to housing to excite entire pump with sound. Frequency of sound is slowly raised until pump resonates. Microphones detect noise of loose particles scraping against pump parts. Such as machining chips in turbopumps or other machinery without disassembly.

  10. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  11. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  12. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  13. Acoustic confinement in superlattice cavities

    NASA Astrophysics Data System (ADS)

    Garcia-Sanchez, Daniel; Déleglise, Samuel; Thomas, Jean-Louis; Atkinson, Paola; Lagoin, Camille; Perrin, Bernard

    2016-09-01

    The large coupling rate between the acoustic and optical fields confined in GaAs/AlAs superlattice cavities makes them appealing systems for cavity optomechanics. We have developed a mathematical model based on the scattering matrix that allows the acoustic guided modes to be predicted in nano and micropillar superlattice cavities. We demonstrate here that the reflection at the surface boundary considerably modifies the acoustic quality factor and leads to significant confinement at the micropillar center. Our mathematical model also predicts unprecedented acoustic Fano resonances on nanopillars featuring small mode volumes and very high mechanical quality factors, making them attractive systems for optomechanical applications.

  14. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  15. Simulating the Resonant Acoustic Mixer

    DTIC Science & Technology

    2013-08-02

    12 3.1 Oxygen-Nitrogen Mixing ………………………………………………………..12 3.2 High Viscosity Mixing …………………………………………………………..15 4.0...up of the Oxygen-Nitrogen mixing test problem…………………………………...12 3 Slices of (a) vertical velocity and (b) vorticity magnitude for the Oxygen...Nitrogen mixing test case at 261.6 ms………………………………………………………………...13 4 Slices of (a) vertical velocity and (b) vorticity magnitude for the Oxygen-Nitrogen

  16. Glove box shield

    DOEpatents

    Brackenbush, Larry W.; Hoenes, Glenn R.

    1981-01-01

    According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  17. Glove box shield

    DOEpatents

    Brackenbush, L.W.; Hoenes, G.R.

    A shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user wthdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  18. Climate in a Box

    NASA Video Gallery

    NASA's Climate in a Box Project is exploring the utility of supercomputers in providing a complete, pre-packaged, ready-to-use toolkit of climate research products and on-demand access to a high-pe...

  19. Voice box (image)

    MedlinePlus

    The larynx, or voice box, is located in the neck and performs several important functions in the body. The larynx is involved in swallowing, breathing, and voice production. Sound is produced when the air which ...

  20. [Boxing: traumatology and prevention].

    PubMed

    Cabanis, Emmanuel-Alain; Iba-Zizen, Marie-Thérèse; Perez, Georges; Senegas, Xavier; Furgoni, Julien; Pineau, Jean-Claude; Louquet, Jean-Louis; Henrion, Roger

    2010-10-01

    In 1986, a surgeon who, as an amateur boxer himself was concerned with boxers' health, approached a pioneering Parisian neuroimaging unit. Thus began a study in close cooperation with the French Boxing Federation, spanning 25 years. In a first series of 52 volunteer boxers (13 amateurs and 39 professionals), during which MRI gradually replaced computed tomography, ten risk factors were identified, which notably included boxing style: only one of 40 "stylists" with a good boxing technique had cortical atrophy (4.5 %), compared to 15 % of "sloggers". Changes to the French Boxing Federation rules placed the accent on medical prevention. The second series, of 247 boxers (81 amateurs and 266 professionals), showed a clear improvement, as lesions were suspected in 14 individuals, of which only 4 (1.35 %) were probably due to boxing. The third and fourth series were part of a protocol called "Brain-Boxing-Ageing", which included 76 boxers (11 having suffered KOs) and 120 MRI scans, with reproducible CT and MRI acquisitions (9 sequences with 1.5 T then 3 T, and CT). MRI anomalies secondary to boxing were found in 11 % of amateurs and 38 % of professionals (atrophy, high vascular T2 signal areas, 2 cases of post-KO subdural bleeding). CT revealed sinus damage in 13 % of the amateurs and 19 % of the professionals. The risk of acute and chronic facial and brain damage was underline, along with detailed precautionary measures (organization of bouts, role of the referee and ringside doctor, and application of French Boxing Federation rules).

  1. Nonneurologic emergencies in boxing.

    PubMed

    Coletta, Domenic F

    2009-10-01

    Professional boxing has done an admirable job in promoting safety standards in its particular sport. However, injuries occur during the normal course of competition and, unfortunately, an occasional life-threatening emergency may arise. Although most common medical emergencies in boxing are injuries from closed head trauma, in this article those infrequent but potentially catastrophic nonneurologic conditions are reviewed along with some less serious emergencies that the physician must be prepared to address.

  2. Infectious disease and boxing.

    PubMed

    King, Osric S

    2009-10-01

    There are no unique boxing diseases but certain factors contributing to the spread of illnesses apply strongly to the boxer, coach, and the training facility. This article examines the nature of the sport of boxing and its surrounding environment, and the likelihood of spread of infection through airborne, contact, or blood-borne routes of transmission. Evidence from other sports such as running, wrestling, and martial arts is included to help elucidate the pathophysiologic elements that could be identified in boxers.

  3. Automatic box loader

    DOEpatents

    Eldridge, Harry H.; Jones, Robert A.; Lindner, Gordon M.; Hight, Paul H.

    1976-01-01

    This invention relates to a system for repetitively forming an assembly consisting of a single layer of tubes and a row of ferromagnetic armatures underlying the same, electromagnetically conveying the resulting assembly to a position overlying a storage box, and depositing the assembly in the box. The system includes means for simultaneously depositing a row of the armatures on the inclined surface of a tube retainer. Tubes then are rolled down the surface to form a single tube layer bridging the armatures. A magnet assembly carrying electromagnets respectively aligned with the armatures is advanced close to the tube layer, and in the course of this advance is angularly displaced to bring the pole pieces of the electromagnets into parallelism with the tube layer. The magnets then are energized to pick up the assembly. The loaded magnet assembly is retracted to a position overlying the box, and during this retraction is again displaced to bring the pole pieces of the electromagnets into a horizontal plane. Means are provided for inserting the loaded electromagnets in the box and then de-energizing the electromagnets to deposit the assembly therein. The system accomplishes the boxing of fragile tubes at relatively high rates. Because the tubes are boxed as separated uniform layers, subsequent unloading operations are facilitated.

  4. Cable Tester Box

    NASA Technical Reports Server (NTRS)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  5. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  6. Helmholtz resonator for electric field enhancement from visible to far-infrared

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Greffet, Jean-Jacques; Pelouard, Jean-Luc; Haidar, Riad; Pardo, Fabrice

    2015-01-01

    Here we present a 2D slit-box electromagnetic nanoantenna inspired by the acoustic Helmholtz resonator. It is able to concentrate the energy into tiny volumes, and a giant field intensity enhancement is observed throughout the slit. Noteworthily, we have shown that this field intensity enhancement can also be obtained in three dimensional structures that are polarization independent. In the Helmholtz nanoantenna, the field is enhanced in a hot volume and not a hot point, which is of great interest for applications requiring extreme light concentration, such as SEIRA, non-linear optics and biophotonics.

  7. Acoustic Seaglider

    DTIC Science & Technology

    2008-03-07

    a national naval responsibility. Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial...problem and acoustic navigation and communications within the context of distributed autonomous persistent undersea surveillance sensor networks...Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial coherence and the description of ambient

  8. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  9. A tapered box model of the cochlea

    NASA Astrophysics Data System (ADS)

    Sun, Luyang; Ni, Guangjian; Elliott, Stephen

    2015-12-01

    The complicated, three dimensional geometry of the fluid chambers in the cochlea is often represented in models of its mechanics by a box with a uniform area along its length. In this paper we use previous measurements of the variation in area of the two fluid chambers along the length of the cochlea in various mammals, to calculate the variation in the "effective area" that determines the 1D fluid coupling, which is given by the harmonic mean of the two chamber areas. The square root of this effective area is found to vary surprisingly linearly along the cochlea length in several mammalian species. This suggests a variation of the box model in which the width and height of the two fluid chambers are still equal, but now decrease linearly along its length. The width of the basilar membrane, BM, is assumed to increase linearly along the length of the model. The analytic form of the 1D fluid pressure distribution due to elemental BM motion is derived for this tapered box model. The added mass due to the near field acoustic coupling can also be computed, which surprisingly turns out to be almost constant along the length of the BM. The coupled response of the box model with a passive BM can then be readily calculated. Although the pressure distributions due to elemental fluid coupling are very different in the uniform and tapered box models, the distribution of the passive BM response in the coupled models are very similar in the two cases, although the overall level of the response in the tapered model is about 10 dB greater than that in the uniform model.

  10. Cylindrical acoustic levitator/concentrator

    DOEpatents

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  11. Gallium nitride electro-acoustic devices and acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Rais-Zadeh, Mina

    2016-05-01

    Gallium nitride (GaN) being one of a few piezoelectric semiconductors with low acoustic loss is a perfect material for electro-acoustic applications. Interactions of electrons and phonons are facilitated by the piezoelectric effect in addition to the deformation coupling in GaN, a property that can be used to implement a variety of very interesting devices and metamaterials, such as resonant transistors, acoustic amplifiers, circulators, and couplers. This talk covers theoretical basis of such devices and overviews recent advances in this technology.

  12. Thinking "Inside" the Box

    ERIC Educational Resources Information Center

    Jeffries, Carolyn

    2011-01-01

    The authors conducted a test to determine whether they could incorporate a discovery box into a preschool setting was successful. It stimulated the students' natural inquiry processes while promoting understanding of healthy foods and allowing for practice of fine-motor skills. It was easily incorporated into the curriculum and classroom space.…

  13. Drawing inside the Box

    ERIC Educational Resources Information Center

    Franklin, Ranella

    2007-01-01

    When working with very young children and/or students with special needs, it is beneficial for teachers to think "outside the box" in order to preserve and enhance a child's natural curiosity. In an effort to teach young children to control their drawing tools, they are often presented with coloring book-type pages and instructed to "stay inside…

  14. EPA ExpoBox

    EPA Pesticide Factsheets

    EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases, mode

  15. Mystery Box Marvels

    ERIC Educational Resources Information Center

    Santos, Joel; Centurio, Tina

    2012-01-01

    What happens in the first week of school could very well set the stage for the rest of the school year. Setting high standards for science activities based in inquiry can start on the first day of science class and develop as the year unfolds. With the use of simple, readily available, inexpensive materials, an efficient mystery box lesson can be…

  16. The Idea Box.

    ERIC Educational Resources Information Center

    National Association for the Education of Young Children, Washington, DC.

    Five pamphlets offer helpful ideas and instructions on teacher planning, learning environments, teaching with nature, a creative curriculum, and ideas for administrators in "The Idea Box," compiled by members of the Austin Association for the Education of Young Children. Each pamphlet contains useful information for working with young children.…

  17. Shoe Box Circuits

    ERIC Educational Resources Information Center

    Sandifer, Cody

    2009-01-01

    Students' eyes grow wide with wonder as they get a motor to work or make a bulb light for the first time. As these daunting feats of electrical engineering remind us, teaching electricity is invariably rewarding and worthwhile. In this inquiry-based science project, elementary students work in pairs to design and wire a shoe box "room" that meets…

  18. Teaching with Box Tops.

    ERIC Educational Resources Information Center

    Raiser, Lynne; D'Zamko, Mary Elizabeth

    1984-01-01

    Using environmental materials (such as the phone book and placemats from fast food restaurants) can be a motivating way to teach learning disabled students skills and concepts, as shown in an approach to reading, math, science and nutrition, and social studies instruction using a JELL-O brand gelatin box. (CL)

  19. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  20. Cereal Box Totems.

    ERIC Educational Resources Information Center

    Jones, AnnMarie

    2002-01-01

    Presents a multicultural project used with fourth-grade students in which they created a three-dimensional totem pole using leftover cereal boxes. Discusses in detail how to create the totem pole. Explains that students learned about Northwest American Indians in class. (CMK)

  1. "Can" the Black Box

    ERIC Educational Resources Information Center

    Lestingi, Francis S.

    1975-01-01

    Describes the use of the "Arcane (mysterious) Can" which is a "tin" can which is permanently sealed, both air- and water-tight, by means of a home canning device. The canning procedure permits the use of a large variety of materials which can not be utilized in the ordinary mystery box. This Can activity is valuable for…

  2. Looking Southwest at Reactor Box Furnaces With Reactor Boxes and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southwest at Reactor Box Furnaces With Reactor Boxes and Repossessed Uranium in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  3. 6. VIEW OF INTERIOR GLOVE BOX DURING CONSTRUCTION. GLOVE BOXES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF INTERIOR GLOVE BOX DURING CONSTRUCTION. GLOVE BOXES CONTAINED ALL PRODUCTION OPERATIONS AND WERE INTERCONNECTED BY CONVEYORS. (9/21/59) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  4. Acoustic metamaterial with negative parameter

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Yan, Fei; Gu, Hao; Li, Ying

    2014-03-01

    In this paper we present theoretical results on an acoustic metamaterial beam and a bar that exhibit negative effective mass and negative effective stiffness. A one-dimensional acoustic metamaterial with an array of spring-mass subsystems was fabricated. The frequency of the acoustic one dimensional metamaterial structure has the same form as that of the permittivity in metals due to the plasma oscillation. We also provide a theory to explain the simulation results. And we use the concept of conventional mechanical vibration absorbers to reveal the actual working mechanism of the acoustic metamaterials. We explain the two vibrate modes which are optical mode and acoustic mode in detail. When the incoming elastic wave in the acoustic metamaterials to resonate the integrated spring-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the beam and stop the wave propagation. Moreover, we explain the negative parameter in acoustic metamaterials.

  5. Acoustic propagation in a rigid torus

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1982-01-01

    The acoustic propagation in a rigid torus is analyzed using a Green's function method. Three types of surface elements are developed; a flat quadrilateral element used in modeling polygonal cavities, a curved conical element appropriate for surfaces with one curvature, and a toroidal element developed for such doubly curved surfaces as the torus. Curved elements are necessary since the acoustic pressure is sensitive to slope discontinuities between consecutive surface elements especially near cavity resonances. The acoustic characteristics of the torus are compared to those of a bend of square cross section for a frequency range that includes the transverse acoustic resonance. Two equivalences between the different sections are tested; the first conserves curvature and cross-sectional dimension while the second matches transverse resonance and duct volume. The second equivalence accurately matches the acoustic characteristics of the torus up to the cutoff frequency corresponding to a mode with two circumferential waves.

  6. Ocular complications of boxing

    PubMed Central

    Bianco, M; Vaiano, A; Colella, F; Coccimiglio, F; Moscetti, M; Palmieri, V; Focosi, F; Zeppilli, P; Vinger, P

    2005-01-01

    Objectives: To investigate the prevalence of ocular injuries in a large population of boxers over a period of 16 years, in particular, the most severe lesions that may be vision threatening. Methods: Clinical records of the medical archive of the Italian Boxing Federation were analysed. A total of 1032 boxers were examined from February 1982 to October 1998. A complete ophthalmological history was available for 956, who formed the study population (a total of 10 697 examinations). The following data were collected: age when started boxing; duration of competitive boxing career (from the date of the first bout); weight category; a thorough ocular history. The following investigations were carried out: measurement of visual acuity and visual fields, anterior segment inspection, applanation tonometry, gonioscopy, and examination of ocular fundus. Eighty age matched healthy subjects, who had never boxed, formed the control group. Results: Of the 956 boxers examined, 428 were amateur (44.8%) and 528 professional (55.2%). The median age at first examination was 23.1 (4.3) years (range 15–36). The prevalence of conjunctival, corneal, lenticular, vitreal, ocular papilla, and retinal alterations in the study population was 40.9% compared with 3.1% in the control group (p⩽0.0001). The prevalence of serious ocular findings (angle, lens, macula, and peripheral retina alterations) was 5.6% in boxers and 3.1% in controls (NS). Conclusions: Boxing does not result in a higher prevalence of severe ocular lesions than in the general population. However, the prevalence of milder lesions (in particular with regard to the conjunctiva and cornea) is noteworthy, justifying the need for adequate ophthalmological surveillance. PMID:15665199

  7. The normal modes of a resonant cavity containing discrete inhomogeneities - The influence of fibril magnetic fields on the solar acoustic oscillations

    NASA Technical Reports Server (NTRS)

    Bogdan, Thomas J.; Cattaneo, Fausto

    1989-01-01

    Motivated by considerations of the interaction between fibril magnetic fields and solar p-modes, the acoustic spectrum of a cylindrical cavity filled with ideal gas in which a number of magnetic flux tubes are embedded is studied. A formalism, based on the T-matrix approach to acoustic scattering, is developed which can be used to determine the eigenfrequencies and eigenfunctions for any arbitrary distribution of flux tubes. For weak scatterers, the frequency shifts and velocity eigenfunctions are calculated using perturbation theory for the cases of a single flux tube and a random distribution of up to 100 flux tubes. The results of this 'exact' approach are used to give a critical appraisal of the predictions of theories based on some form of averaging, such as the one discussed recently by Bogdan and Zweibel (1987).

  8. Strong acoustic coupling to a superconducting qubit

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin; Aref, Thomas; Frisk Kockum, Anton; Ekström, Maria; Johansson, Göran; Delsing, Per

    2014-03-01

    Micromechanical resonators can be used to store quantum information, as shown in several recent experiments. These resonators typically have the form of membranes or beams, and phonons are localized to their vibrational eigenmodes. We present a different kind of mechanical quantum device, where propagating phonons serve as carriers for quantum information. At the core of our device is a superconducting qubit, designed to couple to Surface Acoustic Waves (SAW) in the underlying substrate through the piezoelectric effect. This type of coupling can be very strong, and in our case exceeds the coupling to any external electromagnetic modes. The acoustic waves propagate freely on the surface of the substrate, and we use a remote electro-acoustic transducer to address the qubit acoustically and listen to its emission of phonons. This presentation focuses on the basic properties of our acoustic quantum system, and we include experimental data that demonstrate the quantized coupling between the qubit and the propagating acoustic waves.

  9. Broadband Field Directionally Mapping using Maneuverable Acoustic Sensor Arrays

    DTIC Science & Technology

    2015-09-30

    Maneuverable Acoustic Sensor Arrays David Smith Dept. of Electrical and Computer Engineering Duke University, Box 90291 Durham, NC 27708 phone: (919) 660... acoustic arrays to resolve targets from interferers, and 2) improve the target detection, localization, and tracking performance of long arrays during tow...splines) EM algorithm. Both algorithms were run using a simulated 30 element acoustic vector sensor array with 900 snapshots. Attention has also

  10. Mass flux response comparisons of a 200-MHz surface acoustic wave (SAW) resonator microbalance to a 15-MHz thermoelectric quartz crystal microbalance (TQCM) in a high-vacuum environment

    NASA Astrophysics Data System (ADS)

    Wallace, Donald A.; Bowers, William D.

    1994-10-01

    Using a 200 MHz Surface Acoustic Wave (SAW) resonator device as a high-vacuum molecular deposition microbalance, similar to a bulk quartz crystal microbalance (QCM), and an often-used 15 MHz thermoelectric QCM (TQCM), a comparison of various parameters was made during a high-vacuum outgassing experiment. The source of molecular outgassing was a bright aluminum foil which was cooled to liquid nitrogen temperature and alternately, to ambient temperature. The two sensors, the SAW QCM and the TQCM were placed next to each other and viewed only the aluminum foil. In this high-vacuum environment, a comparison between various parameters, i.e., mass sensitivity, long term drift rate, stability, thermal effects and dynamic range of the SAW and the TQCM, was obtained.

  11. Acoustic focusing by metal circular ring structure

    NASA Astrophysics Data System (ADS)

    Xia, Jian-Ping; Sun, Hong-Xiang

    2015-02-01

    We report an exotic acoustic focusing effect through a simple brass circular ring structure immersed in water. The acoustic waves can be focused on a prefect point at the centre of the ring structure. This exotic acoustic focusing phenomenon arises from the intrinsic modes in the ring structure at some special eigenfrequencies, which is essentially distinct from the previous studies originating from the negative refraction. The focusing effect is closely related to the size and shape of the ring structure. Interesting applications of the focusing mechanism in black box detectors in the sea and medical ultrasound treatment are further discussed.

  12. Baffling or Baffled: Improve Your Acoustics.

    ERIC Educational Resources Information Center

    Abdoo, Frank B.

    1981-01-01

    Presents techniques for evaluating the acoustics (reverberation time, and standing waves and resonance phenomena) of a band performance room. Gives instructions for building and placing inexpensive baffles (free-standing, portable sound barriers) to correct room defects. (SJL)

  13. Hermit Points on a Box

    ERIC Educational Resources Information Center

    Hess, Richard; Grinstead, Charles; Grindstead, Marshall; Bergstrand, Deborah

    2008-01-01

    Suppose that we are given a rectangular box in 3-space. Given any two points on the surface of this box, we can define the surface distance between them to be the length of the shortest path between them on the surface of the box. This paper determines the pairs of points of maximum surface distance for all boxes. It is often the case that these…

  14. Spectrum analysis for introductory musical acoustics

    NASA Astrophysics Data System (ADS)

    Smedley, John E.

    1998-02-01

    A "real time" fast Fourier transform spectrum analyzer facilitates several experiments for an introductory course in musical acoustics. With its rapidly updated display, the time-dependent vibrations of an aluminum bar are easily studied. Using longer time acquisitions and correspondingly higher resolution facilitates the study of string inharmonicities, resonant energy transfer, and sound radiation patterns in guitar acoustics.

  15. Making Connections with Memory Boxes.

    ERIC Educational Resources Information Center

    Whatley, April

    2000-01-01

    Addresses the use of children's literature within the social studies classroom on the topic of memory boxes. Includes discussions of four books: (1) "The Littlest Angel" (Charles Tazewell); (2) "The Hundred Penny Box" (Sharon Bell Mathis); (3) "Wilfrid Gordon McDonald Partridge" (Mem Fox); and (4) "The Memory Box" (Mary Bahr). (CMK)

  16. Multicultural and Nonsexist Prop Boxes.

    ERIC Educational Resources Information Center

    Boutte, Gloria S.; And Others

    1996-01-01

    Discusses how prop boxes enhance learning and are resources in multicultural and nonsexist primary education, focusing on play, experimentation, and cooperation. Examines integration of prop boxes into the curricula and activities, and presents examples of generic and specific multicultural prop boxes that incorporate art, music, foods,…

  17. Advanced Technology Development for Active Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark; Cattafesta, Louis N., III; Nishida, Toshikazu; Kurdila, Andrew J.

    2001-01-01

    Objectives include: (1) Develop electro-mechanical/acoustic models of a Helmholtz resonator possessing a compliant diaphragm coupled to a piezoelectric device; (2) Design and fabricate the energy reclamation module and active Helmholtz resonator; (3) Develop and build appropriate energy reclamation/storage circuit; (4) Develop and fabricate appropriate piezoelectric shunt circuit to tune the compliance of the active Helmholtz resonator via a variable capacitor; (5) Quantify energy reclamation module efficiency in a grazing-flow plane wave tube possessing known acoustic energy input; and (6) Quantify actively tuned Helmholtz resonator performance in grazing-flow plane wave tube for a white-noise input

  18. Surface acoustic wave frequency comb

    NASA Astrophysics Data System (ADS)

    Matsko, A. B.; Savchenkov, A. A.; Ilchenko, V. S.; Seidel, D.; Maleki, L.

    2012-02-01

    We investigate opto-mechanical oscillation (OMO) and subsequent generation of acoustic wave frequency combs in monolithic crystalline whispering gallery mode (WGM) resonators. The OMO is observed in resonators made of electro-optic (lithium tantalate), non-electro-optic birefringent (magnesium fluoride), and non-birefringent (calcium fluoride) materials. The phenomenon manifests itself as generation of optical harmonics separated by the eigenfrequency of a surface acoustic wave (SAW) mechanical mode of the same WGM resonator. We show that the light escaping the resonator and demodulated on a fast photodiode produces a spectrally pure radio frequency (RF) signal. For instance, we demonstrate generation of 200 MHz signals with instantaneous linewidth of 0.2 Hz.

  19. Learning with Box Kernels.

    PubMed

    Melacci, Stefano; Gori, Marco

    2013-04-12

    Supervised examples and prior knowledge on regions of the input space have been profitably integrated in kernel machines to improve the performance of classifiers in different real-world contexts. The proposed solutions, which rely on the unified supervision of points and sets, have been mostly based on specific optimization schemes in which, as usual, the kernel function operates on points only. In this paper, arguments from variational calculus are used to support the choice of a special class of kernels, referred to as box kernels, which emerges directly from the choice of the kernel function associated with a regularization operator. It is proven that there is no need to search for kernels to incorporate the structure deriving from the supervision of regions of the input space, since the optimal kernel arises as a consequence of the chosen regularization operator. Although most of the given results hold for sets, we focus attention on boxes, whose labeling is associated with their propositional description. Based on different assumptions, some representer theorems are given which dictate the structure of the solution in terms of box kernel expansion. Successful results are given for problems of medical diagnosis, image, and text categorization.

  20. Learning with box kernels.

    PubMed

    Melacci, Stefano; Gori, Marco

    2013-11-01

    Supervised examples and prior knowledge on regions of the input space have been profitably integrated in kernel machines to improve the performance of classifiers in different real-world contexts. The proposed solutions, which rely on the unified supervision of points and sets, have been mostly based on specific optimization schemes in which, as usual, the kernel function operates on points only. In this paper, arguments from variational calculus are used to support the choice of a special class of kernels, referred to as box kernels, which emerges directly from the choice of the kernel function associated with a regularization operator. It is proven that there is no need to search for kernels to incorporate the structure deriving from the supervision of regions of the input space, because the optimal kernel arises as a consequence of the chosen regularization operator. Although most of the given results hold for sets, we focus attention on boxes, whose labeling is associated with their propositional description. Based on different assumptions, some representer theorems are given that dictate the structure of the solution in terms of box kernel expansion. Successful results are given for problems of medical diagnosis, image, and text categorization.

  1. Acoustic and microwave tests in a cylindrical cavity for acoustic gas thermometry at high temperature

    PubMed Central

    Zhang, K.; Feng, X.J.; Gillis, K.; Moldover, M.; Zhang, J.T.; Lin, H.; Qu, J.F.; Duan, Y.N.

    2016-01-01

    Relative primary acoustic gas thermometry determines the ratios of thermodynamic temperatures from measured ratios of acoustic and microwave resonance frequencies in a gas-filled metal cavity on isotherms of interest. When measured in a cavity with known dimensions, the frequencies of acoustic resonances in a gas determine the speed of sound, which is a known function of the thermodynamic temperature T. Changes in the dimensions of the cavity are measured using the frequencies of the cavity's microwave resonances. We explored techniques and materials for acoustic gas thermometry at high temperatures using a cylindrical cavity with remote acoustic transducers. We used gas-filled ducts as acoustic waveguides to transmit sound between the cavity at high temperatures and the acoustic transducers at room temperature. We measured non-degenerate acoustic modes in a cylindrical cavity in the range 295 K < T < 797 K. The fractional uncertainty of the measured acoustic frequencies increased from 2×10−6 at 295 K to 5×10−6 at 797 K. In addition, we measured the frequencies of several transverse magnetic (TM) microwave resonances up to 1000 K in order to track changes in the cavity's length L and radius R. The fractional standard deviation of the values of L deduced from three TM modes increased from 3×10−6 for T < 600 K to 57×10−6 at 1000 K. We observed similar inconsistencies in a previous study. PMID:26903106

  2. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  3. Accelerometer measurements of acoustic-to-seismic coupling above buried objects.

    PubMed

    Attenborough, Keith; Qin, Qin; Jefferis, Jonathan; Heald, Gary

    2007-12-01

    The surface velocity of sand inside a large PVC container, induced by the sound pressure from either a large loudspeaker radiating into an inverted cone and pipe or a Bruel and Kjaer point source loudspeaker mounted with its axis vertical, has been measured using accelerometers. Results of white noise and stepped frequency excitation are presented. Without any buried object the mass loading of an accelerometer creates resonances in the spectral ratio of sand surface velocity to incident acoustic pressure, i.e., the acoustic-to-seismic (A/S) admittance spectra. The A/S responses above a buried compliant object are larger and distinctive. The linear A/S admittance spectra in the presence of a buried electronic components box have been studied as a function of burial depth and sand state. The nonlinear responses above the buried box have been studied as a function of depth, sand state, and amplitude. Predictions of a modified one-dimensional lumped parameter model have been found to be consistent with the observed nonlinear responses. Also the modified model has been used to explain features of the A/S responses observed when using an accelerometer without any buried object.

  4. Evaluation of a novel approach for peptide sequencing: laser-induced acoustic desorption combined with P(OCH(3))(2)(+) chemical ionization and collision-activated dissociation in a Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Somuramasami, Jayalakshmi; Kenttämaa, Hilkka I

    2007-03-01

    A novel mass spectrometric method has been developed for obtaining sequence information on small peptides. The peptides are desorbed as intact neutral molecules into a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) by means of laser-induced acoustic desorption (LIAD). Reactions of the neutral peptides with the dimethoxyphosphenium ion, P(OCH(3))(2)(+), occur predominantly by addition of the peptide to P(OCH(3))(2)(+) followed by the loss of two methanol molecules, thus yielding product ions with the composition (peptide + P - 2H)(+). Upon sustained off-resonance irradiation for collision-activated dissociation (SORI-CAD), the (peptide + P - 2H)(+) ions undergo successive losses of CO and NHCHR or H(2)O, CO, and NHCHR to yield sequence-related fragment ions in addition to the regular a(n)- and b(n)-type ions. Under the same conditions, SORI-CAD of the analogous protonated peptides predominantly yields the regular a(n)- and b(n)-type ions. The mechanisms of the reactions of peptides with P(OCH(3))(2)(+) and the dissociation of the (peptide + P - 2H)(+) ions were examined by using model peptides and molecular orbital calculations.

  5. Evaluation of a Novel Approach for Peptide Sequencing: Laser-induced Acoustic Desorption Combined with P(OCH3)2+ Chemical Ionization and Collision-activated Dissociation in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Somuramasami, Jayalakshmi; Kenttämaa, Hilkka I.

    2007-01-01

    A novel mass spectrometric method has been developed for obtaining sequence information on small peptides. The peptides are desorbed as intact neutral molecules into a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) by means of laser-induced acoustic desorption (LIAD). Reactions of the neutral peptides with the dimethoxyphosphenium ion, P(OCH3)2+, occur predominantly by addition of the peptide to P(OCH3)2+ followed by the loss of two methanol molecules, thus yielding product ions with the composition (peptide + P − 2H)+. Upon sustained off-resonance irradiation for collision-activated dissociation (SORI-CAD), the (peptide + P − 2H)+ ions undergo successive losses of CO and NH = CHR or H2O, CO, and NH = CHR to yield sequence-related fragment ions in addition to the regular an- and bn-type ions. Under the same conditions, SORI-CAD of the analogous protonated peptides predominantly yields the regular an- and bn-type ions. The mechanisms of the reactions of peptides with P(OCH3)2+ and the dissociation of the (peptide + P − 2H)+ ions were examined by using model peptides and molecular orbital calculations. PMID:17157527

  6. Low-temperature effects of resonance electronic states at transition-element impurities in the kinetic, magnetic, and acoustic properties of semiconductors

    NASA Astrophysics Data System (ADS)

    Okulov, V. I.; Govorkova, T. E.; Gudkov, V. V.; Zhevstovskikh, I. V.; Korolyev, A. V.; Lonchakov, A. T.; Okulova, K. A.; Pamyatnykh, E. A.; Paranchich, S. Yu.

    2007-02-01

    New research results on phenomena due to the existence of electronic resonance energy levels and hybridized states at impurities of transition elements in semiconductors are presented. The data show that the thermal conductivity and ultrasonic parameters of mercury selenide containing iron impurities have resonance anomalies due to the influence of these impurities. A consistent and detailed interpretation is offered for the set of observed effects of hybridized states in mercury selenide with iron impurities. The proposed interpretation of the data obtained on other systems is discussed.

  7. An Acoustic Demonstration Model for CW and Pulsed Spectrosocopy Experiments

    NASA Astrophysics Data System (ADS)

    Starck, Torben; Mäder, Heinrich; Trueman, Trevor; Jäger, Wolfgang

    2009-06-01

    High school and undergraduate students have often difficulties if new concepts are introduced in their physics or chemistry lectures. Lecture demonstrations and references to more familiar analogues can be of great help to the students in such situations. We have developed an experimental setup to demonstrate the principles of cw absorption and pulsed excitation - emission spectroscopies, using acoustical analogues. Our radiation source is a speaker and the detector is a microphone, both controlled by a computer sound card. The acoustical setup is housed in a plexiglas box, which serves as a resonator. It turns out that beer glasses are suitable samples; this also helps to keep the students interested! The instrument is controlled by a LabView program. In a cw experiment, the sound frequency is swept through a certain frequency range and the microphone response is recorded simultaneously as function of frequency. A background signal without sample is recorded, and background subtraction yields the beer glass spectrum. In a pulsed experiment, a short sound pulse is generated and the microphone is used to record the resulting emission signal of the beer glass. A Fourier transformation of the time domain signal gives then the spectrum. We will discuss the experimental setup and show videos of the experiments.

  8. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  9. Acoustic mechanical feedthroughs

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-04-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  10. Acoustic Mechanical Feedthroughs

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  11. Acoustic Intensity Measurements in the Presence of Low Mach Number Flow

    DTIC Science & Technology

    1993-09-01

    broadband acoustic holography ,3 intensity measurements in the presence of flow,"𔄁𔄀. 7 in-situ evaluation of the acoustic impedance and sound absorption...Cross Spectra" Ph.D. Thesis, Catholic University, (1987). 3. Loyau, T., Pascal, J., Gaillard, P., "Broadband Acoustic Holography Reconstruction From...AD-A269 995 The Pennsylvania State University APPLIED RESEARCH LABORATORY P.O. Box 30 State College, PA 16804 ACOUSTIC INTENSITY MEASUREMENTS IN THE

  12. Considerations on the acoustic energy radiated by toothed gears. [model for calculating noise intensity

    NASA Technical Reports Server (NTRS)

    Popinceanu, N. G.; Kremmer, I.

    1974-01-01

    A mechano-acoustic model is reported for calculating acoustic energy radiated by a working gear. According to this model, a gear is an acoustic coublet formed of the two wheels. The wheel teeth generate cylindrical acoustic waves while the front surfaces of the teeth behave like vibrating pistons. Theoretical results are checked experimentally and good agreement is obtained with open gears. The experiments show that the air noise effect is negligible as compared with the structural noise transmitted to the gear box.

  13. LLNL`s acoustic spectrometer

    SciTech Connect

    Baker, J.

    1997-03-17

    This paper describes the development of a frequency sensitive acoustic transducer that operates in the 10 Hz to 10 kHz regime. This device uses modem silicon microfabrication techniques to form mechanical tines that resonate at specified frequencies. This high-sensitivity device is intended for low-power battery powered applications.

  14. Does an infrasonic acoustic shock wave resonance of the manganese 3+ loaded/copper depleted prion protein initiate the pathogenesis of TSE?

    PubMed

    Purdey, Mark

    2003-06-01

    Intensive exposures to natural and artificial sources of infrasonic acoustic shock (tectonic disturbances, supersonic aeroplanes, etc.) have been observed in ecosystems supporting mammalian populations that are blighted by clusters of traditional and new variant strains of transmissible spongiform encephalopathy (TSE). But TSEs will only emerge in those 'infrasound-rich' environments which are simultaneously influenced by eco-factors that induce a high manganese (Mn)/low copper (Cu)-zinc (Zn) ratio in brains of local mammalian populations. Since cellular prion protein (PrPc) is a cupro-protein expressed throughout the circadian mediated pathways of the body, it is proposed that PrP's Cu component performs a role in the conduction and distribution of endogenous electromagnetic energy; energy that has been transduced from incoming ultraviolet, acoustic, geomagnetic radiations. TSE pathogenesis is initiated once Mn substitutes at the vacant Cu domain on PrPc and forms a nonpathogenic, protease resistant, 'sleeping' prion. A second stage of pathogenesis comes into play once a low frequency wave of infrasonic shock metamorphoses the piezoelectric atomic structure of the Mn 3+ component of the prion, thereby 'priming' the sleeping prion into its fully fledged, pathogenic TSE isoform - where the paramagnetic status of the Mn 3+ atom is transformed into a stable ferrimagnetic lattice work, due to the strong electron-phonon coupling resulting from the dynamic 'Jahn-Teller' type distortions of the oxygen octahedra specific to the trivalent Mn species. The so called 'infectivity' of the prion is a misnomer and should be correctly defined as the contagious field inducing capacity of the ferrimagnetic Mn 3+ component of the prion; which remains pathogenic at all temperatures below the 'curie point'. A progressive domino-like 'metal to ligand to metal' ferrimagnetic corruption of the conduits of electromagnetic superexchange is initiated. The TSE diseased brain can be likened to

  15. Physics of Sports: Resonances

    NASA Astrophysics Data System (ADS)

    Browning, David

    2000-04-01

    When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.

  16. Acoustic agglomeration methods and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  17. Small, Lightweight, Collapsible Glove Box

    NASA Technical Reports Server (NTRS)

    James, Jerry

    2009-01-01

    A small, lightweight, collapsible glove box enables its user to perform small experiments and other tasks. Originally intended for use aboard a space shuttle or the International Space Station (ISS), this glove box could also be attractive for use on Earth in settings in which work space or storage space is severely limited and, possibly, in which it is desirable to minimize weight. The development of this glove box was prompted by the findings that in the original space-shuttle or ISS setting, (1) it was necessary to perform small experiments in a large general-purpose work station, so that, in effect, they occupied excessive space; and it took excessive amounts of time to set up small experiments. The design of the glove box reflects the need to minimize the space occupied by experiments and the time needed to set up experiments, plus the requirement to limit the launch weight of the box and the space needed to store the box during transport into orbit. To prepare the glove box for use, the astronaut or other user has merely to insert hands through the two fabric glove ports in the side walls of the box and move two hinges to a locking vertical position (see figure). The user could do this while seated with the glove box on the user fs lap. When stowed, the glove box is flat and has approximately the thickness of two pieces of 8-in. (.20 cm) polycarbonate.

  18. Theory of Acoustic Raman Modes in Proteins

    NASA Astrophysics Data System (ADS)

    DeWolf, Timothy; Gordon, Reuven

    2016-09-01

    We present a theoretical analysis that associates the resonances of extraordinary acoustic Raman (EAR) spectroscopy [Wheaton et al., Nat. Photonics 9, 68 (2015)] with the collective modes of proteins. The theory uses the anisotropic elastic network model to find the protein acoustic modes, and calculates Raman intensity by treating the protein as a polarizable ellipsoid. Reasonable agreement is found between EAR spectra and our theory. Protein acoustic modes have been extensively studied theoretically to assess the role they play in protein function; this result suggests EAR spectroscopy as a new experimental tool for studies of protein acoustic modes.

  19. Reusable acoustic tweezers for disposable devices

    PubMed Central

    Guo, Feng; Xie, Yuliang; Li, Sixing; Lata, James; Ren, Liqiang; Mao, Zhangming; Ren, Baiyang; Wu, Mengxi; Ozcelik, Adem

    2015-01-01

    We demonstrate acoustic tweezers used for disposable devices. Rather than forming an acoustic resonance, we locally transmitted standing surface acoustic waves into a removable, independent polydimethylsiloxane (PDMS)-glass hybridized microfluidic superstrate device for micromanipulation. By configuring and regulating the displacement nodes on a piezoelectric substrate, cells and particles were effectively patterned and transported into said superstrate, accordingly. With the label-free and contactless nature of acoustic waves, the presented technology could offer a simple, accurate, low-cost, biocompatible, and disposable method for applications in the fields of point-of-care diagnostics and fundamental biomedical studies. PMID:26507411

  20. Use of Strain Measurements from Acoustic Bench Tests of the Battleship Flowliner Test Articles To Link Analytical Model Results to In-Service Resonant Response

    NASA Technical Reports Server (NTRS)

    Frady, Greg; Smaolloey, Kurt; LaVerde, Bruce; Bishop, Jim

    2004-01-01

    The paper will discuss practical and analytical findings of a test program conducted to assist engineers in determining which analytical strain fields are most appropriate to describe the crack initiating and crack propagating stresses in thin walled cylindrical hardware that serves as part of the Space Shuttle Main Engine's fuel system. In service the hardware is excited by fluctuating dynamic pressures in a cryogenic fuel that arise from turbulent flow/pump cavitation. A bench test using a simplified system was conducted using acoustic energy in air to excite the test articles. Strain measurements were used to reveal response characteristics of two Flowliner test articles that are assembled as a pair when installed in the engine feed system.

  1. Nonlinear Acoustics Used To Reduce Leakage Flow

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    Leakage and wear are two fundamental problems in all traditional turbine seals that contribute to an engine's inefficiency. The solutions to seal leakage and wear conflict in the conventional design space. Reducing the clearance between the seal and rotating shaft reduces leakage but increases wear because of increased contact incidents. Increasing the clearance to reduce the contact between parts reduces wear but increases parasitic leakage. The goal of this effort is to develop a seal that restricts leakage flow using acoustic pressure while operating in a noncontacting manner, thereby increasing life. In 1996, Dr. Timothy Lucas announced his discovery of a method to produce shock-free high-amplitude pressure waves. For the first time, the formation of large acoustic pressures was possible using dissonant resonators. A pre-prototype acoustic seal developed at the NASA Glenn Research Center exploits this fundamental acoustic discovery: a specially shaped cavity oscillated at the contained fluid's resonant frequency produces high-amplitude acoustic pressure waves of a magnitude approaching those required of today's seals. While the original researchers are continuing their development of acoustic pumps, refrigeration compressors, and electronic thermal management systems using this technology, the goal of researchers at Glenn is to apply these acoustic principles to a revolutionary sealing device. When the acoustic resonator shape is optimized for the sealing device, the flow from a high-pressure cavity to a low-pressure cavity will be restricted by a series of high-amplitude standing pressure waves of higher pressure than the pressure to be sealed. Since the sealing resonator cavity will not touch the adjacent sealing structures, seal wear will be eliminated, improving system life. Under a cooperative agreement between Glenn and the Ohio Aerospace Institute (OAI), an acoustic-based pre-prototype seal was demonstrated for the first time. A pressurized cavity was

  2. Dual Mode Thin Film Bulk Acoustic Resonators (FBARs) Based on AlN, ZnO and GaN Films with Tilted c-Axis Orientation

    DTIC Science & Technology

    2010-01-01

    FBARs fabri - cation, and their thickness usually ranges from several mi- crometers down to tenth of micrometers, which results in high resonant...mentioned be- fore. Films with in-plane polarization have also been fabri - cated on certain substrate crystal such as tetragonal LiAlO2 100 for...dynamics, and cerebral aneurysm diseases ; his research work is also related to experimental and medical device design. Hongbin Cheng received his

  3. Grey seals use anthropogenic signals from acoustic tags to locate fish: evidence from a simulated foraging task.

    PubMed

    Stansbury, Amanda L; Götz, Thomas; Deecke, Volker B; Janik, Vincent M

    2015-01-07

    Anthropogenic noise can have negative effects on animal behaviour and physiology. However, noise is often introduced systematically and potentially provides information for navigation or prey detection. Here, we show that grey seals (Halichoerus grypus) learn to use sounds from acoustic fish tags as an indicator of food location. In 20 randomized trials each, 10 grey seals individually explored 20 foraging boxes, with one box containing a tagged fish, one containing an untagged fish and all other boxes being empty. The tagged box was found after significantly fewer non-tag box visits across trials, and seals revisited boxes containing the tag more often than any other box. The time and number of boxes needed to find both fish decreased significantly throughout consecutive trials. Two additional controls were conducted to investigate the role of the acoustic signal: (i) tags were placed in one box, with no fish present in any boxes and (ii) additional pieces of fish, inaccessible to the seal, were placed in the previously empty 18 boxes, making possible alternative chemosensory cues less reliable. During these controls, the acoustically tagged box was generally found significantly faster than the control box. Our results show that animals learn to use information provided by anthropogenic signals to enhance foraging success.

  4. Grey seals use anthropogenic signals from acoustic tags to locate fish: evidence from a simulated foraging task

    PubMed Central

    Stansbury, Amanda L.; Götz, Thomas; Deecke, Volker B.; Janik, Vincent M.

    2015-01-01

    Anthropogenic noise can have negative effects on animal behaviour and physiology. However, noise is often introduced systematically and potentially provides information for navigation or prey detection. Here, we show that grey seals (Halichoerus grypus) learn to use sounds from acoustic fish tags as an indicator of food location. In 20 randomized trials each, 10 grey seals individually explored 20 foraging boxes, with one box containing a tagged fish, one containing an untagged fish and all other boxes being empty. The tagged box was found after significantly fewer non-tag box visits across trials, and seals revisited boxes containing the tag more often than any other box. The time and number of boxes needed to find both fish decreased significantly throughout consecutive trials. Two additional controls were conducted to investigate the role of the acoustic signal: (i) tags were placed in one box, with no fish present in any boxes and (ii) additional pieces of fish, inaccessible to the seal, were placed in the previously empty 18 boxes, making possible alternative chemosensory cues less reliable. During these controls, the acoustically tagged box was generally found significantly faster than the control box. Our results show that animals learn to use information provided by anthropogenic signals to enhance foraging success. PMID:25411449

  5. Projection optics box

    DOEpatents

    Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.

    2000-01-01

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  6. 46 CFR 111.81-1 - Outlet boxes and junction boxes; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Outlet boxes and junction boxes; general. 111.81-1... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Outlet Boxes and Junction Boxes § 111.81-1 Outlet boxes and junction boxes; general. (a) The requirements of this subpart apply to each outlet box used with a...

  7. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  8. The Classroom Animal: Box Turtles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1986-01-01

    Provides basic information on the anatomy, physiology, behaviors, and distribution patterns of the box turtle. Offers suggestions for the turtle's care and maintenance in a classroom environment. (ML)

  9. Boxes and Sound Quality in AN Italian Opera House

    NASA Astrophysics Data System (ADS)

    COCCHI, A.; GARAI, M.; TAVERNELLI, C.

    2000-04-01

    The “Teatro Comunale” (City Theatre) in Bologna is an Italian opera house of the 18th century, designed by the famous architect Antonio Galli Bibiena. Largely built in masonry, it has been only partially restored and altered several times, but never destroyed and rebuilt. The study of its acoustics, while interesting for itself, offers the opportunity to investigate the role of the boxes, which constitute the most evident characteristic of Italian opera houses. The study was carried on at first by measurements, acquiring binaural impulse responses in the stalls and in the boxes, and then by computer simulation, modelling also some changes which cannot be done in the real hall. The measurements revealed clear differences between the listening quality in the boxes and in the stalls, especially regarding ITDG, clarity and IACC. Computer simulations show how the sound field in the historical theatre could be if the sound absorption of the boxes were changed, adding some velvet curtains, as was done in ancient times, and clarify the effects of the cavities which constitutes the boxes.

  10. 2. UPPER NOTTINGHAM MINE, WOODEN BOXES. BOXES ARE LOCATED APPROXIMATELY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. UPPER NOTTINGHAM MINE, WOODEN BOXES. BOXES ARE LOCATED APPROXIMATELY 10 YARDS TO THE RIGHT AND DOWNSLOPE OF THE ADIT IN ID-31-F-1. CAMERA IS POINTED EAST-SOUTHEAST. - Florida Mountain Mining Sites, Upper Nottingham Mine, West face of Florida Mountain, head of Jacobs Gulch, Silver City, Owyhee County, ID

  11. A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure.

    PubMed

    Luo, Jingting; Luo, Pingxiang; Xie, Min; Du, Ke; Zhao, Bixia; Pan, Feng; Fan, Ping; Zeng, Fei; Zhang, Dongping; Zheng, Zhuanghao; Liang, Guangxing

    2013-11-15

    This work reports a high-performance Mn-doped ZnO multilayer structure Love mode surface acoustic wave (SAW) biosensor for the detection of blood sugar. The biosensor was functionalized via immobilizing glucose oxidase onto a pH-sensitive polymer which was attached on Mn-doped ZnO biosensor. The fabricated SAW glucose biosensor is highly sensitive, accurate and fast with good anti-interference. The sensitivity of the SAW glucose biosensor is 7.184 MHz/mM and the accuracy is 6.96 × 10(-3)mM, which is sensitive and accurate enough for glucose monitoring. A good degree of reversibility and stability of the glucose sensor is also demonstrated, which keeps a constant differential frequency shift up to 32 days. Concerning the time response to human serum, the glucose sensor shows a value of 4.6 ± 0.4 min when increasing glucose concentrations and 7.1 ± 0.6 min when decreasing, which is less than 10 min and reach the fast response requirement for medical applications. The Mn-doped ZnO Love mode SAW biosensor can be fully integrated with CMOS Si chips and developed as a portable, passive and wireless real time detection system for blood sugar monitoring in human serum.

  12. ACYSYS in a box

    SciTech Connect

    Briegel, C.; Finstrom, D.; Hendricks, B.; King, C.; Lackey, S.; Neswold, R.; Nicklaus, D.; Patrick, J.; Petrov, A.; Rechenmacher, R.; Schumann, C.; /Fermilab

    2011-11-01

    The Accelerator Control System at Fermilab has evolved to enable this relatively large control system to be encapsulated into a 'box' such as a laptop. The goal was to provide a platform isolated from the 'online' control system. This platform can be used internally for making major upgrades and modifications without impacting operations. It also provides a standalone environment for research and development including a turnkey control system for collaborators. Over time, the code base running on Scientific Linux has enabled all the salient features of the Fermilab's control system to be captured in an off-the-shelf laptop. The anticipated additional benefits of packaging the system include improved maintenance, reliability, documentation, and future enhancements.

  13. More box codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    A new investigation shows that, starting from the BCH (21,15;3) code represented as a 7 x 3 matrix and adding a row and column to add even parity, one obtains an 8 x 4 matrix (32,15;8) code. An additional dimension is obtained by specifying odd parity on the rows and even parity on the columns, i.e., adjoining to the 8 x 4 matrix, the matrix, which is zero except for the fourth column (of all ones). Furthermore, any seven rows and three columns will form the BCH (21,15;3) code. This box code has the same weight structure as the quadratic residue and BCH codes of the same dimensions. Whether there exists an algebraic isomorphism to either code is as yet unknown.

  14. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon

    2016-07-12

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  15. Damping of thermal acoustic oscillations in hydrogen systems

    NASA Technical Reports Server (NTRS)

    Gu, Youfan; Timmerhaus, Klaus D.

    1991-01-01

    Acoustic waves initiated by a large temperature gradient along a tube are defined as thermal acoustic oscillations (TAOs). These oscillations have been damped by introducing such sound absorbing techniques as acoustic filters, resonators, etc.. These devices serve as an acoustic sink that is used to absorb or dissipate the acoustic energy thereby eliminating or damping such oscillations. Several empirical damping techniques, such as attaching a resonator as a side branch or inserting a wire in the tube, have been developed in the past and have provided reasonable success. However, the effect of connecting tube radius, length, and resonator volume on the damping of thermal acoustic oscillations has not been evaluated quantitatively. Further, these methods have not been effective when the oscillating tube radius was relatively large. Detailed theoretical analyses of these techniques including a newly developed method for damping oscillations in a tube of relatively large radius are provided in this presentation.

  16. Spirit Boxes: Expressions of Culture.

    ERIC Educational Resources Information Center

    DeMuro, Ted

    1984-01-01

    After studying the culture and art of the ancient civilizations of South America, Mesopotamia, Greece, and Egypt, secondary level art students made spirit boxes as expressions of the various cultures. How to make the boxes and how to prepare the face molds are described. (RM)

  17. Being Creative "Inside the Box"

    ERIC Educational Resources Information Center

    Tomascoff, Rocky

    2011-01-01

    Artist Joseph Cornell (1903-1972) created wonderful environments inside boxes using mostly found objects. They were often Surrealistic in nature. Some boxes were designed with glass fronts, and others were meant to be interactive with the viewer, wherein the objects could be handled. With Joseph Cornell in mind, the author introduces an art…

  18. What Makes a Better Box?

    ERIC Educational Resources Information Center

    Moyer, Richard; Everett, Susan

    2010-01-01

    Every morning, many Americans start their day with a bowl of cereal. Some spend time while they eat breakfast reading the back of the cereal box, but few consider its size, shape, and construction, or realize that it was designed by an engineer. This article describes a lesson in which students design, build, and critique cereal boxes. The lesson…

  19. Cardboard Boxes: Learning Concepts Galore!

    ERIC Educational Resources Information Center

    Warner, Laverne; Wilmoth, Linda

    2007-01-01

    Mrs. Keenan, a preschool teacher, observed her 3-year-old granddaughter Riley pull, tug, and stack piles of holiday boxes on the floor. She remembered that her child care director had suggested using boxes as a curriculum theme, but she hadn't given much thought about the idea until now. She said to herself, "I wonder if my children would be as…

  20. Experimental Investigations of the Internal Energy of Molecules Evaporated via Laser-induced Acoustic Desorption into a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer (LIAD/FT-ICR)

    PubMed Central

    Shea, Ryan C.; Petzold, Christopher J.; Liu, Ji-ang; Kenttämaa, Hilkka I.

    2008-01-01

    The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR), was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity (GB) values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kcal/mol. Chemical ionization with a series of proton transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, val-pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have less internal energy than those evaporated via SALD. PMID:17263513

  1. Underwater boom box

    NASA Astrophysics Data System (ADS)

    White, M. Catherine

    So far, there is no evidence that humpback whales are negatively affected by noise emitted from underwater speakers that may one day be used to measure warming in the oceans. A group of independent biologists from Cornell University monitored the behavior of the whales before, during, and after a scaled-down version of the controversial Acoustic Thermometry of Ocean Climate (ATOC) experiment off the coast of Hawaii. In 84 trials from February through March, they “saw no overt response from the whales.” Previous observations of similar sound transmissions at California's Pioneer Seamount, the other site planned for the experiment, also found no sign of disturbance among marine mammals, including elephant seals and several whale species. More observations are needed, however, before the experiment can be deemed safe, the Cornell biologists advised.

  2. Tunable acoustic waveguide based on vibro-acoustic metamaterials with shunted piezoelectric unit cells

    NASA Astrophysics Data System (ADS)

    Kwon, Byung-Jin; Jung, Jin-Young; Lee, Dooho; Park, Kwang-Chun; Oh, Il-Kwon

    2015-10-01

    We propose a new class of acoustic waveguides with tunable bandgaps (TBs) by using vibro-acoustic metamaterials with shunted periodic piezoelectric unit cells. The unit metamaterial cells that consist of a single crystal piezoelectric transducer and an electrical shunt circuit are designed to induce a strong vibro-acousto-electrical coupling, resulting in a tunable acoustic bandgap as well as local structural resonance and Bragg scattering bandgaps. The present results show that the TB frequency can be actively controlled and the transmission loss of the acoustic wave can be greatly improved by simply changing the inductance values in the shunt circuit.

  3. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  4. A case study of interior low-frequency noise from box-shaped bridge girders induced by running trains: Its mechanism, prediction and countermeasures

    NASA Astrophysics Data System (ADS)

    Zhang, Xun; Li, Xiaozhen; Hao, Hong; Wang, Dangxiong; Li, Yadong

    2016-04-01

    A side effect of high-speed railway and urban rail transit systems is the associated vibration and noise. Since the use of concrete viaducts is predominant in railway construction due to scarce land resources, low-frequency (20-200 Hz) structure-radiated noise from concrete bridges is a principal concern. Although it is the most commonly used bridge type, the mechanism of noise emission from box-shaped bridge girders when subjected to impact forces from moving trains, which sounds like beating a drum, has not been well studied. In this study, a field measurement was first made on a simply-supported box-shaped bridge to record the acceleration of the slabs and the associated sound pressures induced by running trains. These data indicated that a significant beat-wave noise occurred in the box-shaped cavity when the train speed was around 340 km/h, which arose from the interference between two sound waves of 75.0 Hz and 78.8 Hz. The noise leakage from the bridge expansion joint was serious and resulted in obvious noise pollution near the bridge once the beat-wave noise was generated in the cavity. The dominant frequency of the interior noise at 75.0 Hz was confirmed from the spectrum of the data and the modal analysis results, and originated from the peak vibration of the top slab due to resonance and the first-order vertical acoustic mode, which led to cavity resonance, amplifying the corresponding noise. The three-dimensional acoustic modes and local vibration modes of the slab were calculated by using the finite element method. A simplified vehicle-track-bridge coupling vibration model was then developed to calculate the wheel-rail interaction force in a frequency range of 20-200 Hz. Numerical simulations using the boundary element method confirmed the cavity resonance effect and the numerical results agreed well with the data. Based on the calibrated numerical model, three noise reduction measures, i.e., adding a horizontal baffle in the interior cavity, narrowing

  5. Payload bay atmospheric vent airflow testing at the Vibration and Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Johnston, James D., Jr.

    1988-01-01

    Several concerns related to venting the Space Shuttle Orbiter payload bay during launch led to laboratory experiments with a flight-type vent box installed in the wall of a subsonic wind tunnel. This report describes the test setups and procedures used to acquire data for characterization of airflow through the vent box and acoustic tones radiated from the vent-box cavity. A flexible boundary-layer spoiler which reduced the vent-tone amplitude is described.

  6. Proton Heating by Pick-up Ion Driven Cyclotron Waves in the Outer Heliosphere: Hybrid Expanding Box Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Trávníček, Pavel M.

    2016-11-01

    Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton-electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that time owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.

  7. Nonlinear Acoustics

    DTIC Science & Technology

    1974-02-14

    Wester- velt. [60] Streaming. In 1831, Michael Faraday [61] noted that currents of air were set up in the neighborhood of vibrating plates-the first... ducei in the case of a paramettc amy (from Berktay an Leahy 141). C’ "". k•, SEC 10.1 NONLINEAR ACOUSTICS 345 The principal results of their analysis

  8. Decision Making in Acoustic Neuroma Management

    PubMed Central

    Naguib, Maged B.; Saleh, Essam; Aristegui, Miguel; Mazzoni, Antonio; Sanna, Mario

    1994-01-01

    Patients with acoustic neuroma in their only hearing ear are not frequently seen in clinical practice. Managing this group of patients is a challenge to both patient and surgeon. In this study we report on five cases of acoustic neuroma in an only hearing ear. Our decision for nonsurgical management of those patients with regular follow-up using auditory brainstem responses and magnetic resonance imaging is discussed. Other management options currently available are considered as well. PMID:17170923

  9. Acoustic monopoles, dipoles, and quadrupoles: An experiment revisited

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.; Titlow, Joseph P.; Bemmen, Ya-Juan

    1999-08-01

    A simple and inexpensive demonstration of acoustic monopole, dipole, and quadrupole sources utilizes four 4-in. boxed loudspeakers and a homemade switch box. The switch box allows the speakers to be driven in any combination of phase relationships. Placing the speakers on a rotating stool allows students to measure directivity patterns for monopole, dipole, and quadrupole speaker combinations. Stacking the speakers in a square, all facing the same direction, allows students to aurally compare the frequency and amplitude dependence of sound radiation from monopoles, dipoles, and quadrupoles.

  10. Breaking out of Our Boxes.

    ERIC Educational Resources Information Center

    Patterson, William

    2003-01-01

    Argues that educators must "think outside the box" to improve school performance. Suggests several areas for expanded thought, including school size, curriculum coverage, grading practices, use of time, organization of students, time management, and belief statement. (PKP)

  11. Center Spot: Shoe Box Science

    ERIC Educational Resources Information Center

    Hoffman, Jan

    1976-01-01

    This is the second "Center Spot" devoted to Jan Hoffman's "Shoe Box Science," a program that organizes manipulative materials so that children can identify, describe, order, construct, name and distinguish on their own.

  12. System for controlled acoustic rotation of objects

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1983-01-01

    A system is described for use with acoustically levitated objects, which enables close control of rotation of the object. One system includes transducers that propagate acoustic waves along the three dimensions (X, Y, Z) of a chamber of rectangular cross section. Each transducers generates one wave which is resonant to a corresponding chamber dimension to acoustically levitate an object, and additional higher frequency resonant wavelengths for controlling rotation of the object. The three chamber dimensions and the corresponding three levitation modes (resonant wavelengths) are all different, to avoid degeneracy, or interference, of waves with one another, that could have an effect on object rotation. Only the higher frequencies, with pairs of them having the same wavelength, are utilized to control rotation, so that rotation is controlled independently of levitation and about any arbitrarily chosen axis.

  13. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  14. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  15. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  16. Material fabrication using acoustic radiation forces

    SciTech Connect

    Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ

    2015-12-01

    Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.

  17. Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Li, Shengcai

    2015-09-01

    The acoustical scattering cross section is a paramount parameter determining the scattering ability of cavitation bubbles when they are excited by the incident acoustic waves. This parameter is strongly related with many important applications of acoustic cavitation including facilitating the reaction of chemical process, boosting bubble sonoluminescence, and performing non-invasive therapy and drug delivery. In present paper, both the analytical and numerical solutions of acoustical scattering cross section of gas bubbles under dual-frequency excitation are obtained. The validity of the analytical solution is shown with demonstrating examples. The nonlinear characteristics (e.g., harmonics, subharmonics and ultraharmonics) of the scattering cross section curve under dual-frequency approach are investigated. Compared with single-frequency approach, the dual-frequency approach displays more resonances termed as "combination resonances" and could promote the acoustical scattering cross section significantly within a much broader range of bubble sizes due to the generation of more resonances. The influence of several paramount parameters (e.g., acoustic pressure amplitude, power allocations between two acoustic components, and the ratio of the frequencies) in the dual-frequency system on the predictions of scattering cross section has been discussed.

  18. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  19. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  20. 30 CFR 57.12006 - Distribution boxes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distribution boxes. 57.12006 Section 57.12006... and Underground § 57.12006 Distribution boxes. Distribution boxes shall be provided with a... deenergized, and the distribution box shall be labeled to show which circuit each device controls....