Inverse Scattering Problems for Acoustic Waves in AN Inhomogeneous Medium.
NASA Astrophysics Data System (ADS)
Kedzierawski, Andrzej Wladyslaw
1990-01-01
This dissertation considers the inverse scattering problem of determining either the absorption of sound in an inhomogeneous medium or the surface impedance of an obstacle from a knowledge of the far-field patterns of the scattered fields corresponding to many incident time -harmonic plane waves. First, we consider the inverse problem in the case when the scattering object is an inhomogeneous medium with complex refraction index having compact support. Our approach to this problem is the orthogonal projection method of Colton-Monk (cf. The inverse scattering problem for time acoustic waves in an inhomogeneous medium, Quart. J. Mech. Appl. Math. 41 (1988), 97-125). After that, we prove the analogue of Karp's Theorem for the scattering of acoustic waves through an inhomogeneous medium with compact support. We then generalize some of these results to the case when the inhomogeneous medium is no longer of compact support. If the acoustic wave penetrates the inhomogeneous medium by only a small amount then the inverse medium problem leads to the inverse obstacle problem with an impedance boundary condition. We solve the inverse impedance problem of determining the surface impedance of an obstacle of known shape by using both the methods of Kirsch-Kress and Colton-Monk (cf. R. Kress, Linear Integral Equations, Springer-Verlag, New York, 1989).
Application of the Discontinuous Galerkin Method to Acoustic Scatter Problems
NASA Technical Reports Server (NTRS)
Atkins, H. L.
1997-01-01
The application of the quadrature-free form of the discontinuous Galerkin method to two problems from Category 1 of the Second Computational Aeroacoustics Workshop on Benchmark problems is presented. The method and boundary conditions relevant to this work are described followed by two test problems, both of which involve the scattering of an acoustic wave off a cylinder. The numerical test performed to evaluate mesh-resolution requirements and boundary-condition effectiveness are also described.
Inverse scattering problems for acoustic waves in an inhomogeneous medium
NASA Astrophysics Data System (ADS)
Kedzierawski, Andrzej Wladyslaw
The inverse scattering problem is considered of determining either the absorption of sound in an inhomogeneous medium or the surface impedance of an obstacle from a knowledge of the far field patterns of the scattered field corresponding to many incident time-harmonic plane waves. First, the inverse problem is studied in the case when the scattering object is an inhomogeneous medium with complex refractive index having compact support. The approach to this problem is the orthogonal projection method of Colton-Monk (1988). After that, the analogue is proven of Karp's Theorem for the scattering of acoustic waves through an inhomogeneous medium with compact support. Some of these results are then generalized to the case when the inhomogeneous medium is no longer of compact support. If the acoustic wave penetrates the inhomogeneous medium by only a small amount then the inverse medium problem leads to the inverse obstacle problem with an impedance boundary condition. The inverse impedance problem is solved of determining the surface impedance of an obstacle of known shape by using both the methods of Kirsch-Kress and Colton-Monk (1989).
On the Inverse Scattering Problem in the Acoustic Environment
2008-03-03
16 21 ( 1 − cos(3t)) + 5 28 ( 1 − cos(4t)) ) . (264) The scatterer is a c50 -function in R with support in the interval [− 1 , 1 ]. The performance of the...On the inverse scattering problem in the acoustic environment Ran Duan and Vladimir Rokhlin Technical Report YALEU/DCS/TR-1395 March 3, 2008 1 Report...Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per
Sound field reproduction as an equivalent acoustical scattering problem.
Fazi, Filippo Maria; Nelson, Philip A
2013-11-01
Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.
Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media
NASA Astrophysics Data System (ADS)
Baev, A. V.
2016-12-01
A three-dimensional inverse scattering problem for the acoustic wave equation is studied. The task is to determine the density and acoustic impedance of a medium. A necessary and sufficient condition for the unique solvability of this problem is established in the form of an energy conservation law. The interpretation of the solution to the inverse problem and the construction of medium images are discussed.
NASA Technical Reports Server (NTRS)
Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian
2011-01-01
We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.
Excised acoustic black holes: The scattering problem in the time domain
Cherubini, C.; Federici, F.; Tosi, M.P.; Succi, S.
2005-10-15
The scattering process of a dynamic perturbation impinging on a draining-tub model of an acoustic black hole is numerically solved in the time domain. Analogies with real black holes of general relativity are explored by using recently developed mathematical tools involving finite elements methods, excision techniques, and constrained evolution schemes for strongly hyperbolic systems. In particular it is shown that superradiant scattering of a quasimonochromatic wave packet can produce strong amplification of the signal, offering the possibility of a significant extraction of rotational energy at suitable values of the angular frequency of the vortex and of the central frequency of the wave packet. The results show that theoretical tools recently developed for gravitational waves can be brought to fruition in the study of other problems in which strong anisotropies are present.
Inverse acoustic scattering problem in half-space with anisotropic random impedance
NASA Astrophysics Data System (ADS)
Helin, Tapio; Lassas, Matti; Päivärinta, Lassi
2017-02-01
We study an inverse acoustic scattering problem in half-space with a probabilistic impedance boundary value condition. The Robin coefficient (surface impedance) is assumed to be a Gaussian random function with a pseudodifferential operator describing the covariance. We measure the amplitude of the backscattered field averaged over the frequency band and assume that the data is generated by a single realization of λ. Our main result is to show that under certain conditions the principal symbol of the covariance operator of λ is uniquely determined. Most importantly, no approximations are needed and we can solve the full non-linear inverse problem. We concentrate on anisotropic models for the principal symbol, which leads to the analysis of a novel anisotropic spherical Radon transform and its invertibility.
Malhotra, M.
1996-12-31
Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.
NASA Astrophysics Data System (ADS)
Fatone, Lorella; Recchioni, Maria Cristina; Zirilli, Francesco
2006-05-01
In this paper we propose a highly parallelizable numerical method for time dependent acoustic scattering problems involving realistic smart obstacles hit by incoming waves having wavelengths small compared with the characteristic dimension of the obstacles. A smart obstacle is an obstacle that when hit by an incoming wave tries to pursue a goal circulating on its boundary a pressure current. In particular we consider obstacles whose goal is to be undetectable and we refer to them as furtive obstacles. These scattering problems are modelled as optimal control problems for the wave equation. We validate the method proposed to solve the optimal control problem considered on some test problems where a "smart" simplified version of the NASA space shuttle is hit by incoming waves with small wavelengths compared to its characteristic dimension. That is we consider test problems with ratio between the characteristic dimension of the obstacle and wavelength of the time harmonic component of the incoming wave up to approximately one hundred. The website: http://www.econ.univpm.it/recchioni/w14 contains animations and virtual reality applications showing some numerical experiments relative to the problems studied in this paper.
NASA Astrophysics Data System (ADS)
Amamou, Manel L.
2016-05-01
This paper develops an analytical solution for sound, electromagnetic or any other wave propagation described by the Helmholtz equation in three-dimensional case. First, a theoretical investigation based on multipole expansion method and spherical wave functions was established, through which we show that the resolution of the problem is reduced to solving an infinite, complex and large linear system. Second, we explain how to suitably truncate the last infinite dimensional system to get an accurate stable and fast numerical solution of the problem. Then, we evaluate numerically the theoretical solution of scattering problem by multiple ideal rigid spheres. Finally, we made a numerical study to present the "Head related transfer function" with respect to different physical and geometrical parameters of the problem.
NASA Astrophysics Data System (ADS)
Hetmaniuk, Ulrich Ladislas
Fast solvers are often designed for problems posed on simple domains. Unfortunately, engineering applications deal with arbitrary domains. To allow the use of fast solvers, fictitious domain methods have been developed. They usually define an auxiliary problem on a rectangle or a parallelepiped. In aerospace and military applications, many scatterers are composed of one major axisymmetric component and a few features. Therefore, the aim of this thesis is to define, for the scattering of acoustic waves, fictitious domain methods which exploit such local axisymmetry. The original exterior problem is first approximated by introducing an absorbing boundary condition on an artificial boundary. A family of absorbing conditions is reviewed. For some simple scatterers, numerical experiments on the position of the artificial boundary reveal that the error induced by the absorbing condition is bounded, as the wave number increases, when the artificial boundary is fixed. Then, for a class of partially axisymmetric scatterers, the truncated computational domain is embedded into an axisymmetric domain. Helmholtz problems are formulated inside this axisymmetric domain and inside each feature. Lagrange multipliers are introduced at the interfaces between the features and the axisymmetric domain to enforce a set of carefully constructed constraints. This formulation is analyzed at the continuous level and is shown to be equivalent to the original one. For the Helmholtz equation defined over the axisymmetric domain, the solution is approximated by truncated Fourier series and finite elements. Properties of this discretization method for the Helmholtz equation are also analyzed on a two-dimensional model problem. Numerical experiments are performed to illustrate the analytical results. For the auxiliary problem inside each feature, classical finite elements are used to approximate the solution. The constraints are enforced pointwise. The resulting algebraic system is solved either
Acoustic scattering on spheroidal shapes near boundaries
NASA Astrophysics Data System (ADS)
Miloh, Touvia
2016-11-01
A new expression for the Lamé product of prolate spheroidal wave functions is presented in terms of a distribution of multipoles along the axis of the spheroid between its foci (generalizing a corresponding theorem for spheroidal harmonics). Such an "ultimate" singularity system can be effectively used for solving various linear boundary-value problems governed by the Helmholtz equation involving prolate spheroidal bodies near planar or other boundaries. The general methodology is formally demonstrated for the axisymmetric acoustic scattering problem of a rigid (hard) spheroid placed near a hard/soft wall or inside a cylindrical duct under an axial incidence of a plane acoustic wave.
Low frequency acoustic and electromagnetic scattering
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Maccamy, R. C.
1983-01-01
This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k(2) log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.
Low frequency acoustic and electromagnetic scattering
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Maccamy, R. C.
1986-01-01
This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k/2/ log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.
Scattering of Acoustic Waves from Ocean Boundaries
2014-09-30
derived reflection coefficients as a function of range along the reverberation track (right). RESULTS Analysis of Acoustic Scattering for Layered and... acoustic interaction with the ocean floor, including penetration through and reflection from smooth and rough water/sediment interfaces, scattering ...can account for the all of the physical processes and variability of acoustic propagation and scattering in ocean environments with special emphasis
Novel Acoustic Scattering Processes for Target Discrimination
2007-09-30
acoustic signal using algorithms originally developed for high-frequency acoustical holography [11]. Data is only acquired by scanning a hydrophone ...by the application of a back-propagation algorithm based on the methods of acoustic holography . Selected results relevant to the interpretation of...Novel Acoustic Scattering Processes for Target Discrimination Philip L. Marston Physics and Astronomy Dept., Washington State University, Pullman
Classical problems in computational aero-acoustics
NASA Technical Reports Server (NTRS)
Hardin, Jay C.
1996-01-01
In relation to the expected problems in the development of computational aeroacoustics (CAA), the preliminary applications were to classical problems where the known analytical solutions could be used to validate the numerical results. Such comparisons were used to overcome the numerical problems inherent in these calculations. Comparisons were made between the various numerical approaches to the problems such as direct simulations, acoustic analogies and acoustic/viscous splitting techniques. The aim was to demonstrate the applicability of CAA as a tool in the same class as computational fluid dynamics. The scattering problems that occur are considered and simple sources are discussed.
Acoustic Scattering Models of Zooplankton and Microstructures
1998-09-30
Acoustic Scattering Models of Zooplankton and Microstructure Timothy K. Stanton Department of Applied Ocean Physics and Engineering Woods Hole...understand the acoustic reverberation properties of zooplankton and microstructure. The results will lead to improved capability in 1) predicting sonar...performance and 2) use of sonars in the mapping of the zooplankton and microstructure. OBJECTIVES To understand the physics of the scattering by
Acoustic Scattering Models of Zooplankton and Microstructure
1998-09-30
Acoustic Scattering Models of Zooplankton and Microstructure Timothy K. Stanton Department of Applied Ocean Physics and Engineering Woods Hole...understand the acoustic reverberation properties of zooplankton and microstructure. The results will lead to improved capability in 1) predicting sonar...performance and 2) use of sonars in the mapping of the zooplankton and microstructure. OBJECTIVES To understand the physics of the scattering by
Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles.
1983-06-01
AD-A129 282 NONLINEAR SCATTERING OF ACOUSTIC WAVES BY VIBRATING OBSTACLES (U) NAVAL RESEARCH LAR WASHINOTON DC d C PIQUETTE 01 JUN 83 NRL-MR-5077...MICROCOPY RESOLUTION TEST CHART NAIOAL IBtJ[IAU Of S1ANDARD~If A3 NRL Memorandum Report 5077 Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles ... Obstacles continuing problem. S. PERFORMING ORG. REPORT NUMMER 7. AUTHOR(s) 6. CONTRACT OR GRANT NUMIISER( ) Jean C. Piquette* S. PERFORMING
Homentcovschi, Dorel; Miles, Ronald N.
2010-01-01
The paper gives a new method for analyzing planar discontinuities in rectangular waveguides. The method consists of a re-expansion of the normal modes in the two ducts at the junction plane into a system of functions accounting for the velocity singularities at the corner points. As the new expansion has an exponential convergence, only a few terms have to be considered for obtaining the solution of most practical problems. To see how the method works some closed form solutions, obtained by the conformal mapping method, are used to discuss the convergence of the re-expanded series when the number of retained terms increases. The equivalent impedance accounting for nonplanar waves into a plane-wave analysis is determined. Finally, the paper yields the scattering matrix which describes the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both parts of the duct. PMID:20707432
Acoustic scattering by a modified Werner method
Ravel; Trad
2000-02-01
A modified integral Werner method is used to calculate pressure scattered by an axisymmetric body immersed in a perfect and compressible fluid subject to a harmonic acoustic field. This integral representation is built as the sum of a potential of a simple layer and a potential of volume. It is equivalent to the exterior Helmholtz problem with Neumann boundary condition for all real wave numbers of the incident acoustic field. For elastic structure scattering problems, the modified Werner method is coupled with an elastodynamic integral formulation in order to account for the elastic contribution of the displacement field at the fluid/structure interface. The resulting system of integral equations is solved by the collocation method with a quadratic interpolation. The introduction of a weighting factor in the modified Werner method decreases the number of volume elements necessary for a good convergence of results. This approach becomes very competitive when it is compared with other integral methods that are valid for all wave numbers. A numerical comparison with an experiment on a tungsten carbide end-capped cylinder allows a glimpse of the interesting possibilities for using the coupling of the modified Werner method and the integral elastodynamic equation used in this research.
1988-07-01
in Non- linear Acoustics," J. Acoust. Soc. Am. 83, 74-77 (1988). 3 M. F. Hamilton and J. A. TenCate , "Finite Amplitude Sound near Cutoff in Higher...Tjottas and Darvennes have motivated experi- mental work by J. A. TenCate at ARL:UT. The experimental work receives partial support 3 from ONR Contract...88 (Purdue University, Indiana, 1988), pp. 193-198. [17] M. F. Hamilton and J. A. TenCate , "Sum and Difference Frequency Generation due to
Shape recognition of acoustic scatterers using the singularity expansion method
NASA Astrophysics Data System (ADS)
Cao, Pei; Wu, Jiu Hui
2017-03-01
Acoustic target recognition for two-dimensional (2D) acoustic scatterers is investigated using the singularity expansion method (SEM). Based on the Watson transformation series of the scattering field, the SEM poles can be calculated and their physical interpretation given, along with the exact normal mode for any acoustic scattering problem. Typical oscillatory phenomena appear as a series of damped sinusoidal signals in the time domain and as a standing-wave distribution in the space. These external oscillation modes are associated with the SEM poles. We note that the positions of these poles in the complex frequency plane are uniquely determined by the shape and flexible characteristics of the target regardless of the waveforms and positions of the incident signals. We then infer that SEM poles can be used as the characteristic parameters for target shape recognition. The relationship between the positions of SEM poles and the geometrical characters of 2D scatterers has been established not only for cylinders but also for other general 2D scatterers. The new method and the related calculation results provide an effective way to perform shape recognition using an acoustic scattering field, with potential applications in non-destructive testing and acoustic imaging.
Acoustic Scattering from Compact Bubble Clouds.
NASA Astrophysics Data System (ADS)
Schindall, Jeffrey Alan
In this study, a simple model describing the low -frequency scattering properties of high void fraction bubble clouds in both the free field and near the ocean surface is developed. This model, which is based on an effective medium approximation and acoustically compact scatters, successfully predicts the results of the bubble cloud scattering experiment carried out at Lake Seneca in New York state for frequencies consistent with the model assumptions (Roy et al., 1992). The introduction of the surface is facilitated by the method of images and is subject to the same constraint of low-acoustic frequency imposed by the compact scatterer assumption. This model is not intended to serve as an exact replicate of oceanic bubble cloud scattering. The model herein was kept simple by design, for only then can the complex physical behavior be expressed in a simple analytical form. Simple, analytic theories facilitate the exploration of parameter space, and more importantly serve to illuminate the underlying physics.
Acoustic Scattering Models of Zooplankton and Microstructure
1999-09-30
Acoustic Scattering Models of Zooplankton and Microstructure Timothy K. Stanton Department of Applied Ocean Physics and Engineering Woods Hole...LONG-TERM GOALS To understand the acoustic reverberation properties of zooplankton and microstructure. The results will lead to improved capability...in 1) predicting sonar performance and 2) use of sonars in the mapping of the zooplankton and microstructure. OBJECTIVES To understand the physics of
The acoustic field scattered from some approximate pressure release materials
NASA Astrophysics Data System (ADS)
Caille, Gary W.
1988-03-01
The objective was to determine if a pressure release boundary condition can be achieved by coating an elastic shell with a visco-elastic material. One necessary condition is that the coating must acoustically decouple the shell from the scattering problem. Two closed cell rubbers and two cork-rubber composites (nitrile and neoprene based) were investigated. The dynamic viscoelastic constants of the materials were determined by wave propagation techniques. The far field scattering form functions for an infinite cylindrical shell coated with the viscoelastic material were calculated using the complete elastic equations of motion. The form functions were experimentally measured for the different materials at different thicknesses as verification of the theory. A thick finite right cylindrical shell was coated with .25 inches of closed cell neoprene and the normalized scattered pressure measured. The pressure release normalized scattered pressure was determined for the end on incident plane wave case using the acoustic radiation Simplified Helmholtz Integral Program (SHIP).
Inverse acoustic scattering by small-obstacle expansion of a misfit function
NASA Astrophysics Data System (ADS)
Bonnet, Marc
2008-06-01
This paper concerns an extension of the topological derivative concept for 3D inverse acoustic scattering problems, whereby the featured cost function J is expanded in powers of the characteristic size ɛ of a sound-hard scatterer about ɛ = 0. The O(ɛ6) approximation of J is established for a small scatterer of arbitrary shape of given location embedded in an arbitrary acoustic domain, and generalized to several such scatterers. Simpler and more explicit versions of this result are obtained for a centrally-symmetric scatterer and a spherical scatterer. An approximate and computationally fast global search procedure is proposed, where the location and size of the unknown scatterer is estimated by minimizing the O(ɛ6) approximation of J over a search grid. Its usefulness is demonstrated on numerical experiments, where the identification of a spherical, ellipsoidal or banana-shaped scatterer embedded in a acoustic half-space from known acoustic pressure on the surface is considered.
Boundary element solution for periodic acoustic problems
NASA Astrophysics Data System (ADS)
Karimi, M.; Croaker, P.; Kessissoglou, N.
2016-01-01
This work shows when using the boundary element method to solve 3D acoustic scattering problems from periodic structures, the coefficient matrix can be represented as a block Toeplitz matrix. By exploiting the Toeplitz structure, the computational time and storage requirements to construct the coefficient matrix are significantly reduced. To solve the linear system of equations, the original matrix is embedded into a larger and more structured matrix called the block circulant matrix. Discrete Fourier transform is then employed in an iterative algorithm to solve the block Toeplitz system. To demonstrate the effectiveness of the formulation for periodic acoustic problems, two exterior acoustic case studies are considered. The first case study examines a continuous structure to predict the noise generated by a sharp-edged flat plate under quadrupole excitation. Directivity plots obtained using the periodic boundary element method technique are compared with numerical results obtained using a conventional boundary element model. The second case study examines a discrete periodic structure to predict the acoustic performance of a sonic crystal noise barrier. Results for the barrier insertion loss are compared with both finite element results and available data in the literature.
Acoustic multiple scattering using recursive algorithms
NASA Astrophysics Data System (ADS)
Amirkulova, Feruza A.; Norris, Andrew N.
2015-10-01
Acoustic multiple scattering by a cluster of cylinders in an acoustic medium is considered. A fast recursive technique is described which takes advantage of the multilevel Block Toeplitz structure of the linear system. A parallelization technique is described that enables efficient application of the proposed recursive algorithm for solving multilevel Block Toeplitz systems on high performance computer clusters. Numerical comparisons of CPU time and total elapsed time taken to solve the linear system using the direct LAPACK and TOEPLITZ libraries on Intel FORTRAN, show the advantage of the TOEPLITZ solver. Computations are optimized by multi-threading which displays improved efficiency of the TOEPLITZ solver with the increase of the number of scatterers and frequency.
An invariance theorem in acoustic scattering theory
NASA Astrophysics Data System (ADS)
Ha-Duong, T.
1996-10-01
Karp's theorem states that if the far-field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle is invariant under the group of orthogonal transformations in 0266-5611/12/5/007/img1 (rotations in 0266-5611/12/5/007/img2), then the scatterer is a sphere (circle). The theorem is generalized to the case where the invariant group of the far field pattern is only a subgroup of the orthogonal group, and for a class of mixed boundary conditions.
Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers
2014-09-30
acoustic multiple scattering from two- and now three-dimensional aggregations of omni-directional point scatterers to determine the parametric realms in...given by the sum in (1), N is the number of scatterers , gn is the scattering coefficient of the nth scatterer , ψn(rn) is the field incident on the nth...SUBTITLE Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Acoustic asymmetric transmission based on time-dependent dynamical scattering
NASA Astrophysics Data System (ADS)
Wang, Qing; Yang, Yang; Ni, Xu; Xu, Ye-Long; Sun, Xiao-Chen; Chen, Ze-Guo; Feng, Liang; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng
2015-06-01
An acoustic asymmetric transmission device exhibiting unidirectional transmission property for acoustic waves is extremely desirable in many practical scenarios. Such a unique property may be realized in various configurations utilizing acoustic Zeeman effects in moving media as well as frequency-conversion in passive nonlinear acoustic systems and in active acoustic systems. Here we demonstrate a new acoustic frequency conversion process in a time-varying system, consisting of a rotating blade and the surrounding air. The scattered acoustic waves from this time-varying system experience frequency shifts, which are linearly dependent on the blade’s rotating frequency. Such scattering mechanism can be well described theoretically by an acoustic linear time-varying perturbation theory. Combining such time-varying scattering effects with highly efficient acoustic filtering, we successfully develop a tunable acoustic unidirectional device with 20 dB power transmission contrast ratio between two counter propagation directions at audible frequencies.
Acoustic asymmetric transmission based on time-dependent dynamical scattering
Wang, Qing; Yang, Yang; Ni, Xu; Xu, Ye-Long; Sun, Xiao-Chen; Chen, Ze-Guo; Feng, Liang; Liu, Xiao-ping; Lu, Ming-Hui; Chen, Yan-Feng
2015-01-01
An acoustic asymmetric transmission device exhibiting unidirectional transmission property for acoustic waves is extremely desirable in many practical scenarios. Such a unique property may be realized in various configurations utilizing acoustic Zeeman effects in moving media as well as frequency-conversion in passive nonlinear acoustic systems and in active acoustic systems. Here we demonstrate a new acoustic frequency conversion process in a time-varying system, consisting of a rotating blade and the surrounding air. The scattered acoustic waves from this time-varying system experience frequency shifts, which are linearly dependent on the blade’s rotating frequency. Such scattering mechanism can be well described theoretically by an acoustic linear time-varying perturbation theory. Combining such time-varying scattering effects with highly efficient acoustic filtering, we successfully develop a tunable acoustic unidirectional device with 20 dB power transmission contrast ratio between two counter propagation directions at audible frequencies. PMID:26038886
Acoustic Scattering in Flexible Waveguide Involving Step Discontinuity
Afzal, Muhammad; Nawaz, Rab; Ayub, Muhammad; Wahab, Abdul
2014-01-01
In this paper, the propagation and scattering of acoustic waves in a flexible wave-guide involving step discontinuity at an interface is considered. The emerging boundary value problem is non-Sturm-Liouville and is solved by employing a hybrid mode-matching technique. The physical scattering process and attenuation of duct modes versus frequency regime and change of height is studied. Moreover, the mode-matching solution is validated through a series of numerical experiments by testifying the power conservation identity and matching interface conditions. PMID:25084019
Numerical solution of acoustic scattering by finite perforated elastic plates
NASA Astrophysics Data System (ADS)
Cavalieri, A. V. G.; Wolf, W. R.; Jaworski, J. W.
2016-04-01
We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates.
Experimental Demonstration of Underwater Acoustic Scattering Cancellation
Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.
2015-01-01
We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85. PMID:26282067
Experimental Demonstration of Underwater Acoustic Scattering Cancellation
NASA Astrophysics Data System (ADS)
Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.
2015-08-01
We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85.
Transformational Acoustics Applied to Scattering from a Thin Elastic Shell
2011-06-01
invariant form.” New Journal of Physics, 8 (248), 2006. [6] H. Chen and C. T. Chan. “ Acoustic cloaking in three dimensions using acoustic metamaterials ...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS TRANSFORMATIONAL ACOUSTICS APPLIED TO SCATTERING FROM A THIN ELASTIC SHELL by Ana Margarida R...Prescribed by ANSI Std. Z39.18 22–6–2011 Master’s Thesis 2102-06-01—2104-10-31 Transformational Acoustics Applied to Scattering From a Thin Elastic
Nonlinear ion acoustic waves scattered by vortexes
NASA Astrophysics Data System (ADS)
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
Flow velocity measurement with the nonlinear acoustic wave scattering
Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay
2015-10-28
A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.
Acoustic scattering from ellipses by the modal element method
NASA Technical Reports Server (NTRS)
Kreider, Kevin L.; Baumeister, Kenneth J.
1995-01-01
The modal element method is used to study acoustic scattering from ellipses, which may be acoustically soft (absorbing) or hard (reflecting). Because exact solutions are available, the results provide a benchmark for algorithm performance for scattering from airfoils and similar shapes. Numerical results for scattering from rigid ellipses are presented for a wide variety of eccentricities at moderate frequencies. These results indicate that the method is practical.
Acoustic-structure interaction problems. Final report
Love, E.; Taylor, R.L.
1993-12-01
The purpose of this report is to compare and evaluate different numerical methods for solving problems of interaction between elastic solids and acoustic fluids. In particular, we concentrate our efforts on solution techniques involving the finite element method. To that end, in Chapter 2 we discuss different options for analysis of infinite fluids. In particular, the method of mesh trunction and the use of radiation elements and the use of infinite elements are discussed. Also discussed is the analysis of scattering from rigid boundaries. Chapter 3 is a brief discussion of finite element formulations for elastic solids. We review the development, of two dimensional plane strain elements and one dimensional plate and shell elements. In Chapter 4, there is a discussion of the method used to couple the solid and the fluid. We give examples for solution of scattering of pressure waves from thin elastic shell structures. Chapter 5 is a brief conclusion of results and includes recommendations for the best methods of solution and additional research.
Novel Acoustic Scattering Processes for Target Discrimination
2006-09-30
based on acoustic holography algorithms): It has been possible to form images from data acquired as noted in item (2) by the application of a back...propagation algorithm based on the methods of acoustic holography . Selected results relevant to the interpretation of Bistatic SAS images are noted...to back-propagate the sampled acoustic signal using algorithms originally developed for high-frequency acoustical holography [10]. Data is only
Multiscale analysis of the acoustic scattering by many scatterers of impedance type
NASA Astrophysics Data System (ADS)
Challa, Durga Prasad; Sini, Mourad
2016-06-01
We are concerned with the acoustic scattering problem, at a frequency {κ}, by many small obstacles of arbitrary shapes with impedance boundary condition. These scatterers are assumed to be included in a bounded domain {Ω} in {{R}^3} which is embedded in an acoustic background characterized by an eventually locally varying index of refraction. The collection of the scatterers {D_m, m=1,ldots,M} is modeled by four parameters: their number M, their maximum radius a, their minimum distance d and the surface impedances {λ_m, m=1,ldots,M}. We consider the parameters M, d and {λ_m}'s having the following scaling properties: {M:=M(a)=O(a^{-s}), d:=d(a)≈ a^t} and {λ_m:=λ_m(a)=λ_{m,0}a^{-β}}, as {a→ 0}, with non negative constants s, t and {β} and complex numbers {λ_{m, 0}}'s with eventually negative imaginary parts. We derive the asymptotic expansion of the far-fields with explicit error estimate in terms of a, as {a→ 0}. The dominant term is the Foldy-Lax field corresponding to the scattering by the point-like scatterers located at the centers {z_m}'s of the scatterers {D_m}'s with {λ_m \\vert partial D_m\\vert} as the related scattering coefficients. This asymptotic expansion is justified under the following conditions a ≤ a_0, \\vert Re (λ_{m,0})\\vert ≥ λ_-,quad \\vertλ_{m,0}\\vert ≤ λ_+,quad β < 1,quad 0 ≤ s ≤2-β,quads/3 ≤ t and the error of the approximation is {C a^{3-2β-s}}, as {a → 0}, where the positive constants {a_0, λ_-,λ_+} and C depend only on the a priori uniform bounds of the Lipschitz characters of the obstacles {D_m}'s and the ones of {M(a)a^s} and {d(a)/a^t}. We do not assume the periodicity in distributing the small scatterers. In addition, the scatterers can be arbitrary close since t can be arbitrary large, i.e., we can handle the mesoscale regime. Finally, for spherical scatterers, we can also allow the limit case {β=1} with a slightly better error of the approximation.
Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers
2015-09-30
an aggregation of omnidirectional point scatterers [1]. If ψ(r) is the harmonic acoustic pressure field at frequency ω at the point r and ψ0(r) is...the harmonic field incident on the aggregation of scatterers located at rn, then , (1) where ψ(r) is the
Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation.
Zhang, Yuning; Li, Shengcai
2015-09-01
The acoustical scattering cross section is a paramount parameter determining the scattering ability of cavitation bubbles when they are excited by the incident acoustic waves. This parameter is strongly related with many important applications of acoustic cavitation including facilitating the reaction of chemical process, boosting bubble sonoluminescence, and performing non-invasive therapy and drug delivery. In present paper, both the analytical and numerical solutions of acoustical scattering cross section of gas bubbles under dual-frequency excitation are obtained. The validity of the analytical solution is shown with demonstrating examples. The nonlinear characteristics (e.g., harmonics, subharmonics and ultraharmonics) of the scattering cross section curve under dual-frequency approach are investigated. Compared with single-frequency approach, the dual-frequency approach displays more resonances termed as "combination resonances" and could promote the acoustical scattering cross section significantly within a much broader range of bubble sizes due to the generation of more resonances. The influence of several paramount parameters (e.g., acoustic pressure amplitude, power allocations between two acoustic components, and the ratio of the frequencies) in the dual-frequency system on the predictions of scattering cross section has been discussed.
Cancellation of acoustic scattering from an elastic sphere.
Guild, Matthew D; Alù, Andrea; Haberman, Michael R
2011-03-01
Recent research has suggested the possibility of creating acoustic cloaks using metamaterial layers to eliminate the acoustic field scattered from an elastic object. This paper explores the possibility of applying the scattering cancellation cloaking technique to acoustic waves and the use of this method to investigate its effectiveness in cloaking elastic and fluid spheres using only a single isotropic elastic layer. Parametric studies showing the influence of cloak stiffness and geometry on the frequency dependent scattering cross-section of spheres have been developed to explore the design space of the cloaking layer. This analysis shows that an appropriately designed single isotropic elastic cloaking layer can provide up to 30 dB of scattering reduction for ka values up to 1.6. This work also illustrates the importance of accounting for the elasticity of the object and the relevant limitations of simplistic quasi-static analyses proposed in recent papers.
3-D Acoustic Scattering from 2-D Rough Surfaces Using A Parabolic Equation Model
2013-12-01
acoustic propagation signals, especially at mid- frequencies and higher (e.g., acoustic communications systems). For many years, the effects of rough...of the effect of surface scattering on 3-D propagation , which is critical in evaluating the variability in underwater acoustic propagation . Results...14. SUBJECT TERMS Acoustic Propagation , Acoustic Scattering, Sea Surface Perturbations, Split- Step Fourier Algorithm, Finite Difference Algorithm
Acoustic scattering reduction using layers of elastic materials
NASA Astrophysics Data System (ADS)
Dutrion, Cécile; Simon, Frank
2017-02-01
Making an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles. These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This paper examines the possibility of designing an acoustic cloak using a bi-layer elastic cylindrical shell to eliminate the acoustic field scattered from a rigid cylinder hit by plane waves. This field depends on the dimensional and mechanical characteristics of the elastic layers. It is computed by a semi-analytical code modelling the vibrations of the coating under plane wave excitation. Optimization by genetic algorithm is performed to determine the characteristics of a bi-layer material minimizing the scattering. Considering an external fluid consisting of air, realistic configurations of elastic coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or over a larger frequency band.
The integrated extinction for broadband scattering of acoustic waves.
Sohl, Christian; Gustafsson, Mats; Kristensson, Gerhard
2007-12-01
In this paper, physical bounds on scattering of acoustic waves over a frequency interval are discussed based on the holomorphic properties of the scattering amplitude in the forward direction. The result is given by a dispersion relation for the extinction cross section which yields an upper bound on the product of the extinction cross section and the associated bandwidth of any frequency interval. The upper bound is shown to depend only on the geometry and the material properties of the scatterer in the static or low-frequency limit. The results are exemplified by permeable and impermeable scatterers with homogeneous and isotropic material properties.
On the scattering of an acoustic plane wave by a soft prolate spheroid
NASA Astrophysics Data System (ADS)
Borromeo, Joseph Michael
This thesis solves the scattering problem in which an acoustic plane wave of propagation number K1 is scattered by a soft prolate spheroid. The interior field of the scatterer is characterized by a propagation number K2, while the field radiated by the scatterer is characterized by the propagation number K3. The three fields and their normal derivatives satisfy boundary conditions at the surface of the scatterer. These boundary conditions involve six complex parameters depending on the propagation numbers. The scattered wave also satisfies the Sommerfeld radiation condition at infinity. Through analytical methods, series representations are constructed for the interior field and scattered field for an arbitrary sphere and a prolate spheroid. In addition, results for the reciprocity relations and Energy theorem are derived. Application to detection of whales and submarines are discussed, as well as classification of fish, squid and zoo plankton. In general Ref[ ] is used for reference and the work is done in three dimensions.
Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter
Strozzi, D J; Williams, E A; Langdon, A B; Bers, A
2006-09-01
1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73, 025401 (2006)]. For the first time, a low phase velocity electron acoustic wave (EAW) is seen developing from the self-consistent Raman physics. Backscatter of the pump laser off the EAW fluctuations is reported and referred to as electron acoustic Thomson scatter. This light is similar in wavelength to, although much lower in amplitude than, the reflected light between the pump and SRBS wavelengths observed in single hot spot experiments, and previously interpreted as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001)]. The EAW observed in our simulations is strongest well below the phase-matched frequency for electron acoustic scatter, and therefore the EAW is not produced by it. The beating of different beam acoustic modes is proposed as the EAW excitation mechanism, and is called beam acoustic decay. Supporting evidence for this process, including bispectral analysis, is presented. The linear electrostatic modes, found by projecting the numerical distribution function onto a Gauss-Hermite basis, include beam acoustic modes (some of which are unstable even without parametric coupling to light waves) and a strongly-damped EAW similar to the observed one. This linear EAW results from non-Maxwellian features in the electron distribution, rather than nonlinearity due to electron trapping.
Scattering of Acoustic Waves from Ocean Boundaries
2015-09-30
of buried mines and improve SONAR performance in shallow water. OBJECTIVES 1) Determination of the correct physical model of acoustic propagation...Measurements for Range Dependent Geoacoustic Parameters: Bottom loss data from 5 – 30 kHz were collected as part of the Target and Reverberation Experiment...2013 (TREX13). These data were analyzed and range dependent geoacoustic parameters were derived for the TREX reverberation site including bottom loss
High frequency acoustic wave scattering from turbulent premixed flames
NASA Astrophysics Data System (ADS)
Narra, Venkateswarlu
This thesis describes an experimental investigation of high frequency acoustic wave scattering from turbulent premixed flames. The objective of this work was to characterize the scattered incoherent acoustic field and determine its parametric dependence on frequency, flame brush thickness, incident and measurement angles, mean velocity and flame speed. The experimental facility consists of a slot burner with a flat flame sheet that is approximately 15 cm wide and 12 cm tall. The baseline cold flow characteristics and flame sheet statistics were extensively characterized. Studies were performed over a wide range of frequencies (1-24 kHz) in order to characterize the role of the incident acoustic wave length. The spectrum of the scattered acoustic field showed distinct incoherent spectral sidebands on either side of the driving frequency. The scattered incoherent field was characterized in terms of the incoherent field strength and spectral bandwidth and related to the theoretical predictions. The role of the flame front wrinkling scale, i.e., flame brush thickness, was also studied. Flame brush thickness was varied independent of the mean velocity and flame speed by using a variable turbulence generator. Results are reported for five flame brush thickness cases, ranging from 1.2 mm to 5.2 mm. Some dependence of scattered field characteristics on flame brush thickness was observed, but the magnitude of the effect was much smaller than expected from theoretical considerations. The spatial dependence of the scattered field was investigated by measuring the scattered field at four measurement angles and exciting the flame at four incident angles. Theory predicts that these variations influence the spatial scale of the acoustic wave normal to the flame, a result confirmed by the measurements. Measurements were performed for multiple combinations of mean velocities and flame speeds. The scattered field was observed to depend strongly on the flame speed. Further analysis
Solving multiple scattering problems in planetary atmospheres
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Lenoble, J.
1974-01-01
Multiple scattering problems, radiative transfer problems in planetary atmospheres within extended visible portion of the spectrum, are examined. The direct and inverse problems and the extinction coefficient are defined, along with other scattering characteristics. Albedos in semi-infinite and finite atmospheres are considered, as well as surface illumination, energy deposition, and polarization. The Eddington approximation figures prominently in the calculations. Precise numerical methods and analytical solutions are included.
Scattering of acoustic duct modes by axial liner splices
NASA Astrophysics Data System (ADS)
Tam, Christopher K. W.; Ju, Hongbin; Chien, Eugene W.
2008-03-01
Recent engine test data and results of computational analysis show that the engine inlet acoustic liner splices have a significant impact on aircraft flight noise certification and cabin noise levels. The phenomenon of scattering of acoustic duct modes by axial liner splices is investigated. Previous studies, invariably, follow the frequency-domain approach. The present study, however, uses the time-domain approach. It is demonstrated that time-domain computation yields results that are in close agreement with frequency-domain results. The scattering phenomenon under consideration is very complex. This study concentrates on the effects of four parameters. They are the width of the splices, the frequency of the incident duct mode, the number of splices and the length of splices. Based on the computed results, the conditions under which scattered wave modes would significantly increase the intensity of transmitted waves are identified. It is also found that surface scattering by liner splices has the tendency to distribute energy equally to all the cut-on scattered azimuthal modes. On the other hand, for each scattered azimuthal mode, the high-order cut-on radial mode, generally, has the highest intensity. Moreover, scattering by liner splices is a local phenomenon. It is confined primarily to an area of the duct adjacent to the junction between the hard wall near the fan face and the spliced liner.
Acoustic scattering for 3D multi-directional periodic structures using the boundary element method.
Karimi, Mahmoud; Croaker, Paul; Kessissoglou, Nicole
2017-01-01
An efficient boundary element formulation is proposed to solve three-dimensional exterior acoustic scattering problems with multi-directional periodicity. The multi-directional periodic acoustic problem is represented as a multilevel block Toeplitz matrix. By exploiting the Toeplitz structure, the computational time and storage requirements to construct and to solve the linear system of equations arising from the boundary element formulation are significantly reduced. The generalized minimal residual method is implemented to solve the linear system of equations. To efficiently calculate the matrix-vector product in the iterative algorithm, the original matrix is embedded into a multilevel block circulant matrix. A multi-dimensional discrete Fourier transform is then employed to accelerate the matrix-vector product. The proposed approach is applicable to a periodic acoustic problem for any arbitrary shape of the structure in both full space and half space. Two case studies involving sonic crystal barriers are presented. In the first case study, a sonic crystal barrier comprising rigid cylindrical scatterers is modeled. To demonstrate the effectiveness of the proposed technique, periodicity in one, two, or three directions is examined. In the second case study, the acoustic performance of a sonic crystal barrier with locally resonant C-shaped scatterers is studied.
A meshless method for unbounded acoustic problems.
Shojaei, Arman; Boroomand, Bijan; Soleimanifar, Ehsan
2016-05-01
In this paper an effective meshless method is proposed to solve time-harmonic acoustic problems defined on unbounded domains. To this end, the near field is discretized by a set of nodes and the far field effect is taken into account by considering radiative boundary conditions. The approximation within the near field is performed using a set of local residual-free basis functions defined on a series of finite clouds. For considering the far field effect, a series of infinite clouds are defined on which another set of residual-free bases, satisfying the radiation conditions, are considered for the approximation. Validation of the results is performed through solving some acoustic problems.
Quantum corral resonance widths: lossy scattering as acoustics.
Barr, Matthew C; Zaletel, Michael P; Heller, Eric J
2010-09-08
We present an approach to predicting extrinsic electron resonance widths within quantum corral nanostructures based on analogies with acoustics. Established quantum mechanical methods for calculating resonance widths, such as multiple scattering theory, build up the scattering atom by atom, ignoring the structure formed by the atoms, such as walls or enclosures. Conversely, particle-in-a-box models, assuming continuous walls, have long been successful in predicting quantum corral energy levels, but not resonance widths. In acoustics, partial reflection from walls and various enclosures has long been incorporated for determining reverberation times. Pursuing an exact analogy between the local density of states of a quantum corral and the acoustic impedance of a concert hall, we show electron lifetimes in nanoscopic structures of arbitrary convex shape are well accounted for by the Sabine formula for acoustic reverberation times. This provides a particularly compact and intuitive prescription for extrinsic finite lifetimes in a particle-in-a-box with leaky walls, including quantum corral atomic walls, given single particle scattering properties.
The scattering problem for nonlocal potentials
Zolotarev, V A
2014-11-30
We solve the direct and inverse scattering problems for integro-differential operators which are one-dimensional perturbations of the self-adjoint second derivative operator on the half-axis. We also describe the scattering data for this class of operators. Bibliography: 28 titles.
Scattering of Acoustic Waves from Ocean Boundaries
2012-09-30
environments with special emphasis on propagation in shallow water waveguides and scattering from ocean sediments. 3 ) Development of the new experimental...it does not display a currently valid OMB control number. 1. REPORT DATE 2012 2. REPORT TYPE N/A 3 . DATES COVERED - 4. TITLE AND SUBTITLE...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 3 ) Incorporation of the Texas Advanced Computing Center for finite element analysis
Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements
NASA Astrophysics Data System (ADS)
Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui
2017-01-01
Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm‑1.
Acoustic scattering from mud volcanoes and carbonate mounds.
Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe
2006-12-01
Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
Agaltsov, A. D.; Novikov, R. G.
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers
2013-09-30
Figure 2 for a cubical aggregation with a five- wavelength edge, 256 to 1024 Monte - Carlo trials, = 3.5, and four different average scatterer spacings...ensemble average over Monte - Carlo trials. The central peak at ϕ = 0 for k0s = 3.2 and 2.5 is produced by coherent backscattering enhancement...were placed in a cubical aggregation with 5 wavelength edges. The ensemble average was computed from 256 to 1024 Monte - Carlo trials. The acoustic
Hierarchical optimization for neutron scattering problems
Bao, Feng; Archibald, Rick; Bansal, Dipanshu; ...
2016-03-14
In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.
Hierarchical optimization for neutron scattering problems
Bao, Feng; Archibald, Rick; Bansal, Dipanshu; Delaire, Olivier
2016-06-15
We present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.
Simulation of Acoustic Scattering from a Trailing Edge
NASA Technical Reports Server (NTRS)
Singer, Bart A.; Brentner, Kenneth S.; Lockhard, David P.; Lilley, Geoffrey M.
1999-01-01
Three model problems were examined to assess the difficulties involved in using a hybrid scheme coupling flow computation with the the Ffowcs Williams and Hawkings equation to predict noise generated by vortices passing over a sharp edge. The results indicate that the Ffowcs Williams and Hawkings equation correctly propagates the acoustic signals when provided with accurate flow information on the integration surface. The most difficult of the model problems investigated inviscid flow over a two-dimensional thin NACA airfoil with a blunt-body vortex generator positioned at 98 percent chord. Vortices rolled up downstream of the blunt body. The shed vortices possessed similarities to large coherent eddies in boundary layers. They interacted and occasionally paired as they convected past the sharp trailing edge of the airfoil. The calculations showed acoustic waves emanating from the airfoil trailing edge. Acoustic directivity and Mach number scaling are shown.
Axisymmetric acoustic scattering from submerged prolate spheroidal shells
NASA Astrophysics Data System (ADS)
Boisvert, Jeffrey E.; Hayek, Sabih I.
2005-09-01
The equations of motion for nonaxisymmetric vibration of prolate spheroidal shells of constant thickness were derived using Hamilton's principle [S. I. Hayek and J. E. Boisvert, J. Acoust. Soc. Am. 114, 2799-2811 (2003)]. The shell theory used in this derivation includes shear deformations and rotatory inertias. The shell displacements and rotations were expanded in infinite series of comparison functions. These include associated Legendre functions in terms of the prolate spheroidal angular coordinate and circular functions in the azimuthal angle coordinate. The shell is insonified by a plane wave incident along the major axis. The external (heavy) fluid loading impedance was computed using an eigenfunction expansion of prolate spheroidal wavefunctions. Far-field scattered acoustic pressure spectra are presented for several shell thickness-to-half-length ratios ranging from 0.005 to 0.1, and for various shape parameters, a, ranging from an elongated spheroidal shell (a=1.01) to a spherical shell (a~100). The far-field directivity of acoustic scattering is presented at selected frequencies. [Work supported by the ONR/ASEE Summer Faculty Research Program.
Light scattering from acoustic vibrational modes in confined structures
NASA Astrophysics Data System (ADS)
Bandhu, Rudra Shyam
The acoustic vibrational modes and their light scattering intensities in confined structures such as supported films, double layer free-standing membrane and sub-micron sized wires on a free-standing membrane have been studied using Brillouin Light Scattering (BLS). Standing wave type acoustic phonons were recently observed in supported thin films of silicon oxy-nitride. We build upon this finding to study the acoustic modes in thin zinc selenide (ZnSe) films on gallium arsenide (GaAs). The surprising behaviour of the Brillouin intensities of the standing wave modes in ZnSe are explained in terms of interference of the elasto-optic scattering amplitudes from the film and substrate. Numerical calculations of the scattering cross-section, which takes into account ripple and elasto-optic scattering mechanism, agrees well with the experimental data. Light scattering studies of standing wave type modes in free-standing polymethyl methacrylate (PMMA) layer on Si3N4 were carried out. In these bilayer structures PMMA is much softer than Si3N 4, a property that leads to confinement of low frequency modes associated with the PMMA layer to within its boundaries. In addition, the flexural and the dilatational modes from the Si3N4 layer are observed and are found to hybridize with the standing wave modes from the PMMA layer. Our study of phonon modes in PMMA wires supported on a free-standing Si3N4 membrane extends our work on free-standing double layer membranes. In recent years there is much interest in the study of phonon modes in nano-scale structures such as wires or dots. Although much theoretical work has been carried out in this direction, no experiments exist that explore the dispersion of the phonon modes in such structures. Brillouin Light scattering is ideally suited for studying phonons in such reduced dimensions and our work represents the first effort in this direction. The spectra reveal modes which are quantized both along the width, as well along the thickness
One dimensional acoustic direct nonlinear inversion using the Volterra inverse scattering series
NASA Astrophysics Data System (ADS)
Yao, Jie; Lesage, Anne-Cécile; Bodmann, Bernhard G.; Hussain, Fazle; Kouri, Donald J.
2014-06-01
Direct inversion of acoustic scattering problems is nonlinear. One way to treat the inverse scattering problem is based on the reversion of the Born-Neumann series solution of the Lippmann-Schwinger equation. An important issue for this approach is the radius of convergence of the Born-Neumann series for the forward problem. However, this issue can be tackled by employing a renormalization technique to transform the Lippmann-Schwinger equation from a Fredholm to a Volterra integral form. The Born series of a Volterra integral equation converges absolutely and uniformly in the entire complex plane. We present a further study of this new mathematical framework. A Volterra inverse scattering series (VISS) using both reflection and transmission data is derived and tested for several acoustic velocity models. For large velocity contrast, series summation techniques (e.g., Cesàro summation, Euler transform, etc) are employed to improve the rate of convergence of VISS. It is shown that the VISS method with summation techniques can provide a relatively good estimation of the velocity profile. The method is fully data-driven in the respect that no prior information of the model is required. Besides, no internal multiple removal is needed. This one dimensional VISS approach is useful for inverse scattering and serves as an important step for studying more complicated and realistic inversions.
Finite Element Prediction of Acoustic Scattering and Radiation from Submerged Elastic Structures
NASA Technical Reports Server (NTRS)
Everstine, G. C.; Henderson, F. M.; Lipman, R. R.
1984-01-01
A finite element formulation is derived for the scattering and radiation of acoustic waves from submerged elastic structures. The formulation uses as fundamental unknowns the displacement in the structure and a velocity potential in the field. Symmetric coefficient matrices result. The outer boundary of the fluid region is terminated with an approximate local wave-absorbing boundary condition which assumes that outgoing waves are locally planar. The finite element model is capable of predicting only the near-field acoustic pressures. Far-field sound pressure levels may be determined by integrating the surface pressures and velocities over the wet boundary of the structure using the Helmholtz integral. Comparison of finite element results with analytic results show excellent agreement. The coupled fluid-structure problem may be solved with general purpose finite element codes by using an analogy between the equations of elasticity and the wave equation of linear acoustics.
Inelastic ultraviolet scattering from high frequency acoustic modes in glasses.
Masciovecchio, C; Gessini, A; Di Fonzo, S; Comez, L; Santucci, S C; Fioretto, D
2004-06-18
The dynamic structure factor of vitreous silica and glycerol has been measured as a function of temperature and of the momentum transfer up to Q=0.105 nm(-1) using a novel experimental technique, the inelastic ultraviolet scattering. As in the case of Brillouin light scattering and ultrasonic measurements, the temperature dependence of the acoustic attenuation shows a plateau below the glass transition whose amplitude scales as Q2. Moreover, a slight temperature dependence of attenuation has been found in vitreous silica at about 130 K, which seems to be reminiscent of the peak measured at lower Qs. These two findings strongly support the idea that anharmonicity is responsible for sound attenuation at ultrasonic and hypersonic frequencies. Finally, we demonstrate that the attenuation mechanism should show a change of regime between 0.105 and 1 nm(-1).
Solving multiple scattering problems in planetary atmospheres
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Lenoble, J.
1974-01-01
Definitions are provided of the basic concepts occurring in the solution of multiple scattering problems involving planetary atmospheres and attention is given to aspects of problem characterization. Approaches are considered for finding the answer to a particular problem without the performance of detailed calculations. The characteristics of albedos are investigated, taking into account semiinfinite atmospheres and finite atmospheres. Questions of surface illumination are discussed along with aspects related to energy deposition in the atmosphere, intensity, and polarization. Precise numerical methods are examined and analytical solutions are presented.
Characteristic analysis of underwater acoustic scattering echoes in the wavelet transform domain
NASA Astrophysics Data System (ADS)
Yang, Mei; Li, Xiukun; Yang, Yang; Meng, Xiangxia
2017-01-01
Underwater acoustic scattering echoes have time-space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.
Characteristic analysis of underwater acoustic scattering echoes in the wavelet transform domain
NASA Astrophysics Data System (ADS)
Yang, Mei; Li, Xiukun; Yang, Yang; Meng, Xiangxia
2017-03-01
Underwater acoustic scattering echoes have time-space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.
Inverse scattering problem for quantum graph vertices
Cheon, Taksu; Turek, Ondrej; Exner, Pavel
2011-06-15
We demonstrate how the inverse scattering problem of a quantum star graph can be solved by means of diagonalization of the Hermitian unitary matrix when the vertex coupling is of the scale-invariant (or Fueloep-Tsutsui) form. This enables the construction of quantum graphs with desired properties in a tailor-made fashion. The procedure is illustrated on the example of quantum vertices with equal transmission probabilities.
NASA Astrophysics Data System (ADS)
Cai, Chen; Yuan, Yin; Kan, Wei-Wei; Yang, Jing; Zou, Xin-Ye
2016-12-01
In this paper, acoustic scattering from the system comprised of a cloaked object and the multilayer cloak with only one single pair of isotropic media is analyzed with a recursive numerical method. The designed acoustic parameters of the isotropic cloak media are assumed to be single-negative, and the resulting cloak can reduce acoustic scattering from an acoustic sensor while allowing it to receive external information. Several factors that may influence the performance of the cloak, including the number of layers and the acoustic dissipation of the medium are fully analyzed. Furthermore, the possibility of achieving acoustic invisibility with positive acoustic parameters is proposed by searching the optimum value in the parameter space and minimizing the scattering cross-section. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274168, 11374157, 11174138, 11174139, 11222442, and 81127901) and the National Basic Research Program of China (Grant Nos. 2010CB327803 and 2012CB921504).
Transmission scattering problem via a DtN map
NASA Astrophysics Data System (ADS)
Lee, Kuo-Ming
2017-03-01
In this paper, we consider the scattering problem of time-harmonic waves from a penetrable obstacle. A Dirichlet-to-Neumann map is defined to convert this problem into an exterior boundary value problem which mimics an impedance problem. This process reduces the size of the problem and thus enables an elegant treatment of the scattering problem.
Implementing and testing a panel-based method for modeling acoustic scattering from CFD input
NASA Astrophysics Data System (ADS)
Swift, S. Hales
Exposure of sailors to high levels of noise in the aircraft carrier deck environment is a problem that has serious human and economic consequences. A variety of approaches to quieting exhausting jets from high-performance aircraft are undergoing development. However, testing of noise abatement solutions at full-scale may be prohibitively costly when many possible nozzle treatments are under consideration. A relatively efficient and accurate means of predicting the noise levels resulting from engine-quieting technologies at personnel locations is needed. This is complicated by the need to model both the direct and the scattered sound field in order to determine the resultant spectrum and levels. While the direct sound field may be obtained using CFD plus surface integral methods such as the Ffowcs-Williams Hawkings method, the scattered sound field is complicated by its dependence on the geometry of the scattering surface--the aircraft carrier deck, aircraft control surfaces and other nearby structures. In this work, a time-domain boundary element method, or TD-BEM, (sometimes referred to in terms of source panels) is proposed and developed that takes advantage of and offers beneficial effects for the substantial planar components of the aircraft carrier deck environment and uses pressure gradients as its input. This method is applied to and compared with analytical results for planar surfaces, corners and spherical surfaces using an analytic point source as input. The method can also accept input from CFD data on an acoustic data surface by using the G1A pressure gradient formulation to obtain pressure gradients on the surface from the flow variables contained on the acoustic data surface. The method is also applied to a planar scattering surface characteristic of an aircraft carrier flight deck with an acoustic data surface from a supersonic jet large eddy simulation, or LES, as input to the scattering model. In this way, the process for modeling the complete
NASA Astrophysics Data System (ADS)
Wei, Qi; Cheng, Ying; Liu, Xiao-jun
2012-07-01
We present a three-dimensional acoustic concentrator capable of significantly enhancing the sound intensity in the compressive region with scattering cancellation, imaging, and mirage effects. The concentrator shell is built by isotropic gradient negative-index materials, which together with an exterior host medium slab constructs a pair of complementary media. The enhancement factor, which can approach infinity by tuning the geometric parameters, is always much higher than that of a traditional concentrator made by positive-index materials with the same size. The acoustic scattering theory is applied to derive the pressure field distribution of the concentrator, which is consistent with the numerical full-wave simulations. The inherent acoustic impedance match at the interfaces of the shell as well as the inverse processes of “negative refraction—progressive curvature—negative refraction” for arbitrary sound rays can exactly cancel the scattering of the concentrator. In addition, the concentrator shell can also function as an acoustic spherical magnifying superlens, which produces a perfect image with the same shape, with bigger geometric and acoustic parameters located at a shifted position. Then some acoustic mirages are observed whereby the waves radiated from (scattered by) an object located in the center region may seem to be radiated from (scattered by) its image. Based on the mirage effect, we further propose an intriguing acoustic transformer which can transform the sound scattering pattern of one object into another object at will with arbitrary geometric, acoustic, and location parameters.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian; Li, Wuqun; Zhang, Pan
2016-11-01
An approach for approximate direct quadratic nonlinear inversion in two-parameter (density and bulk modulus) heterogeneous acoustic media is being presented and discussed in this paper. The approach consists of two parts: the first is a linear generalized Radon transform (GRT) migration procedure based on the weighted true-amplitude summation of pre-stack seismic scattered data that is adapted to a virtually arbitrary observing system, and the second is a non-iterative quadratic inversion operation, produced from the explicit expression of amplitude radiation pattern that is acting on the migrated data. This ensures the asymptotic inversion can continue to simultaneously locate the discontinuities and reconstruct the size of the discontinuities in the perturbation parameters describing the acoustic media. We identify that the amplitude radiation pattern is the binary quadratic combination of the parameters in the process of formulating nonlinear inverse scattering problems based on second-order Born approximation. The coefficients of the quadratic terms are computed by appropriately handling the double scattering effects. These added quadratic terms provide a better amplitude correction for the parameters inversion. Through numerical tests, we show that for strong perturbations, the errors of the linear inversion are significant and unacceptable. In contrast, the quadratic nonlinear inversion can give fairly accurate inversion results and keep almost the same computational complexity as conventional GRT liner inversion.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian; Li, Wuqun; Zhang, Pan
2017-02-01
An approach for approximate direct quadratic non-linear inversion in two-parameter (density and bulk modulus) heterogeneous acoustic media is being presented and discussed in this paper. The approach consists of two parts: the first is a linear generalized Radon transform (GRT) migration procedure based on the weighted true-amplitude summation of pre-stack seismic scattered data that is adapted to a virtually arbitrary observing system, and the second is a non-iterative quadratic inversion operation, produced from the explicit expression of amplitude radiation pattern that is acting on the migrated data. This ensures the asymptotic inversion can continue to simultaneously locate the discontinuities and reconstruct the size of the discontinuities in the perturbation parameters describing the acoustic media. We identify that the amplitude radiation pattern is the binary quadratic combination of the parameters in the process of formulating non-linear inverse scattering problems based on second-order Born approximation. The coefficients of the quadratic terms are computed by appropriately handling the double scattering effects. These added quadratic terms provide a better amplitude correction for the parameters inversion. Through numerical tests, we show that for strong perturbations, the errors of the linear inversion are significant and unacceptable. In contrast, the quadratic non-linear inversion can give fairly accurate inversion results and keep almost the same computational complexity as conventional GRT liner inversion.
NASA Technical Reports Server (NTRS)
Meyer, Harold D.
1999-01-01
This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.
Analysis of acoustic scattering from fluid bodies using a multipoint source model.
Boag, A; Leviatan, Y
1989-01-01
A moment-method solution is presented for the problem of acoustic scattering from homogeneous fluid bodies. It uses fictitious isotropic point sources to simulate both the field scattered by the body and the field inside the body and, in turn, point-matches the continuity conditions for the normal component of the velocity and for the pressure across the surface of the body. The procedure is simple to execute and is general in that bodies of arbitrary smooth shape can be handled effectively. Perfectly rigid bodies are treated as reduced cases of the general procedure. Results are given and compared with available analytic solutions, which demonstrate the very good performance of the procedure.
NASA Astrophysics Data System (ADS)
Caille, Gary William
1988-12-01
The objective was to determine if a pressure release boundary condition can be achieved by coating an elastic shell with a viscoelastic material. One necessary condition is that the coating must acoustically decouple the shell from the scattering problem. Two closed cell rubbers and two cork-rubber composites (nitrile and neoprene based) were investigated. The dynamic viscoelastic constants of the materials were determined by wave propagation techniques. The far field scattering form functions for an infinite cylindrical shell coated with the viscoelastic material were calculated using the complete elastic equations of motion. The form functions were experimentally measured for the different materials at different thicknesses as verification of the theory. A thick finite right cylindrical shell was coated with.25 inches of closed cell neoprene and the normalized scattered pressure measured. The pressure release normalized scattered pressure was determined for the end on incident plane wave case using the acoustic radiation Simplified Helmholtz Integral Program (SHIP). The pressure release normalized scattered pressure was determined for the side incident case using a modified Combined Helmholtz Integral Equation Formulation (CHIEF) radiation program. The material property measurements showed the closed cell rubbers have longitudinal wave propagation speeds of approximately 150 m/sec and attenuations of 30 dB/cm. The cork-rubber composites have longitudinal wave speeds of approximately 300 m/sec and attenuations of 7 dB/cm. The scattering measurements demonstrated that a thin shell (inner radius to outer radius ratio of.97) could be made to scatter in a pressure release manner with a.25 inches of nitrile. The rubber-cork composites could not produce the pressure release effect for nondimensionalized wave number (product of the wave number and the radius of the cylinder) values less than 4 with reasonable thicknesses. The coated finite thick shell, with side
NASA Astrophysics Data System (ADS)
Tchahame, Joël. Cabrel; Sylvestre, Thibaut; Phan Huy, Kien; Kudlinski, Alexandre; Laude, Vincent; Beugnot, Jean-Charles
2016-04-01
Light propagation in small-core photonic crystal fibers enables tight optical confinement over long propagation lengths to enhance light-matter interactions. Not only can photonic crystal fibers compress light spatially, they also provide a tunable means to control light-hypersound interactions. By exploring Brillouin light scattering in a small-core and high air-filling fraction microstructured fiber, we report the observation of Brillouin scattering from surface acoustic waves at lower frequencies than standard Brillouin scattering from bulk acoustic waves. This effect could find potential applications for optical sensing technologies that exploit surface acoustic waves.
Inverse scattering problem in turbulent magnetic fluctuations
NASA Astrophysics Data System (ADS)
Treumann, Rudolf A.; Baumjohann, Wolfgang; Narita, Yasuhito
2016-08-01
We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand-Levitan-Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes advantage of a particular
Classroom Acoustics: The Problem, Impact, and Solution.
ERIC Educational Resources Information Center
Berg, Frederick S.; And Others
1996-01-01
This article describes aspects of classroom acoustics that interfere with the ability of listeners to understand speech. It considers impacts on students and teachers and offers four possible solutions: noise control, signal control without amplification, individual amplification systems, and sound field amplification systems. (Author/DB)
2015-09-30
1996 (Ref. 1), based upon the harmonic solution of sets of coupled differential equations, each describing scattering from one fish. The Love swim...side of the empty core, thus reducing the acoustic interactions between them. REFERENCES (1) C. Feuillade, R. W. Nero and R. H. Love , "A low...frequency acoustic scattering model for small schools offish," J. Acoust. Soc. Am., 99, 196-208 (1996). (2) R. H. Love , "Resonant acoustic scattering by
Scattering series in the mobility problem for suspensions
NASA Astrophysics Data System (ADS)
Makuch, Karol
2012-11-01
The mobility problem for suspensions of spherical particles immersed in an arbitrary flow of a viscous, incompressible fluid is considered in the regime of low Reynolds numbers. The scattering series which appears in the mobility problem is simplified. The simplification relies on the reduction of the number of types of single-particle scattering operators appearing in the scattering series. In our formulation there is only one type of single-particle scattering operator.
Numerical Studies on the Statistics of Acoustic Scattering from Rock Outcrops
2013-06-17
Results, Kos, Greece, eds. John S. Papadakis and Leif Bjorno. Olson, D.R. and A.P. Lyons, 2013, Numerical simulation of acoustic scattering from very rough...glacially- plucked surfaces using the boundary element method, in Proceedings of 5th Underwater Acoustic Measurements Conference: Technologies and Results, Corfu, Greece, eds. John S. Papadakis and Leif Bjorno.
Spectral solution of acoustic wave-propagation problems
NASA Technical Reports Server (NTRS)
Kopriva, David A.
1990-01-01
The Chebyshev spectral collocation solution of acoustic wave propagation problems is considered. It is shown that the phase errors decay exponentially fast and that the number of points per wavelength is not sufficient to estimate the phase accuracy. Applications include linear propagation of a sinusoidal acoustic wavetrain in two space dimensions, and the interaction of a sound wave with the bow shock formed by placing a cylinder in a uniform Mach 4 supersonic free stream.
NASA Astrophysics Data System (ADS)
Oguri, Takuma; Tamura, Kazuki; Yoshida, Kenji; Mamou, Jonathan; Hasegawa, Hideyuki; Maruyama, Hitoshi; Hachiya, Hiroyuki; Yamaguchi, Tadashi
2015-07-01
Although there have been several quantitative ultrasound studies on the methods of estimation of scatterer size and acoustic concentration based on the analysis of RF signals for tissue characterization, some problems, e.g., narrow frequency bandwidths and complex sound fields, have limited the clinical applications of such methods. In this report, two types of ultrasound transducer are investigated for the estimation of the scatterer size and acoustic concentration in two glass bead phantoms of different weight concentrations of 0.25 and 2.50% and those in an excised pig liver. The diameters of the glass beads ranged from 5 to 63 µm with an average of 50 µm. The first transducer is a single element and the other is a linear phased array. A comparison of the estimations obtained using both transducers gives an insight into how these methods could be applied clinically. Results obtained using the two transducers were significantly different. One of the possible explanations is that beamforming could significantly affect the backscatter coefficient estimation, which was not taken into account.
a Numerical Method for Scattering from Acoustically Soft and Hard Thin Bodies in Two Dimensions
NASA Astrophysics Data System (ADS)
YANG, S. A.
2002-03-01
This paper presents a numerical method for predicting the acoustic scattering from two-dimensional (2-D) thin bodies. Both the Dirichlet and Neumann problems are considered. Applying the thin-body formulation leads to the boundary integral equations involving weakly singular and hypersingular kernels. Completely regularizing these kinds of singular kernels is thus the main concern of this paper. The basic subtraction-addition technique is adopted. The purpose of incorporating a parametric representation of the boundary surface with the integral equations is two-fold. The first is to facilitate the numerical implementation for arbitrarily shaped bodies. The second one is to facilitate the expansion of the unknown function into a series of Chebyshev polynomials. Some of the resultant integrals are evaluated by using the Gauss-Chebyshev integration rules after moving the series coefficients to the outside of the integral sign; others are evaluated exactly, including the modified hypersingular integral. The numerical implementation basically includes only two parts, one for evaluating the ordinary integrals and the other for solving a system of algebraic equations. Thus, the current method is highly efficient and accurate because these two solution procedures are easy and straightforward. Numerical calculations consist of the acoustic scattering by flat and curved plates. Comparisons with analytical solutions for flat plates are made.
Unified treatment of bound-state and scattering problems
Adhikari, S.K.; Tomio, L.
1988-01-01
The iteration-subtraction method for the unified treatment of bound-state and scattering problems is compared and contrasted with a similar method for the two-body bound-state problem via nonsingular scattering equations developed recently. We also compare another recent method for solving bound-state problems with the iteration-subtraction method.
Acoustic scattering by a spliced turbofan inlet duct liner at supersonic fan speeds
NASA Astrophysics Data System (ADS)
McAlpine, A.; Wright, M. C. M.
2006-05-01
Fan noise is one of the principal noise sources generated by a turbofan aero-engine. At supersonic fan speeds, fan tones are generated by the "rotor-alone" pressure field. In general, these tones can be well absorbed by an inlet duct acoustic liner, apart from at high supersonic fan speeds. However, in practice inlet duct liners contain acoustically hard longitudinal splices which cause scattering. This leads to acoustic energy being scattered into a range of different azimuthal mode orders, similar to the modal content resulting from rotor-stator interactions. The effectiveness of an inlet duct lining is reduced because acoustic energy is scattered into modes that are poorly absorbed by the liner. In this article, the effect of this acoustic scattering is examined by three-dimensional finite-element simulations of sound transmission in a turbofan inlet duct. Results include predictions of the sound power transmission loss with different splice widths, and at different supersonic fan speeds. These results demonstrate how acoustic scattering by liner splices can adversely affect fan tone noise levels at low supersonic fan speeds, but have little adverse affect on noise levels at high supersonic fan speeds. The potential noise benefit that could be achieved by manufacturing thinner splices is also examined.
Acoustic vibrations contribute to the diffuse scatter produced by ribosome crystals
Polikanov, Yury S.; Moore, Peter B.
2015-01-01
The diffuse scattering pattern produced by frozen crystals of the 70S ribosome from Thermus thermophilus is as highly structured as it would be if it resulted entirely from domain-scale motions within these particles. However, the qualitative properties of the scattering pattern suggest that acoustic displacements of the crystal lattice make a major contribution to it. PMID:26457426
Investigating acoustic-induced deformations in a foam using multiple light scattering.
Erpelding, M; Guillermic, R M; Dollet, B; Saint-Jalmes, A; Crassous, J
2010-08-01
We have studied the effect of an external acoustic wave on bubble displacements inside an aqueous foam. The signature of the acoustic-induced bubble displacements is found using a multiple light scattering technique, and occurs as a modulation on the photon correlation curve. Measurements for various sound frequencies and amplitudes are compared to analytical predictions and numerical simulations. These comparisons finally allow us to elucidate the nontrivial acoustic displacement profile inside the foam; in particular, we find that the acoustic wave creates a localized shear in the vicinity of the solid walls holding the foam, as a consequence of inertial contributions. This study of how bubbles "dance" inside a foam as a response to sound turns out to provide new insights on foam acoustics and sound transmission into a foam, foam deformation at high frequencies, and analysis of light scattering data in samples undergoing nonhomogeneous deformations.
Finite-difference time-domain approach to acoustic radiation force problems
NASA Astrophysics Data System (ADS)
Silva, Glauber T.
2005-09-01
Acoustic radiation force plays a major role in elastography methods such as vibro-acoustography, acoustic radiation force, shear wave elasticity, and supersonic shear wave imaging. The radiation force (dynamic or static) exerted on an object by an incident wave can be obtained by solving the acoustic scattering problem for the object. However, only in rather simple cases the scattering of waves can be described by exact analytical expressions. In this work, we developed an algorithm based on the finite-difference time-domain (FDTD) method to compute the radiation force exerted on arbitrary shaped objects. The algorithm simulates the wave propagation in a finite extended medium with an embedded object. The radiation force is obtained by numerically calculating a surface integral of the momentum flux, which depends on the incident and scattered fields. Absorbing boundary conditions are used to truncate the medium. We compute the radiation force exerted on a rigid and soft cylinder by a plane wave. Results are in agreement with the theoretical predictions. Discrepancies due to numerical dispersion in the algorithm are under investigation. The presented method might be used to calculate the radiation force on complex objects present in elastography techniques. [Work supported by FAPEAL/CNPq, Brazil.
Solution of a Simple Inelastic Scattering Problem
ERIC Educational Resources Information Center
Knudson, Stephen K.
1975-01-01
Provides an analytical solution of a model representing the collision of an atom with a harmonic oscillator, interacting via a repulsive square well potential. Presents results for various energies and strengths of inelastic scattering. (Author/CP)
MEASUREMENTS OF THE WAVEFUNCTIONS OF SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS
Zhao Hui; Chou, Dean-Yi; Yang, Ming-Hsu
2011-10-20
Solar acoustic waves are scattered by sunspots because of the interaction between the acoustic waves and sunspots. We use a deconvolution scheme to obtain the wavefunction of the acoustic wave on the solar surface at various times from cross-correlation functions computed between an incident wave and the signals at other points on the surface. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We study the wavefunctions of scattered waves with the incident waves of radial order n = 0-5 for two sunspots, NOAAs 11084 and 11092. The scattered wave is predominant in the forward direction of the incident wave, but its wavefronts are curved. The shape of the wavefronts depends on the ratio of sunspot dimension to wavelength of the incident wave. The smaller the ratio is, the closer to circular the scattered wave is. The scattering strength, i.e. the magnitude of the scattered wave relative to that of the incident wave, decreases with the radial order n. This suggests that the region generating the scattered wave is shallower than the depth of the f-modes.
A domain derivative-based method for solving elastodynamic inverse obstacle scattering problems
NASA Astrophysics Data System (ADS)
Le Louër, Frédérique
2015-11-01
The present work is concerned with the shape reconstruction problem of isotropic elastic inclusions from far-field data obtained by the scattering of a finite number of time-harmonic incident plane waves. This paper aims at completing the theoretical framework which is necessary for the application of geometric optimization tools to the inverse transmission problem in elastodynamics. The forward problem is reduced to systems of boundary integral equations following the direct and indirect methods initially developed for solving acoustic transmission problems. We establish the Fréchet differentiability of the boundary to far-field operator and give a characterization of the first Fréchet derivative and its adjoint operator. Using these results we propose an inverse scattering algorithm based on the iteratively regularized Gauß-Newton method and show numerical experiments in the special case of star-shaped obstacles.
Fully automatic hp-adaptivity for acoustic and electromagnetic scattering in three dimensions
NASA Astrophysics Data System (ADS)
Kurtz, Jason Patrick
We present an algorithm for fully automatic hp-adaptivity for finite element approximations of elliptic and Maxwell boundary value problems in three dimensions. The algorithm automatically generates a sequence of coarse grids, and a corresponding sequence of fine grids, such that the energy norm of the error decreases exponentially with respect to the number of degrees of freedom in either sequence. At each step, we employ a discrete optimization algorithm to determine the refinements for the current coarse grid such that the projection-based interpolation error for the current fine grid solution decreases with an optimal rate with respect to the number of degrees of freedom added by the refinement. The refinements are restricted only by the requirement that the resulting mesh is at most 1-irregular, but they may be anisotropic in both element size h and order of approximation p. While we cannot prove that our method converges at all, we present numerical evidence of exponential convergence for a diverse suite of model problems from acoustic and electromagnetic scattering. In particular we show that our method is well suited to the automatic resolution of exterior problems truncated by the introduction of a perfectly matched layer. To enable and accelerate the solution of these problems on commodity hardware, we include a detailed account of three critical aspects of our implementation, namely an efficient implementation of sum factorization, several efficient interfaces to the direct multi-frontal solver MUMPS, and some fast direct solvers for the computation of a sequence of nested projections.
Light scattering by surface acoustic waves on corrugated metal surfaces
Robertson, W.M.; Grimsditch, M. ); Moretti, A.L.; Kaufman, R.G.; Hulse, G.R. ); Fullerton, E.; Schuller, I.K. )
1990-03-15
We report the results of a Brillouin-scattering study of corrugated Ag surfaces. The corrugation plays a dramatic role in the wave-vector--selection rules governing coupling to surface phonons, and this effect is substantially different when the effective wave vector of the surface corrugation is collinear or perpendicular to the scattering plane. In processes that involve the grating wave vector, we show that the coupling mechanism between light and phonons is governed by surface plasmons which introduce a new scattering interaction with unusual polarization features in the Brillouin-scattering process.
Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon
NASA Astrophysics Data System (ADS)
Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-03-01
Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.
Scattering problem in deformed space with minimal length
Stetsko, M. M.; Tkachuk, V. M.
2007-07-15
We investigated the elastic scattering problem with deformed Heisenberg algebra leading to the existence of a minimal length. The continuity equations for the moving particle in deformed space were constructed. We obtained the Green's function for a free particle, the scattering amplitude, and the cross section in deformed space. We also calculated the scattering amplitudes and differential cross sections for the Yukawa and the Coulomb potentials in the Born approximation.
MODE CONVERSION BETWEEN DIFFERENT RADIAL ORDERS FOR SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS
Zhao, Hui; Chou, Dean-Yi
2013-11-20
We study the mode conversion between different radial orders for solar acoustic waves interacting with sunspots. Solar acoustic waves are modified in the presence of sunspots. The modification in the wave can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave inside and around the sunspot. The wavefunction of the acoustic wave on the solar surface is computed from the cross-correlation function. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We use the incident waves of radial order n = 0-5 to measure the scattered wavefunctions from n to another radial order n' for NOAAs 11084 and 11092. The strength of scattered waves decreases rapidly with |Δn|, where Δn ≡ n' – n. The scattered waves of Δn = ±1 are visible for n ≤ 1, and significant for n ≥ 2. For the scattered wave of Δn = ±2, only few cases are visible. None of the scattered waves of Δn = ±3 are visible. The properties of scattered waves for Δn = 0 and Δn ≠ 0 are different. The scattered wave amplitude relative to the incident wave amplitude decreases with n for Δn = 0, while it increases with n for Δn ≠ 0. The scattered wave amplitudes of Δn = 0 are greater for the larger sunspot, while those of Δn ≠ 0 are insensitive to the sunspot size.
Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio
NASA Astrophysics Data System (ADS)
Gong, Zhixiong; Li, Wei; Mitri, Farid G.; Chai, Yingbin; Zhao, Yao
2016-11-01
In this paper, the T-matrix (null-field) method is applied to investigate the acoustic scattering by a large-aspect-ratio rigid spheroid immersed in a non-viscous fluid under the illumination of an unbounded zeroth-order Bessel beam with arbitrary orientation. Based on the proposed method, a MATLAB software package is constructed accordingly, and then verified and validated to compute the acoustic scattering by a rigid oblate or prolate spheroid in the Bessel beam. Several numerical examples are carried out to investigate the novel phenomenon of acoustic scattering by spheroids in Bessel beams with arbitrary incidence, with particular emphasis on the aspect ratio (i.e. the ratio of the polar radius over the equatorial radius of the spheroid), the half-cone angle of Bessel beam, the dimensionless frequency, as well as the angle of incidence. The quasi-periodic oscillations are observed in the plots of the far-field backscattering form function modulus versus the dimensionless frequency, owing to the interference between the specular reflection and the Franz wave circumnavigating the spheroid in the surrounding fluid. Furthermore, the 3D far-field scattering directivity patterns at end-on incidence and 2D polar plots at arbitrary angles of incidence are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by flat or elongated spheroid. This research work may provide an impetus for the application of acoustic Bessel beam in engineering practices.
Effects of multi-scattering on the performance of a single-beam acoustic manipulation device.
Azarpeyvand, Mahdi; Alibakhshi, Mohammad Amin; Self, Rod
2012-08-01
The effects of multiple scattering on acoustic manipulation of spherical particles using helicoidal Bessel-beams are discussed. A closed-form analytical solution is developed to calculate the acoustic radiation force resulting from a Bessel-beam on an acoustically reflective sphere, in the presence of an adjacent spherical particle, immersed in an unbounded fluid medium. The solution is based on the standard Fourier decomposition method and the effect of multi-scattering is taken into account using the addition theorem for spherical coordinates. Of particular interest here is the investigation of the effects of multiple scattering on the emergence of negative axial forces. To investigate the effects, the radiation force applied on the target particle resulting from a helicoidal Bessel-beam of different azimuthal indexes (m = 1 to 4), at different conical angles, is computed. Results are presented for soft and rigid spheres of various sizes, separated by a finite distance. Results have shown that the emergence of negative force regions is very sensitive to the level of cross-scattering between the particles. It has also been shown that in multiple scattering media, the negative axial force may occur at much smaller conical angles than previously reported for single particles, and that acoustic manipulation of soft spheres in such media may also become possible.
Basin Acoustic Seamount Scattering Experiment (BASSEX) Data Analysis and Modeling
2016-06-07
Kauai source at various ranges and bearings . OBJECTIVES The primary objective of this work is to measure aspects of acoustic propagation that...horizontal plane, arriving at the array from a different bearing . Further analysis will include processing all of the BASSEX KNPAL receptions and
The acoustic-modeling problem in automatic speech recognition
NASA Astrophysics Data System (ADS)
Brown, Peter F.
1987-12-01
This thesis examines the acoustic-modeling problem in automatic speech recognition from an information-theoretic point of view. This problem is to design a speech-recognition system which can extract from the speech waveform as much information as possible about the corresponding word sequence. The information extraction process is broken down into two steps: a signal processing step which converts a speech waveform into a sequence of information bearing acoustic feature vectors, and a step which models such a sequence. This thesis is primarily concerned with the use of hidden Markov models to model sequences of feature vectors which lie in a continuous space such as R sub N. It explores the trade-off between packing a lot of information into such sequences and being able to model them accurately. The difficulty of developing accurate models of continuous parameter sequences is addressed by investigating a method of parameter estimation which is specifically designed to cope with inaccurate modeling assumptions.
A New EFT Approach to NN Scattering Problem
NASA Astrophysics Data System (ADS)
Epelbaum, E.; Gegelia, J.
2013-08-01
We present the new, modified Weinberg approach to the NN scattering problem in effective field theory. Issues of renormalization are briefly discussed and the results of LO calculations are presented.
NASA Astrophysics Data System (ADS)
Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.
2016-11-01
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Acoustic scattering by an axially-segmented turbofan inlet duct liner at supersonic fan speeds
NASA Astrophysics Data System (ADS)
McAlpine, A.; Astley, R. J.; Hii, V. J. T.; Baker, N. J.; Kempton, A. J.
2006-07-01
Fan noise is one of the principal noise sources in turbofan aero-engines. At supersonic fan speeds, fan tones are generated by the "rotor-alone" pressure field. In general, these tones can be well absorbed by an inlet duct acoustic liner, except at high supersonic fan speeds when the rotor-alone pressure field is well cut-on. In this article an axially segmented liner is proposed, which is predicted to improve the attenuation of tones at high supersonic fan speeds. The analysis is based on locally reacting cavity liners. The axially segmented liner is axisymmetric and consists of two circular sections of different linings joined together. The optimum design consists of two linings with the same face-sheet resistance, but with different cavity depths. The depth of the liner adjacent to the fan is very thin. This means that where the two liners are joined there is a wall impedance discontinuity that can cause acoustic scattering. Fan tones can be modelled in terms of spinning modes in a uniform circular-section duct. The liner is axisymmetric, so modal scattering will be only between different radial modes. The optimum design minimizes the acoustic energy scattered into the first radial mode. This improves the attenuation of fan tones at high supersonic fan speeds, because acoustic energy is scattered into high radial mode orders, which are better absorbed by the lining.
Application of computational aero-acoustics to real world problems
NASA Technical Reports Server (NTRS)
Hardin, Jay C.
1996-01-01
The application of computational aeroacoustics (CAA) to real problems is discussed in relation to the analysis performed with the aim of assessing the application of the various techniques. It is considered that the applications are limited by the inability of the computational resources to resolve the large range of scales involved in high Reynolds number flows. Possible simplifications are discussed. It is considered that problems remain to be solved in relation to the efficient use of the power of parallel computers and in the development of turbulent modeling schemes. The goal of CAA is stated as being the implementation of acoustic design studies on a computer terminal with reasonable run times.
Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.
2008-01-01
This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.
NASA Astrophysics Data System (ADS)
Na, Seong-Won; Kallivokas, Loukas F.
2008-03-01
In this article we discuss a formal framework for casting the inverse problem of detecting the location and shape of an insonified scatterer embedded within a two-dimensional homogeneous acoustic host, in terms of a partial-differential-equation-constrained optimization approach. We seek to satisfy the ensuing Karush-Kuhn-Tucker first-order optimality conditions using boundary integral equations. The treatment of evolving boundary shapes, which arise naturally during the search for the true shape, resides on the use of total derivatives, borrowing from recent work by Bonnet and Guzina [1-4] in elastodynamics. We consider incomplete information collected at stations sparsely spaced at the assumed obstacle’s backscattered region. To improve on the ability of the optimizer to arrive at the global optimum we: (a) favor an amplitude-based misfit functional; and (b) iterate over both the frequency- and wave-direction spaces through a sequence of problems. We report numerical results for sound-hard objects with shapes ranging from circles, to penny- and kite-shaped, including obstacles with arbitrarily shaped non-convex boundaries.
Baik, Kyungmin
2013-01-01
Love's model for the acoustic scattering by a spherical viscous fluid shell filled with gas and surrounded by inviscid liquid [J. Acoust. Soc. Am. 64, 571-580 (1978)] is reviewed. For certain material parameters, discrepancies are observed in Love's scattering cross section when compared with the exact solution near resonance. Those errors are corrected in this study. It is shown that there is excellent agreement between the corrected formulation and the exact solution in the resonance region where ka=1 and ε = b/a ≥ 2.5, where k is the acoustic wavenumber, and a and b are the inner and outer radii of the shell, respectively. Errors between Love's equation and the exact solution are not significant for the case of swimbladder-bearing fish where the bubble radius is typically greater than about 0.05 m, but could be large for bubbles and gas-bearing zooplankton where the radius is less than about 0.05 m.
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li E-mail: elaineli@physics.utexas.edu; Li, Xiaoqin E-mail: elaineli@physics.utexas.edu
2015-02-02
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
NASA Astrophysics Data System (ADS)
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-02-01
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
NASA Astrophysics Data System (ADS)
Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.
2015-10-01
Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.
Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.
2016-01-01
Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter. PMID:27147775
Nikolaeva, Anastasiia V. Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.
2015-10-28
Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.
Propagation and scattering of acoustic-vorticity waves in annular swirling flows
NASA Astrophysics Data System (ADS)
Golubev, Vladimir Viktorovich
1997-08-01
The dissertation presents a fundamental extension of unsteady aerodynamic theory developed to predict fluctuating forces on aircraft structural components. These excitations may result from a variety of upstream flow non-uniformities such as atmospheric turbulence, airframe tip vortices and wakes, engine inlet distortions and secondary flows. In the frame of reference of a downstream aircraft component, an upstream flow non- uniformity appears as a propagating vorticity wave (a gust). Classical treatment of gust interaction problems developed for uniform, potential upstream mean flows is based on the fact that it is possible to consider separately incident or scattered acoustic, entropic and vortical modes of unsteady flow motion. A purely vortical gust remains 'frozen' as it convects with the flow. The coupling between different unsteady components may occur only at the surface of a solid structure, or in the close vicinity of a lifting body. The classical approach, however, is not justified for an aircraft engine system where the internal turbomachinery flow is non-uniform and non-potential as it exhibits a strong swirling motion. In such a flow, acting centrifugal and Coriolis forces couple the various unsteady modes which thus can no longer be determined independently of each other. The new developed theory follows the decomposition of unsteady velocity field into vortical and potential components. In spite of the modal coupling, this decomposition elucidates the physical phenomena associated with unsteady swirling motion by indicating the degree of interaction between the various modes. It paves the way for generalizing the classical definition of a gust for vortical swirling flows. The concept of a generalized gust is developed based on the eigenmode pseudospectral analysis of the coupled equations of unsteady swirling motion. This analysis reveals two distinct regions of eigenvalues corresponding to pressure-dominated nearly-sonic and vorticity- dominated
Roles of a scatter on boundary-layer instability and acoustic radiation
NASA Astrophysics Data System (ADS)
Dong, Ming; Wu, Xuesong
2015-11-01
When a boundary-layer instability mode propagates through a region of rapid distortion, the ensuing scattering causes two consequences of physical interest. First, the amplitude of the instability mode may be suppressed or energized. Second, substantial sound wave can be radiated by the boundary-layer instability mode. This paper focuses on this issue by proposing a framework which is called Local Scattering Theory. In this framework, a transmission coefficient, defined as the ratio of the T-S wave amplitude downstream of the scatter to that upstream, is introduced to characterize the effect of a local scatter on boundary-layer instability and transition. The mathematical formulation is based on triple-deck formulism, but in order to accommodate the acoustic far field, the unsteady terms in the upper deck are retained. By computation, the impacts of a steady local suction on flow instability and acoustic radiation are studied. It is found that, (1) a suction slot would suppress the oncoming T-S wave; (2) the acoustic waves radiated by the scattering effect have similar directivities; (3) the intensity of the sound increases with the mass flux when the latter is not too large, and it also increases with the frequency monotonously.
Reflection and Scattering of Acoustical Waves from a Discontinuity in Absorption
NASA Astrophysics Data System (ADS)
Jones, J. P.; Leeman, S.; Nolan, E.; Lee, D.
The reflection and transmission of a plane acoustical wave from a planar boundary at the interface between two homogeneous media of different acoustical properties is a classical problem in acoustics that has served as a basis for many developments in acoustics for over 100 years. This problem, detailed in virtually every textbook on acoustics, provides us with the acoustical analogue to Snell's Law in optics and gives us correspondingly simple results. Classical acoustics predicts that a reflection from a boundary occurs only if the characteristic acoustical impedances of the two media are different. Here we show that a reflection also occurs if the media have the same impedances but different absorption coefficients. Our analysis yields some surprising results. For example, a reflection will occur at a discontinuity in absorption even if the impedance is uniform and continuous across the interface. In addition, a discontinuity in impedance at an interface between two media that have constant and equal, but non-zero absorption, results in a reflection coefficient that is dependent on absorption as well as impedance. In general, reflection coefficients now become frequency dependent. To experimentally test our results, we measured the reflection at the interface between water and castor oil, two liquids with similar impedances but very different absorption coefficients. Measurement of the reflection coefficient between 1 and 50 MHz demonstrated a frequency dependence that was in good agreement with our analysis.
Numerical Simulation of Acoustic Scatter from Subsurface Bubble Clouds
1989-10-18
Ellinthorpe, 1989. [6] Serge Baldy. Bubbles in the close vicinity of breaking waves: Statistical character- istics of the generation and dispersion...and J. Vlieger. Light scattering by a sphere on a substrate. Physica. 137(A):209-242, 1986. [13] R. H. Lang . Electromagnetic backscattering from a
Acoustic Inverse Scattering for Breast Cancer Microcalcification Detection. Addendum
2011-12-01
elliptical Radon transform have been developed. We conclude that inverse scattering algorithms for detecting microcalfications in heterogeneous tissue may be...bistatic ultrasound imaging geometry is the elliptical Radon transform (ERT). Small transducers can be modelled as having no directional sensitivity...elliptical Radon transform - a model for bistatic ultrasound array imaging in the breast One possible definition for the elliptical Radon transform would
Temporal Distributions of Problem Behavior Based on Scatter Plot Analysis.
ERIC Educational Resources Information Center
Kahng, SungWoo; Iwata, Brian A.; Fischer, Sonya M.; Page, Terry J.; Treadwell, Kimberli R. H.; Williams, Don E.; Smith, Richard G.
1998-01-01
A large-scale analysis was conducted of problem behavior by observing 20 individuals living in residential facilities. Data were converted into scatter plot formats. When the data were transformed into aggregate "control charts," 12 of 15 sets of data revealed 30-minute intervals during which problem behavior was more likely to occur.…
Characterization of Biological Cells by Inverse Acoustic Scattering and Electrozone Sensing.
NASA Astrophysics Data System (ADS)
Chen, Xucai
A technique is presented which characterizes biological cells by their mechanical descriptors: size, compressibility and density. The experimental apparatus consists of two acoustic transducers and an electrozone sensor submerged in a bath of conducting host fluid. Diluted biological cells are convected through the apparatus by a coaxial jet. An individual cell passes through the electrozone where its volume is measured by the Coulter principle, and then through the confocal region of the two acoustic transducers. One acoustic transducer sends out tone bursts at a center frequency of 30 MHz and detects a back-scattered signal from the cell while the other transducer detects the scattered signal at 90^circ. Thus the volume, the 90^circ scattering function, and the 180^circ scattering function are recorded for each cell. The acoustic scattering functions are then inverted to provide the compressibility and density of that cell. Statistics of the mechanical properties for human red and white blood cells are generated and displayed. The size, compressibility and density of both normal and abnormal red blood cells are reported. By modeling a cell as an immiscible mixture of protein and saline solution, perfect mixture laws for compressibility and density are derived and confirmed by experimental results. With the mixture laws established, the mean corpuscular hemoglobin concentration (MCHC) is inferred from the compressibility and density data for red blood cells. Using only the data from the 180^circ back-scattered signal, different white cell subgroups are successfully distinguished by their locations in the two dimensional histograms of their mechanical descriptors.
Use of the Wigner representation in scattering problems
NASA Technical Reports Server (NTRS)
Bemler, E. A.
1975-01-01
The basic equations of quantum scattering were translated into the Wigner representation, putting quantum mechanics in the form of a stochastic process in phase space, with real valued probability distributions and source functions. The interpretative picture associated with this representation is developed and stressed and results used in applications published elsewhere are derived. The form of the integral equation for scattering as well as its multiple scattering expansion in this representation are derived. Quantum corrections to classical propagators are briefly discussed. The basic approximation used in the Monte-Carlo method is derived in a fashion which allows for future refinement and which includes bound state production. Finally, as a simple illustration of some of the formalism, scattering is treated by a bound two body problem. Simple expressions for single and double scattering contributions to total and differential cross-sections as well as for all necessary shadow corrections are obtained.
Inverse scattering problems for perturbed bi-harmonic operator
NASA Astrophysics Data System (ADS)
Serov, Valery; Tyni, Teemu
2016-10-01
Some inverse scattering problems for operator of order 4 which is the perturbation (in smaller terms) of the biharmonic operator in one and three dimensions are considered. The coefficients of this perturbation are assumed to be from some Sobolev spaces (they might be singular). The classical (as for the Schrödinger operator) scattering theory is developed for this operator of order 4. The classical inverse scattering problems are considered and their uniqueness is proved. The method of inverse scattering Born approximation and an analogue of Saito's formula are justified for this operator of order 4. Using this approximate method the reconstruction of the singularities of the unknown coefficients is proved in the scale of Sobolev spaces. The results have natural generalization for any dimensions.
Near-specular acoustic scattering from a buried submarine mud volcano.
Gerig, Anthony L; Holland, Charles W
2007-12-01
Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected.
Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering
Gusev, Vitalyi E.
2014-08-14
In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range.
Yin, Jie; Tao, Chao Cai, Peng; Liu, Xiaojun
2015-06-08
Acoustically inhomogeneous mediums with multiple scattering are often the nightmare of photoacoustic tomography. In order to break this limitation, a photoacoustic tomography scheme combining ultrasound interferometry and time reversal is proposed to achieve images in acoustically scattering medium. An ultrasound interferometry is developed to determine the unknown Green's function of strong scattering tissue. Using the determined Greens' function, a time-reversal process is carried out to restore images behind an acoustically inhomogeneous layer from the scattering photoacoustic signals. This method effectively decreases the false contrast, noise, and position deviation of images induced by the multiple scattering. Phantom experiment is carried out to validate the method. Therefore, the proposed method could have potential value in extending the biomedical applications of photoacoustic tomography in acoustically inhomogeneous tissue.
NASA Astrophysics Data System (ADS)
Yin, Jie; Tao, Chao; Cai, Peng; Liu, Xiaojun
2015-06-01
Acoustically inhomogeneous mediums with multiple scattering are often the nightmare of photoacoustic tomography. In order to break this limitation, a photoacoustic tomography scheme combining ultrasound interferometry and time reversal is proposed to achieve images in acoustically scattering medium. An ultrasound interferometry is developed to determine the unknown Green's function of strong scattering tissue. Using the determined Greens' function, a time-reversal process is carried out to restore images behind an acoustically inhomogeneous layer from the scattering photoacoustic signals. This method effectively decreases the false contrast, noise, and position deviation of images induced by the multiple scattering. Phantom experiment is carried out to validate the method. Therefore, the proposed method could have potential value in extending the biomedical applications of photoacoustic tomography in acoustically inhomogeneous tissue.
Low order models for uncertainty quantification in acoustic propagation problems
NASA Astrophysics Data System (ADS)
Millet, Christophe
2016-11-01
Long-range sound propagation problems are characterized by both a large number of length scales and a large number of normal modes. In the atmosphere, these modes are confined within waveguides causing the sound to propagate through multiple paths to the receiver. For uncertain atmospheres, the modes are described as random variables. Concise mathematical models and analysis reveal fundamental limitations in classical projection techniques due to different manifestations of the fact that modes that carry small variance can have important effects on the large variance modes. In the present study, we propose a systematic strategy for obtaining statistically accurate low order models. The normal modes are sorted in decreasing Sobol indices using asymptotic expansions, and the relevant modes are extracted using a modified iterative Krylov-based method. The statistics of acoustic signals are computed by decomposing the original pulse into a truncated sum of modal pulses that can be described by a stationary phase method. As the low-order acoustic model preserves the overall structure of waveforms under perturbations of the atmosphere, it can be applied to uncertainty quantification. The result of this study is a new algorithm which applies on the entire phase space of acoustic fields.
A PROPOSED BENCHMARK PROBLEM FOR SCATTER CALCULATIONS IN RADIOGRAPHIC MODELLING
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-03
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics
NASA Astrophysics Data System (ADS)
Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.
2016-10-01
We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50 000 W-1m-1 for backward and forward Brillouin scattering, respectively.
Observation of stimulated electron acoustic wave scattering: the case for nonlinear kinetic effects
NASA Astrophysics Data System (ADS)
Montgomery, D. S.; Cobble, J. A.; Fernandez, J. C.; Rose, H. A.; Focia, R. J.; Russell, D. A.
2001-10-01
Electrostatic waves with a frequency and phase velocity between an ion acoustic wave (IAW) and an electron plasma wave (EPW) have been observed with Thomson scattering in inhomogeneous plasmas, and in the backscattered spectrum for homogeneous single hot spot laser plasmas. We show that these waves are consistent with an electron-acoustic wave (EAW) that is a BGK-like mode due to electron trapping. The nonlinear dispersion relation for BGK-like EPW and EAW is discussed, and previous inhomogeneous Trident and Nova data are re-examined in this context. The possible implications of these results for backscattered SRS on the NIF are discussed.
Solution of exterior acoustic problems by the boundary element method
NASA Astrophysics Data System (ADS)
Kirkup, Stephen Martin
The boundary element method is described and investigated, especially in respect of its application to exterior two-dimensional Laplace problems. Both empirical and algebraic analyses (including the effects of approximation of the boundary and boundary functions and the precision of the evaluation of the discrete forms) are developed. Methods for the automatic evaluation of the discrete forms of the Laplace and Helmholtz integral operators are reviewed and extended. Boundary element methods for the solution of exterior Helmholtz problems with general (but most importantly Neumann) boundary conditions are reviewed and some are explicitly stated using a new notation. Boundary element methods based on the boundary integral equations introduced by Brakhage and Werner/Leis/Panich/Kussmaul (indirect) and Burton and Miller (direct) are given prime consideration and implemented for three-dimensional problems. The influence of the choice of weighting parameter on the performance of the methods is explored and further guidance is given. The application of boundary element methods and methods based on the Rayleigh integral to acoustic radiation problems are considered. Methods for speeding up their solution via the boundary element method are developed. Library subroutines for the solution of acoustic radiation problems are described and demonstrated. Computational techniques for the problem of predicting the noise produced by a running engine are reviewed and appraised. The application of the boundary element method to low-noise engine design and in the design of noise shields is considered. The boundary element method is applied to the Ricardo crankcase simulation rig, which is an engine-like structure. A comparison of predicted and measured sound power spectra is given.
Solution of Exterior Acoustic Problems by the Boundary Element Method.
NASA Astrophysics Data System (ADS)
Kirkup, Stephen Martin
Available from UMI in association with The British Library. The boundary element method is described and investigated, especially in respect of its application to exterior two -dimensional Laplace problems. Both empirical and algebraic analyses (including the effects of approximation of the boundary and boundary functions and the precision of the evaluation of the discrete forms) are developed. Methods for the automatic evaluation of the discrete forms of the Laplace and Helmholtz integral operators are reviewed and extended. Boundary element methods for the solution of exterior Helmholtz problems with general (but most importantly Neumann) boundary conditions are reviewed and some are explicitly stated using a new notation. Boundary element methods based on the boundary integral equations introduced by Brakhage & Werner/ Leis/ Panich/ Kussmaul (indirect) and Burton & Miller (direct) are given prime consideration and implemented for three -dimensional problems. The influence of the choice of weighting parameter on the performance of the methods is explored and further guidance is given. The application of boundary element methods and methods based on the Rayleigh integral to acoustic radiation problems are considered. Methods for speeding up their solution via the boundary element method are developed. Library subroutines for the solution of acoustic radiation problems are described and demonstrated. Computational techniques for the problem of predicting the noise produced by a running engine are reviewed and appraised. The application of the boundary element method to low-noise engine design and in the design of noise shields is considered. The boundary element method is applied to the Ricardo crankcase simulation rig, which is an engine -like structure. A comparison of predicted and measured sound power spectra is given.
Fischell, Erin M; Schmidt, Henrik
2015-12-01
One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].
Acoustic scattering by elastic cylinders of elliptical cross-section and splitting up of resonances
Ancey, S. Bazzali, E. Gabrielli, P. Mercier, M.
2014-05-21
The scattering of a plane acoustic wave by an infinite elastic cylinder of elliptical cross section is studied from a modal formalism by emphasizing the role of the symmetries. More precisely, as the symmetry is broken in the transition from the infinite circular cylinder to the elliptical one, the splitting up of resonances is observed both theoretically and experimentally. This phenomenon can be interpreted using group theory. The main difficulty stands in the application of this theory within the framework of the vectorial formalism in elastodynamics. This method significantly simplifies the numerical treatment of the problem, provides a full classification of the resonances, and gives a physical interpretation of the splitting up in terms of symmetry breaking. An experimental part based on ultrasonic spectroscopy complements the theoretical study. A series of tank experiments is carried out in the case of aluminium elliptical cylinders immersed in water, in the frequency range 0 ≤ kr ≤ 50, where kr is the reduced wave number in the fluid. The symmetry is broken by selecting various cylinders of increasing eccentricity. More precisely, the greater the eccentricity, the higher the splitting up of resonances is accentuated. The experimental results provide a very good agreement with the theoretical ones, the splitting up is observed on experimental form functions, and the split resonant modes are identified on angular diagrams.
2014-09-30
Mathematical modeling of space-time variations in acoustic transmission and scattering from schools of swim bladder fish (FY14 Annual Report...domain theory of acoustic scattering from, and propagation through, schools of swim bladder fish at and near the swim bladder resonance frequency...coupled differential equations. It incorporates a verified swim bladder scattering kernel for the individual fish, includes multiple scattering
Improved TV-CS Approaches for Inverse Scattering Problem
Bevacqua, M. T.; Di Donato, L.
2015-01-01
Total Variation and Compressive Sensing (TV-CS) techniques represent a very attractive approach to inverse scattering problems. In fact, if the unknown is piecewise constant and so has a sparse gradient, TV-CS approaches allow us to achieve optimal reconstructions, reducing considerably the number of measurements and enforcing the sparsity on the gradient of the sought unknowns. In this paper, we introduce two different techniques based on TV-CS that exploit in a different manner the concept of gradient in order to improve the solution of the inverse scattering problems obtained by TV-CS approach. Numerical examples are addressed to show the effectiveness of the method. PMID:26495420
RADIOGRAPHIC BENCHMARK PROBLEM 2009 - SCATTER CALCULATIONS IN MODELLING
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2010-02-22
Code Validation is a permanent concern in computer simulation, and has been addressed repeatedly in eddy current and ultrasonic modelling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radio-graphic modelling, the scattered radiation prediction. An update of the results of the 2008 benchmark is presented. Additionally we discuss the extension of this benchmark on the lower energy part for 60 and 80 keV as well as for higher energies up to 10 MeV to study the contribution of pair production. Of special interest will be the primary radiation (attenuation law as reference), the total scattered radiation, the relative contribution of scattered radiation separated by order of scatter events (1st, 2nd, ..., 20th), and the spectrum of scattered radiation. We present the results of three Monte Carlo codes (MC-Ray, Sindbad and Moderato) as well as an analytical first order scattering code (VXI) and compare to MCNP as reference.
Daeva, S.G.; Setukha, A.V.
2015-03-10
A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.
NASA Astrophysics Data System (ADS)
Soenarko, B.; Setiadikarunia, D.
2016-11-01
A half space problem in acoustics is described by introducing an infinite plane boundary that reflects the wave coming into the plane. A numerical solution using Boundary Element Method (BEM) has been known which is formulated using a modified Green's function in the Helmholtz Integral Formulation, which eliminates the discretization over the infinite plane. Hence, the discretization are confined to the body or obstacle in question only. This feature constitutes the main advantage of the BEM formulation for half space problems. However, no general analytical solution is available to verify the BEM results for half space problems. This paper is aimed to propose an analytical solution for the BEM to compare with, hence to verify the BEM calculation. This analytical approach is currently developed for a half space problem involving radiation and scattering of acoustic waves from a rigid sphere. The image of sphere as well as the image of the field point are defined with respect to the infinite plane. Then, an ad hoc solution is assumed involving a constant and the distance from the center of the sphere to the field point and the distance from the center of the image of the sphere to the field point. The constant is determined by imposing the boundary conditions. Test cases were run with several configuration involving the location of field points and the sphere. Comparison of the analytical solution with BEM calculations shows a good agreement between the two results..
Depolarized guided acoustic wave Brillouin scattering in hollow-core photonic crystal fibers.
Zhong, Wenjia Elser née; Stiller, Birgit; Elser, Dominique; Heim, Bettina; Marquardt, Christoph; Leuchs, Gerd
2015-10-19
By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an increase of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure.
NASA Astrophysics Data System (ADS)
Ariza, A.; Landeira, J. M.; Escánez, A.; Wienerroither, R.; Aguilar de Soto, N.; Røstad, A.; Kaartvedt, S.; Hernández-León, S.
2016-05-01
Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400-500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500-600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s - 1 and the long-range ones at 11.5 ± 3.8 cm s - 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.
Scattering and inverse scattering for a left-definite Sturm-Liouville problem
NASA Astrophysics Data System (ADS)
Bennewitz, C.; Brown, B. M.; Weikard, R.
This work develops a scattering and an inverse scattering theory for the Sturm-Liouville equation -u″+qu=λwu where w may change sign but q⩾0. Thus the left-hand side of the equation gives rise to a positive quadratic form and one is led to a left-definite spectral problem. The crucial ingredient of the approach is a generalized transform built on the Jost solutions of the problem and hence termed the Jost transform and the associated Paley-Wiener theorem linking growth properties of transforms with support properties of functions. One motivation for this investigation comes from the Camassa-Holm equation for which the solution of the Cauchy problem can be achieved by the inverse scattering transform for -u″+1/4u=λwu.
Problems in measuring diffuse X-ray scattering
Welberry, T. Richard; Goossens, Darren J.; Heerdegen, Aidan P.; Lee, Peter L.
2005-01-01
Problems encountered in making measurements of diffuse X-ray scattering are discussed. These generally arise from the need to measure very weak scattering in the presence of very strong scattering (Bragg peaks) using multi-detectors of various kinds. The problems are not confined to synchrotron experiments but may even occur using a tube source in the home laboratory. Specific details are given of experiments using 80.725 keV X-rays and a mar345 Image Plate detector on the 1-ID beamline of XOR at the Advanced Photon Source. In these a severe ‘blooming’ artefact which occurred around some strong Bragg peaks was traced to fluorescence from a steel mounting plate in the detector when strong Bragg peaks were incident. Algorithms developed to remove these artefacts from the data are described.
Parallel decomposition methods for the solution of electromagnetic scattering problems
NASA Technical Reports Server (NTRS)
Cwik, Tom
1992-01-01
This paper contains a overview of the methods used in decomposing solutions to scattering problems onto coarse-grained parallel processors. Initially, a short summary of relevant computer architecture is presented as background to the subsequent discussion. After the introduction of a programming model for problem decomposition, specific decompositions of finite difference time domain, finite element, and integral equation solutions to Maxwell's equations are presented. The paper concludes with an outline of possible software-assisted decomposition methods and a summary.
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2013-01-01
The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel ow problem.
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, C. I.
2013-01-01
The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel fl ow problem.
An optimum PML for scattering problems in the time domain
NASA Astrophysics Data System (ADS)
Modave, Axel; Kameni, Abelin; Lambrechts, Jonathan; Delhez, Eric; Pichon, Lionel; Geuzaine, Christophe
2013-11-01
In electromagnetic compatibility, scattering problems are defined in an infinite spatial domain, while numerical techniques such as finite element methods require a computational domain that is bounded. The perfectly matched layer (PML) is widely used to simulate the truncation of the computational domain. However, its performance depends critically on an absorption function. This function is generally tuned by using case-dependent optimization procedures. In this paper, we will present some efficient functions that overcome any tuning. They will be compared using a realistic scattering benchmark solved with the Discontinuous Galerkin method. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.
Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering
Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.
2014-01-01
Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).
The \\bar\\partial-equation in the multidimensional inverse scattering problem
NASA Astrophysics Data System (ADS)
Novikov, R. G.; Khenkin, G. M.
1987-06-01
.3. Continuability of solutions of the non-linear \\bar\\partial-equation from the "physical" to the "non-physical" domain § 4.4. Reconstruction of the Schrödinger operator from minimal scattering data § 4.5. Solution of the inverse scattering problem on a fixed energy level for the multidimensional Schrödinger operatorChapter V. Further results and problems § 5.1. The inverse scattering problem for the Schrödinger equation in a magnetic field § 5.2. Inverse scattering problems for the acoustic equationReferences
Observation of induced longitudinal and shear acoustic phonons by Brillouin scattering.
Yoshida, Taisuke; Matsukawa, Mami; Yanagitani, Takahiko
2011-06-01
To improve the accuracy of velocity measurements in the Brillouin scattering technique using weak thermal phonons, we have used induced coherent phonons, which intensify the scattering. To induce phonons in the gigahertz range, we used a c-axis tilted ZnO film transducer that was developed in our laboratory. This allowed us to induce longitudinal and shear acoustic phonons effectively at hypersonic frequencies. As a result, we obtained scattered light in the silica glass sample that was much more intense than that obtained from the thermal phonons. Because the Brillouin scattering from induced phonons was measured, the shift frequency was that of the electric signal applied to the ZnO transducer. Strong peaks lead to a reduction of the measurement time. This is useful for two-dimensional mapping of thin film elasticity using Brillouin scattering. Additionally, Brillouin scattering enables the simultaneous measurement of longitudinal and shear phonon velocities in the sample plane. This opens up a potential new technique for non-destructive elasticity measurements of various materials.
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, Chris
2013-01-01
Five different central difference schemes, based on a conservative differencing form of the Kennedy and Gruber skew-symmetric scheme, were compared with six different upwind schemes based on primitive variable reconstruction and the Roe flux. These eleven schemes were tested on a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem and a turbulent channel flow problem. The central schemes were generally very accurate and stable, provided the grid stretching rate was kept below 10%. As near-DNS grid resolutions, the results were comparable to reference DNS calculations. At coarser grid resolutions, the need for an LES SGS model became apparent. There was a noticeable improvement moving from CD-2 to CD-4, and higher-order schemes appear to yield clear benefits on coarser grids. The UB-7 and CU-5 upwind schemes also performed very well at near-DNS grid resolutions. The UB-5 upwind scheme does not do as well, but does appear to be suitable for well-resolved DNS. The UF-2 and UB-3 upwind schemes, which have significant dissipation over a wide spectral range, appear to be poorly suited for DNS or LES.
A study of MLFMA for large-scale scattering problems
NASA Astrophysics Data System (ADS)
Hastriter, Michael Larkin
This research is centered in computational electromagnetics with a focus on solving large-scale problems accurately in a timely fashion using first principle physics. Error control of the translation operator in 3-D is shown. A parallel implementation of the multilevel fast multipole algorithm (MLFMA) was studied as far as parallel efficiency and scaling. The large-scale scattering program (LSSP), based on the ScaleME library, was used to solve ultra-large-scale problems including a 200lambda sphere with 20 million unknowns. As these large-scale problems were solved, techniques were developed to accurately estimate the memory requirements. Careful memory management is needed in order to solve these massive problems. The study of MLFMA in large-scale problems revealed significant errors that stemmed from inconsistencies in constants used by different parts of the algorithm. These were fixed to produce the most accurate data possible for large-scale surface scattering problems. Data was calculated on a missile-like target using both high frequency methods and MLFMA. This data was compared and analyzed to determine possible strategies to increase data acquisition speed and accuracy through multiple computation method hybridization.
NASA Astrophysics Data System (ADS)
Ivanyshyn Yaman, Olha; Le Louër, Frédérique
2016-09-01
This paper deals with the material derivative analysis of the boundary integral operators arising from the scattering theory of time-harmonic electromagnetic waves and its application to inverse problems. We present new results using the Piola transform of the boundary parametrisation to transport the integral operators on a fixed reference boundary. The transported integral operators are infinitely differentiable with respect to the parametrisations and simplified expressions of the material derivatives are obtained. Using these results, we extend a nonlinear integral equations approach developed for solving acoustic inverse obstacle scattering problems to electromagnetism. The inverse problem is formulated as a pair of nonlinear and ill-posed integral equations for the unknown boundary representing the boundary condition and the measurements, for which the iteratively regularized Gauss-Newton method can be applied. The algorithm has the interesting feature that it avoids the numerous numerical solution of boundary value problems at each iteration step. Numerical experiments are presented in the special case of star-shaped obstacles.
1984-08-20
6]. 2.1 The New Wave -Surface Model: Surface Elevation We postulate the following potential mechanism for the small-scale scattering component of a...or hydraulic jumps, which ride upon the rough gravity-capillary wave surface, we develop the following ele- mentary second-moment model. * .~.’.. A...the covariance function, Ks here. ., 101 Accordingly, let us consider the following forms and definitions (for two-dimensional wave numbers k = (k ,ky
Haynes, Mark; Verweij, Sacha A. M.; Moghaddam, Mahta; Carson, Paul L.
2014-01-01
A self-contained source characterization method for commercial ultrasound probes in transmission acoustic inverse scattering is derived and experimentally tested. The method is based on modified scattered field volume integral equations that are linked to the source-scattering transducer model. The source-scattering parameters are estimated via pair-wise transducer measurements and the nonlinear inversion of an acoustic propagation model that is derived. This combination creates a formal link between the transducer characterization and the inverse scattering algorithm. The method is tested with two commercial ultrasound probes in a transmission geometry including provisions for estimating the probe locations and aligning a robotic rotator. The transducer characterization results show that the nonlinear inversion fit the measured data well. The transducer calibration and inverse scattering algorithm are tested on simple targets. Initial images show that the recovered contrasts are physically consistent with expected values. PMID:24569251
Inverse scattering for an AKNS problem with rational reflection coefficients
NASA Astrophysics Data System (ADS)
Steudel, H.; Kaup, D. J.
2008-04-01
We study the AKNS (Ablowitz-Kaup-Newell-Segur) inverse scattering problem for rational reflection coefficients on a semi-infinite interval. We demonstrate that the Marchenko integral equations for the AKNS version on such an interval can be solved in a direct and straightforward way by algebraic methods for any set of rational reflection coefficients, vanishing at infinity. The general AKNS scattering problem for this case, as well as the usual symmetry reductions, are discussed. The connection to an alternative procedure by Rourke and Morris (1992 Phys. Rev. A 46 3631) is pointed out. Our procedure is built around a constant matrix, M, which can be constructed from the poles and residues of the rational reflection coefficients. Under certain conditions, which we define as minimal symmetry and which then suitably constrains the distribution of eigenvalues, we show that it is always possible to represent the resulting potentials as truncated N-soliton potentials. This procedure is of interest for solving initial-boundary value problems of integrable hyperbolic systems by the inverse scattering transform (IST) applied to a semi-infinite or finite interval.
Numerical computations on one-dimensional inverse scattering problems
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Hariharan, S. I.
1983-01-01
An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.
Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel
2016-04-01
The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials.
Weber, Thomas C; Lutcavage, Molly E; Schroth-Miller, Madeline L
2013-06-01
Schools of Atlantic bluefin tuna (Thunnus thynnus) can exhibit highly organized spatial structure within the school. This structure was quantified for dome shaped schools using both aerial imagery collected from a commercial spotter plane and 400 kHz multibeam echo sounder data collected on a fishing vessel in 2009 in Cape Cod Bay, MA. Observations from one school, containing an estimated 263 fish within an approximately ellipsoidal volume of 1900 m(3), were used to seed an acoustic model that estimated the school target strength at frequencies between 10 and 2000 Hz. The fish's swimbladder resonance was estimated to occur at approximately 50 Hz. The acoustic model examined single and multiple scattering solutions and also a completely incoherent summation of scattering responses from the fish. Three levels of structure within the school were examined, starting with fish locations that were constrained by the school boundaries but placed according to a Poisson process, then incorporating a constraint on the distance to the nearest neighbor, and finally adding a constraint on the bearing to the nearest neighbor. Results suggest that both multiple scattering and spatial organization within the school should be considered when estimating the target strength of schools similar to the ones considered here.
Numerical method to compute acoustic scattering effect of a moving source.
Song, Hao; Yi, Mingxu; Huang, Jun; Pan, Yalin; Liu, Dawei
2016-01-01
In this paper, the aerodynamic characteristic of a ducted tail rotor in hover has been numerically studied using CFD method. An analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field and used as Neumann boundary condition on a rigid scattering surface. In order to predict the aerodynamic noise, a hybrid method combing computational aeroacoustics with an acoustic thin-body boundary element method has been proposed. The aerodynamic results and the calculated sound pressure levels (SPLs) are compared with the known method for validation. Simulation results show that the duct can change the value of SPLs and the sound directivity. Compared with the isolate tail rotor, the SPLs of the ducted tail rotor are smaller at certain azimuth.
NASA Astrophysics Data System (ADS)
Barr, H. C.; Boyd, T. J. M.; Lukyanov, A. V.
2000-03-01
In this report a complex Raman scattering event against a background of nonthermal ion coustic waves in an inhomogenous plasma is considered. The complex Raman process is a five-wave interaction in which three-wave stimulated Raman scattering (SRS) is accompanied by the decay of the Raman Langmuir wave into either a second Langmuir wave (LD) or a second scattered light wave (ED) and an ion acoustic wave. An extension of Stokes’ theory is used to obtain expressions for the gain in the Raman Langmuir and scattered waves. It is shown that only very modest levels of ion waves are needed to produce duce a significant effect on the net Raman convective gain which proves to be sensitive to the source levels of the amplifying waves. For LD the gain from the Raman Langmuir wave source is suppressed while that from the secondary Langmuir wave is enhanced such that the net gain is increased or decreased depending on which of the two sources is greater. When the source levels of both Langmuir waves are at thermal levels, opposing effects mean no net change in the gain factor irrespective of the ion acoustic wave amplitude. For ED the gain is invariably suppressed for any source distributions. Two possible regimes of an enhanced effect have been identified: exact sidescattering for ED and the supersonic point vicinity for LD(ED). The theory thus provides a possible explanation for a variety of the observed effects in the interplay between SRS and stimulated Brillouin scattering, both of concern in laser fusion schemes.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1999-01-01
A reduced order modeling scheme has been developed for the unsteady acoustic and vortical coupling between blade rows of a turbomachine. The essential behavior of the system is governed by modal scattering coefficients (i.e., reflection and transmission coefficients) of the rotor, stator, inlet and nozzle, which are calculated as if they were connected to non-reflecting ducts. The objective of this report is to identify fundamental behavior of these scattering coefficients for a better understanding of the role of blade row reflection and transmission in noise generation. A 2D flat plate unsteady cascade model is used for the analysis with the expectation that the general behavior presented herein will carry over to models that include more realistic flow and geometry. It is shown that stators scatter input waves into many modes at the same frequency whereas rotors scatter on frequency, or harmonic order. Important cases are shown here the rotor reflection coefficient is greater than unity; a mode at blade passing frequency (BPF) traveling from the stator with unit sound power is reflected by the rotor with more than unit power at 2xBPF and 3xBPE Analysis is presented to explain this unexpected phenomenon. Scattering curves are presented in a format chosen for design use and for physical interpretation. To aid in interpretation of the curves, formulas are derived for special condition where waveforms are parallel to perpendicular to the rotor.
Long-range acoustic scattering from a shallow-water mud-volcano cluster.
Holland, Charles W; Preston, John R; Abraham, Douglas A
2007-10-01
Analysis of reverberation measurements in the Straits of Sicily shows high intensity, discrete, scattered returns 10-20 dB above background reverberation. These returns are due to scattering from mud volcanoes. The reverberation from the mud volcanoes at ranges of 15-22 km is reasonably consistent over these spatial scales (i.e., kilometers) and temporal scales of several hours; measurements separated by 4 years are also similar. Statistical characterization indicates that the reverberation associated with a mud-volcano cluster is strongly non-Rayleigh and that the reverberation can be characterized by a single (shape) parameter, roughly independent of frequency. The non-Rayleigh statistics, with a concomitant increase in the probability of false alarm, indicate that mud volcanoes are a likely source of clutter. Mean target strengths were estimated at 1-11 dB over 160-1400 Hz and are consistent with target strengths measured during a different year at short (direct-path) ranges. Accumulated evidence points to small (order 10 m diameter and several meters high) carbonate chimneys on the mud-volcano edifice as the scattering mechanism as opposed to the edifice itself or scattering from gas bubbles in the water column. Thus, the results represent acoustic scattering from mud volcanoes in a quiescent state.
Mitri, Farid G
2009-05-01
The exact analytical solution for the acoustic scattering of a high-order (commonly known as generalized) Bessel beam (HOBB) by an elastic sphere immersed in an ideal fluid and centered along the beam axis is revisited. The far-field acoustic scattering field is expressed as a partial wave series involving the scattering angle relative to the beam axis, the order, and the half-conical angle of the wave number components of the generalized Bessel beam. Using an appropriate grouping of terms, the expressions for the incident and scattered pressures, as well as the scattering (complex) form function provided in a recent work are transformed into expressions involving the partial wave series starting from the order m of the generalized Bessel beam. In this new formulation, the scattering coefficients for a HOBB are found to equal those obtained from the study of sound scattering of plane progressive waves by an elastic sphere. This suggests that the (complex) form function presented here may be used to advantage toward studying the acoustic scattering of a HOBB by spherical shells, coated spheres, and coated spherical shells using their corresponding scattering partial wave coefficients available in standard and recent literature texts.
Solution of open region electromagnetic scattering problems on hypercube multiprocessors
Gedney, S.D.
1991-01-01
This thesis focuses on development of parallel algorithms that exploit hypercube multiprocessor computers for the solution of the scattering of electromagnetic fields by bodies situated in an unbounded space. Initially, algorithms based on the method of moments are investigated for coarse-grained MIMD hypercubes as well as finite-grained MIMD and SIMD hypercubes. It is shown that by exploiting the architecture of each hypercube, supercomputer performance can be obtained using the JPL Mark III hypercube and the Thinking Machine's CM2. Second, the use of the finite-element method for solution of the scattering by bodies of composite materials is presented. For finite bodies situated in an unbounded space, use of an absorbing boundary condition is investigated. A method known as the mixed-{chi} formulation is presented, which reduces the mesh density in the regions away from the scatterer, enhancing the use of an absorbing boundary condition. The scattering by troughs or slots is also investigated using a combined FEM/MoM formulation. This method is extended to the problem of the diffraction of electromagnetic waves by thick conducting and/or dielectric gratings. Finally, the adaptation of the FEM method onto a coarse-grained hypercube is presented.
Pinfield, Valerie J
2007-07-01
Measurements of ultrasound speed and attenuation can be related to the properties of dispersed systems by applying a scattering model. Rayleigh's method for scattering of sound by a spherical object, and its subsequent developments to include viscous, thermal, and other effects (known as the ECAH model) has been widely adopted. The ECAH method has difficulties, including numerical ill-conditioning, calculation of Bessel functions at large arguments, and inclusion of thermal effects in all cases. The present work develops techniques for improving the ECAH calculations to allow its use in instrumentation. It is shown that thermal terms can be neglected in some boundary equations up to approximately 100 GHz in water, and several simplified solutions result. An analytical solution for the zero-order coefficient is presented, with separate nonthermal and thermal parts, allowing estimation of the thermal contribution. Higher orders have been simplified by estimating the small shear contribution as the inertial limit is approached. The condition of the matrix solutions have been greatly improved by these techniques and by including appropriate scaling factors. A method is presented for calculating the required Bessel functions when the argument is large (high frequency or large particle size). The required number of partial wave orders is also considered.
Ostrovsky, Lev A; Sutin, Alexander M; Soustova, Irina A; Matveyev, Alexander L; Potapov, Andrey I; Kluzek, Zigmund
2003-02-01
The paper describes nonlinear effects due to a biharmonic acoustic signal scattering from air bubbles in the sea. The results of field experiments in a shallow sea are presented. Two waves radiated at frequencies 30 and 31-37 kHz generated backscattered signals at sum and difference frequencies in a bubble layer. A motorboat propeller was used to generate bubbles with different concentrations at different times, up to the return to the natural subsurface layer. Theoretical consideration is given for these effects. The experimental data are in a reasonably good agreement with theoretical predictions.
Brillouin-scattering measurements of the acoustic absorption coefficient in liquid CS2
NASA Technical Reports Server (NTRS)
Coakley, R. W.; Detenbeck, R. W.
1975-01-01
High-resolution Brillouin spectra were recorded for light scattered at small angles from liquid CS2. The use of a single-mode He-Ne laser, locked in frequency to a Fabry-Perot interferometer, permitted measurements of line widths of the order of 10 MHz for frequencies in the range 300-1000 MHz. These measurements extend previous Brillouin line-width measurements at higher frequencies into the region where relaxation effects are dominant and connect the optical measurements with lower-frequency acoustical data.
Multiresolution subspace-based optimization method for inverse scattering problems.
Oliveri, Giacomo; Zhong, Yu; Chen, Xudong; Massa, Andrea
2011-10-01
This paper investigates an approach to inverse scattering problems based on the integration of the subspace-based optimization method (SOM) within a multifocusing scheme in the framework of the contrast source formulation. The scattering equations are solved by a nested three-step procedure composed of (a) an outer multiresolution loop dealing with the identification of the regions of interest within the investigation domain through an iterative information-acquisition process, (b) a spectrum analysis step devoted to the reconstruction of the deterministic components of the contrast sources, and (c) an inner optimization loop aimed at retrieving the ambiguous components of the contrast sources through a conjugate gradient minimization of a suitable objective function. A set of representative reconstruction results is discussed to provide numerical evidence of the effectiveness of the proposed algorithmic approach as well as to assess the features and potentialities of the multifocusing integration in comparison with the state-of-the-art SOM implementation.
2010-05-27
microstructure measurements were collected by Jim Mourn with a profiling microstructure instrument, Chameleon . The contribution to scattering from...measurements were performed by Jim Mourn using the turbulence profiler Chameleon (Mourn et al., 1995). The broadband acoustic system was fully operational...community animals with implications for spinner dolphin foraging," The Journal of the Acoustical Society of America 123: 2884-2894. Au, W.W.L
Finite element methods on supercomputers - The scatter-problem
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.
1985-01-01
Certain problems arise in connection with the use of supercomputers for the implementation of finite-element methods. These problems are related to the desirability of utilizing the power of the supercomputer as fully as possible for the rapid execution of the required computations, taking into account the gain in speed possible with the aid of pipelining operations. For the finite-element method, the time-consuming operations may be divided into three categories. The first two present no problems, while the third type of operation can be a reason for the inefficient performance of finite-element programs. Two possibilities for overcoming certain difficulties are proposed, giving attention to a scatter-process.
Hesford, Andrew J.; Tillett, Jason C.; Astheimer, Jeffrey P.; Waag, Robert C.
2014-01-01
Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast. PMID:25096103
Analysis of High-Frequency Broadband Acoustic Scattering from Non-Linear Internal Waves During SW06
2009-09-30
profiling microstructure instrument, Chameleon . The contribution to scattering from biological organisms was quantified using a multiple-opening and...performed by Jim Moum using the turbulence profiler Chameleon (Moum et al., 1995). The broadband acoustic system was fully operational throughout...boundary community animals with implications for spinner dolphin foraging,” The Journal of the Acoustical Society of America 123: 2884-2894. Au, W.W.L
NASA Astrophysics Data System (ADS)
Isakari, Hiroshi; Kondo, Toyohiro; Takahashi, Toru; Matsumoto, Toshiro
2017-03-01
This paper presents a structural optimisation method in three-dimensional acoustic-elastic coupled problems. The proposed optimisation method finds an optimal allocation of elastic materials which reduces the sound level on some fixed observation points. In the process of the optimisation, configuration of the elastic materials is expressed with a level set function, and the distribution of the level set function is iteratively updated with the help of the topological derivative. The topological derivative is associated with state and adjoint variables which are the solutions of the acoustic-elastic coupled problems. In this paper, the acoustic-elastic coupled problems are solved by a BEM-FEM coupled solver, in which the fast multipole method (FMM) and a multi-frontal solver for sparse matrices are efficiently combined. Along with the detailed formulations for the topological derivative and the BEM-FEM coupled solver, we present some numerical examples of optimal designs of elastic sound scatterer to manipulate sound waves, from which we confirm the effectiveness of the present method.
Inverse problem of the acoustic emission diagnostics of materials
NASA Astrophysics Data System (ADS)
Abramov, O. V.; Gradov, O. M.; Iudin, M. I.
1988-12-01
The acoustic emission of an inclusion in an infinite medium is analyzed. For an inclusion of general form, expressions for density and transverse and longitudinal waves in the inclusion material are obtained, as are equations for the inclusion surface. Attention is given to several particular cases of inclusions of simple shape (spherical and ellipsoidal), whose parameters are determined from the spectral characteristics of the acoustic emission signal.
Bottcher, C.; Strayer, M.R.; Werby, M.F.
1993-10-01
The Helmholtz-Poincare Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWE`s. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can by obtained in matrix form be expanding all relevant terms in partial wave expansions, including a biorthogonal expansion of the Green function. However some freedom of choice in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways to long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermition operator. The methodology will be explained in detail and examples will be presented.
Wyczalkowski, Matthew; Szeri, Andrew J
2003-06-01
The second harmonic radiation of acoustically driven bubbles is a useful discriminant for their presence in clinical ultrasound applications. It is useful because the scatter from a bubble at a frequency different from the driving can have a contrast-to-tissue ratio better than at the drive frequency. In this work a technique is developed to optimize the scattering from a microbubble at a frequency different from the driving. This is accomplished by adjusting the relative phase and amplitudes of the components of a dual-frequency incident ultrasound wave form. The investigation is focused primarily on the example of dual-mode driving at frequencies of 1 MHz and 3 MHz, with the scattering optimized at 2 MHz. Bubble radii of primary interest are 0.5 to 2 microm and driving amplitudes to 0.5 atm. Bubbles in this size range are sensitive to modulation of driving. It is shown that an optimal forcing scheme can increase the target response eightfold or more. This suggests new applications in imaging and in bubble detection.
The FN method for anisotropic scattering in neutron transport theory: the critical slab problem.
NASA Astrophysics Data System (ADS)
Gülecyüz, M. C.; Tezcan, C.
1996-08-01
The FN method which has been applied to many physical problems for isotropic and anisotropic scattering in neutron transport theory is extended for problems for extremely anisotropic scattering. This method depends on the Placzek lemma and the use of the infinite medium Green's function. Here the Green's function for extremely anisotropic scattering which was expressed as a combination of the Green's functions for isotropic scattering is used to solve the critical slab problem. It is shown that the criticality condition is in agreement with the one obtained previously by reducing the transport equation for anisotropic scattering to isotropic scattering and solving using the FN method.
Kaina, Nadège; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy
2015-09-03
Metamaterials, man-made composite media structured on a scale much smaller than a wavelength, offer surprising possibilities for engineering the propagation of waves. One of the most interesting of these is the ability to achieve superlensing--that is, to focus or image beyond the diffraction limit. This originates from the left-handed behavior--the property of refracting waves negatively--that is typical of negative index metamaterials. Yet reaching this goal requires the design of 'double negative' metamaterials, which act simultaneously on the permittivity and permeability in electromagnetics, or on the density and compressibility in acoustics; this generally implies the use of two different kinds of building blocks or specific particles presenting multiple overlapping resonances. Such a requirement limits the applicability of double negative metamaterials, and has, for example, hampered any demonstration of subwavelength focusing using left-handed acoustic metamaterials. Here we show that these strict conditions can be largely relaxed by relying on media that consist of only one type of single resonant unit cell. Specifically, we show with a simple yet general semi-analytical model that judiciously breaking the symmetry of a single negative metamaterial is sufficient to turn it into a double negative one. We then demonstrate that this occurs solely because of multiple scattering of waves off the metamaterial resonant elements, a phenomenon often disregarded in these media owing to their subwavelength patterning. We apply our approach to acoustics and verify through numerical simulations that it allows the realization of negative index acoustic metamaterials based on Helmholtz resonators only. Finally, we demonstrate the operation of a negative index acoustic superlens, achieving subwavelength focusing and imaging with spot width and resolution 7 and 3.5 times better than the diffraction limit, respectively. Our findings have profound implications for the
Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
Rajabi, M; Hasheminejad, Seyyed M
2009-12-01
The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.
Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering
Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,; Alatas, A.
2009-01-01
Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocity of (9200 {+-} 600) m/s.
Bugay, A. N.; Sazonov, S. V.
2008-08-15
A new mechanism is proposed for continuous frequency down-conversion of acoustic waves propagating in a paramagnetic crystal at a low temperature in an applied magnetic field. A transverse hypersonic pulse generating a carrier-free longitudinal strain pulse via nonlinear effects is scattered by the generated pulse. This leads to a Stokes shift in the transverse hypersonic wave proportional to its intensity, and both pulses continue to propagate in the form of a mode-locked soliton. As the transverse-pulse frequency is Stokes shifted, its spectrum becomes narrower. This process can be effectively implemented only if the linear group velocity of the transverse hypersonic pulse equals the phase velocity of the longitudinal strain wave. These velocities are renormalized by spin-phonon coupling and can be made equal by adjusting the magnitude of the applied magnetic field. The transverse structure of the soliton depends on the sign of the group velocity dispersion of the transverse component. When the dispersion is positive, planar solitons can develop whose transverse component has a topological defect of dark vortex type and longitudinal component has a hole. In the opposite case, the formation of two-component acoustic 'bullets' or vortices localized in all directions is possible.
Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer
NASA Astrophysics Data System (ADS)
Liu, W.; Zagzebski, J. A.; Hall, T. J.; Madsen, E. L.; Varghese, T.; Kliewer, M. A.; Panda, S.; Lowery, C.; Barnes, S.
2008-08-01
Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated
Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer
Liu, W; Zagzebski, J A; Hall, T J; Madsen, E L; Varghese, T; Kliewer, M A; Panda, S; Lowery, C; Barnes, S
2009-01-01
Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated
An analytical approach to estimate the number of small scatterers in 2D inverse scattering problems
NASA Astrophysics Data System (ADS)
Fazli, Roohallah; Nakhkash, Mansor
2012-07-01
This paper presents an analytical method to estimate the location and number of actual small targets in 2D inverse scattering problems. This method is motivated from the exact maximum likelihood estimation of signal parameters in white Gaussian noise for the linear data model. In the first stage, the method uses the MUSIC algorithm to acquire all possible target locations and in the next stage, it employs an analytical formula that works as a spatial filter to determine which target locations are associated to the actual ones. The ability of the method is examined for both the Born and multiple scattering cases and for the cases of well-resolved and non-resolved targets. Many numerical simulations using both the coincident and non-coincident arrays demonstrate that the proposed method can detect the number of actual targets even in the case of very noisy data and when the targets are closely located. Using the experimental microwave data sets, we further show that this method is successful in specifying the number of small inclusions.
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Zhang, Likun
2016-11-01
When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.
Acoustic scattering by circular cylinders of various aspect ratios. [pressure gradient microphones
NASA Technical Reports Server (NTRS)
Maciulaitis, A.
1979-01-01
The effects of acoustic scattering on the useful frequency range of pressure gradient microphones were investigated experimentally between ka values of 0.407 and 4.232 using two circular cylindrical models (L/D = 0.5 and 0.25) having a 25 cm outside diameter. Small condenser microphones, attached to preamplifiers by flexible connectors, were installed from inside the cylindrical bodies, and flush mounted on the exterior surface of the cylinders. A 38 cm diameter woofer in a large speaker enclosure was used as the sound source. Surface pressure augmentation and phase differences were computed from measured data for various sound wave incidence angles. Results are graphically compared with theoretical predictions supplied by NASA for ka = 0.407, 2.288, and 4.232. All other results are tabulated in the appendices. With minor exceptions, the experimentally determined pressure augmentations agreed within 0.75 dB with theoretical predictions. The agreement for relative phase angles was within 5 percent without any exceptions. Scattering parameter variations with ka and L/D ratio, as computed from experimental data, are also presented.
Mathematics: Numerical Solution of Inverse Problems in Acoustics
1992-04-30
Camerino Dipartimento di Matematica e Fisica 62032 Camerino (MC) Italy Index I Introduction pag. 3 2 Statement of the work accomplished pag. 4 3...Scientific Iles-areh under contract so AFOSR . 200.0228 with the Universit& di Carnerino tDipartimento di Matematica e Fisica UnIversitk dl Camerio- .2032...for time harmonic acoustic waves: a numerical method* Luciano Misici Dipartimento di Matematica e Fisica Universita di Camerino 62032 Camerino (MC
Limits of applicability of the concept of scattering amplitude in small-angle scattering problems
NASA Astrophysics Data System (ADS)
Dzheparov, F. S.; Lvov, D. V.
2014-01-01
The applicability of the concept of scattering amplitude to the description of small-angle scattering experiments has been considered. An expression has been obtained for a scattered radiation flux on a detector under much milder conditions than the condition of Fraunhofer diffraction. The influence of incoherence of the source on the results has been evaluated.
Risk of a second cancer from scattered radiation in acoustic neuroma treatment
NASA Astrophysics Data System (ADS)
Yoon, Myonggeun; Lee, Hyunho; Sung, Jiwon; Shin, Dongoh; Park, Sungho; Chung, Weon Kuu; Jahng, Geon-Ho; Kim, Dong Wook
2014-06-01
The present study aimed to compare the risk of a secondary cancer from scattered and leakage doses in patients receiving intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) of a secondary cancer were estimated using the corresponding secondary doses measured at various organs by using radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, liver, bowel, bladder, prostate (or ovary), and rectum were 14.6, 1.7, 0.9, 0.8, 0.6, 0.6, and 0.6 cGy, respectively, for IMRT whereas they were 19.1, 1.8, 2.0, 0.6, 0.4, 0.4, and 0.4 cGy, respectively, for VMAT, and 22.8, 4.6, 1.4, 0.7, 0.5, 0.5, and 0.5 cGy, respectively, for SRS. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A lifetime attributable risk evaluation estimated that more than 0.03% of acoustic neuroma (AN) patients would get radiation-induced cancer within 20 years of receiving radiation therapy. The organ with the highest radiation-induced cancer risk after radiation treatment for AN was the thyroid. We found that the LAR could be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.
Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes.
Frinking, Peter J A; Brochot, Jean; Arditi, Marcel
2010-08-01
Subharmonic scattering of phospholipid-shell microbubbles excited at relatively low acoustic pressure amplitudes (<30 kPa) has been associated with echo responses from compression-only bubbles having initial surface tension values close to zero. In this work, the relation between sbharmonics and compression-only behavior of phospholipid-shell microbubbles was investigated, experimentally and by simulation, as a function of the initial surface tension by applying ambient overpressures of 0 and 180 mmHg. The microbubbles were excited using a 64-cycle transmit burst with a center frequency of 4 MHz and peak-negative pressure amplitudes ranging from 20 of 150 kPa. In these conditions, an increase in subharmonic response of 28.9 dB (P < 0.05) was measured at 50 kPa after applying an overpressure of 180 mmHg. Simulations using the Marmottant model, taking into account the effect of ambient overpressure on bubble size and initial surface tension, confirmed the relation between subharmonics observed in the pressure-time curves and compression-only behavior observed in the radius-time curves. The trend of an increase in subharmonic response as a function of ambient overpressure, i.e., as a function of the initial surface tension, was predicted by the model. Subharmonics present in the echo responses of phospholipid-shell microbubbles excited at low acoustic pressure amplitudes are indeed related to the echo responses from compression-only bubbles. The increase in subharmonics as a function of ambient overpressure may be exploited for improving methods for noninvasive pressure measurement in heart cavities or big vessels in the human body.
2011-06-01
convenience in deriving the Hessian, the forward and adjoint equations are best expressed in the weak form. As a direct consequence of the above variational ... calculus steps, the forward equation in the weak form reads S (q, U) = ∫ Rd û [ ∇2U + k2nU − k2(1− n)U ic ] dΩ − ∫ Γ∞ û ( ∂U ∂r − ikU − ϕ ) ds = 0
2011-06-01
sufficient optimality conditions for shape functionals. Control and Cybernetics, 29:485–512, 2000. [14] Philippe Blanchard and Erwin Brüning...Mathematical Methods in Physics. Birhäuser Verlag, 2003. [15] Ken Kreutz-Delgado. The complex gradient operator and the CR-calculus. Technical Report UCSD
Ecology of acoustic signalling and the problem of masking interference in insects.
Schmidt, Arne K D; Balakrishnan, Rohini
2015-01-01
The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.
Efficient finite element modeling of scattering for 2D and 3D problems
NASA Astrophysics Data System (ADS)
Wilcox, Paul D.; Velichko, Alexander
2010-03-01
The scattering of waves by defects is central to ultrasonic NDE and SHM. In general, scattering problems must be modeled using direct numerical methods such as finite elements (FE), which is very computationally demanding. The most efficient way is to only model the scatterer itself and a minimal region of the surrounding host medium, and this was previously demonstrated for 2-dimensional (2D) bulk wave scattering problems in isotropic media. An encircling array of monopole and dipole sources is used to inject an arbitrary wavefront onto the scatterer and the scattered field is monitored by a second encircling array of monitoring points. From this data, the scattered field can be projected out to any point in space. If the incident wave is chosen to be a plane wave incident from a given angle and the scattered field is projected to distant points in the far-field of the scatterer, the far-field scattering or S-matrix may be obtained, which encodes all the available scattering information. In this paper, the technique is generalized to any elastic wave geometry in both 2D and 3D, where the latter can include guided wave scattering problems. A further refinement enables the technique to be employed with free FE meshes of triangular or tetrahedral elements.
Louis, A. K.
2006-01-01
Many algorithms applied in inverse scattering problems use source-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting source problem does not have a unique solution, since certain parts of the source totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special sets of functions, which include all radiating and all nonradiating parts of the source. These sets are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060
NASA Astrophysics Data System (ADS)
Moses, Harry E.
1984-06-01
The object of the time-dependent inverse source problem of electromagnetic theory and acoustics is to find time-dependent sources and currents, which are turned on at a given time and then off to give rise to prescribed radiation fields. In an early paper for the three-dimensional electromagnetic case, the present writer showed that the sources and currents are not unique and gave conditions which make them so. The ideas of that paper are reformulated for the three-dimensional electromagnetic case and extended to the acoustical three-dimensional case and the one-dimensional electromagnetic and acoustic cases. The one-dimensional cases show very explicitly the nature of the ambiguity of the choice of sources and currents. This ambiguity is closely related to one which occurs in inverse scattering theory. The ambiguity in inverse scattering theory arises when one wishes to obtain the off-shell elements of the T matrix from some of the on-shell elements (i.e., from the corresponding elements of the scattering operator). In inverse scattering theory prescribing of the representation in which the potential is to be diagonal removes the ambiguity. For the inverse source problem a partial prescription of the time dependence of the sources and currents removes the ambiguity. The inverse source problem is then solved explicitly for this prescribed time dependence. The direct source problems for the one- and three-dimensional acoustic and electromagnetic cases are also given to provide a contrast with the inverse source problem and for use in later papers. Moreover, the present author's earlier work on the eigenfunctions of the curl operator is reviewed and used to simplify drastically the three-dimensional direct and inverse source problems for electromagnetic theory by splitting off the radiation field and its currents from the longitudinal field and its sources and currents. Finally, for a prescribed time dependence, the inverse source problem is solved explicitly in
Solution of acoustic workshop problems by a spectral multidomain method
NASA Technical Reports Server (NTRS)
Kopriva, Davis A.; Kolias, John H.
1995-01-01
We use a new staggered grid Chebyshev spectral multidomain method to solve three of the Workshop benchmark problems. The method defines solution unknowns at the nodes of the Chebyshev Gauss quadrature, and the fluxes at the nodes of the Chebyshev Gauss-Lobatto quadrature. The Chebyshev spectral method gives exponentially convergent phase and dissipation errors. The multidomain approximation gives the method flexibility. Using the method, we solve problems in Categories 1 and 5 of the benchmark problems.
NASA Technical Reports Server (NTRS)
Hu, Fang Q.; Pizzo, Michelle E.; Nark, Douglas M.
2016-01-01
Based on the time domain boundary integral equation formulation of the linear convective wave equation, a computational tool dubbed Time Domain Fast Acoustic Scattering Toolkit (TD-FAST) has recently been under development. The time domain approach has a distinct advantage that the solutions at all frequencies are obtained in a single computation. In this paper, the formulation of the integral equation, as well as its stabilization by the Burton-Miller type reformulation, is extended to cases of a constant mean flow in an arbitrary direction. In addition, a "Source Surface" is also introduced in the formulation that can be employed to encapsulate regions of noise sources and to facilitate coupling with CFD simulations. This is particularly useful for applications where the noise sources are not easily described by analytical source terms. Numerical examples are presented to assess the accuracy of the formulation, including a computation of noise shielding by a thin barrier motivated by recent Historical Baseline F31A31 open rotor noise shielding experiments. Furthermore, spatial resolution requirements of the time domain boundary element method are also assessed using point per wavelength metrics. It is found that, using only constant basis functions and high-order quadrature for surface integration, relative errors of less than 2% may be obtained when the surface spatial resolution is 5 points-per-wavelength (PPW) or 25 points-per-wavelength squared (PPW2).
Burton-Miller-type singular boundary method for acoustic radiation and scattering
NASA Astrophysics Data System (ADS)
Fu, Zhuo-Jia; Chen, Wen; Gu, Yan
2014-08-01
This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller's formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton-Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.
Baik, Kyungmin; Dudley, Christopher; Marston, Philip L
2011-12-01
When synthetic aperture sonar (SAS) is used to image elastic targets in water, subtle features can be present in the images associated with the dynamical response of the target being viewed. In an effort to improve the understanding of such responses, as well as to explore alternative image processing methods, a laboratory-based system was developed in which targets were illuminated by a transient acoustic source, and bistatic responses were recorded by scanning a hydrophone along a rail system. Images were constructed using a relatively conventional bistatic SAS algorithm and were compared with images based on supersonic holography. The holographic method is a simplification of one previously used to view the time evolution of a target's response [Hefner and Marston, ARLO 2, 55-60 (2001)]. In the holographic method, the space-time evolution of the scattering was used to construct a two-dimensional image with cross range and time as coordinates. Various features for vertically hung cylindrical targets were interpreted using high frequency ray theory. This includes contributions from guided surface elastic waves, as well as transmitted-wave features and specular reflection.
Collective Thomson scattering measurements of the Ion Acoustic Decay Instability. Final report
Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.
1993-12-31
We have developed an uv collective Thomson scattering system for plasma produced by a short wavelength laser. The Ion Acoustic Decay Instabilities are studied in a large ({approximately}mm) scale, hot ({approximately}keV) plasma, which is relevant to a direct-driven laser fusion plasma. The IADI primary decay process is measured by the CTS. We used a random phase plate to minimize the non uniform irradiation of the interaction laser. Nevertheless, the threshold of the most unstable mode driven by the IADI is quite low. The measured threshold value agrees favorably with the theoretical value of the large scale plasma. We have also shown that the CTS from the IADI can be a good tool for measuring a local electron temperature. The measured results agree reasonably with the SAGE computer calculations. We used the real part of the wave (frequency) to estimate T{sub e}. The real part is, in general, reliable compared to the imaginary part such as the damping, and the growth rates. We have shown that the IADI can be easily excited in a large scale, hot plasma. The IADI has potentially important applications to direct drive laser fusion, and also critical surface diagnostic.
Yu, Q Z; Zhang, J; Li, Y T; Lu, X; Hawreliak, J; Wark, J; Chambers, D M; Wang, Z B; Yu, C X; Jiang, X H; Li, W H; Liu, S Y; Zheng, Z J
2005-04-01
Thomson scattering (TS) measurements are performed at different locations in a laser-produced aluminum plasma. Variations of the separation, wavelength shift, and asymmetric distribution of the two ion-acoustic waves are investigated from their spectral-time-resolved TS images. Detailed information on the space-time evolution of the plasma parameters is obtained. Electron distribution and variation of the heat flux in the plasma are also obtained for a steep temperature gradient.
NASA Astrophysics Data System (ADS)
Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang
2016-09-01
A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.
NASA Astrophysics Data System (ADS)
Powell, Jesse R.; Ohman, Mark D.
2015-05-01
We report cross-frontal changes in the characteristics of plankton proxy variables measured by autonomous Spray ocean gliders operating within the Southern California Current System (SCCS). A comparison of conditions across the 154 positive frontal gradients (i.e., where density of the surface layer decreased in the offshore direction) identified from six years of continuous measurements showed that waters on the denser side of the fronts typically showed higher Chl-a fluorescence, shallower euphotic zones, and higher acoustic backscatter than waters on the less dense side. Transitions between these regions were relatively abrupt. For positive fronts the amplitude of Diel Vertical Migration (DVM), inferred from a 3-beam 750 kHz acoustic Doppler profiler, increased offshore of fronts and covaried with optical transparency of the water column. Average interbeam variability in acoustic backscatter also changed across many positive fronts within 3 depth strata (0-150 m, 150-400 m, and 400-500 m), revealing a front-related change in the acoustic scattering characteristics of the assemblages. The extent of vertical stratification of distinct scattering assemblages was also more pronounced offshore of positive fronts. Depth-stratified zooplankton samples collected by Mocness nets corroborated the autonomous measurements, showing copepod-dominated assemblages and decreased zooplankton body sizes offshore and euphausiid-dominated assemblages with larger median body sizes inshore of major frontal features.
Benefits of Acoustic Beamforming for Solving the Cocktail Party Problem.
Kidd, Gerald; Mason, Christine R; Best, Virginia; Swaminathan, Jayaganesh
2015-06-30
The benefit provided to listeners with sensorineural hearing loss (SNHL) by an acoustic beamforming microphone array was determined in a speech-on-speech masking experiment. Normal-hearing controls were tested as well. For the SNHL listeners, prescription-determined gain was applied to the stimuli, and performance using the beamformer was compared with that obtained using bilateral amplification. The listener identified speech from a target talker located straight ahead (0° azimuth) in the presence of four competing talkers that were either colocated with, or spatially separated from, the target. The stimuli were spatialized using measured impulse responses and presented via earphones. In the spatially separated masker conditions, the four maskers were arranged symmetrically around the target at ±15° and ±30° or at ±45° and ±90°. Results revealed that masked speech reception thresholds for spatially separated maskers were higher (poorer) on average for the SNHL than for the normal-hearing listeners. For most SNHL listeners in the wider masker separation condition, lower thresholds were obtained through the microphone array than through bilateral amplification. Large intersubject differences were found in both listener groups. The best masked speech reception thresholds overall were found for a hybrid condition that combined natural and beamforming listening in order to preserve localization for broadband sources.
Benoit-Bird, Kelly J; Gilly, William F; Au, Whitlow W L; Mate, Bruce
2008-03-01
This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies.
Carvalho, Bruno R; Wang, Yuanxi; Mignuzzi, Sandro; Roy, Debdulal; Terrones, Mauricio; Fantini, Cristiano; Crespi, Vincent H; Malard, Leandro M; Pimenta, Marcos A
2017-03-09
Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2.
Carvalho, Bruno R.; Wang, Yuanxi; Mignuzzi, Sandro; Roy, Debdulal; Terrones, Mauricio; Fantini, Cristiano; Crespi, Vincent H.; Malard, Leandro M.; Pimenta, Marcos A.
2017-01-01
Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2. PMID:28276472
NASA Astrophysics Data System (ADS)
Carvalho, Bruno R.; Wang, Yuanxi; Mignuzzi, Sandro; Roy, Debdulal; Terrones, Mauricio; Fantini, Cristiano; Crespi, Vincent H.; Malard, Leandro M.; Pimenta, Marcos A.
2017-03-01
Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2.
Computational solution of acoustic radiation problems by Kussmaul's boundary element method
NASA Astrophysics Data System (ADS)
Kirkup, S. M.; Henwood, D. J.
1992-10-01
The problem of computing the properties of the acoustic field exterior to a vibrating surface for the complete wavenumber range by the boundary element method is considered. A particular computational method based on the Kussmaul formulation is described. The method is derived through approximating the surface by a set of planar triangles and approximating the surface functions by a constant on each element. The method is successfully applied to test problems and to the Ricardo crankcase simulation rig.
2013-01-30
key results in the literature (#1) and advancing the field (#2 and #3): aoV^oWHI 1. Key results of Ehrenberg (1972) involving the echo statistics of... Ehrenberg (1972) "A method for extracting the fish target strength distribution from acoustic echoes," in Proc. Conf. Eng. Ocean Environ., Vol. 1
NASA Technical Reports Server (NTRS)
Meyer, Harold D.
1999-01-01
This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.
Some inverse problems arising from elastic scattering by rigid obstacles
NASA Astrophysics Data System (ADS)
Hu, Guanghui; Kirsch, Andreas; Sini, Mourad
2013-01-01
In the first part of this paper, it is proved that a C2-regular rigid scatterer in { {R}}^3 can be uniquely identified by the shear part (i.e. S-part) of the far-field pattern corresponding to all incident shear waves at any fixed frequency. The proof is short and it is based on a kind of decoupling of the S-part of scattered wave from its pressure part (i.e. P-part) on the boundary of the scatterer. Moreover, uniqueness using the S-part of the far-field pattern corresponding to only one incident plane shear wave holds for a ball or a convex Lipschitz polyhedron. In the second part, we adapt the factorization method to recover the shape of a rigid body from the scattered S-waves (resp. P-waves) corresponding to all incident plane shear (resp. pressure) waves. Numerical examples illustrate the accuracy of our reconstruction in { {R}}^2. In particular, the factorization method also leads to some uniqueness results for all frequencies excluding possibly a discrete set.
μ-diff: An open-source Matlab toolbox for computing multiple scattering problems by disks
NASA Astrophysics Data System (ADS)
Thierry, Bertrand; Antoine, Xavier; Chniti, Chokri; Alzubaidi, Hasan
2015-07-01
The aim of this paper is to describe a Matlab toolbox, called μ-diff, for modeling and numerically solving two-dimensional complex multiple scattering by a large collection of circular cylinders. The approximation methods in μ-diff are based on the Fourier series expansions of the four basic integral operators arising in scattering theory. Based on these expressions, an efficient spectrally accurate finite-dimensional solution of multiple scattering problems can be simply obtained for complex media even when many scatterers are considered as well as large frequencies. The solution of the global linear system to solve can use either direct solvers or preconditioned iterative Krylov subspace solvers for block Toeplitz matrices. Based on this approach, this paper explains how the code is built and organized. Some complete numerical examples of applications (direct and inverse scattering) are provided to show that μ-diff is a flexible, efficient and robust toolbox for solving some complex multiple scattering problems.
NASA Astrophysics Data System (ADS)
Xu, Qiang; Gao, Weiqing; Li, Xue; Ni, Chenquan; Chen, Xiangcai; Chen, Li; Zhang, Wei; Hu, Jigang; Chen, Xiangdong; Yuan, Zijun
2016-10-01
The optical and acoustic fields of stimulated Brillouin scattering (SBS) effect in the As2S3 chalcogenide suspended-core microstructured optical fibers (MOFs) are investigated by the finite-element method (FEM). The optical and acoustic fundamental modes at 1550 nm are analyzed with the core diameters of the MOFs varying from 1.0 to 6.0 μm. For each case, the holes of the MOFs are filled with different materials such as trichlormethane (CHCL3), alcohol and water. When the core diameter is 6.0 μm, the maximum peak intensity of the optical fundamental mode is in the case with air holes, while the minimum value is in the case filled with CHCL3. The ratio of difference is 0.66%. The minimum peak intensity of the acoustic fundamental mode is in the case with air holes, while the maximum value is in the case filled with water. The ratio of difference is 0.13%. The same rule occurs in the fiber cores of 4.5, 3.0 and 2.0 μm, where the decreases of 0.97%, 1.48%, 1.94% for optical field and the increases of 0.24%, 0.34%, 0.74% for acoustic field are obtained, respectively. When the core diameter is 1.0 μm, ratios of difference for optical and acoustic fields are much higher than those in the cases of 2.0-6.0 μm, which are 3.55% and 29.13%, respectively. The overlap factors between optical and acoustic fields are calculated, which are changed with the core diameter and the filled material in holes. Our results will be helpful to strengthen or suppress the SBS effect in practical applications.
Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong
2014-02-01
Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
A two-dimensional Helmhotlz equation solution for the multiple cavity scattering problem
NASA Astrophysics Data System (ADS)
Li, Peijun; Wood, Aihua
2013-05-01
Here considered is the mathematical analysis and numerical computation of the electromagnetic wave scattering by multiple cavities embedded in an infinite ground plane. Above the ground plane the space is filled with a homogeneous medium, while the interiors of the cavities are filled with inhomogeneous media characterized by variable permittivities. By introducing a new transparent boundary condition on the cavity apertures, the multiple cavity scattering problem is reduced to a boundary value problem of the two-dimensional Helmholtz equation imposed in the separated interior domains of the cavities. The existence and uniqueness of the weak solution for the model problem is achieved via a variational approach. A block Gauss-Seidel iterative method is introduced to solve the coupled system of the multiple cavity scattering problem, where only a single cavity scattering problem is required to be solved at each iteration. Numerical examples demonstrate the efficiency and accuracy of the proposed method.
Adapting a truly nonlinear filter to the ocean acoustic inverse problem
NASA Astrophysics Data System (ADS)
Ganse, Andrew A.; Odom, Robert I.
2005-04-01
Nonlinear inverse problems including the ocean acoustic problem have been solved by Monte Carlo, locally-linear, and filter based techniques such as the Extended Kalman Filter (EKF). While these techniques do provide statistical information about the solution (e.g., mean and variance), each suffers from inherent limitations in their approach to nonlinear problems. Monte Carlo techniques are expensive to compute and do not contribute to intuitive interpretation of a problem, and locally-linear techniques (including the EKF) are limited by the multimodal objective landscape of nonlinear problems. A truly nonlinear filter, based on recent work in nonlinear tracking, estimates state information for a nonlinear problem in continual measurement updates and is adapted to solving nonlinear inverse problems. Additional terms derived from the system's state PDF are added to the mean and covariance of the solution to address the nonlinearities of the problem, and overall the technique offers improved performance in nonlinear inversion. [Work supported by ONR.
Mitri, F. G.
2015-11-14
Using the partial-wave series expansion method in cylindrical coordinates, a formal analytical solution for the acoustical scattering of a 2D cylindrical quasi-Gaussian beam with an arbitrary angle of incidence θ{sub i}, focused on a rigid elliptical cylinder in a non-viscous fluid, is developed. The cylindrical focused beam expression is an exact solution of the Helmholtz equation. The scattering coefficients for the elliptical cylinder are determined by forcing the expression of the total (incident + scattered) field to satisfy the Neumann boundary condition for a rigid immovable surface, and performing the product of matrices involving an inversion procedure. Computations for the matrices elements require a single numerical integration procedure for each partial-wave mode. Numerical results are performed with particular emphasis on the focusing properties of the incident beam and its angle of incidence with respect to the major axis a of the ellipse as well as the aspect ratio a/b where b is the minor axis (assuming a > b). The method is validated and verified against previous results obtained via the T-matrix for plane waves. The present analysis is the first to consider an acoustical beam on an elliptic cylinder of variable cross-section as opposed to plane waves of infinite extent. Other 2D non-spherical and Chebyshev surfaces are mentioned that may be examined throughout this analytical formalism assuming a small deformation parameter ε.
Acoustic far-field of shroud-lip-scattered instability modes of supersonic co-flowing jets
NASA Astrophysics Data System (ADS)
Samanta, Arnab; Freund, Jonathan B.
2013-11-01
We consider the acoustic radiation of instability modes in dual-stream jets, with the inner nozzle buried within the outer shroud, particularly the upstream scattering into acoustic modes that occurs at the shroud lip. For supersonic core jets, several families of instability waves are possible, beyond the regular Kelvin-Helmholtz (K-H) mode, with very different modal shapes and propagation characteristics, which are candidates for changing the sound character of very high-speed jets. The co-axial shear layers are modeled as vortex sheets, with the Wiener-Hopf method used to compute these modes coupled with an asymptotic solution for the far-field radiation. A broadband mode spectra as well as single propagating modes are considered as incident and scattered waves. The resulting far-field directivity patterns are quantified, to show the efficiency of some of these radiation mechanisms, particularly in the upstream direction, which is not directly affected by the Mach-wave-like sound that is radiated from these modes irrespective of any scattering surface. A full Kutta condition, which provides the usual boundary condition at the shroud lip, is altered to examine how vortex shedding, perhaps controllable at the lip, affects the radiated sound.
NASA Astrophysics Data System (ADS)
Lei, Bo; Yang, Yi-Xin; Ma, Yuan-Liang; Chen, Dong-Xu
2016-12-01
Acoustic scattering from a rough sea bottom is recognized as a main source of reverberation. In this study, scattering properties from a layered bottom were exploited based on the finite element model. The scattering strength and loss from the layered rough seabed were investigated by ensembling the realizations of rough interface. They were found to be dependent on the thickness of sediment, and interference was significant in the case of thin sediment. Through verification of the finite element model, the scattering loss could be evaluated using the Eckart model with a proper sound speed in the thick sediment. The multiple scattering effect on the sound field was also exploited. It revealed that the effect depended strongly on the bottom type. Project supported by the National Natural Science Foundation of China (Grant No. 61571366), the Natural Science Basic Research in Shaanxi Province of China (Grant No. 2015JQ5199), and the Fund of Science and Technology from the Underwater Test and Control Laboratory (Grant No. 9140c260201130c26096).
NASA Astrophysics Data System (ADS)
Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.
2004-05-01
Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.
Generalizations of Karp's theorem to elastic scattering theory
NASA Astrophysics Data System (ADS)
Tuong, Ha-Duong
Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei
2013-04-01
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.
Review of the inverse scattering problem at fixed energy in quantum mechanics
NASA Technical Reports Server (NTRS)
Sabatier, P. C.
1972-01-01
Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.; Grosveld, Ferdinand
2007-01-01
The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.
Willert, Jeffrey; Park, H.; Taitano, William
2015-11-01
High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.
Lee, Norman; Ward, Jessica L; Vélez, Alejandro; Micheyl, Christophe; Bee, Mark A
2017-03-06
Noise is a ubiquitous source of errors in all forms of communication [1]. Noise-induced errors in speech communication, for example, make it difficult for humans to converse in noisy social settings, a challenge aptly named the "cocktail party problem" [2]. Many nonhuman animals also communicate acoustically in noisy social groups and thus face biologically analogous problems [3]. However, we know little about how the perceptual systems of receivers are evolutionarily adapted to avoid the costs of noise-induced errors in communication. In this study of Cope's gray treefrog (Hyla chrysoscelis; Hylidae), we investigated whether receivers exploit a potential statistical regularity present in noisy acoustic scenes to reduce errors in signal recognition and discrimination. We developed an anatomical/physiological model of the peripheral auditory system to show that temporal correlation in amplitude fluctuations across the frequency spectrum ("comodulation") [4-6] is a feature of the noise generated by large breeding choruses of sexually advertising males. In four psychophysical experiments, we investigated whether females exploit comodulation in background noise to mitigate noise-induced errors in evolutionarily critical mate-choice decisions. Subjects experienced fewer errors in recognizing conspecific calls and in selecting the calls of high-quality mates in the presence of simulated chorus noise that was comodulated. These data show unequivocally, and for the first time, that exploiting statistical regularities present in noisy acoustic scenes is an important biological strategy for solving cocktail-party-like problems in nonhuman animal communication.
Seo, Jung Hee; Mittal, Rajat
2011-02-20
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented.
Seo, Jung Hee; Mittal, Rajat
2010-01-01
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian; Li, Xuelei; Li, Wuqun
2014-08-01
Sound velocity inversion problem based on scattering theory is formulated in terms of a nonlinear integral equation associated with scattered field. Because of its nonlinearity, in practice, linearization algorisms (Born/single scattering approximation) are widely used to obtain an approximate inversion solution. However, the linearized strategy is not congruent with seismic wave propagation mechanics in strong perturbation (heterogeneous) medium. In order to partially dispense with the weak perturbation assumption of the Born approximation, we present a new approach from the following two steps: firstly, to handle the forward scattering by taking into account the second-order Born approximation, which is related to generalized Radon transform (GRT) about quadratic scattering potential; then to derive a nonlinear quadratic inversion formula by resorting to inverse GRT. In our formulation, there is a significant quadratic term regarding scattering potential, and it can provide an amplitude correction for inversion results beyond standard linear inversion. The numerical experiments demonstrate that the linear single scattering inversion is only good in amplitude for relative velocity perturbation () of background media up to 10 %, and its inversion errors are unacceptable for the perturbation beyond 10 %. In contrast, the quadratic inversion can give more accurate amplitude-preserved recovery for the perturbation up to 40 %. Our inversion scheme is able to manage double scattering effects by estimating a transmission factor from an integral over a small area, and therefore, only a small portion of computational time is added to the original linear migration/inversion process.
NASA Astrophysics Data System (ADS)
Masson, Yder; Romanowicz, Barbara
2016-11-01
We derive a fast discrete solution to the scattering problem. This solution allows us to compute accurate synthetic seismograms or waveforms for arbitrary locations of sources and receivers within a medium containing localized perturbations. The key to efficiency is that wave propagation modeling does not need to be carried out in the entire volume that encompasses the sources and the receivers but only within the sub-volume containing the perturbations or scatterers. The proposed solution has important applications, for example, it permits the imaging of remote targets located in regions where no sources or receivers are present. Our solution relies on domain decomposition: within a small volume that contains the scatterers, wave propagation is modeled numerically, while in the surrounding volume, where the medium isn't perturbed, the response is obtained through wavefield extrapolation. The originality of this work is the derivation of discrete formulas for representation theorems and Kirchhoff-Helmholtz integrals that naturally adapt to the numerical scheme employed for modeling wave propagation. Our solution applies, for example, to finite difference methods or finite/spectral elements methods. The synthetic seismograms obtained with our solution can be considered "exact" as the total numerical error is comparable to that of the method employed for modeling wave propagation. We detail a basic implementation of our solution in the acoustic case using the finite difference method and present numerical examples that demonstrate the accuracy of the method. We show that ignoring some terms accounting for higher order scattering effects in our solution has a limited effect on the computed seismograms and significantly reduces the computational effort. Finally, we show that our solution can be used to compute localised sensitivity kernels and we discuss applications to target oriented imaging. Extension to the elastic case is straightforward and summarised in a
Solving outside-axial-field-of-view scatter correction problem in PET via digital experimentation
NASA Astrophysics Data System (ADS)
Andreyev, Andriy; Zhu, Yang-Ming; Ye, Jinghan; Song, Xiyun; Hu, Zhiqiang
2016-03-01
Unaccounted scatter impact from unknown outside-axial-field-of-view (outside-AFOV) activity in PET is an important degrading factor for image quality and quantitation. Resource consuming and unpopular way to account for the outside- AFOV activity is to perform an additional PET/CT scan of adjacent regions. In this work we investigate a solution to the outside-AFOV scatter problem without performing a PET/CT scan of the adjacent regions. The main motivation for the proposed method is that the measured random corrected prompt (RCP) sinogram in the background region surrounding the measured object contains only scattered events, originating from both inside- and outside-AFOV activity. In this method, the scatter correction simulation searches through many randomly-chosen outside-AFOV activity estimates along with known inside-AFOV activity, generating a plethora of scatter distribution sinograms. This digital experimentation iterates until a decent match is found between a simulated scatter sinogram (that include supposed outside-AFOV activity) and the measured RCP sinogram in the background region. The combined scatter impact from inside- and outside-AFOV activity can then be used for scatter correction during final image reconstruction phase. Preliminary results using measured phantom data indicate successful phantom length estimate with the method, and, therefore, accurate outside-AFOV scatter estimate.
NASA Astrophysics Data System (ADS)
Klibanov, Michael V.; Romanov, Vladimir G.
2016-01-01
The 3D inverse scattering problem of the reconstruction of the unknown dielectric permittivity in the generalized Helmholtz equation is considered. Applications are in imaging of nanostructures and biological cells. The main difference with the conventional inverse scattering problems is that only the modulus of the scattering wave field is measured. The phase is not measured. The initializing wave field is the incident plane wave. On the other hand, in the previous recent works of the authors about the ‘phaseless topic’ the case of the point source was considered (Klibanov and Romanov 2015 J. Inverse Ill-Posed Problem 23 415-28 J. Inverse Ill-Posed Problem 23 187-93). Two reconstruction procedures are developed.
Simulation, Control, and Applications for Flow and Scattering Problems
2015-04-10
and Optimization (08 2011) Kazufumi Ito, Tomoya Takeuchi. CIP immersed interface methods for hyperbolic equations withdiscontinuous coefficients ...augmented variables along the interface between the fluid flow and the porous media so that the problem can be decoupled as several Poisson equations . The...computational fluid dynamics and control of incompressible flows modeled by Navier-Stokes equations . Under the support of the current ARO grant, we
NASA Astrophysics Data System (ADS)
Buscombe, D.; Grams, P. E.; Kaplinski, M. A.
2013-12-01
Bed sediment classification using backscatter intensities from multibeam echosounder (MBES) systems in rivers is attractive due to its high coverage and resolution, limited costs compared to conventional sampling, and the potential combination of bathymetric and bottom sediment mapping in one instrument. Sediment classification by means of hydro-acoustic remote sensing is becoming an established discipline in oceanography. A number of techniques have been proposed, none of which has become the preferred method. In rivers, however, the field is relatively new and faces challenges not typically encountered in deep ocean settings. For example, river beds tend to have larger mean and maximum slopes than typical seabeds. Shallow water depths not only make MBES deployments more difficult, but also make the size of the beam footprint on the bed small which can lead to relatively noisy backscatter data. In particular, sediments can more heterogeneous in terms of: 1) range of particle sizes (both in a given area and over an entire mapped reach); 2) range of grain size over proximal bedform fields; 3) superimposed bedforms; and 4) abrupt sedimentological transitions over small scales. This sediment heterogeneity means grain-size usually changes along swath, which has a number of implications for existing sediment classification methods which use the distribution of backscatter intensities over all acoustic beams. We discuss these implications with reference to MBES data collected from the Colorado River in Grand Canyon, Arizona. We analyze the scale-dependence of probability density functions (PDF) of measured elevations in different sedimentological settings, which reveals the appropriate spatial scale at which to apply acoustic scattering theories. We also discuss the joint PDF of elevation and backscatter over different scales as a means by which to create an adaptive gridding scheme in which each grid is scaled appropriately, in situations with rapidly changing
Muir, Thomas G; Costley, R Daniel; Sabatier, James M
2014-01-01
Finite element methods are utilized to model and compare the use of both a remote loudspeaker and a vertical shaker in the generation of sound and shear and interface waves in an elastic solid containing an imbedded elastic scatterer, which is resonant. Results for steady state and transient insonification are presented to illustrate excitation, propagation, and scattering mechanisms and effects. Comparisons of acoustic and vibratory excitation of the solid interface are made, with a view towards remote sensing of induced vibratory motion through optical measurement of the ground interface motion above the imbedded inclusion. Some advantages of the acoustic excitation method for exciting plate mode resonances in the target are observed.
Scattering Parabolic Solutions for the Spatial N-Centre Problem
NASA Astrophysics Data System (ADS)
Boscaggin, Alberto; Dambrosio, Walter; Terracini, Susanna
2017-03-01
For the N-centre problem in the three dimensional space, {ddot{x}} = -sum_{i=1}N m_i (x-c_i)/\\vert x - c_i \\vert^{α+2}, qquad x in R^3 {setminus} {c_1,ldots,c_N}, where {N ≥q 2}, {m_i > 0} and {α in [1,2)}, we prove the existence of entire parabolic trajectories having prescribed asymptotic directions. The proof relies on a variational argument of min-max type. Morse index estimates and regularization techniques are used in order to rule out the possible occurrence of collisions.
Application of the complex scaling method in solving three-body Coulomb scattering problem
NASA Astrophysics Data System (ADS)
Lazauskas, R.
2017-03-01
The three-body scattering problem in Coulombic systems is a widespread, yet unresolved problem using the mathematically rigorous methods. In this work this long-term challenge has been undertaken by combining distorted waves and Faddeev–Merkuriev equation formalisms in conjunction with the complex scaling technique to overcome the difficulties related with the boundary conditions. Unlike the common belief, it is demonstrated that the smooth complex scaling method can be applied to solve the three-body Coulomb scattering problem in a wide energy region, including the fully elastic domain and extending to the energies well beyond the atom ionization threshold. A newly developed method is used to study electron scattering on the ground states of hydrogen and positronium atoms as well as a {e}++{{H}}({n}=1)\\rightleftarrows {{p}}+{Ps}({n}=1) reaction. Where available, obtained results are compared with the experimental data and theoretical predictions, proving the accuracy and efficiency of the newly developed method.
1988-03-01
Center Frequency) 101 Figure 3-29 Normalized Scattered Pressure Versus ka for Thick Finite Shell (b/a =.9) with Axial Incidence (Solid Line is Shell...Incidence (45 kiz Center Frequency) 104 Figure 3-31 Normalized Scattered Pressure Versus ka for Thick Finite Shell (b/a =.9) with Axial Incidence and...with 0.25 inches of Neoprene for Normal Incidence (20 kHz Center Frequency) 112 X; Figure 3-36 Normalized Scattered Pressure Versus ka for Thick Finite
Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.
Frank, Scott D; Odom, Robert I; Collis, Jon M
2013-03-01
Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.
An optimization approach to multi-dimensional time domain acoustic inverse problems.
Gustafsson, M; He, S
2000-10-01
An optimization approach to a multi-dimensional acoustic inverse problem in the time domain is considered. The density and/or the sound speed are reconstructed by minimizing an objective functional. By introducing dual functions and using the Gauss divergence theorem, the gradient of the objective functional is found as an explicit expression. The parameters are then reconstructed by an iterative algorithm (the conjugate gradient method). The reconstruction algorithm is tested with noisy data, and these tests indicate that the algorithm is stable and robust. The computation time for the reconstruction is greatly improved when the analytic gradient is used.
NASA Astrophysics Data System (ADS)
Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi
2016-09-01
The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.
2015-09-30
surrounding these aggregations to identify key parameters related to the distribution and behavior of these animals . These parameters will be used to...large sample size combined with careful measures of swimbladder shape, reproductive condition, stomach fullness, and other independent variables will...allow us to examine the effects of biological variability on acoustic characteristics of these animals . Finally, a number of these individual animals
Mizuno, K.; DeGroot, J.S.; Seka, W. l Drake, R.P.
1991-12-31
We have developed 5-channel collective Thomson scattering system to measure the ion acoustic wave excited by the ion acoustic wave decay instabilities. The multichannel collective Thomson scattering technique was established with 4{omega} probe laser beam using GDL laser system at LLE, Univ. of Rochester. We have obtained the ionic charge state Z by measuring the second harmonic emission from the ion acoustic decay instability. The LASNEX computer simulation calculations have been carried out. The experimental results agree very well with the LASNEX computer simulation results with the flux number f=0.1. In high power laser regime, the spectrum become broad, and the {alpha}{gamma} decreases indicating that the turbulent like spectrum is observed. In order to understand the experimental results, we have developed a theory to study absorption of laser and heat transport. This new theory includes the temporal evolution of the heat conduction region. The results agree with flux-limited hydrodynamic simulations. 20 refs.
Mizuno, K.; DeGroot, J.S. ); Seka, W. . Lab. for Laser Energetics)l Drake, R.P. )
1991-01-01
We have developed 5-channel collective Thomson scattering system to measure the ion acoustic wave excited by the ion acoustic wave decay instabilities. The multichannel collective Thomson scattering technique was established with 4{omega} probe laser beam using GDL laser system at LLE, Univ. of Rochester. We have obtained the ionic charge state Z by measuring the second harmonic emission from the ion acoustic decay instability. The LASNEX computer simulation calculations have been carried out. The experimental results agree very well with the LASNEX computer simulation results with the flux number f=0.1. In high power laser regime, the spectrum become broad, and the {alpha}{gamma} decreases indicating that the turbulent like spectrum is observed. In order to understand the experimental results, we have developed a theory to study absorption of laser and heat transport. This new theory includes the temporal evolution of the heat conduction region. The results agree with flux-limited hydrodynamic simulations. 20 refs.
Acoustic scattering from a finite plate: generation of guided Lamb waves S(0), A(0) and A.
Cité, N; Chati, F; Décultot, D; Léon, F; Maze, G
2012-06-01
In the domain of renewable energies, marine current turbines constitute one of the possibilities of producing electrical energy. Naked-eye inspection, or with the aid of video monitoring systems of these machines to ensure their perfect working order, can be difficult in a turbid environment. Acoustic methods are conceivable. The study focuses on the blades of these machines, by considering rectangular plates. The propagation of Lamb waves in a plate is studied by analyzing experimental time signals obtained from acoustic scattering. These signals are analyzed employing the ray theory. In vacuum, the flexural wave is the A(0) Lamb wave, whilst in water this wave splits in a bifurcation: the A wave with a phase velocity always smaller than the sound speed in water, and the A(0) wave with a phase velocity always higher than the sound speed in water. In the central bandpass of the transducers used in the experiments, mainly the A and S(0) waves exist. However, signals observed in the third harmonic bandpass of the transducers are also analyzed. In order to complement these results, resonance frequencies of the plate studied are calculated taking into account the boundary conditions and compared with the resonance frequencies of the experimental spectra.
Inverse problem for multiple scattering of fast charged particles in a mesoscopic medium
Ramm, A.G. C-3 Division, Los Alamos National Laboratory, Los Alamos, New Mexcio 87545 ); Berman, G.P. Kirensky Institute of Physics, Research Educational Center for Nonlinear Processes, The Krasnoyarsk Technical University, 660036 Krasnoyarsk Theoretical Department, The Krasnoyarsk State University, 660036 Krasnoyarsk )
1995-01-15
We consider an inverse problem of multiple scattering for fast charged particles propagating in an inhomogeneous medium. The scattering processes are described by the diffusion-type equation in the small-angle approximation. It is shown that by using the scattering data given on some small interval, it is possible to recover the spatial dependence of the density of the medium. This inverse problem is ill posed in the sense that small noise in the data may lead to large perturbations in [epsilon]([ital z]) if no [ital a] priori assumptions are made about [epsilon]([ital z]). This is clear from our presentation, since an analytic continuation of [epsilon]([ital z]) is involved. One hopes that the proposed method can be applied to thin foils and to mesoscopic systems.
Observing backfolded and unfolded acoustic phonons by broadband optical light scattering.
Maerten, L; Bojahr, A; Bargheer, M
2015-02-01
We use broadband time domain Brillouin scattering to observe coherently generated phonon modes in bulk and nanolayered samples. We transform the measured transients into a frequency-wavevector diagram and compare the resulting dispersion relations to calculations. The detected oscillation amplitude depends on the occupation of phonon modes induced by the pump pulse. For nanolayered samples with an appropriately large period, the whole wavevector range of the Brillouin zone becomes observable by broadband optical light scattering. The backfolded modes vanish, when the excitation has passed the nanolayers and propagates through the substrate underneath.
NASA Technical Reports Server (NTRS)
Fymat, A. L.; Lenoble, J.
1979-01-01
The paper considers three complementary inverse multiple scattering problems relating to a uniquely defined atmospheric scattering model. Consideration is given to the appropriateness, for data inversion purposes, of intensities observed in diffuse reflection under a variety of experimental conditions; the uniqueness of the inverse solution is investigated. It is found that light curves representing monotonic variations, such as limb darkening curves and phase curves for a planetary (e.g., Venus) disk center are unsuitable for inferring atmospheric and scattering parameters.
NASA Astrophysics Data System (ADS)
Davendra, Donald; Zelinka, Ivan; Senkerik, Roman; Jasek, Roman; Bialic-Davendra, Magdalena
2012-11-01
One of the new emerging application strategies for optimization is the hybridization of existing metaheuristics. The research combines the unique paradigms of solution space sampling of SOMA and memory retention capabilities of Scatter Search for the task of capacitated vehicle routing problem. The new hybrid heuristic is tested on the Taillard sets and obtains good results.
ADRPM-VII applied to the long-range acoustic detection problem
NASA Technical Reports Server (NTRS)
Shalis, Edward; Koenig, Gerald
1990-01-01
An acoustic detection range prediction model (ADRPM-VII) has been written for IBM PC/AT machines running on the MS-DOS operating system. The software allows the user to predict detection distances of ground combat vehicles and their associated targets when they are involved in quasi-military settings. The program can also calculate individual attenuation losses due to spherical spreading, atmospheric absorption, ground reflection and atmospheric refraction due to temperature and wind gradients while varying parameters effecting the source-receiver problem. The purpose here is to examine the strengths and limitations of ADRPM-VII by modeling the losses due to atmospheric refraction and ground absorption, commonly known as excess attenuation, when applied to the long range detection problem for distances greater than 3 kilometers.
Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics
2016-08-01
energy and momentum must be conserved. Consider an incoming optical mode of frequency ωp and a mechanical mode of frequencyΩ. These modes can scatter into...a downshifted optical Stokes wave with frequencyωs = ωp −Ω or an upshifted anti-Stokes wave with frequency ωp +Ω. Momentum conservation, or spatial
Selective Observation of Elastic-Body Resonances via Their Ringing in Transient Acoustic Scattering.
1984-09-12
evident but have not been discussed by him. Subsequent studies of pulse scattering from rigid spheres by Rudgers 3 , or from elastic 4 cylinders by Veksler...Lucite 1.182 2680 1380 1. J. J. Faran, J "" - -’,:. Amer. 23, 405 (1951) 2. R. Hicklinc, J. ,w.L t. Soc. Amer. 34, 1582 (1962). 3. A. J. Rudgers , J
A Simple Acoustic Scattering Model for Ensembles of Rocks and Seashells Lying on the Ocean Floor
2007-11-02
i.e., rocks and seashells lying on the ocean floor. A simplified modeling approach has been adopted that incorporates basic concepts and principles...over the equivalent frequency range. Seashells are represented by water-filled spherical shells. The model predicts scattering strength values for
Application of ray-born scattering and boundary perturbation methods to acoustic reverberation
NASA Astrophysics Data System (ADS)
Toksoz, M. N.
1992-08-01
This study utilizes ultrasonic water tank modeling to examine three-dimensional scattering trends from a random set of parallel grooves, and compares this with theoretical results obtained from two-dimensional finite-difference calculations. Ultrasonic laboratory modeling is carried out using computer-controlled source and receivers with an aluminum block submerged in a water tank. The block's upper interface is plane for the reference model and grooved for the test model. The grooves measure about one-third the center source wavelength and have a Gaussian distribution with a mean of 1 wavelength and a standard deviation of 1/3 wavelength. This experiment places both the source and receiver at the water's surface with the receiver array in the horizontal plane. The receiver line is then positioned at various angles to grooves. A staggered-grid finite-difference scheme is used for theoretical computations and comparisons with laboratory data. These theoretical results matched experimental data well for both the plane interface and the grooved model. Specifically, this study shows that scattering mechanisms are different for propagation normal to grooves than those parallel to the grooves. In the first case scattering takes place in the form of point diffractors. This causes reduction of the specular reflections. Amplitudes decrease by more than 60 percent, relative to a plane interface, when the incidence angle exceeds 45 degrees. 'Snapshots' of finite-difference synthetics helped to clarify details of scattering. In the second case, where the wave front is parallel to the grooves, scattering takes a form of guided head waves and continuous diffractions giving rise to constructive and destructive interference. This gives the illusion of 'broken' reflectors at depth.
Ultrasonic focusing through inhomogeneous media by application of the inverse scattering problem
Haddadin, Osama S.; Ebbini, Emad S.
2010-01-01
A new approach is introduced for self-focusing phased arrays through inhomogeneous media for therapeutic and imaging applications. This algorithm utilizes solutions to the inverse scattering problem to estimate the impulse response (Green’s function) of the desired focal point(s) at the elements of the array. This approach is a two-stage procedure, where in the first stage the Green’s functions is estimated from measurements of the scattered field taken outside the region of interest. In the second stage, these estimates are used in the pseudoinverse method to compute excitation weights satisfying predefined set of constraints on the structure of the field at the focus points. These scalar, complex valued excitation weights are used to modulate the incident field for retransmission. The pseudoinverse pattern synthesis method requires knowing the Green’s function between the focus points and the array, which is difficult to attain for an unknown inhomogeneous medium. However, the solution to the inverse scattering problem, the scattering function, can be used directly to compute the required inhomogeneous Green’s function. This inverse scattering based self-focusing is noninvasive and does not require a strong point scatterer at or near the desired focus point. It simply requires measurements of the scattered field outside the region of interest. It can be used for high resolution imaging and enhanced therapeutic effects through inhomogeneous media without making any assumptions on the shape, size, or location of the inhomogeneity. This technique is outlined and numerical simulations are shown which validate this technique for single and multiple focusing using a circular array. PMID:9670525
Stimulated Scattering of Light from Ion Acoustic Waves in Collisional Multi-species Plasma.
NASA Astrophysics Data System (ADS)
Berger, Richard; Valeo, Ernest
2003-10-01
The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions,especially in multi-species plasma in which the different species have differing charge-to-mass ratios(Bychenkov et al., PRE 51, 1400 (1995)). Here, we consider the modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions. In the fluid limit, kλ_lh <<1, the friction between the two species causes the damping whereas, in the collisionless limit, Landau damping of the light ions provides the dissipation. Collisions between light and heavy ions also affect the nonlinear response(P. W. Rambo, S. C. Wilks, and W. L. Kruer, Phys. Rev. Lett. 79), 83 (1997).. We examine the effects of collisions on the linear evolution of ion waves driven by the ponderomotive force of two light waves within the context of linear parametric instability theory. The simulation of the nonlinear evolution is done with a δ f model that evolves the background(E. J. Valeo and S. Brunner, Bull. Am. Phys. Soc. 46), QP1.137 (2001)., and includes the effects of collisions of light on heavy ions within the Lorentz model. The calculated effect of a small number of high Z ions on SBS in low Z plasmas will be compared with recent experimental results(Suter et al.,private communication). l
Adaptive eigenspace method for inverse scattering problems in the frequency domain
NASA Astrophysics Data System (ADS)
Grote, Marcus J.; Kray, Marie; Nahum, Uri
2017-02-01
A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.
Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs.
Gélat, Pierre; Ter Haar, Gail; Saffari, Nader
2011-09-07
The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.
2006-06-01
sech2 wave form is used because the amplitude and horizontal displacement are solutions of the Korteweg de Vries ( KdV ) non linear wave equation which...a solution to the KDV wave equation . After making the frozen field approximation, the soliton can be represented by the following mathematical...scattering. 3. The Gaussian Soliton As discussed, the sech2 form of a soliton is chosen because it is an exact solution to the KDV wave equation . For
Bayesian Inversion of Seabed Scattering Data (Special Research Award in Ocean Acoustics)
2012-09-30
and reflection coefficient forward models. APPROACH The data used in this work were collected by Charles Holland, who measured direct -path... shear -wave velocity cs and attenuation αs . The only difference between the seabed model for scattering and reflection calculations is that the first...and density below 5-m depth is likely evidence of a limestone basement, which is known to exist in the region. Figure 5 shows the 1D marginal posterior
Bayesian Inversion of Seabed Scattering Data (Special Research Award in Ocean Acoustics)
2013-09-30
the inversion of measured data. APPROACH The data used in this work were collected by Charles Holland, who measured direct -path scattering1 and...of a sediment layer), sound velocity c, density ρ, and attenuation α. In addition, the basement is assumed to be elastic with a shear -wave velocity...resolution seismic survey of the experimental site. These results seem to indicate a limestone basement, which is known to exist in the region
Bayesian Inversion of Seabed Scattering Data (Special Research Award in Ocean Acoustics)
2011-09-30
APPROACH The data used in this work were collected by Charles Holland, who measured direct -path scattering1 and reflection2 data over a wide...consistent with sand (known to represent the surficial sediments). The high sound speed and density below 5-m depth is likely evidence of a limestone ...basement, which is known to exist in the region. If so, to model the seabed correctly requires extending the forward model to include shear waves in the
NASA Astrophysics Data System (ADS)
Swearingen, Michelle Elaine
2003-10-01
This thesis is a presentation of an analytic model, developed in cylindrical coordinates, for the scattering of a spherical wave off a semi infinite right cylinder placed normal to a ground surface. The model is developed to simulate a single tree and is developed as a first piece to creating a model for estimating attenuation in a forest based on scattering from individual tree trunks. Comparisons are made to the plane wave case, the transparent cylinder case, and the rigid and soft ground cases as a method of theoretically verifying the model. Agreement is excellent for these benchmark cases. Model sensitivity to five parameters is determined, which aids in error analysis, particularly when comparing the model results to experimental data, and offers insight into the inner workings of the model. An experiment was performed to collect real-world data on scattering from a cylinder normal to a ground surface. The data from the experiment is analyzed with a transfer function method into frequency and impulse responses. The model results are compared to the experimental data.
NASA Astrophysics Data System (ADS)
Gauthier, P.-A.; Gérard, A.; Camier, C.; Berry, A.
2014-02-01
Acoustic imaging aims at localization and characterization of sound sources using microphone arrays. In this paper a new regularization method for acoustic imaging by inverse approach is proposed. The method first relies on the singular value decomposition of the plant matrix and on the projection of the measured data on the corresponding singular vectors. In place of regularization using classical methods such as truncated singular value decomposition and Tikhonov regularization, the proposed method involves the direct definition of the filter factors on the basis of a thresholding operation, defined from the estimated measurement noise. The thresholding operation is achieved using modified filter functions. The originality of the approach is to propose the definition of a filter factor which provides more damping to the singular components dominated by noise than that given by the Tikhonov filter. This has the advantage of potentially simplifying the selection of the best regularization amount in inverse problems. Theoretical results show that this method is comparatively more accurate than Tikhonov regularization and truncated singular value decomposition.
NASA Astrophysics Data System (ADS)
Ghislotti, G.; Bottani, C. E.; Mutti, P.; Byloos, C.; Giovannini, L.; Nizzoli, F.
1995-04-01
Brillouin light spectroscopy in p-p backscattering geometry is used to study sagittal surface acoustic phonons in silicon on insulator structures formed on a silicon buffer. The experimental spectra show, near the longitudinal threshold of silicon, two peaks whose physical meaning is discussed by comparison with theoretical cross sections. Calculations of Brillouin cross sections were performed, taking into account both the ripple and elastooptic coupling mechanisms. The peaks originate from two pseudomodes: the first is highly localized in the buried SiO2 layer and the second in the top silicon layer. The dependence of the pseudomode localization and cross section intensity with the parallel wave vector and with the thickness of the top silicon layer are discussed.
NASA Astrophysics Data System (ADS)
Nazarov, L. A.; Nazarova, L. A.; Romenskii, E. I.; Tcheverda, V. A.; Epov, M. I.
2016-02-01
A method for estimating the stress-strain state of a rock massif in the vicinity of underground facilities is substantiated. This method is based on solution of the boundary inverse problem of defining the components of an external stress field from the acoustic sounding data. The acoustic sounding data used are the arrival times of diving head longitudinal waves, recorded in a long mine shaft. Numerical experiments have revealed the optimal arrangement of the recording network and the limited relative error in the input data, which, taken together, provide for solvability of the inverse problem.
Discrete ordinates transport methods for problems with highly forward-peaked scattering
Pautz, S.D.
1998-04-01
The author examines the solutions of the discrete ordinates (S{sub N}) method for problems with highly forward-peaked scattering kernels. He derives conditions necessary to obtain reasonable solutions in a certain forward-peaked limit, the Fokker-Planck (FP) limit. He also analyzes the acceleration of the iterative solution of such problems and offer improvements to it. He extends the analytic Fokker-Planck limit analysis to the S{sub N} equations. This analysis shows that in this asymptotic limit the S{sub N} solution satisfies a pseudospectral discretization of the FP equation, provided that the scattering term is handled in a certain way (which he describes) and that the analytic transport solution satisfies an analytic FP equation. Similar analyses of various spatially discretized S{sub N} equations reveal that they too produce solutions that satisfy discrete FP equations, given the same provisions. Numerical results agree with these theoretical predictions. He defines a multidimensional angular multigrid (ANMG) method to accelerate the iterative solution of highly forward-peaked problems. The analyses show that a straightforward application of this scheme is subject to high-frequency instabilities. However, by applying a diffusive filter to the ANMG corrections he is able to stabilize this method. Fourier analyses of model problems show that the resulting method is effective at accelerating the convergence rate when the scattering is forward-peaked. The numerical results demonstrate that these analyses are good predictors of the actual performance of the ANMG method.
NASA Astrophysics Data System (ADS)
Røstad, Anders; Kaartvedt, Stein; Aksnes, Dag L.
2016-07-01
We make a comparison of the mesopelagic sound scattering layers (SLs) in two contrasting optical environments; the clear Red Sea and in murkier coastal waters of Norway (Masfjorden). The depth distributions of the SL in Masfjorden are shallower and narrower than those of the Red Sea. This difference in depth distribution is consistent with the hypothesis that the organisms of the SL distribute according to similar light comfort zones (LCZ) in the two environments. Our study suggest that surface and underwater light measurements ranging more than 10 orders of magnitude is required to assess the controlling effects of light on SL structure and dynamics.
NASA Astrophysics Data System (ADS)
Michell, R. G.; Grydeland, T.; Samara, M.
2014-10-01
Naturally enhanced ion-acoustic lines (NEIALs) have been observed with the Poker Flat Incoherent Scatter Radar (PFISR) ever since it began operating in 2006. The nearly continuous operation of PFISR since then has led to a large number of NEIAL observations from there, where common-volume, high-resolution auroral imaging data are available. We aim to systematically distinguish the different types of auroral forms that are associated with different NEIAL features, including spectral shape and altitude extent. We believe that NEIALs occur with a continuum of morphological characteristics, although we find that most NEIALs observed with PFISR fall into two general categories. The first group occurs at fairly low altitudes - F region or below - and have power at, and spread between, the ion-acoustic peaks. The second group contains the type of NEIALs that have previously been observed with the EISCAT radars, those that extend to high altitudes (600 km or more) and often have large asymmetries in the power enhancements between the two ion-acoustic shoulders. We find that there is a correlation between the auroral structures and the type of NEIALs observed, and that the auroral structures present during NEIAL events are consistent with the likely NEIAL generation mechanisms inferred in each case. The first type of NEIAL - low altitude - is the most commonly observed with PFISR and is most often associated with active, structured auroral arcs, such as substorm growth phase, and onset arcs and are likely generated by Langmuir turbulence. The second type of NEIAL - high altitude - occurs less frequently in the PFISR radar and is associated with aurora that contains large fluxes of low-energy electrons, as can happen in poleward boundary intensifications as well as at substorm onset and is likely the result of current-driven instabilities and in some cases Langmuir turbulence as well. In addition, a preliminary auroral photometry analysis revealed that there is an
NASA Astrophysics Data System (ADS)
MacAulay, Michael C.; Wishner, Karen F.; Daly, Kendra L.
This research was part of the South Channel Ocean Productivity Experiment (SCOPEX), a multidisciplinary study to investigate the biological and physical processes associated with the very high annual springtime abundance of right whales ( Eubalaena glacialis) in the Great South Channel off New England. Right whales appear to gather there in the spring because of the increased abundance of aggregations of their principal prey, the copepod Calanus finmarchicus. Observations of hydroacoustic scattering were made in relation to the hydrography, whale distributions, and other biological measurements in the vicinity of the Great South Channel during May 1986, March, April and May of 1988, and May and June of 1989. Copepods were detected (at 200 kHz) as a near-surface layer with strong diel changes. In 1989, a second frequency (120 kHz) was used to discriminate between copepod layers (which the 120 kHz detected only weakly) and other targets (which both frequencies detected). Acoustically distinct layers of zooplankton and micronekton were observed, which were often correlated in time and space with the copepod layers. Quantitative estimates derived from the acoustic data indicate that the abundance of zooplankton varied from 1-5 g wet weight m -3 to 18-25 g wet weight m -3 which correlates well with the abundances observed from MOCNESS tows. The acoustic data revealed a complex diel migration of two layers in addition to the copepods. Euphausiids (predominantly Meganyctiphanes sp.) were found in a layer above the bottom, and a mid-water layer may have been due to sand lance ( Ammodytes americanus). The observed biological phenomena appeared to be related to the complex hydrography of the region. A surface thermal front existed at the northern entrance to the channel in 1988 and 1989, with colder vertically mixed water to the south and warmer stratified water to the north. A Fast Fourier Transform analysis for spectral composition and autocovariance shows (a) strong
NASA Astrophysics Data System (ADS)
Liu, Yuxiang; Barnett, Alex H.
2016-11-01
We present a high-order accurate boundary-based solver for three-dimensional (3D) frequency-domain scattering from a doubly-periodic grating of smooth axisymmetric sound-hard or transmission obstacles. We build the one-obstacle solution operator using separation into P azimuthal modes via the FFT, the method of fundamental solutions (with N proxy points lying on a curve), and dense direct least-squares solves; the effort is O (N3 P) with a small constant. Periodizing then combines fast multipole summation of nearest neighbors with an auxiliary global Helmholtz basis expansion to represent the distant contributions, and enforcing quasiperiodicity and radiation conditions on the unit cell walls. Eliminating the auxiliary coefficients, and preconditioning with the one-obstacle solution operator, leaves a well-conditioned square linear system that is solved iteratively. The solution time per incident wave is then O (NP) at fixed frequency. Our scheme avoids singular quadratures, periodic Green's functions, and lattice sums, and its convergence rate is unaffected by resonances within obstacles. We include numerical examples such as scattering from a grating of period 13 λ × 13 λ comprising highly-resonant sound-hard ;cups; each needing NP = 64800 surface unknowns, to 10-digit accuracy, in half an hour on a desktop.
Surface modes and acoustic scattering of microspheres and ultrasound contrast agents.
Falou, Omar; Jafari Sojahrood, Amin; Kumaradas, J Carl; Kolios, Michael C
2012-09-01
Surface modes of spherical objects subject to ultrasound excitation have been recently proposed to explain experimental measurements of scattering from microspheres and ultrasound contrast agents (UCAs). In this work, the relationship between surface modes and resonance frequencies of microspheres and UCAs is investigated. A finite-element model, built upon the fundamentals of wave propagation and structural mechanics, was introduced and validated against analytical solutions (error <5%). Numerical results showed the existence of a systematic relationship between resonance frequencies and surface modes of a 30 μm microsphere driven at 1-70 MHz. On the contrary, for a 100 nm shelled, 4 μm diameter UCA, no clear relationship between the resonance frequencies and the surface modes was found in the frequency range examined. Instead, the UCA exhibited a collection of complex oscillations, which appear to be a combination of various surface modes and displacements. A study of the effects of varying the shell properties on the backscatter showed the presence of peaks in the backscatter of thick-shelled UCAs, which are not predicted by previous models. In summary, this work presents a systematic effort to examine scattering and surface modes from ultrasound contrast agents using finite-element models.
Mature red blood cells: from optical model to inverse light-scattering problem
Gilev, Konstantin V.; Yurkin, Maxim A.; Chernyshova, Ekaterina S.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.
2016-01-01
We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content. PMID:27446656
NASA Astrophysics Data System (ADS)
Rudenko, O. V.; Gurbatov, S. N.
2016-07-01
Inverse problems of nonlinear acoustics have important applied significance. On the one hand, they are necessary for nonlinear diagnostics of media, materials, manufactured articles, building units, and biological and geological structures. On the other hand, they are needed for creating devices that ensure optimal action of acoustic radiation on a target. However, despite the many promising applications, this direction remains underdeveloped, especially for strongly distorted high-intensity waves containing shock fronts. An example of such an inverse problem is synthesis of the spatiotemporal structure of a field in a radiating system that ensures the highest possible energy density in the focal region. This problem is also related to the urgent problems of localizing wave energy and the theory of strongly nonlinear waves. Below we analyze some quite general and simple inverse nonlinear problems.
2008-03-07
a national naval responsibility. Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial...problem and acoustic navigation and communications within the context of distributed autonomous persistent undersea surveillance sensor networks...Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial coherence and the description of ambient
Some new strategies for RCM ordering in solving electromagnetic scattering problems
NASA Astrophysics Data System (ADS)
Zhang, Yong; Huang, Ting-Zhu; Shao, Wei; Lai, Sheng-Jian
2013-04-01
We describe some ordering strategies for improving the incomplete Cholesky factorization used in the preconditioned conjugate gradient method applied to electromagnetic scattering problems. Some matrix ordering strategies, derived from the greedy partitioning algorithm for multilevel methods, are combined with RCM ordering. These ordering techniques are tested and compared with normal RCM ordering. Some tuning in selecting special nodes as first and last nodes in reverse Cuthill-McKee ordering is shown to apparently improve the quality of incomplete Cholesky factorization preconditioners.
Helmholtz and parabolic equation solutions to a benchmark problem in ocean acoustics.
Larsson, Elisabeth; Abrahamsson, Leif
2003-05-01
The Helmholtz equation (HE) describes wave propagation in applications such as acoustics and electromagnetics. For realistic problems, solving the HE is often too expensive. Instead, approximations like the parabolic wave equation (PE) are used. For low-frequency shallow-water environments, one persistent problem is to assess the accuracy of the PE model. In this work, a recently developed HE solver that can handle a smoothly varying bathymetry, variable material properties, and layered materials, is used for an investigation of the errors in PE solutions. In the HE solver, a preconditioned Krylov subspace method is applied to the discretized equations. The preconditioner combines domain decomposition and fast transform techniques. A benchmark problem with upslope-downslope propagation over a penetrable lossy seamount is solved. The numerical experiments show that, for the same bathymetry, a soft and slow bottom gives very similar HE and PE solutions, whereas the PE model is far from accurate for a hard and fast bottom. A first attempt to estimate the error is made by computing the relative deviation from the energy balance for the PE solution. This measure gives an indication of the magnitude of the error, but cannot be used as a strict error bound.
Kılıç, Emre Eibert, Thomas F.
2015-05-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.
NASA Technical Reports Server (NTRS)
Mittra, R.; Ko, W. L.; Rahmat-Samii, Y.
1979-01-01
This paper presents a brief review of some recent developments on the use of the spectral-domain approach for deriving high-frequency solutions to electromagnetics scattering and radiation problems. The spectral approach is not only useful for interpreting the well-known Keller formulas based on the geometrical theory of diffraction (GTD), it can also be employed for verifying the accuracy of GTD and other asymptotic solutions and systematically improving the results when such improvements are needed. The problem of plane wave diffraction by a finite screen or a strip is presented as an example of the application of the spectral-domain approach.
NASA Astrophysics Data System (ADS)
Ressler, Patrick H.
2002-11-01
A 153 kHz narrowband acoustic Doppler current profiler (ADCP) was used to measure volume backscattering strength ( Sv) during a deepwater oceanographic survey of cetacean and seabird habitat in the northeastern Gulf of Mexico. Sv was positively related to zooplankton and micronekton biomass (wet displacement volume) in 'sea-truth' net hauls made with a 1 m 2 Multiple Opening-Closing Net Environmental Sensing System (MOCNESS). A subset of these MOCNESS tows was used to explore the relationship between the numerical densities of various taxonomic categories of zooplankton and the ADCP backscatter signal. Crustaceans, small fish, and fragments of non-gas-bearing siphonophores in the net samples all showed significant, positive correlations with the acoustic signal, while other types of gelatinous zooplankton, pteropod and atlantid molluscs, and gas-filled siphonophore floats showed no significant correlation with Sv. Previously published acoustic scattering models for zooplankton were used to calculate expected scattering for several general zooplankton types and sizes for comparison with the field data. Even though gelatinous material often made up a large fraction of the total biomass, crustaceans, small fish, and pteropods were most likely the important scatterers. Since only crustacean and small fish densities were significantly correlated with Sv, it is suggested that Sv at 153 kHz can be used as a relative proxy for the abundance of these organisms in the Gulf of Mexico.
Dixneuf, Sophie; Rachet, Florent; Chrysos, Michael
2015-02-28
Owing in part to the p orbitals of its filled L shell, neon has repeatedly come on stage for its peculiar properties. In the context of collision-induced Raman spectroscopy, in particular, we have shown, in a brief report published a few years ago [M. Chrysos et al., Phys. Rev. A 80, 054701 (2009)], that the room-temperature anisotropic Raman lineshape of Ne–Ne exhibits, in the far wing of the spectrum, a peculiar structure with an aspect other than a smooth wing (on a logarithmic plot) which contrasts with any of the existing studies, and whose explanation lies in the distinct way in which overlap and exchange interactions interfere with the classical electrostatic ones in making the polarizability anisotropy, α{sub ∥} − α{sub ⊥}. Here, we delve deeper into that study by reporting data for that spectrum up to 450 cm{sup −1} and for even- and odd-order spectral moments up to M{sub 6}, as well as quantum lineshapes, generated from SCF, CCSD, and CCSD(T) models for α{sub ∥} − α{sub ⊥}, which are critically compared with the experiment. On account of the knowledge of the spectrum over the augmented frequency domain, we show how the inverse scattering problem can be tackled both effectively and economically, and we report an analytic function for the anisotropy whose quantum lineshape faithfully reproduces our observations.
NASA Astrophysics Data System (ADS)
Roohani Ghehsareh, Hadi; Kamal Etesami, Seyed; Hajisadeghi Esfahani, Maryam
2016-08-01
In the current work, the electromagnetic (EM) scattering from infinite perfectly conducting cylinders with arbitrary cross sections in both transverse magnetic (TM) and transverse electric (TE) modes is numerically investigated. The problems of TE and TM EM scattering can be mathematically modelled via the magnetic field integral equation (MFIE) and the electric field integral equation (EFIE), respectively. An efficient technique is performed to approximate the solution of these surface integral equations. In the proposed numerical method, compactly supported radial basis functions (RBFs) are employed as the basis functions. The radial and compactly supported properties of these basis functions substantially reduce the computational cost and improve the efficiency of the method. To show the accuracy of the proposed technique, it has been applied to solve three interesting test problems. Moreover, the method is well used to compute the electric current density and also the radar cross section (RCS) for some practical scatterers with different cross section geometries. The reported numerical results through the tables and figures demonstrate the efficiency and accuracy of the proposed technique.
Numerical solution of an inverse obstacle scattering problem with near-field data
NASA Astrophysics Data System (ADS)
Li, Peijun; Wang, Yuliang
2015-06-01
Consider the scattering of an arbitrary time-harmonic incident wave by a sound soft obstacle. In this paper, a novel method is presented for solving the inverse obstacle scattering problem of the two-dimensional Helmholtz equation, which is to reconstruct the obstacle surface by using the near-field data. The obstacle is assumed to be a small and smooth perturbation of a disc. The method uses the transformed field expansion to reduce the boundary value problem into a successive sequence of one-dimensional problems which are solved in closed forms. By dropping the higher order terms in the power series expansion and truncating the infinite linear system for the first order term, the inverse problem is linearized and an approximate but explicit formula is obtained between the Fourier coefficients of the solution and data. A nonlinear correction algorithm is introduced to improve the accuracy of the reconstructions for large deformations. Numerical examples show that the method is simple, efficient, and stable to reconstruct the obstacle with subwavelength resolution.
Solution of the nonlinear inverse scattering problem by T -matrix completion. I. Theory
NASA Astrophysics Data System (ADS)
Levinson, Howard W.; Markel, Vadim A.
2016-10-01
We propose a conceptually different method for solving nonlinear inverse scattering problems (ISPs) such as are commonly encountered in tomographic ultrasound imaging, seismology, and other applications. The method is inspired by the theory of nonlocality of physical interactions and utilizes the relevant formalism. We formulate the ISP as a problem whose goal is to determine an unknown interaction potential V from external scattering data. Although we seek a local (diagonally dominated) V as the solution to the posed problem, we allow V to be nonlocal at the intermediate stages of iterations. This allows us to utilize the one-to-one correspondence between V and the T matrix of the problem. Here it is important to realize that not every T corresponds to a diagonal V and we, therefore, relax the usual condition of strict diagonality (locality) of V . An iterative algorithm is proposed in which we seek T that is (i) compatible with the measured scattering data and (ii) corresponds to an interaction potential V that is as diagonally dominated as possible. We refer to this algorithm as to the data-compatible T -matrix completion. This paper is Part I in a two-part series and contains theory only. Numerical examples of image reconstruction in a strongly nonlinear regime are given in Part II [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043318 (2016), 10.1103/PhysRevE.94.043318]. The method described in this paper is particularly well suited for very large data sets that become increasingly available with the use of modern measurement techniques and instrumentation.
A Least-Squares Finite Element Method for Electromagnetic Scattering Problems
NASA Technical Reports Server (NTRS)
Wu, Jie; Jiang, Bo-nan
1996-01-01
The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.
NASA Astrophysics Data System (ADS)
Lecoq, D.; Pézerat, C.; Thomas, J.-H.; Bi, W. P.
2014-06-01
An improvement of the Force Analysis Technique (FAT), an inverse method of vibration, is proposed to identify the low wavenumbers including the acoustic component of a turbulent flow that excites a plate. This method is a significant progress since the usual techniques of measurements with flush-mounted sensors are not able to separate the acoustic and the aerodynamic energies of the excitation because the aerodynamic component is too high. Moreover, the main cause of vibration or acoustic radiation of the structure might be due to the acoustic part by a phenomenon of spatial coincidence between the acoustic wavelengths and those of the plate. This underlines the need to extract the acoustic part. In this work, numerical experiments are performed to solve both the direct and inverse problems of vibration. The excitation is a turbulent boundary layer and combines the pressure field of the Corcos model and a diffuse acoustic field. These pressures are obtained by a synthesis method based on the Cholesky decomposition of the cross-spectra matrices and are used to excite a plate. Thus, the application of the inverse problem FAT that requires only the vibration data shows that the method is able to identify and to isolate the acoustic part of the excitation. Indeed, the discretization of the inverse operator (motion equation of the plate) acts as a low-pass wavenumber filter. In addition, this method is simple to implement because it can be applied locally (no need to know the boundary conditions), and measurements can be carried out on the opposite side of the plate without affecting the flow. Finally, an improvement of FAT is proposed. It regularizes optimally and automatically the inverse problem by analyzing the mean quadratic pressure of the reconstructed force distribution. This optimized FAT, in the case of the turbulent flow, has the advantage of measuring the acoustic component up to higher frequencies even in the presence of noise. the aerodynamic component
Time-Reversal Acoustics and Maximum-Entropy Imaging
Berryman, J G
2001-08-22
Target location is a common problem in acoustical imaging using either passive or active data inversion. Time-reversal methods in acoustics have the important characteristic that they provide a means of determining the eigenfunctions and eigenvalues of the scattering operator for either of these problems. Each eigenfunction may often be approximately associated with an individual scatterer. The resulting decoupling of the scattered field from a collection of targets is a very useful aid to localizing the targets, and suggests a number of imaging and localization algorithms. Two of these are linear subspace methods and maximum-entropy imaging.
The slab albedo problem for pure-triplet anisotropic scattering by singular eigenfunction method
NASA Astrophysics Data System (ADS)
Türeci, D.; Türeci, R. G.
2017-02-01
One-speed, time independent and homogenous medium neutron transport equation can be solved by using pure-triplet anisotropic scattering. This solution bases on finding the Case's eigenfunctions and the orthogonality relations of these eigenfunctions. The infinite medium Green function can be written by using the jump condition after finding Case's eigenfunctions. The slab albedo problem can be investigated as numerical by using suggested solutions over surfaces with the singular eigenfunction method which bases on the infinite medium Green function. The selected numerical results can be tabulated.
A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem
NASA Astrophysics Data System (ADS)
Park, Taehoon; Park, Won-Kwang
2015-09-01
Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation.
NASA Astrophysics Data System (ADS)
Raczkowska, A.; Gorska, N.
2012-12-01
Puck Bay is an area of high species biodiversity belonging to the Coastal Landscape Park of Baltic Sea Protected Areas (BSPA) and is also included in the list of the World Wide Fund for Nature (WWF) and covered by the protection program "Natura 2000". The underwater meadows of the Puck Bay are important for Europe's natural habitats due to their role in enhancing the productivity of marine ecosystems and providing shelter and optimal feeding conditions for many marine organisms. One of the dominant species comprising the underwater meadows of the Southern Baltic Sea is the seagrass Zostera marina. The spatial extent of underwater seagrass meadows is altered by pollution and eutrophication; therefore, to properly manage the area one must monitor its ecological state. Remote acoustic methods are useful tools for the monitoring of benthic habitats in many marine areas because they are non-invasive and allow researchers to obtain data from a large area in a short period of time. Currently there is a need to apply these methods in the Baltic Sea. Here we present an analysis of the mechanism of scattering of acoustic waves on seagrass in the Southern Baltic Sea based on the numerical modeling of acoustic wave scattering by the biological tissues of plants. The study was conducted by adapting a model developed on the basis of DWBA (Distorted Wave Born Approximation) developed by Stanton and Chu (2005) for fluid-like objects, including the characteristics of the Southern Baltic seagrass. Input data for the model, including the morphometry of seagrass leaves, their angle of inclination and the density plant cover, was obtained through the analysis of biological materials collected in the Puck Bay in the framework of a research project financed by the Polish Government (Development of hydroacoustic methods for studies of underwater meadows of Puck Bay, 6P04E 051 20). On the basis of the developed model, we have analyzed the dependence of the target strength of a single
Acoustic integrated extinction
Norris, Andrew N.
2015-01-01
The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100
Solution of the nonlinear inverse scattering problem by T -matrix completion. II. Simulations
NASA Astrophysics Data System (ADS)
Levinson, Howard W.; Markel, Vadim A.
2016-10-01
This is Part II of the paper series on data-compatible T -matrix completion (DCTMC), which is a method for solving nonlinear inverse problems. Part I of the series [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043317 (2016), 10.1103/PhysRevE.94.043317] contains theory and here we present simulations for inverse scattering of scalar waves. The underlying mathematical model is the scalar wave equation and the object function that is reconstructed is the medium susceptibility. The simulations are relevant to ultrasound tomographic imaging and seismic tomography. It is shown that DCTMC is a viable method for solving strongly nonlinear inverse problems with large data sets. It provides not only the overall shape of the object, but the quantitative contrast, which can correspond, for instance, to the variable speed of sound in the imaged medium.
NASA Astrophysics Data System (ADS)
Xu, Xiaodong; Agustin Flores Cuautle, Jose Jesus; Kouyate, Mansour; Bernardus Roozen, Nicolaas; Goossens, Jozefien; Menon, Preethy; Kuriakose Malayil, Maju; Salenbien, Robbe; Nair Rajesh, Ravindran; Glorieux, Christ; Griesmar, Pascal; Martinez, Loïc; Serfaty, Stéphane
2016-03-01
The evolution of the elastic and thermal properties of a tetramethylorthosilicate (TMOS)-based gel that exhibits an extraordinary ringing effect when enclosed in a bottle is investigated during the sol-gel transition. The results demonstrate the feasibility of three proposed experimental methods for monitoring of gels during their formation. The shear stiffening evolution during gelation is monitored by ringing bottle, resonant acoustic spectroscopy and by an ultrasonic technique using piezo electric excitation and detection. The evolution of the longitudinal modulus and the thermal diffusivity of the gel during stiffening are simultaneously determined by a combined photoacoustic and photothermal method based on heterodyne diffraction detection of impulsive stimulated scattering by, respectively, a propagating acoustic wave grating and a decaying thermal expansion grating that were both thermo elastically generated using a pulsed laser. Also, the feasibility of an inverse photopyroelectric method and a hot ball technique to monitor the thermal transport efficiency and thermal impedance of a forming gel by tracking the thermal conductivity, the thermal diffusivity, and the thermal effusivity is demonstrated. The network polymerization and stiffening during the sol-gel transition in TMOS-gel corresponds with substantial changes in the shear acoustic velocity and in all thermal properties, while the longitudinal acoustic velocity is only weakly affected.
Inverse scattering for an exterior Dirichlet problem. [due to metallic cylinder
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1982-01-01
Scattering caused by a metallic cylinder in the field of a wire carrying a periodic current is studied, with a view to determining the location and shape of the cylinder in light of far field measurements between the cylinder and the wire. The associated direct problem is the exterior Dirichlet problem for the Helmholtz equation in two dimensions, and an improved low frequency estimate for its solution by integral equation methods is shown by inverse scattering calculations to be accurate to this estimate. The far field measurements are related to low frequency boundary integral equations whose solutions may be expressed in terms of a mapping function for the exterior of the unknown curve onto the exterior of a unit disk. The conformal transformation's Laurent expansion coefficients can be related to those of the far field, the first of which leads to the calculation of the distance between the source and the cylinder, while the other coefficients are determined by placing the source in a different location.
NASA Astrophysics Data System (ADS)
Chen, Ning; Yu, Dejie; Xia, Baizhan; Beer, Michael
2016-12-01
Imprecise probabilities can capture epistemic uncertainty, which reflects limited available knowledge so that a precise probabilistic model cannot be established. In this paper, the parameters of a structural-acoustic problem are represented with the aid of p-boxes to capture epistemic uncertainty in the model. To perform the necessary analysis of the structural-acoustic problem with p-boxes, a first-order matrix decomposition perturbation method (FMDPM) for interval analysis is proposed, and an efficient interval Monte Carlo method based on FMDPM is derived. In the implementation of the efficient interval Monte Carlo method based on FMDPM, constant matrices are obtained, first, through an uncertain parameter extraction on the basis of the matrix decomposition technique. Then, these constant matrices are employed to perform multiple interval analyses by using the first-order perturbation method. A numerical example is provided to illustrate the feasibility and effectiveness of the presented approach.
Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme
2011-01-01
This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.
Non-conforming curved finite element schemes for time-dependent elastic-acoustic coupled problems
NASA Astrophysics Data System (ADS)
Rodríguez-Rozas, Ángel; Diaz, Julien
2016-01-01
High-order numerical methods for solving time-dependent acoustic-elastic coupled problems are introduced. These methods, based on Finite Element techniques, allow for a flexible coupling between the fluid and the solid domain by using non-conforming meshes and curved elements. Since characteristic waves travel at different speeds through different media, specific levels of granularity for the mesh discretization are required on each domain, making impractical a possible conforming coupling in between. Advantageously, physical domains may be independently discretized in our framework due to the non-conforming feature. Consequently, an important increase in computational efficiency may be achieved compared to other implementations based on conforming techniques, namely by reducing the total number of degrees of freedom. Differently from other non-conforming approaches proposed so far, our technique is relatively simpler and requires only a geometrical adjustment at the coupling interface at a preprocessing stage, so that no extra computations are necessary during the time evolution of the simulation. On the other hand, as an advantage of using curvilinear elements, the geometry of the coupling interface between the two media of interest is faithfully represented up to the order of the scheme used. In other words, higher order schemes are in consonance with higher order approximations of the geometry. Concerning the time discretization, we analyze both explicit and implicit schemes. These schemes are energy conserving and, for the explicit case, the stability is guaranteed by a CFL condition. In order to illustrate the accuracy and convergence of these methods, a set of representative numerical tests are presented.
NASA Astrophysics Data System (ADS)
Wyatt, Philip
2009-03-01
The electromagnetic inverse scattering problem suggests that if a homogeneous and non-absorbing object be illuminated with a monochromatic light source and if the far field scattered light intensity is known at sufficient scattering angles, then, in principle, one could derive the dielectric structure of the scattering object. In general, this is an ill-posed problem and methods must be developed to regularize the search for unique solutions. An iterative procedure often begins with a model of the scattering object, solves the forward scattering problem using this model, and then compares these calculated results with the measured values. Key to any such solution is instrumentation capable of providing adequate data. To this end, the development of the first laser based absolute light scattering photometers is described together with their continuing evolution and some of the remarkable discoveries made with them. For particles much smaller than the wavelength of the incident light (e.g. macromolecules), the inverse scattering problems are easily solved. Among the many solutions derived with this instrumentation are the in situ structure of bacterial cells, new drug delivery mechanisms, the development of new vaccines and other biologicals, characterization of wines, the possibility of custom chemotherapy, development of new polymeric materials, identification of protein crystallization conditions, and a variety discoveries concerning protein interactions. A new form of the problem is described to address bioterrorist threats. Over the many years of development and refinement, one element stands out as essential for the successes that followed: the R and D teams were always directed and executed by physics trained theorists and experimentalists. 14 Ph. D. physicists each made his/her unique contribution to the development of these evolving instruments and the interpretation of their results.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-01-23
We study the interaction between electron and acoustic phonons in a Rashba spin-orbit coupled two-dimensional electron gas using Boltzmann transport theory. Both the deformation potential and piezoelectric scattering mechanisms are considered in the Bloch-Grüneisen (BG) regime as well as in the equipartition (EP) regime. The effect of the Rashba spin-orbit interaction on the temperature dependence of the resistivity in the BG and EP regimes is discussed. We find that the effective exponent of the temperature dependence of the resistivity in the BG regime decreases due to spin-orbit coupling.
Wave Phenomena in an Acoustic Resonant Chamber
ERIC Educational Resources Information Center
Smith, Mary E.; And Others
1974-01-01
Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…
NASA Astrophysics Data System (ADS)
Pinte, C.; Harries, T. J.; Min, M.; Watson, A. M.; Dullemond, C. P.; Woitke, P.; Ménard, F.; Durán-Rojas, M. C.
2009-05-01
Aims: Solving the continuum radiative transfer equation in high opacity media requires sophisticated numerical tools. In order to test the reliability of such tools, we present a benchmark of radiative transfer codes in a 2D disc configuration. Methods: We test the accuracy of seven independently developed radiative transfer codes by comparing the temperature structures, spectral energy distributions, scattered light images, and linear polarisation maps that each model predicts for a variety of disc opacities and viewing angles. The test cases have been chosen to be numerically challenging, with midplane optical depths up 10^6, a sharp density transition at the inner edge and complex scattering matrices. We also review recent progress in the implementation of the Monte Carlo method that allow an efficient solution to these kinds of problems and discuss the advantages and limitations of Monte Carlo codes compared to those of discrete ordinate codes. Results: For each of the test cases, the predicted results from the radiative transfer codes are within good agreement. The results indicate that these codes can be confidently used to interpret present and future observations of protoplanetary discs.
Hesford, Andrew J.; Astheimer, Jeffrey P.; Greengard, Leslie F.; Waag, Robert C.
2010-01-01
A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method. PMID:20136208
NASA Astrophysics Data System (ADS)
Oh, S. B.; Choi, Y.; Jung, H. G.; Kho, S. W.; Lee, C. S.
2014-12-01
Acoustic microscopy and small-angle neutron scattering were applied to non-destructively evaluate the hydrogen-induced cracking of API steels and to find the initiation time of the crack. The API steels had equiaxed grains with about 4 to 12-μm average grain size along the rolling, sample-normal, and transverse directions. For 5 days of immersion in a sodium-acetic solution with chloride ions (NaCl: CH3COOH: H2O: FeCl2 = 50: 5: 944: 1, pH = 2.7), micro-sized cracks were not formed in the as-received specimen, but they did form in the 7% deformed specimen. Nano-sized cracks were observed in the specimen after 3 days of immersion by small-angle neutron scattering.
Applications of Quantum Theory of Atomic and Molecular Scattering to Problems in Hypersonic Flow
NASA Technical Reports Server (NTRS)
Malik, F. Bary
1995-01-01
The general status of a grant to investigate the applications of quantum theory in atomic and molecular scattering problems in hypersonic flow is summarized. Abstracts of five articles and eleven full-length articles published or submitted for publication are included as attachments. The following topics are addressed in these articles: fragmentation of heavy ions (HZE particles); parameterization of absorption cross sections; light ion transport; emission of light fragments as an indicator of equilibrated populations; quantum mechanical, optical model methods for calculating cross sections for particle fragmentation by hydrogen; evaluation of NUCFRG2, the semi-empirical nuclear fragmentation database; investigation of the single- and double-ionization of He by proton and anti-proton collisions; Bose-Einstein condensation of nuclei; and a liquid drop model in HZE particle fragmentation by hydrogen.
NORSTAR Project: Norfolk public schools student team for acoustical research
NASA Technical Reports Server (NTRS)
Fortunato, Ronald C.
1987-01-01
Development of the NORSTAR (Norfolk Public Student Team for Acoustical Research) Project includes the definition, design, fabrication, testing, analysis, and publishing the results of an acoustical experiment. The student-run program is based on a space flight organization similar to the Viking Project. The experiment will measure the scattering transfer of momentum from a sound field to spheres in a liquid medium. It is hoped that the experimental results will shed light on a difficult physics problem - the difference in scattering cross section (the overall effect of the sound wave scattering) for solid spheres and hollow spheres of differing wall thicknesses.
NASA Astrophysics Data System (ADS)
Beker, B.
1992-12-01
Numerical modeling of electromagnetic (EM) interaction is normally performed by using either differential or integral equation methods. Both techniques can be implemented to solve problems in frequency or time domain. The method of moments (MOM) approach to solving integral equations has matured to the point where it can be used to solve complex problems. In the past, MOM has only been applied to scattering and radiation problems involving perfectly conducting or isotropic penetrable, lossy or lossless objects. However, many materials, (e.g., composites that are used on the Navy's surface ships in practical applications) exhibit anisotropic properties. To account for these new effects, several integral equation formulations for scattering and radiation by anisotropic objects have been developed recently. The differential equation approach to EM interaction studies has seen the emergence of the finite-difference time-domain (FD-TD) method as the method of choice in many of today's scattering and radiation applications. This approach has been applied to study transient as well as steady-state scattering from many complex structures, radiation from wire antennas, and coupling into wires through narrow apertures in conducting cavities. It is important to determine whether or not, and how effectively, the FD-TD can be used to solve EM interaction problems of interest to the Navy, such as investigating potential EM interference in shipboard communication systems. Consequently, this report partly addresses this issue by dealing exclusively with FD-TD modeling of time-domain EM scattering and radiation.
Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials
NASA Astrophysics Data System (ADS)
Shen, Jian Qi
2016-08-01
In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.
2014-06-20
which the turbulence levels measured directly were not significant, and thus turbulence was not predicted to dominate the scattering. Echo statistics...The echo statistics of scattering from fish are relatively well studied (e.g. Stanton, 1985; Stanton and Clay, 1986; Stanton et al., 2004; Chu and...Stanton, 2010; Stanton and Chu, 2010) and have been show to produce, for example, estimates offish densities. The echo statistics of scattering from
Acoustic impedance characterization via numerical resolution of the inverse Helmholtz problem
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Patel, Danish; Gupta, Prateek
2016-11-01
Impedance boundary conditions (IBCs) regulate the relative phasing and amplitudes of pressure and velocity fluctuations and, therefore, the acoustic energy flux. We present a numerical method to determine the acoustic impedance at the surface of an arbitrarily shaped cavity as seen by a generically oriented incident external harmonic planar wave. The proposed method (conceptually) inverts the usual eigenvalue-solving procedure underlying Helmholtz solvers: the impedance at one or multiple (but not all) boundaries is an output of the calculation and is obtained via implicit reconstruction the linear acoustic waveform at the frequency of the incident wave. The linearized governing equations are discretized via a mixed finite-difference/finite-volume approach and are closed with a generalized equation of state. Results are validated against quasi one-dimensional cases derived via direct application of Rott's linear thermoacoustic theory and by comparison against fully compressible Navier-Stokes simulations. This work is motivated by the need to develop a comprehensive suite of predictive tools capable of performing high-fidelity simulations of compressible boundary layers over assigned IBCs, accurately representing the acoustic response of arbitrarily shaped porous cavities.
The Scatter Search Based Algorithm to Revenue Management Problem in Broadcasting Companies
NASA Astrophysics Data System (ADS)
Pishdad, Arezoo; Sharifyazdi, Mehdi; Karimpour, Reza
2009-09-01
The problem under question in this paper which is faced by broadcasting companies is how to benefit from a limited advertising space. This problem is due to the stochastic behavior of customers (advertiser) in different fare classes. To address this issue we propose a mathematical constrained nonlinear multi period model which incorporates cancellation and overbooking. The objective function is to maximize the total expected revenue and our numerical method performs it by determining the sales limits for each class of customer to present the revenue management control policy. Scheduling the advertising spots in breaks is another area of concern and we consider it as a constraint in our model. In this paper an algorithm based on Scatter search is developed to acquire a good feasible solution. This method uses simulation over customer arrival and in a continuous finite time horizon [0, T]. Several sensitivity analyses are conducted in computational result for depicting the effectiveness of proposed method. It also provides insight into better results of considering revenue management (control policy) compared to "no sales limit" policy in which sooner demand will served first.
Dong, Jianping
2014-03-15
The 2D space-fractional Schrödinger equation in the time-independent and time-dependent cases for the scattering problems in the fractional quantum mechanics is studied. We define the Green's functions for the two cases and give the mathematical expression of them in infinite series form and in terms of some special functions. The asymptotic formulas of the Green's functions are also given, and applied to get the approximate wave functions for the fractional quantum scattering problems. These results contain those in the standard (integer) quantum mechanics as special cases, and can be applied to study the complex quantum systems.
A novel transport based model for wire media and its application to scattering problems
NASA Astrophysics Data System (ADS)
Forati, Ebrahim
Artificially engineered materials, known as metamaterials, have attracted the interest of researchers because of the potential for novel applications. Effective modeling of metamaterials is a crucial step for analyzing and synthesizing devices. In this thesis, we focus on wire medium (both isotropic and uniaxial) and validate a novel transport based model for them. Scattering problems involving wire media are computationally intensive due to the spatially dispersive nature of homogenized wire media. However, it will be shown that using the new model to solve scattering problems can simplify the calculations a great deal. For scattering problems, an integro-differential equation based on a transport formulation is proposed instead of the convolution-form integral equation that directly comes from spatial dispersion. The integro-differential equation is much faster to solve than the convolution equation form, and its effectiveness is confirmed by solving several examples in one-, two-, and three-dimensions. Both the integro-differential equation formulation and the homogenized wire medium parameters are experimentaly confirmed. To do so, several isotropic connected wire medium spheres have been fabricated using a rapid-prototyping machine, and their measured extinction cross sections are compared with simulation results. Wire parameters (period and diameter) are varied to the point where homogenization theory breaks down, which is observed in the measurements. The same process is done for three-dimensional cubical objects made of a uniaxail wire medium, and their measured results are compared with the numerical results based on the new model. The new method is extremely fast compared to brute-force numerical methods such as FDTD, and provides more physical insight (within the limits of homogenization), including the idea of a Debye length for wire media. The limits of homogenization are examined by comparing homogenization results and measurement. Then, a novel
2015-07-17
under-ice scattering , bathymetric diffraction and the application of the ocean acoustic Parabolic Equation to infrasound. 2. Tasks a. Task 1...QSR-14C0172-Ocean Acoustics -063015 Figure 10. Estimated reflection coefficient as a function of frequency by taking the difference of downgoing and...OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics -063015 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics
Shallow Water Acoustics Studies
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow Water Acoustics Studies James F. Lynch MS #12...N00014-14-1-0040 http://acoustics.whoi.edu/sw06/ LONG TERM GOALS The long term goals of our shallow water acoustics work are to: 1) understand the...nature of low frequency (10-1500 Hz) acoustic propagation, scattering and noise in shallow water when strong oceanic variability is present in the
Computational ocean acoustics: Advances in 3D ocean acoustic modeling
NASA Astrophysics Data System (ADS)
Schmidt, Henrik; Jensen, Finn B.
2012-11-01
The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].
2014-09-30
Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 annulus offset from the origin in the complex plane. The phase distributions are found to...Complex field, (b) amplitude and (c) phase distributions of ocean acoustic signal propagated over small source-receiver separations in the Gulf of
NASA Astrophysics Data System (ADS)
Bellis, Cédric; Bonnet, Marc; Cakoni, Fioralba
2013-07-01
Originally formulated in the context of topology optimization, the concept of topological derivative has also proved effective as a qualitative inversion tool for a wave-based identification of finite-sized objects. This approach remains, however, largely based on a heuristic interpretation of the topological derivative, whereas most other qualitative approaches to inverse scattering are backed by a mathematical justification. As an effort toward bridging this gap, this study focuses on a topological derivative approach applied to the L2-norm of the misfit between far-field measurements. Either an inhomogeneous medium or a finite number of point-like scatterers are considered, using either the Born approximation or a full-scattering model. Topological derivative-based imaging functionals are analyzed using a suitable factorization of the far-field operator, for each of the considered cases, in order to characterize their behavior and assess their ability to reconstruct the unknown scatterer(s). Results include the justification of the usual sign heuristic underpinning the method for (i) the Born approximation and (ii) full-scattering models limited to moderately strong scatterers. Semi-analytical and numerical examples are presented. Within the chosen framework, the topological derivative approach is finally discussed and compared to other well-known qualitative methods.
Mäkitalo, Jouni; Suuriniemi, Saku; Kauranen, Martti
2014-12-01
The study of metal nanoparticles and metamaterials has increased the demand for accurate and efficient numerical methods for solving electromagnetic scattering problems. The boundary element method, and especially its Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation, has received growing interest lately due to its accuracy and stability at plasmon resonance conditions. Consequently, this formulation has been used to model second-harmonic generation (SHG) in plasmonic nanoparticles, which is an area of increasing importance. Many nanostructures exhibit geometrical symmetries, whose identification is often crucial for the qualitative understanding of SHG. In this work, we present the theory and details to take advantage of these symmetries in the PMCHWT formulation. We show that, importantly, the symmetry of the medium can be exploited even though the excitation source does not exhibit a well-defined symmetry. We estimate the obtainable computational benefits and apply the method to the study of the linear and second-order nonlinear properties of multiply split gold ring resonators.
NASA Astrophysics Data System (ADS)
Jang, Hae-Won; Ih, Jeong-Guon
2013-11-01
In the analysis of interior acoustic problems, the time domain boundary element method (TBEM) suffers the monotonically increasing instability when using the direct Kirchhoff integral. This instability is related to the non-oscillatory static acoustic mode describing the constant spatial response in an enclosure. In this work, nonphysical natures of non-oscillatory static mode influencing the instability of TBEM calculation are investigated, and a method for stabilization is studied. In TBEM calculation, the static mode is represented by two non-oscillatory eigenmodes with different eigenvalues. The monotonically increasing instability is caused by the unstable poles of non-oscillatory eigenmodes as well as very small, very low frequency noise of an input signal. Interior problems with impedance boundary condition also exhibit the monotonically increasing instability stemming from its pseudo non-oscillatory static mode due to the lack of dissipation at very low frequencies. Calculation of transient sound fields within rigid and lined boxes provides numerical evidences. It is noted that the stabilization effort by modifying the coefficient matrix based on the spectral decomposition can be used only for correcting the unstable pole. The filtering method based on the eigen-analysis must be additionally used to avoid the remaining instability caused by very low frequency noise of input signal.
2010-09-30
echoes from relatively small zooplankton, such as pteropods or copepods , potentially in the presence of microstructure or in mixed zooplankton assemblages...numerical abundance of zooplankton are dominated by copepods , with larger copepods located in a deep scattering layer and the shallower waters being...populated by smaller copepods . All tows were performed during day light hours. Scattering predictions based on these data and available zooplankton models
1986-04-30
TenCate , who is supported by ONR Contract NOOO I 4-84-K-0574, in the completion of work on pure tones that interact in higher order modes of a...rectangular duct.26 Through collaboration with TenCate , Lind has acquired experience with the same experimental apparatus that he will use beginning I June...34 J. Acoust. Soc. " .. Am. 65.1127-1133(1979). 36. J. A TenCate and K F. Hamilton, "Dispersive nonlinear wave interactions in a rectangular duct," In
1987-07-01
plane waves that propagate in different directions. This approach was followed by TenCate and Hamilton [33,34], who investigated both theoretically...75, 1383-1391 (1984). • i I ■ [33] J. A. TenCate and M. F. Hamilton, "Dispersive NonUnear Wave Interactions in a Rect- angular Duct," in...and J. A. TenCate , "Sum and Difference Frequency Generation due to Noncollinear Wave Interaction in a Rectangular Duct," J. Acoust. Soc. Am. 81
The problem of scattering in fibre-fed VPH spectrographs and possible solutions
NASA Astrophysics Data System (ADS)
Ellis, S. C.; Saunders, Will; Betters, Chris; Croom, Scott
2014-07-01
All spectrographs unavoidably scatter light. Scattering in the spectral direction is problematic for sky subtraction, since atmospheric spectral lines are blurred. Scattering in the spatial direction is problematic for fibre fed spectrographs, since it limits how closely fibres can be packed together. We investigate the nature of this scattering and show that the scattering wings have both a Lorentzian component, and a shallower (1/r) component. We investigate the causes of this from a theoretical perspective, and argue that for the spectral PSF the Lorentzian wings are in part due to the profile of the illumination of the pupil of the spectrograph onto the diffraction grating, whereas the shallower component is from bulk scattering. We then investigate ways to mitigate the diffractive scattering by apodising the pupil. In the ideal case of a Gaussian apodised pupil, the scattering can be significantly improved. Finally we look at realistic models of the spectrograph pupils of fibre fed spectrographs with a centrally obstructed telescope, and show that it is possible to apodise the pupil through non-telecentric injection into the fibre.
2005-09-30
approximation in many practical situations. The equation for the average acoustic field in the statistically homogeneous in horizontal plane stratified...using diagrammatic technique similar to the one used in the theory of wave propagation in the homogeneous medium. The mass operator was calculated...perturbations on various eigenrays due to the horizontal refraction induced by internal waves with the Garrett-Munk spectrum: rigorous internal wave model
Nakayama, Masaaki Ohno, Tatsuya; Furukawa, Yoshiaki
2015-04-07
We have systematically investigated the photoluminescence (PL) dynamics of free excitons in GaAs/Al{sub 0.3}Ga{sub 0.7}As single quantum wells, focusing on the energy relaxation process due to exciton–acoustic-phonon scattering under non-resonant and weak excitation conditions as a function of GaAs-layer thickness from 3.6 to 12.0 nm and temperature from 30 to 50 K. The free exciton characteristics were confirmed by observation that the PL decay time has a linear dependence with temperature. We found that the free exciton PL rise rate, which is the reciprocal of the rise time, is inversely linear with the GaAs-layer thickness and linear with temperature. This is consistent with a reported theoretical study of the exciton–acoustic-phonon scattering rate in the energy relaxation process in quantum wells. Consequently, it is conclusively verified that the PL rise rate is dominated by the exciton–acoustic-phonon scattering rate. In addition, from quantitative analysis of the GaAs-layer thickness and temperature dependences, we suggest that the PL rise rate reflects the number of exciton–acoustic-phonon scattering events.
Andrade, F.M.; Silva, E.O.; Pereira, M.
2013-12-15
In this work the bound state and scattering problems for a spin- 1/2 particle undergone to an Aharonov–Bohm potential in a conical space in the nonrelativistic limit are considered. The presence of a δ-function singularity, which comes from the Zeeman spin interaction with the magnetic flux tube, is addressed by the self-adjoint extension method. One of the advantages of the present approach is the determination of the self-adjoint extension parameter in terms of physics of the problem. Expressions for the energy bound states, phase-shift and S matrix are determined in terms of the self-adjoint extension parameter, which is explicitly determined in terms of the parameters of the problem. The relation between the bound state and zero modes and the failure of helicity conservation in the scattering problem and its relation with the gyromagnetic ratio g are discussed. Also, as an application, we consider the spin- 1/2 Aharonov–Bohm problem in conical space plus a two-dimensional isotropic harmonic oscillator. -- Highlights: •Planar dynamics of a spin- 1/2 neutral particle. •Bound state for Aharonov–Bohm systems. •Aharonov–Bohm scattering. •Helicity nonconservation. •Determination of the self-adjoint extension parameter.
NASA Technical Reports Server (NTRS)
Gedney, Stephen D.; Mittra, Raj
1990-01-01
The enhancement of the computational efficiency of the body of revolution (BOR) scattering problem is discused with a view to making it practical for solving large-body problems. The problem of EM scattering by a perfectly conducting BOR is considered, although the methods can be extended to multilayered dielectric bodies as well. Typically, the generation of the elements of the moment method matrix consumes a major portion of the computational time. It is shown how this time can be significantly reduced by manipulating the expression for the matrix elements to permit efficient FFT computation. A technique for extracting the singularity of the Green function that appears within the integrands of the matrix diagonal is also presented, further enhancing the usefulness of the FFT. The computation time can thus be improved by at least an order of magnitude for large bodies in comparison to that for previous algorithms.
Propagator and multiple scattering approach to the time of arrival problem
NASA Astrophysics Data System (ADS)
Los, Victor F.; Los, Andrei V.
2011-05-01
The propagator approach combined with the multiple-scattering theory is applied to the particle time of arrival (TOA) problem. This approach allows us to naturally include in the consideration the components of the particle initial wavefunction (defined at t = t0) corresponding to the positive (forward-moving term) and negative (backward-moving term) momenta. For a freely moving particle it is shown that the Allcock definition of the ideal total TOA probability disregards the backward-moving and interference terms entirely. In the presence of a measuring apparatus modeled by an imaginary step potential with the amplitude V0, the general expression for the TOA rate is obtained, the forward-moving component of which coincides with that obtained by Allcock. It is shown that when the initial particle wavefunction is well separated from the point of arrival and has a well-defined average momentum, the contribution of the backward-moving and interference terms are small and can be neglected. For a small V0, except the well-known convolution result by Allcock-Kijowski, the exponential form of the TOA rate follows at the double limit condition V0 → 0, t - t0 ~ planck/2V0 → ∞ (2V0(t - t0)/planck is finite) while the backward-moving and interference terms vanish. We show that the Allcock result for the TOA rate is valid in the entire range of V0 including the Zeno case (V0 → ∞) and the normalized TOA rate can be introduced for all values of V0 as a probability distribution. The latter is illustrated for the Gaussian wave packet.
Acoustic Suppression Systems and Related Methods
NASA Technical Reports Server (NTRS)
Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)
2013-01-01
An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.
The Fast Scattering Code (FSC): Validation Studies and Program Guidelines
NASA Technical Reports Server (NTRS)
Tinetti, Ana F.; Dunn, Mark H.
2011-01-01
The Fast Scattering Code (FSC) is a frequency domain noise prediction program developed at the NASA Langley Research Center (LaRC) to simulate the acoustic field produced by the interaction of known, time harmonic incident sound with bodies of arbitrary shape and surface impedance immersed in a potential flow. The code uses the equivalent source method (ESM) to solve an exterior 3-D Helmholtz boundary value problem (BVP) by expanding the scattered acoustic pressure field into a series of point sources distributed on a fictitious surface placed inside the actual scatterer. This work provides additional code validation studies and illustrates the range of code parameters that produce accurate results with minimal computational costs. Systematic noise prediction studies are presented in which monopole generated incident sound is scattered by simple geometric shapes - spheres (acoustically hard and soft surfaces), oblate spheroids, flat disk, and flat plates with various edge topologies. Comparisons between FSC simulations and analytical results and experimental data are presented.
Xie, Zhinan; Matzen, René; Cristini, Paul; Komatitsch, Dimitri; Martin, Roland
2016-07-01
A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique. The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation because the latter allows for implementation of high-order time schemes, leading to reduced numerical dispersion and dissipation, a topic of importance, in particular, in long-range ocean acoustics simulations. The method is validated for a two dimensional fluid-solid Pekeris waveguide and for a three dimensional seamount model, which shows that the technique is accurate and numerically long-time stable. Compared with widely used paraxial absorbing boundary conditions, the perfectly matched layer is significantly more efficient at absorbing both body waves and interface waves.
NASA Technical Reports Server (NTRS)
Hinton, Yolanda L.
1999-01-01
Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Mendell, W. W.; Neely, S. C.
1982-01-01
An understanding of the reflectance spectra of scattering media is vital for the appropriate interpretation of the reflectance spectra of planetary surfaces. When the absorption coefficient (k) and the mean size of the scattering centers are small, the Kubelka-Munk (K-M) theory of diffuse reflectance is valid. Since small values of k are characteristic of a wide variety of geologically important materials over a significant range of wavelength, the K-M theory should be applicable to appropriate portions of the reflectance spectra of these media if the dimensions of the scattering centers are sufficiently small. To test the utility of the K-M theory, a comparison is conducted of a set of theoretically generated spectra with a set of independently measured experimental spectra. The similarities found in the behavior of the two sets of spectra demonstrate the applicability of the K-M theory to the understanding of physical phenomena. Aspects of wavelength-dependent scattering are investigated.
Application of the Sherman-Morisson formula to scattering problems by multi-component systems.
Ziya Akcasu, A; Jannink, G; Benoît, H
2002-06-01
The scattering matrix for multi-component systems is recalculated using the extended form of the Sherman-Morisson formula. The matrix elements are given explicitly in closed form. The Gibbs-Duhem relation separates the density and composition contributions.
1979-01-01
22. Reed, M. and Simon, B., Methods of Mathematical Physics , Vol. 1, p. 201, Academic Press, N.Y., N.Y., 1972 - 36 - -3 U- 23. Schmidt, "Spectral and...states and poles of the scattering matrix for perturbations of -A, .J. Math. Anal. and Ap . 37, 467 (1972). 17. M. Reed and B. Sirmon (1972), Methods of Mathematical Physics , Academic
2008-09-01
periwinkles (Littorina littorea), a type of benthic shelled animal. Stanton and Chu (2004) compared laboratory measurements of scattering from a...maximum values. If this test fails (they do not share common x values), the second element is not covered by the first, and the next element is
2006-09-30
situations. The equation for the average acoustic field in the statistically homogeneous in horizontal plane stratified waveguide satisfies an...is the vertical coordinate, and integration is along an perturbed eigenray between a source at (xS, 0, zS) and the mid-point (xR, 0, zR RR ) between...angle on the eigenray , ( ) ( )( ) ( ) ( )( ) ( ) 00 0 , ; ,, tan ; , , ; , , , cos S x R R R R R R R R R R Rx c x z x x z dxp x b z x x z x q x
Liu, Gang; Jayathilake, Pahala G; Khoo, Boo Cheong; Han, Feng; Liu, Dian Kui
2012-02-01
The complex variables method with mapping function was extended to solve the linear acoustic wave scattering by an inclusion with sharp/smooth corners in an infinite ideal fluid domain. The improved solutions of Helmholtz equation, shown as Bessel function with mapping function as the argument and fractional order Bessel function, were analytically obtained. Based on the mapping function, the initial geometry as well as the original physical vector can be transformed into the corresponding expressions inside the mapping plane. As all the physical vectors are calculated in the mapping plane (η,η), this method can lead to potential vast savings of computational resources and memory. In this work, the results are validated against several published works in the literature. The different geometries of the inclusion with sharp corners based on the proposed mapping functions for irregular polygons are studied and discussed. The findings show that the variation of angles and frequencies of the incident waves have significant influence on the bistatic scattering pattern and the far-field form factor for the pressure in the fluid.
NASA Astrophysics Data System (ADS)
Anand, Akash; Pandey, Ambuj; Rathish Kumar, B. V.; Paul, Jagabandhu
2016-04-01
This text proposes a fast, rapidly convergent Nyström method for the solution of the Lippmann-Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by inhomogeneous obstacles, while allowing the material properties to jump across the interface. The method works with overlapping coordinate charts as a description of the given scatterer. In particular, it employs "partitions of unity" to simplify the implementation of high-order quadratures along with suitable changes of parametric variables to analytically resolve the singularities present in the integral operator to achieve desired accuracies in approximations. To deal with the discontinuous material interface in a high-order manner, a specialized quadrature is used in the boundary region. The approach further utilizes an FFT based strategy that uses equivalent source approximations to accelerate the evaluation of large number of interactions that arise in the approximation of the volumetric integral operator and thus achieves a reduced computational complexity of O (Nlog N) for an N-point discretization. A detailed discussion on the solution methodology along with a variety of numerical experiments to exemplify its performance are presented in this paper.
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1985-01-01
Elliptic and hyperbolic problems in unbounded regions are considered. These problems, when one wants to solve them numerically, have the difficulty of prescribing boundary conditions at infinity. Computationally, one needs a finite region in which to solve these problems. The corresponding conditions at infinity imposed on the finite distance boundaries should dictate the boundary conditions at infinity and be accurate with respect to the interior numerical scheme. The treatment of these boundary conditions for wave-like equations is discussed.
1992-12-18
of very general shape. They allow the surface to have creases and corners, but restrict their attention to uniform homogeneous interiors. We, however...from an infinite homogeneous exterior that will be needed for scattering from a near-surface plume - namely, the presence of the air/sea boundary. 2.3...density 1.8 gm/cc critical angle 59.0 deg Fig. 17 - Eigenray multipaths and simulation parameters the eigenrays that undergo total reflection at the
Chen, Yao; Chen, Zeng-Ping; Yang, Jing; Jin, Jing-Wen; Zhang, Juan; Yu, Ru-Qin
2013-02-19
The presence of practically unavoidable scatterers and background absorbers in turbid media such as biological tissue or cell suspensions can significantly distort the shape and intensity of fluorescence spectra of fluorophores and, hence, greatly hinder the in situ quantitative determination of fluorophores in turbid media. In this contribution, a quantitative fluorescence model (QFM) was proposed to explicitly model the effects of the scattering and absorption on fluorescence measurements. On the basis of the proposed model, a calibration strategy was developed to remove the detrimental effects of scattering and absorption and, hence, realize accurate quantitative analysis of fluorophores in turbid media. A proof-of-concept model system, the determination of free Ca(2+) in turbid media using Fura-2, was utilized to evaluate the performance of the proposed method. Experimental results showed that QFM can provide quite precise concentration predictions for free Ca(2+) in turbid media with an average relative error of about 7%, probably the best results ever achieved for turbid media without the use of advanced optical technologies. QFM has not only good performance but also simplicity of implementation. It does not require characterization of the light scattering properties of turbid media, provided that the light scattering and absorption properties of the test samples are reasonably close to those of the calibration samples. QFM can be developed and extended in many application areas such as ratiometric fluorescent sensors for quantitative live cell imaging.
Spectral element method-based parabolic equation for EM-scattering problems
NASA Astrophysics Data System (ADS)
He, Zi; Fan, Zhen-Hong; Chen, Ru-Shan
2016-01-01
The traditional parabolic equation (PE) method is based on the finite difference (FD) scheme. However, the scattering object cannot be well approximated for complex geometries. As a result, a large number of meshes are needed to discretize the complex scattering objects. In this paper, the spectral element method is introduced to better approximate the complex geometry in each transverse plane, while the FD scheme is used along the paraxial direction. This proposed algorithm begins with expanding the reduced scattered fields with the Gauss-Lobatto-Legendre polynomials and testing them by the Galerkin's method in each transverse plane. Then, the calculation can be taken plane by plane along the paraxial direction. Numerical results demonstrate that the accuracy can be improved by the proposed method with larger meshes when compared with the traditional PE method.
Finite-element model for three-dimensional optical scattering problems.
Wei, Xiuhong; Wachters, Arthur J; Urbach, H Paul
2007-03-01
We present a three-dimensional model based on the finite-element method for solving the time-harmonic Maxwell equation in optics. It applies to isotropic or anisotropic dielectrics and metals and to many configurations such as an isolated scatterer in a multilayer, bi-gratings, and crystals. We discuss the application of the model to near-field optical recording.
1985-08-01
Marston, my thesis advisor. He has a special combination of theoretical and experimental talents which he is very willing to share with his students...cylinders and spheres," Ph.D. Thesis , Rarvard University, Cambridge, Massachusetts (1951). 3. J. J. Faran, "Sound scattering by solid cylinders and spheres...t*(uc(l)-t*(uc(12)-t*(uc(13)-t*uc(14))))) end if ztaz32 = (1.0d0,0.OdO)/(zata*zetal2) do 8 i-I,ntorms ar(i) a (0.OdO,0.OdO) br(i) - (0. QdO ,O.OdO
Engineering acoustic lenses with help from evolution
NASA Astrophysics Data System (ADS)
Ha˚Kansson, Andreas; Sánchez-Dehesa, José; Sánchis, Lorenzo
2004-05-01
Optimization engineering through evolutionary algorithms have proven to be very efficient, especially in hard problems containing a large set of optimization parameters. Like evolution this family of algorithms is able to tackle enormous complex problems with fairly simple means. Here, a simple genetic algorithm [J. H. Holland, Adaptation in Natural and Artificial Systems (Univ. of Michigan, Ann Arbor, 1975)] is used in conjunction with the multiple scattering theory [L. Sánchis et al., Phys. Rev. B 67, 035422 (2003)] to fabricate a new generation of acoustic devices based on a discrete number of cylindrical scatterers. In particular, acoustic lenses [F. Cervera et al., Phys. Rev. Lett. 88, 023902 (2002)] with flat surfaces have been designed to focus the sound in a fixed focal point for one or multiple frequencies. Each scatterer is carefully placed using the optimization method within the preset boundary conditions, to maximize the pressure contribution in the chosen focal spot. With this method acoustic lenses with very low f-numbers of the order 0.3 and with amplifications over 12 dB have been estimated using a reduced number of scatterers (~60). Preliminary results obtained from the experimental realization of the designed devices confirm our predictions.
Anger and aggression problems in veterans are associated with an increased acoustic startle reflex.
Heesink, Lieke; Kleber, Rolf; Häfner, Michael; van Bedaf, Laury; Eekhout, Iris; Geuze, Elbert
2017-02-01
Anger and aggression are frequent problems in deployed military personnel. A lowered threshold of perceiving and responding to threat can trigger impulsive aggression. This can be indicated by an exaggerated startle response. Fifty-two veterans with anger and aggression problems (Anger group) and 50 control veterans were tested using a startle experiment with 10 startle probes and 10 prepulse trials, presented in a random order and with a random interval between the trials. Predictors (demographics, Trait Anger, State Anger, Harm Avoidance and Anxious Arousal) for the startle response within the Anger group were tested. Increased EMG responses were found to the startle probes in the Anger Group compared to the Control group, but not to the prepulse trials. Furthermore, Harm Avoidance and State Anger predicted the increased startle reflex within the Anger group, whereas Trait Anger was negatively related to the startle reflex. These findings indicate that threat reactivity is increased in anger and aggression problems. These problems are not only caused by an anxious predisposition, the degree of anger also predicts the startle reflex.
Measuring the radiation force of megahertz ultrasound acting on a solid spherical scatterer
NASA Astrophysics Data System (ADS)
Nikolaeva, A. V.; Tsysar, S. A.; Sapozhnikov, O. A.
2016-01-01
The paper considers the problem of precise measurement of the acoustic radiation force of an ultrasonic beam on targets in the form of solid spherical scatterers. Using known analytic relations, a numerical model is developed to perform calculations for different sizes of spherical scatterers and arbitrary frequencies of the incident acoustic wave. A novel method is proposed for measuring the radiation force, which is based on the principle of acoustic echolocation. The radiation force is measured experimentally in a wide range of incident wave intensities using two chosen methods differing in the way the location of the target is controlled.
van Beurden, M C; Setija, I D
2017-02-01
We present two adapted formulations, one tailored to isotropic media and one for general anisotropic media, of the normal vector field framework previously introduced to improve convergence near arbitrarily shaped material interfaces in spectral simulation methods for periodic scattering geometries. The adapted formulations enable the definition and generation of the normal vector fields to be confined to a region of prolongation that includes the material interfaces but is otherwise limited. This allows for a more flexible application of geometrical transformations like rotation and translation per scattering object in the unit cell. Moreover, these geometrical transformations enable a cut-and-connect strategy to compose general geometries from elementary building blocks. The entire framework gives rise to continuously parameterized geometries.
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R.; Arrington, J.; Brooks, W.; Adhikari, K.; Afanasev, A.; Amaryan, M.; Anderson, M.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A.; Bono, J.; Boiarinov, S.; Briscoe, W.; Burkert, V.; Carman, D.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J.; Fradi, A.; Garillon, B.; Gilfoyle, G.; Giovanetti, K.; Girod, F.; Goetz, J.; Gohn, W.; Golovatch, E.; Gothe, R.; Griffioen, K.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S.; Hyde, C. E.; Ilieva, Y.; Ireland, D.; Ishkhanov, B.; Jenkins, D.; Jiang, H.; Jo, H.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F.; Koirala, S.; Kubarovsky, V.; Kuhn, S.; Livingston, K.; Lu, H.; MacGregor, I.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M.; Meyer, C.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati, F.; Salgado, C.; Schott, D.; Schumacher, R.; Seder, E.; Sharabian, Y.; Simonyan, A.; Skorodumina, I.; Smith, E.; Smith, G.; Sober, D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N.; Watts, D.; Wei, X.; Wood, M.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z.; Zonta, I.
2015-02-10
There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
NASA Astrophysics Data System (ADS)
Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peña, C.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, I.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-02-01
There is a significant discrepancy between the values of the proton electric form factor, GEp, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEp from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ɛ ) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ɛ at Q2=1.45 GeV2 . This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2 - 3 GeV2 .
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
Adikaram, D.; Rimal, D.; Weinstein, L. B.; ...
2015-02-10
There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentummore » transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.« less
Towards a resolution of the proton form factor problem: new electron and positron scattering data.
Adikaram, D; Rimal, D; Weinstein, L B; Raue, B; Khetarpal, P; Bennett, R P; Arrington, J; Brooks, W K; Adhikari, K P; Afanasev, A V; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Avakian, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Bono, J; Boiarinov, S; Briscoe, W J; Burkert, V D; Carman, D S; Careccia, S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Fradi, A; Garillon, B; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Holtrop, M; Hughes, S M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jenkins, D; Jiang, H; Jo, H S; Joo, K; Joosten, S; Kalantarians, N; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, V; Kuhn, S E; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P; Mayer, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Peña, C; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Sharabian, Y G; Simonyan, A; Skorodumina, I; Smith, E S; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Trivedi, A; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I
2015-02-13
There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ϵ) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ϵ at Q(2)=1.45 GeV(2). This measurement is consistent with the size of the form factor discrepancy at Q(2)≈1.75 GeV(2) and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV(2).
NASA Astrophysics Data System (ADS)
Buscombe, D.; Grams, P. E.; Kaplinski, M. A.
2014-12-01
In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length and amplitude scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by georeferenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum and the intercept and slope from a power law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration and surveys made at calibration sites at different times were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well-understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.
Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.
2014-01-01
In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.
NASA Astrophysics Data System (ADS)
Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang
2015-06-01
This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.
NASA Astrophysics Data System (ADS)
Hwang, J. S.
1987-06-01
It has been well proved that there are infinitely many resonances in the scattering problem provided the potential V(t) satisfies the moment conditions ∫∞0||V(t)||tn dt =O(n(1-ɛ)n), ɛ>0, n=0,1, ... . In particular, if V(t) has a compact support then the result of Rollnik [H. Rollnik, Z. Phys. 145, 654 (1956)] and Regge [T. Regge, Nuovo Cimento, 8, 671 (1958)] is obtained and if ||V(t)||˜exp(-τt1+ɛ), τ,ɛ>0, we have the results of Sartori [L. Sartori, J. Math. Phys. 4, 1408 (1963)].
A new method to solve the Nd breakup scattering problem in configuration space
NASA Astrophysics Data System (ADS)
Suslov, Vladimir
2005-11-01
A new computational method for solving the configuration-space Faddeev equations for three nucleon system has been developed. This method is based on the spline-decomposition in the angular variable and a generalization of the Numerov method for the hyperradius. The s-wave calculations of the inelasticity and phase-shift, as well as breakup amplitudes for nd and pd breakup scattering for lab energies 14.1 and 42.0 MeV were performed with the Malfliet -Tjon MT I-III potential. In the case of nd breakup scattering the results are in good agreement with those of the benchmark solution [1],[2]. In the case of pd quartet breakup scattering disagreement for the inelasticities reaches up to 6% as compared with those of the Pisa group [3]. The calculated pd amplitudes fulfill the optical theorem with a good precision. 1. J. L. Friar, B. F. Gibson, G. Berthold, W. Gloeckle, Th. Cornelius, H. Witala, J. Haidenbauer, Y. Koike, G. L. Payne, J. A. Tjon, and W. M. Kloet,: http://link.aip.org/link/?&lcreator=getabs-normal&ldir=FWD&lrel=CITES&fromkey=PRVCAN000069000004044003000001&fromkeyType=CVIPS&fromloc=AIP&toj=PRVCAN&tov=42&top=1838&toloc=APS&tourl=http%3A%2F%2Flink.aps.org%2Fabstract%2FPRC%2Fv42%2FPhys. Rev. C 42, 1838 (1990). 2. Frair J.L, Payne G.L., Gl"ockle W., Hueber D., Witala H.: Phys. Rev. C 51, 2356 (1995) 3. Kievsky A., Viviani M., and Rosati S.: Phys. Rev. C 64, 024002 (2001)
Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.
Pierce, Allan D; Thiam, Amadou G
2012-03-01
A sequence of dictums for mathematical acoustics is given representing opinions intended to be regarded as authoritative, but not necessarily universally agreed upon. The dictums are presented in the context of the detailed solution for a class of problems involving the forced vibration of a long cylinder protruding half-way into a half-space bounded by a compliant surface (impedance boundary) characterized by a spring constant. One limiting case corresponds to a cylinder vibrating within an infinite rigid baffle, and another limiting case corresponds to a vibrating cylinder on the compliant surface of an incompressible fluid. The second limiting case is identified as analogous to that of a floating half-submerged cylinder whose vibrations cause water waves to propagate over the surface. Attention is focused on vibrations at very low frequencies. Difficulties with insuring a causal solution are pointed out and dictums are given as to how one overcomes such difficulties. Various approximation techniques are described. The derivations involve application of the theory of complex variables and the method of matched asymptotic expansions, and the results include the apparent entrained mass in the near field of the cylinder and the radiation resistance per unit length experienced by the vibrating cylinder.
Treeby, Bradley E; Cox, B T
2011-06-01
An efficient Green's function solution for acoustic initial value problems in homogeneous media with power law absorption is derived. The solution is based on the homogeneous wave equation for lossless media with two additional terms. These terms are dependent on the fractional Laplacian and separately account for power law absorption and dispersion. Given initial conditions for the pressure and its temporal derivative, the solution allows the pressure field for any time t>0 to be calculated in a single step using the Fourier transform and an exact k-space time propagator. For regularly spaced Cartesian grids, the former can be computed efficiently using the fast Fourier transform. Because no time stepping is required, the solution facilitates the efficient computation of the pressure field in one, two, or three dimensions without stability constraints. Several computational aspects of the solution are discussed, including the effect of using a truncated Fourier series to represent discrete initial conditions, the use of smoothing, and the properties of the encapsulated absorption and dispersion.
Beat structure in the solution of scattering problems with nondecaying sources*
NASA Astrophysics Data System (ADS)
Ambrosio, Marcelo J.; Ancarani, Lorenzo U.; Gómez, Antonio I.; Gasaneo, Gustavo; Mitnik, Darío M.
2017-03-01
In this contribution we study mathematical properties of scattering solutions of Schrödinger-type equations with nondecaying, outgoing type, driven terms. We analyze in some details the two-body frame, where an analytical treatment is possible, and find how the scattering solution is expected to contain a beating type structure. The analytical formulation is first presented, and then fully and successfully confirmed with two numerical implementations: the Exterior Complex Scaling and the Generalized Sturmian Functions methods. Our results illustrate the underlying mathematical structure that can be found in, for example, the photoionization of atoms or molecules, in the case when several photons are absorbed or in second order calculations for a single photon absorption. A test case within the three-body frame is also presented, illustrating numerically the presence of beat structures in separately the single and double continuum channels. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.
Zhang, Yan-jun; Zhang, Shu-guo; Fu, Guang-wei; Li, Da; Liu, Yin; Bi, Wei-hong
2012-04-01
This paper presents a novel algorithm which blends optimize particle swarm optimization (PSO) algorithm and Levenberg-Marquardt (LM) algorithm according to the probability. This novel algorithm can be used for Pseudo-Voigt type of Brillouin scattering spectrum to improve the degree of fitting and precision of shift extraction. This algorithm uses PSO algorithm as the main frame. First, PSO algorithm is used in global search, after a certain number of optimization every time there generates a random probability rand (0, 1). If rand (0, 1) is less than or equal to the predetermined probability P, the optimal solution obtained by PSO algorithm will be used as the initial value of LM algorithm. Then LM algorithm is used in local depth search and the solution of LM algorithm is used to replace the previous PSO algorithm for optimal solutions. Again the PSO algorithm is used for global search. If rand (0, 1) was greater than P, PSO algorithm is still used in search, waiting the next optimization to generate random probability rand (0, 1) to judge. Two kinds of algorithms are alternatively used to obtain ideal global optimal solution. Simulation analysis and experimental results show that the new algorithm overcomes the shortcomings of single algorithm and improves the degree of fitting and precision of frequency shift extraction in Brillouin scattering spectrum, and fully prove that the new method is practical and feasible.
Acoustic velocity meter systems
Laenen, Antonius
1985-01-01
Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.
Jang, Hae-Won; Ih, Jeong-Guon
2013-03-01
The time domain boundary element method (TBEM) to calculate the exterior sound field using the Kirchhoff integral has difficulties in non-uniqueness and exponential divergence. In this work, a method to stabilize TBEM calculation for the exterior problem is suggested. The time domain CHIEF (Combined Helmholtz Integral Equation Formulation) method is newly formulated to suppress low order fictitious internal modes. This method constrains the surface Kirchhoff integral by forcing the pressures at the additional interior points to be zero when the shortest retarded time between boundary nodes and an interior point elapses. However, even after using the CHIEF method, the TBEM calculation suffers the exponential divergence due to the remaining unstable high order fictitious modes at frequencies higher than the frequency limit of the boundary element model. For complete stabilization, such troublesome modes are selectively adjusted by projecting the time response onto the eigenspace. In a test example for a transiently pulsating sphere, the final average error norm of the stabilized response compared to the analytic solution is 2.5%.
NASA Astrophysics Data System (ADS)
Zhong, Jie; Wen, Ji-Hong; Zhao, Hong-Gang; Yin, Jian-Fei; Yang, Hai-Bin
2015-08-01
Locally resonant sonic materials, due to their ability to control the propagation of low-frequency elastic waves, have become a promising option for underwater sound absorption materials. In this paper, the finite element method is used to investigate the absorption characteristics of a viscoelastic panel periodically embedded with a type of infinite-long non-coaxially cylindrical locally resonant scatterers (LRSs). The effect of the core position in the coating layer of the LRS on the low-frequency (500 Hz-3000 Hz) sound absorption property is investigated. With increasing the longitudinal core eccentricity e, there occur few changes in the absorptance at the frequencies below 1500 Hz, however, the absorptance above 1500 Hz becomes gradually better and the valid absorption (with absorptance above 0.8) frequency band (VAFB) of the viscoelastic panel becomes accordingly broader. The absorption mechanism is revealed by using the displacement field maps of the viscoelastic panel and the steel slab. The results show two typical resonance modes. One is the overall resonance mode (ORM) caused by steel backing, and the other is the core resonance mode (CRM) caused by LRS. The absorptance of the viscoelastic panel by ORM is induced mainly by the vibration of the steel slab and affected little by core position. On the contrary, with increasing the core eccentricity, the CRM shifts toward high frequency band and decouples with the ORM, leading to two separate absorption peaks and the broadened VAFB of the panel. Project supported by the National Natural Science Foundation of China (Grant No. 51275519).
NASA Astrophysics Data System (ADS)
Rajabi, Majid; Mojahed, Alireza
2016-11-01
In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.
NASA Technical Reports Server (NTRS)
Cwik, T.; Jamnejad, V.; Zuffada, C.
1993-01-01
It is often desirable to calculate the electromagnetic fields inside and about a complicated system of scattering bodies, as well as in their far-field region. The finite element method (FE) is well suited to solving the interior problem, but the domain has to be limited to a manageable size. At the truncation of the FE mesh one can either impose approximate (absorbing) boundary conditions or set up an integral equation (IE) for the fields scattered from the bodies. The latter approach is preferable since it results in higher accuracy. Hence, the two techniques can be successfully combined by introducing a surface that encloses the scatterers, applying a FE model to the inner volume and setting up an IE for the tangential fields components on the surface. Here the continuity of the tangential fields is used bo obtain a consistent solution. A few coupled FE-IE methods have recently appeared in the literature. The approach presented here has the advantage of using edge-based finite elements, a type of finite elements with degrees of freedom associated with edges of the mesh. Because of their properties, they are better suited than the conventional node based elements to represent electromagnetic fields, particularly when inhomogeneous regions are modeled, since the node based elements impose an unnatural continuity of all field components across boundaries of mesh elements. Additionally, our approach is well suited to handle large size problems and lends itself to code parallelization. We will discuss the salient features that make our approach very efficient from the standpoint of numerical computation, and the fields and RCS of a few objects are illustrated as examples.
NASA Astrophysics Data System (ADS)
Arndt, Christoph M.; Severin, Michael; Dem, Claudiu; Stöhr, Michael; Steinberg, Adam M.; Meier, Wolfgang
2015-04-01
A gas turbine model combustor for partially premixed swirl flames was equipped with an optical combustion chamber and operated with CH4 and air at atmospheric pressure. The burner consisted of two concentric nozzles for separately controlled air flows and a ring of holes 12 mm upstream of the nozzle exits for fuel injection. The flame described here had a thermal power of 25 kW, a global equivalence ratio of 0.7, and exhibited thermo-acoustic instabilities at a frequency of approximately 400 Hz. The phase-dependent variations in the flame shape and relative heat release rate were determined by OH* chemiluminescence imaging; the flow velocities by stereoscopic particle image velocimetry (PIV); and the major species concentrations, mixture fraction, and temperature by laser Raman scattering. The PIV measurements showed that the flow field performed a "pumping" mode with varying inflow velocities and extent of the inner recirculation zone, triggered by the pressure variations in the combustion chamber. The flow field oscillations were accompanied by variations in the mixture fraction in the inflow region and at the flame root, which in turn were mainly caused by the variations in the CH4 concentration. The mean phase-dependent changes in the fluxes of CH4 and N2 through cross-sectional planes of the combustion chamber at different heights above the nozzle were estimated by combining the PIV and Raman data. The results revealed a periodic variation in the CH4 flux by more than 150 % in relation to the mean value, due to the combined influence of the oscillating flow velocity, density variations, and CH4 concentration. Based on the experimental results, the feedback mechanism of the thermo-acoustic pulsations could be identified as a periodic fluctuation of the equivalence ratio and fuel mass flow together with a convective delay for the transport of fuel from the fuel injector to the flame zone. The combustor and the measured data are well suited for the validation of
Esward, T J; Blakey, J R
1996-06-01
Measurements of the complex pressure fields transmitted by scattering specimens consisting of glass beads in silicone rubber and of in vitro samples of ox myocardium, liver and kidneys have been carried out by point-by-point mapping of the amplitude and phase of the fields, using a new design of PVDF needle hydrophone in a high precision scanning tank. The results show that disruption of the phase fronts by the specimens is small and the measured values depend on the choice of measurement distance and frequency, and spatial sampling interval. As a result, there is little difference between phase sensitive and phase insensitive measurements at frequencies below 5 MHz. It is therefore unlikely that the proposed method could be applied successfully to the characterisation of such materials at low megahertz frequencies.
Carrozini, B; Cascarano, G; De Caro, L; Giacovazzo, C; Marchesini, S; Chapman, H N; Howells, M R; He, H; Wu, J S; Weiestrall, U; Spence, J H
2004-03-18
A new phasing algorithm has been used to determine the phases of diffuse elastic X-ray scattering from a non-periodic array of gold balls of 50 nm diameter. Two-dimensional real-space images , showing the charge-density distribution of the balls, have been reconstructed at 50 nm resolution from transmission diffraction patterns recorded at 550 eV energy. The reconstructed image fits well with scanning electron microscope (SEM) image of the same sample. The algorithm, which uses only the density modification portion of the SIR2002 program, is compared with the results obtained via the Gerchberg-Saxton-Fienup HiO algorithm. The new algorithm requires no knowledge of the object's boundary, and proceeds from low to high resolution. In this way the relationship between density modification in crystallography and the HiO algorithm used in signal and image processing is elucidated.
NASA Astrophysics Data System (ADS)
Bowen, Patrick T.; Urzhumov, Yaroslav A.
2016-04-01
Acoustic metamaterial structures with discrete and continuous rotational symmetries attract interest of theorists and engineers due to the relative simplicity of their design and fabrication. They are also likely candidates for omnidirectional acoustic cloaking and other transformation-acoustical novelties. In this paper, we employ a stratified description of such structures, and develop the theory and an efficient symbolic/numerical algorithm for analyzing the scattering properties of such structures immersed in homogeneous fluid environments. The algorithm calculates the partial scattering amplitudes and the related scattering phases for an arbitrary layered distribution of acoustic material properties. The efficiency of the algorithm enables us to find approximate solutions to certain inverse scattering problems through quasi-global optimization. The scattering problems addressed here are the three forms of cloaking: (1) extinction cross-section suppression, the canonical form of cloaking, (2) monostatic sonar invisibility (backscattering suppression), and (3) acoustic force cloaking (transport cross-section suppression). We also address the efficiency-bandwidth tradeoff and design approximate cloaks with wider bandwidth using a new optimization formulation.
NASA Astrophysics Data System (ADS)
Simons, Neil Richard Samuel
In this thesis the development and application of general purpose computer simulation techniques for macroscopic electromagnetic phenomena are investigated. These techniques are applicable to a wide variety of practical problems pertaining to: Electromagnetic Compatibility and Interference, Radar-Cross-Section, and the analysis and design of antennas. The goal of this research is to examine methods that are applicable to a wide variety of problems rather than specialized approaches that are only useful for specific problems. A brief review of the computational electromagnetics literature indicates two general types of methods are applicable. These are numerical approximation of integral-equation formulations and numerical approximation of differential-equation formulations. Because of their relative efficiency for inhomogeneous geometries, the direction of the thesis proceeds with numerical approximations to differential-equation based formulations. The differential-equation based numerical methods include various finite-difference, finite-element, finite -volume, and transmission line matrix methods. A literature review and overview of these numerical methods is provided. The goal of the overview is to provide the capability for the classification for existing and future differential equation based numerical methods to identify relative advantages and disadvantages. Extensions to the two-dimensional transmission line matrix method are presented. The extensions are intended to provide some of the flexibility traditionally associated with finite-difference and finite-element methods. Three new two-dimensional models are presented. Two of the new models utilize triangular rather than the usual rectangular spatial discretization. The third model introduces the capability of higher-order spatial accuracy. The efficiency and application of the new models are discussed. The development of two general-purpose electromagnetic simulation programs is presented. Both are
1984-07-01
of variations. Variational calculus and in particular Hamilton’s principle, have played a vital role in des- cribing the dynamics of particle motion...problem is dealt with by the calculus of variations (Courant and Hilbert, 1953). Using a variational calculus approach, it is possible to show the...produce the Sturm-Liouville equation and identify the natural boundary conditions. In the terminology of variational calculus the partial dif- ferential
NASA Astrophysics Data System (ADS)
Farafonov, V. G.; Ustimov, V. I.
2017-02-01
In the problem of light scattering by small axisymmetric particles, we have constructed the Rayleigh approximation in which the polarizability of particles is determined by the generalized separation of variables method (GSVM). In this case, electric-field strengths are gradients of scalar potentials, which are represented as expansions in term of eigenfunctions of the Laplace operator in the spherical coordinate system. By virtue of the fact that the separation of variables in the boundary conditions is incomplete, the initial problem is reduced to infinite systems of linear algebraic equations (ISLAEs) with respect to unknown expansion coefficients. We have examined the asymptotic behavior of ISLAE elements at large values of indices. It has been shown that the necessary condition of the solvability of the ISLAE coincides with the condition of correct application of the extended boundary conditions method (EBCM). We have performed numerical calculations for Chebyshev particles with one maximum (also known as Pascal's snails or limaçons of Pascal). The obtained numerical results for the asymptotics of ISLAE elements and for the matrix support theoretical inferences. We have shown that the scattering and absorption cross sections of examined particles can be calculated in a wide range of variation of parameters with an error of about 1-2% using the spheroidal model. This model is also applicable in the case in which the solvability condition of the ISLAE for nonconvex particles is violated; in this case, the SVM should be considered as an approximate method, which frequently ensures obtaining results with an error less than 0.1-0.5%.
NASA Technical Reports Server (NTRS)
Myneni, Ranga B.; Kanemasu, Edward T.; Asrar, Ghassem
1988-01-01
A finite element discrete ordinates method for solving the radiative transfer equation in nonrotationally invariant scattering media has been applied to the lead-canopy problem, and results are presented on the cross sections and the reflection functions. The method is based on a unique implementation of the Galerkin integral law formulation of the transport equation. For both near-normal and grazing incidences, the transfer functions of leaf canopies are found to be strongly anisotropic, with relatively more scattered flux in the vertical directions. It is suggested that the assumption of isotropic scattering in leaf canopies is not valid.
An overview of acoustic telemetry
Drumheller, D.S.
1992-01-01
Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quire low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested; existing field test data need to be analyzed for transmission bandwidth and attenuation; and the new and less expensive methods of collecting data on transmission path quality need to be incorporated into this effort. 11 refs.
Yao, Jie; Lesage, Anne-Cécile; Hussain, Fazle; Bodmann, Bernhard G.; Kouri, Donald J.
2014-12-15
The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptotic form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.
Rayleigh scattering of a spherical sound wave.
Godin, Oleg A
2013-02-01
Acoustic Green's functions for a homogeneous medium with an embedded spherical obstacle arise in analyses of scattering by objects on or near an interface, radiation by finite sources, sound attenuation in and scattering from clouds of suspended particles, etc. An exact solution of the problem of diffraction of a monochromatic spherical sound wave on a sphere is given by an infinite series involving products of Bessel functions and Legendre polynomials. In this paper, a simple, closed-form solution is obtained for scattering by a sphere with a radius that is small compared to the wavelength. Soft, hard, impedance, and fluid obstacles are considered. The solution is valid for arbitrary positions of the source and receiver relative to the scatterer. Low-frequency scattering is shown to be rather sensitive to boundary conditions on the surface of the obstacle. Low-frequency asymptotics of the scattered acoustic field are extended to transient incident waves. The asymptotic expansions admit an intuitive interpretation in terms of image sources and reduce to classical results in appropriate limiting cases.
Numerical Techniques for Scattering from Submerged Objects
NASA Technical Reports Server (NTRS)
Werby, M. F.; Tango, G. J.; Gaunaurd, G. C.
1985-01-01
To represent the final results in terms of matrices, one expands all appropriate physical quantities in terms of partial wave basis states. This includes expansions for the incident and scattered fields and the surface quantities. The method then utilizes the Huygen-Poincare integral representation for both the exterior and interior solutions, leading to the required matrix equations. One thus deals with matrix equations, the complexity of which depends on the nature of the problem. It is shown that in general a transition matrix T can be obtained relating the incident field A with the scattered field f having the form T = PQ(-1), where f = TA. The structure of Q can be quite complicated and can itself be composed of other matrix inversions such as arise from layered objects. Recent improvements in this method appropriate for a variety of physical problems are focused on, and on their implementation. Results are outlined from scattering simulations for very elongated submerged objects and resonance scattering from elastic solids and shells. The final improvement concerns eigenfunction expansions of surface terms, arising from solution of the interior problem, obtained via a preconditioning technique. This effectively reduces the problem to that of obtaining eigenvalues of a Hermitian operator. This formalism is reviewed for scattering from targets that are rigid, sound-soft, acoustic, elastic solids, elastic shells, and elastic layered objects. Two sets of the more interesting results are presented. The first concerns scattering from elongated objects, and the second to thin elastic spheroids.
NASA Astrophysics Data System (ADS)
Mohapatra, S.; Sarangi, M. R.
2017-03-01
The solution of water wave scattering problem involving small deformation on a porous bed in a channel, where the upper surface is bounded above by an infinitely extent rigid horizontal surface, is studied here within the framework of linearized water wave theory. In such a situation, there exists only one mode of waves propagating on the porous surface. A simplified perturbation analysis, involving a small parameter ɛ ( ≪ 1), which measures the smallness of the deformation, is employed to reduce the governing Boundary Value Problem (BVP) to a simpler BVP for the first-order correction of the potential function. The first-order potential function and, hence, the first-order reflection and transmission coefficients are obtained by the method based on Fourier transform technique as well as Green's integral theorem with the introduction of appropriate Green's function. Two special examples of bottom deformation: the exponentially damped deformation and the sinusoidal ripple bed, are considered to validate the results. For the particular example of a patch of sinusoidal ripples, the resonant interaction between the bed and the upper surface of the fluid is attained in the neighborhood of a singularity, when the ripples wavenumbers of the bottom deformation become approximately twice the components of the incident field wavenumber along the positive x-direction. Also, the main advantage of the present study is that the results for the values of reflection and transmission coefficients are found to satisfy the energy-balance relation almost accurately.
Kozier, K. S.
2006-07-01
This paper examines the sensitivity of MCNP5 k{sub eff} results to various deuterium data files for a simple benchmark problem consisting of an 8.4-cm radius sphere of uranium surrounded by an annulus of deuterium at the nuclide number density corresponding to heavy water. This study was performed to help clarify why {Delta}k{sub eff} values of about 10 mk are obtained when different ENDF/B deuterium data files are used in simulations of critical experiments involving solutions of high-enrichment uranyl fluoride in heavy water, while simulations of low-leakage, heterogeneous critical lattices of natural-uranium fuel rods in heavy water show differences of <1 mk. The benchmark calculations were performed as a function of deuterium reflector thickness for several uranium compositions using deuterium ACE files derived from ENDF/B-VII.b1 (release beta 1), ENDF/B-VI.4 and JENDL-3.3, which differ primarily in the energy/angle distributions for elastic scattering <3.2 MeV. Calculations were also performed using modified ACE files having equiprobable cosine bin values in the centre-of-mass reference frame in a progressive manner with increasing energy. It was found that the {Delta}k{sub eff} values increased with deuterium reflector thickness and uranium enrichment. The studies using modified ACE files indicate that most of the reactivity differences arise at energies <1 MeV; hence, this energy range should be given priority if new scattering distribution measurements are undertaken. (authors)
ELECTROMAGNETIC RADIATION, DIFFRACTION, WEDGES, WEDGES, PRISMATIC BODIES, COMPLEX VARIABLES , PRISMS(OPTICS), REFRACTION, FUNCTIONS(MATHEMATICS), REFLECTION, PARTIAL DIFFERENTIAL EQUATIONS, SCATTERING.
Pelivanov, Ivan M; Belov, Sergej A; Solomatin, Vladimir S; Khokhlova, Tanya D; Karabutov, Aleksander A
2006-12-31
The problem of opto-acoustic (AO) diagnostics of light scattering and absorption in biological media is considered. The objects under study were milk, bovine and porcine liver, and bovine muscle tissue. The forward and backward schemes for recording acoustic signals were used in experiments. The spatial distribution of the light intensity was measured for each biological medium from the temporal profile of the excited OA pulse and the absorption coefficient and reduced scattering coefficient were determined. Opto-acoustic signals were excited by a 1064-nm pulsed Nd:YAG laser and a tunable Ti:sapphire laser at 779 nm. It is shown that the proposed method can be used for obtaining a priori information on a biological medium in problems of optical and AO tomography. (special issue devoted to multiple radiation scattering in random media)
APL - North Pacific Acoustic Laboratory
2015-03-04
Acoustic Lab” Encl: (1) Final Technical Report for Subject Grant (2) SF298 for Enclosure Enclosure (1) is the Final Technical Report for the subject...Laboratory (hard copy with SF 298) Defense Technical Information Center (electronic files with SF298) APL - North Pacific Acoustic ...speed perturbations and the characteristics of the ambient acoustic noise field. Scattering and diffraction resulting from internal waves and other
Unique determination of balls and polyhedral scatterers with a single point source wave
NASA Astrophysics Data System (ADS)
Hu, Guanghui; Liu, Xiaodong
2014-06-01
In this paper, we prove uniqueness in determining a sound-soft ball or polyhedral scatterer in the inverse acoustic scattering problem with a single incident point source wave in {{{R}}^{N}} (N = 2,3). Our proofs rely on the reflection principle for the Helmholtz equation with respect to a Dirichlet hyperplane or sphere, which is essentially a ‘point-to-point’ extension formula. The method has been adapted to proving uniqueness in inverse scattering from sound-soft cavities with interior measurement data deriving from a single point source. The corresponding uniqueness for sound-hard balls or polyhedral scatterers has also been discussed.
NASA Astrophysics Data System (ADS)
Belkebir, Kamal; Tijhuis, Anton G.
2001-12-01
This paper concerns the reconstruction of the complex relative permittivity of an inhomogeneous object from the measured scattered field. The parameter of interest is retrieved using iterative techniques. Four methods are considered, in which the permittivity is updated along the standard Polak-Ribière conjugate gradient directions of a cost functional. The difference lies in the update direction for the field, and the determination of the expansion coefficients. In the modified gradient method, the search direction is the conjugate gradient direction for the field, and the expansion coefficients for field and profile are determined simultaneously. In the Born method (BM) the field is considered as the fixed solution of the forward problem with the available estimate of the unknown permittivity, and only the profile coefficients are determined from the cost function. In the modified Born method, we use the same field direction as in the BM, but determine the coefficients for field and profile simultaneously. In the modified2 gradient method, we use both field directions, and again update all coefficients simultaneously. Examples of the reconstruction of either metal or dielectric cylinders from experimental data are presented and the methods are compared for a range of frequencies.
A Hamiltonian treatment of stimulated Brillouin scattering in nanoscale integrated waveguides
NASA Astrophysics Data System (ADS)
Sipe, J. E.; Steel, M. J.
2016-04-01
We present a multimode Hamiltonian formulation for the problem of opto-acoustic interactions in optical waveguides. We develop a quantised Hamiltonian representation of the acoustic field and then introduce a full system with a simple opto-acoustic coupling that includes both photoelastic/electrostrictive and radiation pressure/moving boundary effects in a particularly transparent manner. The interaction is applied to a Fermi's golden rule calculation of spontaneous Brillouin scattering in uniform waveguides. The Heisenberg equations of motion are then used to obtain coupled mode equations for quantised envelope operators for the optical and acoustic fields. We show that the coupling coefficients obtained coincide with those established earlier. Our formalism provides a new basis for future work involving quantum photon and phonon noise in the low intensity limit, phonon-phonon scattering and anharmonicity effects.
Rapid Solution of Integral Equations of Scattering Theory in Two Dimensions.
1985-11-01
0184 1. Introduction One of standard approaches to numerical treatment of boundary value problems for elliptic partial differential equations (PDEs...Smirnov, E. B. Gliner, Differential Equations of Mathematical Physics, North-Holland, Amsterdam, 1964. [16] V. Rokhlin, Solution of Acoustic Scattering... Differential Equations , Computers and Mathematics with Applications, 11,No 7/8 (1985). [18] , Rapid Solution of Integral Equations of Classical Potential
Menezes, W. A.; Filho, H. A.; Barros, R. C.
2013-07-01
A generalization of the spectral Green's function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S{sub N}) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup slab-geometry S{sub N} problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, presented here is a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method's accuracy. (authors)
... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...
Metzler, Adam M; Collis, Jon M
2013-04-01
Shallow-water environments typically include sediments containing thin or low-shear layers. Numerical treatments of these types of layers require finer depth grid spacing than is needed elsewhere in the domain. Thin layers require finer grids to fully sample effects due to elasticity within the layer. As shear wave speeds approach zero, the governing system becomes singular and fine-grid spacing becomes necessary to obtain converged solutions. In this paper, a seismo-acoustic parabolic equation solution is derived utilizing modified difference formulas using Galerkin's method to allow for variable-grid spacing in depth. Propagation results are shown for environments containing thin layers and low-shear layers.
The Classical Scattering of Waves: Some Analogies with Quantum Scattering
1992-01-01
Code . Approved for public release; distribution is unlimited. 13. Abstract (Maximum 200 words). The scattering of waves in classical physics and quantum...both areas. 92-235222’ 14. Subject Terms. IS. Number of Page. Acoustic scattering , shallow water, waveguide propagation . 27 16. Price Code . 17. Security...Numbers. The Classical Scattering of Waves: Some Analogies with Quantum Scattering Contract ,~~ ~ -V ,~Pom Element NO- 0601153N 6. Author(s). t
Acoustic confinement in superlattice cavities
NASA Astrophysics Data System (ADS)
Garcia-Sanchez, Daniel; Déleglise, Samuel; Thomas, Jean-Louis; Atkinson, Paola; Lagoin, Camille; Perrin, Bernard
2016-09-01
The large coupling rate between the acoustic and optical fields confined in GaAs/AlAs superlattice cavities makes them appealing systems for cavity optomechanics. We have developed a mathematical model based on the scattering matrix that allows the acoustic guided modes to be predicted in nano and micropillar superlattice cavities. We demonstrate here that the reflection at the surface boundary considerably modifies the acoustic quality factor and leads to significant confinement at the micropillar center. Our mathematical model also predicts unprecedented acoustic Fano resonances on nanopillars featuring small mode volumes and very high mechanical quality factors, making them attractive systems for optomechanical applications.
Acoustic measuring techniques for suspended sediment
NASA Astrophysics Data System (ADS)
Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.
2016-11-01
Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.
NASA Astrophysics Data System (ADS)
L, Lakshtanov E.
2010-03-01
We prove that the Dirichlet-to-Neumann operator (DtN) has no spectrum in the lower half of the complex plane. We find several applications of this fact in scattering by obstacles with impedance boundary conditions. In particular, we find an upper bound for the gradient of the scattering amplitude and for the total cross section. We justify numerical approximations by providing bounds for the difference between theoretical and approximated solutions without using any a priori unknown constants.
2011-09-01
Chile Facultad de Fı́sica Av. Vicuña Mackenna 4860 Santiago, Chile phone: +56 2 354 4800 fax: +56 2 354 4491 email: chris.feuillade@gmail.com...differential equations, and incorporates a verified swim bladder scattering kernel (Ref. 2 ) for an individual fish. All orders of multiple scattering...currently valid OMB control number. 1. REPORT DATE SEP 2011 2 . REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE
Homentcovschi, Dorel; Miles, Ronald N.
2008-01-01
An analysis is presented of the diffraction of a pressure wave by a periodic grating including the influence of the air viscosity. The direction of the incoming pressure wave is arbitrary. As opposed to the classical nonviscous case, the problem cannot be reduced to a plane problem having a definite 3-D character. The system of partial differential equations used for solving the problem consists of the compressible Navier-Stokes equations associated with no-slip boundary conditions on solid surfaces. The problem is reduced to a system of two hypersingular integral equations for determining the velocity components in the slits’ plane and a hypersingular integral equation for the normal component of velocity. These equations are solved by using Galerkin’s method with some special trial functions. The results can be applied in designing protective screens for miniature microphones realized in MEMS technology. In this case, the physical dimensions of the device are on the order of the viscous boundary layer so that the viscosity cannot be neglected. The analysis indicates that the openings in the screen should be on the order of 10 microns in order to avoid excessive attenuation of the signal. This paper also provides the variation of the transmission coefficient with frequency in the acoustical domain. PMID:19122753
Scattering matrices in non-uniformly lined ducts
NASA Astrophysics Data System (ADS)
Demir, Ahmet
2017-02-01
Sudden area expansion and sudden area contraction in an infinitely long duct with discontinuous locally reacting lining are defined by respective mixed boundary value problems. In the absence of a sudden area change, a separate problem with an infinite duct having bifid lining on its wall is described. Introducing Fourier transform along the duct axis boundary value problems is solved by the well-known Wiener-Hopf technique, and then, corresponding scattering matrices are constructed. To show the proper use of scattering matrices in the case of several discontinuities and also validation and comparison purposes, transmitted field in a duct with an inserted expansion chamber whose walls are treated by acoustically absorbent material is derived by the help of the relevant scattering matrices. A perfect agreement is observed when the transmitted fields are compared numerically with a similar work exists in the literature.
An Overview of Acoustic Telemetry
Drumheller, D.S.
1992-03-24
Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The oil and gas industry has led in most of the attempts to develop this type of telemetry system; however, very substantial efforts have also been made through government sponsored work in the geothermal industry. None of these previous attempts have lead to a commercial telemetry system. Conceptually, the problem looks easy. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quite low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal Waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested
NASA Astrophysics Data System (ADS)
Hashimoto, Hiroshi; Kim, Min-Geun; Abe, Kazuhisa; Cho, Seonho
2013-10-01
This paper presents a level set-based topology optimization method for noise barriers formed from an assembly of scatterers. The scattering obstacles are modeled by elastic bodies arranged periodically along the wall. Due to the periodicity, the problem can be reduced to that in a unit cell. The interaction between the elastic scatterers and the acoustic field is described in the context of the level set analysis. The semi-infinite acoustic wave regions located on the both sides of the barrier are represented by impedance matrices. The objective function is defined by the energy transmission passing the barrier. The design sensitivity is evaluated analytically by the aid of adjoint equations. The dependency of the optimal profile on the stiffness of scatterers and on the target frequency band is examined. The feasibility of the developed optimization method is proved through numerical examples.
1990-12-07
Proceedings of the 13th Interna- tional Congress on Acoustics, Belgrade, Yugoslavia, August 1989, edited by P. Pravica and G. Drakulic (Sava Centar...Congress on Acoustics (Sava Centar, Belgrade, 1989), edited by P. Pravica and G. Drakulic , Vol. 1, pp. 145-148. [11] K.-E. Froysa, "Weakly nonlinear...Congress on Acoustics (Sava Centar, Belgrade, 1989), edited by P. Pravica and G. Drakulic , Vol. 1, pp. 283-286. [41] C. M. Darvennes, M. F. Hamilton, J
Takahashi, Hidetoshi; Komatsu, Sahoko; Nakahachi, Takayuki; Ogino, Kazuo; Kamio, Yoko
2016-02-01
Auditory hyper-reactivity is a common sensory-perceptual abnormality in autism spectrum disorders (ASD), which interrupts behavioral adaptation. We investigated acoustic startle response (ASR) modulations in 17 children with ASD and 27 with typical development (TD). Compared to TD, children with ASD had larger ASR magnitude to weak stimuli and more prolonged peak startle-latency. We could not find significant difference of prepulse inhibition (PPI) or habituation in ASD children compared to TD. However, habituation and PPI at 70-dB prepulses were negatively related to several subscales of Social Responsiveness Scale and the Strengths and Difficulties Questionnaire, when considering all children. Comprehensive investigation of ASR and its modulation might increase understanding of the neurophysiological impairments underlying ASD and other mental health problems in children.
A fast directional algorithm for high-frequency electromagnetic scattering
Tsuji, Paul; Ying Lexing
2011-06-20
This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.
NASA Astrophysics Data System (ADS)
Bramble, James H.; Pasciak, Joseph E.
2008-03-01
In our paper [Mathematics of Computation 76, 2007, 597-614] we considered the acoustic and electromagnetic scattering problems in three spatial dimensions. In particular, we studied a perfectly matched layer (PML) approximation to an electromagnetic scattering problem. We demonstrated both the solvability of the continuous PML approximations and the exponential convergence of the resulting solution to the solution of the original acoustic or electromagnetic problem as the layer increased. In this paper, we consider finite element approximation of the truncated PML electromagnetic scattering problem. Specifically, we consider approximations which result from the use of Nedelec (edge) finite elements. We show that the resulting finite element problem is stable and gives rise to quasi-optimal convergence when the mesh size is sufficiently small.
Method and apparatus for generating acoustic energy
Guerrero, Hector N.
2002-01-01
A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.
A mixed time integration method for large scale acoustic fluid-structure interaction
Christon, M.A.; Wineman, S.J.; Goudreau, G.L.; Foch, J.D.
1994-07-18
The transient, coupled, interaction of sound with structures is a process in which an acoustic fluid surrounding an elastic body contributes to the effective inertia and elasticity of the body. Conversely, the presence of an elastic body in an acoustic medium influences the behavior of propagating disturbances. This paper details the application of a mixed explicit-implicit time integration algorithm to the fully coupled acoustic fluidstructure interaction problem. Based upon a dispersion analysis of the semi-discrete wave equation a second-order, explicit scheme for solving the wave equation is developed. The combination of a highly vectorized, explicit, acoustic fluid solver with an implicit structural code for linear elastodynamics has resulted in a simulation tool, PING, for acoustic fluid-structure interaction. PING`s execution rates range from 1{mu}s/Element/{delta}t for rigid scattering to 10{mu}s/Element/{delta}t for fully coupled problems. Several examples of PING`s application to 3-D problems serve in part to validate the code, and also to demonstrate the capability to treat complex geometry, acoustic fluid-structure problems which require high resolution meshes.
Influence of Oceanic Synoptic Eddies on the Duration of Modal Acoustic Pulses
NASA Astrophysics Data System (ADS)
Makarov, D. V.; Kon'kov, L. E.; Petrov, P. S.
2016-12-01
We consider the problem of scattering of the modal acoustic pulses from synoptic eddies with allowance for the influence of the field of internal waves. The ray formalism in terms of the action-angle variables is used. The synoptic-eddy induced distortion of the sound-speed profile is shown to enhance the scattering of certain ray bundles from internal waves. The formulas allowing one to identify the modal pulses corresponding to such ray bundles are derived. These pulses differ from the other ones by increased duration. This fact can be used for obtaining additional information during acoustic tomography. The model of the underwater acoustic channel in the Sea of Japan is considered as an example.
Improving Acoustics in American Schools.
ERIC Educational Resources Information Center
Nelson, Peggy B.
2000-01-01
This introductory article to a clinical forum describes the following seven articles that discuss the problem of noisy classrooms and resulting reduction in learning, basic principles of noise and reverberation measurements in classrooms, solutions to the problem of poor classroom acoustics, and the development of a classroom acoustics standard.…
2010-09-30
fluidized mud, which has sound speeds at (or sometimes below) the sound speed of the water column, here 1512 m/s. Interestingly, there is a sound speed...data. 3 specular 25m Figure 1. The map shows the AUV track (red line) overlaid on multibeam bathymetry. Mean water depth is about 165m...Preston, and D.A. Abraham, Long-range acoustic scattering from a shallow- water mud volcano cluster J. Acoust. Soc. Am., 122, 1946-1958, 2007. [3
Generation and Radiation of Acoustic Waves from a 2-D Shear Layer
NASA Technical Reports Server (NTRS)
Agarwal, Anurag; Morris, Philip J.
2000-01-01
A parallel numerical simulation of the radiation of sound from an acoustic source inside a 2-D jet is presented in this paper. This basic benchmark problem is used as a test case for scattering problems that are presently being solved by using the Impedance Mismatch Method (IMM). In this technique, a solid body in the domain is represented by setting the acoustic impedance of each medium, encountered by a wave, to a different value. This impedance discrepancy results in reflected and scattered waves with appropriate amplitudes. The great advantage of the use of this method is that no modifications to a simple Cartesian grid need to be made for complicated geometry bodies. Thus, high order finite difference schemes may be applied simply to all parts of the domain. In the IMM, the total perturbation field is split into incident and scattered fields. The incident pressure is assumed to be known and the equivalent sources for the scattered field are associated with the presence of the scattering body (through the impedance mismatch) and the propagation of the incident field through a non-uniform flow. An earlier version of the technique could only handle uniform flow in the vicinity of the source and at the outflow boundary. Scattering problems in non-uniform mean flow are of great practical importance (for example, scattering from a high lift device in a non-uniform mean flow or the effects of a fuselage boundary layer). The solution to this benchmark problem, which has an acoustic wave propagating through a non-uniform mean flow, serves as a test case for the extensions of the IMM technique.
Numerical Techniques in Acoustics
NASA Technical Reports Server (NTRS)
Baumeister, K. J. (Compiler)
1985-01-01
This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Volakis, John L.
1989-01-01
A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principle advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.
An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...
Xia, H. Patterson, R.; Feng, Y.; Shrestha, S.; Conibeer, G.
2014-08-11
The rates of charge carrier relaxation by phonon emission are of substantial importance in the field of hot carrier solar cell, primarily in investigation of mechanisms to slow down hot carrier cooling. In this work, energy and momentum resolved deformation potentials relevant to electron-phonon scattering are computed for wurtzite InN and GaN as well as an InN/GaN multiple quantum well (MQW) superlattice using ab-initio methods. These deformation potentials reveal important features such as discontinuities across the electronic bandgap of the materials and variations over tens of eV. The energy dependence of the deformation potential is found to be very similar for wurtzite nitrides despite differences between the In and Ga pseudopotentials and their corresponding electronic band structures. Charge carrier relaxation by this mechanism is expected to be minimal for electrons within a few eV of the conduction band edge. However, hole scattering at energies more accessible to excitation by solar radiation is possible between heavy and light hole states. Moderate reductions in overall scattering rates are observed in MQW relative to the bulk nitride materials.
Monsefi, Farid; Carlsson, Linus; Silvestrov, Sergei; Rančić, Milica; Otterskog, Magnus
2014-12-10
To solve the electromagnetic scattering problem in two dimensions, the Finite Difference Time Domain (FDTD) method is used. The order of convergence of the FDTD algorithm, solving the two-dimensional Maxwell’s curl equations, is estimated in two different computer implementations: with and without an obstacle in the numerical domain of the FDTD scheme. This constitutes an electromagnetic scattering problem where a lumped sinusoidal current source, as a source of electromagnetic radiation, is included inside the boundary. Confined within the boundary, a specific kind of Absorbing Boundary Condition (ABC) is chosen and the outside of the boundary is in form of a Perfect Electric Conducting (PEC) surface. Inserted in the computer implementation, a semi-norm has been applied to compare different step sizes in the FDTD scheme. First, the domain of the problem is chosen to be the free-space without any obstacles. In the second part of the computer implementations, a PEC surface is included as the obstacle. The numerical instability of the algorithms can be rather easily avoided with respect to the Courant stability condition, which is frequently used in applying the general FDTD algorithm.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor)
2006-01-01
The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor)
2006-01-01
The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.
2008-09-30
shallow water 1 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to...claims to the contrary in the ocean acoustics community, sub-bottom clutter can and does occur in shallow water environments. A step-by-step detailed...that of the overlying water column and hence there is no critical angle. Thus, the reflection, scattering, propagation and reverberation are
NASA Astrophysics Data System (ADS)
Rumyantseva, O. D.; Shurup, A. S.
2017-01-01
The paper considers the derivation of the wave equation and Helmholtz equation for solving the tomographic problem of reconstruction combined scalar-vector inhomogeneities describing perturbations of the sound velocity and absorption, the vector field of flows, and perturbations of the density of the medium. Restrictive conditions under which the obtained equations are meaningful are analyzed. Results of numerical simulation of the two-dimensional functional-analytical Novikov-Agaltsov algorithm for reconstructing the flow velocity using the the obtained Helmholtz equation are presented.
Bayesian Inversion of Seabed Scattering Data
2014-09-30
Bayesian Inversion of Seabed Scattering Data (Special Research Award in Ocean Acoustics ) Gavin A.M.W. Steininger School of Earth & Ocean...Figure 1: Schematic diagram of the environmental parameterizations for the monostatic- scattering kernel and reflection- coefficient forward and inverse...frequencies. Left two columns: scattering data; right two columns: reflection- coefficient data. 3 layers, hence accounting for the uncertainty of
Cho, Min Hyung; Barnett, Alex H
2015-01-26
We present a new boundary integral formulation for time-harmonic wave diffraction from two-dimensional structures with many layers of arbitrary periodic shape, such as multilayer dielectric gratings in TM polarization. Our scheme is robust at all scattering parameters, unlike the conventional quasi-periodic Green's function method which fails whenever any of the layers approaches a Wood anomaly. We achieve this by a decomposition into near- and far-field contributions. The former uses the free-space Green's function in a second-kind integral equation on one period of the material interfaces and their immediate left and right neighbors; the latter uses proxy point sources and small least-squares solves (Schur complements) to represent the remaining contribution from distant copies. By using high-order discretization on interfaces (including those with corners), the number of unknowns per layer is kept small. We achieve overall linear complexity in the number of layers, by direct solution of the resulting block tridiagonal system. For device characterization we present an efficient method to sweep over multiple incident angles, and show a 25× speedup over solving each angle independently. We solve the scattering from a 1000-layer structure with 3 × 10^{5} unknowns to 9-digit accuracy in 2.5 minutes on a desktop workstation.
NASA Astrophysics Data System (ADS)
Rizzuti, G.; Gisolf, A.
2017-03-01
We study a reconstruction algorithm for the general inverse scattering problem based on the estimate of not only medium properties, as in more conventional approaches, but also wavefields propagating inside the computational domain. This extended set of unknowns is justified as a way to prevent local minimum stagnation, which is a common issue for standard methods. At each iteration of the algorithm, (i) the model parameters are obtained by solution of a convex problem, formulated from a special bilinear relationship of the data with respect to properties and wavefields (where the wavefield is kept fixed), and (ii) a better estimate of the wavefield is calculated, based on the previously reconstructed properties. The resulting scheme is computationally convenient since step (i) can greatly benefit from parallelization and the wavefield update (ii) requires modeling only in the known background model, which can be sped up considerably by factorization-based direct methods. The inversion method is successfully tested on synthetic elastic datasets.
Airborne chemistry: acoustic levitation in chemical analysis.
Santesson, Sabina; Nilsson, Staffan
2004-04-01
This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Jung, Eunmi; Choi, Seung-Bok
2002-07-01
This paper presents a numerical modeling technique of piezoelectric transducers by taking into account wave radiation and scattering. It is based on the finite element modeling. Coupling problems between piezoelectric and elastic materials as well as fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Wave Envelop Element) is adopted to take into account the infinite domain. The IWEE code is added to an in-house finite element program, and commercial pre and post-processor are used for mesh generation and to see the output. The validation of the numerical modeling is proved through an example, and scattering and radiation analysis of Tonpilz transducer is performed. The scattered wave on the sensor is calculated, and the sensor response, so called RVS (Receiving Voltage Sensitivity) is predicted.
NASA Technical Reports Server (NTRS)
Ting, L.; Keller, J. B.
1977-01-01
The radiation of sound through the open end of a cylindrical or conical pipe of any cross section, or through a hole in a plane wall, is analyzed theoretically. The scattering of a sound wave by the end of a rod or slab is also treated. Only the case in which the wavelength is large compared with a typical radial dimension of the opening or of the end is considered. The method of matched asymptotic expansions is employed. Results on end corrections and reflection coefficients previously obtained by Helmholtz (1860), Rayleigh (1945), and Bazer and Karp (1954), using intuitive arguments, are recovered and verified. Agreement is found with the exact results of Levine and Schwinger (1948) and Vainstein (1948), as well as with the small radial-dimension/wavelength results of Lesser and Lewis (1972), in the cases they treated. In addition various new results are obtained.
Quadratic eigenvalue problems.
Walsh, Timothy Francis; Day, David Minot
2007-04-01
In this report we will describe some nonlinear eigenvalue problems that arise in the areas of solid mechanics, acoustics, and coupled structural acoustics. We will focus mostly on quadratic eigenvalue problems, which are a special case of nonlinear eigenvalue problems. Algorithms for solving the quadratic eigenvalue problem will be presented, along with some example calculations.
A broadband polygonal cloak for acoustic wave designed with linear coordinate transformation.
Zhu, Rongrong; Zheng, Bin; Ma, Chu; Xu, Jun; Fang, Nicholas; Chen, Hongsheng
2016-07-01
Previous acoustic cloaks designed with transformation acoustics always involve inhomogeneous material. In this paper, a design of acoustic polygonal cloak is proposed using linear polygonal transformation method. The designed acoustic polygonal cloak has homogeneous and anisotropic parameters, which is much easier to realize in practice. Furthermore, a possible acoustic metamaterial structure to realize the cloak is proposed. Simulation results on the real structure show that the metamaterial acoustic cloak is effective to reduce the scattering of the object.
Shape optimization: Good looks and acoustics too!
NASA Astrophysics Data System (ADS)
D'Antonio, Peter; Cox, Trevor J.; Haas, Steve
2003-04-01
One of the challenges in the architectural acoustic design of museums and other public spaces is to develop contemporary scattering surfaces that complement contemporary architecture in the way that statuary, coffered ceilings, columns, and relief ornamentation complemented classic architecture. Often acoustic surfaces satisfy the acoustics, but may or may not satisfy the aesthetics. One approach that has been successful employs a combination of boundary element and multidimensional optimization techniques. The architect supplies the desired shape motif and the acoustician supplies the acoustical performance requirements. The optimization program then provides an Arcousthetic surface, which simultaneously satisfies the architecture, the acoustics, and the aesthetics. The program can be used with diffusive or diffsorptive surfaces. Photos of installations using these acoustic tools and a description of the design of the National Museum of the American Indian will also be presented to illustrate the usefulness of these devices and their impact on architectural acoustics.
NASA Astrophysics Data System (ADS)
Canfora, Fabrizio
2016-10-01
I analyze the quantum mechanical scattering off a topological defect (such as a Dirac monopole) as well as a Yukawa-like potential(s) representing the typical effects of strong interactions. This system, due to the presence of a short-range potential, can be analyzed using the powerful technique of the complex angular momenta which, so far, has not been employed in the presence of monopoles (nor of other topological solitons). Due to the fact that spatial spherical symmetry is achieved only up to internal rotations, the partial wave expansion becomes very similar to the Jacob-Wick helicity amplitudes for particles with spin. However, since the angular-momentum operator has an extra "internal" contribution, fixed cuts in the complex angular momentum plane appear. Correspondingly, the background integral in the Regge formula does not decrease for large values of |cos θ | (namely, large values of the Mandelstam variable s ). Hence, the experimental observation of this kind of behavior could be a direct signal of nontrivial topological structures in strong interactions. The possible relations of these results with the soft Pomeron are shortly analyzed.
NASA Astrophysics Data System (ADS)
Asenchik, O. D.
2017-02-01
A method of approximate calculation of the interaction inverse matrix in the method of discrete dipoles is proposed. The knowledge of this matrix makes it possible to determine the optical response of a system to the action of an electromagnetic wave with an arbitrary shape, which can be represented as a combination of vector spherical wave functions. The number of calculation operations of the matrix in the proposed method is considerably smaller than in the case of its direct calculation. In the case of a change in the refractive index of scattering particles, two methods of approximate calculation of the interaction inverse matrix are also proposed. This makes it possible to calculate the optical response of systems with new characteristics without direct solving equations of a system with a large dimension. The accuracy of the methods is numerically determined for particles with spherical and cubic shapes. It is shown that the methods are computationally efficient and can be used to calculate the values of polarization vectors inside particles and extinction and absorption cross sections of systems.
Drake, R.P.; Bauer, B.S.; Baker, K.L. |
1994-03-07
In this project, we advanced knowledge of Ion Acoustic Decay on several fronts. In this project, we have developed and demonstrated the capability to perform experimental and theoretical studies of the Ion Acoustic Decay Instability. We have at the same time demonstrated an improved capability to do multichannel spectroscopy and Thomson scattering. We made the first observations of the time-resolved second harmonic emission at several angles simultaneously, and the first observations of the emission both parallel and perpendicular to the electric field of the laser light. We used Thomson scattering to make the first observations of the plasma waves driven by acoustic decay in a warm plasma with long density scale lengths. We also advanced both the linear and the nonlinear theory of this instability. We are thus prepared to perform experiments to address this mechanism as needed for applications.
NASA Astrophysics Data System (ADS)
Kato, Hatsuhiro; Kato, Hatsuyoshi
2016-05-01
We proposed a new discretisation scheme for deriving a second-order difference equation from any system being formulated with the weak-form theory framework. The proposed scheme enables us to extend the application range of the recursive transfer method (RTM) and to express perfectly matching conditions for port boundaries in a discrete fashion under the RTM framework. To evaluate the accuracy and demonstrate the validity of the proposed scheme, we discussed the scattering problem governed by the fourth-order differential equation that was hitherto outside the RTM application range. The difference equation can play an important role in maintaining the balance of the bending moment and the shear force at the interface of two segments. Using the new port boundary condition, a quasi-localised wave was extracted and found to be related to the phase shift due to Fano resonance.
Evolution of ion-acoustic plasma turbulence
NASA Astrophysics Data System (ADS)
Bychenkov, V. Iu.; Gradov, O. M.
1986-03-01
The evolution of ion-acoustic turbulence is studied on the basis of a numerical solution of the nonstationary equation for in-acoustic waves. Consideration is given to conditions under which the excitation threshold of long-wave ion-acoustic oscillations is exceeded as the result of instability saturation due to quasi-linear relaxation of electrons on turbulent pulsations and the induced scattering of ions by the ion sound. Distributed spectra of ion-acoustic turbulence are established in the plasma under these conditions.
NASA Astrophysics Data System (ADS)
Gough, Colin
This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.
Microfabricated bulk wave acoustic bandgap device
Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol
2010-06-08
A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).
Microfabricated bulk wave acoustic bandgap device
Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol
2010-11-23
A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).
Kouri, Donald J.; Vijay, Amrendra; Zhang, Haiyan; Zhang, Jingfeng; Hoffman, David K.
2007-05-01
A method and system for solving the inverse acoustic scattering problem using an iterative approach with consideration of half-off-shell transition matrix elements (near-field) information, where the Volterra inverse series correctly predicts the first two moments of the interaction, while the Fredholm inverse series is correct only for the first moment and that the Volterra approach provides a method for exactly obtaining interactions which can be written as a sum of delta functions.
Experimental difficulties in measuring the scattering of sound by sound
TenCate, J.A. )
1994-11-01
The question of whether one sound beam can interact with another at nonzero angle and scatter nonlinearly generated sound outside the mutual interaction region has been debated since the 1950s. Experimental work on this problem has left the question unresolved. This presentation describes experimental difficulties associated with measuring scattered sound produced by real diffracting primary beams. Optimal conditions for observing scattered sound, as outlined by Berntsen [ital et] [ital al]. [J. Acoust. Soc. Am. [bold 86], 1968 (1989)] and by Darvennes and Hamilton [J. Acoust. Soc. Am. [bold 87], 1955 (1990)], are reviewed in relation to the design of our own experiments. Our experiments were performed with either two uniform circular sources in water (megahertz frequencies), or with one circular source and the other a shaded source with lower sidelobes. A variety of primary frequency ratios, interaction angles, and other parameters were considered. Comparison of the primary beam patterns with measured sum and difference frequency field patterns reveals the difficulty in identifying which components of the latter correspond to scattered'' sound. It is concluded that two Gaussian-type sources with exceedingly good sidelobe suppression are needed to perform a reasonable experiment. [Work supported by the Packard Foundation and ONR.] [sup a]Present address: Earth and Environmental Sciences Division, Mail Stop D443, Los Alamos National Laboratory, Los Alamos, NM 87545.
Finite element solution of transient fluid-structure interaction problems
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.
1991-01-01
A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.
Tao, Liang; McCurdy, C.W.; Rescigno, T.N.
2008-11-25
We show how to combine finite elements and the discrete variable representation in prolate spheroidal coordinates to develop a grid-based approach for quantum mechanical studies involving diatomic molecular targets. Prolate spheroidal coordinates are a natural choice for diatomic systems and have been used previously in a variety of bound-state applications. The use of exterior complex scaling in the present implementation allows for a transparently simple way of enforcing Coulomb boundary conditions and therefore straightforward application to electronic continuum problems. Illustrative examples involving the bound and continuum states of H2+, as well as the calculation of photoionization cross sections, show that the speed and accuracy of the present approach offer distinct advantages over methods based on single-center expansions.
Scattering measurements on natural and model trees
NASA Technical Reports Server (NTRS)
Rogers, James C.; Lee, Sung M.
1990-01-01
The acoustical back scattering from a simple scale model of a tree has been experimentally measured. The model consisted of a trunk and six limbs, each with 4 branches; no foliage or twigs were included. The data from the anechoic chamber measurements were then mathematically combined to construct the effective back scattering from groups of trees. Also, initial measurements have been conducted out-of-doors on a single tree in an open field in order to characterize its acoustic scattering as a function of azimuth angle. These measurements were performed in the spring, prior to leaf development. The data support a statistical model of forest scattering; the scattered signal spectrum is highly irregular but with a remarkable general resemblance to the incident signal spectrum. Also, the scattered signal's spectra showed little dependence upon scattering angle.
Multiple scattering technique lidar
NASA Technical Reports Server (NTRS)
Bissonnette, Luc R.
1992-01-01
The Bernouilli-Ricatti equation is based on the single scattering description of the lidar backscatter return. In practice, especially in low visibility conditions, the effects of multiple scattering can be significant. Instead of considering these multiple scattering effects as a nuisance, we propose here to use them to help resolve the problems of having to assume a backscatter-to-extinction relation and specifying a boundary value for a position far remote from the lidar station. To this end, we have built a four-field-of-view lidar receiver to measure the multiple scattering contributions. The system has been described in a number of publications that also discuss preliminary results illustrating the multiple scattering effects for various environmental conditions. Reported here are recent advances made in the development of a method of inverting the multiple scattering data for the determination of the aerosol scattering coefficient.
NASA Astrophysics Data System (ADS)
Vorobyov, A. M.; Abdurashidov, T. O.; Bakulev, V. L.; But, A. B.; Kuznetsov, A. B.; Makaveev, A. T.
2015-04-01
The present work experimentally investigates suppression of acoustic fields generated by supersonic jets of the rocket-launch vehicles at the initial period of launch by water injection. Water jets are injected to the combined jet along its perimeter at an angle of 0° and 60°. The solid rocket motor with the rocket-launch vehicles simulator case is used at tests. Effectiveness of reduction of acoustic loads on the rocket-launch vehicles surface by way of creation of water barrier was proved. It was determined that injection angle of 60° has greater effectiveness to reduce pressure pulsation levels.
Granato, A.V.
1987-01-01
Acoustic technique have proven to be very useful in getting basic information on the configuration and dynamics of defects. Although the technique is indirect, the sensitivity is such that it often competes very favorably with more direct techniques such as neutron, x-ray, or phonon scattering. The symmetry information that comes directly from polarization control often also proves decisive in determining configurations. Many of the concepts that have been developed in explaining the various effects that have been seen in dislocation and point defect studies have proven also to be very useful when taken over almost directly into other areas of physics. 11 refs., 7 figs.
2009-09-30
height above the seabed of 18 m ( water depth was ~165m) in an area where there were few/no seabed features. Due to the proximity of the source and...understanding of the mechanisms associated with sonar clutter in shallow water . The statistical characterization of these features will lead to clutter...3285, 2007. 5 6 [5] Holland C.W., J.R. Preston, and D.A. Abraham, Long-range acoustic scattering from a shallow- water mud volcano cluster J
NASA Astrophysics Data System (ADS)
Kuttruff, Heinrich; Mommertz, Eckard
The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.
ERIC Educational Resources Information Center
Takahashi, Hidetoshi; Komatsu, Sahoko; Nakahachi, Takayuki; Ogino, Kazuo; Kamio, Yoko
2016-01-01
Auditory hyper-reactivity is a common sensory-perceptual abnormality in autism spectrum disorders (ASD), which interrupts behavioral adaptation. We investigated acoustic startle response (ASR) modulations in 17 children with ASD and 27 with typical development (TD). Compared to TD, children with ASD had larger ASR magnitude to weak stimuli and…
ERIC Educational Resources Information Center
Young, Andrew T.
1982-01-01
The correct usage of such terminology as "Rayleigh scattering,""Rayleigh lines,""Raman lines," and "Tyndall scattering" is resolved during an historical excursion through the physics of light-scattering by gas molecules. (Author/JN)
NASA Astrophysics Data System (ADS)
Kwon, Byung-Jin; Jung, Jin-Young; Lee, Dooho; Park, Kwang-Chun; Oh, Il-Kwon
2015-10-01
We propose a new class of acoustic waveguides with tunable bandgaps (TBs) by using vibro-acoustic metamaterials with shunted periodic piezoelectric unit cells. The unit metamaterial cells that consist of a single crystal piezoelectric transducer and an electrical shunt circuit are designed to induce a strong vibro-acousto-electrical coupling, resulting in a tunable acoustic bandgap as well as local structural resonance and Bragg scattering bandgaps. The present results show that the TB frequency can be actively controlled and the transmission loss of the acoustic wave can be greatly improved by simply changing the inductance values in the shunt circuit.
Least-Squares Spectral Element Solutions to the CAA Workshop Benchmark Problems
NASA Technical Reports Server (NTRS)
Lin, Wen H.; Chan, Daniel C.
1997-01-01
This paper presents computed results for some of the CAA benchmark problems via the acoustic solver developed at Rocketdyne CFD Technology Center under the corporate agreement between Boeing North American, Inc. and NASA for the Aerospace Industry Technology Program. The calculations are considered as benchmark testing of the functionality, accuracy, and performance of the solver. Results of these computations demonstrate that the solver is capable of solving the propagation of aeroacoustic signals. Testing of sound generation and on more realistic problems is now pursued for the industrial applications of this solver. Numerical calculations were performed for the second problem of Category 1 of the current workshop problems for an acoustic pulse scattered from a rigid circular cylinder, and for two of the first CAA workshop problems, i. e., the first problem of Category 1 for the propagation of a linear wave and the first problem of Category 4 for an acoustic pulse reflected from a rigid wall in a uniform flow of Mach 0.5. The aim for including the last two problems in this workshop is to test the effectiveness of some boundary conditions set up in the solver. Numerical results of the last two benchmark problems have been compared with their corresponding exact solutions and the comparisons are excellent. This demonstrates the high fidelity of the solver in handling wave propagation problems. This feature lends the method quite attractive in developing a computational acoustic solver for calculating the aero/hydrodynamic noise in a violent flow environment.
PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)
John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning
2004-07-20
The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.
2008-01-01
Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.
Scattering of flexural waves from a hole in a thin plate with an internal beam.
Climente, A; Norris, Andrew N; Sánchez-Dehesa, José
2015-01-01
The scattering of flexural waves by a hole in a thin plate traversed by a beam is modeled here by coupling the Kirchhoff-Love and the Euler-Bernoulli theories. A closed form expression is obtained for the transfer matrix (T-matrix) relating the incident wave to the scattered cylindrical waves. For this purpose, a general method has been developed, based on an analogous impedance method for acoustic waves, for calculating the T-matrix for flexural wave scattering problems. The T-matrix for the problem considered displays a simple structure, composed of distinct sub-matrices which decouple the inside and the outside fields. The conservation of energy principle and numerical comparisons with a commercial finite element simulator have been used to prove the theory.
THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy
Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan
2016-01-01
GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction. PMID:27346494
Fogel, Ronen; Seshia, Ashwin A.
2016-01-01
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040
Fogel, Ronen; Limson, Janice; Seshia, Ashwin A
2016-06-30
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.
Acoustic Scattering Kernels from Arctic Sea Ice.
1986-10-01
84-C-0180 S. PErfORMING ORGANIZATION NAME AND AOMRSSS 10. PROGRAM ELEMENT. PROJECT . TASK Science Applications International Corp. AREA & WORK UNIT...al. (1986) described an implementation of SISM/ICE for the ASTRAL and PE models. The concepts are also relevant to other models, including FACT, FFP...Even if the ice field contains keels of only a single size, the projected keel width intercepted by any particular track will take on a range of
Novel Acoustic Scattering Processes for Target Discrimination
2014-12-31
Astronomy Department Washington State University Pullman, WA 99164-2814 8. PERFORMING ORGANIZATION REPORT NUMBER N00014-10-1-0093-FR 9. SPONSORING... Astronomy Department, Washington State University, Pullman, WA 99164-2814 Phone: (509) 335-5343, Fax: (509) 335-7816, E-Mail: marston@wsu.edu Table...Target Discrimination (2010) Philip L. Marston Physics and Astronomy Dept., Washington State University, Pullman, WA 99164-2814 phone: (509) 335
Multi-Discipline Ocean Acoustic Scattering Program
2013-01-31
applied mathematicians, statisticians, and electrical and mechanical engineers. Each topic we are addressing includes theoretical, numerical and...SupportPersonnel Discipline Role Michael Kenney Computer Scientist Software & Systems Support Vern Miller Mech. Eng. Mechanical Design Nancy Sherman Business MDG...Linear IW C Uses linear IW dispersion relation - stochastic 3-D + time. Vertically Lagrangian C Simple nonlinear model. Near Surface C 2-D - Used to
Lakhin, V. P.; Sorokina, E. A. E-mail: vilkiae@gmail.com; Ilgisonis, V. I.; Konovaltseva, L. V.
2015-12-15
A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.
A survey of the physical optics inverse scattering identity
NASA Astrophysics Data System (ADS)
Bojarski, N. N.
1982-09-01
An inverse scattering identity relating the characteristic function of a scatterer to the three-dimensional spatial Fourier transform of the augmented far field scattering amplitude is derived by applying the physical optics approximation to the acoustic and electromagnetic direct scattering integral representation. Because this identity requires full scattering data for all frequencies and aspect angles, an integral equation is developed for incomplete scattering data which solves for the unknown characteristic function of the scatterer in terms of the known incomplete scattering data. A regularized analytic closed form solution to this integral equation is obtained, and synthesized numerico-experimental results verifying the solution are presented.
GOATS 2008: Autonomous, Adaptive Multistatic Acoustic Sensing
2010-09-30
develop the OASES -3d modeling framework for target scattering and reverberation in shallow ocean waveguides. As has been the case for the autonomous...using Green’s functions using legacy environmental acoustic models such as OASES , CSNAP, and RAM. This new unique simulation environment allows for...MIT are being maintained and dissiminated under the GOATS grant. The OASES and CSNAP environmental acoustic modeling codes are used extensively in
Scattering waves using exact controllability methods
NASA Astrophysics Data System (ADS)
Bristeau, M. O.; Glowinski, R.; Periaux, J.
1993-01-01
The main goal of this paper is to introduce a novel method for solving the Helmholtz equations from acoustics and two-dimensional electromagnetics. The key idea of the method is to go back to the original wave equation and look for time periodic solutions. In order to find these solutions, we essentially use a least squares/shooting method which is closely related to exact controllability and to the Hilbert uniqueness method of Lions (1988). From this formulation and by analogy with other controllability problems, we derive a conjugate gradient algorithm (in an appropriate Hilbert space) which has quite good convergence properties. Numerical experiments concerning the scattering of planar waves by convex or nonconvex obstacles show the efficiency of the new algorithm, particularly for air intakelike reflectors and two-dimensional aircraft related bodies.
Sound scattering in shallow water in presence of internal solitons
NASA Astrophysics Data System (ADS)
Katsnelson, Boris G.; Pereselkov, Serguey A.; Petnikov, Valery G.
2002-05-01
Sound scattering by localized inhomogeneity (object) in a shallow-water waveguide is studied. Influence of internal solitons (IS) traveling in the sea, on the scattered field is considered. The problem is analyzed within the framework of theory of the sound scattering in the waveguide developed by the authors, where the scattering matrix is expressed through modal decomposition including the scattering amplitude of the object in free space. The peculiarity of the given work is the taking into account of additional modes conversion due to IS. The waveguide and IS are modeled on the basis of experimental data (sound-speed profile, bottom relief, IS parameters, etc.) collected in the Japan Sea. The inhomogeneity is selected in the form of soft spheroids with dimensions characteristic of gray whales (eschrichtius). Calculations of amplitude fluctuations of the low-frequency sound field at the receiving point are carried out for moving spheroid and different orientations of acoustic track with respect to direction of propagation of IS. It is shown that sound fluctuations have essentially different characteristics for longitudinal and transversal propagation of IS. [Work supported by RFBR, Grant No. 00-05-64752.
An improved theoretical model of acoustic agglomeration
Song, L. ); Koopmann, G.H. . Center for Acoustics and Vibration); Hoffmann, T.L. )
1994-04-01
An improved theoretical model is developed to describe the acoustic agglomeration of particles entrained in a gas medium. The improvements to the present theories are twofold: first, wave scattering is included in the orthokinetic interaction of particles and second, hydrodynamic interaction, shown to be an important agglomeration mechanism for certain operation conditions, is incorporated into the model. The influence of orthokinetic and hydrodynamic interactions introduce associated convergent velocities that cause particles to approach each other and collide. The convergent velocities are related with an acoustic agglomeration frequency function (AAFF) through a semi-statistical method. This function is the key parameter for the theoretical simulation of acoustic agglomeration.
Entropy rate defined by internal wave scattering in long-range propagation.
Morozov, Andrey K; Colosi, John A
2015-09-01
The reduction of information capacity of the ocean sound channel due to scattering by internal waves is a potential problem for acoustic communication, navigation, and remote sensing over long ranges. In spite of recent progress in research on acoustic signal scattering by random internal waves and the fact that random internal waves are ubiquitous in the world oceans, there is no clear understanding of how these waves influence data communication performance. The entropy decrease resulting from scattering by internal waves is an important measure of information loss. Here a rigorous calculation of the entropy is carried out using second moment transport theory equations with random sound-speed perturbations obeying the Garrett-Munk internal-wave model. It is shown that full-wave rate of entropy is of the same order of magnitude as the Kolmogorov-Sinai entropy and Lyapunov exponents for the relevant ray trajectories. The correspondence between full-wave and ray entropies suggests a correspondence between full-wave scattering and ray chaos near statistical saturation. The relatively small level of entropy rate during propagation through the random internal-wave field shows that scattering by internal waves is likely not an essential limitation for data rate and channel capacity.
1974-02-14
Wester- velt. [60] Streaming. In 1831, Michael Faraday [61] noted that currents of air were set up in the neighborhood of vibrating plates-the first... ducei in the case of a paramettc amy (from Berktay an Leahy 141). C’ "". k•, SEC 10.1 NONLINEAR ACOUSTICS 345 The principal results of their analysis
Luzzati, Vittorio; Vachette, Patrice; Benoit, Evelyne; Charpentier, Gilles
2004-10-08
Synchrotron radiation X-ray scattering experiments were performed on unmyelinated pike olfactory nerves. The difference between the meridional and the equatorial traces of the 2-D spectra yielded the 1-D equatorial intensity of the macromolecular components oriented with respect to the nerve: axonal membranes, microtubules and other cytoskeletal filaments. These 1-D spectra display a diffuse band typical of bilayer membranes and, at small s, a few sharper bands reminiscent of microtubules. All the spectra merge at large s. The intensity of the axonal membrane was determined via a noise analysis of the nerve-dependent spectra, involving also the notion that the thickness of the membrane is finite. The shape of the intensity function indicated that the electron density profile is not centrosymmetric. The knowledge of intensity and thickness paved the way to the electron density profile via an ab initio solution of the phase problem. An iterative procedure was adopted: (i) choose the lattice D of a 1-D pseudo crystal, interpolate the intensity at the points sh = h/D, adopt an arbitrary set of initial phases and compute the profile; (ii) determine the phases corresponding to this profile truncated by the thickness D/2; (iii) repeat the operation with the updated phases until a stable result is obtained. This iterative procedure was carried out for different D-values, starting in each case from randomly generated phases: stable results were obtained in less than 10,000 iterations. Most importantly, for D in the vicinity of 200 A, the overwhelming majority of the profiles were congruent with each other. These profiles were strongly asymmetric and otherwise typical of biological membranes.
Guillermin, Régine; Lasaygues, Philippe; Rabau, Guy; Lefebvre, Jean-Pierre
2013-08-01
This study deals with the reconstruction, from ultrasonic measured data, of the sound speed profile of a penetrable two-dimensional target of arbitrary cross-section embedded in an infinite medium. Green's theorem is used to obtain a domain integral representation of the acoustical scattered field, and a discrete formulation of the inverse problem is obtained using a moment method. An iterative non-linear algorithm minimizing the discrepancy between the measured and computed scattered fields is used to reconstruct the sound speed profile in the region of interest. The minimization process is performed using a conjugated-gradient method. An experimental study with significant acoustical impedance contrast targets immersed in water was performed. Images of the sound speed profile obtained by inversion of experimental data are presented.
Stable Determination of a Scattered Wave from its Far-Field Pattern: The High Frequency Asymptotics
NASA Astrophysics Data System (ADS)
Rondi, Luca; Sini, Mourad
2015-10-01
We deal with the stability issue for the determination of outgoing time-harmonic acoustic waves from their far-field patterns. We are especially interested in keeping as explicit as possible the dependence of our stability estimates on the wavenumber of the corresponding Helmholtz equation and in understanding the high wavenumber, that is frequency, asymptotics. Applications include stability results for the determination from far-field data of solutions of direct scattering problems with sound-soft obstacles and an instability analysis for the corresponding inverse obstacle problem. The key tool consists of establishing precise estimates on the behavior of Hankel functions with large argument or order.
Depth-Dependent Defect Studies Using Coherent Acoustic Phonons
2014-09-29
12211 Research Triangle Park, NC 27709-2211 coherent acoustic phonons, diamond, silicon, photelastic coefficients , refractive index, graphene, Second...attributed to the cooling of the subsystem of hot optical phonons by optical- acoustic phonon scattering . We observe that at different pump energy and...SECURITY CLASSIFICATION OF: Presented is our scientific progress in two areas of research. The first is coherent acoustic phonon (CAP) spectroscopy of
Acoustic properties of a porous glass (vycor) at hypersonic frequencies.
Levelut, C; Pelous, J
2007-10-17
Brillouin scattering experiments have been performed from 5 to 1600 K in vycor, a porous silica glass. The acoustic velocity and attenuation at hypersonic frequencies are compared to those of bulk silica and others porous silica samples. The experimental evidence for the influence of porosity on the scattering by acoustic waves is compared to calculations. The correlation between internal friction and thermal conductivity at low temperature is discussed.
Strongly driven ion acoustic waves in laser produced plasmas
Baldis, H.A.; Labaune, C.; Renard, N.
1994-09-20
This paper present an experimental study of ion acoustic waves with wavenumbers corresponding to stimulated Brillouin scattering. Time resolved Thomson scattering in frequency and wavenumber space, has permitted to observe the dispersion relation of the waves as a function of the laser intensity. Apart from observing ion acoustic waves associated with a strong second component is observed at laser intensities above 10{sup 13}Wcm{sup {minus}2}.
NASA Astrophysics Data System (ADS)
Cohen, Michael; Grossberg, Stephen
1994-09-01
This project is developing autonomous neural network models for the real-time perception and production of acoustic and speech signals. Our SPINET pitch model was developed to take realtime acoustic input and to simulate the key pitch data. SPINET was embedded into a model for auditory scene analysis, or how the auditory system separates sound sources in environments with multiple sources. The model groups frequency components based on pitch and spatial location cues and resonantly binds them within different streams. The model simulates psychophysical grouping data, such as how an ascending, tone groups with a descending tone even if noise exists at the intersection point, and how a tone before and after a noise burst is perceived to continue through the noise. These resonant streams input to working memories, wherein phonetic percepts adapt to global speech rate. Computer simulations quantitatively generate the experimentally observed category boundary shifts for voiced stop pairs that have the same or different place of articulation, including why the interval to hear a double (geminate) stop is twice as long as that to hear two different stops. This model also uses resonant feedback, here between list categories and working memory.
Acoustic transducer for acoustic microscopy
Khuri-Yakub, Butrus T.; Chou, Ching H.
1990-01-01
A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.
Acoustic transducer for acoustic microscopy
Khuri-Yakub, B.T.; Chou, C.H.
1990-03-20
A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.
An efficient model for coupling structural vibrations with acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Ting, LU
1993-01-01
The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.
NASA Technical Reports Server (NTRS)
Schlegel, R. G.
1982-01-01
It is important for industry and NASA to assess the status of acoustic design technology for predicting and controlling helicopter external noise in order for a meaningful research program to be formulated which will address this problem. The prediction methodologies available to the designer and the acoustic engineer are three-fold. First is what has been described as a first principle analysis. This analysis approach attempts to remove any empiricism from the analysis process and deals with a theoretical mechanism approach to predicting the noise. The second approach attempts to combine first principle methodology (when available) with empirical data to formulate source predictors which can be combined to predict vehicle levels. The third is an empirical analysis, which attempts to generalize measured trends into a vehicle noise prediction method. This paper will briefly address each.
Perfectly matched layer for an elastic parabolic equation model in ocean acoustics
NASA Astrophysics Data System (ADS)
Xu, Chuanxiu; Zhang, Haigang; Piao, Shengchun; Yang, Shi'e.; Sun, Sipeng; Tang, Jun
2017-02-01
The perfectly matched layer (PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation (PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide (Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer (ABL) both in acoustic and seismo-acoustic sound propagation modeling.
2016-06-07
Study Of Ocean Bottom Interactions With Acoustic Waves By A New Elastic Wave Propagation Algorithm And An Energy Flow Analysis Technique Ru-Shan Wu...imaging to study the wave/sea-bottom interaction, energy partitioning, scattering mechanism and other problems that are crucial for many ocean bottom...Elastic Wave Propagation Algorithm And An Energy Flow Analysis Technique 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR
A finite element surface impedance representation for steady-state problems
NASA Technical Reports Server (NTRS)
Kalinowski, A. J.
1986-01-01
A procedure for determining the scattered pressure field resulting from a monochromatic harmonic wave that is incident upon a layer energy absorbing structure is treated. The situation where the structure is modeled with finite elements and the surrounding acoustic medium (water or air) is represented with either acoustic finite elements, or some type of boundary integral formulation, is considered. Finite element modeling problems arise when the construction of the structure, at the fluid structure interface, are nonhomogeneous and in particular, when the inhomogeneities are small relative to the acoustic wave length. An approximate procedure is presented for replacing the detailed microscopic representation of the layered surface configuration with an equivalent simple surface impedance finite element, which is especially designed to work only at limited frequencies. An example problem is presented using NASTRAN. However, the procedure is general enough to adapt to practically any finite element code having a steady state option.