A time domain sampling method for inverse acoustic scattering problems
NASA Astrophysics Data System (ADS)
Guo, Yukun; Hömberg, Dietmar; Hu, Guanghui; Li, Jingzhi; Liu, Hongyu
2016-06-01
This work concerns the inverse scattering problems of imaging unknown/inaccessible scatterers by transient acoustic near-field measurements. Based on the analysis of the migration method, we propose efficient and effective sampling schemes for imaging small and extended scatterers from knowledge of time-dependent scattered data due to incident impulsive point sources. Though the inverse scattering problems are known to be nonlinear and ill-posed, the proposed imaging algorithms are totally "direct" involving only integral calculations on the measurement surface. Theoretical justifications are presented and numerical experiments are conducted to demonstrate the effectiveness and robustness of our methods. In particular, the proposed static imaging functionals enhance the performance of the total focusing method (TFM) and the dynamic imaging functionals show analogous behavior to the time reversal inversion but without solving time-dependent wave equations.
NASA Technical Reports Server (NTRS)
Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian
2011-01-01
We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.
An immersed boundary computational model for acoustic scattering problems with complex geometries.
Sun, Xiaofeng; Jiang, Yongsong; Liang, An; Jing, Xiaodong
2012-11-01
An immersed boundary computational model is presented in order to deal with the acoustic scattering problem by complex geometries, in which the wall boundary condition is treated as a direct body force determined by satisfying the non-penetrating boundary condition. Two distinct discretized grids are used to discrete the fluid domain and immersed boundary, respectively. The immersed boundaries are represented by Lagrangian points and the direct body force determined on these points is applied on the neighboring Eulerian points. The coupling between the Lagrangian points and Euler points is linked by a discrete delta function. The linearized Euler equations are spatially discretized with a fourth-order dispersion-relation-preserving scheme and temporal integrated with a low-dissipation and low-dispersion Runge-Kutta scheme. A perfectly matched layer technique is applied to absorb out-going waves and in-going waves in the immersed bodies. Several benchmark problems for computational aeroacoustic solvers are performed to validate the present method. PMID:23145603
Malhotra, M.
1996-12-31
Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.
NASA Astrophysics Data System (ADS)
Boehlert, George W.
The cover of the March 1 issue of Eos showed a time series of acoustic scattering above Southeast Hancock Seamount (29°48‧N, 178°05‧E) on July 17-18, 1984. In a comment on that cover Martin Hovland (Eos, August 2, p. 760) argued that gas or “other far reaching causes” may be involved in the observed acoustic signals. He favors a hypothesis that acoustic scattering observed above a seeping pockmark in the North Sea is a combination of bubbles, stable microbubbles, and pelagic organisms and infers that this may be a more general phenomenon and indeed plays a role in the attraction of organisms to seamounts
A modification of the factorization method for the classical acoustic inverse scattering problems
NASA Astrophysics Data System (ADS)
Kirsch, Andreas; Liu, Xiaodong
2014-03-01
It is well-known that sampling type methods for solving inverse scattering problems fail if the wave number is an eigenvalue of a corresponding interior eigenvalue problem. By adding the far field patterns corresponding to an artificial ball lying within the obstacle and imposing an impedance boundary condition on the boundary of this ball we propose a modification of the factorization method which provides the characterization of the unknown obstacle for all wave numbers. Some numerical experiments are presented to demonstrate the feasibility and effectiveness of our method.
NASA Astrophysics Data System (ADS)
Amamou, Manel L.
2016-05-01
This paper develops an analytical solution for sound, electromagnetic or any other wave propagation described by the Helmholtz equation in three-dimensional case. First, a theoretical investigation based on multipole expansion method and spherical wave functions was established, through which we show that the resolution of the problem is reduced to solving an infinite, complex and large linear system. Second, we explain how to suitably truncate the last infinite dimensional system to get an accurate stable and fast numerical solution of the problem. Then, we evaluate numerically the theoretical solution of scattering problem by multiple ideal rigid spheres. Finally, we made a numerical study to present the "Head related transfer function" with respect to different physical and geometrical parameters of the problem.
NASA Astrophysics Data System (ADS)
Bermúdez, A.; Hervella-Nieto, L.; Prieto, A.; Rodríguez, R.
2007-05-01
We introduce an optimal bounded perfectly matched layer (PML) technique by choosing a particular absorbing function with unbounded integral. With this choice, spurious reflections are avoided, even though the thickness of the layer is finite. We show that such choice is easy to implement in a finite element method and overcomes the dependency of parameters for the discrete problem. Finally, its efficiency and accuracy are illustrated with some numerical tests.
Low frequency acoustic and electromagnetic scattering
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Maccamy, R. C.
1986-01-01
This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k/2/ log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.
Low frequency acoustic and electromagnetic scattering
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Maccamy, R. C.
1983-01-01
This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k(2) log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.
Acoustic Scattering by a Vortex Dipole
NASA Astrophysics Data System (ADS)
Zheng, Zhongquan; Zhang, Junjian
2015-11-01
Acoustic scattering in vortical flow has been an interesting and practical topic, with applications in problems such as acoustic scattering of turbulent flow. In this study, the linearized Euler equation model is employed to investigate sound wave propagation over a subsonic counter-rotating vortex dipole. Both the stationary and moving due to mutual induction vortex dipoles are studied. The numerical scheme uses a high-order WENO scheme to accommodate the highly convective background flow at high Mach numbers. The simulation results are compared with the analytical solutions and literature data. The theoretical study is focused on the effects of three characteristic length scales in this problem: the incident sound wave length, the vortex core size, and the vortex dipole size. The directivity and scaling laws related to the vortex scattering effects are discussed.
Modelling acoustic scattering by suspended flocculating sediments
NASA Astrophysics Data System (ADS)
Thorne, Peter D.; MacDonald, Iain T.; Vincent, Christopher E.
2014-10-01
The development of a theoretical description of how sound interacts with flocculating sediments has been lacking and this deficiency has impeded sound being used to extract quantitative suspended sediment parameters in suspensions containing flocs. As a step towards theoretically examining this problem a relatively simple heuristic approach has been adopted to provide a description of the interaction of sound with suspensions that undergo flocculation. A model is presented for the interpretation of acoustic scattering from suspensions of fine sediments as they transition from primary particles, through an intermediate regime, to the case where low density flocs dominate the acoustic scattering. The approach is based on modified spherical elastic solid and elastic fluid scatterers and a combination of both. To evaluate the model the variation of density and compressional velocity within the flocs as they form and grow in size is required. The density can be estimated from previous studies; however, the velocity is unknown and is formulated here using a fluid mixture approach. Uncertainties in these parameters can have a significant effect on the predicted scattering characteristics and are therefore investigated in the present study. Furthermore, to assess the proposed model, outputs are compared with recently published laboratory observations of acoustic scattering by flocculating cohesive suspensions.
Analysis of the 3D acoustic cloaking problems using optimization method
NASA Astrophysics Data System (ADS)
Alekseev, G. V.; Spivak, Yu E.
2016-06-01
Control problems for the 3D model of acoustic scattering which describes scattering acoustic waves by a permeable obstacle with the form of a spherical layer are considered. These problems arise while developing the design technologies of acoustic cloaking devices using the wave flow method. The solvability of direct and control problems for the acoustic scattering model under study is proved. The sufficient conditions which provide local uniqueness and stability of optimal solutions are established.
Numerical Simulations of Radar Acoustic Scattering
NASA Astrophysics Data System (ADS)
Boluriaan, Said; Morris, Philip J.
1998-11-01
Wake vortices are produced by the lifting surfaces of all aircraft. The vortex created by a large aircraft can have a catastrophic effect on a small plane following closely behind. A vortex detection system would not only increase airport productivity by allowing adaptive spacing, but would also increase the safety of all aircraft operating around the airport by alerting controllers to hazardous conditions that might exist near the runways. In the present research, one and two-dimensional models have been considered for the study of wake vortex detection using a Radar Acoustic Sounding System (RASS). The permittivity perturbation caused by the vortex is modeled as a traveling wave with a Gaussian envelope and a variable propagation speed. The model equations are solved numerically. The one-dimensional model is also solved analytically. The main problem with a time domain simulation is the number of samples required to resolve the Doppler shift. Even for a 1D model with a typical scatterer size, the CPU time required to run the code is far beyond the currently available computer resources. One way to make the time domain simulation feasible is to recast the governing differential equation in order to remove the carrier frequency and solve only for the frequency shift in the scattered wave. The numerical stability characteristics of the resulting equation with complex coefficients are discussed. In order to validate the numerical scheme, the code is run for a fictitious speed of light.
Nonlinear scattering of acoustic waves by vibrating obstacles
NASA Astrophysics Data System (ADS)
Piquette, J. C.
1983-06-01
The problem of the generation of sum- and difference-frequency waves produced via the scattering of an acoustic wave by an obstacle whose surface vibrates harmonically was studied both theoretically and experimentally. The theoretical approach involved solving the nonlinear wave equation, subject to appropriate boundary conditions, by the use of a perturbation expansion of the fields and a Green's function method. In addition to ordinary rigid-body scattering, Censor predicted nongrowing waves at frequencies equal to the sum and to the difference of the frequencies of the primary waves. The solution to the nonlinear wave equation also yields scattered waves at the sum and difference frequencies. However, the nonlinearity of the medium causes these waves to grow with increasing distance from the scatter's surface and, after a very small distance, dominate those predicted by Censor. The simple-source formulation of the second-order nonlinear wave equation for a lossless fluid medium has been derived for arbitrary primary wave fields. This equation was used to solve the problem of nonlinear scattering of acoustic waves by a vibrating obstacle for three geometries: (1) a plane-wave scattering by a vibrating plane, (2) cylindrical-wave scattering by a vibrating cylinder, and (3) plane-wave scattering by a vibrating cylinder. Successful experimental validation of the theory was inhibited by previously unexpected levels of nonlinearity in the hydrophones used. Such high levels of hydrophone nonlinearity appeared in hydrophones that, by their geometry of construction, were expected to be fairly linear.
Some Problems of modern acoustics
NASA Technical Reports Server (NTRS)
Stan, A.
1974-01-01
The multidisciplinary and interdisciplinary character of acoustics is considered and its scientific, technological, economical and social implications, as well as the role of acoustics in creating new machines and equipment and improving the quality of products are outlined. Research beyond audible frequencies, as well as to extremely high acoustic intensities, which requires the development of a nonlinear acoustics is elaborated.
Acoustic multiple scattering using recursive algorithms
NASA Astrophysics Data System (ADS)
Amirkulova, Feruza A.; Norris, Andrew N.
2015-10-01
Acoustic multiple scattering by a cluster of cylinders in an acoustic medium is considered. A fast recursive technique is described which takes advantage of the multilevel Block Toeplitz structure of the linear system. A parallelization technique is described that enables efficient application of the proposed recursive algorithm for solving multilevel Block Toeplitz systems on high performance computer clusters. Numerical comparisons of CPU time and total elapsed time taken to solve the linear system using the direct LAPACK and TOEPLITZ libraries on Intel FORTRAN, show the advantage of the TOEPLITZ solver. Computations are optimized by multi-threading which displays improved efficiency of the TOEPLITZ solver with the increase of the number of scatterers and frequency.
Acoustic asymmetric transmission based on time-dependent dynamical scattering
Wang, Qing; Yang, Yang; Ni, Xu; Xu, Ye-Long; Sun, Xiao-Chen; Chen, Ze-Guo; Feng, Liang; Liu, Xiao-ping; Lu, Ming-Hui; Chen, Yan-Feng
2015-01-01
An acoustic asymmetric transmission device exhibiting unidirectional transmission property for acoustic waves is extremely desirable in many practical scenarios. Such a unique property may be realized in various configurations utilizing acoustic Zeeman effects in moving media as well as frequency-conversion in passive nonlinear acoustic systems and in active acoustic systems. Here we demonstrate a new acoustic frequency conversion process in a time-varying system, consisting of a rotating blade and the surrounding air. The scattered acoustic waves from this time-varying system experience frequency shifts, which are linearly dependent on the blade’s rotating frequency. Such scattering mechanism can be well described theoretically by an acoustic linear time-varying perturbation theory. Combining such time-varying scattering effects with highly efficient acoustic filtering, we successfully develop a tunable acoustic unidirectional device with 20 dB power transmission contrast ratio between two counter propagation directions at audible frequencies. PMID:26038886
Support minimized inversion of acoustic and elastic wave scattering
Safaeinili, A.
1994-04-24
This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion.
Acoustic scattering in flexible waveguide involving step discontinuity.
Afzal, Muhammad; Nawaz, Rab; Ayub, Muhammad; Wahab, Abdul
2014-01-01
In this paper, the propagation and scattering of acoustic waves in a flexible wave-guide involving step discontinuity at an interface is considered. The emerging boundary value problem is non-Sturm-Liouville and is solved by employing a hybrid mode-matching technique. The physical scattering process and attenuation of duct modes versus frequency regime and change of height is studied. Moreover, the mode-matching solution is validated through a series of numerical experiments by testifying the power conservation identity and matching interface conditions. PMID:25084019
Experimental Demonstration of Underwater Acoustic Scattering Cancellation
Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.
2015-01-01
We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85. PMID:26282067
Experimental Demonstration of Underwater Acoustic Scattering Cancellation
NASA Astrophysics Data System (ADS)
Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.
2015-08-01
We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85.
Microparticle and Cell Characterization Using Acoustic Scattering.
NASA Astrophysics Data System (ADS)
Roos, Mark Schaefer
A technique is presented for measuring physical properties of particles with radii from one to five microns. Tone bursts of 30 MHz center frequency are scattered by single particles as they are carried by a coaxial jet flow past three focused acoustic transducers (one sender and two receivers). The scattered pressure is measured simultaneously at two angles, which allows the compressibility and density of the particles to be calculated given the volume of the particles and the density and compressibility of the host liquid using Rayleigh's theory for long wavelength acoustic scattering. Because the particles are measured one at a time, statistical distributions of their properties may be determined. The device is calibrated using particles whose properties are known. A study was conducted on human red blood cells in hosts of different tonicity. Density and compressibility values obtained in these experiments are compared with a model accounting for changes in red cell properties due to variations in cell water content. Other studies were conducted using polystyrene and polystyrene divinylbenzene spheres. This technique is well suited to in vitro measurement of properties of biological cells. Applications are discussed, with emphasis on the study of red blood cells.
Nonlinear ion acoustic waves scattered by vortexes
NASA Astrophysics Data System (ADS)
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
On the Inverse Problems of Nonlinear Acoustics and Acoustic Turbulence
NASA Astrophysics Data System (ADS)
Gurbatov, S. N.; Rudenko, O. V.
2015-12-01
We consider the problem of retrieval of the radiated acoustic signal parameters from the measured wave field in some cross section of the nonlinear medium. The possibilities of solving regular and statistical inverse problems are discussed on the basis of the solution of the Burgers equation for zero and infinitesimal viscosities.
Flow velocity measurement with the nonlinear acoustic wave scattering
Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay
2015-10-28
A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.
Flow velocity measurement with the nonlinear acoustic wave scattering
NASA Astrophysics Data System (ADS)
Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay
2015-10-01
A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.
Acoustic scattering from ellipses by the modal element method
NASA Technical Reports Server (NTRS)
Kreider, Kevin L.; Baumeister, Kenneth J.
1995-01-01
The modal element method is used to study acoustic scattering from ellipses, which may be acoustically soft (absorbing) or hard (reflecting). Because exact solutions are available, the results provide a benchmark for algorithm performance for scattering from airfoils and similar shapes. Numerical results for scattering from rigid ellipses are presented for a wide variety of eccentricities at moderate frequencies. These results indicate that the method is practical.
Acoustic and elastic multiple scattering and radiation from cylindrical structures
NASA Astrophysics Data System (ADS)
Amirkulova, Feruza Abdukadirovna
Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance and is required in a wide variety of physical contexts such as the implementation of "invisibility" cloaks, the effective parameter characterization, and the fabrication of dynamically tunable structures, etc. The dissertation develops fast, rapidly convergent iterative techniques to expedite the solution of MS problems. The formulation of MS problems reduces to a system of linear algebraic equations using Graf's theorem and separation of variables. The iterative techniques are developed using Neumann expansion and Block Toeplitz structure of the linear system; they are very general, and suitable for parallel computations and a large number of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the theoretical predictions are compared to computations obtained by COMSOL. To formulate the MS problem, the transition matrix is obtained by analyzing an acoustic and an elastic single scattering of incident waves by elastic isotropic and anisotropic solids. The mathematical model of wave scattering from multilayered cylindrical and spherical structures is developed by means of an exact solution of dynamic 3D elasticity theory. The recursive impedance matrix algorithm is derived for radially heterogeneous anisotropic solids. An explicit method for finding the impedance in piecewise uniform, transverse-isotropic material is proposed; the solution is compared to elasticity theory solutions involving Buchwald potentials. Furthermore, active exterior cloaking devices are modeled for acoustic and elastic media using multipole sources. A cloaking device can render an object invisible to some incident waves as seen by some external observer. The active cloak is generated by a discrete set of multipole sources that destructively interfere with an
NASA Astrophysics Data System (ADS)
Tam, Christopher K. W.; Ju, Hongbin
2009-09-01
The use of finite difference schemes to compute the scattering of acoustic waves by surfaces made up of different materials with sharp surface discontinuities at the joints would, invariably, result in the generations of spurious reflected waves of numerical origin. Spurious scattered waves are produced even if a high-order scheme capable of resolving and supporting the propagation of the incident wave is used. This problem is of practical importance in jet engine duct acoustic computation. In this work, the basic reason for the generation of spurious numerical waves is first examined. It is known that when the governing partial differential equations of acoustics are discretized, one should only use the long waves of the computational scheme to represent or simulate the physical waves. The short waves of the computational scheme have entirely different propagation characteristics. They are the spurious numerical waves. A method by which high wave number components (short waves) in the wave scattering process is intentionally removed so as to minimize the scattering of spurious numerical waves is proposed. This method is implemented in several examples from computational aeroacoustics to illustrate its effectiveness, accuracy and efficiency. This method is also employed to compute the scattering of acoustic waves by scatterers, such as rigid wall acoustic liner splices, with width smaller than the computational mesh size. Good results are obtained when comparing with computed results using much smaller mesh size. The method is further extended for applications to computations of acoustic wave reflection and scattering by very small surface inhomogeneities with simple geometries.
Multiple scattering of a spherical acoustic wave from fluid spheres
NASA Astrophysics Data System (ADS)
Wu, J. H.; Liu, A. Q.; Chen, H. L.; Chen, T. N.
2006-02-01
The multiple scattering of a spherical acoustic wave from an arbitrary number of fluid spheres is investigated theoretically. The tool to attack the multiple scattering problem is a kind of addition formulas for the spherical wave functions, which are presented in the paper, based on the bicentric expansion form of Green function in the spherical coordinates. For an arbitrary configuration of N fluid spheres, the kind of addition formulas permits the field expansions (all referred to the center of each sphere). With these the sound fields scattered by each sphere can be described by a set of N equations. The interactions between any two fluid spheres are taken into account in these equations exactly and their coefficients are coupled through double sums in the spherical wave functions. By truncating the infinite series in the equations depending on certain calculation accuracy and solving the coefficients matrix by using the Gauss-Seidel iteration method, we can obtain the scattered sound field by the configuration of the fluid spheres. Finally, the scattering calculations by using the kind of addition formulas are carried out.
Topics in electromagnetic, acoustic, and potential scattering theory
NASA Astrophysics Data System (ADS)
Nuntaplook, Umaporn
the former (previously known) results. The link with time-independent quantum mechanical scattering, via morphology-dependent resonances (MDRs), is discussed in Chapter 2. This requires a generalization of the classical problem for scattering of a plane wave from a uniform spherically-symmetric inhomogeneity (in which the velocity of propagation is a function only of the radial coordinate r. i.e.. c = c(r)) to a piecewise-uniform inhomogeneity. In Chapter 3 the Jost-function formulation of potential scattering theory is used to solve the radial differential equation for scattering which can be converted into an integral equation corresponding via the Jost boundary conditions. The first two iterations for the zero angular momentum case l = 0 are provided for both two-layer and three-layer models. It is found that the iterative technique is most useful for long wavelengths and sufficiently small ratios of interior and exterior wavenumbers. Exact solutions are also provided for these cases. In Chapter 4 the time-independent quantum mechanical 'connection' is exploited further by generalizing previous work on a spherical well potential to the case where a delta 'function' potential is appended to the exterior of the well (for l ≠ 0). This corresponds to an idealization of the former approach to the case of a 'coated sphere'. The poles of the associated 'S-matrix' are important in this regard, since they correspond directly with the morphology-dependent resonances discussed in Chapter 2. These poles (for the l = 0 case, to compare with Nussenzveig's analysis) are tracked in the complex wavenumber plane as the strength of the delta function potential changes. Finally, a set of 4 Appendices is provided to clarify some of the connections between (i) the scattering of acoustic/electromagnetic waves from a penetrable/dielectric sphere and (ii) time-independent potential scattering theory in quantum mechanics. This, it is hoped, will be the subject of future work.
A single-scattering correction for the seismo-acoustic parabolic equation.
Collins, Michael D
2012-04-01
An efficient single-scattering correction that does not require iterations is derived and tested for the seismo-acoustic parabolic equation. The approach is applicable to problems involving gradual range dependence in a waveguide with fluid and solid layers, including the key case of a sloping fluid-solid interface. The single-scattering correction is asymptotically equivalent to a special case of a single-scattering correction for problems that only have solid layers [Küsel et al., J. Acoust. Soc. Am. 121, 808-813 (2007)]. The single-scattering correction has a simple interpretation (conservation of interface conditions in an average sense) that facilitated its generalization to problems involving fluid layers. Promising results are obtained for problems in which the ocean bottom interface has a small slope. PMID:22501044
Multiscale analysis of the acoustic scattering by many scatterers of impedance type
NASA Astrophysics Data System (ADS)
Challa, Durga Prasad; Sini, Mourad
2016-06-01
We are concerned with the acoustic scattering problem, at a frequency {κ}, by many small obstacles of arbitrary shapes with impedance boundary condition. These scatterers are assumed to be included in a bounded domain {Ω} in {{R}^3} which is embedded in an acoustic background characterized by an eventually locally varying index of refraction. The collection of the scatterers {D_m, m=1,ldots,M} is modeled by four parameters: their number M, their maximum radius a, their minimum distance d and the surface impedances {λ_m, m=1,ldots,M}. We consider the parameters M, d and {λ_m}'s having the following scaling properties: {M:=M(a)=O(a^{-s}), d:=d(a)≈ a^t} and {λ_m:=λ_m(a)=λ_{m,0}a^{-β}}, as {a→ 0}, with non negative constants s, t and {β} and complex numbers {λ_{m, 0}}'s with eventually negative imaginary parts. We derive the asymptotic expansion of the far-fields with explicit error estimate in terms of a, as {a→ 0}. The dominant term is the Foldy-Lax field corresponding to the scattering by the point-like scatterers located at the centers {z_m}'s of the scatterers {D_m}'s with {λ_m \\vert partial D_m\\vert} as the related scattering coefficients. This asymptotic expansion is justified under the following conditions a ≤ a_0, \\vert Re (λ_{m,0})\\vert ≥ λ_-,quad \\vertλ_{m,0}\\vert ≤ λ_+,quad β < 1,quad 0 ≤ s ≤2-β,quads/3 ≤ t and the error of the approximation is {C a^{3-2β-s}}, as {a → 0}, where the positive constants {a_0, λ_-,λ_+} and C depend only on the a priori uniform bounds of the Lipschitz characters of the obstacles {D_m}'s and the ones of {M(a)a^s} and {d(a)/a^t}. We do not assume the periodicity in distributing the small scatterers. In addition, the scatterers can be arbitrary close since t can be arbitrary large, i.e., we can handle the mesoscale regime. Finally, for spherical scatterers, we can also allow the limit case {β=1} with a slightly better error of the approximation.
A meshless method for unbounded acoustic problems.
Shojaei, Arman; Boroomand, Bijan; Soleimanifar, Ehsan
2016-05-01
In this paper an effective meshless method is proposed to solve time-harmonic acoustic problems defined on unbounded domains. To this end, the near field is discretized by a set of nodes and the far field effect is taken into account by considering radiative boundary conditions. The approximation within the near field is performed using a set of local residual-free basis functions defined on a series of finite clouds. For considering the far field effect, a series of infinite clouds are defined on which another set of residual-free bases, satisfying the radiation conditions, are considered for the approximation. Validation of the results is performed through solving some acoustic problems. PMID:27250155
Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter
Strozzi, D J; Williams, E A; Langdon, A B; Bers, A
2006-09-01
1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73, 025401 (2006)]. For the first time, a low phase velocity electron acoustic wave (EAW) is seen developing from the self-consistent Raman physics. Backscatter of the pump laser off the EAW fluctuations is reported and referred to as electron acoustic Thomson scatter. This light is similar in wavelength to, although much lower in amplitude than, the reflected light between the pump and SRBS wavelengths observed in single hot spot experiments, and previously interpreted as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001)]. The EAW observed in our simulations is strongest well below the phase-matched frequency for electron acoustic scatter, and therefore the EAW is not produced by it. The beating of different beam acoustic modes is proposed as the EAW excitation mechanism, and is called beam acoustic decay. Supporting evidence for this process, including bispectral analysis, is presented. The linear electrostatic modes, found by projecting the numerical distribution function onto a Gauss-Hermite basis, include beam acoustic modes (some of which are unstable even without parametric coupling to light waves) and a strongly-damped EAW similar to the observed one. This linear EAW results from non-Maxwellian features in the electron distribution, rather than nonlinearity due to electron trapping.
Broadband acoustic scattering measurements of underwater unexploded ordnance (UXO).
Bucaro, J A; Houston, B H; Saniga, M; Dragonette, L R; Yoder, T; Dey, S; Kraus, L; Carin, L
2008-02-01
In order to evaluate the potential for detection and identification of underwater unexploded ordnance (UXO) by exploiting their structural acoustic response, we carried out broadband monostatic scattering measurements over a full 360 degrees on UXO's (two mortar rounds, an artillery shell, and a rocket warhead) and false targets (a cinder block and a large rock). The measurement band, 1-140 kHz, includes a low frequency structural acoustics region in which the wavelengths are comparable to or larger than the target characteristic dimensions. In general, there are aspects that provide relatively high target strength levels ( approximately -10 to -15 dB), and from our experience the targets should be detectable in this structural acoustics band in most acoustic environments. The rigid body scattering was also calculated for one UXO in order to highlight the measured scattering features involving elastic responses. The broadband scattering data should be able to support feature-based separation of UXO versus false targets and identification of various classes of UXO as well. PMID:18247878
Reciprocity in the scattering coefficients of acoustic waveguide modes.
Tong, Yuhui; Pan, Jie
2013-09-01
In this Letter, a proof is provided for the reciprocity between modal scattering coefficients of the acoustic waveguides connected by a junction enclosure. The result holds for all waveguide modes and for junction enclosures with locally reactive boundary conditions away from the interfaces between the junction and waveguides. Also provided is a physical interpretation of the reciprocity of the modal scattering coefficients. The scattering of two-dimensional waveguide modes by a right-angled bend in a rectangular duct is used as an illustrating example. PMID:23967907
Acoustic Phase Measurements from Volume Scatter in the Ocean.
NASA Astrophysics Data System (ADS)
Huston, Robert Delmar
A primary goal of this thesis has been to demonstrate that stable, useful measurements of the orientation of the acoustic signal vector as a function of range and time can be obtained from ocean backscatter, and that this orientation, or acoustic phase, can be related to the local sound speed distribution. Consistent and useful measurement of absolute phase depends upon the positions of individual scatterers, which are normally random and sparse relative to the acoustic wavelength. This difficulty has been overcome by coherent super-position of echoes from successive transmissions, such that the effective density of acoustic targets progressively increases as the summation proceeds. The theoretical basis of this type of coherent processing has been developed and examined in the limiting case, in which it approximates a scatterer continuum for which an analytic expression has been found. The theory provides fundamental insights to the behaviour of both the amplitude and phase of volume scatter. As the ratio of coherent to incoherent signal increases with successive superposition of the echoes (coherent processing), the phase statistics evolve from a uniform to a nearly Gaussian distribution. Once the phase signal is bounded to within +/-45 ^circ, the basic requirement for a coherent 'volume mirror' has been met and reliable interferometric estimates are possible. The experimental work used a bistatic configuration with a multi-beam projector and narrow beam hydrophone operating at 215 kHz. The results confirm the theoretical concepts and demonstrate that within the quite limited range of environmental conditions that were studied, the coherently processed acoustic signals are consistent with independent measurements of the evolving sound speed profile. The main contribution of this thesis has been to lay a firm theoretical and experimental foundation for the use of volume backscatter in acoustic interferometer devices. Based on these results, the potential for new
Acoustic scattering from phononic crystals with complex geometry.
Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J
2016-05-01
This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique. PMID:27250192
Sensitivity of room acoustic parameters to changes in scattering coefficients
NASA Astrophysics Data System (ADS)
Rathsam, Jonathan; Wang, Lily M.
2001-05-01
This project uses the room acoustics computer modeling program, ODEON, to investigate the sensitivity of room acoustic parameters to changes in scattering coefficients. Particularly, the study is interested in determining if the results from certain room models are more sensitive to scattering coefficients than from other models, due to their geometry or absorption characteristics. If so, how can one quantify a model's susceptibility to being sensitive to scattering? Various models of three real spaces in Omaha, Nebraska are tested. The predicted reverberation, clarity, and spaciousness parameters are compared at various receiver locations, while the scattering coefficient of all surfaces is varied from 0 to 0.1, 0.3, 0.5, and 0.8. The resulting data are analyzed by frequency according to the (1) average absorption of the room; (2) magnitude variation of absorption within the room; (3) spatial distribution of absorption within the room; and (4) level of model detail. Initial results indicate that parameters studied may show more sensitivity to scattering coefficients in models that have a wider range of absorption values, more disparate distribution of absorption, and lower detail level. Various schemes that include these aspects are proposed for computing a model's sensitivity to changes in scattering.
The scattering problem for nonlocal potentials
Zolotarev, V A
2014-11-30
We solve the direct and inverse scattering problems for integro-differential operators which are one-dimensional perturbations of the self-adjoint second derivative operator on the half-axis. We also describe the scattering data for this class of operators. Bibliography: 28 titles.
Prediction of acoustic scattering in the time domain and its applications to rotorcraft noise
NASA Astrophysics Data System (ADS)
Lee, Seongkyu
This work aims at the development of a numerical method for the analysis of acoustic scattering in the time domain and its applications to rotorcraft noise. This purpose is achieved by developing two independent methods: (1) an analytical formulation of the pressure gradient for an arbitrary moving source and (2) a time-domain moving equivalent source method. First, the analytical formulation for the pressure gradient is developed to fulfill the boundary condition on a scattering surface to account for arbitrary moving incident sources. A semi-analytical formulation was derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation needs to calculate the observer time differentiation outside the integrals numerically. A numerical algorithm is developed to implement this formulation in an aeroacoustic prediction code. A new analytical formulation is presented in the thesis. In this formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these two formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. One of the advantages of this analytic formulation is that it efficiently provides the boundary condition for the acoustic scattering of sound generated from an arbitrary moving source, such as rotating blades, which undergoes rotation, flapping and lead-lag motions. The formulation is applied to the rotor noise problems for two model rotors (UH-1H and HART-I). For HART-I rotor, CFD/CSD coupling was used to provide unsteady aerodynamics and trim solutions of the blade motion. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and
Experiment Observation on Acoustic Forward Scattering for Underwater Moving Object Detection
NASA Astrophysics Data System (ADS)
Lei, Bo; Ma, Yuan-Liang; Yang, Kun-De
2011-03-01
The problem of detecting an object in shallow water by observing changes in the acoustic field as the object passes between an acoustic source and receiver is addressed. A signal processing scheme based on forward scattering is proposed to detect the perturbed field in the presence of the moving object. The periodic LFM wideband signal is transmitted and a sudden change of field is acquired using a normalized median filter. The experimental results on the lake show that the proposed scheme is successful for the detection of a slowly moving object in the bistatic blind zone.
Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water.
Simão, André G; Guimarães, Luiz G
2016-01-01
The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert's period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium. PMID:27331803
Acoustic and photoacoustic scattering from transverse isotropic tissues
NASA Astrophysics Data System (ADS)
Sheu, Yae-lin; Ho, Yi-Ching; Li, Pai-Chi
2013-03-01
This research investigated anisotropic scattering of ultrasonic and photoacoustic waves from tissues consisting of transverse isotropic structures. Anisotropic scattering refers to the systematic variation in acoustic scattered energy. Take tendon as an example, the maximum occurs when the arrangement of the transducer and fiber orientation is perpendicular and minimum occurs when the arrangement is parallel. Experimental results indicate the apparent integrated backscatter (AIB), which is widely adopted to compute the scattered energy, for photoacoustic as well as ultrasonic waves decayed as the arrangement changed from perpendicular to parallel. The AIB decrement using transducers with center frequency of 3.5 MHz, 5 MHz, and 20 MHz were 10.50 dB, 18.01 dB, and 20.98 dB, respectively. Photoacoustic AIB decrement detected by transducers with center frequency of 3.5 MHz, 5 MHz, and 20 MHz were 7.63 dB, 15.54 dB, and 17.76 dB, respectively. It is shown that higher detection frequency resulted in a larger decrement. A hypothesis is proposed to explain why photoacoustic waves are less affected by the fibrous tissue. In ultrasonic scattering, incident direction for each scatterer were similar due to the relatively planar wavefront, hence the signal amplitudes scattered at the transducer direction are also similar. In photoacoustic scattering, the spherical-like wavefront causes different incident directions for different scatterers, therefore the variation of the signal amplitude collected by the transducer increases, resulting in a lower correlation with the microstructure. In addition, the decrement of backscattered energy decreased for a single scatterer when the incident wave was spherical. Experimental and simulation results verified the hypothesis. The discovery implies that photoacoustic imaging has the potential to detect tissues with transverse isotropic structure that may be overlooked by conventional ultrasound imaging.
Simulation of Acoustic Scattering from a Trailing Edge
NASA Technical Reports Server (NTRS)
Singer, Bart A.; Brentner, Kenneth S.; Lockhard, David P.; Lilley, Geoffrey M.
1999-01-01
Three model problems were examined to assess the difficulties involved in using a hybrid scheme coupling flow computation with the the Ffowcs Williams and Hawkings equation to predict noise generated by vortices passing over a sharp edge. The results indicate that the Ffowcs Williams and Hawkings equation correctly propagates the acoustic signals when provided with accurate flow information on the integration surface. The most difficult of the model problems investigated inviscid flow over a two-dimensional thin NACA airfoil with a blunt-body vortex generator positioned at 98 percent chord. Vortices rolled up downstream of the blunt body. The shed vortices possessed similarities to large coherent eddies in boundary layers. They interacted and occasionally paired as they convected past the sharp trailing edge of the airfoil. The calculations showed acoustic waves emanating from the airfoil trailing edge. Acoustic directivity and Mach number scaling are shown.
Simulation of Acoustic Scattering from a Trailing Edge
NASA Astrophysics Data System (ADS)
SINGER, B. A.; BRENTNER, K. S.; LOCKARD, D. P.; LILLEY, G. M.
2000-02-01
Three model problems were examined to assess the difficulties involved in using a hybrid scheme coupling flow computation with the Ffowcs Williams and Hawkings equation to predict the noise generated by vortices passing over a sharp edge. The results indicate that the Ffowcs Williams and Hawkings equation correctly propagates the acoustic signals when provided with accurate flow information on the integration surface. The most difficult of the model problems investigated flow over a two-dimensional, thin NACA airfoil with a bluff-body vortex generator positioned at 98% chord. Vortices rolled up downstream of the bluff body. The shed vortices possessed similarities to large coherent eddies in boundary layers in that they interacted and occasionally paired as they convected past the sharp trailing edge of the airfoil. The calculations showed acoustic waves emanating from the airfoil trailing edge. Acoustic directivity and Mach number scaling were obtained.
Acoustic scattering from a suspension of flocculated sediments
NASA Astrophysics Data System (ADS)
MacDonald, Iain T.; Vincent, Christopher E.; Thorne, Peter D.; Moate, Benjamin D.
2013-05-01
A series of controlled laboratory experiments have been conducted to investigate the backscatter of high frequency sound (3-5 MHz) from suspensions of fine sediment in its unflocculated (primary) state and at various levels of flocculation. The size and fall-velocity distributions of the flocs were determined using an optical system and a settling tube, thus allowing floc density to be determined. The measurements have conclusively demonstrated that the acoustic properties of the flocculated particles are not solely controlled by the primary particles; some aspect of the floc structure is influencing the scattering characteristics. The overall trend is for the form function (Ks) to increase as the degree of flocculation increases. This trend was also observed in the total scattering cross section (σt>¯) but this result is dependent on the assumption that viscous absorption for flocculated particles is negligible. The measured scattering properties are compared to the predicted values from two theoretical models, the elastic (ES) and fluid sphere (FS) models. While the results show that, in their current form, neither model is capable of adequately representing the scattering characteristics of a suspension of flocculated particles, the two models did provide upper (ES) and lower (FS) bounds to the measurements. In terms of the operational use of acoustics to measure the concentration of flocculated sediments, empirical relationships could be fitted to the observations but, until a better theoretical understanding of how sound interacts with flocculated particles is achieved, the fitting of such empirical relations may be somewhat premature.
Hierarchical optimization for neutron scattering problems
NASA Astrophysics Data System (ADS)
Bao, Feng; Archibald, Rick; Bansal, Dipanshu; Delaire, Olivier
2016-06-01
We present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.
Representation theorems and Green's function retrieval for scattering in acoustic media.
Vasconcelos, Ivan; Snieder, Roel; Douma, Huub
2009-09-01
Reciprocity theorems for perturbed acoustic media are provided in the form of convolution- and correlation-type theorems. These reciprocity relations are particularly useful in the general treatment of both forward and inverse-scattering problems. Using Green's functions to describe perturbed and unperturbed waves in two distinct wave states, representation theorems for scattered waves are derived from the reciprocity relations. While the convolution-type theorems can be manipulated to obtain scattering integrals that are analogous to the Lippmann-Schwinger equation, the correlation-type theorems can be used to retrieve the scattering response of the medium by cross correlations. Unlike previous formulations of Green's function retrieval, the extraction of scattered-wave responses by cross correlations does not require energy equipartitioning. Allowing for uneven energy radiation brings experimental advantages to the retrieval of fields scattered by remote lossless and/or attenuative scatterers. These concepts are illustrated with a number of examples, including analytic solutions to a one-dimensional scattering problem, and a numerical example in the context of seismic waves recorded on the ocean bottom. PMID:19905236
Finite Element Prediction of Acoustic Scattering and Radiation from Submerged Elastic Structures
NASA Technical Reports Server (NTRS)
Everstine, G. C.; Henderson, F. M.; Lipman, R. R.
1984-01-01
A finite element formulation is derived for the scattering and radiation of acoustic waves from submerged elastic structures. The formulation uses as fundamental unknowns the displacement in the structure and a velocity potential in the field. Symmetric coefficient matrices result. The outer boundary of the fluid region is terminated with an approximate local wave-absorbing boundary condition which assumes that outgoing waves are locally planar. The finite element model is capable of predicting only the near-field acoustic pressures. Far-field sound pressure levels may be determined by integrating the surface pressures and velocities over the wet boundary of the structure using the Helmholtz integral. Comparison of finite element results with analytic results show excellent agreement. The coupled fluid-structure problem may be solved with general purpose finite element codes by using an analogy between the equations of elasticity and the wave equation of linear acoustics.
Analysis of some acoustics-jet flow interaction problems
NASA Technical Reports Server (NTRS)
Chow, P. L.
1984-01-01
Analytical problems in the interactions between the mean-shear flows and the acoustic field in the planar and circular jets are examined. These problems are basic in understanding the effects of coherent large structure on the generation and complications of sound in a sub-sonic jet. Three problems were investigated: (1) spatial (vs. temporal) normal mode analysis in a planar jets; (2) a slightly divergent, planar jet; and (3) acoustic waves in an axisymmetrical jet.
Acoustic swimbladder resonance spectroscopy: Fundamentals in scattering theory
NASA Astrophysics Data System (ADS)
Francis, David T. I.; Foote, Kenneth G.
2003-04-01
A history of the physics of acoustic resonance is given. The primary, low-frequency, resonant scattering model for air bubbles in water [Minnaert (1933)] is reviewed. Subsequent applications to swimbladdered fish, including models by Andreeva (1964), Love (1978), and Feuillade and Nero (1998), among others, are developed. Reference is made to exemplary measurements of backscattering by Holliday (1972) and Loevik and Hovem (1979), and of forward scattering, or absorption, by Weston (1967) and Diachok (2000), among others. High-frequency resonances are also described, with presentation of both analytical and numerical results for the immersed air bubble. Comparison of these validates the numerical, boundary-element method (BEM). The BEM allows high-frequency resonances to be studied for swimbladders of realistic shapes under pressure and for typical wave-number-swimbladder length products of order 10-40. Implications of high-frequency swimbladder resonance for auditory function in fish are mentioned. [Work supported by ONR.
Inverse scattering problems with multi-frequencies
NASA Astrophysics Data System (ADS)
Bao, Gang; Li, Peijun; Lin, Junshan; Triki, Faouzi
2015-09-01
This paper is concerned with computational approaches and mathematical analysis for solving inverse scattering problems in the frequency domain. The problems arise in a diverse set of scientific areas with significant industrial, medical, and military applications. In addition to nonlinearity, there are two common difficulties associated with the inverse problems: ill-posedness and limited resolution (diffraction limit). Due to the diffraction limit, for a given frequency, only a low spatial frequency part of the desired parameter can be observed from measurements in the far field. The main idea developed here is that if the reconstruction is restricted to only the observable part, then the inversion will become stable. The challenging task is how to design stable numerical methods for solving these inverse scattering problems inspired by the diffraction limit. Recently, novel recursive linearization based algorithms have been presented in an attempt to answer the above question. These methods require multi-frequency scattering data and proceed via a continuation procedure with respect to the frequency from low to high. The objective of this paper is to give a brief review of these methods, their error estimates, and the related mathematical analysis. More attention is paid to the inverse medium and inverse source problems. Numerical experiments are included to illustrate the effectiveness of these methods.
Inverse scattering problem for quantum graph vertices
Cheon, Taksu; Turek, Ondrej; Exner, Pavel
2011-06-15
We demonstrate how the inverse scattering problem of a quantum star graph can be solved by means of diagonalization of the Hermitian unitary matrix when the vertex coupling is of the scale-invariant (or Fueloep-Tsutsui) form. This enables the construction of quantum graphs with desired properties in a tailor-made fashion. The procedure is illustrated on the example of quantum vertices with equal transmission probabilities.
Scattering from faceted surfaces in optimized room acoustics computations
NASA Astrophysics Data System (ADS)
Torres, Rendell R.; Svensson, U. Peter; de Rycker, Nicolas
2002-11-01
To minimize the computational demands of including scattering in auralization, it is appropriate to study how many orders of scattering are necessary. For this purpose, studying edge diffraction is especially appropriate as an elementary form of surface scattering. In a previous study [Torres et al., J. Acoust. Soc. Am. 109, 600-610 (2001)], it was found that higher orders and combinations of edge diffraction components were not usually as significant as first-order diffraction components. The primary reason was that the reference geometry (a large concert-hall stagehouse) was conservatively composed of large flat walls with dimensions larger than most wavelengths of interest. In that case, significant edge-diffractions occurred at relatively low frequencies (below about 150 Hz). Other realistic reflecting surfaces in rooms, however, also include smaller-scale surface irregularities, e.g., facets for which higher-frequency wavelengths are typically a similar order or larger. This study examines a smaller test geometry consisting of reflector panel arrays similar to those found in concert halls, and we compare computations with various orders of diffraction. Studies of diffraction order are done to determine when inclusion of higher orders is necessary or may be neglected for applications such as interactive auralization.
Collis, Jon M; Siegmann, William L; Jensen, Finn B; Zampolli, Mario; Küsel, Elizabeth T; Collins, Michael D
2008-01-01
Recent improvements in the parabolic equation method are combined to extend this approach to a larger class of seismo-acoustics problems. The variable rotated parabolic equation [J. Acoust. Soc. Am. 120, 3534-3538 (2006)] handles a sloping fluid-solid interface at the ocean bottom. The single-scattering solution [J. Acoust. Soc. Am. 121, 808-813 (2007)] handles range dependence within elastic sediment layers. When these methods are implemented together, the parabolic equation method can be applied to problems involving variations in bathymetry and the thickness of sediment layers. The accuracy of the approach is demonstrated by comparing with finite-element solutions. The approach is applied to a complex scenario in a realistic environment. PMID:18177137
Spectral solution of acoustic wave-propagation problems
NASA Technical Reports Server (NTRS)
Kopriva, David A.
1990-01-01
The Chebyshev spectral collocation solution of acoustic wave propagation problems is considered. It is shown that the phase errors decay exponentially fast and that the number of points per wavelength is not sufficient to estimate the phase accuracy. Applications include linear propagation of a sinusoidal acoustic wavetrain in two space dimensions, and the interaction of a sound wave with the bow shock formed by placing a cylinder in a uniform Mach 4 supersonic free stream.
The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation
NASA Astrophysics Data System (ADS)
Ogam, Erick; Depollier, Claude; Fellah, Z. E. A.
2010-09-01
Gas-saturated porous skeleton materials such as geomaterials, polymeric and metallic foams, or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss are still few. Accurate acoustic methods of characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we develop an acoustic method for the recovery of the material parameters of a rigid-frame, air-saturated polymeric foam cylinder. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field shows that it is also dependent on the intrinsic acoustic parameters of the porous cylinder, namely, porosity, tortuosity, and flow resistivity (permeability). The inverse problem of the recovery of the flow resistivity and porosity is solved by seeking the minima of the objective functions consisting of the sum of squared residuals of the differences between the experimental and theoretical scattered field data.
NASA Astrophysics Data System (ADS)
Wei, Qi; Cheng, Ying; Liu, Xiao-jun
2012-07-01
We present a three-dimensional acoustic concentrator capable of significantly enhancing the sound intensity in the compressive region with scattering cancellation, imaging, and mirage effects. The concentrator shell is built by isotropic gradient negative-index materials, which together with an exterior host medium slab constructs a pair of complementary media. The enhancement factor, which can approach infinity by tuning the geometric parameters, is always much higher than that of a traditional concentrator made by positive-index materials with the same size. The acoustic scattering theory is applied to derive the pressure field distribution of the concentrator, which is consistent with the numerical full-wave simulations. The inherent acoustic impedance match at the interfaces of the shell as well as the inverse processes of “negative refraction—progressive curvature—negative refraction” for arbitrary sound rays can exactly cancel the scattering of the concentrator. In addition, the concentrator shell can also function as an acoustic spherical magnifying superlens, which produces a perfect image with the same shape, with bigger geometric and acoustic parameters located at a shifted position. Then some acoustic mirages are observed whereby the waves radiated from (scattered by) an object located in the center region may seem to be radiated from (scattered by) its image. Based on the mirage effect, we further propose an intriguing acoustic transformer which can transform the sound scattering pattern of one object into another object at will with arbitrary geometric, acoustic, and location parameters.
Low-dispersion meshes for scattering problems
Hakula, H.
1996-12-31
For scattering problems, e.g. the Helmholtz equation, the ideal mesh in 2D is a structured mesh of equilateral triangles, since the numerical dispersion and internal reflections caused by the mesh are then minimal. However, if the scattering body does not conform to the mesh, one has to add unstructured elements to the mesh. In this paper we describe a simple modification to the Rebay`s method which leads to meshes of high quality in the context of the application. Even though the Rebay`s method is a variant of Delaunay algorithms, it does include the concept of a front. By controlling the generation of fronts in the mesh we can always choose the outer boundary of the computational domain so that the mesh will be structured far from the scattering body and the only anisotropic elements are close to the body. As a result of this, one can use the same generator both for electromagnetic and flow simulations in 2D. In multi-body configurations the meshes are intimately dependent on the relative distances between the bodies.
The derivation of scaling relationship between acoustic and electromagnetic scattering by spheres
Feng, Yongpan; Ge, Junxiang; Wan, Fayu
2013-11-15
The rigorous theory of the conversion between the scattering of uniform plane electromagnetic wave by a perfectly conducting sphere and the scattering of uniform plane acoustic wave by a rigid sphere is studied in this paper. The conversion formula between these two different scattering based on two calibration curves is derived, which describes the quantitative relationship between acoustic and electromagnetic wave scattering at arbitrary frequencies by spheres of arbitrary sizes. In addition, the scaling relationship of the sizes of those two spheres and the corresponding frequencies are discussed in detail, and an indirect method of measurement of electromagnetic scattering by the spheres is proposed.
Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre.
Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut
2014-01-01
Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s(-1) and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638
NASA Technical Reports Server (NTRS)
Meyer, Harold D.
1999-01-01
This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.
A Advanced Boundary Element Formulation for Acoustic Radiation and Scattering in Three Dimensions.
NASA Astrophysics Data System (ADS)
Soenarko, Benjamin
A computational method is presented for determining acoustic fields produced by arbitrary shaped three-dimensional bodies. The formulation includes both radiation and scattering problems. In particular an isoparametric element formulation is introduced in which both the surface geometry and the acoustic variables on the surface of the body are represented by second order shape functions within the local coordinate system. A general result for the surface velocity potential and the exterior field is derived. This result is applicable to non-smooth bodies, i.e. it includes the case where the surface may have a non-unique normal (e.g. at the edge of a cube). Test cases are shown involving spherical, cylindrical and cubical geometry for both radiation and scattering problems. The present formulation is also extended to include half-space problems in which the effect of the reflected wave from an infinite plane is taken into account. By selecting an appropriate Green's function, the surface integral over the plane is nullified; thus all the computational efforts can be performed only on the radiating or scattering body at issue and thereby greatly simplify the solution. A special formulation involving axisymmetric bodies and boundary conditions is also presented. For this special case, the surface integrals are reduced to line integrals and an integral over the angle of revolution. The integration over the angle is performed partly analytically in terms of elliptic integrals and partly numerically using simple Gaussian quadrature formula. Since the rest of the integrals involve only line integrals along the generator of the body, any discretization scheme can be easily obtained to achieve a desired degree of accuracy in evaluating these integrals.
Neutron Scattering Applied to Materials Problems
Morris, James R; Wang, Xun-Li; Fultz, B.
2006-01-01
Neutron scattering techniques for studying materials have been applied for more than 50 years, in part led by Clifford G. Shull and Bertram N. Brockhouse, who shared the 1994 Nobel Prize in physics. The award was given for their developments in studying both the structure and dynamics of materials. The application of neutron scattering to materials has received significantly greater attention in the last few years, due to the construction of the Spallation Neutron Source (SNS) at the Oak Ridge National laboratory. The SNS will provide unprecedented access to a wide variety of instruments designed for materials research. The idea for this series of articles originated during the 2005 TMS Annual Meeting. Two symposia were devoted to neutron scattering: Neutron Scattering in Materials Research; and Neutron Diffraction Characterization of Mechanical Behavior. the goal of these articles is to introduce techniques for studying materials using neutrons, particularly to answer what are considered traditional materials problems. The first article discusses structure and phase analysis. Neutrons may be used for diffraction, similar to x-rays. However, in certain circumstances, they bring particular advantages. For example, x-rays have difficulty 'seeing' light elements, particularly when heavier elements are present, whereas neutrons may scatter effectively from elements such as hydrogen and its isotopes. The scattering strength of neutrons is sensitive to the isotopic composition. This can be used to examine the influence of a particular element. Neutrons also interact magnetically, allowing their use for studying magnetic order in materials. Because neutrons are highly penetrating, in-situ investigations under special sample environments (e.g., temperature, magnetic field, high pressure) have become routine. The second article describes applications for studying residual stress and mechanical deformation. neutrons are better able to penetrate engineering components
NASA Astrophysics Data System (ADS)
Erhard, Klaus; Potthast, Roland
2003-10-01
We employ the point source method (PSM) for the reconstruction of some field u on parts of a domain Omega from the Cauchy data for the field on the boundary partialOmega of the domain. Then, the boundary condition for a perfectly conducting inclusion or a sound-soft object in Omega can be used to find the location and shape of the inhomogeneity. The results show that we can detect perfectly conducting inclusions in impedance tomography from the voltages for one injected current. For acoustic scattering a sound-soft object is found from the knowledge of one (total) field and its normal derivative on partialOmega. The work redesigns the PSM, which was first proposed in the framework of inverse scattering, to solve inverse boundary value problems. Numerical examples are provided for impedance tomography and the sound-soft acoustic boundary value problem.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Chou, Dean-Yi
2016-05-01
The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ ab and the scattering cross section σ sc for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ ab and σ sc, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n. The ratio of σ ab of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n, while the ratio of σ sc of the two sunspots is greater than the ratio of sunspot radii and increases with n. This suggests that σ ab is approximately proportional to the sunspot radius, while the dependence of σ sc on radius is faster than the linear increase.
Observed Dependence of Stimulated Raman Scattering on Ion-Acoustic Damping in Hohlraum Plasmas
Fernandez, J.C.; Cobble, J.A.; Failor, B.H.; DuBois, D.F.; Montgomery, D.S.; Rose, H.A.; Vu, H.X.; Wilde, B.H.; Wilke, M.D.; Chrien, R.E. ||
1996-09-01
The reflectivity of a laser due to stimulated Raman scattering (SRS) from long scale-length hohlraum plasmas is shown to depend on the damping of ion-acoustic waves. This dependence is observed in plasmas with either low or high ionization states. Since the SRS process itself is unrelated to acoustic waves, these data are evidence of a nonlinear coupling of SRS to other parametric processes involving daughter acoustic waves. {copyright} {ital 1996 The American Physical Society.}
Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: Exact results
NASA Astrophysics Data System (ADS)
Fabbri, Alessandro; Balbinot, Roberto; Anderson, Paul R.
2016-03-01
A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low-frequency limit.
Unified treatment of bound-state and scattering problems
Adhikari, S.K.; Tomio, L.
1988-01-01
The iteration-subtraction method for the unified treatment of bound-state and scattering problems is compared and contrasted with a similar method for the two-body bound-state problem via nonsingular scattering equations developed recently. We also compare another recent method for solving bound-state problems with the iteration-subtraction method.
Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H
2016-05-01
The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel. PMID:27250181
Acoustic build-up in on-chip stimulated Brillouin scattering
NASA Astrophysics Data System (ADS)
Wolff, C.; Steel, M. J.; Eggleton, B. J.; Poulton, C. G.
2015-09-01
We investigate the role of the spatial evolution of the acoustic field in stimulated Brillouin scattering processes in short high-gain structures. When the gain is strong enough that the gain length becomes comparable to the acoustic wave decay length of order 100 microns, standard approximations treating the acoustic field as a local response no longer apply. Treating the acoustic evolution more accurately, we find that the backward SBS gain of sub-millimetre long waveguides is significantly reduced from the value obtained by the conventional treatment because the acoustic mode requires several decay lengths to build up to its nominal value. In addition, the corresponding resonance line is broadened with the development of side bands. In contrast, we argue that intra-mode forward SBS is not expected to show these effects. Our results have implications for several recent proposals and experiments on high-gain stimulated Brillouin scattering in short semiconductor waveguides.
Acoustic build-up in on-chip stimulated Brillouin scattering
Wolff, C.; Steel, M. J.; Eggleton, B. J.; Poulton, C. G.
2015-01-01
We investigate the role of the spatial evolution of the acoustic field in stimulated Brillouin scattering processes in short high-gain structures. When the gain is strong enough that the gain length becomes comparable to the acoustic wave decay length of order 100 microns, standard approximations treating the acoustic field as a local response no longer apply. Treating the acoustic evolution more accurately, we find that the backward SBS gain of sub-millimetre long waveguides is significantly reduced from the value obtained by the conventional treatment because the acoustic mode requires several decay lengths to build up to its nominal value. In addition, the corresponding resonance line is broadened with the development of side bands. In contrast, we argue that intra-mode forward SBS is not expected to show these effects. Our results have implications for several recent proposals and experiments on high-gain stimulated Brillouin scattering in short semiconductor waveguides. PMID:26338720
Acoustic vibrations contribute to the diffuse scatter produced by ribosome crystals.
Polikanov, Yury S; Moore, Peter B
2015-10-01
The diffuse scattering pattern produced by frozen crystals of the 70S ribosome from Thermus thermophilus is as highly structured as it would be if it resulted entirely from domain-scale motions within these particles. However, the qualitative properties of the scattering pattern suggest that acoustic displacements of the crystal lattice make a major contribution to it. PMID:26457426
NASA Astrophysics Data System (ADS)
Langenberg, Karl J.
2003-04-01
It is well-known that solutions of electromagnetic scattering integral equations of the first or second kind (EFIE and MFIE) for perfectly electric or perfectly magnetic conducting scatterers are nonunique for those frequencies which correspond to interior Maxwell resonances of the scatterer; hence, the null spaces of the respective interior problem operators are under concern. In principle, all mathematical facts and proofs regarding this problem and cited in this paper are available from the book by [1983], yet, these authors mainly concentrate on single and double layer potentials for the scalar acoustic (Dirichlet and Neumann) as well as the magnetic dipole layer ansatz for the perfectly electric conducting (Maxwell) problem and treat the Huygens-type representation, which is more common in the electrical engineering community, not in the same detail. This might be the reason that part of the electrical engineering literature suffers from some confusion regarding the proper null spaces and their physical relevance, in particular, if the electromagnetic problem is considered in 2-D, where it reduces to scalar TM/TE-problems. The present contribution comments on these issues emphasizing that the null spaces of 2-D electromagnetics are the nonphysical null spaces originating from the Huygens-type representation of scalar acoustics.
NASA Astrophysics Data System (ADS)
Arias-Ramirez, Walter; Olson, Britton; Wolf, William; Lawrence Livermore National Laboratory Team; University of Campinas Team
2015-11-01
The suitability of a continuing forcing immersed boundary method (IBM) combined with a high-order finite difference method is examined on several acoustic scattering problems. A suite of two-dimensional numerical simulations of canonical cases are conducted with the aim of analyzing the error behavior associated with the IBM, through wave reflection, wave diffraction, and the shock-boundary layer interaction phenomena. The compressible Navier-Stokes equations are solved using the Miranda code developed at Lawrence Livermore National Laboratory. Comparison of analytical solution against numerical results is shown for different flow parameters. Preliminary results indicate that the continuing forcing approach has the largest error in wave reflection compared to analytical solution. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
An inverse acoustic waveguide problem in the time domain
NASA Astrophysics Data System (ADS)
Monk, Peter; Selgas, Virginia
2016-05-01
We consider the problem of locating an obstacle in a waveguide from time domain measurements of causal waves. More precisely, we assume that we are given the scattered field due to point sources placed on a surface located inside the waveguide away from the obstacle, where the scattered field is measured on the same surface. From this multi-static scattering data we wish to determine the position and shape of an obstacle in the waveguide. To deal with this inverse problem, we adapt and analyze the time domain linear sampling method. This involves proving new time domain estimates for the forward problem, as well as analyzing several time domain operators arising in the inversion scheme. We also implement the inversion algorithm and provide numerical results in two-dimensions using synthetic data.
Fully automatic hp-adaptivity for acoustic and electromagnetic scattering in three dimensions
NASA Astrophysics Data System (ADS)
Kurtz, Jason Patrick
We present an algorithm for fully automatic hp-adaptivity for finite element approximations of elliptic and Maxwell boundary value problems in three dimensions. The algorithm automatically generates a sequence of coarse grids, and a corresponding sequence of fine grids, such that the energy norm of the error decreases exponentially with respect to the number of degrees of freedom in either sequence. At each step, we employ a discrete optimization algorithm to determine the refinements for the current coarse grid such that the projection-based interpolation error for the current fine grid solution decreases with an optimal rate with respect to the number of degrees of freedom added by the refinement. The refinements are restricted only by the requirement that the resulting mesh is at most 1-irregular, but they may be anisotropic in both element size h and order of approximation p. While we cannot prove that our method converges at all, we present numerical evidence of exponential convergence for a diverse suite of model problems from acoustic and electromagnetic scattering. In particular we show that our method is well suited to the automatic resolution of exterior problems truncated by the introduction of a perfectly matched layer. To enable and accelerate the solution of these problems on commodity hardware, we include a detailed account of three critical aspects of our implementation, namely an efficient implementation of sum factorization, several efficient interfaces to the direct multi-frontal solver MUMPS, and some fast direct solvers for the computation of a sequence of nested projections.
Acoustic radiation torque on an irregularly shaped scatterer in an arbitrary sound field.
Fan, Zongwei; Mei, Deqing; Yang, Keji; Chen, Zichen
2008-11-01
To eliminate the limitation of the conventional acoustic radiation torque theory, which is only applicable to a disklike scatterer in a plane sound field, a new theory is established to calculate the radiation torque on any irregularly shaped scatterer in any arbitrary sound field. First, with the aid of the conservation law of angular momentum, the acoustic radiation torque is expressed as the angular momentum flux through a spherical surface with the center at the scatterer's centroid. Second, the velocity potential of the scattered field is derived, taking into account the influences of the translational and rotational movements of the scatterer induced by the first order stress of the incident sound field. Finally, a general calculating formula of the acoustic radiation torque is achieved. For a disklike scatterer in a plane sound filed, results from the above formula are well identical with those conventional formulas. By studying the case of a semicircular cylinder scatterer in a standing-wave sound field, it is found that for an irregularly shaped scatterer its rotation velocity is normally nonzero and the radiation torque changes with the spatial attitude. PMID:19045760
NASA Astrophysics Data System (ADS)
Khudyakov, M. M.; Likhachev, M. E.; Bubnov, M. M.; Lipatov, D. S.; Gur'yanov, A. N.; Temyanko, V.; Nagel, J.; Peyghambarian, N.
2016-05-01
Optical fibres having a radially nonuniform acoustically antiguiding structure produced by codoping their core with alumina and germania have been fabricated and investigated. The influence of the shape of the antiguiding acoustic refractive index profile and fibre core diameter on the stimulated Brillouin scattering (SBS) threshold and spectrum in the fibres has been assessed. An increase in SBS threshold by 4.4 dB with respect to a germanosilicate fibre having the same mode field diameter has been demonstrated.
Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon
NASA Astrophysics Data System (ADS)
Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-03-01
Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.
Acoustical and optical scattering and imaging of tissues: an overview
NASA Astrophysics Data System (ADS)
Ishimaru, Akira
2001-05-01
This talk will first give a general discussion on the ultrasound media characteristics of blood and spectral densities of tissues. The first-order scattering theory, multiple scattering theory, Doppler spectrum, cw and pulse scattering, focused beam, beam spot-size, speckle, texture, and rough interface effects will be presented. Imaging through tissues will then be discussed in terms of temporal and spatial resolutions, contrast, MTF (modulation transfer function), SAR and confocal imaging techniques, tomographic and holographic imaging, and inverse scattering. Next, we discuss optical diffusion in blood and tissues, radiative transfer theory, photon density waves, and polarization effects.
Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity
NASA Astrophysics Data System (ADS)
Li, Wu; Carrete, Jesús; Madsen, Georg K. H.; Mingo, Natalio
2016-05-01
We predict a marked effect of optical-acoustic phonon hybridization on phonon scattering and lattice thermal conductivity (κ ), and illustrate it in the case of Fe2Ge3 . This material presents very low-lying optical phonons with an energy of 1.8 meV at the Brillouin zone center, which show avoided crossings with longitudinal acoustic (LA) phonons, due to optical-acoustic phonon polarization hybridization. Because the optical phonons have nonvanishing scattering rates, even a small amount of hybridization with the optical phonon can increase the scattering rates of LA phonons by much more than one order of magnitude, causing the contribution of these phonons to κ to vanish. At low temperatures, the contributions of all LA phonons are eliminated, and thus the avoided crossing leads to a reduction of thermal conductivity by more than half. The scattering rates are very sensitive to the optical-acoustic phonon hybridization strength, characterized by the gap at the avoided crossing point and varied with the wave-vector direction. Our work presents a different reduction mechanism of κ in systems with optical-acoustic phonon hybridization, which can benefit the search for new thermoelectric materials.
NASA Astrophysics Data System (ADS)
Yang, Yang; Li, Xiukun
2016-06-01
Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.
NASA Astrophysics Data System (ADS)
Yang, Yang; Li, Xiukun
2016-04-01
Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.
Solution of Exterior Acoustic Problems by the Boundary Element Method.
NASA Astrophysics Data System (ADS)
Kirkup, Stephen Martin
Available from UMI in association with The British Library. The boundary element method is described and investigated, especially in respect of its application to exterior two -dimensional Laplace problems. Both empirical and algebraic analyses (including the effects of approximation of the boundary and boundary functions and the precision of the evaluation of the discrete forms) are developed. Methods for the automatic evaluation of the discrete forms of the Laplace and Helmholtz integral operators are reviewed and extended. Boundary element methods for the solution of exterior Helmholtz problems with general (but most importantly Neumann) boundary conditions are reviewed and some are explicitly stated using a new notation. Boundary element methods based on the boundary integral equations introduced by Brakhage & Werner/ Leis/ Panich/ Kussmaul (indirect) and Burton & Miller (direct) are given prime consideration and implemented for three -dimensional problems. The influence of the choice of weighting parameter on the performance of the methods is explored and further guidance is given. The application of boundary element methods and methods based on the Rayleigh integral to acoustic radiation problems are considered. Methods for speeding up their solution via the boundary element method are developed. Library subroutines for the solution of acoustic radiation problems are described and demonstrated. Computational techniques for the problem of predicting the noise produced by a running engine are reviewed and appraised. The application of the boundary element method to low-noise engine design and in the design of noise shields is considered. The boundary element method is applied to the Ricardo crankcase simulation rig, which is an engine -like structure. A comparison of predicted and measured sound power spectra is given.
Solution of exterior acoustic problems by the boundary element method
NASA Astrophysics Data System (ADS)
Kirkup, Stephen Martin
The boundary element method is described and investigated, especially in respect of its application to exterior two-dimensional Laplace problems. Both empirical and algebraic analyses (including the effects of approximation of the boundary and boundary functions and the precision of the evaluation of the discrete forms) are developed. Methods for the automatic evaluation of the discrete forms of the Laplace and Helmholtz integral operators are reviewed and extended. Boundary element methods for the solution of exterior Helmholtz problems with general (but most importantly Neumann) boundary conditions are reviewed and some are explicitly stated using a new notation. Boundary element methods based on the boundary integral equations introduced by Brakhage and Werner/Leis/Panich/Kussmaul (indirect) and Burton and Miller (direct) are given prime consideration and implemented for three-dimensional problems. The influence of the choice of weighting parameter on the performance of the methods is explored and further guidance is given. The application of boundary element methods and methods based on the Rayleigh integral to acoustic radiation problems are considered. Methods for speeding up their solution via the boundary element method are developed. Library subroutines for the solution of acoustic radiation problems are described and demonstrated. Computational techniques for the problem of predicting the noise produced by a running engine are reviewed and appraised. The application of the boundary element method to low-noise engine design and in the design of noise shields is considered. The boundary element method is applied to the Ricardo crankcase simulation rig, which is an engine-like structure. A comparison of predicted and measured sound power spectra is given.
MODE CONVERSION BETWEEN DIFFERENT RADIAL ORDERS FOR SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS
Zhao, Hui; Chou, Dean-Yi
2013-11-20
We study the mode conversion between different radial orders for solar acoustic waves interacting with sunspots. Solar acoustic waves are modified in the presence of sunspots. The modification in the wave can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave inside and around the sunspot. The wavefunction of the acoustic wave on the solar surface is computed from the cross-correlation function. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We use the incident waves of radial order n = 0-5 to measure the scattered wavefunctions from n to another radial order n' for NOAAs 11084 and 11092. The strength of scattered waves decreases rapidly with |Δn|, where Δn ≡ n' – n. The scattered waves of Δn = ±1 are visible for n ≤ 1, and significant for n ≥ 2. For the scattered wave of Δn = ±2, only few cases are visible. None of the scattered waves of Δn = ±3 are visible. The properties of scattered waves for Δn = 0 and Δn ≠ 0 are different. The scattered wave amplitude relative to the incident wave amplitude decreases with n for Δn = 0, while it increases with n for Δn ≠ 0. The scattered wave amplitudes of Δn = 0 are greater for the larger sunspot, while those of Δn ≠ 0 are insensitive to the sunspot size.
Fictitious domain method for unsteady problems: Application to electromagnetic scattering
Collino, F.; Joly, P.; Millot, F.
1997-12-01
This paper investigates the use of a fictitious domain method as an alternative numerical method (compared to finite difference and finite element methods) for handling problems dealing with two-dimensional scattering by an obstacle. An example of this would be electromagnetic waves scattered from a perfectly conducting boundaries.
NASA Astrophysics Data System (ADS)
Bandulet, H. C.; Labaune, C.; Lewis, K.; Depierreux, S.
2004-07-01
Thomson scattering (TS) has been used to investigate the two-ion decay instability of ion acoustic waves generated by stimulated Brillouin scattering in an underdense CH plasma. Two complementary TS diagnostics, spectrally and spatially resolved, demonstrate the occurrence of the subharmonic decay of the primary ion acoustic wave into two secondary waves. The study of the laser intensity dependence shows that the secondary ion acoustic waves are correlated with the SBS reflectivity saturation, at a level of a few percent.
Scattered acoustic field above a grating of non-parallel rectangular cavities
NASA Astrophysics Data System (ADS)
Khanfir, A.; Faiz, A.; Ducourneau, J.; Chatillon, J.; Lami, S. Skali
2016-01-01
Geometric or acoustical irregularities induces acoustic scattering. In this paper, a generalization of the model proposed by Khanfir et al. [8] (Journal of Sound and Vibration 332 (4) (2013)) to determine the scattered acoustic field above gratings of parallel rectangular cavities is developed, addressing the case of gratings of non-parallel rectangular cavities. The results provided by the model were compared both to numerical results, obtained with the finite element method, and to experimental ones. The observed agreement between the analytical predictions and the numerical and experimental results supports the validity of the proposed model. The coupling between the different cavities was investigated, in order to attain an explanation for its dependence on frequency and on the spacing between cavities.
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, C. I.
2013-01-01
The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel fl ow problem.
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2013-01-01
The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel ow problem.
Inverse radiation problem in axisymmetric cylindrical scattering media
NASA Astrophysics Data System (ADS)
Menguc, M. P.; Manickavasagam, S.
1993-09-01
A semianalytical technique has been developed to solve the inverse radiation problem in absorbing and scattering cylindrical media. The radiative properties in the medium are allowed to vary radially. Isotropic, linearly anisotropic, and Rayleigh scattering phase functions are considered, and both the first- and second-order scattering of radiation are accounted for in the analysis. The angular radiosity distribution obtained from the solution of the forward problem is employed as input to the inverse analysis. A numerical inversion scheme is followed to determine the profiles of extinction coefficient and the single-scattering albedo. For an anisotropically scattering medium, the asymmetry factor is also recovered. It is shown that the method is simple and accurate, even though the inversion is limited to three- or four-layer media. This inversion procedure can easily be used in experiments to determine the effective radiative property distributions in cylindrical systems.
Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.
2008-01-01
This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.
The effect of hemolysis on acoustic scattering from blood
NASA Astrophysics Data System (ADS)
Coussios, Constantin-C.; Ffowcs Williams, Shon E.
2002-05-01
In an attempt to develop a direct method for measuring the extent of red cell damage in vitro, the effect of the degree of hemolysis on ultrasonic scattering from blood was investigated. Starting with a suspension of 30% hematocrit, a series of suspensions containing different relative concentrations of healthy and damaged red cells in saline were prepared, with the total number of cells present in any one suspension being constant. For each sample, a suspension of equal concentration of healthy cells, but no lyzed cells, was also produced. Using a specially designed container, all samples were exposed to 15 MHz ultrasound in pulse-echo mode and measurements of backscattering were obtained. At high hematocrits, the samples containing damaged cells were found to scatter substantially more than the suspensions containing exclusively healthy cells. This indicates that damaged cells contribute significantly to the overall backscattered intensity. Below a concentration of 13% per volume of healthy cells, scattering levels from healthy and hemolyzed suspensions were comparable. A theoretical model, which treats healthy cells as weak-scattering spheres and damaged cells as hard thin disks, is proposed to interpret the observed scattering behavior.
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
NASA Astrophysics Data System (ADS)
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-02-01
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
Nikolaeva, Anastasiia V. Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.
2015-10-28
Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.
Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.
2016-01-01
Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter. PMID:27147775
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li E-mail: elaineli@physics.utexas.edu; Li, Xiaoqin E-mail: elaineli@physics.utexas.edu
2015-02-02
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
NASA Astrophysics Data System (ADS)
Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.
2015-10-01
Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.
Reflection and Scattering of Acoustical Waves from a Discontinuity in Absorption
NASA Astrophysics Data System (ADS)
Jones, J. P.; Leeman, S.; Nolan, E.; Lee, D.
The reflection and transmission of a plane acoustical wave from a planar boundary at the interface between two homogeneous media of different acoustical properties is a classical problem in acoustics that has served as a basis for many developments in acoustics for over 100 years. This problem, detailed in virtually every textbook on acoustics, provides us with the acoustical analogue to Snell's Law in optics and gives us correspondingly simple results. Classical acoustics predicts that a reflection from a boundary occurs only if the characteristic acoustical impedances of the two media are different. Here we show that a reflection also occurs if the media have the same impedances but different absorption coefficients. Our analysis yields some surprising results. For example, a reflection will occur at a discontinuity in absorption even if the impedance is uniform and continuous across the interface. In addition, a discontinuity in impedance at an interface between two media that have constant and equal, but non-zero absorption, results in a reflection coefficient that is dependent on absorption as well as impedance. In general, reflection coefficients now become frequency dependent. To experimentally test our results, we measured the reflection at the interface between water and castor oil, two liquids with similar impedances but very different absorption coefficients. Measurement of the reflection coefficient between 1 and 50 MHz demonstrated a frequency dependence that was in good agreement with our analysis.
Heterodyne signal-to-noise ratios in acoustic mode scattering experiments
NASA Technical Reports Server (NTRS)
Cochran, W. R.
1980-01-01
The relation between the signal to noise ratio (SNR) obtained in heterodyne detection of radiation scattered from acoustic modes in crystalline solids and the scattered spectral density function is studied. It is shown that in addition to the information provided by the measured frequency shifts and line widths, measurement of the SNR provides a determination of the absolute elasto-optical (Pockel's) constants. Examples are given for cubic crystals, and acceptable SNR values are obtained for scattering from thermally excited phonons at 10.6 microns, with no external perturbation of the sample necessary. The results indicate the special advantages of the method for the study of semiconductors.
Dushaw, Brian D; Sagen, Hanne; Beszczynska-Möller, Agnieszka
2016-08-01
Acoustic tomography systems have been deployed in Fram Strait over the past decade to complement existing observing systems there. The observed acoustic arrival patterns are unusual, however, consisting of a single, broad arrival pulse, with no discernible repeating patterns or individual ray arrivals. The nature of these arrivals is caused by vigorous acoustic scattering from the small-scale processes that dominate ocean variability in Fram Strait. Simple models for internal wave and mesoscale variability were constructed and tailored to match the variability observed by moored thermisters in Fram Strait. The internal wave contribution to variability is weak. Acoustic propagation through a simulated ocean consisting of a climatological sound speed plus mesoscale and internal wave scintillations obtains arrival patterns that match the characteristics of those observed, i.e., pulse width and travel time variation. The scintillations cause a proliferation of acoustic ray paths, however, reminiscent of "ray chaos." This understanding of the acoustic forward problem is prerequisite to designing an inverse scheme for estimating temperature from the observed travel times. PMID:27586755
NASA Astrophysics Data System (ADS)
Mor, Arun
Sandwich panels with honeycomb core are often employed in structures for improved mechanical properties with lightweight. Honeycombs are defined by non-overlapping and periodic unit cells. Most research conducted on these sandwich panels focuses on stiffness and strength properties. The acoustic aspect of these panels has been focused on sound transmission loss. For acoustics, previous studies used effective honeycomb orthotropic elastic moduli based on Cartesian unit cell geometry to model the core as a homogeneous structure. While efficient, this modeling approach loses accuracy at higher frequencies. Furthermore, when used for curved panels, the effective moduli are only approximate. In this work, mechanical and acoustic characteristics of cylindrical and spherical honeycomb panels are studied using finite element analysis. The unit cell geometry core is oriented both radially and in the transverse direction. The models are analyzed for sound scattering measured by target strength with interactions between structure and the acoustic medium through coupling between the domains. Both air and water are compared for the acoustic region. Different honeycomb core geometries varying in the hexagon arrangement, number of unit cells and level of hierarchy are studied. The structures developed are constrained to have the same total mass allowing for comparisons based on only changes in stiffness properties. The effect of face sheet thickness on the mechanical and acoustic properties of the curved sandwich structures is also studied. The vibration and acoustic scattering behavior of these structures have been investigated for natural frequencies between 1-1000 Hz to predict and understand the different responses near and at resonances. The target strength response of the structures has been studied in the near field at both front and back of the structures. The effect of acoustic coupling is observed clearly on varying the outer domains properties between air and water. It
Characterization of Biological Cells by Inverse Acoustic Scattering and Electrozone Sensing.
NASA Astrophysics Data System (ADS)
Chen, Xucai
A technique is presented which characterizes biological cells by their mechanical descriptors: size, compressibility and density. The experimental apparatus consists of two acoustic transducers and an electrozone sensor submerged in a bath of conducting host fluid. Diluted biological cells are convected through the apparatus by a coaxial jet. An individual cell passes through the electrozone where its volume is measured by the Coulter principle, and then through the confocal region of the two acoustic transducers. One acoustic transducer sends out tone bursts at a center frequency of 30 MHz and detects a back-scattered signal from the cell while the other transducer detects the scattered signal at 90^circ. Thus the volume, the 90^circ scattering function, and the 180^circ scattering function are recorded for each cell. The acoustic scattering functions are then inverted to provide the compressibility and density of that cell. Statistics of the mechanical properties for human red and white blood cells are generated and displayed. The size, compressibility and density of both normal and abnormal red blood cells are reported. By modeling a cell as an immiscible mixture of protein and saline solution, perfect mixture laws for compressibility and density are derived and confirmed by experimental results. With the mixture laws established, the mean corpuscular hemoglobin concentration (MCHC) is inferred from the compressibility and density data for red blood cells. Using only the data from the 180^circ back-scattered signal, different white cell subgroups are successfully distinguished by their locations in the two dimensional histograms of their mechanical descriptors.
Acoustical problems in high energy pulsed E-beams lasers
NASA Technical Reports Server (NTRS)
Horton, T. E.; Wylie, K. F.
1976-01-01
During the pulsing of high energy, CO2, electron beam lasers, a significant fraction of input energy ultimately appears as acoustical disturbances. The magnitudes of these disturbances were quantified by computer analysis. Acoustical and shock impedance data are presented on materials (Rayleigh type) which show promise in controlling acoustical disturbance in E-beam systems.
Temporal Distributions of Problem Behavior Based on Scatter Plot Analysis.
ERIC Educational Resources Information Center
Kahng, SungWoo; Iwata, Brian A.; Fischer, Sonya M.; Page, Terry J.; Treadwell, Kimberli R. H.; Williams, Don E.; Smith, Richard G.
1998-01-01
A large-scale analysis was conducted of problem behavior by observing 20 individuals living in residential facilities. Data were converted into scatter plot formats. When the data were transformed into aggregate "control charts," 12 of 15 sets of data revealed 30-minute intervals during which problem behavior was more likely to occur. (Author/CR)
Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering
Gusev, Vitalyi E.
2014-08-14
In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range.
Near-specular acoustic scattering from a buried submarine mud volcano.
Gerig, Anthony L; Holland, Charles W
2007-12-01
Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected. PMID:18247739
Krysl, Petr; Hawkins, Anthony D; Schilt, Carl; Cranford, Ted W
2012-01-01
Fish can sense a wide variety of sounds by means of the otolith organs of the inner ear. Among the incompletely understood components of this process are the patterns of movement of the otoliths vis-à-vis fish head or whole-body movement. How complex are the motions? How does the otolith organ respond to sounds from different directions and frequencies? In the present work we examine the responses of a dense rigid scatterer (representing the otolith) suspended in an acoustic fluid to low-frequency planar progressive acoustic waves. A simple mechanical model, which predicts both translational and angular oscillation, is formulated. The responses of simple shapes (sphere and hemisphere) are analyzed with an acoustic finite element model. The hemispherical scatterer is found to oscillate both in the direction of the propagation of the progressive waves and also in the plane of the wavefront as a result of angular motion. The models predict that this characteristic will be shared by other irregularly-shaped scatterers, including fish otoliths, which could provide the fish hearing mechanisms with an additional component of oscillation and therefore one more source of acoustical cues. PMID:22912710
Krysl, Petr; Hawkins, Anthony D.; Schilt, Carl; Cranford, Ted W.
2012-01-01
Fish can sense a wide variety of sounds by means of the otolith organs of the inner ear. Among the incompletely understood components of this process are the patterns of movement of the otoliths vis-à-vis fish head or whole-body movement. How complex are the motions? How does the otolith organ respond to sounds from different directions and frequencies? In the present work we examine the responses of a dense rigid scatterer (representing the otolith) suspended in an acoustic fluid to low-frequency planar progressive acoustic waves. A simple mechanical model, which predicts both translational and angular oscillation, is formulated. The responses of simple shapes (sphere and hemisphere) are analyzed with an acoustic finite element model. The hemispherical scatterer is found to oscillate both in the direction of the propagation of the progressive waves and also in the plane of the wavefront as a result of angular motion. The models predict that this characteristic will be shared by other irregularly-shaped scatterers, including fish otoliths, which could provide the fish hearing mechanisms with an additional component of oscillation and therefore one more source of acoustical cues. PMID:22912710
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, Chris
2013-01-01
Five different central difference schemes, based on a conservative differencing form of the Kennedy and Gruber skew-symmetric scheme, were compared with six different upwind schemes based on primitive variable reconstruction and the Roe flux. These eleven schemes were tested on a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem and a turbulent channel flow problem. The central schemes were generally very accurate and stable, provided the grid stretching rate was kept below 10%. As near-DNS grid resolutions, the results were comparable to reference DNS calculations. At coarser grid resolutions, the need for an LES SGS model became apparent. There was a noticeable improvement moving from CD-2 to CD-4, and higher-order schemes appear to yield clear benefits on coarser grids. The UB-7 and CU-5 upwind schemes also performed very well at near-DNS grid resolutions. The UB-5 upwind scheme does not do as well, but does appear to be suitable for well-resolved DNS. The UF-2 and UB-3 upwind schemes, which have significant dissipation over a wide spectral range, appear to be poorly suited for DNS or LES.
Use of the Wigner representation in scattering problems
NASA Technical Reports Server (NTRS)
Bemler, E. A.
1975-01-01
The basic equations of quantum scattering were translated into the Wigner representation, putting quantum mechanics in the form of a stochastic process in phase space, with real valued probability distributions and source functions. The interpretative picture associated with this representation is developed and stressed and results used in applications published elsewhere are derived. The form of the integral equation for scattering as well as its multiple scattering expansion in this representation are derived. Quantum corrections to classical propagators are briefly discussed. The basic approximation used in the Monte-Carlo method is derived in a fashion which allows for future refinement and which includes bound state production. Finally, as a simple illustration of some of the formalism, scattering is treated by a bound two body problem. Simple expressions for single and double scattering contributions to total and differential cross-sections as well as for all necessary shadow corrections are obtained.
Yin, Jie; Tao, Chao Cai, Peng; Liu, Xiaojun
2015-06-08
Acoustically inhomogeneous mediums with multiple scattering are often the nightmare of photoacoustic tomography. In order to break this limitation, a photoacoustic tomography scheme combining ultrasound interferometry and time reversal is proposed to achieve images in acoustically scattering medium. An ultrasound interferometry is developed to determine the unknown Green's function of strong scattering tissue. Using the determined Greens' function, a time-reversal process is carried out to restore images behind an acoustically inhomogeneous layer from the scattering photoacoustic signals. This method effectively decreases the false contrast, noise, and position deviation of images induced by the multiple scattering. Phantom experiment is carried out to validate the method. Therefore, the proposed method could have potential value in extending the biomedical applications of photoacoustic tomography in acoustically inhomogeneous tissue.
NASA Astrophysics Data System (ADS)
Shen, Huijie; Wen, Jihong; Païdoussis, Michael P.; Yu, Dianlong; Cai, Li; Wen, Xisen
2013-09-01
This work derives the set of acoustic parameters of a metamaterial for an ideal cylindrical cloak through scattering theory. A multilayered cloak with homogeneous isotropic materials is introduced to approximate the ideal cloak. An active metamaterial, consisting of active arrays of acoustic cavities separated by piezo-diaphragms, is addressed to achieve the required parameters for each layer of the multilayered cloak. In particular, with the aid of a multi-control strategy that takes into account the coupling between adjacent cells, the effective parameters for the cloak can be accurately realized.
Scattering of acoustic evanescent waves by circular cylinders: Partial wave series solution
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2002-05-01
Evanescent acoustical waves occur in a variety of situations such as when sound is incident on a fluid interface beyond the critical angle and when flexural waves on a plate are subsonic with respect to the surrounding fluid. The scattering by circular cylinders at normal incidence was calculated to give insight into the consequences on the scattering of the evanescence of the incident wave. To analyze the scattering, it is necessary to express the incident wave using a modified expansion involving cylindrical functions. For plane evanescent waves, the expansion becomes a double summation with products of modified and ordinary Bessel functions. The resulting modified series is found for the scattering by a fluid cylinder in an unbounded medium. The perfectly soft and rigid cases are also examined. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on the transverse coordinate. The associated exponential dependence of the scattering on the location of a scatterer was previously demonstrated [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].
Acoustic scattering by elastic cylinders of elliptical cross-section and splitting up of resonances
Ancey, S. Bazzali, E. Gabrielli, P. Mercier, M.
2014-05-21
The scattering of a plane acoustic wave by an infinite elastic cylinder of elliptical cross section is studied from a modal formalism by emphasizing the role of the symmetries. More precisely, as the symmetry is broken in the transition from the infinite circular cylinder to the elliptical one, the splitting up of resonances is observed both theoretically and experimentally. This phenomenon can be interpreted using group theory. The main difficulty stands in the application of this theory within the framework of the vectorial formalism in elastodynamics. This method significantly simplifies the numerical treatment of the problem, provides a full classification of the resonances, and gives a physical interpretation of the splitting up in terms of symmetry breaking. An experimental part based on ultrasonic spectroscopy complements the theoretical study. A series of tank experiments is carried out in the case of aluminium elliptical cylinders immersed in water, in the frequency range 0 ≤ kr ≤ 50, where kr is the reduced wave number in the fluid. The symmetry is broken by selecting various cylinders of increasing eccentricity. More precisely, the greater the eccentricity, the higher the splitting up of resonances is accentuated. The experimental results provide a very good agreement with the theoretical ones, the splitting up is observed on experimental form functions, and the split resonant modes are identified on angular diagrams.
NASA Astrophysics Data System (ADS)
Blackstock, David T.
1987-07-01
Research on four topics in nonlinear acoustics is described. (1) Dependence of three coefficients of nonlinearity for sea water on pressure, temperature, and density. Computation of the coefficients from a combination of theoretical and empirical relations is in progress. (2) Nonlinear, noncollinear interaction of sound waves. Three journal articles have been written, two on interaction in a rectangular waveguide and one on coefficient of nonlinearity for collinear and noncollinear interaction. (3) Reflection and refraction of finite amplitude sound at a plane interface between two fluids. A new form of Snell's law valid for waves of finite amplitude is derived. An experiment to test the implications of the new law is being carried out. (4) Scattering of sound by sound. The classical problem of the secondary radiation produced by interaction of two crossed sound beams is discussed. An experimental test of recent theoretical treatments is in preparation. A preliminary experiment is the measurement of the range dependence of finger lobes in the second harmonic radiation produced in the field of a monochromatically driven piston.
Fischell, Erin M; Schmidt, Henrik
2015-12-01
One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)]. PMID:26723332
España, Aubrey L; Williams, Kevin L; Plotnick, Daniel S; Marston, Philip L
2014-07-01
Understanding the physics governing the interaction of sound with targets in an underwater environment is essential to improving existing target detection and classification algorithms. To illustrate techniques for identifying the key physics, an examination is made of the acoustic scattering from a water-filled cylindrical shell. Experiments were conducted that measured the acoustic scattering from a water-filled cylindrical shell in the free field, as well as proud on a sand-water interface. Two modeling techniques are employed to examine these acoustic scattering measurements. The first is a hybrid 2-D/3-D finite element (FE) model, whereby the scattering in close proximity to the target is handled via a 2-D axisymmetric FE model, and the subsequent 3-D propagation to the far field is determined via a Helmholtz integral. This model is characterized by the decomposition of the fluid pressure and its derivative in a series of azimuthal Fourier modes. The second is an analytical solution for an infinitely long cylindrical shell, coupled with a simple approximation that converts the results to an analogous finite length form function. Examining these model results on a mode-by-mode basis offers easy visualization of the mode dynamics and helps distinguish the different physics driving the target response. PMID:24993199
Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid.
Mitri, Farid G
2015-10-01
Based on the partial-wave series expansion (PWSE) method in spherical coordinates, a formal analytical solution for the acoustic scattering of a zeroth-order Bessel acoustic beam centered on a rigid fixed (oblate or prolate) spheroid is provided. The unknown scattering coefficients of the spheroid are determined by solving a system of linear equations derived for the Neumann boundary condition. Numerical results for the modulus of the backscattered pressure (θ = π) in the near field and the backscattering form function in the far field for both prolate and oblate spheroids are presented and discussed, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle of the Bessel beam, and the dimensionless frequency. The plots display periodic oscillations (versus the dimensionless frequency) because of the interference of specularly reflected waves in the backscattering direction with circumferential Franz' waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3-D directivity patterns illustrate the near- and far-field axisymmetric scattering. Investigations in underwater acoustics, particle levitation, scattering, and the detection of submerged elongated objects and other related applications utilizing Bessel waves would benefit from the results of the present study. PMID:26470043
a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling
NASA Astrophysics Data System (ADS)
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-01
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
A PROPOSED BENCHMARK PROBLEM FOR SCATTER CALCULATIONS IN RADIOGRAPHIC MODELLING
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-03
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
Daeva, S.G.; Setukha, A.V.
2015-03-10
A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.
Improved TV-CS Approaches for Inverse Scattering Problem
Bevacqua, M. T.; Di Donato, L.
2015-01-01
Total Variation and Compressive Sensing (TV-CS) techniques represent a very attractive approach to inverse scattering problems. In fact, if the unknown is piecewise constant and so has a sparse gradient, TV-CS approaches allow us to achieve optimal reconstructions, reducing considerably the number of measurements and enforcing the sparsity on the gradient of the sought unknowns. In this paper, we introduce two different techniques based on TV-CS that exploit in a different manner the concept of gradient in order to improve the solution of the inverse scattering problems obtained by TV-CS approach. Numerical examples are addressed to show the effectiveness of the method. PMID:26495420
Depolarized guided acoustic wave Brillouin scattering in hollow-core photonic crystal fibers.
Zhong, Wenjia Elser née; Stiller, Birgit; Elser, Dominique; Heim, Bettina; Marquardt, Christoph; Leuchs, Gerd
2015-10-19
By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an increase of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure. PMID:26480433
Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging
NASA Astrophysics Data System (ADS)
Haynes, Mark Spencer
Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self
NASA Astrophysics Data System (ADS)
Ariza, A.; Landeira, J. M.; Escánez, A.; Wienerroither, R.; Aguilar de Soto, N.; Røstad, A.; Kaartvedt, S.; Hernández-León, S.
2016-05-01
Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400-500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500-600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s - 1 and the long-range ones at 11.5 ± 3.8 cm s - 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.
RADIOGRAPHIC BENCHMARK PROBLEM 2009 - SCATTER CALCULATIONS IN MODELLING
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2010-02-22
Code Validation is a permanent concern in computer simulation, and has been addressed repeatedly in eddy current and ultrasonic modelling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radio-graphic modelling, the scattered radiation prediction. An update of the results of the 2008 benchmark is presented. Additionally we discuss the extension of this benchmark on the lower energy part for 60 and 80 keV as well as for higher energies up to 10 MeV to study the contribution of pair production. Of special interest will be the primary radiation (attenuation law as reference), the total scattered radiation, the relative contribution of scattered radiation separated by order of scatter events (1st, 2nd, ..., 20th), and the spectrum of scattered radiation. We present the results of three Monte Carlo codes (MC-Ray, Sindbad and Moderato) as well as an analytical first order scattering code (VXI) and compare to MCNP as reference.
NASA Astrophysics Data System (ADS)
Neuville, C.; Tassin, V.; Pesme, D.; Monteil, M.-C.; Masson-Laborde, P.-E.; Baccou, C.; Fremerye, P.; Philippe, F.; Seytor, P.; Teychenné, D.; Seka, W.; Katz, J.; Bahr, R.; Depierreux, S.
2016-06-01
The indirect-drive scheme to inertial confinement fusion uses a large number of laser beams arranged in a symmetric angular distribution. Collective laser plasma instabilities can therefore develop that couple all the incident laser waves located in a cone to the daughter wave growing along the cone symmetry axis [D. F. DuBois et al., Phys. Fluids B 4, 241 (1992)]. With complementary diagnostics of Thomson scattering and of the scattered light, we demonstrate the occurrence of collective stimulated Brillouin sidescattering driving collective acoustic waves in indirect-drive experiments.
Surprises and anomalies in acoustical and optical scattering and radiation forces
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2015-09-01
Experiments on radiation torques and negative radiation forces by various researchers display how the underlying wave-field geometry influences radiation forces. Other situations strongly influenced by wave-field geometry include high-order caustics present in light-scattering patterns of objects as simple as oblate drops of water or oblate bubbles of air in water. Related theoretical and experimental investigations are considered. Acoustic scattering enhancements associated with various guided waves are also examined. These include guided waves having negative group velocities and guided wave radiating wavefronts having a vanishing Gaussian curvature.
Neuville, C; Tassin, V; Pesme, D; Monteil, M-C; Masson-Laborde, P-E; Baccou, C; Fremerye, P; Philippe, F; Seytor, P; Teychenné, D; Seka, W; Katz, J; Bahr, R; Depierreux, S
2016-06-10
The indirect-drive scheme to inertial confinement fusion uses a large number of laser beams arranged in a symmetric angular distribution. Collective laser plasma instabilities can therefore develop that couple all the incident laser waves located in a cone to the daughter wave growing along the cone symmetry axis [D. F. DuBois et al., Phys. Fluids B 4, 241 (1992)]. With complementary diagnostics of Thomson scattering and of the scattered light, we demonstrate the occurrence of collective stimulated Brillouin sidescattering driving collective acoustic waves in indirect-drive experiments. PMID:27341238
Parallel decomposition methods for the solution of electromagnetic scattering problems
NASA Technical Reports Server (NTRS)
Cwik, Tom
1992-01-01
This paper contains a overview of the methods used in decomposing solutions to scattering problems onto coarse-grained parallel processors. Initially, a short summary of relevant computer architecture is presented as background to the subsequent discussion. After the introduction of a programming model for problem decomposition, specific decompositions of finite difference time domain, finite element, and integral equation solutions to Maxwell's equations are presented. The paper concludes with an outline of possible software-assisted decomposition methods and a summary.
Yang, Ming-Hsu; Chou, Dean-Yi; Liang, Zhi-Chao; Zhao Hui
2012-08-10
The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their
Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2015-12-01
Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.
Review of selected oceanic EM/EO scattering problems
NASA Astrophysics Data System (ADS)
Haller, Merrick C.
2010-02-01
Electromagnetic and electro-optical (EM/EO) propagation and scattering in the ocean is of interest for a wide range of science problems. For example, the biological productivity of ocean waters through photochemical processes is governed by the vertical attenuation of solar radiation. Also, EO scattering theory is the primary basis for determining biogeochemical parameters (e.g. phytoplankton, suspended sediments, and dissolved matter) from the water leaving optical radiance. In addition, EO scattering from suspended sediments and bubbles is the limiting factor for active lidar systems used to map the sea bottom. This work will review specific applications of EO/EM scattering theory with regard to the influence of bubbles and droplets on remote sensing in the nearshore ocean. The current state of understanding concerning models and applications for optical scattering from bubbles in the water column as well as microwave scattering from water droplets produced by breaking waves at the ocean surface will be discussed as well as future research directions.
Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering
Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.
2014-01-01
Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).
Spurious fields in time domain computations of scattering problems
NASA Technical Reports Server (NTRS)
Kangro, Urve; Nicolaides, Roy
1995-01-01
In this paper two-dimensional electromagnetic scattering problems with a time-periodic incident field are considered. The scatterer is a perfect conductor, and an artificial boundary condition is used. The large time behavior of solutions, depending on (divergence-free) initial conditions, is characterized. It turns out that in addition to the expected time-periodic solution the limiting solution may also contain a spurious stationary field. The source of the stationary field is explained and equations describing it are obtained. Several avoidance strategies are discussed, and numerical comparisons of these techniques are given.
NASA Astrophysics Data System (ADS)
Xu, Tao; Zhu, Xue-Feng; Liang, Bin; Li, Yong; Zou, Xin-Ye; Cheng, Jian-Chun
2012-07-01
We have designed a cylindrical multilayered structure to reduce scattering for an acoustic sensor while allowing it to receive external information. The proposed structure consists of two alternately arranged complementary media with homogeneous isotropic single-negative parameters. Numerical results show that the acoustic scattering from the sensor is suppressed considerably when the number of bilayers is large enough and the thickness of each bilayer is much smaller than the incident wavelength. This may be particularly significant for practical applications where acoustic measurements would otherwise be disturbed by the insertion of sensors.
Precision analysis based on Cramer-Rao bound for 2D acoustics and electromagnetic inverse scattering
NASA Astrophysics Data System (ADS)
Diong, M. L.; Roueff, A.; Lasaygues, P.; Litman, A.
2015-07-01
The aim of the present article is to predict the expected precision quantitatively in inverse scattering when one tries to determine the intrinsic properties of a given target from its scattered field. To conduct such a study, we analyze the precision of contrast estimators with the Cramer-Rao bound (CRB) when the target is homogeneous, infinitely-long and with a circular cross-section and with an additive complex circular gaussian noise at the receivers. An unified framework is derived to handle acoustic or electromagnetic imaging configurations equally. Numerical tests enable to quantitatively appraise the variations of the CRB with respect to the considered physical situation parameters: transmission/reflexion, antennas arrangement, weak/strong scatterers, noise level and source frequency. These analyzes are performed with respect to the real and imaginary parts of the contrast.
NASA Astrophysics Data System (ADS)
Cheng, Ying; Liu, XiaoJun
2008-11-01
It was qualitatively demonstrated through finite-element full-wave simulations that acoustic cloak can be constructed by using concentric multilayered structure with alternating homogeneous isotropic materials [Y. Cheng et al., Appl. Phys. Lett. 92, 151913 (2008)]. Here we present a sequential in-depth analysis of the proposed cloak by means of the multiple-scattering algorithms. Calculated pressure fields demonstrate that the cloak possesses low-reflection and wavefront-bending properties. The scattering patterns further characterize the directional cloaking performance in the far field, which is consistent with the pressure fields. The mechanism of the cloaking is ascribed to a specific multiple-scattering process determined by the microscopic material distribution and structural details of the cloak. We also discuss the behavior of the multilayered cloak as a function of wavelength.
Love, Richard H
2013-11-01
In the 1970s a model of resonant scattering from a swimbladder-bearing fish was developed. The fish was modeled as an air bubble, representing a swimbladder, encased in a viscous spherical shell, representing the fish flesh. This model has been used successfully to correlate acoustic scattering data with fish information in a number of ocean locations. Recently, questions have arisen about viscous damping of the flesh and the thickness of the shell [K. Baik, J. Acoust. Soc. Am. 133, 5-8 (2013)]. This Letter responds to those questions and provides practical insight into the model's use. PMID:24180749
Observation of induced longitudinal and shear acoustic phonons by Brillouin scattering.
Yoshida, Taisuke; Matsukawa, Mami; Yanagitani, Takahiko
2011-06-01
To improve the accuracy of velocity measurements in the Brillouin scattering technique using weak thermal phonons, we have used induced coherent phonons, which intensify the scattering. To induce phonons in the gigahertz range, we used a c-axis tilted ZnO film transducer that was developed in our laboratory. This allowed us to induce longitudinal and shear acoustic phonons effectively at hypersonic frequencies. As a result, we obtained scattered light in the silica glass sample that was much more intense than that obtained from the thermal phonons. Because the Brillouin scattering from induced phonons was measured, the shift frequency was that of the electric signal applied to the ZnO transducer. Strong peaks lead to a reduction of the measurement time. This is useful for two-dimensional mapping of thin film elasticity using Brillouin scattering. Additionally, Brillouin scattering enables the simultaneous measurement of longitudinal and shear phonon velocities in the sample plane. This opens up a potential new technique for non-destructive elasticity measurements of various materials. PMID:21693407
NASA Astrophysics Data System (ADS)
Ivanyshyn Yaman, Olha; Le Louër, Frédérique
2016-09-01
This paper deals with the material derivative analysis of the boundary integral operators arising from the scattering theory of time-harmonic electromagnetic waves and its application to inverse problems. We present new results using the Piola transform of the boundary parametrisation to transport the integral operators on a fixed reference boundary. The transported integral operators are infinitely differentiable with respect to the parametrisations and simplified expressions of the material derivatives are obtained. Using these results, we extend a nonlinear integral equations approach developed for solving acoustic inverse obstacle scattering problems to electromagnetism. The inverse problem is formulated as a pair of nonlinear and ill-posed integral equations for the unknown boundary representing the boundary condition and the measurements, for which the iteratively regularized Gauss-Newton method can be applied. The algorithm has the interesting feature that it avoids the numerous numerical solution of boundary value problems at each iteration step. Numerical experiments are presented in the special case of star-shaped obstacles.
Haynes, Mark; Verweij, Sacha A. M.; Moghaddam, Mahta; Carson, Paul L.
2014-01-01
A self-contained source characterization method for commercial ultrasound probes in transmission acoustic inverse scattering is derived and experimentally tested. The method is based on modified scattered field volume integral equations that are linked to the source-scattering transducer model. The source-scattering parameters are estimated via pair-wise transducer measurements and the nonlinear inversion of an acoustic propagation model that is derived. This combination creates a formal link between the transducer characterization and the inverse scattering algorithm. The method is tested with two commercial ultrasound probes in a transmission geometry including provisions for estimating the probe locations and aligning a robotic rotator. The transducer characterization results show that the nonlinear inversion fit the measured data well. The transducer calibration and inverse scattering algorithm are tested on simple targets. Initial images show that the recovered contrasts are physically consistent with expected values. PMID:24569251
Numerical method to compute acoustic scattering effect of a moving source.
Song, Hao; Yi, Mingxu; Huang, Jun; Pan, Yalin; Liu, Dawei
2016-01-01
In this paper, the aerodynamic characteristic of a ducted tail rotor in hover has been numerically studied using CFD method. An analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field and used as Neumann boundary condition on a rigid scattering surface. In order to predict the aerodynamic noise, a hybrid method combing computational aeroacoustics with an acoustic thin-body boundary element method has been proposed. The aerodynamic results and the calculated sound pressure levels (SPLs) are compared with the known method for validation. Simulation results show that the duct can change the value of SPLs and the sound directivity. Compared with the isolate tail rotor, the SPLs of the ducted tail rotor are smaller at certain azimuth. PMID:27610323
Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel
2016-04-01
The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials. PMID:27106317
Weber, Thomas C; Lutcavage, Molly E; Schroth-Miller, Madeline L
2013-06-01
Schools of Atlantic bluefin tuna (Thunnus thynnus) can exhibit highly organized spatial structure within the school. This structure was quantified for dome shaped schools using both aerial imagery collected from a commercial spotter plane and 400 kHz multibeam echo sounder data collected on a fishing vessel in 2009 in Cape Cod Bay, MA. Observations from one school, containing an estimated 263 fish within an approximately ellipsoidal volume of 1900 m(3), were used to seed an acoustic model that estimated the school target strength at frequencies between 10 and 2000 Hz. The fish's swimbladder resonance was estimated to occur at approximately 50 Hz. The acoustic model examined single and multiple scattering solutions and also a completely incoherent summation of scattering responses from the fish. Three levels of structure within the school were examined, starting with fish locations that were constrained by the school boundaries but placed according to a Poisson process, then incorporating a constraint on the distance to the nearest neighbor, and finally adding a constraint on the bearing to the nearest neighbor. Results suggest that both multiple scattering and spatial organization within the school should be considered when estimating the target strength of schools similar to the ones considered here. PMID:23742334
Control of acoustic absorption in one-dimensional scattering by resonant scatterers
NASA Astrophysics Data System (ADS)
Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V.
2015-12-01
We experimentally report perfect acoustic absorption through the interplay of the inherent losses and transparent modes with high Q factor. These modes are generated in a two-port, one-dimensional waveguide, which is side-loaded by isolated resonators of moderate Q factor. In symmetric structures, we show that in the presence of small inherent losses, these modes lead to coherent perfect absorption associated with one-sided absorption slightly larger than 0.5. In asymmetric structures, near perfect one-sided absorption is possible (96%) with a deep sub-wavelength sample ( λ / 28 , where λ is the wavelength of the sound wave in the air). The control of strong absorption by the proper tuning of the radiation leakage of few resonators with weak losses will open possibilities in various wave-control devices.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1999-01-01
A reduced order modeling scheme has been developed for the unsteady acoustic and vortical coupling between blade rows of a turbomachine. The essential behavior of the system is governed by modal scattering coefficients (i.e., reflection and transmission coefficients) of the rotor, stator, inlet and nozzle, which are calculated as if they were connected to non-reflecting ducts. The objective of this report is to identify fundamental behavior of these scattering coefficients for a better understanding of the role of blade row reflection and transmission in noise generation. A 2D flat plate unsteady cascade model is used for the analysis with the expectation that the general behavior presented herein will carry over to models that include more realistic flow and geometry. It is shown that stators scatter input waves into many modes at the same frequency whereas rotors scatter on frequency, or harmonic order. Important cases are shown here the rotor reflection coefficient is greater than unity; a mode at blade passing frequency (BPF) traveling from the stator with unit sound power is reflected by the rotor with more than unit power at 2xBPF and 3xBPE Analysis is presented to explain this unexpected phenomenon. Scattering curves are presented in a format chosen for design use and for physical interpretation. To aid in interpretation of the curves, formulas are derived for special condition where waveforms are parallel to perpendicular to the rotor.
Solution of open region electromagnetic scattering problems on hypercube multiprocessors
Gedney, S.D.
1991-01-01
This thesis focuses on development of parallel algorithms that exploit hypercube multiprocessor computers for the solution of the scattering of electromagnetic fields by bodies situated in an unbounded space. Initially, algorithms based on the method of moments are investigated for coarse-grained MIMD hypercubes as well as finite-grained MIMD and SIMD hypercubes. It is shown that by exploiting the architecture of each hypercube, supercomputer performance can be obtained using the JPL Mark III hypercube and the Thinking Machine's CM2. Second, the use of the finite-element method for solution of the scattering by bodies of composite materials is presented. For finite bodies situated in an unbounded space, use of an absorbing boundary condition is investigated. A method known as the mixed-{chi} formulation is presented, which reduces the mesh density in the regions away from the scatterer, enhancing the use of an absorbing boundary condition. The scattering by troughs or slots is also investigated using a combined FEM/MoM formulation. This method is extended to the problem of the diffraction of electromagnetic waves by thick conducting and/or dielectric gratings. Finally, the adaptation of the FEM method onto a coarse-grained hypercube is presented.
Measurements and analysis of farfield scattering from a prolate spheroid. [of acoustic waves
NASA Technical Reports Server (NTRS)
Bayliss, A.; Maestrello, L.
1978-01-01
The farfield acoustic scattering by a prolate spheroid with axial point sources near the tip of the body was measured. Data were taken for ka between 10 and 160, where a is the semimajor axis of the spheroid. Comparisons were made with numerical results obtained by an integral equation based on the simple-source method, with appropriate coordinate stretching introduced to permit high-frequency solutions with a minimal number of grid points. Theory and experiment agree within experimental error except for the highest frequencies in the shadow region, where very rapid changes in pressure make precise measurements difficult. The results show that for frequencies of aeroacoustic interest, the scattered field is very large and cannot be ignored.
Analysis of scattering from an acoustic cloak in a moving fluid.
Huang, Xun; Zhong, Siyang; Stalnov, Oksana
2014-05-01
This work develops a theoretical framework for acoustic cloak scattering analysis in a low speed non-stationary fluid that is simply described as a potential flow. The equivalent sound source induced by the moving fluid local to the cloak is analytically constructed and is then estimated using Born approximation. The far-field scattering can thereafter be obtained using the associated Green's function of the convected wave equation. The results demonstrate that the proposed analytical approach, which might be helpful in the design and evaluation of cloaking systems, effectively elucidates key characteristics of the relevant physics. In addition, it can be seen that, in a moving fluid, the so-called convected cloaking design achieves better cloaking performance than the classical cloaking design. PMID:24815241
Hesford, Andrew J.; Tillett, Jason C.; Astheimer, Jeffrey P.; Waag, Robert C.
2014-01-01
Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast. PMID:25096103
Hesford, Andrew J; Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C
2014-08-01
Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast. PMID:25096103
Complex multipole beam approach to electromagnetic scattering problems
NASA Astrophysics Data System (ADS)
Mittra, Raj; Boag, Amir
1994-03-01
A novel approach to reducing the matrix size associated with the Method of Moments (MoM) solution of the problem of electromagnetic scattering from arbitrary shaped closed bodies is presented in this paper. The key step in this approach is to represent the scattered field in terms of a series of beams produced by multipole sources resemble the Gabor basis functions. By utilizing the properties of the Gabor series, guidelines for selecting the orders as well as locations of the multipole sources are developed. It is shown that the present approach not only reduces the number of unknowns, but also generates a generalized impedance matrix with a banded structure and a low condition number. The accuracy of the proposed method is verified by comparing the numerical results with those derived by using the method of moments.
Acoustic beam scattering and excitation of sphere resonance: Bessel beam example.
Marston, Philip L
2007-07-01
The exact partial wave series for the scattering by a sphere centered on an ideal Bessel beam was recently given by Marston ["Scattering of a Bessel beam by a sphere," J. Acoust. Soc. Am. 121, 753-758 (2007)]. That series is applied here to solid elastic spheres in water and to an empty spherical shell in water. The examples are selected to illustrate the effect of varying the beam's conical angle so as to modify the coupling to specific resonances in the response of each type of sphere considered. The backscattering may be reduced or increased depending on properties of the resonance and of the specular contribution. Changing the conical angle is equivalent to changing the beamwidth. Some applications of the Van de Hulst localization principle to the interpretation of the partial wave series and to the interpretation of the scattering dependence on the beam's conical angle are discussed. Some potential applications to the analysis of the scattering by spheres of more general axisymmetric beams are noted. PMID:17614484
Measurements of high-frequency acoustic scattering from glacially eroded rock outcrops.
Olson, Derek R; Lyons, Anthony P; Sæbø, Torstein O
2016-04-01
Measurements of acoustic backscattering from glacially eroded rock outcrops were made off the coast of Sandefjord, Norway using a high-frequency synthetic aperture sonar (SAS) system. A method by which scattering strength can be estimated from data collected by a SAS system is detailed, as well as a method to estimate an effective calibration parameter for the system. Scattering strength measurements from very smooth areas of the rock outcrops agree with predictions from both the small-slope approximation and perturbation theory, and range between -33 and -26 dB at 20° grazing angle. Scattering strength measurements from very rough areas of the rock outcrops agree with the sine-squared shape of the empirical Lambertian model and fall between -30 and -20 dB at 20° grazing angle. Both perturbation theory and the small-slope approximation are expected to be inaccurate for the very rough area, and overestimate scattering strength by 8 dB or more for all measurements of very rough surfaces. Supporting characterization of the environment was performed in the form of geoacoustic and roughness parameter estimates. PMID:27106331
Young, D L; Chen, K H; Liu, T Y; Wu, C S
2016-01-01
Three-dimensional exterior acoustic problems with irregular domains are solved using a hypersingular meshless method. In particular, the method of fundamental solutions (MFS) is used to formulate and analyze such acoustic problems. It is well known that source points for MFS cannot be located on the real boundary due to the singularity of the kernel functions. Thus, the diagonal terms of the influence matrices are unobtainable when source points are located on the boundary. An efficient approach is proposed to overcome such difficulties, when the MFS is used for three-dimensional exterior acoustic problems. This work is an extension of previous research on two-dimensional problems. The solution of the problem is expressed in terms of a double-layer potential representation on the physical boundary. Three examples are presented in which the proposed method is compared to the MFS and boundary element method. Good numerical performance is demonstrated by the proposed hypersingular meshless method. PMID:26827046
Acoustic holography: Problems associated with construction and reconstruction techniques
NASA Technical Reports Server (NTRS)
Singh, J. J.
1978-01-01
The implications of the difference between the inspecting and interrogating radiations are discussed. For real-time, distortionless, sound viewing, it is recommended that infrared radiation of wavelength comparable to the inspecting sound waves be used. The infrared images can be viewed with (IR visible) converter phosphors. The real-time display of the visible image of the acoustically-inspected object at low sound levels such as are used in medical diagnosis is evaluated. In this connection attention is drawn to the need for a phosphor screen which is such that its optical transmission at any point is directly related to the incident electron beam intensity at that point. Such a screen, coupled with an acoustical camera, can enable instantaneous sound wave reconstruction.
Guillermin, R; Lasaygues, P; Sessarego, J P; Wirgin, A
2001-03-01
This work is concerned with the reconstruction, from measured (synthetic or real) data, of a 2D penetrable fluid-like object of arbitrary cross-section embedded in a fluid of infinite extent and insonified by a plane acoustic wave. Green's theorem is used to provide a domain integral representation of the scattered field. The introduction therein of the Born approximation gives rise to a linearized form of the inverse problem. The actual inversion is carried out by two methods. The first diffraction tomography (DT), exhibits the contrast function very conveniently and explicitly in the form of a wave number/incident angle Fourier transform of the far backscattered field and thus requires measurements of this field for incident waves all around the object and at all frequencies. The second discretized domain integral equation with Born approximation method, is numerically more intensive, but enables a wider choice of configurations and requires less measurements (one or several frequencies, one or several incident waves, choice of measurement points) than the DT method. A comparison of the two methods is carried out by inversion of both simulated and experimental scattered field data. PMID:11270630
NASA Astrophysics Data System (ADS)
Tesei, A.; Maguer, A.; Fox, W. L. J.; Lim, R.; Schmidt, H.
2002-11-01
The use of low-frequency sonars (2-15 kHz) is explored to better exploit scattering features of buried targets that can contribute to their detection and classification. Compared to conventional mine countermeasure sonars, sound penetrates better into the sediment at these frequencies, and the excitation of structural waves in the targets is enhanced. The main contributions to target echo are the specular reflection, geometric diffraction effects, and the structural response, with the latter being particularly important for man-made elastic objects possessing particular symmetries such as bodies of revolution. The resonance response derives from elastic periodic phenomena such as surface circumferential waves revolving around the target. The GOATS'98 experiment, conducted jointly by SACLANTCEN and MIT off the island of Elba, involved controlled monostatic measurements of scattering by spherical shells which were partially and completely buried in sand, and suspended in the water column. The analysis mainly addresses a study of the effect of burial on the dynamics of backscattered elastic waves, which can be clearly identified in the target responses, and is based on the comparison of measurements with appropriate scattering models. Data interpretation results are in good agreement with theory. This positive result demonstrates the applicability of low-frequency methodologies based on resonance analysis to the classification of buried objects. copyright 2002 Acoustical Society of America.
Determination of the complex acoustic scattering matrix of a right-angled duct.
Graf, Thomas; Pan, Jie
2013-07-01
A method for determining the complete higher-order scattering matrix of an acoustic discontinuity is developed. The method is demonstrated for a right-angled waveguide bend, and the magnitude and phase of the reflection and transmission coefficients are extracted precisely. The procedure is straightforward and based on the solutions to the Helmholtz equation by the finite element method (FEM). The consistency of the scattering coefficients found by this method is verified by their properties of symmetry, and their accuracy is established by the conservation of energy. The reliability of the new technique is further proved by means of an arbitrary sound source and by comparing the direct FEM response to the reflection matrix calculation. Some features of the scattering matrix as a function of frequency are surprising, such as the steps and reversion of the phase evolution or the complete loss of transmission of the incoming wave. The methodology detailed in this paper can be extended to other multiport junctions, such as T-junctions or size discontinuities in ducts. PMID:23862807
Bottcher, C.; Strayer, M.R.; Werby, M.F.
1993-10-01
The Helmholtz-Poincare Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWE`s. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can by obtained in matrix form be expanding all relevant terms in partial wave expansions, including a biorthogonal expansion of the Green function. However some freedom of choice in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways to long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermition operator. The methodology will be explained in detail and examples will be presented.
NASA Astrophysics Data System (ADS)
Kaina, Nadège; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy
2015-09-01
Metamaterials, man-made composite media structured on a scale much smaller than a wavelength, offer surprising possibilities for engineering the propagation of waves. One of the most interesting of these is the ability to achieve superlensing--that is, to focus or image beyond the diffraction limit. This originates from the left-handed behaviour--the property of refracting waves negatively--that is typical of negative index metamaterials. Yet reaching this goal requires the design of `double negative' metamaterials, which act simultaneously on the permittivity and permeability in electromagnetics, or on the density and compressibility in acoustics; this generally implies the use of two different kinds of building blocks or specific particles presenting multiple overlapping resonances. Such a requirement limits the applicability of double negative metamaterials, and has, for example, hampered any demonstration of subwavelength focusing using left-handed acoustic metamaterials. Here we show that these strict conditions can be largely relaxed by relying on media that consist of only one type of single resonant unit cell. Specifically, we show with a simple yet general semi-analytical model that judiciously breaking the symmetry of a single negative metamaterial is sufficient to turn it into a double negative one. We then demonstrate that this occurs solely because of multiple scattering of waves off the metamaterial resonant elements, a phenomenon often disregarded in these media owing to their subwavelength patterning. We apply our approach to acoustics and verify through numerical simulations that it allows the realization of negative index acoustic metamaterials based on Helmholtz resonators only. Finally, we demonstrate the operation of a negative index acoustic superlens, achieving subwavelength focusing and imaging with spot width and resolution 7 and 3.5 times better than the diffraction limit, respectively. Our findings have profound implications for the
Kaina, Nadège; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy
2015-09-01
Metamaterials, man-made composite media structured on a scale much smaller than a wavelength, offer surprising possibilities for engineering the propagation of waves. One of the most interesting of these is the ability to achieve superlensing--that is, to focus or image beyond the diffraction limit. This originates from the left-handed behavior--the property of refracting waves negatively--that is typical of negative index metamaterials. Yet reaching this goal requires the design of 'double negative' metamaterials, which act simultaneously on the permittivity and permeability in electromagnetics, or on the density and compressibility in acoustics; this generally implies the use of two different kinds of building blocks or specific particles presenting multiple overlapping resonances. Such a requirement limits the applicability of double negative metamaterials, and has, for example, hampered any demonstration of subwavelength focusing using left-handed acoustic metamaterials. Here we show that these strict conditions can be largely relaxed by relying on media that consist of only one type of single resonant unit cell. Specifically, we show with a simple yet general semi-analytical model that judiciously breaking the symmetry of a single negative metamaterial is sufficient to turn it into a double negative one. We then demonstrate that this occurs solely because of multiple scattering of waves off the metamaterial resonant elements, a phenomenon often disregarded in these media owing to their subwavelength patterning. We apply our approach to acoustics and verify through numerical simulations that it allows the realization of negative index acoustic metamaterials based on Helmholtz resonators only. Finally, we demonstrate the operation of a negative index acoustic superlens, achieving subwavelength focusing and imaging with spot width and resolution 7 and 3.5 times better than the diffraction limit, respectively. Our findings have profound implications for the
Numerical solutions of acoustic wave propagation problems using Euler computations
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1984-01-01
This paper reports solution procedures for problems arising from the study of engine inlet wave propagation. The first problem is the study of sound waves radiated from cylindrical inlets. The second one is a quasi-one-dimensional problem to study the effect of nonlinearities and the third one is the study of nonlinearities in two dimensions. In all three problems Euler computations are done with a fourth-order explicit scheme. For the first problem results are shown in agreement with experimental data and for the second problem comparisons are made with an existing asymptotic theory. The third problem is part of an ongoing work and preliminary results are presented for this case.
Nonlinear acoustics: Reflection and refraction, scattering of sound by sound, and periodic media
NASA Astrophysics Data System (ADS)
Blackstock, David T.
1988-07-01
Research on three topics in nonlinear acoustics is described: (1) reflection and refraction at a plane interface between two fluids. Previously a modified form of Snell's law was derived; theoretical work is underway to investigate assumptions on which the derivation was based, (2) scattering of sound by sound. Work on a single beam experiment and a crossed-beams experiment is in progress, and (3) propagation in periodic media. An experiment is being designed to measure finite-amplitude distortion in a plane wave tube loaded periodically with reactive branch elements. Other work, on noncollinear interaction and on biomedical ultrasonics, is described briefly. Two journal articles, five oral papers, and one technical report are listed.
Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering
Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,; Alatas, A.
2009-01-01
Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocity of (9200 {+-} 600) m/s.
Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
Rajabi, M; Hasheminejad, Seyyed M
2009-12-01
The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established. PMID:19586650
Bugay, A. N.; Sazonov, S. V.
2008-08-15
A new mechanism is proposed for continuous frequency down-conversion of acoustic waves propagating in a paramagnetic crystal at a low temperature in an applied magnetic field. A transverse hypersonic pulse generating a carrier-free longitudinal strain pulse via nonlinear effects is scattered by the generated pulse. This leads to a Stokes shift in the transverse hypersonic wave proportional to its intensity, and both pulses continue to propagate in the form of a mode-locked soliton. As the transverse-pulse frequency is Stokes shifted, its spectrum becomes narrower. This process can be effectively implemented only if the linear group velocity of the transverse hypersonic pulse equals the phase velocity of the longitudinal strain wave. These velocities are renormalized by spin-phonon coupling and can be made equal by adjusting the magnitude of the applied magnetic field. The transverse structure of the soliton depends on the sign of the group velocity dispersion of the transverse component. When the dispersion is positive, planar solitons can develop whose transverse component has a topological defect of dark vortex type and longitudinal component has a hole. In the opposite case, the formation of two-component acoustic 'bullets' or vortices localized in all directions is possible.
Resonant raman scattering and dispersion of polar optical and acoustic phonons in hexagonal inn
Davydov, V. Yu. Klochikhin, A. A.; Smirnov, A. N.; Strashkova, I. Yu.; Krylov, A. S.; Lu Hai; Schaff, William J.; Lee, H.-M.; Hong, Y.-L.; Gwo, S.
2010-02-15
It is shown that a study of the dependence of impurity-related resonant first-order Raman scattering on the frequency of excitation light makes it possible to observe the dispersion of polar optical and acoustic branches of vibrational spectrum in hexagonal InN within a wide range of wave vectors. It is established that the wave vectors of excited phonons are uniquely related to the energy of excitation photon. Frequencies of longitudinal optical phonons E{sub 1}(LO) and A{sub 1}(LO) in hexagonal InN were measured in the range of excitation-photon energies from 2.81 to 1.17 eV and the frequencies of longitudinal acoustic phonons were measured in the range 2.81-1.83 eV of excitation-photon energies. The obtained dependences made it possible to extrapolate the dispersion of phonons A{sub 1}(LO) and E{sub 1}(LO) to as far as the point {Gamma} in the Brillouin zone and estimate the center-band energies of these phonons (these energies have not been uniquely determined so far).
Benefits of Acoustic Beamforming for Solving the Cocktail Party Problem.
Kidd, Gerald; Mason, Christine R; Best, Virginia; Swaminathan, Jayaganesh
2015-01-01
The benefit provided to listeners with sensorineural hearing loss (SNHL) by an acoustic beamforming microphone array was determined in a speech-on-speech masking experiment. Normal-hearing controls were tested as well. For the SNHL listeners, prescription-determined gain was applied to the stimuli, and performance using the beamformer was compared with that obtained using bilateral amplification. The listener identified speech from a target talker located straight ahead (0° azimuth) in the presence of four competing talkers that were either colocated with, or spatially separated from, the target. The stimuli were spatialized using measured impulse responses and presented via earphones. In the spatially separated masker conditions, the four maskers were arranged symmetrically around the target at ±15° and ±30° or at ±45° and ±90°. Results revealed that masked speech reception thresholds for spatially separated maskers were higher (poorer) on average for the SNHL than for the normal-hearing listeners. For most SNHL listeners in the wider masker separation condition, lower thresholds were obtained through the microphone array than through bilateral amplification. Large intersubject differences were found in both listener groups. The best masked speech reception thresholds overall were found for a hybrid condition that combined natural and beamforming listening in order to preserve localization for broadband sources. PMID:26126896
Benefits of Acoustic Beamforming for Solving the Cocktail Party Problem
Mason, Christine R.; Best, Virginia; Swaminathan, Jayaganesh
2015-01-01
The benefit provided to listeners with sensorineural hearing loss (SNHL) by an acoustic beamforming microphone array was determined in a speech-on-speech masking experiment. Normal-hearing controls were tested as well. For the SNHL listeners, prescription-determined gain was applied to the stimuli, and performance using the beamformer was compared with that obtained using bilateral amplification. The listener identified speech from a target talker located straight ahead (0° azimuth) in the presence of four competing talkers that were either colocated with, or spatially separated from, the target. The stimuli were spatialized using measured impulse responses and presented via earphones. In the spatially separated masker conditions, the four maskers were arranged symmetrically around the target at ±15° and ±30° or at ±45° and ±90°. Results revealed that masked speech reception thresholds for spatially separated maskers were higher (poorer) on average for the SNHL than for the normal-hearing listeners. For most SNHL listeners in the wider masker separation condition, lower thresholds were obtained through the microphone array than through bilateral amplification. Large intersubject differences were found in both listener groups. The best masked speech reception thresholds overall were found for a hybrid condition that combined natural and beamforming listening in order to preserve localization for broadband sources. PMID:26126896
Scattering reduction of an acoustically hard cylinder covered with layered pentamode metamaterials.
Boisvert, Jeffrey E; Scandrett, Clyde L; Howarth, Thomas R
2016-06-01
Transformational acoustics offers the theoretical possibility of cloaking obstacles within fluids, provided metamaterials having continuously varying bulk moduli and densities can be found or constructed. Realistically, materials with the proper, continuously varying anisotropies do not presently exist. However, discretely layered cloaks having constant material parameters within each layer may be a viable alternative in practice. The present work considers a range of cloaks, from those comprised of fluid layers that are isotropic in bulk moduli with anisotropic density (inertial cloaks) to those having anisotropic bulk moduli and isotropic density (pentamode cloaks). In this paper an analytical solution is obtained for the case of plane wave scattering from a submerged rigid cylinder covered with a multilayered cylindrical cloak composed of discrete anisotropic fluid layers. An investigation of the parameter space defining such cloaks is undertaken with the goal of minimizing the far-field scattered pressure, using layer constituent anisotropic properties (density and bulk modulus) constrained to lie within reasonable ranges relative to those of water. PMID:27369167
Acoustic scattering by circular cylinders of various aspect ratios. [pressure gradient microphones
NASA Technical Reports Server (NTRS)
Maciulaitis, A.
1979-01-01
The effects of acoustic scattering on the useful frequency range of pressure gradient microphones were investigated experimentally between ka values of 0.407 and 4.232 using two circular cylindrical models (L/D = 0.5 and 0.25) having a 25 cm outside diameter. Small condenser microphones, attached to preamplifiers by flexible connectors, were installed from inside the cylindrical bodies, and flush mounted on the exterior surface of the cylinders. A 38 cm diameter woofer in a large speaker enclosure was used as the sound source. Surface pressure augmentation and phase differences were computed from measured data for various sound wave incidence angles. Results are graphically compared with theoretical predictions supplied by NASA for ka = 0.407, 2.288, and 4.232. All other results are tabulated in the appendices. With minor exceptions, the experimentally determined pressure augmentations agreed within 0.75 dB with theoretical predictions. The agreement for relative phase angles was within 5 percent without any exceptions. Scattering parameter variations with ka and L/D ratio, as computed from experimental data, are also presented.
Kakodkar, Rohit R.; Feser, Joseph P.
2015-09-07
We present a numerical approach to the solution of elastic phonon-interface and phonon-nanostructure scattering problems based on a frequency-domain decomposition of the atomistic equations of motion and the use of perfectly matched layer (PML) boundaries. Unlike molecular dynamic wavepacket analysis, the current approach provides the ability to simulate scattering from individual phonon modes, including wavevectors in highly dispersive regimes. Like the atomistic Green's function method, the technique reduces scattering problems to a system of linear algebraic equations via a sparse, tightly banded matrix regardless of dimensionality. However, the use of PML boundaries enables rapid absorption of scattered wave energies at the boundaries and provides a simple and inexpensive interpretation of the scattered phonon energy flux calculated from the energy dissipation rate in the PML. The accuracy of the method is demonstrated on connected monoatomic chains, for which an analytic solution is known. The parameters defining the PML are found to affect the performance and guidelines for selecting optimal parameters are given. The method is used to study the energy transmission coefficient for connected diatomic chains over all available wavevectors for both optical and longitudinal phonons; it is found that when there is discontinuity between sublattices, even connected chains of equivalent acoustic impedance have near-zero transmission coefficient for short wavelengths. The phonon scattering cross section of an embedded nanocylinder is calculated in 2D for a wide range of frequencies to demonstrate the extension of the method to high dimensions. The calculations match continuum theory for long-wavelength phonons and large cylinder radii, but otherwise show complex physics associated with discreteness of the lattice. Examples include Mie oscillations which terminate when incident phonon frequencies exceed the maximum available frequency in the embedded nanocylinder, and
An analytical approach to estimate the number of small scatterers in 2D inverse scattering problems
NASA Astrophysics Data System (ADS)
Fazli, Roohallah; Nakhkash, Mansor
2012-07-01
This paper presents an analytical method to estimate the location and number of actual small targets in 2D inverse scattering problems. This method is motivated from the exact maximum likelihood estimation of signal parameters in white Gaussian noise for the linear data model. In the first stage, the method uses the MUSIC algorithm to acquire all possible target locations and in the next stage, it employs an analytical formula that works as a spatial filter to determine which target locations are associated to the actual ones. The ability of the method is examined for both the Born and multiple scattering cases and for the cases of well-resolved and non-resolved targets. Many numerical simulations using both the coincident and non-coincident arrays demonstrate that the proposed method can detect the number of actual targets even in the case of very noisy data and when the targets are closely located. Using the experimental microwave data sets, we further show that this method is successful in specifying the number of small inclusions.
NASA Astrophysics Data System (ADS)
Lazauskas, Rimantas
2015-12-01
A formalism based on the complex-scaling method is used to solve a four-nucleon scattering problem above the breakup threshold using the realistic nuclear Hamiltonians. This method allows to solve diverse scattering problems based on very trivial boundary conditions and is compatible with the techniques used to solve bound state problems.
NASA Astrophysics Data System (ADS)
The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).
Likhachev, M E; Alekseev, V V; Bubnov, M M; Yashkov, M V; Vechkanov, N N; Gur'yanov, A N; Peyhambarian, N; Temyanko, V; Nagel, J
2014-11-30
Optical fibres having an acoustically antiguiding structure produced by alumina doping of their core have been fabricated and investigated. The stimulated Brillouin scattering (SBS) spectra of the fibres have been measured and calculated theoretically. The results demonstrate that the shape of the SBS spectrum of the acoustically antiguiding fibres strongly depends on the pump wavelength, core size and dopant profile across the fibre. A considerable broadening of the SBS gain spectrum is only possible at certain guidance parameters of the fibre and a fixed operating wavelength. (fibre and integrated-optical structures)
Risk of a second cancer from scattered radiation in acoustic neuroma treatment
NASA Astrophysics Data System (ADS)
Yoon, Myonggeun; Lee, Hyunho; Sung, Jiwon; Shin, Dongoh; Park, Sungho; Chung, Weon Kuu; Jahng, Geon-Ho; Kim, Dong Wook
2014-06-01
The present study aimed to compare the risk of a secondary cancer from scattered and leakage doses in patients receiving intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) of a secondary cancer were estimated using the corresponding secondary doses measured at various organs by using radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, liver, bowel, bladder, prostate (or ovary), and rectum were 14.6, 1.7, 0.9, 0.8, 0.6, 0.6, and 0.6 cGy, respectively, for IMRT whereas they were 19.1, 1.8, 2.0, 0.6, 0.4, 0.4, and 0.4 cGy, respectively, for VMAT, and 22.8, 4.6, 1.4, 0.7, 0.5, 0.5, and 0.5 cGy, respectively, for SRS. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A lifetime attributable risk evaluation estimated that more than 0.03% of acoustic neuroma (AN) patients would get radiation-induced cancer within 20 years of receiving radiation therapy. The organ with the highest radiation-induced cancer risk after radiation treatment for AN was the thyroid. We found that the LAR could be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
NASA Astrophysics Data System (ADS)
Rajabi, Majid
2016-05-01
The method of wave function expansion is adopted to study the three dimensional scattering of a plane progressive harmonic acoustic wave incident upon an arbitrarily thick-walled helically filament-wound composite cylindrical shell submerged in and filled with compressible ideal fluids. An approximate laminate model in the context of the so-called state-space formulation is employed for the construction of T-matrix solution to solve for the unknown modal scattering coefficients. Considering the nonaxisymmetric wave propagation phenomenon in anisotropic cylindrical components and following the resonance scattering theory which determines the resonance and background scattering fields, the stimulated resonance frequencies of the shell are isolated and classified due to their fundamental mode of excitation, overtone and style of propagation along the cylindrical axis (i.e., clockwise or anticlockwise propagation around the shell) and are identified as the helically circumnavigating waves.
Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.
Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre
2012-01-01
The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer. PMID:22280581
Baik, Kyungmin; Dudley, Christopher; Marston, Philip L
2011-12-01
When synthetic aperture sonar (SAS) is used to image elastic targets in water, subtle features can be present in the images associated with the dynamical response of the target being viewed. In an effort to improve the understanding of such responses, as well as to explore alternative image processing methods, a laboratory-based system was developed in which targets were illuminated by a transient acoustic source, and bistatic responses were recorded by scanning a hydrophone along a rail system. Images were constructed using a relatively conventional bistatic SAS algorithm and were compared with images based on supersonic holography. The holographic method is a simplification of one previously used to view the time evolution of a target's response [Hefner and Marston, ARLO 2, 55-60 (2001)]. In the holographic method, the space-time evolution of the scattering was used to construct a two-dimensional image with cross range and time as coordinates. Various features for vertically hung cylindrical targets were interpreted using high frequency ray theory. This includes contributions from guided surface elastic waves, as well as transmitted-wave features and specular reflection. PMID:22225041
NASA Technical Reports Server (NTRS)
Hu, Fang Q.; Pizzo, Michelle E.; Nark, Douglas M.
2016-01-01
Based on the time domain boundary integral equation formulation of the linear convective wave equation, a computational tool dubbed Time Domain Fast Acoustic Scattering Toolkit (TD-FAST) has recently been under development. The time domain approach has a distinct advantage that the solutions at all frequencies are obtained in a single computation. In this paper, the formulation of the integral equation, as well as its stabilization by the Burton-Miller type reformulation, is extended to cases of a constant mean flow in an arbitrary direction. In addition, a "Source Surface" is also introduced in the formulation that can be employed to encapsulate regions of noise sources and to facilitate coupling with CFD simulations. This is particularly useful for applications where the noise sources are not easily described by analytical source terms. Numerical examples are presented to assess the accuracy of the formulation, including a computation of noise shielding by a thin barrier motivated by recent Historical Baseline F31A31 open rotor noise shielding experiments. Furthermore, spatial resolution requirements of the time domain boundary element method are also assessed using point per wavelength metrics. It is found that, using only constant basis functions and high-order quadrature for surface integration, relative errors of less than 2% may be obtained when the surface spatial resolution is 5 points-per-wavelength (PPW) or 25 points-per-wavelength squared (PPW2).
Collective Thomson scattering measurements of the Ion Acoustic Decay Instability. Final report
Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.
1993-12-31
We have developed an uv collective Thomson scattering system for plasma produced by a short wavelength laser. The Ion Acoustic Decay Instabilities are studied in a large ({approximately}mm) scale, hot ({approximately}keV) plasma, which is relevant to a direct-driven laser fusion plasma. The IADI primary decay process is measured by the CTS. We used a random phase plate to minimize the non uniform irradiation of the interaction laser. Nevertheless, the threshold of the most unstable mode driven by the IADI is quite low. The measured threshold value agrees favorably with the theoretical value of the large scale plasma. We have also shown that the CTS from the IADI can be a good tool for measuring a local electron temperature. The measured results agree reasonably with the SAGE computer calculations. We used the real part of the wave (frequency) to estimate T{sub e}. The real part is, in general, reliable compared to the imaginary part such as the damping, and the growth rates. We have shown that the IADI can be easily excited in a large scale, hot plasma. The IADI has potentially important applications to direct drive laser fusion, and also critical surface diagnostic.
Burton-Miller-type singular boundary method for acoustic radiation and scattering
NASA Astrophysics Data System (ADS)
Fu, Zhuo-Jia; Chen, Wen; Gu, Yan
2014-08-01
This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller's formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton-Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.
NASA Astrophysics Data System (ADS)
Denis, V.; Pelat, A.; Gautier, F.
2016-02-01
The so-called "acoustic black hole" (ABH) effect is a passive vibration control technique based on the flexural waves properties in thin structure of varying thickness. A usual implementation consists in using a plate with tapered extremity with a power-law profile, covered with a thin damping layer. The inhomogeneity of the structure leads to a decrease of flexural wave speed and an increase of their amplitude, therefore resulting in an efficient energy dissipation if damping layer is placed where the thickness is minimal. The manufacture of an efficient extremity is difficult because of the small thickness, and often generates imperfections and tearing. Moreover, previous works suggest that multiple flexural modes are propagating across the width of the ABH tip. A model of an ABH multimodal waveguide taking into account an imperfect termination is developed. It shows that an elementary imperfection can affect the reflection coefficient of the extremity and reduce it. Scattering and propagation properties of the extremity are also studied. An incident mode excites several modes that are localised in the tapered region and local resonances explain the drops in the reflection coefficient. Experimental evidence of the influence of the imperfection on the reflection coefficient is provided. A key result of the paper is that manufacturing imperfections are not detrimental to the ABH effect.
NASA Astrophysics Data System (ADS)
Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang
2016-09-01
A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei
2013-04-01
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.; Grosveld, Ferdinand
2007-01-01
The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.
Application of High Order Acoustic Finite Elements to Transmission Losses and Enclosure Problems
NASA Technical Reports Server (NTRS)
Craggs, A.; Stevenson, G.
1985-01-01
A family of acoustic finite elements was developed based on C continuity (acoustic pressure being the nodal variable) and the no-flow condition. The family include triangular, quadrilateral and hexahedral isoparametric elements with linear quadratic and cubic variation in modelling and distortion. Of greatest use in problems with irregular boundaries are the cubic isoparametric elements: the 32 node hexahedral element for three-dimensional systems; and the twelve node quadrilateral and ten node triangular elements for two-dimensional/axisymmetric applications. These elements were applied to problems involving cavity resonances, transmission loss in silencers and the study of end effects, using a Floating Point Systems 164 attached array processor accessed through an Amdahl 5860 mainframe. The elements are presently being used to study the end effects associated with duct terminations within finite enclosures. The transmission losses with various silencers and sidebranches in ducts is also being studied using the same elements.
Solution of electromagnetic scattering problems using time domain techniques
NASA Technical Reports Server (NTRS)
Britt, Charles L.
1989-01-01
New methods are developed to calculate the electromagnetic diffraction or scattering characteristics of objects of arbitrary material and shape. The methods extend the efforts of previous researchers in the use of finite-difference and pulse response techniques. Examples are given of the scattering from infinite conducting and nonconducting cylinders, open channel, sphere, cone, cone sphere, coated disk, open boxes, and open and closed finite cylinders with axially incident waves.
Benoit-Bird, Kelly J; Gilly, William F; Au, Whitlow W L; Mate, Bruce
2008-03-01
This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies. PMID:18345820
NASA Technical Reports Server (NTRS)
Meyer, Harold D.
1999-01-01
This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.
NASA Astrophysics Data System (ADS)
Petrov, P. S.; Zakharenko, A. D.; Trofimov, M. Yu.
2012-11-01
A suitable tool for the simulation of low frequency acoustic pulse signals propagating in a shallow sea is the numerical integration of the nonstationary wave equation. The main feature of such simulation problems is that in this case the sound waves propagate in the geoacoustic waveguide formed by the upper layers of the bottom and the water column. By this reason, the correct dependence of the attenuation of sound waves in the bottom on their frequency must be taken into account. In this paper we obtain an integro-differential equation for the sound waves in the viscoelastic fluid, which allows to simulate the arbitrary dependence of acoustic wave attenuation on frequency in the time domain computations. The procedure of numerical solution of this equation based on its approximation by a system of differential equations is then considered and the methods of artificial limitation of computational domain are described. We also construct a simple finite-difference scheme for the proposed equation suitable for the numerical solution of nonstationary problems arising in the shallow-sea acoustics.
Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong
2014-02-01
Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. PMID:24070825
μ-diff: An open-source Matlab toolbox for computing multiple scattering problems by disks
NASA Astrophysics Data System (ADS)
Thierry, Bertrand; Antoine, Xavier; Chniti, Chokri; Alzubaidi, Hasan
2015-07-01
The aim of this paper is to describe a Matlab toolbox, called μ-diff, for modeling and numerically solving two-dimensional complex multiple scattering by a large collection of circular cylinders. The approximation methods in μ-diff are based on the Fourier series expansions of the four basic integral operators arising in scattering theory. Based on these expressions, an efficient spectrally accurate finite-dimensional solution of multiple scattering problems can be simply obtained for complex media even when many scatterers are considered as well as large frequencies. The solution of the global linear system to solve can use either direct solvers or preconditioned iterative Krylov subspace solvers for block Toeplitz matrices. Based on this approach, this paper explains how the code is built and organized. Some complete numerical examples of applications (direct and inverse scattering) are provided to show that μ-diff is a flexible, efficient and robust toolbox for solving some complex multiple scattering problems.
NASA Astrophysics Data System (ADS)
Emamzadeh, Seyed Shahab; Ahmadi, Mohammad Taghi; Mohammadi, Soheil; Biglarkhani, Masoud
2015-07-01
In this paper, an investigation into the propagation of far field explosion waves in water and their effects on nearby structures are carried out. For the far field structure, the motion of the fluid surrounding the structure may be assumed small, allowing linearization of the governing fluid equations. A complete analysis of the problem must involve simultaneous solution of the dynamic response of the structure and the propagation of explosion wave in the surrounding fluid. In this study, a dynamic adaptive finite element procedure is proposed. Its application to the solution of a 2D fluid-structure interaction is investigated in the time domain. The research includes: a) calculation of the far-field scatter wave due to underwater explosion including solution of the time-depended acoustic wave equation, b) fluid-structure interaction analysis using coupled Euler-Lagrangian approach, and c) adaptive finite element procedures employing error estimates, and re-meshing. The temporal mesh adaptation is achieved by local regeneration of the grid using a time-dependent error indicator based on curvature of pressure function. As a result, the overall response is better predicted by a moving mesh than an equivalent uniform mesh. In addition, the cost of computation for large problems is reduced while the accuracy is improved.
Mitri, F. G.
2015-11-14
Using the partial-wave series expansion method in cylindrical coordinates, a formal analytical solution for the acoustical scattering of a 2D cylindrical quasi-Gaussian beam with an arbitrary angle of incidence θ{sub i}, focused on a rigid elliptical cylinder in a non-viscous fluid, is developed. The cylindrical focused beam expression is an exact solution of the Helmholtz equation. The scattering coefficients for the elliptical cylinder are determined by forcing the expression of the total (incident + scattered) field to satisfy the Neumann boundary condition for a rigid immovable surface, and performing the product of matrices involving an inversion procedure. Computations for the matrices elements require a single numerical integration procedure for each partial-wave mode. Numerical results are performed with particular emphasis on the focusing properties of the incident beam and its angle of incidence with respect to the major axis a of the ellipse as well as the aspect ratio a/b where b is the minor axis (assuming a > b). The method is validated and verified against previous results obtained via the T-matrix for plane waves. The present analysis is the first to consider an acoustical beam on an elliptic cylinder of variable cross-section as opposed to plane waves of infinite extent. Other 2D non-spherical and Chebyshev surfaces are mentioned that may be examined throughout this analytical formalism assuming a small deformation parameter ε.
NASA Astrophysics Data System (ADS)
Ranachowski, Jerzy
As yet no detailed history of Polish acoustics exists. The easiest way to begin such an undertaking would be to start with a description of the history of specific teams led by a particular individual. The author has attempted to describe the contributions of a team of scientists working at the Institute of Basic Problems of Technology who worked closely with Professor Ignacy Malecki. The first Polish work in the field of acousticd began in the 1930's. Acoustics was taught at the clandestine Warsaw Polytechnical. A Department of Electroacoustics was established at the polytechnical. This department led to the establishment of the Vibration Research Institute of the Polish Academy of Sciences, which in 1953 became part of the academy's new Institute of Basic Problems of Technology. The Vibration Research Institute conducted acoustic research in the areas of ultrasound flaw detection, molecular acoustics, noise measurements, and speech acoustics. The institute was also engaged in theoretical research on electromechanical-acoustic analogies and coupled electroacoustic fields and theoretical and experimental studies of heterogeneous materials, especially ceramics. The institute became interested in hypersonics and quantum representations of acoustic phenomena. A quantum method was used to describe a diffraction field and the propagation of vibrations in a narrow passage. The institute went from measurements of the velocity and attenuation of ultrasound waves to a study of the active behavior of materials corresponding to acoustic emission. The institute conducted comprehensive studies of the mechanisms by which acoustic emission is generated and developed different applications for acoustic emission. Researchers investigated the acoustic emission which accompanies brittle fracture and chemical reactions. The institute cooperated with foreign researchers and engaged in educational activities related to its research.
NASA Astrophysics Data System (ADS)
Gaebler, Peter J.; Eulenfeld, Tom; Wegler, Ulrich
2015-12-01
In this study, frequency-dependent seismic scattering and intrinsic attenuation parameters for the crustal structure beneath the W-Bohemia/Vogtland swarm earthquake region close to the border of Czech Republic and Germany are estimated. Synthetic seismogram envelopes are modelled using elastic and acoustic radiative transfer theory. Scattering and absorption parameters are determined by fitting these synthetic envelopes to observed seismogram envelopes from 14 shallow local events from the October 2008 W-Bohemia/Vogtland earthquake swarm. The two different simulation approaches yield similar results for the estimated crustal parameters and show a comparable frequency dependence of both transport mean free path and intrinsic absorption path length. Both methods suggest that intrinsic attenuation is dominant over scattering attenuation in the W-Bohemia/Vogtland region for the investigated epicentral distance range and frequency bands from 3 to 24 Hz. Elastic simulations of seismogram envelopes suggest that forward scattering is required to explain the data, however, the degree of forward scattering is not resolvable. Errors in the parameter estimation are smaller in the elastic case compared to results from the acoustic simulations. The frequency decay of the transport mean free path suggests a random medium described by a nearly exponential autocorrelation function. The fluctuation strength and correlation length of the random medium cannot be estimated independently, but only a combination of the parameters related to the transport mean free path of the medium can be computed. Furthermore, our elastic simulations show, that using our numerical method, it is not possible to resolve the value of the mean free path of the random medium.
Inversion problem for ion-atom differential elastic scattering.
NASA Technical Reports Server (NTRS)
Rich, W. G.; Bobbio, S. M.; Champion, R. L.; Doverspike, L. D.
1971-01-01
The paper describes a practical application of Remler's (1971) method by which one constructs a set of phase shifts from high resolution measurements of the differential elastic scattering of protons by rare-gas atoms. These JWKB phase shifts are then formally inverted to determine the corresponding intermolecular potentials. The validity of the method is demonstrated by comparing an intermolecular potential obtained by direct inversion of experimental data with a fairly accurate calculation by Wolniewicz (1965).
NASA Astrophysics Data System (ADS)
Visscher, W. M.
1980-02-01
The paper presents a new method of calculation of elastic and acoustic wave scattering. The method of optimal truncation (MOOT) uses a family of integral equations solved by matrix methods; the scattered wave is expanded in a truncated series of eigenfunctions of the unperturbed wave equation, and expansion coefficients are determined by requiring that the mean square of the deviance from the boundary conditions at the surface of the scatterer be minimized. This results in matrix equations for the scattered amplitudes which can be easily solved; the method can compute the scattering of acoustic, elastic, or electromagnetic waves from defects which are internally piecewise homogeneous, so that conditions on the wave function derivatives and values at the boundaries characterize the scatterers.
NASA Astrophysics Data System (ADS)
Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.
2001-05-01
Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.
An episodic memory-based solution for the acoustic-to-articulatory inversion problem.
Demange, Sébastien; Ouni, Slim
2013-05-01
This paper presents an acoustic-to-articulatory inversion method based on an episodic memory. An episodic memory is an interesting model for two reasons. First, it does not rely on any assumptions about the mapping function but rather it relies on real synchronized acoustic and articulatory data streams. Second, the memory inherently represents the real articulatory dynamics as observed. It is argued that the computational models of episodic memory, as they are usually designed, cannot provide a satisfying solution for the acoustic-to-articulatory inversion problem due to the insufficient quantity of training data. Therefore, an episodic memory is proposed, called generative episodic memory (G-Mem), which is able to produce articulatory trajectories that do not belong to the set of episodes the memory is based on. The generative episodic memory is evaluated using two electromagnetic articulography corpora: one for English and one for French. Comparisons with a codebook-based method and with a classical episodic memory (which is termed concatenative episodic memory) are presented in order to evaluate the proposed generative episodic memory in terms of both its modeling of articulatory dynamics and its generalization capabilities. The results show the effectiveness of the method where an overall root-mean-square error of 1.65 mm and a correlation of 0.71 are obtained for the G-Mem method. They are comparable to those of methods recently proposed. PMID:23654397
Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.
Frank, Scott D; Odom, Robert I; Collis, Jon M
2013-03-01
Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor. PMID:23464007
Review of the inverse scattering problem at fixed energy in quantum mechanics
NASA Technical Reports Server (NTRS)
Sabatier, P. C.
1972-01-01
Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.
NASA Astrophysics Data System (ADS)
Kocaogul, Ibrahim; Hu, Fang; Li, Xiaodong
2014-03-01
Radiation of acoustic waves at all frequencies can be obtained by Time Domain Wave Packet (TDWP) method in a single time domain computation. Other benefit of the TDWP method is that it makes possible the separation of acoustic and instability wave in the shear flow. The TDWP method is also particularly useful for computations in the ducted or waveguide environments where incident wave modes can be imposed cleanly without a potentially long transient period. The adjoint equations for the linearized Euler equations are formulated for the Cartesian coordinates. Analytical solution for adjoint equations is derived by using Green's function in 2D and 3D. The derivation of reciprocal relations is presented for closed and open ducts. The adjoint equations are then solved numerically in reversed time by the TDWP method. Reciprocal relation between the duct mode amplitudes and far field point sources in the presence of the exhaust shear flow is computed and confirmed numerically. Applications of the adjoint problem to closed and open ducts are also presented.
Boundary conditions for gas flow problems from anisotropic scattering kernels
NASA Astrophysics Data System (ADS)
To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline
2015-10-01
The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.
Willert, Jeffrey; Park, H.; Taitano, William
2015-10-12
High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.
NASA Astrophysics Data System (ADS)
Bendali, Abderrahmane; Cocquet, Pierre-Henri; Tordeux, Sébastien
2016-03-01
The asymptotic analysis carried out in this paper for the problem of a multiple scattering in three dimensions of a time-harmonic wave by obstacles whose size is small as compared with the wavelength establishes that the effect of the small bodies can be approximated at any order of accuracy by the field radiated by point sources. Among other issues, this asymptotic expansion of the wave furnishes a mathematical justification with optimal error estimates of Foldy's method that consists in approximating each small obstacle by a point isotropic scatterer. Finally, it is shown how this theory can be further improved by adequately locating the center of phase of the point scatterers and the taking into account of self-interactions. In this way, it is established that the usual Foldy model may lead to an approximation whose asymptotic behavior is the same than that obtained when the multiple scattering effects are completely neglected.
Scattering Problem and Resonances for Three-Body Coulomb Quantum Systems: Parallel Calculations
NASA Astrophysics Data System (ADS)
Yarevsky, E.
2016-02-01
An approach to the solution of scattering and resonance problems based on splitting the potential into a finite range part and a long range tail part is proposed. The explicit solution to the Schrödinger equation for the long range tail Hamiltonian is used as an incoming wave. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling. The same technique is used to determine resonances of the system. Calculations are performed with the finite element method which allows efficient parallel computations. The approach is illustrated with calculations of the electron resonant scattering on the hydrogen and the helium ion.
Seo, Jung Hee; Mittal, Rajat
2010-01-01
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129
NASA Astrophysics Data System (ADS)
Burov, V. A.; Grishina, I. M.; Lapshenkina, O. I.; Morozov, S. A.; Rumyantseva, O. D.; Sukhov, E. G.
2003-11-01
In the ultrasonic diagnostics of small-size neoplasms of biological tissues at the earliest stage of their development, an efficient way to eliminate the distorting influence of high-contrast or large inhomogeneities of the biological medium is to apply the iterative technique. A simple approach is proposed, which makes it possible with only two iteration steps to achieve an efficient focusing of the tomograph array. At the first step, the unknown distribution of the large-scale inhomogeneities of sound velocity and absorption over the scatterer is reconstructed, where the large-scale inhomogeneities are those whose size exceeds several wavelengths. At the second step, the fine structure of the scatterer is reconstructed against the large-scale background, which can be performed with a high accuracy owing to the evaluation of the background at the first step. The possibility of simultaneous reconstruction of the large-scale and fine structures by the noniterative Grinevich-Novikov algorithm is considered as an alternative. This algorithm reconstructs in an explicit form two-dimensional refractive-absorbing acoustic scatterers of almost arbitrary shape and strength. Taking into account the effects of multiple scattering, this algorithm provides resolution of the fine structure almost as good as that achieved in reconstructing the same structure against an undistorting homogeneous background. The results of numerical simulations of both algorithms are presented.
Froula, D H; Davis, P; Divol, L; Ross, J S; Meezan, N; Price, D; Glenzer, S H; Rousseaux, C
2005-11-01
The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas. PMID:16383991
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian; Li, Xuelei; Li, Wuqun
2014-08-01
Sound velocity inversion problem based on scattering theory is formulated in terms of a nonlinear integral equation associated with scattered field. Because of its nonlinearity, in practice, linearization algorisms (Born/single scattering approximation) are widely used to obtain an approximate inversion solution. However, the linearized strategy is not congruent with seismic wave propagation mechanics in strong perturbation (heterogeneous) medium. In order to partially dispense with the weak perturbation assumption of the Born approximation, we present a new approach from the following two steps: firstly, to handle the forward scattering by taking into account the second-order Born approximation, which is related to generalized Radon transform (GRT) about quadratic scattering potential; then to derive a nonlinear quadratic inversion formula by resorting to inverse GRT. In our formulation, there is a significant quadratic term regarding scattering potential, and it can provide an amplitude correction for inversion results beyond standard linear inversion. The numerical experiments demonstrate that the linear single scattering inversion is only good in amplitude for relative velocity perturbation () of background media up to 10 %, and its inversion errors are unacceptable for the perturbation beyond 10 %. In contrast, the quadratic inversion can give more accurate amplitude-preserved recovery for the perturbation up to 40 %. Our inversion scheme is able to manage double scattering effects by estimating a transmission factor from an integral over a small area, and therefore, only a small portion of computational time is added to the original linear migration/inversion process.
An eigenvalue correction due to scattering by a rough wall of an acoustic waveguide.
Krynkin, Anton; Horoshenkov, Kirill V; Tait, Simon J
2013-08-01
In this paper a derivation of the attenuation factor in a waveguide with stochastic walls is presented. The perturbation method and Fourier analysis are employed to derive asymptotically consistent boundary-value problems at each asymptotic order. The derived approximation predicts the attenuation of the propagating mode in a rough waveguide through a correction to the eigenvalue corresponding to smooth walls. The proposed approach can be used to derive results that are consistent with those obtained by Bass et al. [IEEE Trans. Antennas Propag. 22, 278-288 (1974)]. The novelty of the method is that it does not involve the integral Dyson-type equation and, as a result, the large number of statistical moments included in the equation in the form of the mass operator of the volume scattering theory. The derived eigenvalue correction is described by the correlation function of the randomly rough surface. The averaged solution in the plane wave regime is approximated by the exponential function dependent on the derived eigenvalue correction. The approximations are compared with numerical results obtained using the finite element method (FEM). An approach to retrieve the correct deviation in roughness height and correlation length from multiple numerical realizations of the stochastic surface is proposed to account for the oversampling of the rough surface occurring in the FEM meshing procedure. PMID:23927093
ADRPM-VII applied to the long-range acoustic detection problem
NASA Technical Reports Server (NTRS)
Shalis, Edward; Koenig, Gerald
1990-01-01
An acoustic detection range prediction model (ADRPM-VII) has been written for IBM PC/AT machines running on the MS-DOS operating system. The software allows the user to predict detection distances of ground combat vehicles and their associated targets when they are involved in quasi-military settings. The program can also calculate individual attenuation losses due to spherical spreading, atmospheric absorption, ground reflection and atmospheric refraction due to temperature and wind gradients while varying parameters effecting the source-receiver problem. The purpose here is to examine the strengths and limitations of ADRPM-VII by modeling the losses due to atmospheric refraction and ground absorption, commonly known as excess attenuation, when applied to the long range detection problem for distances greater than 3 kilometers.
Modelling acoustic scattering, sound speed, and attenuation in gassy soft marine sediments.
Mantouka, A; Dogan, H; White, P R; Leighton, T G
2016-07-01
A model for nonlinear gas bubble pulsation in marine sediments is presented. This model is then linearized to determine the resonance frequency and the damping terms for linear radial oscillations. The linear model is then used to predict the effects that such bubble pulsations will have on the sound speed and attenuation of acoustic waves propagating in gassy marine sediment. The results are compared for monodisperse populations against the predictions of a model of Anderson and Hampton and, furthermore, the additional abilities of the model introduced in this paper are discussed. These features include the removal of the sign ambiguities in the expressions, the straightforward implementation for acoustic propagation through polydisperse bubble populations, the capability to estimate bubble size distributions through a full acoustic inversion, and the capability to predict nonlinear effects. PMID:27475152
NASA Astrophysics Data System (ADS)
Buscombe, D.; Grams, P. E.; Kaplinski, M. A.
2013-12-01
Bed sediment classification using backscatter intensities from multibeam echosounder (MBES) systems in rivers is attractive due to its high coverage and resolution, limited costs compared to conventional sampling, and the potential combination of bathymetric and bottom sediment mapping in one instrument. Sediment classification by means of hydro-acoustic remote sensing is becoming an established discipline in oceanography. A number of techniques have been proposed, none of which has become the preferred method. In rivers, however, the field is relatively new and faces challenges not typically encountered in deep ocean settings. For example, river beds tend to have larger mean and maximum slopes than typical seabeds. Shallow water depths not only make MBES deployments more difficult, but also make the size of the beam footprint on the bed small which can lead to relatively noisy backscatter data. In particular, sediments can more heterogeneous in terms of: 1) range of particle sizes (both in a given area and over an entire mapped reach); 2) range of grain size over proximal bedform fields; 3) superimposed bedforms; and 4) abrupt sedimentological transitions over small scales. This sediment heterogeneity means grain-size usually changes along swath, which has a number of implications for existing sediment classification methods which use the distribution of backscatter intensities over all acoustic beams. We discuss these implications with reference to MBES data collected from the Colorado River in Grand Canyon, Arizona. We analyze the scale-dependence of probability density functions (PDF) of measured elevations in different sedimentological settings, which reveals the appropriate spatial scale at which to apply acoustic scattering theories. We also discuss the joint PDF of elevation and backscatter over different scales as a means by which to create an adaptive gridding scheme in which each grid is scaled appropriately, in situations with rapidly changing
Houfek, Karel
2008-09-01
Numerical solution of coupled radial differential equations which are encountered in multichannel scattering problems is presented. Numerical approach is based on the combination of the exterior complex scaling method and the finite-elements method with the discrete variable representation. This method can be used not only to solve multichannel scattering problem but also to find bound states and resonance positions and widths directly by diagonalization of the corresponding complex scaled Hamiltonian. Efficiency and accuracy of this method is demonstrated on an analytically solvable two-channel problem.
Solving outside-axial-field-of-view scatter correction problem in PET via digital experimentation
NASA Astrophysics Data System (ADS)
Andreyev, Andriy; Zhu, Yang-Ming; Ye, Jinghan; Song, Xiyun; Hu, Zhiqiang
2016-03-01
Unaccounted scatter impact from unknown outside-axial-field-of-view (outside-AFOV) activity in PET is an important degrading factor for image quality and quantitation. Resource consuming and unpopular way to account for the outside- AFOV activity is to perform an additional PET/CT scan of adjacent regions. In this work we investigate a solution to the outside-AFOV scatter problem without performing a PET/CT scan of the adjacent regions. The main motivation for the proposed method is that the measured random corrected prompt (RCP) sinogram in the background region surrounding the measured object contains only scattered events, originating from both inside- and outside-AFOV activity. In this method, the scatter correction simulation searches through many randomly-chosen outside-AFOV activity estimates along with known inside-AFOV activity, generating a plethora of scatter distribution sinograms. This digital experimentation iterates until a decent match is found between a simulated scatter sinogram (that include supposed outside-AFOV activity) and the measured RCP sinogram in the background region. The combined scatter impact from inside- and outside-AFOV activity can then be used for scatter correction during final image reconstruction phase. Preliminary results using measured phantom data indicate successful phantom length estimate with the method, and, therefore, accurate outside-AFOV scatter estimate.
Muir, Thomas G; Costley, R Daniel; Sabatier, James M
2014-01-01
Finite element methods are utilized to model and compare the use of both a remote loudspeaker and a vertical shaker in the generation of sound and shear and interface waves in an elastic solid containing an imbedded elastic scatterer, which is resonant. Results for steady state and transient insonification are presented to illustrate excitation, propagation, and scattering mechanisms and effects. Comparisons of acoustic and vibratory excitation of the solid interface are made, with a view towards remote sensing of induced vibratory motion through optical measurement of the ground interface motion above the imbedded inclusion. Some advantages of the acoustic excitation method for exciting plate mode resonances in the target are observed. PMID:24437744
Flow equation of functional renormalization group for three-body scattering problems
NASA Astrophysics Data System (ADS)
Tanizaki, Yuya
2013-11-01
Functional renormalization group (FRG) is applied to the three-body scattering problem in the two-component fermionic system with an attractive contact interaction. We establish an exact flow equation on the basis of FRG and show that our flow equation is consistent with integral equations obtained from the Dyson-Schwinger equation. In particular, the relation of our flow equation and the Skornyakov and Ter-Martirosyan equation for the atom-dimer scattering is made clear.
Numerical simulations of acoustics problems using the direct simulation Monte Carlo method
NASA Astrophysics Data System (ADS)
Hanford, Amanda Danforth
In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of systems. This particle method allows for treatment of acoustic phenomena for a wide range of Knudsen numbers, defined as the ratio of molecular mean free path to wavelength. Continuum models such as the Euler and Navier-Stokes equations break down for flows greater than a Knudsen number of approximately 0.05. Continuum models also suffer from the inability to simultaneously model nonequilibrium conditions, diatomic or polyatomic molecules, nonlinearity and relaxation effects and are limited in their range of validity. Therefore, direct simulation Monte Carlo is capable of directly simulating acoustic waves with a level of detail not possible with continuum approaches. The basis of direct simulation Monte Carlo lies within kinetic theory where representative particles are followed as they move and collide with other particles. A parallel, object-oriented DSMC solver was developed for this problem. Despite excellent parallel efficiency, computation time is considerable. Monatomic gases, gases with internal energy, planetary environments, and amplitude effects spanning a large range of Knudsen number have all been modeled with the same method and compared to existing theory. With the direct simulation method, significant deviations from continuum predictions are observed for high Knudsen number flows.
Solution of three-dimensional electromagnetic scattering problems by interior source methods
NASA Astrophysics Data System (ADS)
Kangro, Urve
2012-09-01
We discuss solving three-dimensional electromagnetic scattering problems by interior source methods, where one looks for solutions as integrals over an auxiliary surface inside the scattering body. Results about existence and uniqueness of solution of the resulting integral equation are presented. The approximate solution of the integral equation is a linear combination of Dirac's delta-functions; various methods to calculate the coefficients are discussed. If the boundary of the scatterer is analytic, then for specific choices of the auxiliary surface and meshes the convergence is exponential in the number of variables.
NASA Astrophysics Data System (ADS)
Nazarov, L. A.; Nazarova, L. A.; Romenskii, E. I.; Tcheverda, V. A.; Epov, M. I.
2016-02-01
A method for estimating the stress-strain state of a rock massif in the vicinity of underground facilities is substantiated. This method is based on solution of the boundary inverse problem of defining the components of an external stress field from the acoustic sounding data. The acoustic sounding data used are the arrival times of diving head longitudinal waves, recorded in a long mine shaft. Numerical experiments have revealed the optimal arrangement of the recording network and the limited relative error in the input data, which, taken together, provide for solvability of the inverse problem.
Surface Acoustic Wave Scattering from an Array of Irregularities Comparable with a Wavelength
NASA Astrophysics Data System (ADS)
Yankin, Sergey S.; Suchkov, Sergey G.; Shatrova, Iuliia A.; Suchkov, Dmitry S.; Komkov, Sergey V.; Pilovets, Aleksey A.; Nikitov, Sergey A.
The properly defined reflection, transmission and scattering coefficients were numerically evaluated as functions of the reflector's thickness, from infinitively small to comparable with wavelength. It was shown that these dependencies for projections are quasi-periodic and related to excitation of Eigen resonance modes in array of reflectors. In contrast to projections scattering from deep grooves does not have periodic behavior and with the depth's growth SAW scattering into volume increases while reflection coefficient doesn't reach more than 40%. The calculation of the 2D pattern of the scattered fields makes it possible to estimate the reflecting structures efficiency and clearly shows the range of the parameters for which an intensive SAW-energy radiation into the bulk occurs.
NASA Astrophysics Data System (ADS)
Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi
2016-08-01
The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.
Helmholtz and parabolic equation solutions to a benchmark problem in ocean acoustics.
Larsson, Elisabeth; Abrahamsson, Leif
2003-05-01
The Helmholtz equation (HE) describes wave propagation in applications such as acoustics and electromagnetics. For realistic problems, solving the HE is often too expensive. Instead, approximations like the parabolic wave equation (PE) are used. For low-frequency shallow-water environments, one persistent problem is to assess the accuracy of the PE model. In this work, a recently developed HE solver that can handle a smoothly varying bathymetry, variable material properties, and layered materials, is used for an investigation of the errors in PE solutions. In the HE solver, a preconditioned Krylov subspace method is applied to the discretized equations. The preconditioner combines domain decomposition and fast transform techniques. A benchmark problem with upslope-downslope propagation over a penetrable lossy seamount is solved. The numerical experiments show that, for the same bathymetry, a soft and slow bottom gives very similar HE and PE solutions, whereas the PE model is far from accurate for a hard and fast bottom. A first attempt to estimate the error is made by computing the relative deviation from the energy balance for the PE solution. This measure gives an indication of the magnitude of the error, but cannot be used as a strict error bound. PMID:12765364
NASA Astrophysics Data System (ADS)
Fukasawa, Ryoichi; Okubo, Yusei; Abe, Osamu; Ohta, Kimihiro
1992-03-01
We report the Raman scattering spectra of the folded longitudinal acoustic phonon of AlxGa1-xAs/GaAs superlattices for various aluminium (Al) mole fractions. The effect of Al mole fraction increases on the Raman intensities and the frequencies was studied.
NASA Astrophysics Data System (ADS)
Rudenko, O. V.; Gurbatov, S. N.
2016-07-01
Inverse problems of nonlinear acoustics have important applied significance. On the one hand, they are necessary for nonlinear diagnostics of media, materials, manufactured articles, building units, and biological and geological structures. On the other hand, they are needed for creating devices that ensure optimal action of acoustic radiation on a target. However, despite the many promising applications, this direction remains underdeveloped, especially for strongly distorted high-intensity waves containing shock fronts. An example of such an inverse problem is synthesis of the spatiotemporal structure of a field in a radiating system that ensures the highest possible energy density in the focal region. This problem is also related to the urgent problems of localizing wave energy and the theory of strongly nonlinear waves. Below we analyze some quite general and simple inverse nonlinear problems.
NASA Astrophysics Data System (ADS)
Bafile, Ubaldo; Guarini, Eleonora; Barocchi, Fabrizio
2006-06-01
In the Q range where inelastic x-ray and neutron scattering are applied to the study of acoustic collective excitations in fluids, various models of the dynamic structure factor S(Q,ω) generalize in different ways the results obtained from linearized-hydrodynamics theory in the Q→0 limit. Here we show that the models most commonly fitted to experimental S(Q,ω) spectra can be given a unified formulation. In this way, direct comparisons among the results obtained by fitting different models become now possible to a much larger extent than ever. We also show that a consistent determination of the dispersion curve and of the propagation Q range of the excitations is possible, whichever model is used. We derive an exact formula which describes in all cases the dispersion curve and allows for the first quantitative understanding of its shape, by assigning specific and distinct roles to the various structural, thermal, and damping effects that determine the Q dependence of the mode frequencies. The emerging picture describes the acoustic modes as Q -dependent harmonic oscillators whose characteristic frequency is explicitly renormalized in an exact way by the relaxation processes, which also determine, through the widths of both the inelastic and the elastic lines, the whole shape of collective-excitation spectra.
Bafile, Ubaldo; Guarini, Eleonora; Barocchi, Fabrizio
2006-06-01
In the Q range where inelastic x-ray and neutron scattering are applied to the study of acoustic collective excitations in fluids, various models of the dynamic structure factor S(Q, omega) generalize in different ways the results obtained from linearized-hydrodynamics theory in the Q-->0 limit. Here we show that the models most commonly fitted to experimental S(Q, omega) spectra can be given a unified formulation. In this way, direct comparisons among the results obtained by fitting different models become now possible to a much larger extent than ever. We also show that a consistent determination of the dispersion curve and of the propagation Q range of the excitations is possible, whichever model is used. We derive an exact formula which describes in all cases the dispersion curve and allows for the first quantitative understanding of its shape, by assigning specific and distinct roles to the various structural, thermal, and damping effects that determine the Q dependence of the mode frequencies. The emerging picture describes the acoustic modes as Q-dependent harmonic oscillators whose characteristic frequency is explicitly renormalized in an exact way by the relaxation processes, which also determine, through the widths of both the inelastic and the elastic lines, the whole shape of collective-excitation spectra. PMID:16906814
Weisser, Thomas; Groby, Jean-Philippe; Dazel, Olivier; Gaultier, François; Deckers, Elke; Futatsugi, Sideto; Monteiro, Luciana
2016-02-01
The acoustic response of a rigidly backed poroelastic layer with a periodic set of elastic cylindrical inclusions embedded is studied. A semi-analytical approach is presented, based on Biot's 1956 theory to account for the deformation of the skeleton, coupling mode matching technique, Bloch wave representation, and multiple scattering theory. This model is validated by comparing the derived absorption coefficients to finite element simulations. Numerical results are further exposed to investigate the influence of the properties of the inclusions (type, material properties, size) of this structure, while a modal analysis is performed to characterize the dynamic behaviors leading to high acoustic absorption. Particularly, in the case of thin viscoelastic membranes, an absorption coefficient larger than 0.8 is observed on a wide frequency band. This property is found to be due to the coupling between the first volume mode of the inclusion and the trapped mode induced by the periodic array and the rigid backing, for a wavelength in the air smaller than 11 times the material thickness. PMID:26936546
Bafile, Ubaldo; Guarini, Eleonora
2006-06-15
In the Q range where inelastic x-ray and neutron scattering are applied to the study of acoustic collective excitations in fluids, various models of the dynamic structure factor S(Q,{omega}) generalize in different ways the results obtained from linearized-hydrodynamics theory in the Q{yields}0 limit. Here we show that the models most commonly fitted to experimental S(Q,{omega}) spectra can be given a unified formulation. In this way, direct comparisons among the results obtained by fitting different models become now possible to a much larger extent than ever. We also show that a consistent determination of the dispersion curve and of the propagation Q range of the excitations is possible, whichever model is used. We derive an exact formula which describes in all cases the dispersion curve and allows for the first quantitative understanding of its shape, by assigning specific and distinct roles to the various structural, thermal, and damping effects that determine the Q dependence of the mode frequencies. The emerging picture describes the acoustic modes as Q-dependent harmonic oscillators whose characteristic frequency is explicitly renormalized in an exact way by the relaxation processes, which also determine, through the widths of both the inelastic and the elastic lines, the whole shape of collective-excitation spectra.
Resolution Analysis for Experiment Planning of a Nonlinear Seafloor Acoustic Inverse Problem
NASA Astrophysics Data System (ADS)
Ganse, A. A.; Odom, R. I.
2007-12-01
Geoacoustic inversion is the estimation of physical properties of the ocean bottom as a continuous function of position (or depth) in the seafloor given acoustic receptions in the water column. It is closely related to marine reflection seismology but also has features of refraction seismology, and uses sonar equipment and less than ideal geometries because accurate scientific determination of the seafloor may not be the primary goal of the experiments. However, the authors show how a pre-measurement inverse theory resolution analysis can be used as part of experiment planning regarding sensor placement and ship tracks, such that a desire for an experimental configuration giving the most information in bottom inversion can be quantitatively balanced with that for other needs like tracking and communication. This nonlinear geoacoustic inverse problem is ill-posed, so that one can only estimate the continuous function of seafloor properties to a limited resolution. This limited resolution varies with experiment geometry, frequency, and other such factors, and can be quantified in either a frequentist or Bayesian framework. Given statistics of the measurement noise (but without any new measurements themselves), the resolution can be quantified exactly for a linear inverse problem, and compared between different experiment geometries. Nonlinear problems complicate this picture, but if the problem can be transformed into a weakly nonlinear form then the resolution may still be explored in an approximate sense and used as a tool in the planning phase. The ideal situation is when previous seafloor estimates exist for the same region in which a new experiment with new geometry and configuration is being planned. For the scenario without previous results, a somewhat more ad-hoc approach can still compare changes in resolution across different seafloor models. This presentation demonstrates the technique for a synthetic problem involving a single stationary source and a
Experimental evidence of the effect of heat flux on thomson scattering off ion acoustic waves
Amiranoff; Baton; Huller; Malka; Modena; Mounaix; Galloudec; Rousseaux; Salvati
2000-02-01
Thomson self-scattering measurements are performed in a preionized helium gas jet plasma at different locations along the laser propagation direction. A systematic and important variation of the intensity ratio between the blue and the red ion spectral components is observed, depending on whether the location of the probed region is in front of or behind the focal plane. A simple theoretical calculation of Thomson scattering shows that this behavior can be qualitatively understood in terms of a deformation of the electron distribution function due to the return current correlated with the classical thermal heat flux. PMID:11046481
Non-Hermiticity and potential scaling in the method of continued fractions for scattering problems
Makowski, A.J.; Raczynski, A.; Staszewska, G.
1986-01-01
The recently formulated method of continued fractions for scattering problems is generalized (i) for the case of non-Hermitian potentials and Green functions and (ii) for the formulation through Volterra-type equations. A practically important possibility of potential scaling is also presented.
NASA Astrophysics Data System (ADS)
Davendra, Donald; Zelinka, Ivan; Senkerik, Roman; Jasek, Roman; Bialic-Davendra, Magdalena
2012-11-01
One of the new emerging application strategies for optimization is the hybridization of existing metaheuristics. The research combines the unique paradigms of solution space sampling of SOMA and memory retention capabilities of Scatter Search for the task of capacitated vehicle routing problem. The new hybrid heuristic is tested on the Taillard sets and obtains good results.
NASA Astrophysics Data System (ADS)
Follett, R. K.; Michel, D. T.; Myatt, J. F.; Hu, S. X.; Yaakobi, B.; Froula, D. H.
2012-10-01
Thomson scattering was used to measure enhanced ion-acoustic waves (IAW's) driven by the two-plasmon-decay (TPD) instability. The IAW amplitude scales with the 3/2φ emission (a TPD signature). Up to 20 beams with 860-μm-diam laser spots generated by 2-ns-long pulses of 3φ (0.351-μm) light with overlapped intensities up to 4 x 10^14 W/cm^2 were used to produce ˜300-μm density-scale lengths. The IAW amplitudes were measured using 4φ Thomson scattering near 3φ quarter-critical densities. Time-resolved 3/2φ spectroscopy was used to compare the amplitude of 3/2φ emission to the IAW amplitude. QZAKfootnotetext K. Y. Sanbonmatsu et al., Phys. Rev. Lett. 82, 932 (1999).^,footnotetext K. Y. Sanbonmatsu et al., Phys. Plasmas 7, 2824 (2000). modeling shows a similar onset threshold and wave amplitude as the experiments. The model suggests that the source of the IAW growth is from the beating of electron-plasma waves, which drive density perturbations through the ponderomotive force. This conclusion is supported by the experimental geometry. This process is shown to be a saturation mechanism for TPD from simulations.footnotetext R. Yan et al., Phys. Rev. Lett. 103, 175002 (2009). This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.
NASA Astrophysics Data System (ADS)
Ogam, Erick; Depollier, Claude; Fellah, Z. E. A.
2010-12-01
Gas-saturated, solid skeleton, porous media like geomaterials, polymeric and metallic foams or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss, are still few. Accurate acoustic methods for the characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we have developed a method based on the theory and experiment of diffraction of acoustic waves by a rigid-frame, air-saturated polymeric foam in cylindrical form in the audible frequency regime. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field show that it is also dependent on the intrinsic microstructural parameters of the porous cylinder namely, porosity, tortuosity, and the flow resistivity (related to permeability).
Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs
NASA Astrophysics Data System (ADS)
Gélat, Pierre; ter Haar, Gail; Saffari, Nader
2011-09-01
The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.
Accurate solution of the proton-hydrogen three-body scattering problem
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Kadyrov, A. S.; Bray, I.
2016-02-01
An accurate solution to the fundamental three-body problem of proton-hydrogen scattering including direct scattering and ionization, electron capture and electron capture into the continuum (ECC) is presented. The problem has been addressed using a quantum-mechanical two-center convergent close-coupling approach. At each energy the internal consistency of the solution is demonstrated with the help of single-center calculations, with both approaches converging independently to the same electron-loss cross section. This is the sum of the electron capture, ECC and direct ionization cross sections, which are only obtainable separately in the solution of the problem using the two-center expansion. Agreement with experiment for the electron-capture cross section is excellent. However, for the ionization cross sections some discrepancy exists. Given the demonstrated internal consistency we remain confident in the provided theoretical solution.
Photoreflectance investigation of exciton-acoustic phonon scattering in GaN grown by MOVPE
NASA Astrophysics Data System (ADS)
Bouzidi, M.; Soltani, S.; Halidou, I.; Chine, Z.; El Jani, B.
2016-04-01
In this paper, we report a systematic investigation of the near band edge (NBE) excitonic states in GaN using low temperature photoluminescence (PL) and photoreflectance (PR) measurements. For this purpose, GaN films of different thicknesses have been grown on silicon nitride (SiN) treated c-plane sapphire substrates by atmospheric pressure metalorganic vapor phase epitaxy (MOVPE). Low temperature PR spectra exhibit well-defined spectral features related to the A, B and C free excitons denoted by FXA FXB and FXC, respectively. In contrast, PL spectra are essentially dominated by the A free and donor bound excitons. By combining PR spectra and Hall measurements a strong correlation between residual electron concentration and exciton linewidths is observed. From the temperature dependence of the excitonic linewidths, the exciton-acoustic phonon coupling constant is determined for FXA, FXB and FXC. We show that this coupling constant is strongly related to the exciton kinetic energy and to the strain level.
On the dyadic scattering problem in three-dimensional gradient elasticity: an analytic approach
NASA Astrophysics Data System (ADS)
Charalambopoulos, Antonios; Gergidis, Leonidas N.
2008-10-01
The investigation of the direct scattering problem of an elastic dyadic incident field from a spherical inclusion, is the main outcome of this work, in the case where the scatterer and the host environment dispose microstructure. The framework of the method is based on the implication of Mindlin's gradient theory. The development of the method is fully analytic and gives successively several byproducts, which are indispensable for the solution of the scattering problem but constitute also independent results of their own theoretical and practical value. So the numerable set of Navier eigendyadics is constructed, which is proved to be a basis for every dyadic field obeying the dynamic gradient elasticity equation. This permits the construction of a useful spectral representation for every gradient elasticity field. Furthermore, the set of dyadic spherical harmonics is built, which stands for the extension of the well-known spherical vector harmonics to the dyadic realm. Every dyadic field restricted on the unit sphere can be expanded in terms of these spherical dyadic harmonics. The orthogonality relations of these functions are determined in close form and this is the prerequisite for the fully analytic treatment of the boundary conditions involving the scattering problem under consideration.
The leaking mode problem in atmospheric acoustic-gravity wave propagation
NASA Technical Reports Server (NTRS)
Kinney, W. A.; Pierce, A. D.
1976-01-01
The problem of predicting the transient acoustic pressure pulse at long horizontal distances from large explosions in the atmosphere is examined. Account is taken of poles off the real axis and of branch line integrals in the general integral governing the transient waveform. Perturbation techniques are described for the computation of the imaginary ordinate of the poles and numerical studies are described for a model atmosphere terminated by a halfspace with c = 478 m/sec above 125 km. For frequencies less than 0.0125 rad/sec, the GR sub 1 mode, for example, is found to have a frequency dependent amplitude decay of the order of 0.0001 nepers/km. Examples of numerically synthesized transient waveforms are exhibited with and without the inclusion of leaking modes. The inclusion of leaking modes results in waveforms with a more marked beginning rather than a low frequency oscillating precursor of gradually increasing amplitude. Also, the revised computations indicate that waveforms invariably begin with a pressure rise, a result supported by other theoretical considerations and by experimental data.
Electromagnetic scattering problems -Numerical issues and new experimental approaches of validation
Geise, Robert; Neubauer, Bjoern; Zimmer, Georg
2015-03-10
Electromagnetic scattering problems, thus the question how radiated energy spreads when impinging on an object, are an essential part of wave propagation. Though the Maxwell’s differential equations as starting point, are actually quite simple,the integral formulation of an object’s boundary conditions, respectively the solution for unknown induced currents can only be solved numerically in most cases.As a timely topic of practical importance the scattering of rotating wind turbines is discussed, the numerical description of which is still based on rigorous approximations with yet unspecified accuracy. In this context the issue of validating numerical solutions is addressed, both with reference simulations but in particular with the experimental approach of scaled measurements. For the latter the idea of an incremental validation is proposed allowing a step by step validation of required new mathematical models in scattering theory.
NASA Astrophysics Data System (ADS)
Røstad, Anders; Kaartvedt, Stein; Aksnes, Dag L.
2016-07-01
We make a comparison of the mesopelagic sound scattering layers (SLs) in two contrasting optical environments; the clear Red Sea and in murkier coastal waters of Norway (Masfjorden). The depth distributions of the SL in Masfjorden are shallower and narrower than those of the Red Sea. This difference in depth distribution is consistent with the hypothesis that the organisms of the SL distribute according to similar light comfort zones (LCZ) in the two environments. Our study suggest that surface and underwater light measurements ranging more than 10 orders of magnitude is required to assess the controlling effects of light on SL structure and dynamics.
NASA Astrophysics Data System (ADS)
Michell, R. G.; Grydeland, T.; Samara, M.
2014-10-01
Naturally enhanced ion-acoustic lines (NEIALs) have been observed with the Poker Flat Incoherent Scatter Radar (PFISR) ever since it began operating in 2006. The nearly continuous operation of PFISR since then has led to a large number of NEIAL observations from there, where common-volume, high-resolution auroral imaging data are available. We aim to systematically distinguish the different types of auroral forms that are associated with different NEIAL features, including spectral shape and altitude extent. We believe that NEIALs occur with a continuum of morphological characteristics, although we find that most NEIALs observed with PFISR fall into two general categories. The first group occurs at fairly low altitudes - F region or below - and have power at, and spread between, the ion-acoustic peaks. The second group contains the type of NEIALs that have previously been observed with the EISCAT radars, those that extend to high altitudes (600 km or more) and often have large asymmetries in the power enhancements between the two ion-acoustic shoulders. We find that there is a correlation between the auroral structures and the type of NEIALs observed, and that the auroral structures present during NEIAL events are consistent with the likely NEIAL generation mechanisms inferred in each case. The first type of NEIAL - low altitude - is the most commonly observed with PFISR and is most often associated with active, structured auroral arcs, such as substorm growth phase, and onset arcs and are likely generated by Langmuir turbulence. The second type of NEIAL - high altitude - occurs less frequently in the PFISR radar and is associated with aurora that contains large fluxes of low-energy electrons, as can happen in poleward boundary intensifications as well as at substorm onset and is likely the result of current-driven instabilities and in some cases Langmuir turbulence as well. In addition, a preliminary auroral photometry analysis revealed that there is an
Discrete ordinates transport methods for problems with highly forward-peaked scattering
Pautz, S.D.
1998-04-01
The author examines the solutions of the discrete ordinates (S{sub N}) method for problems with highly forward-peaked scattering kernels. He derives conditions necessary to obtain reasonable solutions in a certain forward-peaked limit, the Fokker-Planck (FP) limit. He also analyzes the acceleration of the iterative solution of such problems and offer improvements to it. He extends the analytic Fokker-Planck limit analysis to the S{sub N} equations. This analysis shows that in this asymptotic limit the S{sub N} solution satisfies a pseudospectral discretization of the FP equation, provided that the scattering term is handled in a certain way (which he describes) and that the analytic transport solution satisfies an analytic FP equation. Similar analyses of various spatially discretized S{sub N} equations reveal that they too produce solutions that satisfy discrete FP equations, given the same provisions. Numerical results agree with these theoretical predictions. He defines a multidimensional angular multigrid (ANMG) method to accelerate the iterative solution of highly forward-peaked problems. The analyses show that a straightforward application of this scheme is subject to high-frequency instabilities. However, by applying a diffusive filter to the ANMG corrections he is able to stabilize this method. Fourier analyses of model problems show that the resulting method is effective at accelerating the convergence rate when the scattering is forward-peaked. The numerical results demonstrate that these analyses are good predictors of the actual performance of the ANMG method.
Quantum trajectories in complex space: one-dimensional stationary scattering problems.
Chou, Chia-Chun; Wyatt, Robert E
2008-04-21
One-dimensional time-independent scattering problems are investigated in the framework of the quantum Hamilton-Jacobi formalism. The equation for the local approximate quantum trajectories near the stagnation point of the quantum momentum function is derived, and the first derivative of the quantum momentum function is related to the local structure of quantum trajectories. Exact complex quantum trajectories are determined for two examples by numerically integrating the equations of motion. For the soft potential step, some particles penetrate into the nonclassical region, and then turn back to the reflection region. For the barrier scattering problem, quantum trajectories may spiral into the attractors or from the repellers in the barrier region. Although the classical potentials extended to complex space show different pole structures for each problem, the quantum potentials present the same second-order pole structure in the reflection region. This paper not only analyzes complex quantum trajectories and the total potentials for these examples but also demonstrates general properties and similar structures of the complex quantum trajectories and the quantum potentials for one-dimensional time-independent scattering problems. PMID:18433189
IN VITRO CHARACTERIZATION OF LIPOSOMES AND OPTISON® BY ACOUSTIC SCATTERING AT 3.5 MHZ
Coussios, Constantin-C.; Holland, Christy K.; Jakubowska, Ludwika; Huang, Shao-Ling; Macdonald, Robert C.; Nagaraj, Ashwin; McPherson, David D.
2016-01-01
Liposomes are phospholipid vesicles that can encapsulate both gas and fluid. With antibody conjugation, new formulations, known as immunoliposomes, can be targeted to atheroma and other pathologic components and are, thus, being developed as novel diagnostic ultrasound (US) echo contrast agents to enhance atherosclerosis imaging. The majority of these echogenic liposomes range in diameter from 0.25 to 5.0 µm. To quantify the echogenicity of liposome suspensions of varying concentrations, the backscattering coefficient at 3.5 MHz was determined experimentally. The backscattering coefficient was also estimated theoretically as a function of air volume fraction by modeling the encapsulated air as a free air bubble and assuming single bubble scattering. For most of the liposome concentrations examined in this study (on the order of 108/mL), the backscattering coefficient equals or exceeds that of Optison® at the human clinical dosage (on the order of 104/mL). Experimental measurement of the decrease in backscattering coefficient shows promise as a sensitive method for determining whether liposomes are left intact or destroyed during imaging; thus, helping to explore their potential as a vehicle for targeted drug delivery. In addition, the attenuation of US through liposome suspensions is negligible at 3.5 MHz relative to the attenuation through Optison® (0.25 dB/cm), suggesting that liposomes have a much higher scatter-to-attenuation ratio and could be more efficient as contrast agents. PMID:14998670
Kılıç, Emre Eibert, Thomas F.
2015-05-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.
Mature red blood cells: from optical model to inverse light-scattering problem
Gilev, Konstantin V.; Yurkin, Maxim A.; Chernyshova, Ekaterina S.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.
2016-01-01
We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content. PMID:27446656
Use of edge-based finite elements for solving three dimensional scattering problems
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Jin, J. M.; Volakis, John L.
1991-01-01
Edge based finite elements are free from drawbacks associated with node based vectorial finite elements and are, therefore, ideal for solving 3-D scattering problems. The finite element discretization using edge elements is checked by solving for the resonant frequencies of a closed inhomogeneously filled metallic cavity. Great improvements in accuracy are observed when compared to the classical node based approach with no penalty in terms of computational time and with the expected absence of spurious modes. A performance comparison between the edge based tetrahedra and rectangular brick elements is carried out and tetrahedral elements are found to be more accurate than rectangular bricks for a given storage intensity. A detailed formulation for the scattering problem with various approaches for terminating the finite element mesh is also presented.
NASA Astrophysics Data System (ADS)
Birt, Daniel R.; An, Kyongmo; Weathers, Annie; Shi, Li; Tsoi, Maxim; Li, Xiaoqin
2013-02-01
We demonstrate the use of the micro-Brillouin light scattering (micro-BLS) technique as a local temperature sensor for magnons in a permalloy (Py) thin film and phonons in the glass substrate. When the Py film is uniformly heated, we observe a systematic shift in the frequencies of two thermally excited perpendicular standing spin wave modes. Fitting the temperature dependent magnon spectra allows us to achieve a temperature resolution better than 2.5 K. In addition, we demonstrate that the micro-BLS spectra can be used to measure the local temperature of magnons and the relative temperature shift of phonons across a thermal gradient. Such local temperature sensors are useful for investigating spin caloritronic and thermal transport phenomena in general.
NASA Technical Reports Server (NTRS)
Mittra, R.; Ko, W. L.; Rahmat-Samii, Y.
1979-01-01
This paper presents a brief review of some recent developments on the use of the spectral-domain approach for deriving high-frequency solutions to electromagnetics scattering and radiation problems. The spectral approach is not only useful for interpreting the well-known Keller formulas based on the geometrical theory of diffraction (GTD), it can also be employed for verifying the accuracy of GTD and other asymptotic solutions and systematically improving the results when such improvements are needed. The problem of plane wave diffraction by a finite screen or a strip is presented as an example of the application of the spectral-domain approach.
NASA Astrophysics Data System (ADS)
Gong, Xing; Wang, Yuanmei
2001-09-01
A neural network approach to the inverse scattering problem for microwave tomographic reconstruction is presented. Although the technique of microwave tomography has been developed for more than two decades, it is still in its infancy in that it is necessary to solve the inverse scattering problem, which is well known as an ill-posed and nonlinear problem and therefore difficult to deal with. To improve the inherent ill-posedness of the problem, good regularization procedures are required. In this paper, an edge-preserving regularization is proposed with a set of line processes to preserve the edge of the reconstructed image. Since the unknown dielectric permittivities are continuous complex variables and the line processes are binary variables, an augmented Hopfield network is applied to the mixed-variable optimization problem. With this method, a priori knowledge can be conveniently incorporated into the optimization process, and inversions of large matrices are avoided. A numerical example of a simple model illuminated by the transverse magnetic incident waves is reported, and the advantages and limitations of the method are discussed.
NASA Astrophysics Data System (ADS)
Ressler, Patrick H.
2002-11-01
A 153 kHz narrowband acoustic Doppler current profiler (ADCP) was used to measure volume backscattering strength ( Sv) during a deepwater oceanographic survey of cetacean and seabird habitat in the northeastern Gulf of Mexico. Sv was positively related to zooplankton and micronekton biomass (wet displacement volume) in 'sea-truth' net hauls made with a 1 m 2 Multiple Opening-Closing Net Environmental Sensing System (MOCNESS). A subset of these MOCNESS tows was used to explore the relationship between the numerical densities of various taxonomic categories of zooplankton and the ADCP backscatter signal. Crustaceans, small fish, and fragments of non-gas-bearing siphonophores in the net samples all showed significant, positive correlations with the acoustic signal, while other types of gelatinous zooplankton, pteropod and atlantid molluscs, and gas-filled siphonophore floats showed no significant correlation with Sv. Previously published acoustic scattering models for zooplankton were used to calculate expected scattering for several general zooplankton types and sizes for comparison with the field data. Even though gelatinous material often made up a large fraction of the total biomass, crustaceans, small fish, and pteropods were most likely the important scatterers. Since only crustacean and small fish densities were significantly correlated with Sv, it is suggested that Sv at 153 kHz can be used as a relative proxy for the abundance of these organisms in the Gulf of Mexico.
Non-conforming curved finite element schemes for time-dependent elastic-acoustic coupled problems
NASA Astrophysics Data System (ADS)
Rodríguez-Rozas, Ángel; Diaz, Julien
2016-01-01
High-order numerical methods for solving time-dependent acoustic-elastic coupled problems are introduced. These methods, based on Finite Element techniques, allow for a flexible coupling between the fluid and the solid domain by using non-conforming meshes and curved elements. Since characteristic waves travel at different speeds through different media, specific levels of granularity for the mesh discretization are required on each domain, making impractical a possible conforming coupling in between. Advantageously, physical domains may be independently discretized in our framework due to the non-conforming feature. Consequently, an important increase in computational efficiency may be achieved compared to other implementations based on conforming techniques, namely by reducing the total number of degrees of freedom. Differently from other non-conforming approaches proposed so far, our technique is relatively simpler and requires only a geometrical adjustment at the coupling interface at a preprocessing stage, so that no extra computations are necessary during the time evolution of the simulation. On the other hand, as an advantage of using curvilinear elements, the geometry of the coupling interface between the two media of interest is faithfully represented up to the order of the scheme used. In other words, higher order schemes are in consonance with higher order approximations of the geometry. Concerning the time discretization, we analyze both explicit and implicit schemes. These schemes are energy conserving and, for the explicit case, the stability is guaranteed by a CFL condition. In order to illustrate the accuracy and convergence of these methods, a set of representative numerical tests are presented.
A whole-space transform formula of cylindrical wave functions for scattering problems
NASA Astrophysics Data System (ADS)
Yuan, Xiaoming
2014-03-01
The theory of elastic wave scattering is a fundamental concept in the study of elastic dynamics and wave motion, and the wave function expansion technique has been widely used in many subjects. To supply the essential tools for solving wave scattering problems induced by an eccentric source or multi-sources as well as multi-scatters, a whole-space transform formula of cylindrical wave functions is presented and its applicability to some simple cases is demonstrated in this study. The transforms of wave functions in cylindrical coordinates can be classified into two basic types: interior transform and exterior transform, and the existing Graf's addition theorem is only suitable for the former. By performing a new replacement between the two coordinates, the exterior transform formula is first deduced. It is then combined with Graf's addition theorem to establish a whole-space transform formula. By using the whole-space transform formula, the scattering solutions by the sources outside and inside a cylindrical cavity are constructed as examples of its application. The effectiveness and advantages of the whole-space transform formula is illustrated by comparison with the approximate model based on a large cycle method. The whole-space transform formula presented herein can be used to perform the transform between two different cylindrical coordinates in the whole space. In addition, its concept and principle are universal and can be further extended to establish the coordinate transform formula of wave functions in other coordinate systems.
Time-Reversal Acoustics and Maximum-Entropy Imaging
Berryman, J G
2001-08-22
Target location is a common problem in acoustical imaging using either passive or active data inversion. Time-reversal methods in acoustics have the important characteristic that they provide a means of determining the eigenfunctions and eigenvalues of the scattering operator for either of these problems. Each eigenfunction may often be approximately associated with an individual scatterer. The resulting decoupling of the scattered field from a collection of targets is a very useful aid to localizing the targets, and suggests a number of imaging and localization algorithms. Two of these are linear subspace methods and maximum-entropy imaging.
Acoustic integrated extinction
Norris, Andrew N.
2015-01-01
The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100
NASA Astrophysics Data System (ADS)
Roohani Ghehsareh, Hadi; Kamal Etesami, Seyed; Hajisadeghi Esfahani, Maryam
2016-08-01
In the current work, the electromagnetic (EM) scattering from infinite perfectly conducting cylinders with arbitrary cross sections in both transverse magnetic (TM) and transverse electric (TE) modes is numerically investigated. The problems of TE and TM EM scattering can be mathematically modelled via the magnetic field integral equation (MFIE) and the electric field integral equation (EFIE), respectively. An efficient technique is performed to approximate the solution of these surface integral equations. In the proposed numerical method, compactly supported radial basis functions (RBFs) are employed as the basis functions. The radial and compactly supported properties of these basis functions substantially reduce the computational cost and improve the efficiency of the method. To show the accuracy of the proposed technique, it has been applied to solve three interesting test problems. Moreover, the method is well used to compute the electric current density and also the radar cross section (RCS) for some practical scatterers with different cross section geometries. The reported numerical results through the tables and figures demonstrate the efficiency and accuracy of the proposed technique.
Nair, N V; Shanker, B; Kempel, L
2012-09-01
Boundary integral equations (BIEs) find applications in problems ranging from sonar to medical diagnostics. The two ingredients of the BIE solution technique are (1) representation of the domain and (2) design of approximation spaces to represent physical quantities on the domain. These, in concert, affect accuracy and convergence of the simulation. This paper presents a framework that permits the development of a scheme for refinement (of size and order) in both geometry and function representations. Further, this permits flexibility in the types of basis functions that can be used. Capabilities of the proposed framework are shown via a number of numerical examples. PMID:22978854
A Least-Squares Finite Element Method for Electromagnetic Scattering Problems
NASA Technical Reports Server (NTRS)
Wu, Jie; Jiang, Bo-nan
1996-01-01
The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.
Fall, Mandiaye; Boutami, Salim; Glière, Alain; Stout, Brian; Hazart, Jerome
2013-06-01
A combination of the multilevel fast multipole method (MLFMM) and boundary element method (BEM) can solve large scale photonics problems of arbitrary geometry. Here, MLFMM-BEM algorithm based on a scalar and vector potential formulation, instead of the more conventional electric and magnetic field formulations, is described. The method can deal with multiple lossy or lossless dielectric objects of arbitrary geometry, be they nested, in contact, or dispersed. Several examples are used to demonstrate that this method is able to efficiently handle 3D photonic scatterers involving large numbers of unknowns. Absorption, scattering, and extinction efficiencies of gold nanoparticle spheres, calculated by the MLFMM, are compared with Mie's theory. MLFMM calculations of the bistatic radar cross section (RCS) of a gold sphere near the plasmon resonance and of a silica coated gold sphere are also compared with Mie theory predictions. Finally, the bistatic RCS of a nanoparticle gold-silver heterodimer calculated with MLFMM is compared with unmodified BEM calculations. PMID:24323115
Dixneuf, Sophie; Rachet, Florent; Chrysos, Michael
2015-02-28
Owing in part to the p orbitals of its filled L shell, neon has repeatedly come on stage for its peculiar properties. In the context of collision-induced Raman spectroscopy, in particular, we have shown, in a brief report published a few years ago [M. Chrysos et al., Phys. Rev. A 80, 054701 (2009)], that the room-temperature anisotropic Raman lineshape of Ne-Ne exhibits, in the far wing of the spectrum, a peculiar structure with an aspect other than a smooth wing (on a logarithmic plot) which contrasts with any of the existing studies, and whose explanation lies in the distinct way in which overlap and exchange interactions interfere with the classical electrostatic ones in making the polarizability anisotropy, α∥ - α⊥. Here, we delve deeper into that study by reporting data for that spectrum up to 450 cm(-1) and for even- and odd-order spectral moments up to M6, as well as quantum lineshapes, generated from SCF, CCSD, and CCSD(T) models for α∥ - α⊥, which are critically compared with the experiment. On account of the knowledge of the spectrum over the augmented frequency domain, we show how the inverse scattering problem can be tackled both effectively and economically, and we report an analytic function for the anisotropy whose quantum lineshape faithfully reproduces our observations. PMID:25725726
Dixneuf, Sophie; Rachet, Florent; Chrysos, Michael
2015-02-28
Owing in part to the p orbitals of its filled L shell, neon has repeatedly come on stage for its peculiar properties. In the context of collision-induced Raman spectroscopy, in particular, we have shown, in a brief report published a few years ago [M. Chrysos et al., Phys. Rev. A 80, 054701 (2009)], that the room-temperature anisotropic Raman lineshape of Ne–Ne exhibits, in the far wing of the spectrum, a peculiar structure with an aspect other than a smooth wing (on a logarithmic plot) which contrasts with any of the existing studies, and whose explanation lies in the distinct way in which overlap and exchange interactions interfere with the classical electrostatic ones in making the polarizability anisotropy, α{sub ∥} − α{sub ⊥}. Here, we delve deeper into that study by reporting data for that spectrum up to 450 cm{sup −1} and for even- and odd-order spectral moments up to M{sub 6}, as well as quantum lineshapes, generated from SCF, CCSD, and CCSD(T) models for α{sub ∥} − α{sub ⊥}, which are critically compared with the experiment. On account of the knowledge of the spectrum over the augmented frequency domain, we show how the inverse scattering problem can be tackled both effectively and economically, and we report an analytic function for the anisotropy whose quantum lineshape faithfully reproduces our observations.
NASA Astrophysics Data System (ADS)
Sayadi, Taraneh; Le Chenadec, Vincent; Schmid, Peter; Richecoeur, Franck; Massot, Marc
2013-11-01
The modeling of thermo-acoustic coupling in reactive flows represents a challenging task. In this study, we focus on the Rijke tube problem, which includes relevant features such as a compact acoustic source, an empirical modeling of the heat source, and non-linearities. This thermo-acoustic system features a complex dynamical behavior, which renders the characterization of the different encountered flow regimes difficult. In order to synthesize accurate time series, we tackle this problem from a numerical point-of-view, and start by proposing a dedicated solver designed for dealing with the underlying stiffness, in particular, the retarded time and the discontinuity at the location of the heat source. Convergence and parametric studies are carried out to assess the accuracy of the discretization, hence laying a foundation for a stability analysis of the semi-discrete system. This stability analysis is performed by means of the projection method proposed by Jarlebring, which alleviates the linearization of the retarded term, and is used to validate the numerical results. Finally, the focus is set on the application of the dynamic mode decomposition technique to study bifurcations.
On the statement of the problem of sound scattering by a cylindrical vortex
NASA Astrophysics Data System (ADS)
Belyaev, I. V.; Kop'ev, V. F.
2008-09-01
The well-known problem of sound wave scattering by a Rankine vortex is investigated. Although the problem has been studied for years, none of the solutions reported in the literature can be considered completely correct. It is demonstrated that the main difficulty consists in the absence of a mathematically well-posed statement of the problem for a plane wave (which is used in most of the approaches) because of the slow decrease in the mean flow velocity at infinity. This gives rise to multiple solutions, including those singular on a line behind the vortex, and each of them claims to be correct. It is shown that, in spite of the decrease in the mean flow velocity, the problem does not possess any remote region at infinity, tending to which it is possible to preset the plane wave condition for the incident field. Therefore, for the external field, the remote point source condition is proposed. This approach makes it possible to state a mathematically well-posed problem, to reveal the origin of the aforementioned ambiguity, and to compare previous approaches used for solving the problem under consideration.
NASA Astrophysics Data System (ADS)
Raczkowska, A.; Gorska, N.
2012-12-01
Puck Bay is an area of high species biodiversity belonging to the Coastal Landscape Park of Baltic Sea Protected Areas (BSPA) and is also included in the list of the World Wide Fund for Nature (WWF) and covered by the protection program "Natura 2000". The underwater meadows of the Puck Bay are important for Europe's natural habitats due to their role in enhancing the productivity of marine ecosystems and providing shelter and optimal feeding conditions for many marine organisms. One of the dominant species comprising the underwater meadows of the Southern Baltic Sea is the seagrass Zostera marina. The spatial extent of underwater seagrass meadows is altered by pollution and eutrophication; therefore, to properly manage the area one must monitor its ecological state. Remote acoustic methods are useful tools for the monitoring of benthic habitats in many marine areas because they are non-invasive and allow researchers to obtain data from a large area in a short period of time. Currently there is a need to apply these methods in the Baltic Sea. Here we present an analysis of the mechanism of scattering of acoustic waves on seagrass in the Southern Baltic Sea based on the numerical modeling of acoustic wave scattering by the biological tissues of plants. The study was conducted by adapting a model developed on the basis of DWBA (Distorted Wave Born Approximation) developed by Stanton and Chu (2005) for fluid-like objects, including the characteristics of the Southern Baltic seagrass. Input data for the model, including the morphometry of seagrass leaves, their angle of inclination and the density plant cover, was obtained through the analysis of biological materials collected in the Puck Bay in the framework of a research project financed by the Polish Government (Development of hydroacoustic methods for studies of underwater meadows of Puck Bay, 6P04E 051 20). On the basis of the developed model, we have analyzed the dependence of the target strength of a single
NASA Astrophysics Data System (ADS)
Fishman, S.; Soffer, A.
2016-07-01
We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the adiabatic theorem in the gapless case. We prove a new uniform ergodic theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and asymptotic completeness.
A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem
NASA Astrophysics Data System (ADS)
Park, Taehoon; Park, Won-Kwang
2015-09-01
Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation.
Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems
NASA Technical Reports Server (NTRS)
Asano, S.; Sato, M.; Hansen, J. E.
1979-01-01
A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius.
Chernichenko, Yu.D.
2005-01-01
Within the relativistic quasipotential approach to quantum field theory, the relativistic inverse scattering problem is solved for the case where the total quasipotential describing the interaction of two relativistic spinless particles having different masses is a superposition of a nonlocal separable and a local quasipotential. It is assumed that the local component of the total quasipotential is known and that there exist bound states in this local component. It is shown that the nonlocal separable component of the total interaction can be reconstructed provided that the local component, an increment of the phase shift, and the energies of bound states are known.
Modelling of acoustic radiation problems associated with turbomachinery and rotating blades
NASA Astrophysics Data System (ADS)
Eversman, W.
Finite element methods developed for computational predictions of turbofan and propeller acoustic radiation are presented. Account is taken of the disparate acoustic and geometric scales, the complex geometry, sound propagation in a nonuniformly flowing medium, the presence of a lining, and definition of bounds for calculations which are carried out in an unbounded domain. Density and pressure perturbations in the turbofan inlet are modeled with a linearized momentum equation. The sound radiation is represented by the Fourier components, i.e., angular modes. The same nacelle geometry is used for propeller noise, which requires inclusion of acoustic volume sources and forces. A forced convected wave equation for harmonic driving is obtained by combining continuity, momentum and state equations linearized for acoustic perturbations. The weak formulations for the two types of noise generation are solved by the Galerkin method modified with a frontal solver to reduce the required computer time. Model predictions show good agreement with experimental data for the directivity and amplitude of sound from the bellmouth inlet of the NASA-Langley Spinning Mode Synthesizer.
Wave Phenomena in an Acoustic Resonant Chamber
ERIC Educational Resources Information Center
Smith, Mary E.; And Others
1974-01-01
Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…
NASA Astrophysics Data System (ADS)
Dong, Jianping
2014-12-01
Integral form of the space-time-fractional Schrödinger equation for the scattering problem in the fractional quantum mechanics is studied in this paper. We define the fractional Green's function for the space-time fractional Schrödinger equation and express it in terms of Fox's H-function and in a computable series form. The asymptotic formula of the Green's function for large argument is also obtained, and applied to study the fractional quantum scattering problem. We get the approximate scattering wave function with correction of every order.
Eigenstates and scattering solutions for billiard problems: A boundary wall approach
Zanetti, F.M.; Vicentini, E.; Luz, M.G.E. da
2008-07-15
It was proposed about a decade ago [M.G.E. da Luz, A.S. Lupu-Sax, E.J. Heller, Phys. Rev. E 56 (1997) 2496] a simple approach for obtaining scattering states for arbitrary disconnected open or closed boundaries C, with different boundary conditions. Since then, the so called boundary wall method has been successfully used to solve different open boundary problems. However, its applicability to closed shapes has not been fully explored. In this contribution we present a complete account of how to use the boundary wall to the case of billiard systems. We review the general ideas and particularize them to single connected closed shapes, assuming Dirichlet boundary conditions for the C's. We discuss the mathematical aspects that lead to both the inside and outside solutions. We also present a different way to calculate the exterior scattering S matrix. From it, we revisit the important inside-outside duality for billiards. Finally, we give some numerical examples, illustrating the efficiency and flexibility of the method to treat this type of problem.
Inverse scattering for an exterior Dirichlet problem. [due to metallic cylinder
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1982-01-01
Scattering caused by a metallic cylinder in the field of a wire carrying a periodic current is studied, with a view to determining the location and shape of the cylinder in light of far field measurements between the cylinder and the wire. The associated direct problem is the exterior Dirichlet problem for the Helmholtz equation in two dimensions, and an improved low frequency estimate for its solution by integral equation methods is shown by inverse scattering calculations to be accurate to this estimate. The far field measurements are related to low frequency boundary integral equations whose solutions may be expressed in terms of a mapping function for the exterior of the unknown curve onto the exterior of a unit disk. The conformal transformation's Laurent expansion coefficients can be related to those of the far field, the first of which leads to the calculation of the distance between the source and the cylinder, while the other coefficients are determined by placing the source in a different location.
Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials
NASA Astrophysics Data System (ADS)
Shen, Jian Qi
2016-08-01
In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.
NASA Technical Reports Server (NTRS)
Farassat, F.; Brentner, Kenneth S.
2005-01-01
In this paper we develop an analytic expression for calculation of the the acoustic pressure from a rotating blade on a moving surface for application to the Fast Scattering Code (FSC). The analytic result is intended to be used in the helicopter noise prediction code PSU-WOPWOP. One of the goals of the derivation is obtaining a result that will not use any more information than are needed for the prediction of the thickness and loading noise. The result derived here achieves this goal and its incorporation in PSU-WOPWOP is straight forward and attainable.
NASA Astrophysics Data System (ADS)
Hefner, Brian Todd
2000-08-01
Backscattering enhancements on both circular elastic plates and acrylic targets are investigated as well as several techniques for the study of the radiation of sound. For sound scattered from a circular plate, two backscattering enhancements associated with the extensional wave are observed. The first of these enhancements involves extensional wave excitation along the diameter of the plate. When the extensional wave strikes the plate edge, reflection occurs which produces radiation into the backscattering direction. For those portions of the leaky wave which strike the edge at oblique incidence, there is mode conversion into a trapped shear wave. For certain angles of incidence on the plate edge, this wave can undergo multiple reflections and convert back into a leaky wave directed in the backscattering direction. Each of these enhancements are modeled using quantitative ray methods. Acoustic holography is also used to image the surface motion of the plate to identify the causes of these enhancements and to assess the validity of the ray model. Backscattering enhancements associated with antisymmetric Lamb wave excitation are also investigated. Scattering at the first-order antisymmetric wave coupling angle is studied using acoustic holography. Significant mode- conversion between the zeroth and first-order antisymmetric waves is observed which plays a significant role in the scattering processes. Quantitative ray models were also used to examine the backscattering from acrylic targets. Polymer solids typically have shear and Rayleigh wave phase velocities which are less than the speed of sound in water. For solid acrylic spheres, low frequency resonances are observed both experimentally and in the exact backscattering form functions which are due to coupling between the incident field and the subsonic Rayleigh wave on the sphere. The effects of material absorption, which is generally high in polymers, is examined in both the exact solutions and the quantitative
NORSTAR Project: Norfolk public schools student team for acoustical research
NASA Technical Reports Server (NTRS)
Fortunato, Ronald C.
1987-01-01
Development of the NORSTAR (Norfolk Public Student Team for Acoustical Research) Project includes the definition, design, fabrication, testing, analysis, and publishing the results of an acoustical experiment. The student-run program is based on a space flight organization similar to the Viking Project. The experiment will measure the scattering transfer of momentum from a sound field to spheres in a liquid medium. It is hoped that the experimental results will shed light on a difficult physics problem - the difference in scattering cross section (the overall effect of the sound wave scattering) for solid spheres and hollow spheres of differing wall thicknesses.
NASA Astrophysics Data System (ADS)
Wyatt, Philip
2009-03-01
The electromagnetic inverse scattering problem suggests that if a homogeneous and non-absorbing object be illuminated with a monochromatic light source and if the far field scattered light intensity is known at sufficient scattering angles, then, in principle, one could derive the dielectric structure of the scattering object. In general, this is an ill-posed problem and methods must be developed to regularize the search for unique solutions. An iterative procedure often begins with a model of the scattering object, solves the forward scattering problem using this model, and then compares these calculated results with the measured values. Key to any such solution is instrumentation capable of providing adequate data. To this end, the development of the first laser based absolute light scattering photometers is described together with their continuing evolution and some of the remarkable discoveries made with them. For particles much smaller than the wavelength of the incident light (e.g. macromolecules), the inverse scattering problems are easily solved. Among the many solutions derived with this instrumentation are the in situ structure of bacterial cells, new drug delivery mechanisms, the development of new vaccines and other biologicals, characterization of wines, the possibility of custom chemotherapy, development of new polymeric materials, identification of protein crystallization conditions, and a variety discoveries concerning protein interactions. A new form of the problem is described to address bioterrorist threats. Over the many years of development and refinement, one element stands out as essential for the successes that followed: the R and D teams were always directed and executed by physics trained theorists and experimentalists. 14 Ph. D. physicists each made his/her unique contribution to the development of these evolving instruments and the interpretation of their results.
Massively parallel solution of the inverse scattering problem for integrated circuit quality control
Leland, R.W.; Draper, B.L.; Naqvi, S.; Minhas, B.
1997-09-01
The authors developed and implemented a highly parallel computational algorithm for solution of the inverse scattering problem generated when an integrated circuit is illuminated by laser. The method was used as part of a system to measure diffraction grating line widths on specially fabricated test wafers and the results of the computational analysis were compared with more traditional line-width measurement techniques. The authors found they were able to measure the line width of singly periodic and doubly periodic diffraction gratings (i.e. 2D and 3D gratings respectively) with accuracy comparable to the best available experimental techniques. They demonstrated that their parallel code is highly scalable, achieving a scaled parallel efficiency of 90% or more on typical problems running on 1024 processors. They also made substantial improvements to the algorithmics and their original implementation of Rigorous Coupled Waveform Analysis, the underlying computational technique. These resulted in computational speed-ups of two orders of magnitude in some test problems. By combining these algorithmic improvements with parallelism the authors achieve speedups of between a few thousand and hundreds of thousands over the original engineering code. This made the laser diffraction measurement technique practical.
Applications of Quantum Theory of Atomic and Molecular Scattering to Problems in Hypersonic Flow
NASA Technical Reports Server (NTRS)
Malik, F. Bary
1995-01-01
The general status of a grant to investigate the applications of quantum theory in atomic and molecular scattering problems in hypersonic flow is summarized. Abstracts of five articles and eleven full-length articles published or submitted for publication are included as attachments. The following topics are addressed in these articles: fragmentation of heavy ions (HZE particles); parameterization of absorption cross sections; light ion transport; emission of light fragments as an indicator of equilibrated populations; quantum mechanical, optical model methods for calculating cross sections for particle fragmentation by hydrogen; evaluation of NUCFRG2, the semi-empirical nuclear fragmentation database; investigation of the single- and double-ionization of He by proton and anti-proton collisions; Bose-Einstein condensation of nuclei; and a liquid drop model in HZE particle fragmentation by hydrogen.
Computational ocean acoustics: Advances in 3D ocean acoustic modeling
NASA Astrophysics Data System (ADS)
Schmidt, Henrik; Jensen, Finn B.
2012-11-01
The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].
Klieber, Christoph; Hecksher, Tina; Pezeril, Thomas; Torchinsky, Darius H; Dyre, Jeppe C; Nelson, Keith A
2013-03-28
This paper presents and discusses the temperature and frequency dependence of the longitudinal and shear viscoelastic response at MHz and GHz frequencies of the intermediate glass former glycerol and the fragile glass former tetramethyl-tetraphenyl-trisiloxane (DC704). Measurements were performed using the recently developed time-domain Brillouin scattering technique, in which acoustic waves are generated optically, propagated through nm thin liquid layers of different thicknesses, and detected optically after transmission into a transparent detection substrate. This allows for a determination of the frequency dependence of the speed of sound and the sound-wave attenuation. When the data are converted into mechanical moduli, a linear relationship between longitudinal and shear acoustic moduli is revealed, which is consistent with the generalized Cauchy relation. In glycerol, the temperature dependence of the shear acoustic relaxation time agrees well with literature data for dielectric measurements. In DC704, combining the new data with data from measurements obtained previously by piezo-ceramic transducers yields figures showing the longitudinal and shear sound velocities at frequencies from mHz to GHz over an extended range of temperatures. The shoving model's prediction for the relaxation time's temperature dependence is fairly well obeyed for both liquids as demonstrated from a plot with no adjustable parameters. Finally, we show that for both liquids the instantaneous shear modulus follows an exponential temperature dependence to a good approximation, as predicted by Granato's interstitialcy model. PMID:23556795
NASA Astrophysics Data System (ADS)
Yang, Ying; Wei, Guangsheng
2016-09-01
The inverse spectral and scattering problems for the radial Schrödinger equation on the half-line {[0,∞)} are considered for a real-valued, integrable potential having a finite first moment. It is shown that the potential is uniquely determined in terms of the mixed spectral or scattering data which consist of the partial knowledge of the potential given on the finite interval {[0,ɛ]} for some {ɛ > 0} and either the amplitude or phase (being equivalent to scattering function) of the Jost function, without bound state data.
Punegov, V. I.; Roshchupkin, D. V.
2012-01-15
The effect of multiple scattering on the formation of the {theta}-2{theta} scan curves for a crystal modulated by a surface acoustic wave (SAW), depending on the ultrasonic frequency, has been investigated in the frame-work of the dynamical theory of X-ray diffraction. A model of a Rayleigh surface wave has been analyzed as applied to X-ray diffraction with allowance for the transverse and longitudinal elastic lattice strains. Using the example of the 127 Degree-Sign Y Prime cut of the LiNbO{sub 3} crystal, it is established that the effects of multiple scattering can be neglected for ultrasonic frequencies above 650 MHz; this finding significantly simplifies the numerical calculations of X-ray diffraction from a crystal modulated by a short-wavelength SAW. A comparative quantitative analysis of the experimental data on synchrotron scattering from the 127 Degree-Sign Y Prime cut of a LiNbO{sub 3} crystal modulated by a 952-MHz SAW have been performed, both taking into account and neglecting the effects of multiple scattering. It is shown that the computation time can be reduced by 2 to 3 orders of magnitude.
Wojcik, J; Litniewski, J; Nowicki, A
2011-10-01
The integral equations that describe scattering in the media with step-rise changing parameters have been numerically solved for the trabecular bone model. The model consists of several hundred discrete randomly distributed elements. The spectral distribution of scattering coefficients in subsequent orders of scattering has been presented. Calculations were carried on for the ultrasonic frequency ranging from 0.5 to 3 MHz. Evaluation of the contribution of the first, second, and higher scattering orders to total scattering of the ultrasounds in trabecular bone was done. Contrary to the approaches that use the μCT images of trabecular structure to modeling of the ultrasonic wave propagation condition, the 3D numerical model consisting of cylindrical elements mimicking the spatial matrix of trabeculae, was applied. The scattering, due to interconnections between thick trabeculae, usually neglected in trabecular bone models, has been included in calculations when the structure backscatter was evaluated. Influence of the absorption in subsequent orders of scattering is also addressed. Results show that up to 1.5 MHz, the influence of higher scattering orders on the total scattered field characteristic can be neglected while for the higher frequencies, the relatively high amplitude interference peaks in higher scattering orders clearly occur. PMID:21973345
NASA Technical Reports Server (NTRS)
Hinton, Yolanda L.
1999-01-01
Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.
Xie, Zhinan; Matzen, René; Cristini, Paul; Komatitsch, Dimitri; Martin, Roland
2016-07-01
A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique. The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation because the latter allows for implementation of high-order time schemes, leading to reduced numerical dispersion and dissipation, a topic of importance, in particular, in long-range ocean acoustics simulations. The method is validated for a two dimensional fluid-solid Pekeris waveguide and for a three dimensional seamount model, which shows that the technique is accurate and numerically long-time stable. Compared with widely used paraxial absorbing boundary conditions, the perfectly matched layer is significantly more efficient at absorbing both body waves and interface waves. PMID:27475142
The Scatter Search Based Algorithm to Revenue Management Problem in Broadcasting Companies
NASA Astrophysics Data System (ADS)
Pishdad, Arezoo; Sharifyazdi, Mehdi; Karimpour, Reza
2009-09-01
The problem under question in this paper which is faced by broadcasting companies is how to benefit from a limited advertising space. This problem is due to the stochastic behavior of customers (advertiser) in different fare classes. To address this issue we propose a mathematical constrained nonlinear multi period model which incorporates cancellation and overbooking. The objective function is to maximize the total expected revenue and our numerical method performs it by determining the sales limits for each class of customer to present the revenue management control policy. Scheduling the advertising spots in breaks is another area of concern and we consider it as a constraint in our model. In this paper an algorithm based on Scatter search is developed to acquire a good feasible solution. This method uses simulation over customer arrival and in a continuous finite time horizon [0, T]. Several sensitivity analyses are conducted in computational result for depicting the effectiveness of proposed method. It also provides insight into better results of considering revenue management (control policy) compared to "no sales limit" policy in which sooner demand will served first.
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1985-01-01
Elliptic and hyperbolic problems in unbounded regions are considered. These problems, when one wants to solve them numerically, have the difficulty of prescribing boundary conditions at infinity. Computationally, one needs a finite region in which to solve these problems. The corresponding conditions at infinity imposed on the finite distance boundaries should dictate the boundary conditions at infinity and be accurate with respect to the interior numerical scheme. The treatment of these boundary conditions for wave-like equations is discussed.
Dong, Jianping
2014-03-15
The 2D space-fractional Schrödinger equation in the time-independent and time-dependent cases for the scattering problems in the fractional quantum mechanics is studied. We define the Green's functions for the two cases and give the mathematical expression of them in infinite series form and in terms of some special functions. The asymptotic formulas of the Green's functions are also given, and applied to get the approximate wave functions for the fractional quantum scattering problems. These results contain those in the standard (integer) quantum mechanics as special cases, and can be applied to study the complex quantum systems.
Non-homogeneous solutions of a Coulomb Schrödinger equation as basis set for scattering problems
Del Punta, J. A.; Ambrosio, M. J.; Gasaneo, G.; Zaytsev, S. A.; Ancarani, L. U.
2014-05-15
We introduce and study two-body Quasi Sturmian functions which are proposed as basis functions for applications in three-body scattering problems. They are solutions of a two-body non-homogeneous Schrödinger equation. We present different analytic expressions, including asymptotic behaviors, for the pure Coulomb potential with a driven term involving either Slater-type or Laguerre-type orbitals. The efficiency of Quasi Sturmian functions as basis set is numerically illustrated through a two-body scattering problem.
NASA Astrophysics Data System (ADS)
Afanasyev, An. N.; Uralov, A. M.; Grechnev, V. V.
2011-12-01
Propagation of shock related Moreton and EUV waves in the solar atmosphere is simulated by the nonlinear geometrical acoustics method. This method is based on the ray approximation and takes account of nonlinear wave features: dependence of the wave velocity on its amplitude, nonlinear dissipation of wave energy in the shock front, and the increase in its duration with time. The paper describes ways of applying this method to solve the propagation problem of a blast magnetohydrodynamic shock wave. Results of analytical modeling of EUV and Moreton waves in the spherically symmetric and isothermal solar corona are also presented. The calculations demonstrate deceleration of these waves and an increase in their duration. The calculation results of the kinematics of the EUV wave observed on the Sun on January 17, 2010 are presented as an example.
A novel transport based model for wire media and its application to scattering problems
NASA Astrophysics Data System (ADS)
Forati, Ebrahim
Artificially engineered materials, known as metamaterials, have attracted the interest of researchers because of the potential for novel applications. Effective modeling of metamaterials is a crucial step for analyzing and synthesizing devices. In this thesis, we focus on wire medium (both isotropic and uniaxial) and validate a novel transport based model for them. Scattering problems involving wire media are computationally intensive due to the spatially dispersive nature of homogenized wire media. However, it will be shown that using the new model to solve scattering problems can simplify the calculations a great deal. For scattering problems, an integro-differential equation based on a transport formulation is proposed instead of the convolution-form integral equation that directly comes from spatial dispersion. The integro-differential equation is much faster to solve than the convolution equation form, and its effectiveness is confirmed by solving several examples in one-, two-, and three-dimensions. Both the integro-differential equation formulation and the homogenized wire medium parameters are experimentaly confirmed. To do so, several isotropic connected wire medium spheres have been fabricated using a rapid-prototyping machine, and their measured extinction cross sections are compared with simulation results. Wire parameters (period and diameter) are varied to the point where homogenization theory breaks down, which is observed in the measurements. The same process is done for three-dimensional cubical objects made of a uniaxail wire medium, and their measured results are compared with the numerical results based on the new model. The new method is extremely fast compared to brute-force numerical methods such as FDTD, and provides more physical insight (within the limits of homogenization), including the idea of a Debye length for wire media. The limits of homogenization are examined by comparing homogenization results and measurement. Then, a novel
Super-resolution photoacoustic imaging through a scattering wall.
Conkey, Donald B; Caravaca-Aguirre, Antonio M; Dove, Jake D; Ju, Hengyi; Murray, Todd W; Piestun, Rafael
2015-01-01
The use of wavefront shaping to compensate for scattering has brought a renewed interest as a potential solution to imaging through scattering walls. A key to the practicality of any imaging through scattering technique is the capability to focus light without direct access behind the scattering wall. Here we address this problem using photoacoustic feedback for wavefront optimization. By combining the spatially non-uniform sensitivity of the ultrasound transducer to the generated photoacoustic waves with an evolutionary competition among optical modes, the speckle field develops a single, high intensity focus significantly smaller than the acoustic focus used for feedback. Notably, this method is not limited by the size of the absorber to form a sub-acoustic optical focus. We demonstrate imaging behind a scattering medium using two different imaging modalities with up to ten times improvement in signal-to-noise ratio and five to six times sub-acoustic resolution. PMID:26249833
NASA Astrophysics Data System (ADS)
Bezrukovs, Valerijs; Bezrukovs, Vladislavs; Levins, Nikolajs
2011-01-01
Interest in the use of renewable energy in Latvia is increasing every year. Government support and availability of large unpopulated areas on the coast makes the use of these lands for the placement of large wind power plants (WPP) attractive. The key factors that determine the choice of the location of WPP are reliable information about distribution of the resource of wind energy in this area and the influence of wind turbines on the environment. The paper presents the results of years-long observations on the density fluctuations of wind energy at heights of
Thermal and acoustic problems on root canal treatment with different lasers
NASA Astrophysics Data System (ADS)
Ertl, Thomas P.; Benthin, Hartmut; Mueller, Gerhard J.
1994-12-01
Side effects of root canal preparation with lasers such as the generation of acoustic shockwaves and heat transfer were investigated. Shockwaves may cause disintegration of root hard substance and too high temperatures may damage the periodontium. Three types of pulsed lasers with different ablation characteristics were chosen for the study. (1) Excimer laser 308 nm/120 ns. (2) Er:YSGG laser 2.78 micrometers /500 microsecond(s) . (3) Nd:YAG laser 1.06 micrometers /180 microsecond(s) . Delivery systems for all lasers were quartz fibers with 400 micrometers core diameter. Canals were pretreated up to size 40 to obtain a comparable root canal shape. The teeth were positioned with the root in chicken egg protein as a heatsink during the laser operation. Shockwaves were measured with a needle hydrophone and visualization of the ablation process was made with high speed flashlamp photography. Temperatures were measured with a fiberoptic device. Results show that lasers with medium pulse length, operating at wavelength highly absorbed by hard and soft tissue, caused minimum side effects. The ablation process with lasers emitting at a low absorbed wavelength rapidly shifts from an initial heat transfer at the beginning of preparation to a noncontrollable ablation and temperature rise when carbonization occurs in the canal. Very short pulsed lasers such as excimer lasers cause stronger shock waves than lasers with a pulse length in the microsecond(s) region. One can conclude that Er:YSGG lasers offer the best ratio between efficiency and side effects.
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost
2016-04-01
Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.
Acoustic Suppression Systems and Related Methods
NASA Technical Reports Server (NTRS)
Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)
2013-01-01
An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.
NASA Astrophysics Data System (ADS)
Tijhuis, A. G.
1984-10-01
The transient scattering of two-dimensional electromagnetic fields by an obstacle of finite extent is investigated with the aid of the time domain integral equation technique. In solving such equations with the marching-on-in-time method, numerical instabilities form a major problem. These instabilities can be attributed to errors in the discretization of the source type integrals that occur in the equations. In this paper, two so-called stability criteria are formulated for such a discretization that, if they are met, guarantee that the instability can be controlled by reducing the discretization step. With the aid of these criteria, the solution of two two-dimensional electromagnetic scattering problems are analyzed, namely the scattering of a pulsed plane wave by a perfectly conducting and an inhomogeneous, lossy dielectric cylinder. Numerical results are presented and discussed.
NASA Technical Reports Server (NTRS)
Taflove, A.; Umashankar, K. R.
1987-01-01
The formulation and recent applications of the finite-difference time-domain (FD-TD) method for the numerical modeling of electromagnetic scattering and interaction problems are considered. It is shown that improvements in FD-TD modeling concepts and software implementation often make it a preferable choice for structures which cannot be easily treated by conventional integral equations and asymptotic approaches. Recent FD-TD modeling validations in research areas including coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, and radiation condition theory, are reviewed. Finally, the advantages and disadvantages of FD-TD, and guidelines concerning when FD-TD should and should not be used in high-frequency electromagnetic modeling problems, are summarized.
PT -symmetry breaking for the scattering problem in a one-dimensional non-Hermitian lattice model
NASA Astrophysics Data System (ADS)
Zhu, Baogang; Lü, Rong; Chen, Shu
2016-03-01
We study the PT -symmetry breaking for the scattering problem in a one-dimensional non-Hermitian tight-binding lattice model with balanced gain and loss distributed on two adjacent sites. In the scattering process the system undergoes a transition from the exact PT -symmetric phase to the phase with spontaneously breaking PT symmetry as the amplitude of complex potentials increases. Using the S-matrix method, we derive an exact discriminant, which can be used to distinguish different symmetry phases, and determine the exceptional point for the symmetry breaking analytically. In the PT -symmetry-breaking region, we also confirm the appearance of the unique feature, i.e., the coherent perfect absorption laser, in this simple non-Hermitian lattice model. The study of the scattering problem of such a simple model provides an additional way to unveil the physical effect of non-Hermitian PT -symmetric potentials.
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Polivanov, M. C.
1992-11-01
The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. We demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schrödinger equation as an example, we show that all types of solutions of the linear problems, as well as spectral data known in the literature, are given as specific values of this unique function — the resolvent function. A new form of the inverse problem is formulated.
Estimation of local error by a neural model in an inverse scattering problem
NASA Astrophysics Data System (ADS)
Robert, S.; Mure-Rauvaud, A.; Thiria, S.; Badran, F.
2005-07-01
Characterization of optical gratings by resolution of inverse scattering problem has become a widely used tool. Indeed, it is known as a non-destructive, rapid and non-invasive method in opposition with microscopic characterizations. Use of a neural model is generally implemented and has shown better results by comparison with other regression methods. The neural network learns the relationship between the optical signature and the corresponding profile shape. The performance of such a non-linear regression method is usually estimated by the root mean square error calculated on a data set not involved in the training process. However, this error estimation is not very significant and tends to flatten the error in the different areas of variable space. We introduce, in this paper, the calculation of local error for each geometrical parameter representing the profile shape. For this purpose a second neural network is implemented to learn the variance of results obtained by the first one. A comparison with the root mean square error confirms a gain of local precision. Finally, the method is applied in the optical characterization of a semi-conductor grating with a 1 μ m period.
NASA Astrophysics Data System (ADS)
Farafonov, V. G.; Vinokurov, A. A.
2008-08-01
A new solution to the problem of light scattering by multilayered particles possessing axial symmetry is obtained. Two methods are applied for this purpose. One is the separation of variables method with expansion of fields in terms of spherical wave functions, and the other is a novel approach based on the separation of fields into axisymmetric and nonaxisymmetric parts and on the choice of specific scalar potentials for each of them. A specific feature of the new solution is that the dimension of truncated linear algebraic systems used for determining unknown expansion coefficients of fields does not increase with an increasing number of layers. Using double-and three-layer spheroidal and Chebyshev particles of different shape and size as examples, the domain of applicability of the solution presented is compared with that of the solution previously obtained by the extended boundary conditions method. Except for nearly spherical particles, the solution presented is shown to be more favorable than the previously obtained solution.
NASA Astrophysics Data System (ADS)
Eastland, Grant; Marston, Timothy; Marston, Philip
2010-10-01
Understanding the scattering features of proud and partially exposed cylinders is relevant to understanding the high frequency scattering by a variety of simple targets. We performed various experiments where partial exposure was studied by lowering a solid aluminum cylinder through a flat free surface into a tank of water insonified at grazing incidence with short pulses to identify different features while monitoring evolution of the scattering as a function of the amount of exposure. The present investigation also allows for the recording of bistatic scattering and reversible filtering based on a form of synthetic aperture sonar (SAS). The slope of the feature timing, derived using ray theory, expressed by the derivative dt/dh where t is the measured time of the feature, depends on the feature type as well as the source and receiver grazing angles. Free surface interactions for features revealed by the slopes are accurately identified using reversible SAS filtering.
Nakayama, Masaaki Ohno, Tatsuya; Furukawa, Yoshiaki
2015-04-07
We have systematically investigated the photoluminescence (PL) dynamics of free excitons in GaAs/Al{sub 0.3}Ga{sub 0.7}As single quantum wells, focusing on the energy relaxation process due to exciton–acoustic-phonon scattering under non-resonant and weak excitation conditions as a function of GaAs-layer thickness from 3.6 to 12.0 nm and temperature from 30 to 50 K. The free exciton characteristics were confirmed by observation that the PL decay time has a linear dependence with temperature. We found that the free exciton PL rise rate, which is the reciprocal of the rise time, is inversely linear with the GaAs-layer thickness and linear with temperature. This is consistent with a reported theoretical study of the exciton–acoustic-phonon scattering rate in the energy relaxation process in quantum wells. Consequently, it is conclusively verified that the PL rise rate is dominated by the exciton–acoustic-phonon scattering rate. In addition, from quantitative analysis of the GaAs-layer thickness and temperature dependences, we suggest that the PL rise rate reflects the number of exciton–acoustic-phonon scattering events.
NASA Astrophysics Data System (ADS)
Albright, B. J.; Yin, L.; Bowers, K. J.; Bergen, B.
2016-03-01
Two- and three-dimensional particle-in-cell simulations of stimulated Brillouin scattering (SBS) in laser speckle geometry have been analyzed to evaluate the relative importance of competing nonlinear processes in the evolution and saturation of SBS. It is found that ion-trapping-induced wavefront bowing and breakup of ion acoustic waves (IAW) and the associated side-loss of trapped ions dominate electron-trapping-induced IAW wavefront bowing and breakup, as well as the two-ion-wave decay instability over a range of Z Te/Ti conditions and incident laser intensities. In the simulations, the latter instability does not govern the nonlinear saturation of SBS; however, evidence of two-ion-wave decay is seen, appearing as a modulation of the ion acoustic wavefronts. This modulation is periodic in the laser polarization plane, anti-symmetric across the speckle axis, and of a wavenumber matching that of the incident laser pulse. A simple analytic model is provided for how spatial "imprinting" from a high frequency inhomogeneity (in this case, the density modulation from the laser) in an unstable system with continuum eigenmodes can selectively amplify modes with wavenumbers that match that of the inhomogeneity.
Andrade, F.M.; Silva, E.O.; Pereira, M.
2013-12-15
In this work the bound state and scattering problems for a spin- 1/2 particle undergone to an Aharonov–Bohm potential in a conical space in the nonrelativistic limit are considered. The presence of a δ-function singularity, which comes from the Zeeman spin interaction with the magnetic flux tube, is addressed by the self-adjoint extension method. One of the advantages of the present approach is the determination of the self-adjoint extension parameter in terms of physics of the problem. Expressions for the energy bound states, phase-shift and S matrix are determined in terms of the self-adjoint extension parameter, which is explicitly determined in terms of the parameters of the problem. The relation between the bound state and zero modes and the failure of helicity conservation in the scattering problem and its relation with the gyromagnetic ratio g are discussed. Also, as an application, we consider the spin- 1/2 Aharonov–Bohm problem in conical space plus a two-dimensional isotropic harmonic oscillator. -- Highlights: •Planar dynamics of a spin- 1/2 neutral particle. •Bound state for Aharonov–Bohm systems. •Aharonov–Bohm scattering. •Helicity nonconservation. •Determination of the self-adjoint extension parameter.
NASA Technical Reports Server (NTRS)
Gedney, Stephen D.; Mittra, Raj
1990-01-01
The enhancement of the computational efficiency of the body of revolution (BOR) scattering problem is discused with a view to making it practical for solving large-body problems. The problem of EM scattering by a perfectly conducting BOR is considered, although the methods can be extended to multilayered dielectric bodies as well. Typically, the generation of the elements of the moment method matrix consumes a major portion of the computational time. It is shown how this time can be significantly reduced by manipulating the expression for the matrix elements to permit efficient FFT computation. A technique for extracting the singularity of the Green function that appears within the integrands of the matrix diagonal is also presented, further enhancing the usefulness of the FFT. The computation time can thus be improved by at least an order of magnitude for large bodies in comparison to that for previous algorithms.
NASA Astrophysics Data System (ADS)
Anand, Akash; Pandey, Ambuj; Rathish Kumar, B. V.; Paul, Jagabandhu
2016-04-01
This text proposes a fast, rapidly convergent Nyström method for the solution of the Lippmann-Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by inhomogeneous obstacles, while allowing the material properties to jump across the interface. The method works with overlapping coordinate charts as a description of the given scatterer. In particular, it employs "partitions of unity" to simplify the implementation of high-order quadratures along with suitable changes of parametric variables to analytically resolve the singularities present in the integral operator to achieve desired accuracies in approximations. To deal with the discontinuous material interface in a high-order manner, a specialized quadrature is used in the boundary region. The approach further utilizes an FFT based strategy that uses equivalent source approximations to accelerate the evaluation of large number of interactions that arise in the approximation of the volumetric integral operator and thus achieves a reduced computational complexity of O (Nlog N) for an N-point discretization. A detailed discussion on the solution methodology along with a variety of numerical experiments to exemplify its performance are presented in this paper.
A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem
NASA Astrophysics Data System (ADS)
Rahimi-Vahed, A. R.; Javadi, B.; Rabbani, M.; Tavakkoli-Moghaddam, R.
2008-04-01
The flow shop problem as a typical manufacturing challenge has gained wide attention in academic fields. This article considers a bi-criteria no-wait flow shop scheduling problem (FSSP) in which weighted mean completion time and weighted mean tardiness are to be minimized simultaneously. Since a FSSP has been proved to be NP-hard in a strong sense, a new multi-objective scatter search (MOSS) is designed for finding the locally Pareto-optimal frontier of the problem. To prove the efficiency of the proposed algorithm, various test problems are solved and the reliability of the proposed algorithm, based on some comparison metrics, is compared with a distinguished multi-objective genetic algorithm (GA), i.e. SPEA-II. The computational results show that the proposed MOSS performs better than the above GA, especially for the large-sized problems.
NASA Technical Reports Server (NTRS)
Bayliss, A.; Goldstein, C. I.; Turkel, E.
1984-01-01
The Helmholtz Equation (-delta-K(2)n(2))u=0 with a variable index of refraction, n, and a suitable radiation condition at infinity serves as a model for a wide variety of wave propagation problems. A numerical algorithm was developed and a computer code implemented that can effectively solve this equation in the intermediate frequency range. The equation is discretized using the finite element method, thus allowing for the modeling of complicated geometrices (including interfaces) and complicated boundary conditions. A global radiation boundary condition is imposed at the far field boundary that is exact for an arbitrary number of propagating modes. The resulting large, non-selfadjoint system of linear equations with indefinite symmetric part is solved using the preconditioned conjugate gradient method applied to the normal equations. A new preconditioner is developed based on the multigrid method. This preconditioner is vectorizable and is extremely effective over a wide range of frequencies provided the number of grid levels is reduced for large frequencies. A heuristic argument is given that indicates the superior convergence properties of this preconditioner.
Engineering acoustic lenses with help from evolution
NASA Astrophysics Data System (ADS)
Ha˚Kansson, Andreas; Sánchez-Dehesa, José; Sánchis, Lorenzo
2001-05-01
Optimization engineering through evolutionary algorithms have proven to be very efficient, especially in hard problems containing a large set of optimization parameters. Like evolution this family of algorithms is able to tackle enormous complex problems with fairly simple means. Here, a simple genetic algorithm [J. H. Holland, Adaptation in Natural and Artificial Systems (Univ. of Michigan, Ann Arbor, 1975)] is used in conjunction with the multiple scattering theory [L. Sánchis et al., Phys. Rev. B 67, 035422 (2003)] to fabricate a new generation of acoustic devices based on a discrete number of cylindrical scatterers. In particular, acoustic lenses [F. Cervera et al., Phys. Rev. Lett. 88, 023902 (2002)] with flat surfaces have been designed to focus the sound in a fixed focal point for one or multiple frequencies. Each scatterer is carefully placed using the optimization method within the preset boundary conditions, to maximize the pressure contribution in the chosen focal spot. With this method acoustic lenses with very low f-numbers of the order 0.3 and with amplifications over 12 dB have been estimated using a reduced number of scatterers (~60). Preliminary results obtained from the experimental realization of the designed devices confirm our predictions.
The Fast Scattering Code (FSC): Validation Studies and Program Guidelines
NASA Technical Reports Server (NTRS)
Tinetti, Ana F.; Dunn, Mark H.
2011-01-01
The Fast Scattering Code (FSC) is a frequency domain noise prediction program developed at the NASA Langley Research Center (LaRC) to simulate the acoustic field produced by the interaction of known, time harmonic incident sound with bodies of arbitrary shape and surface impedance immersed in a potential flow. The code uses the equivalent source method (ESM) to solve an exterior 3-D Helmholtz boundary value problem (BVP) by expanding the scattered acoustic pressure field into a series of point sources distributed on a fictitious surface placed inside the actual scatterer. This work provides additional code validation studies and illustrates the range of code parameters that produce accurate results with minimal computational costs. Systematic noise prediction studies are presented in which monopole generated incident sound is scattered by simple geometric shapes - spheres (acoustically hard and soft surfaces), oblate spheroids, flat disk, and flat plates with various edge topologies. Comparisons between FSC simulations and analytical results and experimental data are presented.
NASA Astrophysics Data System (ADS)
Şenyiğit, M.
2016-09-01
The half-space albedo problem has been solved for a combination of Rayleigh and isotropic scattering using HN method which is developed for the neutron transport studies. The numerical results are compared with exact values obtained using variational method and Chandrasekhar's equation for the {H}-matrix. The analytical solutions of HN method are easy to handle in comparison with the other methods. The numerical results are in good agreement with previous works in literature.
Visualization of scattering strength of elastic bodies in a fluid
NASA Astrophysics Data System (ADS)
Schenck, H. A.; Fales, J. L.
1992-07-01
As Part of the Submarine Technology Program, the Defense Advanced Research Projects Agency (DARPA) recently sponsored a Low-Frequency Structural Acoustics Benchmark Exercise. The purpose of the exercise was to test and validate several major computational codes that have been developed to solve acoustic scattering problems of elastic objects in a fluid. This report describes some of the visualization techniques and procedures that were developed to review, compare, and analyze the large amount of computational data generated in the exercise.
Spectral element method-based parabolic equation for EM-scattering problems
NASA Astrophysics Data System (ADS)
He, Zi; Fan, Zhen-Hong; Chen, Ru-Shan
2016-01-01
The traditional parabolic equation (PE) method is based on the finite difference (FD) scheme. However, the scattering object cannot be well approximated for complex geometries. As a result, a large number of meshes are needed to discretize the complex scattering objects. In this paper, the spectral element method is introduced to better approximate the complex geometry in each transverse plane, while the FD scheme is used along the paraxial direction. This proposed algorithm begins with expanding the reduced scattered fields with the Gauss-Lobatto-Legendre polynomials and testing them by the Galerkin's method in each transverse plane. Then, the calculation can be taken plane by plane along the paraxial direction. Numerical results demonstrate that the accuracy can be improved by the proposed method with larger meshes when compared with the traditional PE method.
Acoustic velocity meter systems
Laenen, Antonius
1985-01-01
Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.
Localized acoustic surface modes
NASA Astrophysics Data System (ADS)
Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan
2016-04-01
We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.
Finite-element model for three-dimensional optical scattering problems.
Wei, Xiuhong; Wachters, Arthur J; Urbach, H Paul
2007-03-01
We present a three-dimensional model based on the finite-element method for solving the time-harmonic Maxwell equation in optics. It applies to isotropic or anisotropic dielectrics and metals and to many configurations such as an isolated scatterer in a multilayer, bi-gratings, and crystals. We discuss the application of the model to near-field optical recording. PMID:17301875
Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.
2014-01-01
In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.
NASA Astrophysics Data System (ADS)
Buscombe, D.; Grams, P. E.; Kaplinski, M. A.
2014-12-01
In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length and amplitude scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by georeferenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum and the intercept and slope from a power law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration and surveys made at calibration sites at different times were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well-understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.
Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
NASA Astrophysics Data System (ADS)
Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peña, C.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, I.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-02-01
There is a significant discrepancy between the values of the proton electric form factor, GEp, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEp from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ɛ ) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ɛ at Q2=1.45 GeV2 . This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2 - 3 GeV2 .
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Hafidi, K.; Moody, C. I.
2015-02-10
There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p). from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing epsilon at Q(2) = 1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q(2) approximate to 1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R.; Arrington, J.; Brooks, W.; Adhikari, K.; Afanasev, A.; Amaryan, M.; Anderson, M.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A.; Bono, J.; Boiarinov, S.; Briscoe, W.; Burkert, V.; Carman, D.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J.; Fradi, A.; Garillon, B.; Gilfoyle, G.; Giovanetti, K.; Girod, F.; Goetz, J.; Gohn, W.; Golovatch, E.; Gothe, R.; Griffioen, K.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S.; Hyde, C. E.; Ilieva, Y.; Ireland, D.; Ishkhanov, B.; Jenkins, D.; Jiang, H.; Jo, H.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F.; Koirala, S.; Kubarovsky, V.; Kuhn, S.; Livingston, K.; Lu, H.; MacGregor, I.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M.; Meyer, C.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati, F.; Salgado, C.; Schott, D.; Schumacher, R.; Seder, E.; Sharabian, Y.; Simonyan, A.; Skorodumina, I.; Smith, E.; Smith, G.; Sober, D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N.; Watts, D.; Wei, X.; Wood, M.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z.; Zonta, I.
2015-02-10
There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R.; Arrington, J.; Brooks, W.; Adhikari, K.; Afanasev, A.; et al
2015-02-10
There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentummore » transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.« less
Towards a resolution of the proton form factor problem: new electron and positron scattering data.
Adikaram, D; Rimal, D; Weinstein, L B; Raue, B; Khetarpal, P; Bennett, R P; Arrington, J; Brooks, W K; Adhikari, K P; Afanasev, A V; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Avakian, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Bono, J; Boiarinov, S; Briscoe, W J; Burkert, V D; Carman, D S; Careccia, S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Fradi, A; Garillon, B; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Holtrop, M; Hughes, S M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jenkins, D; Jiang, H; Jo, H S; Joo, K; Joosten, S; Kalantarians, N; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, V; Kuhn, S E; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P; Mayer, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Peña, C; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Sharabian, Y G; Simonyan, A; Skorodumina, I; Smith, E S; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Trivedi, A; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I
2015-02-13
There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ϵ) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ϵ at Q(2)=1.45 GeV(2). This measurement is consistent with the size of the form factor discrepancy at Q(2)≈1.75 GeV(2) and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV(2). PMID:25723209
NASA Astrophysics Data System (ADS)
Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang
2015-06-01
This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.
A new method to solve the Nd breakup scattering problem in configuration space
NASA Astrophysics Data System (ADS)
Suslov, Vladimir
2005-11-01
A new computational method for solving the configuration-space Faddeev equations for three nucleon system has been developed. This method is based on the spline-decomposition in the angular variable and a generalization of the Numerov method for the hyperradius. The s-wave calculations of the inelasticity and phase-shift, as well as breakup amplitudes for nd and pd breakup scattering for lab energies 14.1 and 42.0 MeV were performed with the Malfliet -Tjon MT I-III potential. In the case of nd breakup scattering the results are in good agreement with those of the benchmark solution [1],[2]. In the case of pd quartet breakup scattering disagreement for the inelasticities reaches up to 6% as compared with those of the Pisa group [3]. The calculated pd amplitudes fulfill the optical theorem with a good precision. 1. J. L. Friar, B. F. Gibson, G. Berthold, W. Gloeckle, Th. Cornelius, H. Witala, J. Haidenbauer, Y. Koike, G. L. Payne, J. A. Tjon, and W. M. Kloet,: http://link.aip.org/link/?&lcreator=getabs-normal&ldir=FWD&lrel=CITES&fromkey=PRVCAN000069000004044003000001&fromkeyType=CVIPS&fromloc=AIP&toj=PRVCAN&tov=42&top=1838&toloc=APS&tourl=http%3A%2F%2Flink.aps.org%2Fabstract%2FPRC%2Fv42%2FPhys. Rev. C 42, 1838 (1990). 2. Frair J.L, Payne G.L., Gl"ockle W., Hueber D., Witala H.: Phys. Rev. C 51, 2356 (1995) 3. Kievsky A., Viviani M., and Rosati S.: Phys. Rev. C 64, 024002 (2001)
NASA Astrophysics Data System (ADS)
Zhong, Jie; Wen, Ji-Hong; Zhao, Hong-Gang; Yin, Jian-Fei; Yang, Hai-Bin
2015-08-01
Locally resonant sonic materials, due to their ability to control the propagation of low-frequency elastic waves, have become a promising option for underwater sound absorption materials. In this paper, the finite element method is used to investigate the absorption characteristics of a viscoelastic panel periodically embedded with a type of infinite-long non-coaxially cylindrical locally resonant scatterers (LRSs). The effect of the core position in the coating layer of the LRS on the low-frequency (500 Hz-3000 Hz) sound absorption property is investigated. With increasing the longitudinal core eccentricity e, there occur few changes in the absorptance at the frequencies below 1500 Hz, however, the absorptance above 1500 Hz becomes gradually better and the valid absorption (with absorptance above 0.8) frequency band (VAFB) of the viscoelastic panel becomes accordingly broader. The absorption mechanism is revealed by using the displacement field maps of the viscoelastic panel and the steel slab. The results show two typical resonance modes. One is the overall resonance mode (ORM) caused by steel backing, and the other is the core resonance mode (CRM) caused by LRS. The absorptance of the viscoelastic panel by ORM is induced mainly by the vibration of the steel slab and affected little by core position. On the contrary, with increasing the core eccentricity, the CRM shifts toward high frequency band and decouples with the ORM, leading to two separate absorption peaks and the broadened VAFB of the panel. Project supported by the National Natural Science Foundation of China (Grant No. 51275519).
NASA Astrophysics Data System (ADS)
Arndt, Christoph M.; Severin, Michael; Dem, Claudiu; Stöhr, Michael; Steinberg, Adam M.; Meier, Wolfgang
2015-04-01
A gas turbine model combustor for partially premixed swirl flames was equipped with an optical combustion chamber and operated with CH4 and air at atmospheric pressure. The burner consisted of two concentric nozzles for separately controlled air flows and a ring of holes 12 mm upstream of the nozzle exits for fuel injection. The flame described here had a thermal power of 25 kW, a global equivalence ratio of 0.7, and exhibited thermo-acoustic instabilities at a frequency of approximately 400 Hz. The phase-dependent variations in the flame shape and relative heat release rate were determined by OH* chemiluminescence imaging; the flow velocities by stereoscopic particle image velocimetry (PIV); and the major species concentrations, mixture fraction, and temperature by laser Raman scattering. The PIV measurements showed that the flow field performed a "pumping" mode with varying inflow velocities and extent of the inner recirculation zone, triggered by the pressure variations in the combustion chamber. The flow field oscillations were accompanied by variations in the mixture fraction in the inflow region and at the flame root, which in turn were mainly caused by the variations in the CH4 concentration. The mean phase-dependent changes in the fluxes of CH4 and N2 through cross-sectional planes of the combustion chamber at different heights above the nozzle were estimated by combining the PIV and Raman data. The results revealed a periodic variation in the CH4 flux by more than 150 % in relation to the mean value, due to the combined influence of the oscillating flow velocity, density variations, and CH4 concentration. Based on the experimental results, the feedback mechanism of the thermo-acoustic pulsations could be identified as a periodic fluctuation of the equivalence ratio and fuel mass flow together with a convective delay for the transport of fuel from the fuel injector to the flame zone. The combustor and the measured data are well suited for the validation of
Resolving the Proton Form Factor Problem with Positron-Proton Scattering
NASA Astrophysics Data System (ADS)
Weinstein, Lawrence
2012-10-01
The proton electromagnetic form factors are essential pieces of our knowledge of nucleon structure. However, Rosenbluth separation measurements of the proton electric form factor, GE(Q^2), differ from polarization transfer measurements by a factor of three at Q^2 = 5.6 (GeV/c)^2. This discrepancy must be resolved. One possible resolution is to include the contribution of hard two-photon exchange (TPE) contributions. These contributions are very difficult to calculate. However, we can directly determine the TPE effect by measuring the ratio of the positron-proton to electron-proton elastic scattering cross sections, R=σ(e^+p)/σ(e^-p), because the TPE amplitude has the same sign as the e^+p born amplitude and the opposite sign as the e^-p born amplitude. We have measured R over a wide range of momentum transfer, 0.2 <=Q^2 <=2 GeV^2, and virtual photon polarization, 0.1 <=ɛ<=0.9, using a mixed identical beam of electrons and positrons in Hall B at Jefferson Lab. This talk will describe the experimental techniques used to produce this beam, the analysis techniques to identify elastic scattering events, and some preliminary results.
Wu, R.S.; Xie, X.B.
1994-12-31
The theory of spatial distribution of seismic energy density in one dimensional (1D) random media derived in part 1 (Wu, 1993) is tested by numerical experiments using a full wave propagation matrix method. The geometry of numerical experiment mimics the configuration of zero-offset VSP (Vertical Seismic Profiling) along a borehole. A procedure of octave-band frequency averaging is applied to the measured data to reduce fluctuation of spatial energy distribution, so that stable estimations of medium parameters can be achieved without resorting to ensemble averaging. Results from Monte-Carlo numerical experiments for both infinite random media and finite random slabs with or without bottom reflections show good agreement for dark-to-gray (weak to intermediate scattering compared with absorption) media. When scattering is very strong (when backscattering-absorption ratio S{sub b} > 3), results from single realization fluctuate substantially. However, most the practical situations of sedimentary rocks in the crust fall into the validity region of the energy transfer theory.
NASA Astrophysics Data System (ADS)
Bowen, Patrick T.; Urzhumov, Yaroslav A.
2016-04-01
Acoustic metamaterial structures with discrete and continuous rotational symmetries attract interest of theorists and engineers due to the relative simplicity of their design and fabrication. They are also likely candidates for omnidirectional acoustic cloaking and other transformation-acoustical novelties. In this paper, we employ a stratified description of such structures, and develop the theory and an efficient symbolic/numerical algorithm for analyzing the scattering properties of such structures immersed in homogeneous fluid environments. The algorithm calculates the partial scattering amplitudes and the related scattering phases for an arbitrary layered distribution of acoustic material properties. The efficiency of the algorithm enables us to find approximate solutions to certain inverse scattering problems through quasi-global optimization. The scattering problems addressed here are the three forms of cloaking: (1) extinction cross-section suppression, the canonical form of cloaking, (2) monostatic sonar invisibility (backscattering suppression), and (3) acoustic force cloaking (transport cross-section suppression). We also address the efficiency-bandwidth tradeoff and design approximate cloaks with wider bandwidth using a new optimization formulation.
NASA Technical Reports Server (NTRS)
Cwik, T.; Jamnejad, V.; Zuffada, C.
1993-01-01
It is often desirable to calculate the electromagnetic fields inside and about a complicated system of scattering bodies, as well as in their far-field region. The finite element method (FE) is well suited to solving the interior problem, but the domain has to be limited to a manageable size. At the truncation of the FE mesh one can either impose approximate (absorbing) boundary conditions or set up an integral equation (IE) for the fields scattered from the bodies. The latter approach is preferable since it results in higher accuracy. Hence, the two techniques can be successfully combined by introducing a surface that encloses the scatterers, applying a FE model to the inner volume and setting up an IE for the tangential fields components on the surface. Here the continuity of the tangential fields is used bo obtain a consistent solution. A few coupled FE-IE methods have recently appeared in the literature. The approach presented here has the advantage of using edge-based finite elements, a type of finite elements with degrees of freedom associated with edges of the mesh. Because of their properties, they are better suited than the conventional node based elements to represent electromagnetic fields, particularly when inhomogeneous regions are modeled, since the node based elements impose an unnatural continuity of all field components across boundaries of mesh elements. Additionally, our approach is well suited to handle large size problems and lends itself to code parallelization. We will discuss the salient features that make our approach very efficient from the standpoint of numerical computation, and the fields and RCS of a few objects are illustrated as examples.
NASA Astrophysics Data System (ADS)
Derosa, S.; Cavaliere, M.
1989-02-01
A finite element computer code is used to examine the acoustic fields in typical aircraft cabins. Nastran and Patran codes are used because of their versatility and worldwide utilization. Experimental results and comparison with analytical methods are presented. The interactions between the vibrating structure and the induced pressure field in the cavity fluid are demonstrated.
Ozgun, Ozlem Mittra, Raj; Kuzuoglu, Mustafa
2009-04-01
In this paper, we introduce a parallelized version of a novel, non-iterative domain decomposition algorithm, called Characteristic Basis Finite Element Method (CBFEM-MPI), for efficient solution of large-scale electromagnetic scattering problems, by utilizing a set of specially defined characteristic basis functions (CBFs). This approach is based on the decomposition of the computational domain into a number of non-overlapping subdomains wherein the CBFs are generated by employing a novel procedure, which differs from all those that have been used in the past. Clearly, the CBFs are obtained by calculating the fields radiated by a finite number of dipole-type sources, which are placed hypothetically along the boundary of the conducting object. The major advantages of the proposed technique are twofold: (i) it provides a substantial reduction in the matrix size, and thus, makes use of direct solvers efficiently and (ii) it enables the utilization of parallel processing techniques that considerably decrease the overall computation time. We illustrate the application of the proposed approach via several 3D electromagnetic scattering problems.
An overview of acoustic telemetry
Drumheller, D.S.
1992-01-01
Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quire low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested; existing field test data need to be analyzed for transmission bandwidth and attenuation; and the new and less expensive methods of collecting data on transmission path quality need to be incorporated into this effort. 11 refs.
Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering
NASA Astrophysics Data System (ADS)
Pelinovsky, Dmitry E.; Sulem, Catherine
A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.
Balakirev, V.A.; Buts, V.A.
1982-05-01
The interaction of a relativistic electron beam with a plasma waveguide whose density is modulated by an ion acoustic wave leads to the emission of electromagnetic radiation. The wavelength of the radiation is 2..gamma../sup 2/ times shorter than the ion acoustic wavelength. The emission is accompanied by the amplification of the ion acoustic wave. The maximum amplitudes of the excited waves are found.
NASA Astrophysics Data System (ADS)
Klymko, Victor A.; Yakovlev, Alexander B.; Eshrah, Islam A.; Kishk, Ahmed A.; Glisson, Allen W.
2005-06-01
Green's function analysis of ideal hard surface circular waveguides is proposed with application to excitation and scattering problems. A decomposition of the hard surface waveguide into perfect electric conductor and perfect magnetic conductor waveguides allows the representation of dyadic Green's function in terms of transverse electric (TE) and transverse magnetic (TM) waveguide modes, respectively. In addition, a term corresponding to a transverse electromagnetic (TEM) mode is included in the representation of the Green's dyadic. The TEM term is extracted in closed form from the eigenmode expansion of TM and TE modes in the zero-cutoff limit. The electric field distribution due to an arbitrarily oriented electric dipole source is illustrated for representative TM, TE, and TEM modes propagating in the ideal hard surface circular waveguide. The derived Green's function is used in the method of moments analysis of an ideal hard surface waveguide excited by a half-wavelength strip dipole antenna. In addition, the scattering of the TEM mode by a thin strip is studied in the ideal hard surface circular waveguide.
Properties of materials using acoustic waves
NASA Astrophysics Data System (ADS)
Apfel, R. E.
1984-10-01
Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have refined our modulated radiation pressure technique for characterizing the interfaces between liquids so that we can automatically track changes in interfacial tension over time due to contaminants, surfactants, etc. (2) We have improved and simplified our acoustic scattering apparatus for measuring distributions of the properties of microparticle samples, which will allow us to distinguish particulates in liquids by size, compressibility, and density. (3) We are continuing work on theoretical approaches to nonlinear acoustics which should permit us to cast problems with geometric and other complexities into a manageable form. (4) Our studies of cavitation have enabled us to derive an analytic expression which predicts the acoustic pressure threshold for cavitation at the micrometer scale - where surface tension effects are important. This work has relevance to the consideration of possible bioeffects from diagnostic ultrasound. (5) Other projects include the calibration of hydrophones using acoustically levitated samples, and the investigation of solitary waves of the sort discovered by Wu, Keolian and Rudnick.
Reconstructed imaging of acoustic cloak using time-lapse reversal method
NASA Astrophysics Data System (ADS)
Zhou, Chen; Cheng, Ying; Xu, Jian-yi; Li, Bo; Liu, Xiao-jun
2014-08-01
We proposed and investigated a solution to the inverse acoustic cloak problem, an anti-stealth technology to make cloaks visible, using the time-lapse reversal (TLR) method. The TLR method reconstructs the image of an unknown acoustic cloak by utilizing scattered acoustic waves. Compared to previous anti-stealth methods, the TLR method can determine not only the existence of a cloak but also its exact geometric information like definite shape, size, and position. Here, we present the process for TLR reconstruction based on time reversal invariance. This technology may have potential applications in detecting various types of cloaks with different geometric parameters.
Acoustic diffraction in a trifurcated waveguide with mean flow
NASA Astrophysics Data System (ADS)
Ayub, M.; Tiwana, M. H.; Mann, A. B.
2010-12-01
Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform and Wiener-Hopf technique. The imposition of boundary conditions result in a 2×2 matrix Wiener-Hopf equation associated with a new canonical scattering problem which has been solved explicitly by expansion coefficient method. The graphs are plotted for sundry parameters of interest. Kernel functions are factorized. The results have applications to duct acoustics.
NASA Astrophysics Data System (ADS)
Lord, P.
1981-01-01
The various applications of acoustics, including sonar, ultrasonic examination of unborn foetuses and architectural applications, are briefly reviewed. Problems in traffic and industrial noise, auditorium design and explosive noise are considered in more detail. The educational aspects of acoustical science and technology are briefly considered.
NASA Technical Reports Server (NTRS)
Myneni, Ranga B.; Kanemasu, Edward T.; Asrar, Ghassem
1988-01-01
A finite element discrete ordinates method for solving the radiative transfer equation in nonrotationally invariant scattering media has been applied to the lead-canopy problem, and results are presented on the cross sections and the reflection functions. The method is based on a unique implementation of the Galerkin integral law formulation of the transport equation. For both near-normal and grazing incidences, the transfer functions of leaf canopies are found to be strongly anisotropic, with relatively more scattered flux in the vertical directions. It is suggested that the assumption of isotropic scattering in leaf canopies is not valid.
Pelivanov, Ivan M; Belov, Sergej A; Solomatin, Vladimir S; Khokhlova, Tanya D; Karabutov, Aleksander A
2006-12-31
The problem of opto-acoustic (AO) diagnostics of light scattering and absorption in biological media is considered. The objects under study were milk, bovine and porcine liver, and bovine muscle tissue. The forward and backward schemes for recording acoustic signals were used in experiments. The spatial distribution of the light intensity was measured for each biological medium from the temporal profile of the excited OA pulse and the absorption coefficient and reduced scattering coefficient were determined. Opto-acoustic signals were excited by a 1064-nm pulsed Nd:YAG laser and a tunable Ti:sapphire laser at 779 nm. It is shown that the proposed method can be used for obtaining a priori information on a biological medium in problems of optical and AO tomography. (special issue devoted to multiple radiation scattering in random media)
Yao, Jie; Lesage, Anne-Cécile; Hussain, Fazle; Bodmann, Bernhard G.; Kouri, Donald J.
2014-12-15
The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptotic form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.
Kozier, K. S.
2006-07-01
This paper examines the sensitivity of MCNP5 k{sub eff} results to various deuterium data files for a simple benchmark problem consisting of an 8.4-cm radius sphere of uranium surrounded by an annulus of deuterium at the nuclide number density corresponding to heavy water. This study was performed to help clarify why {Delta}k{sub eff} values of about 10 mk are obtained when different ENDF/B deuterium data files are used in simulations of critical experiments involving solutions of high-enrichment uranyl fluoride in heavy water, while simulations of low-leakage, heterogeneous critical lattices of natural-uranium fuel rods in heavy water show differences of <1 mk. The benchmark calculations were performed as a function of deuterium reflector thickness for several uranium compositions using deuterium ACE files derived from ENDF/B-VII.b1 (release beta 1), ENDF/B-VI.4 and JENDL-3.3, which differ primarily in the energy/angle distributions for elastic scattering <3.2 MeV. Calculations were also performed using modified ACE files having equiprobable cosine bin values in the centre-of-mass reference frame in a progressive manner with increasing energy. It was found that the {Delta}k{sub eff} values increased with deuterium reflector thickness and uranium enrichment. The studies using modified ACE files indicate that most of the reactivity differences arise at energies <1 MeV; hence, this energy range should be given priority if new scattering distribution measurements are undertaken. (authors)
Rayleigh scattering of a spherical sound wave.
Godin, Oleg A
2013-02-01
Acoustic Green's functions for a homogeneous medium with an embedded spherical obstacle arise in analyses of scattering by objects on or near an interface, radiation by finite sources, sound attenuation in and scattering from clouds of suspended particles, etc. An exact solution of the problem of diffraction of a monochromatic spherical sound wave on a sphere is given by an infinite series involving products of Bessel functions and Legendre polynomials. In this paper, a simple, closed-form solution is obtained for scattering by a sphere with a radius that is small compared to the wavelength. Soft, hard, impedance, and fluid obstacles are considered. The solution is valid for arbitrary positions of the source and receiver relative to the scatterer. Low-frequency scattering is shown to be rather sensitive to boundary conditions on the surface of the obstacle. Low-frequency asymptotics of the scattered acoustic field are extended to transient incident waves. The asymptotic expansions admit an intuitive interpretation in terms of image sources and reduce to classical results in appropriate limiting cases. PMID:23363090
Numerical Techniques for Scattering from Submerged Objects
NASA Technical Reports Server (NTRS)
Werby, M. F.; Tango, G. J.; Gaunaurd, G. C.
1985-01-01
To represent the final results in terms of matrices, one expands all appropriate physical quantities in terms of partial wave basis states. This includes expansions for the incident and scattered fields and the surface quantities. The method then utilizes the Huygen-Poincare integral representation for both the exterior and interior solutions, leading to the required matrix equations. One thus deals with matrix equations, the complexity of which depends on the nature of the problem. It is shown that in general a transition matrix T can be obtained relating the incident field A with the scattered field f having the form T = PQ(-1), where f = TA. The structure of Q can be quite complicated and can itself be composed of other matrix inversions such as arise from layered objects. Recent improvements in this method appropriate for a variety of physical problems are focused on, and on their implementation. Results are outlined from scattering simulations for very elongated submerged objects and resonance scattering from elastic solids and shells. The final improvement concerns eigenfunction expansions of surface terms, arising from solution of the interior problem, obtained via a preconditioning technique. This effectively reduces the problem to that of obtaining eigenvalues of a Hermitian operator. This formalism is reviewed for scattering from targets that are rigid, sound-soft, acoustic, elastic solids, elastic shells, and elastic layered objects. Two sets of the more interesting results are presented. The first concerns scattering from elongated objects, and the second to thin elastic spheroids.
Metzler, Adam M; Collis, Jon M
2013-04-01
Shallow-water environments typically include sediments containing thin or low-shear layers. Numerical treatments of these types of layers require finer depth grid spacing than is needed elsewhere in the domain. Thin layers require finer grids to fully sample effects due to elasticity within the layer. As shear wave speeds approach zero, the governing system becomes singular and fine-grid spacing becomes necessary to obtain converged solutions. In this paper, a seismo-acoustic parabolic equation solution is derived utilizing modified difference formulas using Galerkin's method to allow for variable-grid spacing in depth. Propagation results are shown for environments containing thin layers and low-shear layers. PMID:23556690
Homentcovschi, Dorel; Miles, Ronald N.
2008-01-01
An analysis is presented of the diffraction of a pressure wave by a periodic grating including the influence of the air viscosity. The direction of the incoming pressure wave is arbitrary. As opposed to the classical nonviscous case, the problem cannot be reduced to a plane problem having a definite 3-D character. The system of partial differential equations used for solving the problem consists of the compressible Navier-Stokes equations associated with no-slip boundary conditions on solid surfaces. The problem is reduced to a system of two hypersingular integral equations for determining the velocity components in the slits’ plane and a hypersingular integral equation for the normal component of velocity. These equations are solved by using Galerkin’s method with some special trial functions. The results can be applied in designing protective screens for miniature microphones realized in MEMS technology. In this case, the physical dimensions of the device are on the order of the viscous boundary layer so that the viscosity cannot be neglected. The analysis indicates that the openings in the screen should be on the order of 10 microns in order to avoid excessive attenuation of the signal. This paper also provides the variation of the transmission coefficient with frequency in the acoustical domain. PMID:19122753
Takahashi, Hidetoshi; Komatsu, Sahoko; Nakahachi, Takayuki; Ogino, Kazuo; Kamio, Yoko
2016-02-01
Auditory hyper-reactivity is a common sensory-perceptual abnormality in autism spectrum disorders (ASD), which interrupts behavioral adaptation. We investigated acoustic startle response (ASR) modulations in 17 children with ASD and 27 with typical development (TD). Compared to TD, children with ASD had larger ASR magnitude to weak stimuli and more prolonged peak startle-latency. We could not find significant difference of prepulse inhibition (PPI) or habituation in ASD children compared to TD. However, habituation and PPI at 70-dB prepulses were negatively related to several subscales of Social Responsiveness Scale and the Strengths and Difficulties Questionnaire, when considering all children. Comprehensive investigation of ASR and its modulation might increase understanding of the neurophysiological impairments underlying ASD and other mental health problems in children. PMID:26362152
Alaskan river environmental acoustics
NASA Astrophysics Data System (ADS)
Dahl, Peter H.; Pfisterer, Carl; Geiger, Harold J.
2005-04-01
Sonars are used by the Alaska Department of Fish and Game (ADF&G) to obtain daily and hourly estimates of at least four species of migratory salmon during their seasonal migration which lasts from June to beginning of September. Suspended sediments associated with a river's sediment load is an important issue for ADF&G's sonar operations. Acoustically, the suspended sediments are a source of both volume reverberation and excess attenuation beyond that expected in fresh water. Each can impact daily protocols for fish enumeration via sonar. In this talk, results from an environmental acoustic study conducted in the Kenai River (June 1999) using 420 kHz and 200 kHz side looking sonars, and in the Yukon River (July 2001) using a 120 kHz side looking sonar, are discussed. Estimates of the volume scattering coefficient and attenuation are related to total suspended sediments. The relative impact of bubble scattering and sediment scattering is also discussed.
Modal ring method for the scattering of sound
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal element method for acoustic scattering can be simplified when the scattering body is rigid. In this simplified method, called the modal ring method, the scattering body is represented by a ring of triangular finite elements forming the outer surface. The acoustic pressure is calculated at the element nodes. The pressure in the infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The two solution forms are coupled by the continuity of pressure and velocity on the body surface. The modal ring method effectively reduces the two-dimensional scattering problem to a one-dimensional problem capable of handling very high frequency scattering. In contrast to the boundary element method or the method of moments, which perform a similar reduction in problem dimension, the model line method has the added advantage of having a highly banded solution matrix requiring considerably less computer storage. The method shows excellent agreement with analytic results for scattering from rigid circular cylinders over a wide frequency range (1 is equal to or less than ka is less than or equal to 100) in the near and far fields.
A Hamiltonian treatment of stimulated Brillouin scattering in nanoscale integrated waveguides
NASA Astrophysics Data System (ADS)
Sipe, J. E.; Steel, M. J.
2016-04-01
We present a multimode Hamiltonian formulation for the problem of opto-acoustic interactions in optical waveguides. We develop a quantised Hamiltonian representation of the acoustic field and then introduce a full system with a simple opto-acoustic coupling that includes both photoelastic/electrostrictive and radiation pressure/moving boundary effects in a particularly transparent manner. The interaction is applied to a Fermi's golden rule calculation of spontaneous Brillouin scattering in uniform waveguides. The Heisenberg equations of motion are then used to obtain coupled mode equations for quantised envelope operators for the optical and acoustic fields. We show that the coupling coefficients obtained coincide with those established earlier. Our formalism provides a new basis for future work involving quantum photon and phonon noise in the low intensity limit, phonon–phonon scattering and anharmonicity effects.
Analysis of Diffraction of Dominant Mode in an Acoustic Impedance Loaded Trifurcated Duct
NASA Astrophysics Data System (ADS)
Ayub, Muhammad; Hussain Tiwana, Mazhar; Mann, Amer Bilad
2010-11-01
The paper presents the analytical description of diffraction phenomena of sound at the opening of a two dimensional semi-infinite acoustically soft duct. This soft duct is symmetrically located inside an infinite duct with normal impedance boundary conditions in the case where the surface acoustic impedances of the upper and lower infinite plates are different from each other. A matrix Wiener- Hopf equation associated with a new canonical scattering problem is solved explicitly. A new kernel function arose for the problem and has been factorized. The graphical results are also presented which show how effectively the unwanted noise can be reduced by proper selection of different parameters.
An Overview of Acoustic Telemetry
Drumheller, D.S.
1992-03-24
Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The oil and gas industry has led in most of the attempts to develop this type of telemetry system; however, very substantial efforts have also been made through government sponsored work in the geothermal industry. None of these previous attempts have lead to a commercial telemetry system. Conceptually, the problem looks easy. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quite low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal Waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested
Dynamics of acoustically levitated disk samples.
Xie, W J; Wei, B
2004-10-01
The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gammaacoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis. PMID:15600551
Menezes, W. A.; Filho, H. A.; Barros, R. C.
2013-07-01
A generalization of the spectral Green's function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S{sub N}) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup slab-geometry S{sub N} problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, presented here is a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method's accuracy. (authors)
Acoustic and electromagnetic waves
NASA Astrophysics Data System (ADS)
Jones, Douglas Samuel
Theoretical models of EM and acoustic wave propagation are presented in an introductory text intended for intermediate-level science and engineering students. Chapters are devoted to the mathematical representation of acoustic and EM fields, the special theory of relativity, radiation, resonators, waveguide theory, refraction, surface waves, scattering by smooth objects, diffraction by edges, and transient waves. The mathematical tools required for the analysis (Bessel, Legendre, Mathieu, parabolic-cylinder, and spheroidal functions; tensor calculus; and the asymptotic evaluation of integrals) are covered in appendices.
Method and apparatus for generating acoustic energy
Guerrero, Hector N.
2002-01-01
A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.
A mixed time integration method for large scale acoustic fluid-structure interaction
Christon, M.A.; Wineman, S.J.; Goudreau, G.L.; Foch, J.D.
1994-07-18
The transient, coupled, interaction of sound with structures is a process in which an acoustic fluid surrounding an elastic body contributes to the effective inertia and elasticity of the body. Conversely, the presence of an elastic body in an acoustic medium influences the behavior of propagating disturbances. This paper details the application of a mixed explicit-implicit time integration algorithm to the fully coupled acoustic fluidstructure interaction problem. Based upon a dispersion analysis of the semi-discrete wave equation a second-order, explicit scheme for solving the wave equation is developed. The combination of a highly vectorized, explicit, acoustic fluid solver with an implicit structural code for linear elastodynamics has resulted in a simulation tool, PING, for acoustic fluid-structure interaction. PING`s execution rates range from 1{mu}s/Element/{delta}t for rigid scattering to 10{mu}s/Element/{delta}t for fully coupled problems. Several examples of PING`s application to 3-D problems serve in part to validate the code, and also to demonstrate the capability to treat complex geometry, acoustic fluid-structure problems which require high resolution meshes.
Numerical Techniques in Acoustics
NASA Technical Reports Server (NTRS)
Baumeister, K. J. (Compiler)
1985-01-01
This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.
An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...
NASA Astrophysics Data System (ADS)
Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.
2003-04-01
Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor)
2006-01-01
The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor)
2006-01-01
The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.
Inverse scattering by point-like scatterers in the Foldy regime
NASA Astrophysics Data System (ADS)
Prasad Challa, Durga; Sini, Mourad
2012-12-01
The scattering by point-like scatterers is described in the Born, Foldy and the intermediate regimes. We explain why the Foldy regime is, rigorously, a natural model for taking into account the multiple scattering. For each regime, we study the inverse problems for detecting these scatterers as well as the scattering strengths. In the first part, we do it for the acoustic case, and in the second, we study the corresponding models for the linearized isotropic elastic case. In this last case, we show how any of the two body waves, namely pressure waves P or shear waves S, is enough to solve the inverse problem. In the 3D case, it is shown that the shear horizontal part (SH) or the shear vertical part (SV) of the shear waves S is also enough for the detection. Finally, we provide extensive numerical tests justifying our findings and discuss the question of resolution in terms of the distance between the scatterers, the used frequency and the scattering strengths. In addition, a comparison study between the three mentioned regimes is also provided.
Generation and Radiation of Acoustic Waves from a 2-D Shear Layer
NASA Technical Reports Server (NTRS)
Agarwal, Anurag; Morris, Philip J.
2000-01-01
A parallel numerical simulation of the radiation of sound from an acoustic source inside a 2-D jet is presented in this paper. This basic benchmark problem is used as a test case for scattering problems that are presently being solved by using the Impedance Mismatch Method (IMM). In this technique, a solid body in the domain is represented by setting the acoustic impedance of each medium, encountered by a wave, to a different value. This impedance discrepancy results in reflected and scattered waves with appropriate amplitudes. The great advantage of the use of this method is that no modifications to a simple Cartesian grid need to be made for complicated geometry bodies. Thus, high order finite difference schemes may be applied simply to all parts of the domain. In the IMM, the total perturbation field is split into incident and scattered fields. The incident pressure is assumed to be known and the equivalent sources for the scattered field are associated with the presence of the scattering body (through the impedance mismatch) and the propagation of the incident field through a non-uniform flow. An earlier version of the technique could only handle uniform flow in the vicinity of the source and at the outflow boundary. Scattering problems in non-uniform mean flow are of great practical importance (for example, scattering from a high lift device in a non-uniform mean flow or the effects of a fuselage boundary layer). The solution to this benchmark problem, which has an acoustic wave propagating through a non-uniform mean flow, serves as a test case for the extensions of the IMM technique.
Optimizing thermoacoustic regenerators for maximum amplification of acoustic power.
Holzinger, Tobias; Emmert, Thomas; Polifke, Wolfgang
2014-11-01
Identifying optimum design parameters and operating conditions of thermoacoustic engines or refrigerators is crucial for the further development of such devices. This publication proposes an optimization criterion for the stack of a thermoacoustic device with the objective of maximizing the amplification of acoustic energy by the stack. For this purpose, the stack is described as an acoustic multi-port, represented mathematically by its scattering matrix. It is shown how the scattering matrix may be deduced from the standard thermo-acoustic governing equations. Then an acoustic power balance is deduced from the scattering matrix. The spectral norm and the eigenvectors of the scattering matrix identify optimal acoustic states. Stack design operating parameters and frequencies with maximum amplification of acoustic power are identified for various stack configurations. The corresponding acoustic states are interpreted physically. PMID:25373945
NASA Astrophysics Data System (ADS)
Subochev, Pavel; Fiks, Ilya; Frenz, Martin; Turchin, llya
2016-02-01
The letter discusses the opportunity for cost-effective use of conventional optoacoustic hardware to realize additional imaging modalities such as ultrasonic microscopy and diffuse optical reflectometry within the same laser pulse. Optoacoustic methods for deep biomedical visualization are based on pulsed laser illumination of the internal tissue layers with scattered photons, however some of the back-scattered photons can be absorbed by the optoacoustic detector. Thermoelastic extension of the detector’s surface provides a probing pulse for an ultrasonic modality while the measurement of the amplitude of the probing ultrasonic pulse allows estimation of the diffuse reflectance from the object under investigation.
NASA Astrophysics Data System (ADS)
Xu, Kai; Chen, Xiang-Rong; Wei, Dong-Qing; Gou, Qing-Quan
2010-12-01
A quantum dynamic calculation on a five-dimensional O2/LiF (001) model system is performed using the multi-configuration time-dependent Hartree method. The obtained results show that the mechanism of rotational and diffractive excitation in details: Comparison with the rotational excited state, the initially non-rotational state is seen to favor the inelastic scattering in the rotational excitation process. The surface corrugation can damp the quantum interferences and produce a greater amount of rotational inelastic scattering at the expense of the elastic process in the rotational excitation process. The diffraction process and the average energy transferred into the rotational and diffractive mode are also discussed.
NASA Astrophysics Data System (ADS)
Vagh, Hardik A.; Baghai-Wadji, Alireza
2008-12-01
Current technological challenges in materials science and high-tech device industry require the solution of boundary value problems (BVPs) involving regions of various scales, e.g. multiple thin layers, fibre-reinforced composites, and nano/micro pores. In most cases straightforward application of standard variational techniques to BVPs of practical relevance necessarily leads to unsatisfactorily ill-conditioned analytical and/or numerical results. To remedy the computational challenges associated with sub-sectional heterogeneities various sophisticated homogenization techniques need to be employed. Homogenization refers to the systematic process of smoothing out the sub-structural heterogeneities, leading to the determination of effective constitutive coefficients. Ordinarily, homogenization involves a sophisticated averaging and asymptotic order analysis to obtain solutions. In the majority of the cases only zero-order terms are constructed due to the complexity of the processes involved. In this paper we propose a constructive scheme for obtaining homogenized solutions involving higher order terms, and thus, guaranteeing higher accuracy and greater robustness of the numerical results. We present
NASA Astrophysics Data System (ADS)
Santos, Frederico P.; Filho, Hermes Alves; Barros, Ricardo C.
2013-10-01
The scattering source iterative (SI) scheme is traditionally applied to converge fine-mesh numerical solutions to fixed-source discrete ordinates (SN) neutron transport problems. The SI scheme is very simple to implement under a computational viewpoint. However, the SI scheme may show very slow convergence rate, mainly for diffusive media (low absorption) with several mean free paths in extent (low leakage). In this work we describe an acceleration technique based on an improved initial guess for the scattering source distribution within the slab. In other words, we use as initial guess for the fine-mesh scattering source, the coarse-mesh solution of the neutron diffusion equation with special boundary conditions to account for the classical SN prescribed boundary conditions, including vacuum boundary conditions. Therefore, we first implement a spectral nodal method that generates coarse-mesh diffusion solution that is completely free from spatial truncation errors, then we reconstruct this coarse-mesh solution within each spatial cell of the discretization grid, to further yield the initial guess for the fine-mesh scattering source in the first SN transport sweep (forward and backward) across the spatial grid. We consider a number of numerical experiments to illustrate the efficiency of the offered diffusion synthetic acceleration (DSA) technique.
A fast directional algorithm for high-frequency electromagnetic scattering
Tsuji, Paul; Ying Lexing
2011-06-20
This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.
NASA Astrophysics Data System (ADS)
Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile
2015-03-01
The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.
Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile
2015-03-20
The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273
Quadratic eigenvalue problems.
Walsh, Timothy Francis; Day, David Minot
2007-04-01
In this report we will describe some nonlinear eigenvalue problems that arise in the areas of solid mechanics, acoustics, and coupled structural acoustics. We will focus mostly on quadratic eigenvalue problems, which are a special case of nonlinear eigenvalue problems. Algorithms for solving the quadratic eigenvalue problem will be presented, along with some example calculations.
Airborne chemistry: acoustic levitation in chemical analysis.
Santesson, Sabina; Nilsson, Staffan
2004-04-01
This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals. PMID:14762640
Xia, H. Patterson, R.; Feng, Y.; Shrestha, S.; Conibeer, G.
2014-08-11
The rates of charge carrier relaxation by phonon emission are of substantial importance in the field of hot carrier solar cell, primarily in investigation of mechanisms to slow down hot carrier cooling. In this work, energy and momentum resolved deformation potentials relevant to electron-phonon scattering are computed for wurtzite InN and GaN as well as an InN/GaN multiple quantum well (MQW) superlattice using ab-initio methods. These deformation potentials reveal important features such as discontinuities across the electronic bandgap of the materials and variations over tens of eV. The energy dependence of the deformation potential is found to be very similar for wurtzite nitrides despite differences between the In and Ga pseudopotentials and their corresponding electronic band structures. Charge carrier relaxation by this mechanism is expected to be minimal for electrons within a few eV of the conduction band edge. However, hole scattering at energies more accessible to excitation by solar radiation is possible between heavy and light hole states. Moderate reductions in overall scattering rates are observed in MQW relative to the bulk nitride materials.
NASA Astrophysics Data System (ADS)
Xia, H.; Patterson, R.; Feng, Y.; Shrestha, S.; Conibeer, G.
2014-08-01
The rates of charge carrier relaxation by phonon emission are of substantial importance in the field of hot carrier solar cell, primarily in investigation of mechanisms to slow down hot carrier cooling. In this work, energy and momentum resolved deformation potentials relevant to electron-phonon scattering are computed for wurtzite InN and GaN as well as an InN/GaN multiple quantum well (MQW) superlattice using ab-initio methods. These deformation potentials reveal important features such as discontinuities across the electronic bandgap of the materials and variations over tens of eV. The energy dependence of the deformation potential is found to be very similar for wurtzite nitrides despite differences between the In and Ga pseudopotentials and their corresponding electronic band structures. Charge carrier relaxation by this mechanism is expected to be minimal for electrons within a few eV of the conduction band edge. However, hole scattering at energies more accessible to excitation by solar radiation is possible between heavy and light hole states. Moderate reductions in overall scattering rates are observed in MQW relative to the bulk nitride materials.
Broadband acoustic quantification of stratified turbulence.
Lavery, Andone C; Geyer, W Rockwell; Scully, Malcolm E
2013-07-01
High-frequency broadband acoustic scattering techniques have enabled the remote, high-resolution imaging and quantification of highly salt-stratified turbulence in an estuary. Turbulent salinity spectra in the stratified shear layer have been measured acoustically and by in situ turbulence sensors. The acoustic frequencies used span 120-600 kHz, which, for the highly stratified and dynamic estuarine environment, correspond to wavenumbers in the viscous-convective subrange (500-2500 m(-1)). The acoustically measured spectral levels are in close agreement with spectral levels measured with closely co-located micro-conductivity probes. The acoustically measured spectral shapes allow discrimination between scattering dominated by turbulent salinity microstructure and suspended sediments or swim-bladdered fish, the two primary sources of scattering observed in the estuary in addition to turbulent salinity microstructure. The direct comparison of salinity spectra inferred acoustically and by the in situ turbulence sensors provides a test of both the acoustic scattering model and the quantitative skill of acoustical remote sensing of turbulence dissipation in a strongly sheared and salt-stratified estuary. PMID:23862783
Statistical Inversion of Acoustic Backscatter Profile Data with Sediment-Induced Attenuation
NASA Astrophysics Data System (ADS)
Wilson, G.; Hay, A. E.
2014-12-01
Multi-frequency acoustic backscatter inversion is a proven technique for measuring profiles of suspended sediment size and concentration. However, current inversion techniques tend to become inaccurate when sediment-induced acoustic attenuation is high (e.g., large suspended concentrations). In such cases, statistical fluctuations cause an accumulation of errors along the observed profile, which leads to an ill-posed inverse problem, even if the intrinsic properties of the scatterers are exactly known. Here, a statistical inversion methodology is introduced in which the ill-posed problem is regularized by explicitly considering the uncertainty of the observational data. The method uses the Extended Kalman Filter to estimate the propagation of uncertainty through the profile, followed by a variational smoothing step. This approach is shown to successfully estimate concentration and size profiles in cases where direct inversion fails. The method is also applied to laboratory experiments involving a multi-frequency megahertz acoustic profiler (MFDop) measuring a sediment-laden jet.
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Volakis, John L.
1989-01-01
A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principle advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.
Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... 177. Battista RA. Gamma knife radiosurgery for vestibular schwannoma. Otolaryngol Clin North Am . 2009;42:635-654. ...
Solution of the three-dimensional problem of plane wave diffraction by a two-period plane grating
NASA Astrophysics Data System (ADS)
Manenkov, S. A.
2016-03-01
Using the discrete source method, we develop an algorithm for solving the three-dimensional problem of wave scattering by a plane grating consisting of acoustically soft or acoustically stiff bodies. An efficient algorithm is proposed for determining the periodic Green's function of the grating. Numerical results are obtained for different geometries of the grating elements. The fulfillment of the energy conservation law is verified along with the fulfillment of the boundary condition at the surface of the central grating element.
Optimum Physics-Based Signal Processing in a Random Wave Scattering Environment
NASA Astrophysics Data System (ADS)
Premus, Vincent E.
A physics-based approach to the design of optimum signal processing algorithms for ocean acoustic remote sensing is presented. The approach merges physical and statistical modeling of acoustic scattering from a randomly rough ocean bottom with the principles of Bayesian inference and parameter estimation theory. The work seeks to exploit the synergistic relationship between accurate physical modeling of the propagation/scattering medium and optimum detection/estimation theory. Within this framework, the problems of acoustic seafloor characterization and robust target detection in the presence of environmental uncertainty are addressed. Accurate modeling of the wave scattering physics, based on the 3-dimensional Helmholtz-Kirchhoff theory and a geologically motivated parametrization of seafloor morphology, is of central importance to this work. In the seafloor characterization problem, the approach attempts to connect the correlation statistics of the scattered acoustic field with the seafloor microroughness wavenumber spectrum by constructing the a posteriori probability density function of the spectrum parameters. Maximum a posteriori probability estimates of the surface model parameters are obtained from two forms of acoustic data, backscattering strength angular dependence and backscatter spatial coherence. In the detection problem, a general theoretical framework for deriving the optimum detector in the case of uncertain reverberation spatial coherence is first presented in which the exact analytical form of the scattered field pdf is presumed to be arbitrary or unknown. A specialization to the case of Gaussian reverberation is then made. Simulation results, presented in terms of receiver operation characteristic (ROC) curves, illustrate the robust performance realizable by the optimum detection algorithm that properly accounts for environmental uncertainty within a Bayesian framework.
Vertical spatial coherence model for a transient signal forward-scattered from the sea surface
Yoerger, E.J.; McDaniel, S.T.
1996-01-01
The treatment of acoustic energy forward scattered from the sea surface, which is modeled as a random communications scatter channel, is the basis for developing an expression for the time-dependent coherence function across a vertical receiving array. The derivation of this model uses linear filter theory applied to the Fresnel-corrected Kirchhoff approximation in obtaining an equation for the covariance function for the forward-scattered problem. The resulting formulation is used to study the dependence of the covariance on experimental and environmental factors. The modeled coherence functions are then formed for various geometrical and environmental parameters and compared to experimental data.
Monsefi, Farid; Carlsson, Linus; Silvestrov, Sergei; Rančić, Milica; Otterskog, Magnus
2014-12-10
To solve the electromagnetic scattering problem in two dimensions, the Finite Difference Time Domain (FDTD) method is used. The order of convergence of the FDTD algorithm, solving the two-dimensional Maxwell’s curl equations, is estimated in two different computer implementations: with and without an obstacle in the numerical domain of the FDTD scheme. This constitutes an electromagnetic scattering problem where a lumped sinusoidal current source, as a source of electromagnetic radiation, is included inside the boundary. Confined within the boundary, a specific kind of Absorbing Boundary Condition (ABC) is chosen and the outside of the boundary is in form of a Perfect Electric Conducting (PEC) surface. Inserted in the computer implementation, a semi-norm has been applied to compare different step sizes in the FDTD scheme. First, the domain of the problem is chosen to be the free-space without any obstacles. In the second part of the computer implementations, a PEC surface is included as the obstacle. The numerical instability of the algorithms can be rather easily avoided with respect to the Courant stability condition, which is frequently used in applying the general FDTD algorithm.
NASA Astrophysics Data System (ADS)
Monsefi, Farid; Carlsson, Linus; Rančić, Milica; Otterskog, Magnus; Silvestrov, Sergei
2014-12-01
To solve the electromagnetic scattering problem in two dimensions, the Finite Difference Time Domain (FDTD) method is used. The order of convergence of the FDTD algorithm, solving the two-dimensional Maxwell's curl equations, is estimated in two different computer implementations: with and without an obstacle in the numerical domain of the FDTD scheme. This constitutes an electromagnetic scattering problem where a lumped sinusoidal current source, as a source of electromagnetic radiation, is included inside the boundary. Confined within the boundary, a specific kind of Absorbing Boundary Condition (ABC) is chosen and the outside of the boundary is in form of a Perfect Electric Conducting (PEC) surface. Inserted in the computer implementation, a semi-norm has been applied to compare different step sizes in the FDTD scheme. First, the domain of the problem is chosen to be the free-space without any obstacles. In the second part of the computer implementations, a PEC surface is included as the obstacle. The numerical instability of the algorithms can be rather easily avoided with respect to the Courant stability condition, which is frequently used in applying the general FDTD algorithm.
NASA Astrophysics Data System (ADS)
Gough, Colin
This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.
A broadband polygonal cloak for acoustic wave designed with linear coordinate transformation.
Zhu, Rongrong; Zheng, Bin; Ma, Chu; Xu, Jun; Fang, Nicholas; Chen, Hongsheng
2016-07-01
Previous acoustic cloaks designed with transformation acoustics always involve inhomogeneous material. In this paper, a design of acoustic polygonal cloak is proposed using linear polygonal transformation method. The designed acoustic polygonal cloak has homogeneous and anisotropic parameters, which is much easier to realize in practice. Furthermore, a possible acoustic metamaterial structure to realize the cloak is proposed. Simulation results on the real structure show that the metamaterial acoustic cloak is effective to reduce the scattering of the object. PMID:27475135
NASA Astrophysics Data System (ADS)
Cai, Li; Wen, Ji-Hong; Yu, Dian-Long; Lu, Zhi-Miao; Wen, Xi-Sen
2014-09-01
Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential applications such as sound transparency and insulation. The frequency response of acoustic cloaks with a quantity of discrete homogeneous layers is analyzed by the acoustic scattering theory. The effect of coordinate transformation function on the acoustic total scattering cross section is discussed to achieve low scattering with only a few layers of anisotropic metamaterials. Also, the physics of acoustic wave interaction with the interfaces between the discrete layers inside the cloak shell is discussed. These results provide a better way of designing a multilayered acoustic cloak with fewer layers.
NASA Astrophysics Data System (ADS)
Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram
2000-07-01
In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.
NASA Astrophysics Data System (ADS)
Kim, Yang-Hann
One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?
NASA Astrophysics Data System (ADS)
Kim, Yang-Hann
One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with "sound visualization," acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-reverberation methods, both essentialfor visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, "Can we see two birds singing or one bird with two beaks?"
NASA Astrophysics Data System (ADS)
Kim, Tae Hyun; Ko, Jae-Hyeon; Kojima, Seiji
2013-03-01
Relaxor-based ferroelectric Pb[(Mg1/3Nb2/3)1-x Tix]O3 (PMN-xPT) single crystals have attracted great attention because of their exceptionally strong piezoelectric properties. This peculiar characteristic was attributed to the rotation of polarization directions and structural complexity. In this study, the phase transition behaviors of PMN-17PT single crystals have been investigated under an electric field applied along [001] by micro-Brillouin scattering. PMN-17PT single crystals were grown by the modified Bridgeman method. The two (001) surfaces were Au-coated to apply the electric field, and the coating was thin enough to allow the incident beam to transmit without much loss. The electric field of different values was applied to the sample along the [001] direction, and the Brillouin scattering spectrum was measured under both field-heating (FH) and field-cooling (FC) conditions. The electric field of 1kV/cm induced a new longitudinal acoustic (LA) mode component along with a broad Brillouin peak evolving continuously from the paraelectric phase during both FC and FH processes. This was attributed to the remnant polar nanoregions that were not aligned under the electric field due to quenched random fields. However, the splitting of the LA mode did not appear when the electric field was over 2kV/cm indicating a clear structural phase transition. This research was supported in part by the Marubun Research Promotion Foundation and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0010497).
NASA Astrophysics Data System (ADS)
Vorobyov, A. M.; Abdurashidov, T. O.; Bakulev, V. L.; But, A. B.; Kuznetsov, A. B.; Makaveev, A. T.
2015-04-01
The present work experimentally investigates suppression of acoustic fields generated by supersonic jets of the rocket-launch vehicles at the initial period of launch by water injection. Water jets are injected to the combined jet along its perimeter at an angle of 0° and 60°. The solid rocket motor with the rocket-launch vehicles simulator case is used at tests. Effectiveness of reduction of acoustic loads on the rocket-launch vehicles surface by way of creation of water barrier was proved. It was determined that injection angle of 60° has greater effectiveness to reduce pressure pulsation levels.
Microfabricated bulk wave acoustic bandgap device
Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol
2010-06-08
A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).
Microfabricated bulk wave acoustic bandgap device
Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol
2010-11-23
A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).
An assessment of the DORT method on simple scatterers using boundary element modelling
NASA Astrophysics Data System (ADS)
Gélat, P.; Ter Haar, G.; Saffari, N.
2015-05-01
The ability to focus through ribs overcomes an important limitation of a high-intensity focused ultrasound (HIFU) system for the treatment of liver tumours. Whilst it is important to generate high enough acoustic pressures at the treatment location for tissue lesioning, it is also paramount to ensure that the resulting ultrasonic dose on the ribs remains below a specified threshold, since ribs both strongly absorb and reflect ultrasound. The DORT (décomposition de l’opérateur de retournement temporel) method has the ability to focus on and through scatterers immersed in an acoustic medium selectively without requiring prior knowledge of their location or geometry. The method requires a multi-element transducer and is implemented via a singular value decomposition of the measured matrix of inter-element transfer functions. The efficacy of a method of focusing through scatterers is often assessed by comparing the specific absorption rate (SAR) at the surface of the scatterer, and at the focal region. The SAR can be obtained from a knowledge of the acoustic pressure magnitude and the acoustic properties of the medium and scatterer. It is well known that measuring acoustic pressures with a calibrated hydrophone at or near a hard surface presents experimental challenges, potentially resulting in increased measurement uncertainties. Hence, the DORT method is usually assessed experimentally by measuring the SAR at locations on the surface of the scatterer after the latter has been removed from the acoustic medium. This is also likely to generate uncertainties in the acoustic pressure measurement. There is therefore a strong case for assessing the efficacy of the DORT method through a validated theoretical model. The boundary element method (BEM) applied to exterior acoustic scattering problems is well-suited for such an assessment. In this study, BEM was used to implement the DORT method theoretically on locally reacting spherical scatterers, and to assess its
An assessment of the DORT method on simple scatterers using boundary element modelling.
Gélat, P; Ter Haar, G; Saffari, N
2015-05-01
The ability to focus through ribs overcomes an important limitation of a high-intensity focused ultrasound (HIFU) system for the treatment of liver tumours. Whilst it is important to generate high enough acoustic pressures at the treatment location for tissue lesioning, it is also paramount to ensure that the resulting ultrasonic dose on the ribs remains below a specified threshold, since ribs both strongly absorb and reflect ultrasound. The DORT (décomposition de l'opérateur de retournement temporel) method has the ability to focus on and through scatterers immersed in an acoustic medium selectively without requiring prior knowledge of their location or geometry. The method requires a multi-element transducer and is implemented via a singular value decomposition of the measured matrix of inter-element transfer functions. The efficacy of a method of focusing through scatterers is often assessed by comparing the specific absorption rate (SAR) at the surface of the scatterer, and at the focal region. The SAR can be obtained from a knowledge of the acoustic pressure magnitude and the acoustic properties of the medium and scatterer. It is well known that measuring acoustic pressures with a calibrated hydrophone at or near a hard surface presents experimental challenges, potentially resulting in increased measurement uncertainties. Hence, the DORT method is usually assessed experimentally by measuring the SAR at locations on the surface of the scatterer after the latter has been removed from the acoustic medium. This is also likely to generate uncertainties in the acoustic pressure measurement. There is therefore a strong case for assessing the efficacy of the DORT method through a validated theoretical model. The boundary element method (BEM) applied to exterior acoustic scattering problems is well-suited for such an assessment. In this study, BEM was used to implement the DORT method theoretically on locally reacting spherical scatterers, and to assess its focusing
Scattering of radiation in collisionless dusty plasmas
Tolias, P.; Ratynskaia, S.
2013-04-15
Scattering of electromagnetic waves in collisionless dusty plasmas is studied in the framework of a multi-component kinetic model. The investigation focuses on the spectral distribution of the scattered radiation. Pronounced dust signatures are identified in the coherent spectrum due to scattering from the shielding cloud around the dust grains, dust acoustic waves, and dust-ion acoustic waves. The magnitude and shape of the scattered signal near these spectral regions are determined with the aid of analytical expressions and its dependence on the dust parameters is investigated. The use of radiation scattering as a potential diagnostic tool for dust detection is discussed.
Acoustic network event classification using swarm optimization
NASA Astrophysics Data System (ADS)
Burman, Jerry
2013-05-01
Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.
ERIC Educational Resources Information Center
Takahashi, Hidetoshi; Komatsu, Sahoko; Nakahachi, Takayuki; Ogino, Kazuo; Kamio, Yoko
2016-01-01
Auditory hyper-reactivity is a common sensory-perceptual abnormality in autism spectrum disorders (ASD), which interrupts behavioral adaptation. We investigated acoustic startle response (ASR) modulations in 17 children with ASD and 27 with typical development (TD). Compared to TD, children with ASD had larger ASR magnitude to weak stimuli and…
NASA Astrophysics Data System (ADS)
Kuttruff, Heinrich; Mommertz, Eckard
The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.
... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...
NASA Astrophysics Data System (ADS)
Kuperman, William A.; Roux, Philippe
It is well
Finite element solution of transient fluid-structure interaction problems
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.
1991-01-01
A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.
NASA Astrophysics Data System (ADS)
Park, Won-Kwang
2015-02-01
Multi-frequency subspace migration imaging techniques are usually adopted for the non-iterative imaging of unknown electromagnetic targets, such as cracks in concrete walls or bridges and anti-personnel mines in the ground, in the inverse scattering problems. It is confirmed that this technique is very fast, effective, robust, and can not only be applied to full- but also to limited-view inverse problems if a suitable number of incidents and corresponding scattered fields are applied and collected. However, in many works, the application of such techniques is heuristic. With the motivation of such heuristic application, this study analyzes the structure of the imaging functional employed in the subspace migration imaging technique in two-dimensional full- and limited-view inverse scattering problems when the unknown targets are arbitrary-shaped, arc-like perfectly conducting cracks located in the two-dimensional homogeneous space. In contrast to the statistical approach based on statistical hypothesis testing, our approach is based on the fact that the subspace migration imaging functional can be expressed by a linear combination of the Bessel functions of integer order of the first kind. This is based on the structure of the Multi-Static Response (MSR) matrix collected in the far-field at nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition). The investigation of the expression of imaging functionals gives us certain properties of subspace migration and explains why multi-frequency enhances imaging resolution. In particular, we carefully analyze the subspace migration and confirm some properties of imaging when a small number of incident fields are applied. Consequently, we introduce a weighted multi-frequency imaging functional and confirm that it is an improved version of subspace migration in TM mode. Various results of numerical simulations performed on the far
NASA Astrophysics Data System (ADS)
Roy, Ronald A.
2001-05-01
Robert Apfel believed in the creative application of acoustics technology to difficult problems in biomedical sensing. Much of his work in this area focused on material characterization, with the intention of effecting diagnosis. His early work in blood cell characterization employed acoustic levitation to measure the bulk mechanical properties of human red blood cells. This subsequently paved the way to the use of high-frequency acoustic scattering to yield the compressibility and density of individual blood cells. Technology developed in this later effort was then adapted to the very difficult problem of transient micro-cavitation detection, and the active cavitation detector (ACD) was born. This paper traces this line of work from its origins and, in the process, serves to celebrate Bob Apfel's peerless ingenuity and irrepressible creativity.
NASA Astrophysics Data System (ADS)
Kato, Hatsuhiro; Kato, Hatsuyoshi
2016-05-01
We proposed a new discretisation scheme for deriving a second-order difference equation from any system being formulated with the weak-form theory framework. The proposed scheme enables us to extend the application range of the recursive transfer method (RTM) and to express perfectly matching conditions for port boundaries in a discrete fashion under the RTM framework. To evaluate the accuracy and demonstrate the validity of the proposed scheme, we discussed the scattering problem governed by the fourth-order differential equation that was hitherto outside the RTM application range. The difference equation can play an important role in maintaining the balance of the bending moment and the shear force at the interface of two segments. Using the new port boundary condition, a quasi-localised wave was extracted and found to be related to the phase shift due to Fano resonance.
PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)
John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning
2004-07-20
The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.
NASA Astrophysics Data System (ADS)
Lakhin, V. P.; Sorokina, E. A.; Ilgisonis, V. I.; Konovaltseva, L. V.
2015-12-01
A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.
Lakhin, V. P.; Sorokina, E. A. E-mail: vilkiae@gmail.com; Ilgisonis, V. I.; Konovaltseva, L. V.
2015-12-15
A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.
Fogel, Ronen; Seshia, Ashwin A.
2016-01-01
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040
Fogel, Ronen; Limson, Janice; Seshia, Ashwin A
2016-06-30
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040
Tao, Liang; McCurdy, C.W.; Rescigno, T.N.
2008-11-25
We show how to combine finite elements and the discrete variable representation in prolate spheroidal coordinates to develop a grid-based approach for quantum mechanical studies involving diatomic molecular targets. Prolate spheroidal coordinates are a natural choice for diatomic systems and have been used previously in a variety of bound-state applications. The use of exterior complex scaling in the present implementation allows for a transparently simple way of enforcing Coulomb boundary conditions and therefore straightforward application to electronic continuum problems. Illustrative examples involving the bound and continuum states of H2+, as well as the calculation of photoionization cross sections, show that the speed and accuracy of the present approach offer distinct advantages over methods based on single-center expansions.
NASA Astrophysics Data System (ADS)
Kwon, Byung-Jin; Jung, Jin-Young; Lee, Dooho; Park, Kwang-Chun; Oh, Il-Kwon
2015-10-01
We propose a new class of acoustic waveguides with tunable bandgaps (TBs) by using vibro-acoustic metamaterials with shunted periodic piezoelectric unit cells. The unit metamaterial cells that consist of a single crystal piezoelectric transducer and an electrical shunt circuit are designed to induce a strong vibro-acousto-electrical coupling, resulting in a tunable acoustic bandgap as well as local structural resonance and Bragg scattering bandgaps. The present results show that the TB frequency can be actively controlled and the transmission loss of the acoustic wave can be greatly improved by simply changing the inductance values in the shunt circuit.
Kouri, Donald J.; Vijay, Amrendra; Zhang, Haiyan; Zhang, Jingfeng; Hoffman, David K.
2007-05-01
A method and system for solving the inverse acoustic scattering problem using an iterative approach with consideration of half-off-shell transition matrix elements (near-field) information, where the Volterra inverse series correctly predicts the first two moments of the interaction, while the Fredholm inverse series is correct only for the first moment and that the Volterra approach provides a method for exactly obtaining interactions which can be written as a sum of delta functions.
Propagation of acoustic pulses in random gravity wave fields
NASA Astrophysics Data System (ADS)
Millet, Christophe; de La Camara, Alvaro; Lott, François
2015-11-01
A linear solution modeling the interaction between an incoming acoustic wave and a randomly perturbed atmosphere is developed, using the normal mode method. The wave mode structure is determined by a sound speed profile that is confining. The environmental uncertainty is described by a stochastic field obtained with a multiwave stochastic parameterization of gravity waves (GW). Using the propagating modes of the unperturbed atmosphere, the wave propagation problem is reduced to solving a system of ordinary differential equations. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime. In this regime, the coupling between the acoustic pulse and the randomly perturbed waveguides is weak and the propagation distance must be large enough for the wave to experience significant scattering. A general expression for the pressure far-field is derived in terms of saddle-point contributions. The saddle-points are obtained from a WKB approximation of the vertical eigenvalue problem. We present preliminary results that show how statistics of the transmitted signal are related to some eigenvalues and how an ``optimal'' GW field can trigger large deviations in the acoustic signals. The present model is used to explain the variability of infrasound signals.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.
2008-01-01
Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.
Coherent acoustic phonons in nanostructures
NASA Astrophysics Data System (ADS)
Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.
2008-02-01
Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.
Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid.
Lopes, J Henrique; Azarpeyvand, Mahdi; Silva, Glauber T
2016-01-01
In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N objects suspended in an inviscid fluid are theoretically analyzed. We utilize the partial-wave expansion method with translational addition theorem and re-expansion of multipole series to solve the related multiple scattering problem. We show that the acoustic interaction force and torque can be obtained using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets' radii are comparable to the wavelength (i.e., Mie scattering regime). The results show that the acoustic interaction forces present an oscillatory spatial distribution which follows the pattern formed by interference between the external and rescattered waves. In addition, acoustic interaction torques arise on the absorbing droplets whenever a nonsymmetric wavefront is formed by the external and rescattered waves' interference. PMID:26529753
THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy
Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan
2016-01-01
GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction. PMID:27346494
THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy.
Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan
2016-01-01
GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction. PMID:27346494
THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy
NASA Astrophysics Data System (ADS)
Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan
2016-06-01
GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction.
Compressive acoustic sound speed profile estimation.
Bianco, Michael; Gerstoft, Peter
2016-03-01
Ocean acoustic sound speed profile (SSP) estimation requires the inversion of acoustic fields using limited observations. Compressive sensing (CS) asserts that certain underdetermined problems can be solved in high resolution, provided their solutions are sparse. Here, CS is used to estimate SSPs in a range-independent shallow ocean by inverting a non-linear acoustic propagation model. It is shown that SSPs can be estimated using CS to resolve fine-scale structure. PMID:27036293
Acoustic transducer for acoustic microscopy
Khuri-Yakub, Butrus T.; Chou, Ching H.
1990-01-01
A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.
Acoustic transducer for acoustic microscopy
Khuri-Yakub, B.T.; Chou, C.H.
1990-03-20
A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.
Acoustic Inversion in Optoacoustic Tomography: A Review
Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel
2013-01-01
Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths beyond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the excitation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These algorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses. PMID:24772060
Scattering of sound by a penetrable sphere above a plane boundary
NASA Astrophysics Data System (ADS)
Lui, Wai Keung; Li, Kai Ming
2002-11-01
The problem of acoustic scattering by a penetrable sphere irradiated by a point source is investigated. A theoretical model is developed for the case of scattering by a sphere placed above an acoustically hard and an impedance boundary. The sphere is made of an extended reaction material that is assumed to be acoustically penetrable. The problems are tackled by using the technique of variables separation and appropriate wave field expansions. By adopting an image source method, the solutions can be formulated in form of multiscattering interaction between the sphere and the image sphere near a hard and an impedance boundary. The effect of boundary impedance on the reflected sound fields is incorporated in the numerical model by using the well-known Wely-van der Pol formula. Preliminary indoor measurements are conducted in an anechoic chamber for the characterization of the acoustical properties of the penetrable sphere as well as the impedance boundary. A further set of experimental measurements is carried out to demonstrate the validity of the proposed theoretical models for various receiver locations around the sphere above the impedance boundary. [Work sponsored by the Innovation & Technology Commission, MTR Corp. Ltd., and The Hong Kong Polytechnic University under Project No. ZM07.
Scattering measurements on natural and model trees
NASA Technical Reports Server (NTRS)
Rogers, James C.; Lee, Sung M.
1990-01-01
The acoustical back scattering from a simple scale model of a tree has been experimentally measured. The model consisted of a trunk and six limbs, each with 4 branches; no foliage or twigs were included. The data from the anechoic chamber measurements were then mathematically combined to construct the effective back scattering from groups of trees. Also, initial measurements have been conducted out-of-doors on a single tree in an open field in order to characterize its acoustic scattering as a function of azimuth angle. These measurements were performed in the spring, prior to leaf development. The data support a statistical model of forest scattering; the scattered signal spectrum is highly irregular but with a remarkable general resemblance to the incident signal spectrum. Also, the scattered signal's spectra showed little dependence upon scattering angle.
Axisymmetric scattering of scalar waves by spheroids.
Lekner, John; Boyack, Rufus
2011-06-01
A phase shift formulation of scattering by oblate and prolate spheroids is presented, in parallel with the partial-wave theory of scattering by spherical obstacles. The crucial step is application of a finite Legendre transform to the Helmholtz equation in spheroidal coordinates. In the long-wavelength limit the spheroidal analog of the spherical scattering length immediately gives the cross section. Analytical results are readily obtained for scattering of Schrödinger particle waves by impenetrable spheroids, and for scattering of sound waves by acoustically soft spheroidal objects. The method is restricted to scattering by spheroids whose symmetry axis is coincident with the direction of the incident plane wave. PMID:21682372
NASA Technical Reports Server (NTRS)
Schlegel, R. G.
1982-01-01
It is important for industry and NASA to assess the status of acoustic design technology for predicting and controlling helicopter external noise in order for a meaningful research program to be formulated which will address this problem. The prediction methodologies available to the designer and the acoustic engineer are three-fold. First is what has been described as a first principle analysis. This analysis approach attempts to remove any empiricism from the analysis process and deals with a theoretical mechanism approach to predicting the noise. The second approach attempts to combine first principle methodology (when available) with empirical data to formulate source predictors which can be combined to predict vehicle levels. The third is an empirical analysis, which attempts to generalize measured trends into a vehicle noise prediction method. This paper will briefly address each.
Acoustic methods of remote probing of the lower atmosphere
NASA Technical Reports Server (NTRS)
Little, C. G.
1969-01-01
The potential usefulness of acoustic methods for the remote probing of the lower atmosphere is reviewed. Starting with a comparison of the effects of temperature, wind, and humidity fluctuations upon the refractive index of air to electromagnetic and acoustic waves, it is shown that the fluctuations in acoustic refractive index may be expected to be about one thousand times stronger than in the radio case. Since the scattered power is proportional to the square of the refractive index fluctuations, the scatter of acoustic waves may be expected to be roughly one million times stronger than for radio waves. In addition, the million-fold ratio between the velocities of electromagnetic and acoustic waves results in an acoustic system requiring one million times less bandwidth to interrogate a given atmospheric volume.
NASA Astrophysics Data System (ADS)
Beach, Kirk; Dunmire, Barbrina
Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.
Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.
1996-06-01
Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}
On unique determination of partially coated polyhedral scatterers with far field measurements
NASA Astrophysics Data System (ADS)
Liu, Hongyu; Zou, Jun
2007-02-01
This work is a continuation of our early study in Liu and Zou (2006 Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers Inverse Problems 22 515-24 2006 Uniqueness in determining multiple polygonal or polyhedral scatterers of mixed type Technical Report 2006-03(337) The Chinese University of Hong Kong) and addresses the unique determination of partially coated polyhedral scatterers in {\\bb R}^N (N >= 2) along with their surface impedance from far field data. Two global uniqueness results are established for this inverse problem with a scatterer consisting of multiple solid polyhedra: the first one is to determine such a scatterer of mixed sound-soft and impedance type by a single incident plane wave and the other is to determine such a scatterer of mixed sound-soft, sound-hard and impedance type by N different incident waves in the N-dimensional case with N >= 3 and by only one incident wave for the two-dimensional case. Then we present some examples to show that as long as a scatterer admits the presence of (sound-hard) crack-type obstacles, then one cannot determine the scatterer uniquely by any less than N different incident plane waves. These examples also reveal that the uniqueness results achieved earlier in [15, 16] for polyhedral scatterers are optimal. Finally, the uniqueness results that have been solved or are still unsolved for the polyhedral-type scatterers with both solid and crack components are summarized in the conclusion.
Dust-Acoustic Waves: Visible Sound Waves
Merlino, Robert L.
2009-11-10
A historical overview of some of the early theoretical and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some of the theoretical refinements that have been made, including the effects of collisions, plasma absorption, dust charge fluctuations, particle drifts and strong coupling effects are discussed. Some recent experimental findings and outstanding problems are also presented.
An efficient model for coupling structural vibrations with acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Ting, LU
1993-01-01
The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.
Some Sound Advice or a Short Course in School Acoustics
ERIC Educational Resources Information Center
McCandless, David
1977-01-01
The two major areas of acoustical problems are room acoustics and noise control. Some parameters of these areas are identified to illustrate that the best acoustical solutions occur in comprehensive planning at the very beginning of a project. (Author/MLF)
NASA Technical Reports Server (NTRS)
Heyman, J. S.
1984-01-01
Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.
Arctic acoustics ultrasonic modeling studies
NASA Astrophysics Data System (ADS)
Chamuel, Jacques R.
1990-03-01
A unique collection of laboratory ultrasonic modeling results are presented revealing and characterizing hidden pulsed seismoacoustic wave phenomena from 3-D range dependent liquid/solid boundaries. The research succeeded in isolating and identifying low frequency (10 to 500 Hz) transmission loss mechanisms and provided physical insight into Arctic acoustic problems generally beyond the state-of-the-art of theoretical and numerical analysis. The ultrasonic modeling studies dealt with controversial issues and existing discrepancies on seismo-acoustic waves at water/ice interface, sea ice thickness determination, low frequency transmission loss, and bottom leaky Rayleigh waves. The areas investigated include leaky Rayleigh waves at water/ice interface, leaky flexural waves in floating ice plates, effects of dry/wet cracks in sea ice on plate waves and near grazing acoustic waves, edge waves in floating plates, low frequency backscatter from ice keel width resonances, conversion of underwater acoustic waves into plate waves by keels, nondispersive flexural wave along apex of small angle solid wedge, Scholte and leaky Rayleigh waves along apex of immersed 90 ice wedge, backscatter from trailing edge of floes, floating plate resonances associated with near-grazing underwater acoustic waves, acoustic coupling between adjacent floes, and multiple bottom leaky Rayleigh wave components in water layer over solid bottom.
A finite element surface impedance representation for steady-state problems
NASA Technical Reports Server (NTRS)
Kalinowski, A. J.
1986-01-01
A procedure for determining the scattered pressure field resulting from a monochromatic harmonic wave that is incident upon a layer energy absorbing structure is treated. The situation where the structure is modeled with finite elements and the surrounding acoustic medium (water or air) is represented with either acoustic finite elements, or some type of boundary integral formulation, is considered. Finite element modeling problems arise when the construction of the structure, at the fluid structure interface, are nonhomogeneous and in particular, when the inhomogeneities are small relative to the acoustic wave length. An approximate procedure is presented for replacing the detailed microscopic representation of the layered surface configuration with an equivalent simple surface impedance finite element, which is especially designed to work only at limited frequencies. An example problem is presented using NASTRAN. However, the procedure is general enough to adapt to practically any finite element code having a steady state option.
Fast wideband acoustical holography.
Hald, Jørgen
2016-04-01
Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient. PMID:27106299
ERIC Educational Resources Information Center
Young, Andrew T.
1982-01-01
The correct usage of such terminology as "Rayleigh scattering,""Rayleigh lines,""Raman lines," and "Tyndall scattering" is resolved during an historical excursion through the physics of light-scattering by gas molecules. (Author/JN)
NASA Astrophysics Data System (ADS)
Sakamoto, S.
The finite difference time domain (FDTD) method is widely used as an effective and powerful tool for analyzing acoustic problems. In architectural acoustics, impulse response is the most important quantity and therefore the FDTD method, by which the physical quantities are obtained in time domain, is more advantageous than other wave-based analysis methods, by many of which the calculation is performed in frequency domain. This paper reports application of the FDTD method to room acoustics and outdoor noise assessment.
Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E
2013-10-01
A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers. PMID:24116529
Quantum positron acoustic waves
Metref, Hassina; Tribeche, Mouloud
2014-12-15
Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.
Drumheller, D.S.
1997-12-30
An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.
Drumheller, Douglas S.
1997-01-01
An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.
Acoustic-Liner Admittance in a Duct
NASA Technical Reports Server (NTRS)
Watson, W. R.
1986-01-01
Method calculates admittance from easily obtainable values. New method for calculating acoustic-liner admittance in rectangular duct with grazing flow based on finite-element discretization of acoustic field and reposing of unknown admittance value as linear eigenvalue problem on admittance value. Problem solved by Gaussian elimination. Unlike existing methods, present method extendable to mean flows with two-dimensional boundary layers as well. In presence of shear, results of method compared well with results of Runge-Kutta integration technique.
Frequency Domain Calculations Of Acoustic Propagation
NASA Technical Reports Server (NTRS)
Lockard, David P.
2004-01-01
Two complex geometry problems are solved using the linearized Euler equations. The impedance mismatch method1 is used to impose the solid surfaces without the need to use a body-fitted grid. The problem is solved in the frequency domain to avoid long run times. Although the harmonic assumption eliminates all time dependence, a pseudo-time term is added to allow conventional iterative methods to be employed. A Jameson type, Runge-Kutta scheme is used to advance the solution in pseudo time. The spatial operator is based on a seven-point, sixth-order finite difference. Constant coefficient, sixth-derivative artificial dissipation is used throughout the domain. A buffer zone technique employing a complex frequency to damp all waves near the boundaries is used to minimize reflections. The results show that the method is capable of capturing the salient features of the scattering, but an excessive number of grid points are required to resolve the phenomena in the vicinity of the solid bodies because the wavelength of the acoustics is relatively short compared with the size of the bodies. Smoothly transitioning into the immersed boundary condition alleviates the difficulties, but a fine mesh is still required.
Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline
2010-04-01
Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (<500 Hz) and corresponds to a fundamental frequency with associated harmonics. The pitch of snoring is determined by vibration of the soft palate, while nonpalatal snoring is more 'noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as
Entropy rate defined by internal wave scattering in long-range propagation.
Morozov, Andrey K; Colosi, John A
2015-09-01
The reduction of information capacity of the ocean sound channel due to scattering by internal waves is a potential problem for acoustic communication, navigation, and remote sensing over long ranges. In spite of recent progress in research on acoustic signal scattering by random internal waves and the fact that random internal waves are ubiquitous in the world oceans, there is no clear understanding of how these waves influence data communication performance. The entropy decrease resulting from scattering by internal waves is an important measure of information loss. Here a rigorous calculation of the entropy is carried out using second moment transport theory equations with random sound-speed perturbations obeying the Garrett-Munk internal-wave model. It is shown that full-wave rate of entropy is of the same order of magnitude as the Kolmogorov-Sinai entropy and Lyapunov exponents for the relevant ray trajectories. The correspondence between full-wave and ray entropies suggests a correspondence between full-wave scattering and ray chaos near statistical saturation. The relatively small level of entropy rate during propagation through the random internal-wave field shows that scattering by internal waves is likely not an essential limitation for data rate and channel capacity. PMID:26428774
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Kadyrov, A. S.; Avazbaev, S. K.; Bray, I.
2016-06-01
Details of the recently developed quantum-mechanical two-center convergent close-coupling approach (Abdurakhmanov et al 2016 J. Phys. B: At. Mol. Phys. 49 03LT01) to proton-hydrogen scattering are presented. The formulation is based on the exact (fully quantum-mechanical) three-body Schrödinger equation. The total scattering wavefunction is expanded using a two-center pseudostate basis. This allows one to include all underlying processes, namely, direct scattering and ionization, electron capture into bound and continuum states of the projectile. The off-shell integration in the coupled-channel Lippmann–Schwinger integral equations emerging from the three-body Schrödinger equation for the scattering wavefunction is taken analytically which greatly reduces computational effort. While the calculated electron capture cross sections are in a good agreement with experiment, some discrepancy exists for the ionization cross sections.
On observing acoustic backscattering from salinity turbulence.
Goodman, Louis; Sastre-Cordova, Marcos M
2011-08-01
It has been hypothesized that at sufficiently high levels of oceanic salinity turbulence it should be possible to observe acoustic backscattering. However, there have been limited in situ measurements to confirm this hypothesis. Using an autonomous underwater vehicle equipped with upward and downward looking 1.2 MHz acoustic Doppler current profilers and with turbulence and fine scale sensors, measurements were performed in a region of intense turbulence and a strong salinity gradient. The approach taken was to correlate variations in the backscattered acoustic intensity, I, with a theoretical acoustic backscattering cross section per volume for salinity turbulence, σ(s), to obtain an estimated scattering cross section per volume, σ(e). Results indicated that of order 50% of the observed region was characterized by salinity turbulence induced backscattering. PMID:21877785
Fano resonance scatterings in waveguides with impedance boundary conditions.
Xiong, Lei; Bi, Wenping; Aurégan, Yves
2016-02-01
The resonance scattering theory is used to study the sound propagation in a waveguide with a portion of its wall lined by a locally reacting material. The objective is to understand the effects of the mode coupling in the lined portion on the transmission. It is shown that a zero in the transmission is present when a real resonance frequency of the open system, i.e., the lined portion of the waveguide that is coupled to the two semi-infinite rigid ducts, is equal to the incident frequency. This transmission zero occurs as a Fano resonance-due to the excitation of a trapped mode in the open system. The trapped mode is formed by the interferences of two neighbored modes with complex resonance frequencies. It is also linked to the avoided crossing of eigenvalues of these two modes that occurs near an exceptional point (a subject that has attracted much attention in recent years in different physical domains). The real and complex resonance frequencies of the open system are determined by an equivalent eigenvalue problem of matrix Heff, which describes the eigenvalue problem defined in the finite lined portion (scattering region). With the aid of the eigenvalues and eigenfunctions of matrix Heff, the usual acoustic resonance scattering formula can be extended to describe the coupling effects between the scattering region and the rigid parts of the waveguide. PMID:26936558
Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray
1990-01-01
An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.
Drumheller, Douglas S.
2000-01-01
An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.
Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.
2003-08-01
Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.
Theoretical and experimental verification of acoustic focusing in metal cylinder structure
NASA Astrophysics Data System (ADS)
Xia, Jian-ping; Sun, Hong-xiang; Cheng, Qian; Xu, Zheng; Chen, Hao; Yuan, Shou-qi; Zhang, Shu-yi; Ge, Yong; Guan, Yi-jun
2016-05-01
We report the realization of a multifocal acoustic focusing lens using a simple metal cylinder structure immersed in water, as determined both experimentally and theoretically. The acoustic waves can be focused on one or more points, because the Mie-resonance modes are excited in the cylinder structure. The acoustic pressure fields measured in the Schlieren imaging system agree with the results calculated using the acoustic scattering theory. Interesting applications of multifocal focusing in the acoustic encryption communication are further discussed. Our work should be helpful in understanding the focusing mechanism and experimentally measuring the acoustic phenomena in cylinder structures.
Acoustic radiation torque and the conservation of angular momentum (L).
Zhang, Likun; Marston, Philip L
2011-04-01
This note concerns the evaluation of the static acoustic radiation torque exerted by an acoustic field on a scatterer immersed in a nonviscous fluid based on far-field scattering. The radiation torque is expressed as the integral of the time-averaged flux of angular momentum over a spherical surface far removed from the scattering object with its center at the centroid of the object. That result was given previously [G. Maidanik, J. Acoust. Soc. Am. 30, 620-623 (1956)]. Another expression given recently [Z. W. Fan et al., J. Acoust. Soc. Am. 124, 2727-2732 (2008)] is simplified to this formula. Comments are made on obtaining it directly from the general theorem of angular momentum conservation in the integral form. PMID:21476624
NASA Technical Reports Server (NTRS)
Kaushik, Dinesh K.; Baysal, Oktay
1997-01-01
Accurate computation of acoustic wave propagation may be more efficiently performed when their dispersion relations are considered. Consequently, computational algorithms which attempt to preserve these relations have been gaining popularity in recent years. In the present paper, the extensions to one such scheme are discussed. By solving the linearized, 2-D Euler and Navier-Stokes equations with such a method for the acoustic wave propagation, several issues were investigated. Among them were higher-order accuracy, choice of boundary conditions and differencing stencils, effects of viscosity, low-storage time integration, generalized curvilinear coordinates, periodic series, their reflections and interference patterns from a flat wall and scattering from a circular cylinder. The results were found to be promising en route to the aeroacoustic simulations of realistic engineering problems.
Deghosting in multipassive acoustic sensors
NASA Astrophysics Data System (ADS)
Yang, Rong; Ng, Gee Wah
2004-04-01
In this paper, we describe a deghosting algorithm in multiple passive acoustic sensor environment. In a passive acoustic sensor system, a target is detected by its bearing to the sensor, and the target location is obtained from triangulation of bearings on different sensors. However, in multi-passive sensor and multi-target scenario, triangulation is difficult. This is because multi-target triangulation results in a number of ghost targets being generated. In order to remove the triangulating ghosts, the deghosting technique is essential to distinguish the true targets from the ghost targets. We suggest a deghosting algorithm by applying Bayes" theorem and the likelihood function on the acoustic signals. A probability related to acoustic signal on each triangulating point is recursively computed and updated at every time stamp or frame. The triangulating point will be classified as a true target, once its probability exceeds a predefined threshold. Furthermore, acoustic signal has propagation delay. The situation yields the triangulating location biased to the bearing of the nearest sensor. In our algorithm, the propagation delay problem is solved by matching the histories of bearing tracks, and yields the unbiased location that has similar emitting times for the sensors contributing to the triangulation point. The emitting times can be derived from detecting times and propagation delays. Performance result is presented on simulation data.
Nonlinear acoustic wave propagation in atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1985-01-01
A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.
Nonlinear acoustic wave propagation in atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1986-01-01
In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.
Surface acoustic wave velocity and elastic constants of cubic GaN
NASA Astrophysics Data System (ADS)
Jiménez Riobóo, Rafael J.; Cuscó, Ramon; Prieto, Carlos; Kopittke, Caroline; Novikov, Sergei V.; Artús, Luis
2016-06-01
We present high-resolution surface Brillouin scattering measurements on cubic GaN layers grown on GaAs substrate. By using a suitable scattering geometry, scattering by surface acoustic waves is recorded for different azimuthal angles, and the surface acoustic wave velocities are determined. A comparison of experimental results with numerical simulations of the azimuthal dependence of the surface wave velocity shows good agreement and allows a consistent set of elastic constants for c-GaN to be determined.
Observation of Marine Animals Using Underwater Acoustic Camera
NASA Astrophysics Data System (ADS)
Iida, Kohji; Takahashi, Rika; Tang, Yong; Mukai, Tohru; Sato, Masanori
2006-05-01
An underwater acoustic camera enclosed in a pressure-resistant case was constructed to observe underwater marine animals. This enabled the measurement of the size, shape, and behavior of living marine animals in the detection range up to 240 cm. The transducer array of the acoustic camera was driven by 3.5 MHz ultrasonic signals, and B-mode acoustic images were obtained. Observations were conducted for captive animals in a water tank and for natural animals in a field. The captive animals, including fish, squid and jellyfish, were observed, and a three-dimensional internal structure of animals was reconstructed using multiple acoustical images. The most important contributors of acoustic scattering were the swimbladder and vertebra of bladdered fish, and the liver and reproductive organs of invertebrate animals. In a field experiment, the shape, size, and swimming behavior of wild animals were observed. The possibilities and limitations of the underwater acoustic camera for fishery applications were discussed.
Acoustic Mechanical Feedthroughs
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea
2013-01-01
Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be
Separation of multiple scatterers in NEWS experiments using Independent Component Analysis (ICA)
NASA Astrophysics Data System (ADS)
Vanaverbeke, S.; Van Den Abeele, K.; Nion, D.; De Lathauwer, L.
2010-01-01
Nonlinear elastic wave spectroscopy combined with imaging techniques such as acoustic time reversal (NEWS-TR) or sparse array tomography is a promising new methodology for detecting microdamage at an early stage. When dealing with structures which could potentially contain many point-like nonlinear scatterers, there is a need to develop techniques for separately imaging the defects using a distributed sensor network which can be used either in time-reversal imaging processes or for tomographic imaging.. In this contribution, we discuss the application of Independent Component Analysis (ICA) methods to solve the problem of separating multiple nonlinear scatterers distributed throughout a sample, either by combining ICA with time reversal or by using ICA in conjunction with a tomographic experiment. We illustrate the procedure for ICA based tomographic imaging of multiple scatterers in an infinite medium.
Sonification of acoustic emission data
NASA Astrophysics Data System (ADS)
Raith, Manuel; Große, Christian
2014-05-01
While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training
Acoustic source for generating an acoustic beam
Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian
2016-05-31
An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.
Imaging of 3D Ocean Turbulence Microstructure Using Low Frequency Acoustic Waves
NASA Astrophysics Data System (ADS)
Minakov, Alexander; Kolyukhin, Dmitriy; Keers, Henk
2015-04-01
In the past decade the technique of imaging the ocean structure with low-frequency signal (Hz), produced by air-guns and typically employed during conventional multichannel seismic data acquisition, has emerged. The method is based on extracting and stacking the acoustic energy back-scattered by the ocean temperature and salinity micro- and meso-structure (1 - 100 meters). However, a good understanding of the link between the scattered wavefield utilized by the seismic oceanography and physical processes in the ocean is still lacking. We describe theory and the numerical implementation of a 3D time-dependent stochastic model of ocean turbulence. The velocity and temperature are simulated as homogeneous Gaussian isotropic random fields with the Kolmogorov-Obukhov energy spectrum in the inertial subrange. Numerical modeling technique is employed for sampling of realizations of random fields with a given spatial-temporal spectral tensor. The model used is shown to be representative for a wide range of scales. Using this model, we provide a framework to solve the forward and inverse acoustic scattering problem using marine seismic data. Our full-waveform inversion method is based on the ray-Born approximation which is specifically suitable for the modelling of small velocity perturbations in the ocean. This is illustrated by showing a good match between synthetic seismograms computed using ray-Born and synthetic seismograms produced with a more computationally expensive finite-difference method.
Nanowave devices for terahertz acoustic phonons
NASA Astrophysics Data System (ADS)
Lanzillotti-Kimura, N. D.; Fainstein, A.; Lemaître, A.; Jusserand, B.
2006-02-01
The emergence of the area of nanophononics requires the development of terahertz (THz) acoustic devices with tailored properties. We describe nonperiodic planar nanostructures with specific THz phononic response and superior performance. We show that improved devices based on GaAs and AlAs layers can be designed using an optimization Nelder-Mead simplex method, and grown with state-of-the-art molecular beam epitaxy. We also demonstrate that high-resolution Raman scattering provides a powerful tool to characterize these devices. We illustrate the concept with results on acoustic THz edge and color filters.
Acoustic Faraday rotation in Weyl semimetals
NASA Astrophysics Data System (ADS)
Liu, Donghao; Shi, Junren
We investigate the phonon problems in Weyl semimetals, from which both the phonon Berry curvature and the phonon Damping could be obtained. We show that even without a magnetic field, the degenerate transverse acoustic modes could also be split due to the adiabatic curvature. In three dimensional case, acoustic Faraday rotation shows up. And furthermore, since the attenuation procedure could distinguish the polarized mode, single circularly polarized acoustic wave could be realized. We study the mechanism in the novel time reversal symmetry broken Weyl semimetal. New effects rise because of the linear dispersion, which give enlightenment in the measurement of this new kind of three-dimensional material.
... Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, is a rare benign tumor of the ... Acoustic Neuroma? An acoustic neuroma, known as a vestibular schwannoma, is a benign (non-cancerous) growth that ...
Phononic Molecules Studied by Raman Scattering
Lanzillotti-Kimura, N. D.; Fainstein, A.; Jusserand, B.; Lemaitre, A.
2010-01-04
An acoustic nanocavity can confine phonons in such a way that they act like electrons in an atom. By combining two of these phononic-atoms, it is possible to form a phononic 'molecule', with acoustic modes that are similar to the electronic states in a hydrogen molecule. We report Raman scattering experiments performed in a monolithic structure formed by a phononic molecule embedded in an optical cavity. The acoustic mode splitting becomes evident through both the amplification and change of selection rules induced by the optical cavity confinement. The results are in perfect agreement with photoelastic model simulations.
Holographic interpretation of acoustic black holes
NASA Astrophysics Data System (ADS)
Ge, Xian-Hui; Sun, Jia-Rui; Tian, Yu; Wu, Xiao-Ning; Zhang, Yun-Long
2015-10-01
With the attempt to find the holographic description of the usual acoustic black holes in fluid, we construct an acoustic black hole formed in the d -dimensional fluid located at the timelike cutoff surface of a neutral black brane in asymptotically AdSd +1 spacetime; the bulk gravitational dual of the acoustic black hole is presented at the first order of the hydrodynamic fluctuation. Moreover, the Hawking-like temperature of the acoustic black hole horizon is showed to be connected to the Hawking temperature of the real anti-de Sitter (AdS) black brane in the bulk, and the duality between the phonon scattering in the acoustic black hole and the sound channel quasinormal mode propagating in the bulk perturbed AdS black brane is extracted. We thus point out that the acoustic black hole appearing in fluid, which was originally proposed as an analogous model to simulate Hawking radiation of the real black hole, is not merely an analogy, it can indeed be used to describe specific properties of the real AdS black holes, in the spirit of the fluid/gravity duality.
Optical scattering methods applicable to drops and bubbles
NASA Technical Reports Server (NTRS)
Marston, Philip L.
1990-01-01
An overview of optical scattering properties of drops and bubbles is presented. The properties lead to unconventional methods for optically monitoring the size or shape of a scatterer and are applicable to acoustically levitated objects. Several of the methods are applicable to the detection and measurement of small amplitude oscillations. Relevant optical phenomena include: (1) rainbows; (2) diffraction catastrophes from spheroids; (3) critical angle scattering; (4) effects of coatings; (5) glory scattering; and (6) optical levitation.
Sensor localization using helicopter acoustic and GPS data
NASA Astrophysics Data System (ADS)
Damarla, Thyagaraju R.; Mirelli, Vincent
2004-09-01
In this paper we present an algorithm to determine the location of an acoustic sensor array using the direction of arrival (DOA) estimates of a moving acoustic source whose ground truth is available. Determination of location and orientation of sensor array based on the statistics of errors in the DOA estimation is a nonlinear regression problem. We formulate and derive the necessary equations to solve this problem in terms of the bearing estimates of the acoustic source and its location. The algorithm is tested against helicopter data from three acoustic sensor arrays distributed over a field.